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Here, we investigate the fractal-lattice Hubbard model using various numerical methods: exact
diagonalization, the self-consistent diagonalization of a (mean-field) Hartree-Fock Hamiltonian and
state-of-the-art Auxiliary-Field Quantum Monte Carlo. We focus on the Sierpinski triangle with
Hausdorff dimension 1.58 and consider several generations. In the tight-binding limit, we find
compact localised states, which are also explained in terms of symmetry and linked to the formation
of a ferrimagnetic phase at weak interaction. Simulations at half-filling revealed the persistence of
this type of magnetic order for every value of interaction strength and a Mott transition for U/t ∼
4.5. In addition, we found a remarkable dependence on the Hausdorff dimension regarding i) the
number of compact localised states in different generations, ii) the scaling of the total many-body
ground-state energy in the tight-binding limit, and iii) the density of the states at the corners of
the lattice for specific values of electronic filling. Moreover, in the presence of an intrinsic spin-orbit
coupling, the zero-energy compact localized states become entangled and give rise to inner and outer
corner modes.

I. INTRODUCTION

The one-band Hubbard model [1] is one of the simplest
and most fundamental models for describing the effect of
electron correlation in solids. In its fermionic version, it
physically resembles electrons hopping in a lattice con-
figuration, with hopping parameter t and on-site inter-
action parameter U . It has been solved analytically in
one-dimension [2] using an extension of the Bethe ansatz
technique [3, 4]. However, despite its deceptively simple
form, analytical solutions in higher dimensions are yet
to be found. In this case, quantum simulations [5–7],
machine learning [8], and numerical techniques such as
Density Matrix Renormalization Group (DMRG) [9–12],
Linked cluster expansion [13], Variational Monte Carlo
[14–16], Quantum Monte Carlo (QMC) [17, 18], among
others [19] must be implemented.

The relevance of the model and its versatility are
demonstrated by its numerical applicability to a wide
range of two-dimensional lattice structures, leading to
the exploration of numerous phases of matter. For in-
stance, the Hubbard model is able to describe spin and
density waves [20] and, in frustrated geometries, spin liq-
uids [9, 11, 15, 16, 21, 22]. In addition, the model is
related to unconventional superconductivity [12, 18, 23].

Despite the progress made in more than 60 years of
its discovery, the study of the Hubbard Model in a non-
integer dimension still remains an open problem. Frac-
tals offer a way to explore lattice configurations with
non-integer dimensions. These geometrical structures are
characterized by their intricate and self-replicating pat-
terns, obtained through iterative processes, in which a
basic shape is repeatedly transformed or replicated.

Recently, fractal geometries have been successfully re-
alized in experimental settings, offering empirical valida-
tion of theoretical concepts. A fractal lattice with elec-

trons has been engineered and characterized [24]. Quan-
tum transport in fractal photonic lattices [25] revealed
anomalous behaviour, deviating from the expected pat-
terns observed in infinite regular lattices. In addition,
HOTIs have been theoretically [26, 27] and experimen-
tally [28] observed in acoustic experiments on a Sierpinski
carpet, in which the Hausdorff dimension is dH ∼ 1.89.
Finally, topological corner modes were shown to emerge
not only in the above mentioned metamaterials, but also
in real materials such as thin layers of bismuth deposited
on InSb substrates [29].

Here, we investigate the Hubbard model in a fractal
lattice. We focus on the Sierpinski triangle, which has
a Hausdorff dimension of dH = log(3)/ log(2) ∼ 1.58.
This lattice geometry is non periodic, which challenges
conventional approaches, such as band theory, and re-
quires the exploration of alternative methods to analyze
the system. Moreover, the fractal lattice that we adopt
contains sites with different connectivity and is bipar-
tite, uniquely influencing the particle behaviour. We first
study the model in the limit of zero interaction, since we
expect the geometry of the lattice to influence mainly
the kinetic term. Afterwards, we introduce interaction
and employ three distinct numerical methods to find
the ground-state solution: exact diagonalization, mean-
field Hartree-Fock approximation, and Constrained-Path
Auxiliary-Field Quantum Monte Carlo (CP-AFQMC).
Among these methods, we predominantly implement CP-
AFQMC due to the exact nature of QMC methods. For
fermionic ground-states, a CP approximation is often re-
quired to deal with the infamous sign problem [30, 31].

The study of the system without interaction allowed to
understand the consequence of the fractal geometry at a
tight-binding (TB) level. In particular, we find the pres-
ence of so-called compact localized states (CLS), that is,
states which strictly vanish on a large number of sites
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FIG. 1. First three generations of the Sierpinski triangle. (a)
Generation zero, (b) first generation, and (c) second genera-
tion.

due to destructive interference [32]. We notice that the
number of these states scales as the Hausdorff dimension
when the generation of the fractal lattice increases. This
scaling property is also shared by the total many-body
ground-state energy. Moreover, we observe that the av-
erage density at the corners of the lattice corresponds to
dH for a specific value of electronic filling. In the pres-
ence of intrinsic spin-orbit coupling, the degenerate CLS
at zero energy become entangled and lead to the forma-
tion of robust corner modes. From the implementation
of the Hubbard model on the lattice we identify both a
Mott transition and a ferrimagnetic phase. The latter,
for weak interaction, can be linked to the observations
made in the TB limit.

This paper is structured as follows: in Section II, we in-
troduce both the fractal lattice and the Hubbard Hamil-
tonian; we list their properties relevant to this work and
the methods that we used to solve the problem. Sec-
tion IIIA is dedicated to the results found with the TB
approach at U = 0. Understanding these results requires
a symmetry-based analysis, explained in Section III B,
which reveals interesting results related to the fractality
of the lattice. In Section III C, we investigate the effect of
an intrinsic spin-orbit coupling on the degenerate CLS.
Finally, the study of the quantum phases of the system
obtained with CP-AFQMC is presented in Section IV.
Our conclusions are presented in Section V.

II. THE MODEL

Let us start by constructing the fractal lattice from
the Sierpinski triangle. Fig. 1 shows the first three gen-
erations of this geometrical structure. Here, we focus on
the second generation. One possible way to construct
the fractal lattice is by placing lattice sites in the centre
and in the corners of the remaining triangles, as shown
in Fig. 2. Moreover, these sites are linked in such a way
that all the links between sites have the same length. We
colour the sites according to their connectivity. Sites at
the bulk of the triangles are coloured black [see Fig. 2(b)]
and the boundary sites are white. Thus, black sites have
connectivity 3, while white sites have connectivity 2, ex-
cept for the sites at the corners of the triangle, which
have only one neighbour.

We study the Hubbard model with Hamiltonian

H = −t
∑

⟨ij⟩∈Λ

∑
σ=↑,↓

(
c†i,σcj,σ + h.c.

