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Quantized valley Hall response from local bulk
density variations
Maxime Jamotte1,5✉, Lucila Peralta Gavensky 1,5✉, Cristiane Morais Smith 2, Marco Di Liberto 3,4✉ &

Nathan Goldman 1✉

The application of a mechanical strain to a 2D material can create pseudo-magnetic fields and

lead to a quantized valley Hall effect. However, measuring valley-resolved effects remains a

challenging task due to their inherent fragility and dependence on the sample’s proper design.

Additionally, non-local transport probes based on multiterminal devices have often proven to

be inadequate in yielding conclusive evidence of the valley Hall signal. Here, we introduce an

alternative way of detecting the quantized valley Hall effect, which entirely relies on local

density measurements, performed deep in the bulk of the sample. The resulting quantized

signal is a genuine Fermi sea response, independent of the edge physics, and reflects the

underlying valley Hall effect through the Widom-Středa formula. Specifically, our approach is

based on measuring the variation of the particle density, locally in the bulk, upon varying the

strength of the applied strain. This approach to the quantized valley Hall effect is particularly

well suited for experiments based on synthetic lattices, where the particle density

(or integrated density of states) can be spatially resolved.
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Two-dimensional honeycomb lattices, such as graphene or
monolayers of transition metal dichalcogenides (TMDs),
are considered to be promising candidates for valley based

electronics owing to their particular bandstructure, which features
two non-equivalent Dirac valleys at the corners of the Brillouin
zone1,2. Due to their large separation in momentum space, these
constitute a novel discrete orbital degree of freedom for low-
energy carriers, which could be used to store, filter and transport
information3 much in the same way the electronic spin is used for
spintronics applications. When spatial inversion symmetry is
explicitly4 or effectively5 broken in these materials, while pre-
serving time-reversal symmetry, finite but opposite Berry curva-
tures develop at each valley, endowing the system’s carriers with
an anomalous velocity. Indeed, in sufficiently clean samples with
suppressed intervalley scattering, applying an in-plane electric
field generates non-dissipative counterpropagating valley currents
along its transverse direction without a net charge flow, giving
rise to what is known as the valley Hall effect (VHE). Indirect
measurements of this effect were reported in graphene on top of a
hexagonal boron nitride substrate6, biased graphene bilayers7,8

and TMDs9. Typical transport probes of the valley Hall con-
ductivity are based on non-local resistance measurements in
multiterminal Hall bar geometries, in a similar scheme as the one
used to detect spin Hall currents10. Despite early progress in
interpreting the non-local resistance as a hallmark of the valley
Hall effect, this analysis has been questioned by theoretical
simulations11–13 and subsequent experiments14,15. In particular,
the ongoing debate regarding the relative significance of edge
versus bulk contributions in these early experiments, as well as
the role of topological versus non-topological factors, continues to
spark intense discussions in the scientific community16,17. Other
alternatives to these transport experiments require the use of
spatially-resolved optical Kerr signals18 or selectively exciting
valley-polarized carriers via circularly polarized light19.

Strained honeycomb lattices provide yet another platform
where valley Hall related phenomena can take place. The cou-
pling between the electronic degrees of freedom and the
mechanical deformation in these samples can be well described by
the emergence of strong artificial gauge fields, which drastically

alter their low-energy properties20,21. When properly engineering
the strain, effective pseudomagnetic fields pointing in opposite
directions develop at inequivalent Dirac cones, resulting in the
formation of relativistic pseudo-Landau levels (pLLs) in the
vicinity of the valleys. This characteristic energy spectrum has
been successfully observed in a broad variety of devices: starting
from strained graphene nanobubbles22 and molecular
graphene23,24, all the way up to acoustic meta-materials25–27,
polaritonic lattices28, honeycomb arrays of photonic
waveguides29, microwave resonators30 and, more recently, pho-
tonic Fock-state lattices31. In finite-size samples, strain may give
rise to valley polarized counterpropagating edge states, which
could eventually lead to the detection of quantized valley Hall
conductivities. Nevertheless, the lack of topological protection of
these helical boundary modes makes their existence strongly
dependent on the proper design of edge terminations and on the
type of strain32. Even more, short-range scattering can couple
both valleys and lead to backscattering between the edge
channels33, making usual transport probes of the Fermi surface
states very fragile to edge disorder and matching conditions.

In this work, we demonstrate that a quantized valley Hall
response can be directly measured by monitoring the variation of
the particle density in the bulk, upon small variations of the
applied strain; see Fig. 1. This method builds on the Widom-
Středa formula34,35, which relates (in its original form) the elec-
trical Hall conductivity to a bulk density response: σH= e ∂nbulk/
∂B, where B denotes an applied magnetic field, nbulk is the particle
density evaluated locally in the bulk and e is the charge of the
carriers. In the present framework of strained systems, we con-
sider a pseudo-magnetic field perturbation, as obtained by mod-
ifying the strength of the applied strain, so that the resulting
density response directly reflects the underlying valley Hall con-
ductivity. Importantly, this approach suggests that the quantized
valley Hall response can be cleanly extracted from a bulk prop-
erty, in sharp contrast with more standard non-local transport
measurements. This makes our proposal particularly appealing
for synthetic lattice systems, as for engineered molecular lattices
where the local density of states (LDoS) can be extracted via STM
imaging24,36–40, or for the case of ultracold atoms in optical

Fig. 1 Description of the proposed method. Measuring the variation of the particle density, upon varying the strength of the applied strain τ, leads to a
quantized bulk response, SðrÞ, reflecting the underlying valley Hall effect. a Number of particles ~nðrÞ within a unit cell at position r when applying trigonal
strain to the sample (arrows). b Local valley Hall marker SðrÞ [Eq. (14)] in units of the conductivity quantum σ0= e2/h, displaying a plateau at a quantized
value SðrÞ=σ0 2 Z deep in the bulk. In the present case, SðrÞ=σ0 ’ 1, as emphasized in the zoomed region. This local bulk response exists irrespective of
the sample’s edge termination. For more details on the system parameters used, see the Results subsection “Trigonal strain in a finite hexagonal flake''.
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lattices, where the local particle density can be finely measured
using the quantum gas microscope technique41–47.