)
+U

∑
i

ni,↑ni,↓. (1)

Here, i, j are site indices and σ is a spin index, which
refers to the up or down projection of the electron’s spin

along a fixed axis. The operator ni,σ = c†i,σci,σ is the
number operator and one of the sums runs over nearest-
neighbouring sites ⟨ij⟩ belonging to the set Λ containing
the sites indices. The first term on the RHS describes
hopping of electrons on neighbouring sites, with hopping
amplitude t. For simplicity, we set t = 1 as the energy
unit. The second term accounts for Coulomb interactions
between electrons with opposite spin on the same lattice
site, described by the Hubbard parameter U . We set
open boundary conditions.
Due to the bipartiteness of the lattice, Fig. 2(b), the

model is particle-hole symmetric at half-filling [1]. In
addition, the Hamiltonian has a global SU(2) invariance
[1], which reflects the spin-rotational symmetry.
We are interested in the ground-state properties of the

system. However, a naive exact diagonalization of the
many-body Hamiltonian would require the diagonaliza-
tion of a matrix of size 4M × 4M , with M the number of
sites. This is computationally demanding, and we could
not go beyond the first generation. In the following
sections, we apply various methods to overcome this
difficulty.

III. TIGHT-BINDING APPROACH

In order to study the many-body ground-state prop-
erties, we follow an approach that, in the framework of
second quantization, makes use of the TB limit. There-
fore, we start by investigating the Hubbard model in the
limit when the interaction parameter U = 0. The re-
sulting Hamiltonian represents electrons hopping freely
around the lattice, without any energy cost for double
occupation of lattice sites.
Given N particles that populate the system, one builds

the possible single-particle orbitals as superpositions of
single-site wavefunctions. These orbitals, in turn, are

(a) (b) Sub-lattice 
Sub-lattice 

FIG. 2. (a) Second generation of the fractal lattice, (b) divi-
sion of the lattice into two sublattices.
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FIG. 3. (a) First generation of the fractal lattice. (b) Its
corresponding many-body ground-state energy for different
values of Nσ. The x axis in (b) indicates the number of elec-
trons of one kind σ. The total number of electrons in the
system is 2Nσ.

used as basis of the N -particle Fock space, where we
are able to construct anti-symmetrized many-body wave-
functions making use of Slater determinants. We follow
closely the formalism detailed in Ref. [33].

We also study the Hamiltonian at the single-particle
level, since the many-body behaviour is strictly related.
This means that we perform a spectral analysis of the
single-particle orbitals that we use to construct the Slater
determinant. Notice that computing these orbitals sim-
ply consists in diagonalizing the Hamiltonian HTB in
the single-particle basis, on which it reduces to the size
M ×M .

A. Tight-binding ground-state properties

In this section, we present results of TB implementa-
tions on the fractal lattice. In Fig. 3, we show the first
generation of the lattice and the behaviour of the ground-
state many-body energy as a function of electronic filling
N = 2Nσ, where Nσ = N↑ = N↓ is the number of elec-
trons with spin σ =↑, ↓.
The symmetry in the energy distribution reflects the

fact that at zero interaction, the system is particle-hole
symmetric around half-filling. This means that the sys-
tem is equivalent upon exchange of particles with holes
and vice versa. This symmetry is also evident in the con-
figurations displaying the average density per site on the
lattice

⟨ni⟩ = ⟨ni,↑⟩+ ⟨ni,↓⟩

shown in Fig. 4. Comparing the configurations with
Nσ = 1 [Fig. 4(a)] and Nσ = 8 [Fig. 4(c)], we con-
clude that electrons are placed in an empty lattice in
the same way that holes are placed in a fully-filled lat-
tice. Therefore, configuration with Nσ = 8 and Nσ = 1
are the inverse of each other since there are 9 sites and
N = 8 = 9 − 1. Notice that, below half-filling, the sites
with higher connectivity, i.e. the three sites with three
neighbours at the centre of the triangles, have a higher
density. We can understand this behaviour by taking into

account the fact that hopping is energetically favourable,
so in the ground-state it is preferable to store electrons
in sites from which they have more probability to hop
around. Along this logic, the sites with connectivity 2
are less populated, followed by the sites at the corners,
which are connected to the lattice just through one link.
If we increase the number of electrons and place Nσ = 3
electrons as in Fig. 4(b), the Pauli exclusion principle
starts to play a role, meaning that two electrons with
same spin cannot occupy the same lattice site. The elec-
trons then must occupy sites which are kinetically less
favourable, if the most favourable ones are already occu-
pied. When we exceed half-filling, i.e. the case where the
total number of electrons coincides with the number of
sites, the pattern is inverted: the three corners are then
more populated, followed by the sites with connectivity
2 and finally the sites with connectivity 3, as shown in
Fig. 4(d). It seems energetically more favourable to store
electrons in the corners and let the ones in the bulk hop.
Configurations above half filling follow this pattern, see
for example Fig. 4(c).

B. Compact Localized States and Scaling
Properties

In order to understand more in detail the behaviour of
the system, we must determine the eigenvalues En and
eigenvectors χn of the single-particle Hamiltonian. In the
TB limit, spin-up and spin-down sectors are decoupled,
and we can thus treat them independently.

1. First generation

The first generation of the fractal lattice has 9 sites
and the Hamiltonian is therefore a 9 × 9 matrix. The
energy spectrum is symmetric with respect to E = 0, see
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FIG. 4. Average density configuration of the TB ground-state
on the first generation of the fractal lattice with filling (a)
Nσ = 1, (b) Nσ = 3, (c) Nσ = 8 and (d) Nσ = 6. Notice the
different scale in the colour bar for each individual picture.
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FIG. 5. Spectrum of the single-particle TB Hamiltonian for
the first generation of the fractal lattice. The spectrum shows
different energy levels: one three-fold degenerate level at zero
energy, two two-fold degenerate levels at En = ±

√
2 and two

non-degenerate levels.

Fig. 5. This is a direct consequence of the bipartiteness
(chiral symmetry) of the system. This bipartite character
is maintained for higher generations of the fractal, and
consequently their energy spectra are symmetric around
E = 0 as well.

Let us now consider the eigenvectors χ4, χ5, and χ6

belonging to the three-fold degenerate level E = 0. Fig-
ure 6 shows their amplitude on the sites of the lattice.
An interesting behaviour becomes evident: the ampli-
tudes on sites that belong to the sublattice B are zero.
This is a consequence of the fact that the amplitudes of
their neighbouring sites sum up to zero and lead to de-
structive interference [32]. These states are examples of
so-called CLS, since they are perfectly localized on a spe-
cific set of sites in the lattice, such that their amplitude
on the rest of the lattice is exactly zero.

Before continuing, let us remark two interesting points
about such states. Firstly, CLS are completely robust
against any perturbations—no matter how strong—that
only affect the sites on which they vanish [34]. This
makes these states a candidate for the storage of informa-
tion in the form of qubits [34, 35]. Secondly, in periodic
systems, CLS usually lead to the emergence of one or
more perfectly flat bands, which recently became a topic
of intense research interest; see Refs. [32] and [36] for
two reviews on flat-band systems.

The existence of the three zero-energy CLS, χ4, χ5 and
χ6, can also be deduced as follows: For a bipartite system
withNA (NB) sites in theA (B) sublattice, it is a classical
result that there must be at least ∆N = |NA−NB| zero-
energy eigenstates which have non-vanishing amplitudes
on the minority sublattice [37, 38]. In our case, we have
NA = 6, NB = 3, yielding ∆N = 3, which is exactly the
number of zero-energy CLS that we found.

We are now able to better understand the behaviour of
zero-energy states: the three CLS χ4, χ5 and χ6 discussed

+ 1

+ 1

-1

(a) 4
E4=0

+ 1

+ 1

-1

(b) 5
E5=0

+ 1 + 1-1

(c) 6
E6=0

FIG. 6. Amplitude scaled to unity of the three basis eigen-
vectors in the zero-energy level of the TB Hamiltonian, in (a)
χ4, in (b) χ5 and in (c) χ6. Dark-green and purple dots on
the lattice represent, respectively, negative and positive am-
plitude of the wavefunction on the sites. On sites with white
dots, the amplitude is zero.

above form a basis in the degenerate subspace, meaning
that a general eigenstate with eigenvalue zero is found
by taking linear combinations of χ4, χ5, and χ6. Any
pair of these three states share one corner. For instance,
eigenvectors χ4 and χ5 share the top corner; a linear su-
perposition χ4 + χ5 will thus have enhanced amplitude
at this shared corner. Equipped with these insights, we
can therefore understand why states around half-filling
contribute to the density in the corners. As an example
to make this point clearer, we show the density configu-
ration χ4 + χ5 + χ6 in Fig. 7.
Importantly, the existence of CLS and the subsequent

density-enhancement at the corners of the Sierpinsky tri-
angle is not limited to a simple TB picture. Indeed, as
we show in Section III C, it persists even when consid-
ering intrinsic spin-orbit coupling. Moreover, the scaling
of the number of CLS—as investigated further below—
shows the same behaviour in both cases, that is, with
and without intrinsic spin-orbit coupling.
Having dealt with the CLS, let us now turn our atten-

tion to the other eigenstates, in particular, to the two-

+ 2 + 2

+ 2

-1

-1 -1

FIG. 7. Wavefunction that exemplifies how states around
half-filling can have a larger contribution of the average den-
sity to the corners. It is obtained by combining the states
belonging to the basis of the zero-energy degenerate level
χ4 + χ5 + χ6.
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fold degenerate ones. Their degeneracy is a consequence
of the C3v point-symmetry group [39], which has order 6
and contains the identity, two rotations C3, C

2
3 and three

reflections. This group has an irreducible representation
of dimension 2, which explains two-fold degeneracies [40].
As a side note, these levels do not posses the property of
CLS states. There is not a definite group of lattice sites
where the amplitude is zero for every eigenvector of the
degenerate level, as it was the case for the zero-energy
states.

It is now possible to look at the density configurations
in the first generation of the fractal lattice, Fig. 4, from a
different perspective. Configurations below the degener-
ate level around half-filling populate the sites belonging
to sub-lattice B with an average density ⟨ni⟩ = 1, see
Fig. 4 (b). This is in agreement with the fact that, due
to particle-hole symmetry, the average density per site
at half-filling is ⟨ni⟩ = 1 and the zero-energy CLS only
populate sublattice A. Starting from the configuration
with Nσ = 3 and raising the number of electrons until
Nσ = 6 means including zero-energy CLS in the many-
body wavefunction. The total many-body energy does
not increase because the CLS added have zero energy,
but sites belonging to sublattice A, in particular the cor-
ners, become more populated.

In the following, we analyze the emergence of CLS in
higher generations of the fractal. We shall see that there
appear more CLS, both at zero and finite energy.

2. Second generation

The energy spectrum of the Hubbard Hamiltonian on
the second-generation of the fractal lattice is shown in
Fig. 8. Once again, due the fractal’s bipartiteness, the
energy spectrum is symmetric with respect to E = 0.
Now, there are NA = 15 and NB = 9 sites in the two
respective sublattices, which results in |NA − NB| = 6
eigenstates with zero energy.

Interestingly, these six zero-energy CLS can be gener-
ated from just two prototypical states, show in Fig. 9.
To obtain six states from these two, each of them must
be rotated by 120◦ and 240◦. The resulting set of six
states are linearly independent, and thus span the entire
six-dimensional degenerate subspace of eigenvalue zero.

Apart from these six zero-energy states, the second
generation now features a new type of CLS at the non-
degenerate energy levels ±1. These states are depicted in
Fig. 10. We note that these two states are tightly related
to each other: One can be constructed from the other,
simply by flipping the sign on all sites of the sublattice
B. This is again a direct consequence of the fractal’s
bipartiteness.

As we shall see, in the third generation, CLS appear
at even more energies than just 0 and ±1. To ease the
discussion, we will enumerate the CLS according to the
absolute value of their energies. We denote the zero-
energy CLS as type-1, and the ones at E = ±1 as type-2.

0 5 10 15 20 25
Eigenvector ( n)

2

1

0

1

2

E

CLS type-1
CLS type-2

FIG. 8. Spectrum of the single-particle TB Hamiltonian for
the second generation of the fractal lattice. The spectrum
shows different energy levels: a six-fold degenerate level (CLS
type-1) at zero energy, two states (CLS type-2) at energy ±1
and non-CLS eigenstates, the latter represented by grey dots.

+ 1

+ 1

+ 1

-1

-1

(a) 2
E2=0

+ 2

+ 1

-1

-1

(b) 3
E3=0

FIG. 9. Prototype basis states in the zero-energy degenerate
space of the second generation of the fractal lattice.

3. Third generation

The energy spectrum for the third generation TB
model is shown in Fig. 11. Apart from the type-1 and
type-2 CLS that we encountered in the second genera-
tion, there are now five additional types of CLS, namely,

+ 1
+ 1

+ 1
+ 1

+ 1

+ 1

-1
-1

-1
-1

-1

-1

(a) 9
E9=-1

+ 1

+ 1
+ 1

+ 1

+ 1

+ 1

-1

-1

-1

-1

-1

-1

(b) 16
E16=1

FIG. 10. Eigenstates corresponding to the eigenvalues of the
two-fold unitary degenerate level CLS type-2. (a) One of the
eigenvectors with energy E = −1. (b) One of the eigenvectors
with energy E = 1. They are the second type of CLS found
by spectral analysis.