Results
Strained honeycomb lattices: the model. The tight-binding
Hamiltonian of a strained honeycomb lattice can be generically
written as

Ĥ ¼ � ∑
r2A;j

tjðrÞ ðâyr b̂rþδjðrÞ þ h.c. Þ; j 2 f1; 2; 3g; ð1Þ

where the operators ârðâyr Þ and b̂rþδjðrÞðb̂
y
rþδjðrÞÞ are annihilation

(creation) operators on A and B sublattices at position r and
r+ δj(r), respectively. In solid-state devices, such as mechanically
stretched graphene sheets21,22, the hopping elements are essen-
tially modified by distorting the lattice geometry, which is here
encoded in the position of the atoms and in the set of space-
dependent first nearest-neighbors vectors, which we defined as
δj(r) [see Fig. 2a]. This same strategy has been used in syntheti-
cally built systems, such as molecular graphene24,36,
photonic28–30 and acoustic25–27 meta-materials. One of the main
advantages of these setups is that stress configurations can be
designed at will by simply engineering different lattice patterns.
Other theoretical proposals have also analyzed the possibility of
mimicking the physics of strained honeycomb lattices with
ultracold atoms trapped in optical lattices48–51. In some of those
platforms, strain can be directly imprinted on the tunneling
amplitudes without modifying the underlying crystalline structure
of the lattice (see the Discussion Section). In that case, the vectors
δj(r)= δj are simply the pristine ones, namely δ1= (− a, 0), δ2 ¼
ða=2; ffiffiffi

3
p

a=2Þ and δ3 ¼ ða=2;� ffiffiffi
3

p
a=2Þ [see Fig. 2b], where a is

the lattice spacing. In the following, we present results for this
simpler scenario, keeping in mind that the discussion can be
easily generalized to the geometrically deformed lattice. We
specifically work with uniaxial strain along the x-direction, which
is modeled with space-dependent tunneling amplitudes as

tjðxÞ ¼ t 1þ τ
x � xc
3a2

jx̂ � δjj
� �

; x̂ ¼ ð1; 0Þ: ð2Þ

Here, t is a uniform tunneling amplitude, τ is the strain intensity
and x runs over discretized positions xl located in the middle of a
δj-link between an A and a B site, as indicated in Fig. 2b. The
position of the system’s center is denoted by xc= Lx/2, where Lx is
the projected length of the ribbon along the x direction. The

parameters are kept in such a way that τLx/6a < 1, so that the
hopping terms do not vanish across the entire sample. For this
stress configuration, the Hamiltonian defined by Eq. (1) can be
diagonalized for open boundary conditions along x and periodic
boundary conditions along y. The energy spectrum is shown in
Fig. 3, where we present results for both the unstrained (τ= 0)
and strained case (τ= 70.84 × 10−4). We have used zig-zag ter-
minations and Nx= 301 cells along the x-direction, which cor-
respond to a system size of Lx= 450.5 a. In the first case, the
spectrum (gray lines) shows two well-defined Dirac valleys, with
the gap closing points denoted as K and K0. For τ > 0, (tilted)
pseudo Landau levels are generated around each Dirac cone, and
edge states arise, localized along the boundaries of the system.
The lines of this spectrum have been colored based on the mean
position xh i of each eigenstate. Since the spatial inhomogeneity in
the hopping terms is not too strong (τ≪ 1), the valley index is
still preserved and it is possible to derive an effective Hamiltonian
linearized around the Dirac points that incorporates the effect of
strain via a minimal coupling term52,53,

hξAðqÞ ¼ _vF ðξqy � eAξ
yÞσx � ðqx � eAξ

xÞσy
h i

; ð3Þ

where vF= 3ta/2ℏ is the Fermi velocity, AξðxÞ ¼ ð0;Aξ
yÞ ¼

ðξ_τ=9ea2Þðx � xcÞŷ is the pseudo-vector potential, q= (qx,
qy)≡ k− ξK and ξ indicates the valley, taking the value+ 1 for K
and− 1 for K0. The effective magnetic field at each valley is given
by

Bξ
τ ¼ ∇ ´Aξ ¼ ξ

_τ

9ea2
ẑ ¼ Bξ

τ ẑ: ð4Þ

Note that it has opposite sign at each valley and is hence not a
proper magnetic field but a pseudo-magnetic field, which does
not break time-reversal symmetry. Consequently, the edge states
in the sample are helical instead of chiral: counterpropagtaing
modes emerge at each boundary, with the valley index deter-
mining the sign of their velocity, as clearly seen in the color code
of Fig. 3.

The bulk energy spectrum consists of a set of discretized energy
levels, which are not strictly flat, as Eq. (3) would predict. Indeed,

Fig. 2 Schematic representation of strained honeycomb lattices.
Honeycomb lattice with zig-zag terminations along the x-direction and
Nx= 3 primitive cells of area Ac ¼ 3

ffiffiffi
3

p
a2=2. The vectors connecting

neighboring sites are denoted as δj. a Strain is applied by mechanically
stretching the lattice. b Strain is directly imprinted on the tunneling
amplitudes tj(r) without modifying the underlying crystalline structure of
the lattice.

Fig. 3 Spectrum of a uniaxially strained honeycomb lattice. Energies ε of
the Hamiltonian in Eq. (1) in units of hopping parameter t for τ= 0 (gray
lines) and τ= 70.84 × 10−4 (colored lines). We have used Nx= 301 cells
along the x-direction and zigzag terminations. For finite strain, the color
scale indicates the mean position 〈x〉 of each state. The black dashed lines
represent the pseudo-Landau levels (pLLs) whose approximate dispersion
is given by Eq. (5).
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there are higher-order terms, which have been neglected in the
linear approximation that complicate the picture away from the
Dirac points. The first correction to the constant pseudo-
magnetic field model can be incorporated by considering that
strain also induces a spatial dependence on the Dirac-Fermi
velocity. Including this inhomogeneity, the pseudo-Landau levels
acquire a dispersion in momentum space, which is approximately
described by54

EνðqyÞ ¼ ± t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τν

2
1� ξ

3qya

2

� �s
; ν 2 N: ð5Þ

This analytical prediction is highlighted with black dashed lines in
Fig. 3. We point out that this low-energy (effective) description is
only valid close to the Dirac points K and K0.