6

0 10 20 30 40 50 60 70
Eigenvector ( n)

2

1

0

1

2

E
CLS type-1
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CLS type-3
CLS type-4
CLS type-5

Not CLS

CLS type-6
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FIG. 11. Spectrum of the single-particle TB Hamiltonian
for the third generation of the fractal lattice. The spectrum
shows seven different types of CLS: a 15-fold degenerate type-
1 CLS at zero energy, a 4-fold degenerate type-2 CLS at E =
±1, a 2-fold degenerate type-3 CLS at E = ±

√
2, a type-

4 CLS at E = ±1.543, a 3-fold degenerate type-5 CLS at
E = ±

√
3, a type-6 CLS at energy E = ±2.149 and a type-7

CLS with energy E = ±
√
5.

type-3 to type-7. Examples of some CLS are depicted
in Fig. 12. Again, the fractal’s bipartiteness means that
each of the depicted states has a partner whose ampli-
tudes on each site of the B-sublattice is flipped, and which
has the same energy, but with an inverted sign.

Let us now discuss some aspects of the CLS in more
detail. The (non-depicted) type-1 CLS are simple: they
vanish on the entire sublattice B. We note that there are
NA = 42 and NB = 27 sites in the two sublattices, result-
ing in 42−27 = 15 type-1 (zero-energy) CLS. The CLS of
type-2, 5, and 6 [Fig. 12(a), (c) and (d) respectively] have
a very peculiar property: they vanish on all three other
corners of the fractal. On the other hand, the CLS of
type-3 [depicted in Fig. 12(b)] and type-7 (not depicted)
do not have this property. CLS type-7 exhibit destruc-
tive interference on the same set of sites as CLS type-3
and were not included in the graphical representation of
Fig. 12 to avoid redundancy. The same reasoning applies
to CLS type-4 and we only show CLS type-6 in the figure.

4. Higher generations

The number of CLS grows considerably at larger gen-
erations. For the type-1 CLS—which is caused by the
fractal’s bipartiteness—, for instance, we can see that
for the n-th generation, the number of sites in the two
sublattices is given by NA(n) = 6 · 3n−1 −

∑n−1
i=1 3i and

NB(n) = 3n. This results in

∆N(n) = 6 · 3n−1 −
n∑

i=1

3i (2)

zero-energy CLS. For large n, the first term in Eq. (2)
becomes dominant, from which we conclude that the ra-
tio α = ∆N(n+1)/∆N(n) thus equals 3. Since the sides
of the fractal are duplicated whenever going from one
generation to the next, the dimension is defined as

d =
logα

log 2

and we thus observe that the dimensionality we assign
to number of zero-energy CLS tends to the dimension of
the fractal, dH = log 3/ log 2.
By explicitly diagonalizing the system for the first eight

generations, we also studied how the number of the type-
2 to type-7 CLS changes when considering higher gener-
ations of the lattice. The results are presented in Fig. 13.
The number of CLS of types 1, 2, 4, 5 and 6 tends to scale
as the Hausdorff dimension when the generation number
increases. We notice that CLS of type-4, 5 and 6 share
the same scaling, even if they belong to different energy
levels, see Fig. 11. Regarding CLS of type-3 and type-7,
we found that the number of states in the corresponding
levels ±

√
2 and ±

√
5 does not increase but remains the

same for odd generations, and is zero for even genera-
tions.
Motivated by these scaling behaviours, we also stud-

ied how the many-body ground-state energy ET around
half-filling (i.e. the value of energy corresponding to the
degenerate level in Fig. 3(b) changes when increasing the
generation. As shown in Fig. 14, these values also scale
as the Hausdorff dimension. Therefore, they can be de-

FIG. 12. Four out of the seven types of CLS on the third
generation of the fractal lattice. (a) One of the type-2 CLS
with energy E = −1, (b) one of the type-3 CLS with energy
E = −

√
2 (c) one of the type-5 CLS with energy E = −

√
3,

(d) one of the type-6 CLS with energy E = −2.149. The
dark-green (purple) dots indicate sites with negative (posi-
tive) parity, where the size of the dots represents the value of
the amplitude: the larger the dot, the higher the amplitude.
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CLS type-4/5/6

CLS type-2

CLS type-1
Hausdorff dimension

FIG. 13. Scaling of the number Ng of CLS of different types
when increasing the generation g of the Sierpinski triangle,
from first generation g1 to generation g8.

rived by recursive computations upon increasing the gen-
eration, without the need of diagonalizing the Hamilto-
nian. This also holds for the number of CLS in some
energy levels, and constitutes a great advantage because
the computational cost increases rapidly as we increase
the generation.

As a last addition to the analysis of the zero-energy
level, we investigated the average density on the corners
in the last configuration of the zero-energy level of the
many-body spectrum. This means, for example, filling
Nσ = 6 for the first generation, Nσ = 15 for the second,
and so on. We noticed that its value is ⟨n⟩ = 1.5909 for
every generation that we implemented, very close to the
Hausdorff dimension.

FIG. 14. Scaling of the ground-state many-body energy
at half-filling ET,1/2 when increasing the generation g of the
Sierpinski triangle, from first generation g1 to generation g8.

C. Compact localized states when considering
intrinsic spin-orbit coupling

So far, we have seen that CLS naturally appear in the
Sierpinsky triangle when treated within a simple tight-
binding formalism. To emphasize the importance and
universality of these states, we will demonstrate in the
following that they are still present in the model even
when taking intrinsic spin-orbit coupling (ISOC) into ac-
count.
To introduce ISOC into the model, we start from the

TB Hamiltonian of the Sierpinsky triangle and add the
term

HSO = ib
∑

⟨⟨i,j⟩⟩

vi,jc
†
i cj (3)

to the Hamiltonian. Here, the sum goes over pairs of
sites that fulfil both of the following conditions: (i) they
both are in the majority sublattice, and (ii) in the original
Hamiltonian without ISOC, they are two sites apart from
each other, i.e. the next-nearest neighbor (NNN). The
coefficient vi,j = +1 when the two-hop path from site i
to site j is in the clockwise direction, and vi,j = −1 when
it is in anti-clockwise direction.
Effectively, Eq. (3) adds complex-valued coupling

(with amplitude b) between NNN sites—similar to Ref.
[41]—, but only if the coupling does not cross the “empty
regions” of the Sierpinski triangle. In Fig. 15(a), the
Hamiltonian is shown in pictorial form, with complex
couplings denoted by dashed, arrowed lines.
Let us now analyse the situation in detail. In con-

trast to the case without ISOC, the first few generations
(we have checked until the fifth) only show one type of
CLS, which lies at zero energy. Moreover, in contrast
to the case without ISOC, the CLS is non-degenerate in
the first generation; the state is depicted in Fig. 15(a).
Remarkably, it is exactly the state from Fig. 7, so that
the amplitudes are enhanced at the three outer corners
of the fractal. The ISOC entangles the three degenerate
eigenstates into a sum of the them.
In the second generation, the CLS become two-fold

degenerate. The first of the corresponding eigenstates is
shown in Fig. 15(b). We note that it is similar to the
one from Fig. 15(a), and indeed can be obtained from
the latter by simply copying it three times. In the fol-
lowing, we will call this eigenstate the ubiquitious state.
It sill vanishes on a large number of sites, which are
marked in Fig. 15(b) in black. The second eigenstate
with zero energy is what we call a closed-loop state. It
loops around the central gap (white space) of the fractal
and vanishes outside of it. Again, as with any compact
localized state, the cause is destructive interference; see
inset of Fig. 15(c). We further note that the amplitudes
of this closed-loop state depend on the coupling t and the
strength b of the intrinsic spin-orbit coupling.
Similar to Fig. 7(d), we can superpose the two degen-

erate zero-energy states to obtain a state which has a
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FIG. 15. (a) The only zero-energy eigenstate for the first
generation of the Sierpinsky triangle with intrinsic spin-orbit
coupling of strength b. In (b) and (c) the two degenerate
zero-energy eigenstates for the second generation. Superpos-
ing these, as shown in (d) and (e), gives a state with high
enhancement at certain sites. In (a) to (e), solid grey lines de-
note the normal coupling (with strength t), while the dashed
lines denote the intrinsic spin-orbit coupling (which is com-
plex and thus directional) of strength ib.

larger enhancement on some sites. This is demonstrated
in Fig. 15 (d) and (e).

In higher generations, the overall picture does not
change much. For instance, in the third generation,
there are five zero energy eigenstates: One ubiquitous
(Fig. 16(a)), one large closed-loop state for the central
gap (Fig. 16(b)) and three smaller closed-loop states for
the smaller gaps (Fig. 16 (c), (d), and (e)). Once again,
one may superpose these states to obtain states with en-
hanced amplitudes on certain sites (corners, for instance).

We have checked the number N of zero-energy CLS
until the fifth generation. For each generation, this num-
ber is equal to one third of the number of zero-energy
states without ISOC. Thus, the scaling of the number of

such states is the same, with or without ISOC.

IV. THE HUBBARD MODEL

We now introduce interaction to the model in the frac-
tal lattice and present both the numerical methods used
and the results of our implementations.
The full Hamiltonian in Eq. (1) contains a two-body

term, which prevents us from diagonalizing the system
at a single-particle level, as done for the TB model. In
the next subsections, we present three distinct methods
that we use to investigate this Hamiltonian numerically.

A. Exact Diagonalization

The first method consists in naively diagonalizing the
Hamiltonian in a many-body basis of the Fock space and
identifying the ground-state energy as the lowest energy
eigenvalue and the ground-state wavefunction as its cor-
responding eigenvector. To diagonalize the Hamiltonian,
we first need to choose a basis and our convention for
the basis choice is, in the Fock space, strings with 2×M
entries that can take values of either 0 or 1 and that iden-
tify the positions of the electrons on the lattice, 1 means
that there is an electron, 0 that there is none [42]. We
also need to define an order: the first half of the entries
represents spin up particles populating the numbered lat-
tice sites, while the second represents spin down particles
with the same lattice site ordering. The number of such
basis states is 4M . Since this number grows exponen-
tially with the number of sites, exact diagonalization is a
computationally demanding method to solve the Hamil-
tonian and it will only be used to solve small-size systems
with a small number of electrons.

B. Mean-Field Approximation

One way of circumventing the two-body issue is to
perform a mean-field Hartree-Fock approximation. This
consists in rewriting the interaction term as [43]

ni,↑ni,↓ ≃ ⟨ni,↑⟩ni,↓ + ⟨ni,↓⟩ni,↑ − ⟨c†i,↑ci↓⟩c
†
i,↓ci↑

− ⟨c†i,↓ci↑⟩c
†
i,↑ci↓ + ⟨ni↑ni↓⟩+ ⟨c†i,↑ci↓⟩⟨c

†
i,↓ci↑⟩, (4)

which allows us to express the Hubbard Hamiltonian in
terms of one-body operators and proceed by construct-
ing the many-body ground state in the same way as we
did in the TB limit. The difference is that the mean-
field term is not known, since the averages present in
Eq. (4) require the knowledge of the solution, which is,
in turn, what we want to compute. The way we pro-
ceeded is by applying a self-consistent iterative scheme.
Starting from a randomly generated Hamiltonian, we use
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FIG. 16. The five zero-energy eigenstates of the third-generation Sierpinsky triangle (see text for details). The amplitudes/sizes
of the circles have the same meaning as in Fig. 15(c).
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the diagonalization approach introduced in the previous
section to compute the many-body ground-state energy,
average density per site, and wavefunction. The latter is
then used to build a mean-field Hamiltonian HMF , from
which we again compute the above mentioned quantities.
This scheme is iterated until the solutions converge. We
show later that this approximation is valid for very small
values of the interaction parameter U .

C. CP-AFQMC

The method that we largely implemented to study the
Hubbard Hamiltonian is CP-AFQMC [33, 44–46]. The
starting point is a mean-field ansatz, found by following
the procedure outlined in Section IVB. The imaginary-
time evolution of this ansatz tends to the ground-state of
the Hubbard Hamiltonian as the imaginary time becomes
large. Implementing imaginary-time evolution requires a
Hubbard-Stratonovich transformation, which introduces
external auxiliary fields at each lattice site. This enables
to go from an interacting system to a non-interacting
system living in a space of fluctuating external fields. The
wavefunction is written as a linear combination of many
wavefunctions, the walkers. Evolving the full system in
imaginary time means evolving each of the walkers.

In addition, more techniques are required to render
the method efficient. Importance sampling is used, and
the simulation is guided by the initial ansatz through-
out the evolution in imaginary time. Back propagation
is required to compute observables that do not commute
with the Hamiltonian. A constrained path approxima-
tion makes it possible to deal with the sign problem that
stems from the fermionic nature of the particles populat-
ing the system.