The valley Hall response as a density response function. The
Widom-Středa formula provides an insightful connection
between the Hall conductivity of a two-dimensional gas σH and
the variation of its bulk particle density nbulk in response to the
modification of an external magnetic field B. This relation states
that, whenever the Fermi energy μF lies within a spectral gap, this
transport coefficient can be obtained as

σH ¼ e
∂nbulk
∂B

����
μF

: ð6Þ

This formula, originally derived by Středa within linear response
theory34, was obtained independently by Widom using very
general thermodynamic relations35. Its validity holds for any
insulating state of matter, including strongly-correlated ones55. In
the case of Chern insulators, such as quantum Hall states, Eq. (6)
can be used to predict the emergence of a quantized Hall
response56,57. Strained honeycomb lattices preserve time-reversal
symmetry, so the Hall conductivity in these systems remains
trivially equal to zero. Nevertheless, due to the explicit breaking of
space-inversion symmetry, the quantum valley Hall effect can
take place58. When the Fermi energy is taken to be near the
charge neutrality point, the valley Hall response σV can be defined
as the difference of the contributions to the Hall conductivity at K
and K0, denoted σKH and σK

0
H , respectively, i.e.,

σV � σKH � σK
0

H : ð7Þ

Our first goal is to adapt Eq. (6) to the system under con-
sideration, in order to probe the VHE via density response to
strain variations. For τ≪ 1, we can rely on the constant pseudo-
magnetic field approximation discussed in the previous section to
obtain the conductivity for each valley as

σξH ’ e
∂nξ

∂Bξ
τ

�����
μF

’ ξ ν þ 1
2

� �
σ0; ð8Þ

where nξ stands for the contribution of the K (ξ=+ 1) or the K 0

(ξ=− 1) valley to the bulk particle density, ν is the index of the
last occupied pLL and σ0= e2/h is the conductivity quantum. The
last equality has been derived by performing an explicit calcula-
tion of nξ with the analytical eigenstates obtained from Eq. (3)
(see the Supplementary Note 1). For uniaxial strain as the one of
Eq. (2), these wavefunctions remain fairly close to the exact
eigenstates near the center of the sample50,53, and can then be
used to provide a good approximation to the particle density
around the bulk of the system. Based on Eq. (8), the valley Hall
response can be directly obtained in terms of the variation of the

total bulk density nbulk ¼ nK þ nK
0
, for varying strain intensity, as

σV ’ e
∂nK

∂BK
τ

� ∂nK
0

∂BK 0
τ

 !�����
μF

¼ e
∂nbulk
∂BK

τ

����
μF

¼ ∂~nbulk
∂ατ

����
μF

σ0 ’ ð2ν þ 1Þσ0:

ð9Þ

Here, we defined

ατ � BK
τ Ac=ϕ0; ð10Þ

as the flux in a primitive cell of area Ac ¼ 3
ffiffiffi
3

p
a2=2 in units of the

flux quantum ϕ0= h/e in the presence of a magnetic field BK
τ . In

the last equality of Eq. (9), ~nbulk ¼ nbulkAc stands for the
dimensionless particle density per cell in the bulk (i.e. the number
of particles within a unit cell illustrated in Fig. 2b). Note that
while usual experimental probes of the valley Hall conductivity
rely on non-local (out-of-equilibrium) transport measurements,
Eq. (9) provides an alternative approach, which only relies on
locally testing the equilibrium particle density variations upon
modifying the strength of strain. We stress that this approach
relies on the low-energy Dirac model introduced in Eq. (3),
hence, it is valid in the regime τ≪ 1.

In the case of uniaxial strain, the explicit dependence of the
hopping amplitudes on the position brings a caveat to the
problem: it makes the particle density to become position
dependent, even deep into the bulk of the sample. This behavior
is explicitly shown in Fig. 4, where we plot the dimensionless
density of particles per cell

~nðxÞ ¼ ∑
α¼A;B

~nðxαÞ ¼ Ac ∑
α¼A;B

nðxαÞ; ð11Þ

as a function of the cell position, which is here denoted as x≡ x2l
for l= 0, 1, 2… (as defined in Fig. 2b). In Eq. (11), the position of
an α-site within the unit cell at x has been denoted as xα. We
show the behavior of this quantity for two different values of the
chemical potential and the same parameters, as in Fig. 3. We also
compare these densities with the ones of a honeycomb lattice in
the presence of a homogeneous external magnetic field of
strength B ¼ BK

τ . Note that the difference between both models
tends to zero at the center of the sample. Characteristic Friedel

Fig. 4 Density profiles with a real or a pseudo-magnetic field. Particle
density per cell for the same parameters as in Fig. 3 (flux per primitive cell
ατ= 3.255 × 10−4) for a strained sample (solid line) and for a lattice with a
homogeneous external magnetic field B ¼ BKτ (dashed line). Green and blue
colors correspond to chemical potentials μ1= 0.02 t (first gap) and
μ2= 0.068 t (second gap), respectively. Note that we plot deviations of the
dimensionless density of particles ~n from unity, which are of the order of
10−3.
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oscillations are clearly visible near the edges of the sample, until
the density peaks due to the presence of the edge modes. As
opposed to the constant magnetic field case, the strained lattice
presents a clear asymmetry between the right and left boundaries.
At the left of the sample, the hopping amplitude decreases with
respect to its unstrained value [see Eq. (2)], making the
wavefunctions more localized and the density slightly higher
than the one at x= xc. The opposite behavior takes place at the
right of the sample, where the density decreases with respect to
the one at the center. Since the deviation is symmetrical with
respect to this point, we can define a bulk particle density by
averaging the densities ~nðxÞ over a certain radius rbulk= Lbulk/2
around x= xc. In this way,

~nbulk ¼
1

Nbulk
∑

x2bulk
~nðxÞ; ð12Þ

where the bulk region corresponds to x∈ [xc− rbulk, xc+ rbulk]
and Nbulk is the number of cells considered in the sum. If the bulk
radius is small compared to the size of the system, the bulk
density as defined above will remain quite close to the one that
would be obtained from a constant magnetic field model, making
the Středa formulation of Eqs. (8) and (9) still adequate. In
particular, the valley Hall response may be obtained by averaging
the density variations in the central bulk region as

σV ¼ 1
Nbulk

∑
x2 bulk

SðxÞ; ð13Þ

where,

SðxÞ ¼ σ0
∂~nðxÞ
∂ατ

����
μF

: ð14Þ

Note that SðxÞ plays the role of a local marker in the problem: it
provides a way to locally probe the valley Hall coefficient when
properly averaged over Lbulk.

One must keep in mind that the valley Hall quantization is a
property of an insulating bulk. In order to measure it, the Fermi
energy has to lie in a region between two pLLs. A word of caution is
in order here: since we are dealing with a finite-size sample in the
presence of edge states, there are no true spectral gaps in the
system. Nevertheless, the bulk particle density for sufficiently large
systems (Lbulk < Lx) is expected to depend very weakly on the filling
of the edge modes, and therefore the Středa formulation should
remain reasonably accurate, as discussed in the next section.