Our starting point was the validation of the QMC
method by comparing its results with exact ones, i.e.
with results found by performing exact diagonalization
(ED). We also compared these two methods with the
mean-field (MF) approach to understand to which extent
this approximation is appropriate. Since the simulation
time required by ED scales exponentially with the sys-
tem size and the electron number, we considered a small
system (the first generation of the fractal lattice), with a
couple of electrons (Nσ = 1). The quantities computed
were the total, kinetic, and potential energy of the many-
body ground-state, for values of U ∈ [0.1, 9]. The poten-
tial energy is the contribution to the energy given by
the Coulomb interaction in the Hubbard Hamiltonian in
Eq. (1). In Fig. 17, we present the behaviour of the ener-
gies computed using these three different methods, as the
interaction strength increases. We see that for these pa-
rameters, the MF approximation can be considered valid
only for small values of interaction, while the QMC ap-
proach follows very accurately the exact behaviour. For
this reason, we focus on the QMC implementation and
use MF only to make it more efficient. We also notice
that the value of the kinetic energy computed by QMC
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FIG. 17. Comparison of the ground-state many-body ener-
gies as a function of interaction. We consider the first gener-
ation of the fractal lattice with Nσ = 1. These energies are
computed with three different implementation methods: ED
(green line), MF (yellow triangles), and QMC (red dots). (a)
The total energy, (b) the kinetic energy, and (c) the poten-
tial energy. The error bars associated to the QMC results are
smaller than the pointer’s size.

for an interaction U = 6 deviates from the exact solu-
tion and coincides with the MF solution. This could be
a consequence of the fact that the MF ansatz, used in an
importance-sampling scheme and in the CP approxima-
tion, is biasing this result.
To understand the extent of this influence, we per-

formed simulations in the first generation with Nσ = 6.
We studied the behaviour of the QMC energies as the
interaction strength is increased, with the simulation be-
ing guided by different MF ansätze. In particular, we
performed simulations where the MF ansatz is generated
using Ueff = U , where Ueff is the interaction strength used
in the MF simulation, referred to as effective potential.
This behaviour is indicated by the inverted triangles in
Fig. 18. Then, we performed simulations with Ueff = 0.1.
The simulation that provides the smallest total energy
is the best approximation of the ground state, due to
the variational principle. It is possible to observe that
the latter ansatz gives better results for every value of
interaction. From this analysis, we can conclude that a
preliminary study on the influence of the MF ansatz on
the QMC simulation has to be performed before proceed-
ing with the implementation. In fact, since the path of
the walkers is influenced by the MF trial wavefunction,
a bad ansatz affects negatively the paths, making them
deviate from the exact solution. Moreover, to handle the
sign problem, we introduce a constrained-path approxi-
mation that renders systematic errors. However, those
errors are small since the results coincides very closely
with exact diagonalization, as shown in Fig. 17.

D. Interaction and density distribution

We now consider the configuration where Nσ = 6,
which corresponds to the last energy state in the degen-
erate energy-level found when U = 0, see Fig. 3(b). In
the TB studies, we understood that this state is a con-
sequence of the CLS, with destructive interference hap-
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FIG. 18. Comparison of the ground-state many-body energies
as a function of interaction in the first generation of the frac-
tal lattice with Nσ = 6. These energies are computed with
three different implementation methods: MF (yellow trian-
gles), QMC (Ueff = U , red dots) and QMC (Ueff = 0.1, green
triangles). The error bars associated to the QMC results are
smaller than the pointer’s size.

pening at the sites in the centre of the triangles. We also
observed that the density at the corners has a value close
to the Hausdorff dimension. Studying this configuration
allows us to tackle the consequences of interaction in this
type of states.

We can divide the lattice into three groups of sites:
sites 1, 6, 9 called corners, sites 2, 5, 7 called center and
sites 3, 4, 8 called connections, see Fig. 3(a) for the site
indexing. We expect the density to be the same in each
of these groups, since there is no reason for an imbal-
ance. Figure 19 shows how the average density per site
⟨ni⟩ changes in these groups of sites when increasing the
interaction strength. We observe that for small interac-
tions, both corners and connection sites are more popu-

FIG. 19. Average density per site ⟨ni⟩ as a function of inter-
action strength U in the three different groups of states, on
the first generation of the fractal lattice with Nσ = 6.

lated than the center sites. As the interaction increases,
their density decreases, while it grows in the sites at the
center. The electrons start spreading towards the center
of the lattice, and they keep spreading until the den-
sity is approximately homogeneous on every site, at a
value of approximately ⟨ni⟩ ∼ 1.35 and U ∼ 8. There-
after, the density in the center sites continues to increase,
while decreasing slowly on the rest of the lattice sites,
meaning that electrons start to accumulate in the center
sites. For very strong interaction values, it becomes more
favourable to have electrons in sites with more connec-
tivity, where hopping is more probable.
Relating this study to the TB considerations and the

CLS type-1 discussed in Section III B, we expect that
those types of states with destructive interference on cen-
ter sites get destroyed as soon as the interaction is turned
on, since the density on those sites increases.

E. Quantum phases in the second generation of the
fractal lattice

The quantum phases of the Hubbard Model have been
intensively studied on various lattices, in particular for
the case of half-filling. We consider here the second gen-
eration of the fractal lattice, Fig. 2, which has 24 sites,
at half-filling, Nσ = 12.
Let us start by studying the behaviour of the magneti-

sation. We define the local magnetization mi and the
total magnetization mα per sublattice as

mi = ⟨ni,↑⟩ − ⟨ni,↓⟩,

mα =
1

Nα

∑
i∈Λα

mi,

where the index α refers to one particular sublattice,
α = A,B, and Λα refers to the set of site indices be-
longing to the α sublattice. Fig. 20(a) shows the magni-
tude of the local magnetization for weak interaction on
the lattice structure. We see that the magnetization on
different sublattices has opposite sign, and the magni-
tude in one is larger than the magnitude in the other,
thus characterizing a ferrimagnetic phase. A mean-field
study of the Hubbard model in fractal-honeycomb lat-
tices also finds spontaneous spin polarization [47], which
further corroborates our observation of a ferrimagnetic
state.
The local magnetization is related to the projection of

the spin along a certain axis. Since the sum of local mag-
netizations on the lattice is clearly not zero, we find that
the system equilibrates to a spin imbalanced configura-
tion. In particular, we find that NA = 15 and NB = 9.
Without loss of generality, we investigate the case with
N↑ = NA and N↓ = NB. The opposite case is obtained
by inverting the positive direction along the axis where
the spin is projected. Figs. 20(b) and (c) show the dis-
tribution of the 15 spin-up and the 9 spin-down electrons
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FIG. 20. Local magnetization and average density at half-
filling on the second generation with interaction parameter
U = 0.1. (a) Local magnetization per site, it shows a ferri-
magnetic state; red (blue) arrows pointing up (down) indicate
positive (negative) local magnetization. The length of the ar-
rows represents the intensity of the local magnetization. (b)
Average density per site of spin-up electrons n↑. (c) Average
density per site of spin-down electrons n↓. The magnitude of
the dots is representative of the intensity of the density.

on the lattice, in the weak interacting regime. We can in-
terpret Fig. 20(b) by considering that the 9 spin-up and
spin-down electrons fill the single-particle energy levels
with negative energy, see Fig. 8. The remaining 6 spin-up
electrons are placed in the degenerate zero-energy level.
In this level, the CLS have destructive interference on
the sites in the centre (B sublattice); sites on sublattice
A get more densely populated. Therefore, the origin of
imbalanced magnetic properties at half-filling and weak
interaction can be reconnected to the zero-energy CLS
that we found at a TB level, which also vanishes at the
B sublattice.