Spectral properties. With the aim of determining the energy
regions where the Widom-Středa formula can be applied, it is
instructive to study the spectral properties of the strained hon-
eycomb lattice. We show in Fig. 5a the density of states (DoS) of
the sample as a function of energy and ατ, calculated as

ρðεÞ ¼ � 1
π
ImTr½ĜrðεÞ�; ð15Þ

with Ĝ
rðεÞ ¼ ðεþ iη� ĤÞ�1

the retarded Green’s function of the
system. For reference purposes, the particular DoS for
ατ= 3.255 × 10−4 is shown in Fig. 5b, which corresponds to the
value of strain (τ= 70.84 × 10−4) used to produce the spectrum
of Fig. 3. One clearly identifies a continuum of states representing
the pseudo-Landau levels ν= 0, 1, 2, as well as a set of discrete
modes, which stem from the edge states of the system. As
opposed to the case of a non-strained honeycomb lattice in a real
magnetic field, the pseudo-Landau levels for ∣ν∣ ≥ 1 have a certain
width in energy due to their finite drift velocity. As a visual aid,
we have included their analytical energy at the Dirac points in
solid black lines – see Eq. (5) for qy= 0. The dependence of the
DoS as a function of strain nicely reflects the spectral flow: when

ατ increases, the discretized edge modes decrease in energy until
they merge with the continuum of bulk states. This behavior is
consistent with their wavefunction moving away from the hard-
wall potential, while at the same time, becoming more localized in
space (recall that the effective magnetic length

‘B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_=eBK

τ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac=2πατ

p
).

The key quantity to evaluate the density variations through the
sample [Eqs. (13) and (14)] is the local density of states per cell
(LDoS), which may be obtained in terms of the retarded Green’s
function as

ρðε; xÞ ¼ � 1
π

∑
α¼A;B

ImhxαjĜ
rðεÞjxαi; ð16Þ

where the sum runs over the two sublattice sites belonging to the
cell at x= x2l. Note that in order to obtain the local density of
particles at each cell, this quantity must be integrated in energy up
to the Fermi level,

~nðxÞ ¼
Z μF

�1
ρðε; xÞdε: ð17Þ

The bulk particle density previously defined in Eq. (12) can then
be obtained as the average

~nbulk ¼
1

Nbulk
∑

x2bulk

Z μF

�1
ρðε; xÞdε ¼

Z μF

�1
ρbulkðεÞdε: ð18Þ

Here, ρbulk(ε)=∑x∈ bulkρ(ε, x)/Nbulk is nothing but the density of
states projected onto this particular region. The valley Hall

Fig. 5 Density of states for uniaxial strain. a Total density of states ρ(ε) in
logarithmic scale as a function of energy ε and pseudomagnetic flux ατ. The
size of the sample is the same as in Fig. 3, namely Lx= 450.5 a. The black
dashed and dashed-dotted lines represent the chemical potentials
μ1= 0.02t and μ2= 0.068t, respectively. b Cut of (a) for ατ= 3.255 × 10−4

(identified with vertical dashed-blue line in (a). c Bulk density of states
ρbulk(ε) in logarithmic scale for Lbulk= 36 a. d Cut of (c) for
ατ= 3.255 × 10−4. In (b) and (d), black solid lines identify the energy of the
analytical pseudo-Landau levels at the Dirac points.
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coefficient in Eq. (9) can be re-written in terms of this quantity as
an integral over the Fermi sea

σV ¼ σ0

Z μF

�1

∂ρbulkðεÞ
∂ατ

dε: ð19Þ

In a finite-size sample, we thus expect to have a quantized result
from Eq. (19) whenever ρbulk(μF)≃ 0. We show in Fig. 5c the bulk
density of states ρbulk(ε) for a bulk region of width equal to
Lbulk= 36 a (centered around xc). This size of Lbulk is of the order
of the magnetic length for ατ= 3.255 × 10−4. For clarity, we show
in Fig. 5d a cut of ρbulk(ε) for this value of ατ. We can clearly see
that, for this particular bulk area, the contribution of the edge
modes is negligible in the first two gaps between pLLs and slightly
more relevant in the third gap (note the logarithmic color scale).
This is in agreement with the edge states arising from the ν= 2
pLL being appreciably more delocalized than the ones originating
from the ν= 0 and ν= 1 pLL. To avoid the presence of finite-size
effects, we will then focus on the results for the first two gaps.

A local probe for the valley Hall response. Figure 6 shows the
local responseSðxÞ as a function of the position in the sample – see
Eq. (14)– for two different chemical potentials: μ1= 0.02 t in the
first gap (green) and μ2= 0.068 t in the second gap (blue). We
compare the local response as obtained for a strained lattice (solid
lines) and an unstrained lattice in a uniform magnetic field of
magnitude B ¼ BK

τ (dashed lines). In this latter case, the local
marker (also obtained with Eq. (14)) remains uniform in the bulk
of the system and equal to the quantized integer value expected
from the theory. This could be anticipated from Fig. 4: a real
magnetic field leads to plateaus in the bulk density profiles and,
accordingly, in their variation with respect to the external flux. On
the other hand, for the strained case, SðxÞ presents a linear drift
around the center of the system, naturally inherited from the
density asymmetry resulting from the uniaxial strain we previously
discussed. Deviations from this linearity arise as soon as edge
effects become significant. These are more pronounced for the
second than for the first gap, as the edge states from the former are
more delocalized. Note that these local markers are equal at xc,
confirming that the constant pseudo-magnetic field picture is
accurate at the center of the sample. One also deduces from the
linearity that discrepancies can be filtered away by simply averaging
over an adequate radius rbulk= Lbulk/2, as prescribed by Eq. (13).

In order to properly determine a reasonable bulk size to
perform the average, we show in Fig. 7 the valley Hall response

as obtained from Eq. (13) as a function of ατ and Lbulk for
μF= μ1 (panel a) and μF= μ2 (panel b). In both cases, the bulk
density response to strain variations shows a remarkably
quantized value (σV ≃ 1 and σV ≃ 3, respectively) when aver-
aging over Lbulk ≲ 100a. Noticeable deviations from these
integer values occur at very specific values of ατ, appearing as
horizontal stripes. For these values of strain, one of the
discretized modes that stem from the edge states crosses the
Fermi level, as can be seen in Fig. 5a. This is evidenced in
Fig. 7c, d, where we show the bulk density of states at the Fermi
energy ρbulk(μF) as a function of ατ and Lbulk for the same
chemical potentials as the ones used for Fig. 7a and b. If the size
of Lbulk is sufficiently large, the density of states projected onto
the selected region becomes finite, breaking down the insulating
character of the portion of the system that is being probed.
Indeed, ρbulk(μF) also presents horizontal stripes at the same
values of ατ as in Fig. 7a and b, reflecting an increase of the
contribution from the edge states. More generally, a quantized
valley Hall coefficient can be measured via the bulk density
response to strain variations as long as ρbulk(μF) ≃ 0. When
finite-size effects become appreciable, ρbulk(μF) increases,
leading to deviations of the response from the quantized integer
values predicted by the theory. We thus conclude from Fig. 7
that, within our range of parameters, any Lbulk ≲ 100a is a
suitable bulk size for probing the quantum valley Hall effect in
the first couple of gaps for a sample of size Lx= 450.5 a.