Now, we want to investigate the behaviour of the sys-
tem when increasing the interaction strength. First, we
notice that the imbalance between spin-up and spin-
down electrons remains when increasing the interaction
strength. Regarding the local magnetization, in Fig. 21
we show the total magnetization in the two sublattices as
a function of interaction strength. We observe that the
sum of the magnetization in the two sublattices almost
does not change. This quantity represents the total mag-
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FIG. 21. Average of the local magnetization on the two sub-
lattices for different values of interaction parameter U .

FIG. 22. Doublon density as a function of the interaction
parameter U . The behaviour is linear until a critical value of
UC ∼ 4.5.

netization along a projection axis, and since the ratio
of number of spin-up and spin-down electrons remains
unchanged, we expect a constant behaviour. However,
we need to take into account the fact that the number of
spin-up and spin-down electrons is an output of the QMC
simulation and, thus, subject to subtle fluctuations. For
a regular periodic lattice, the theory predicts antiferro-
magnetic behaviour in the strong coupling regime, where
the average local magnetization per site in both sub-
lattices is mα. The reason why we are not able to see
this behaviour is due to the imbalance in the number of
electrons that populated the system which, in turn, is a
consequence of the geometry of the lattice.
Another quantity that can be studied to determine the

phases of the system is the doublon density, defined as

D =
1

N

∑
i

⟨ni↑ni↓⟩

where the sum runs over the lattice sites. While being
easy to compute, the double occupancy has the advan-
tage of being related to the metallic behaviour of the sys-
tem. Moreover, studies on periodic lattices suggest that
the behaviour of D as a function of interaction should
differentiate metallic and insulating phases [18, 48]. In
particular, Brinkman and Rice obtained, through a vari-
ational calculation, that the doublon density behaves lin-
early in the metallic phase [49]. Even though this result
was derived in the context of conventional band theory,
we also observe in Fig. 22 a linear behaviour of D until a
critical value of approximately Uc ∼ 4.5. Curiously, the
value of the critical interaction is the same as the one
describing a Mott transition from a paramagnetic con-
ducting state at small values of U , to an antiferromag-
netic (AFM) insulator at U > 4.5 in the 2D honeycomb
lattice [50]. After this value of interaction strength, the
behaviour deviates from the linear one.
To further investigate the magnetic nature of the sys-
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tem, we consider the magnetic correlation function

cm(i, j) = ⟨mimj⟩, (5)

which quantifies the correlation between the local mag-
netization of a pair of electrons, one placed at site i and
one at site j.
From the magnetic correlation, one can compute the

magnetic structure factor, defined as

S(k) =
1

N2

∑
i,j

eik·rijcm(i, j),

where rij = ri−rj . The symbol k indicates the momenta
in the reciprocal space. It is possible to define a similar
quantity, where instead of considering magnetic correla-
tions, one considers density correlations. The computa-
tion of magnetic and density structure factors is a com-
mon method used to investigate both the metallic and
spin phases of the system. The magnetic structure fac-
tor is used to detect magnetic order since it shows peaks
at the K points of the Brillouin zone [18]. This method
can be used here because it does not require knowledge
of allowed momenta in the reciprocal space. In Fig. 23
(a), we show the magnetic structure factor in the strong
interaction regime, where one observes the formation of
peaks, which are a signature of magnetic order. We then
computed the magnetic structure factor for various val-
ues of interaction and found a similar structure for each
value. This seems to suggest that the system has spin
order for any value of interaction strength.

To validate the presence of magnetic order, we look at
the radial behaviour of the magnetic correlation defined
in Eq. (5). In particular, we define the angle-averaged
radial magnetic correlation,

cm(r) =
1

nr

∑
{i,j}∈nr

cm(i, j),

where nr is the number of pairs {i, j} that have the same
distance r. This quantity averages the magntic correla-
tion functions of pairs of electrons located at sites r far

FIG. 23. (a) Magnetic structure factor in the k = (kx, ky)
space for U = 6. (b) Radial staggered magnetization (orange
stars), radial magnetic correlation (blue triangles) and value
of total staggered magnetization (orange horizontal line) for
U = 6. The horizontal light-blue line highlights the position
of the origin along the y axis. The radial distance r is nor-
malized by a, the distance between two neighbouring sites in
the lattice.

from each other. The set of possible distances r is dis-
crete, and it is important to notice that, for a given dis-
tance, all the pairs connect sites belonging either to the
same sublattice or to different sublattices. In Fig. 23(a),
we show the dependence of this correlation on the radial
distance r. The behaviour shows positive and negative
correlations, which indeed can indicate antiferromagnetic
or ferrimagnetic order. One of the properties of anti and
ferrimagnetism is spin orientations that alternate in the
lattice. This means that electrons on sites belonging to
the same sublattice should have spins oriented to the
same direction (the correlation is positive) while elec-
trons on sites belonging to different sublattices should
have spins pointing in opposite direction (the correlation
is negative). To verify this behaviour, we multiply the
spin radial correlation by a factor (−1)α, where α is even
(odd) if sites i, j belong to the same (different) sublat-
tice. The quantity obtained will be referred to as radial
staggered magnetization,

msg(r) =
1

nr

∑
{i,j}∈nr

(−1)αcm(i, j).

The result is shown in Fig. 23(b). We can conclude that
the property of opposite spins in different sublattices is
satisfied, as expected from the analysis of the local mag-
netization for the different lattice sites. In order to study
the magnetic order at different values of interaction, we
investigate the total staggered magnetization,

Msg =
1

Nr

∑
ir

msg(r),

where the sum is over the number ir of possible dis-
tances Nr. This quantity represents the average stag-
gered magnetization over different values of radial dis-
tances. Its value for U = 6 is plotted in Fig. 23(b) as
a reference to the eye. Its behaviour as a function of
interaction is shown in Fig. 24, where we see that the
value increases with the interaction before the critical
value around Uc ∼ 4.5. After it seems to oscillate with-
out an overall growth or reduction for larger U . The fact
that it always assumes a non-vanishing value for every
value of interaction proves the existence and resilience of
magnetic order.