In Fig. 8a, we plot the valley Hall response as obtained from Eq.
(13) as a function of both the chemical potential μF and ατ, so as to
display a full scan of the valley Hall fan diagram. Here, we have
chosen an average region of size Lbulk= 36 a. As a guide to the eye,

Fig. 6 Local valley Hall marker for uniaxial strain. Spatial dependence of
the kernel SðxÞ for the same parameters as in Fig. 3 (ατ= 3.255 × 10−4) for
a strained sample (solid lines) and for a lattice with a homogeneous
external magnetic field B ¼ BKτ (dashed lines). Green and blue colors
correspond to chemical potentials μ1= 0.02 t (first gap) and μ2= 0.068 t
(second gap), respectively.

Fig. 7 Finite size effects in the valley Hall response. a, b Valley Hall
response obtained from Eq. (13) as a function of the flux per plaquette ατ
and the size of the bulk Lbulk in a system of size Lx= 450.5a. The chemical
potential has been fixed to μ1= 0.02 t in the first and μ2= 0.068 t in the
second gap, respectively. The colorbar shows the deviation of the valley
Hall response with respect to its analytically expected value. The solid black
lines represent the magnitude of the magnetic length ℓB for each strain
intensity. c, d Projected density of states ρbulk(μF) as a function of ατ and
Lbulk at the corresponding chemical potentials μF= μ1 and μF= μ2.
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we include dashed white lines to identify whenever the Fermi energy
is equal to the analytical ν-th pLL energy, i.e. μF=t ¼

ffiffiffiffiffiffiffiffiffiffi
τν=2

p
. We

can clearly see the formation of plateaus in all the regions where the
filling fraction of the pseudo-Landau levels remains constant.
Quantization breaks down as soon as the bulk becomes metallic.
This is best illustrated in Fig. 8b, where we show a specific cut of
panel a for ατ= 3.255 × 10−4. The shaded gray area represents the
bulk density of states ρbulk(μF). Whenever the region being probed
becomes incompressible (∂ρbulk/∂μF≃ 0), a robust valley Hall plateau
occurs. On the other hand, as soon as ρbulk(μF) becomes finite, the
density response to strain variations becomes erratic.

Trigonal strain in a finite hexagonal flake. Up to this point, we
particularized our analysis to large system sizes, as made possible
by using uniaxial strain along one direction and periodic
boundary conditions along the other. It is worth asking whether
these results would hold for smaller samples with different strain
configurations or edge terminations. In this section, we explore a
more realistic geometry where open boundary conditions are
imposed along the entire system. This is well suited for the
implementation of trigonal strain, which we model with a space-
dependent tunneling amplitude of the form

tjðrÞ ¼ t 1þ τ
ðr� rcÞ � δj

3a2

� �
; ð20Þ

where rc denotes the position of the system’s center. This parti-
cular strain leads to an effective gauge potential of the form
eAξðrÞ ¼ ξ_τ=3a2 ðy � ycÞx̂ � ðx � xcÞŷ

� 	
32. The corresponding

pseudo-magnetic field at each valley is consequently given by

Bξ
τ ¼ ∇ ´Aξ ¼ �ξ

2_τ
3ea2

ẑ: ð21Þ

Note that with this convention, aside from changing its magni-
tude, the sign of the pseudo-magnetic field is opposite at each of
the valleys with respect to the previously analyzed case [see Eq.
(4)]. In this regard, we already anticipate a bulk density response
to strain variations, which should be negative (positive) for τ > 0
(τ < 0), when taking a chemical potential μF > 0 within a gap
between pLLs. The triaxial deformation is known to produce pLLs
that are non-dispersive, as opposed to the tilted ones obtained
with the previously uniaxially-stretched lattices. We then expect
to observe particle densities with a plateau-like behavior near the
bulk of the system, which could lead to an improvement of the
spatial homogeneity of the local valley markerSðrÞ. Furthermore,
these highly degenerate pLLs lead to larger bulk spectral gaps that
could help detecting a more precise quantized response for higher
filling fractions.

We numerically study a triaxially-stretched flake of a
honeycomb lattice, which is shaped in the form of a hexagon,
hence preserving the trigonal symmetry. The terminations have
been chosen so as to alternate between bearded and zigzag-like
edges32. In this way, the perimeter of the hexagon can be built
with sites belonging to a single sublattice (without loss of
generality, we choose them to be A sites). Depending on the sign
of the hopping variations (namely τ being positive or negative)
these types of flakes can support, or not support, helical edge
states in the gap between the 0-th and 1-st pLL. This essentially
depends on the wavefunction of the ν= 0 pLL being localized on
the B-sublattice (τ > 0 within our convention) or on the
A-sublattice (τ < 0)32. In the former case, the zero energy pLL
can be mixed with the non-propagating edge modes that live on
the A-sublattice, generating dispersive helical edge states, while in
the latter case the chiral symmetry forbids this to happen. We will
present results for both cases and show that the density response
SðrÞ that we propose as a valley Hall marker is quantized
regardless of the edge states being present or not in the first gap.

We show in Fig. 9 the flake’s total density of states ρ(ε) as a
function of energy and the strain strength for the case τ > 0
(panel a) and τ < 0 (panel b). A pseudo-Landau level structure is
revealed for both cases. For clarity, we show, in Fig. 9c and d,
specific cuts of Fig. 9a and b at ∣τ∣= 0.07, respectively. The bulk
spectrum is reasonably well described by the low-energy

approximate model, namely Eν ¼ ± vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_ejBξ

τ jν
q

¼ ± t
ffiffiffiffiffiffiffiffiffiffi
3jτjνp

,

which is displayed by gray dashed lines. As already anticipated,
for positive τ, edge states emerge in the first gap, while for
negative τ the density of states remains exactly zero within that
range of energies, indicating the absence of propagating helical
modes. We also note that boundary modes are present in all gaps
between higher pseudo-Landau levels (ν > 0)32. This behavior can
be better captured by analyzing the local density of states at a
given energy, which we here define for each sublattice site as

ραðε; rÞ ¼ � 1
π
ImhrαjĜ

rðεÞjrαi; ð22Þ

where α=A, B. In Fig. 10a and b, this quantity is plotted for both
positive and negative strain variations, respectively. We have chosen
an energy within the first gap ε= μF= 0.1 t and ∣τ∣= 0.07. For this
large pseudo-magnetic field, the magnetic length is equal to
ℓB≃ 4.63 a. We exploit the mirror symmetry of the flake with
respect to the y= yc axis to plot separately half of the A-sublattice

Fig. 8 Valley Hall response for uniaxial strain. a Valley Hall response
obtained from Eq. (13) as a function of the pseudo-magnetic flux per
primitive cell ατ and the Fermi energy μF in units of the hopping parameter t.
Dashed white lines represent μF=t ¼

ffiffiffiffiffiffiffiffiffiffi
τν=2

p
for ν= 1 and ν= 2, where τ is

the strain intensity. The size of the bulk region where we averaged the local
marker is Lbulk= 36 a. b (Blue dots) Valley Hall response σV for
ατ= 3.255 × 10−4 (indicated by a solid black line in panel a). Results are
restricted to the present window for clarity. (Gray area) Local density of
states ρbulk from Fig. 5b.
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(the upper part) and half of the B-sublattice (the lower part). The
missing pieces can be simply obtained by reflecting the correspond-
ing portions with respect to the horizontal line that divides the
sample into two halves. In Fig. 10a, delocalized edge modes
surrounding the entire perimeter of the flake are clearly visible. A
corresponding cut along r ¼ xcx̂ þ yŷ is shown to the left of the
figure, where we have restored the entire spatial distribution. In
Fig. 10b, the LDoS remains strictly zero along the entire flake, in
consistency with the absence of edge states for this sign of τ.

In Fig. 10, we also present the local valley Hall marker for τ > 0
(c) and τ < 0 (d). The chemical potential has been chosen to be
μF= 0.1 t. The density response to strain variations is discrimi-
nated by sublattice, that is to say, we plot individually

SαðrÞ ¼ σ0
∂~nαðrÞ
∂ατ

����
μF

¼ σ0

Z μF

�1

∂ραðε; rÞ
∂ατ

dε; ð23Þ

where ~nαðrÞ is the dimensionless particle density at position rα
and α= A, B. We can clearly see that the response near the bulk
of the flake is quantized in both scenarios: when the system
supports or lacks edge states. Even more, the response is
quantized separately on each sublattice (see Supplementary
Note 1). Due to the particle-hole symmetry of the problem, the
contribution to the total particle density of the half-filled system
must remain inert to strain variations. In this sense, the bulk
valley marker for chemical potentials within the first gap can be
analyzed by only considering the modifications of the particle
density of the 0-th pLL, which is localized either on the
B-sublattice for τ > 0 or on the A-sublattice for τ < 0. The
sublattice polarization of the bulk pLL leads to a sublattice

polarization of the marker and explains why SAðrÞ ’ 0 and
SBðrÞ ’ �1 for r around rc in Fig. 10c, while in Fig. 10d the
opposite behavior takes place, namely SAðrÞ ’ 1 and SBðrÞ ¼ 0.
Note that, in this last case, the response of the B sites is strictly
zero in the entire sample: due to the absence of edge modes and
the localization of the 0-th pLL on the A sites, the B sublattice
remains completely half-filled for a chemical potential within the
first gap meaning that ~nBðrÞ ¼ 1=2 for every r and hence
∂~nBðrÞ=∂ατ jμF ¼ 0. We stress that the plateau-like behavior of the
local marker in Fig. 10 is here inherited from the fact that the
particle densities of triaxally strained lattices are more uniform
around the bulk than the tilted ones previously obtained for the
uniaxial configuration. This can be seen in Fig. 1a, where we
plotted the dimensionless particle density per cell ~nðrÞ for the
same parameters as in Fig. 10d.

The valley Hall coefficient σV may be obtained by following
the same procedure as before, specifically, averaging the local
marker per cell SðrÞ ¼ SAðrÞ þSBðrÞ over a reasonable bulk
radius rbulk= Lbulk/2 [see Eq. (13)]. Since the bulk response in
Fig. 10 remains fairly homogeneous and quantized over a
magnetic length around the center of the system, we take
Lbulk= 5 a, which is of the order of the magnetic length ℓB for
τ= 0.07. The averaged response as a function of chemical
potential is shown in Fig. 11a for the case of τ= 0.07 > 0. We
also include with a shaded gray area the density of states
projected onto the bulk region being probed. The first couple of
Lorentzian-shaped peaks represent the bulk pLL states that, as
opposed to the uniaxially strained case, are here well defined in
energy. The valley Hall coefficient remains quantized to a good
degree for chemical potentials within the first gap. Nevertheless,
finite-size effects already become appreciable for gaps between
higher pLLs. In Fig. 11b and c, we show the behavior of the
local density of states at chemical potentials within the second
and third gaps (μF= 0.52 t and μF= 0.7 t), which are indicated
by black dashed lines in Fig. 11a. Note that the number of nodes
of the LDoS differentiated by sublattice nicely reflects the
polynomial hierarchy of the Dirac eigenspinors subject to a
pseudo-magnetic field. In contrast to the case of μF= 0.1 t
(Fig. 10a), the edge modes for these energies are much more
delocalized and hence lead to a breakdown of the insulating
character of the bulk portion of the system that is being probed.
As already discussed in the previous section, the equivalence
between the valley Hall coefficient and the density variations
strongly relies on probing an incompressible region. In this
sense, the deviations from the expected quantized result taking
place for chemical potentials within the second and third gaps
can be partly attributed to a finite ρbulk at the Fermi level. On
the other hand, for these large values of strain, the low-energy
model fails to describe correctly the higher order bulk pLLs,
which leads to another natural source of discrepancy with the
analytical prediction.

On the effect of disorder, defects and impurities. In this section,
we explore the robustness of the local valley Hall marker in the
presence of different types of disorder and lattice imperfections.
To this end, we introduce in Eq. (1) a general perturbation of the
form

Ĥdis ¼ ∑
r2A

V impðrÞâyr âr þ ∑
r2B

V impðrÞb̂
y
r b̂r

� ∑
r2A;j

δtjðrÞ âyr b̂rþδj
þ h.c.

� �
:

ð24Þ

Here, Vimp(r) represents an on-site potential stemming from the
presence of defects or impurities in the lattice. Note that Vimp can
potentially take different values on A and B sites. The term δtj(r)

Fig. 9 Density of states for trigonal strain. Total density of states ρ(ε)
(DoS) in the hexagonal flake for strain intensities (a) τ > 0 and (b) τ < 0.
Dashed gray lines indicate the energy of the analytical pseudo-Landau

levels Eν ¼ ± vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_ejBξ

τ jν
q

¼ ± t
ffiffiffiffiffiffiffiffiffiffiffi
3jτjνp

for ν= 0, 1, 2, 3, 4, where vF is the

Fermi velocity, Bξ
τ the pseudo-magnetic field at valley ξK and ξ is the valley

index ( ± 1). c, d Specific cuts of panels (a) and (b) (marked with a vertical
dashed blue line) for ∣τ∣= 0.07, respectively. Solid gray lines denote the
analytical pseudo-Landau levels.
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acts as a bond (off-diagonal) disorder. We will specifically model
the latter with a uniform distribution along the entire flake, such
that δtj(r)/t= γj(r)τ, with γj(r) chosen randomly in the interval
[− Γ, Γ]. This effectively introduces an uncertainty or lack of
precision in the space-dependence imprinted on the tunneling
amplitudes defined in Eq. (20). For the sake of concreteness, two
different types of on-site (diagonal) disorder will be separately
considered. The first one represents a short-range scattering
potential that varies stochastically on the lattice spacing scale,
modeled with a number of Nimp delta-like impurities chosen out
of the Ntot total number of sites of the flake, such that

V impðrÞ ¼ Vδ
impðrÞ � ∑

N imp

n¼1
Unδðr� rnÞ; ð25Þ

with the strengths Un taken randomly within the range [−W,W]
and rn the position of the n-th impurity. With the aim of con-
sidering a scattering potential with longer range, we will also
analyze the case of a potential that varies smoothly on the lattice
spacing scale. In this last case, the potential profile around each
impurity is modeled with a Gaussian function, such that

V impðrÞ ¼ Vλ
impðrÞ � ∑

N imp

n¼1
Un exp � jr� rnj2

2λ2

� �
; ð26Þ

with λ characterizing the range of the potential12,59–61.
In Fig. 12, we numerically analyze the impact of all these

particular lattice imperfections on the valley Hall marker. We
especially focus on the density response function within the first

gap by setting the chemical potential to be μF= 0.25 t and
τ= 0.07, as in Fig. 10a and c. Figure 12a, b, c, d, e and f show,
respectively, the effect of the on-site random potential profile
Vδ

impðrÞ with Nimp=Ntot and the Gaussian-like profile Vλ
impðrÞ,

with Nimp= 0.01Ntot and λ= 3 a, neglecting the off-diagonal
disorder. In Fig. 12g, h, i, we independently analyze the bond-
disordered case. In Fig. 12a, d and g, we show the local valley Hall
marker SαðrÞ, discriminated by sublattice (α= A, B), along the
direction r ¼ xcx̂ þ yŷ for one particular disorder realization in
each case scenario. We have chosen disorder strengths that are
sufficiently weak compared to the first gap between pLLs, namely
defects with maximum on-site energy variations of W= 0.2 t and
bond-imperfections with a maximum hopping fluctuation of
0.04 t (Γ= 0.606). The insets schematically show the deviations of
the flake’s on-site energies or the tunneling amplitudes with
respect to the pristine case. Generically, for these moderate values
of disorder, the space dependent local valley Hall marker slightly
deviates from the one obtained in the perfectly ordered lattice. In
Fig. 12a, the fluctuations occur on the lattice spacing scale, while
in Fig. 12d, they only take place locally around a Gaussian
impurity. Importantly, near the bulk, SαðrÞ exhibits oscillations
around the plateau-like values previously obtained in Fig 10c,
which is reminiscent of previous results62. We note that when
only off-diagonal disorder is present, the bulk response is still
polarized in one sublattice (SAðrÞ ’ 0 around the center of the
sample). As opposed to diagonal-disorder, bond-disorder pre-
serves the chiral-symmetry of the Hamiltonian, making the 0th

Fig. 10 Local density of states and valley Hall marker in a finite flake. a, b The local density of states discriminated by sublattice ρα(ε, r) [see Eq. (22)] for
τ > 0 and τ < 0, respectively. The energy has been taken to be ε= μF= 0.1 t and ∣τ∣= 0.07. The terminations have been chosen so as to alternate between
bearded and zigzag-like edges. We exploit the mirror symmetry of the flake with respect to the y= yc axis to plot separately half of the A-sublattice (the
upper part) and half of the B-sublattice (the lower part). A corresponding cut of the panels along r ¼ xcx̂þ yŷ is shown to the left, where we have restored
the entire spatial distribution. c, d The corresponding local marker SαðrÞ differentiated by sublattice [see Eq. (23)].
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pLL to remain polarized in one sublattice along with its
corresponding density response.

In Fig. 12b, e and h, we present the corresponding deviations of
the average valley Hall response σV from the one obtained in the
pristine case σ0V . Here, σV is obtained by averaging the local
marker in space over Lbulk= 4.6 a and over 50 different disorder
realizations. The light blue shaded area represents the standard
error on this average. In each disorder configuration, the intensity
of the imperfections is randomly changed and, for the Gaussian-
like defects, the position of the impurities in the flake is also
aleatory modified. Increasing the disorder intensity naturally
enhances the discrepancies with respect to the pristine case in all
three scenarios. We note that the standard deviation of the
response is visibly less when the impurity concentration is more
diluted in the region that is being probed, as shown for a
Gaussian potential profile [Fig. 12d]. In Fig. 12c, f and i, we show
the corresponding bulk density of states averaged over the
different disorder realizations (�ρbulk) as a function of energy and
the disorder intensityW or Γ. Lattice imperfections generically lift
the degeneracy of the pLLs, leading to a broadening of these states
into bands bearing localized modes around the impurities. An
exception takes place for the particular case of off-diagonal
disorder, where the energy of the 0-th pLL remains unaltered [see
Fig. 12i]. Indeed, one verifies that this chiral-symmetry preserving
disorder does not lift the degeneracy of these sublattice polarized
states. In all cases, for sufficiently large values of disorder, the
mobility gap gets entirely filled with impurity states. In particular,
when W is such that the local density of states becomes finite at
energy ε= μF= 0.25 t, the corresponding valley Hall coefficient of
Fig. 12b and e becomes completely erratic.

We remark that a short-range scattering disorder as the one
used in Fig. 12a would be extremely detrimental for a transport
experiment relying on the helicity of the valley polarized edge
modes, since the presence of delta-like impurities would lead to
strong backscattering between the latter33. Conversely, within
our scheme, a fairly quantized local valley Hall marker can be
obtained as long as the bulk density profiles in the lattice
remain sufficiently close to the ones obtained from the
analytical pseudo-Landau level states. We also note that, in
this proposal, no valley filtering mechanism is required to
properly measure a quantized valley Hall coefficient. Indeed, the
local density variations with respect to strain have the same sign
for both valleys [see Eq. (9)], so both contributions are summed
up in the total response.

Discussion
This work introduces an alternative approach for measuring the
valley Hall response in strained honeycomb lattices, which relies
on probing an equilibrium property of these systems locally in the
bulk. Specifically, we have demonstrated that quantized valley
Hall coefficients can be obtained by measuring the variation of
the particle density, deep within the bulk of a sample, upon small
variations of the applied strain. This bulk approach to valley Hall
physics, which is based on the Widom-Středa formula, leads to
the introduction of a local valley Hall marker SðrÞ, which is
particularly relevant for realistic lattices with open boundary
conditions. When properly averaged over a central insulating
region, this marker (determined here as a local density response
function) remains quantized and robust as a function of both the
chemical potential and the pseudo-magnetic field strength. Such a
plateau-like behavior takes place whenever the probed region is
genuinely incompressible, hence requiring the existence of suffi-
ciently large spectral gaps between pseudo-Landau levels. We
have compared our numerical findings with the results expected
from a low-energy analytical model that incorporates the effect of
strain at lowest order, finding a good agreement for sufficiently
large samples and moderate values of strain. In order to obtain
strictly quantized (integer) values from this local response, the
magnitude of the applied strain should be chosen appropriately: a
strong strain can potentially lead to large discrepancies with the
analytical predictions, while a very weak strain would lead to tiny
spectral gaps between the pLLs. As a general rule, a clear
separation between the bulk and the boundary states of the
sample is needed to obtain a satisfactory quantized result, which
occurs whenever the magnetic length remains much smaller than
the system size. We have investigated different strain configura-
tions and edge terminations, and we have found that the quan-
tization of our proposed marker remains independent of the edge
physics, i.e. independently from the existence of helical edge
states living at the boundaries of a finite-size sample. This
behavior is rooted in the fact that, within our framework, the
valley Hall coefficient is directly extracted from a Fermi sea
response. This stands in sharp contrast with usual transport
measurements within the linear regime, which only have access to
Fermi surface properties12. We have also analyzed how these
results are affected by the presence of different lattice imperfec-
tions, such as random local impurities and bond-disorder in the
finite hexagonal flake. Moderate disorder strengths only slightly
modify the bulk density profiles, making the valley Hall marker to
remain fairly robust as compared to more fragile transport
probes, which strongly rely on preserving the helicity of edge
modes33.

Synthetic molecular lattices24,37–40, where a two dimensional
electron gas is confined to move in a properly designed array of
carbon monoxide (CO) molecules, present themselves as an

Fig. 11 Valley Hall response for trigonal strain. a Valley Hall response σV
(blue points) obtained from averaging the local marker per cell SðrÞ ¼
SAðrÞ þSBðrÞ in a bulk region of size Lbulk= 5 a (a is the lattice parameter)
as a function of the chemical potential μF. The gray shaded area shows the
density of states projected onto the bulk region at the Fermi level ρbulk(μF).
b, c The local density of states ρ(μF, r) along r ¼ xcx̂þ yŷ for μF= 0.52 t
and μF= 0.7 t, respectively, indicated by black dashed lines in (a).
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appealing experimental platform where our approach can be
tested. This technique has been used to realize honeycomb24,
Lieb37, kagome63 and Kekule36 lattices. In this type of setups, it is
not possible to vary the strain as a tuning knob, but one can
create several lattices, each with a different level of strain, and
compare the resulting particle densities deep within the bulk of
each fabricated lattice. The strength of the pseudo-magnetic field
can be easily tuned by changing the position of the CO’s in a
honeycomb lattice pattern24,40: by approaching or separating
them further away, tunneling can be reduced or enhanced,
respectively. Since the position of the CO molecules can be
manipulated with atomic precision, a high level of tunability is
available. Hence, in this quantum simulator platform, the tun-
neling amplitude of electrons is tuned solely by the separation
between the CO’s, without modifying the lattice parameter39.
Strained honeycomb lattices (Kekule structures) have already
been realized and are within experimental reach36. The spectral
properties of these systems are usually accessed via STM probes,

which yield valuable information on the local density of states. In
addition, the STM allows one to probe occupied and unoccupied
states, since there can be tunneling of electrons from the sample
to the tip or vice-versa. In principle, a tomography of the particle
density could be reconstructed by integrating the LDoS in energy
up to the desired Fermi level at each lattice position. In this sense,
quantized bulk density responses to strain variations should be
experimentally accessible with current technologies. Furthermore,
we note that the STM techniques might also resolve the sublattice
polarization of the valley Hall response.

A possible alternative is offered by ultracold Fermi gases in
optical lattices, where strain can be finely adjusted through well-
designed atom-light couplings48–50, and where the local particle
density can be directly measured in-situ41–47. Last but not least,
recent advances in engineering arbitrary two-dimensional optical
tweezer arrays64–68 open yet another route for the study of
quantum gases in strained lattices, within a highly controllable
and scalable environment.

Fig. 12 Effect of disorder and impurities on the valley Hall response. Effect of lattice imperfections on the valley Hall coefficient of the triaxially strained
flake with strain intensity τ= 0.07 > 0 (ℓB= 4.6a) and chemical potential μF= 0.25 t in units of the hopping parameter t. a, b, c Short-range on-site
potential Vδ

impðrÞ with Nimp=Ntot, where Nimp is the number of impurities and Ntot is the number of sites in the flake. d, e, f Gaussian impurities potential
described by Vλ

impðrÞ with an impurity concentration of Nimp/Ntot= 0.01 and λ= 3 a, where λ is the width of each Gaussian and a is the lattice spacing.
g, h, i Off-diagonal bond disorder. a, d, g We show a corresponding cut of the local valley Hall marker SαðrÞ, discriminated by sublattice (α= A, B), along
the direction r ¼ xcx̂þ yŷ for each particular disorder realization. a, d W= 0.2 t and in (g), Γ= 0.606. The insets schematically show the deviations of the
flake’s on-site energies or the tunneling amplitudes with respect to the pristine case. b, e, h Deviations of the corresponding valley Hall response from the
pristine case. The response (solid blue line) is obtained by averaging along a bulk region of size Lbulk= 4.6 a and over 50 different disorder configurations.
The standard deviation is indicated in light blue shaded area. c, f, i The corresponding bulk density of states �ρbulk, also averaged over the different disorder
realizations, as a function of energy and the disorder intensity W or Γ. Dashed gray lines indicate the energy of the pseudo Landau levels in the pristine
case. The dashed blue-line shows the chemical potential μF= 0, 25 t chosen to compute the valley Hall response.
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