Overall, we observe the formation of a ferrimagnetic
order, which can be related, at weak interaction, to the
zero-energy CLS states unveiled at a TB level and, in
general, to the imbalance in the number of spin-up and
spin-down electrons. The latter is a consequence of the
geometry of the lattice. Therefore, we observe a phase
transition from metallic to insulating phase, suggested
by the change in behaviour of the doublon density and
the maximum of the magnetic correlation function in k
space. Since this phase transition is driven by interaction
between electrons, it is a Mott transition.
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FIG. 24. Total staggered magnetization as a function of in-
teraction strength U .

V. CONCLUSION

In this work, we solved the Hubbard Model for
fermions on a fractal lattice, using various methods.

Initially, we examined the non-interacting limit of the
model, employing a TB approach. It successfully con-
firmed the presence of particle-hole symmetry through
the examination of the average density distribution on
the lattice and the symmetry of the total many-body en-
ergy. Additionally, by analyzing the energy spectrum of
the Hamiltonian at the single-electron level, we identified
the emergence of CLS at various energy levels. In the first
generation, we observed the formation of a specific type
of CLS, characterized by zero energy and destructive in-
terference on sites with a connectivity of 3. Moving to
the second generation, we witnessed the appearance of
an additional type of CLS, manifesting at energy levels
of t and −t, and displaying destructive interference along
the reflection axes. Progressing to the third generation,
we observed the emergence of more diverse types of CLS,
forming at new energy values and exhibiting destructive
interference on other sublattices. Remarkably, the num-
ber of CLS at each energy level increased in higher gen-
erations of the fractal, scaling with the Hausdorff dimen-
sion of the fractal dH = log 3/ log 2 ≃ 1.58. Moreover, we
identified CLS of type-3 and 7, emerging on energy levels
±
√
2 and ±

√
5, respectively. The number of these two

types of CLS remains the same for odd generations and is
zero for even generations. Finally, we discovered that the
density at the corners, for configurations with a number
of electrons that fills the degenerate level at zero energy,
closely approximates the dimension of the fractal across
all generations of the lattice. This result resembles the
findings of higher-order topological insulators realized us-
ing acoustic quantum simulators. Indeed, the outer cor-
ner modes were found to exhibit the same dimension of
the Sierpinksi carpet[28]. Unlike in their framework, this
interesting connection between outer modes and fractal
dimension arises in the absence of any external magnetic

flux. Then, we investigated the model in the presence
of intrinsic spin-orbit coupling. We found that the zero-
energy eigenstates become entangled and lead to high-
intensity corner modes in the inner and outer triangles.

Subsequently, we numerically implemented the full
model, including the interaction term, using three dis-
tinct numerical simulations. The first approach involved
exact diagonalization, which is an exact method but lim-
ited in computational scalability. Therefore, we em-
ployed it primarily for validating the results obtained
from the other two numerical methods, specifically for
smaller system sizes and lower electronic fillings. The sec-
ond approach entailed employing a mean-field Hartree-
Fock approximation, which offers analytical insights but
is observed to be valid only for relatively weak interaction
strengths. The primary method, extensively employed in
this study, is CP-AFQMC.

When examining the effects of interaction, the appli-
cation of CP-AFQMC enabled a comprehensive explo-
ration of the density configurations. By concentrating
on the electronic filling value that displayed density pat-
terns closely aligned with the dimension of the fractal at
the corners, we observed notable changes in the density
distribution upon introducing interaction. We demon-
strated that under strong interaction, sites with higher
connectivity, where destructive interference occurred un-
der weak interaction, became more populated as a coun-
termeasure against the effects of interaction. We observe
a decrease in the density at the corners as soon as interac-
tion is introduced, leading to the conclusion that the CLS
of type-1 are not robust in the presence of interaction.

We further employed CP-AFQMC to investigate the
quantum phases of the system within the second gen-
eration of the lattice at half filling, considering non-zero
interaction strengths. Initially, we observed that the sim-
ulation reached an equilibrium state characterized by an
unequal number of spin-up and spin-down electrons, cor-
responding to the sizes of the two sublattices. Our subse-
quent focus shifted towards studying the magnetic order
within the system. To accomplish this, we computed the
local magnetization per site and discovered that neigh-
bouring sites exhibited opposite signs and varying magni-
tudes. This was consistently observed across all interac-
tion strengths and indicated the presence of a ferrimag-
netic phase, see Fig. 20(a). We were able to establish
a connection between the imbalance in local magnetiza-
tion and the type-1 CLS under weak interaction. Sub-
sequently, we verified the magnetic order by observing
prominent peaks in the magnetic structure factor and
long-range order in the magnetic correlations. Lastly, we
detected a Mott transition by analyzing the behaviour of
the tail of the magnetic correlations and the doublon den-
sity. This transition occurs at an approximate value of
UC ≃ 4.5, which intriguingly corresponds to the critical
value detected through QMC methods for a Mott tran-
sition on a honeycomb lattice [50], the periodic lattice
configuration most similar to our chosen fractal struc-
ture. The difference is in the magnetic order, which we
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find to be ferrimagnetic for every value of interaction
strength. The latter result, in turn, agrees with stud-
ies of Hubbard model on non-periodic lattices, such as
the two-dimensional hexagonal golden-mean tiling [51].

Concerning the effect of spatial dimensionality in the
phase diagram of the ground state of the Hubbard model
at half-filling, important differences are observed. In one
dimension (1D), no Mott transition at finite interaction is
predicted, with the system being metallic only for U = 0
and an AFM insulator for U > 0 [52]. Moreover, the low-
energy excitations of the 1D Hubbard model bear resem-
blance to Tomonaga-Luttinger liquid theory [53–55]. In
2D, the aforementioned phase diagram changes depend-
ing on the geometry considered. For the honeycomb lat-
tice, which is the most similar to the fractal lattice con-
sidered in this work, a Mott transition is predicted at
finite interaction [56]. Below the critical interaction UC ,
the system describes a non-magnetic semimetal, whereas
above UC , the honeycomb-Hubbard model describes an
AFM insulator. Our calculations consider a spatial di-
mension that lies between 1 and 2, and new physics was
observed. Similar to the 2D honeycomb model, a Mott
transition at UC ≃ 4.5 was observed, but no AFM state
was found in the range of interactions considered. In-
stead, we observed that the system is always ferrimag-
netic: a ferrimagnetic metal below UC and a ferrimag-
netic insulator above it. Therefore, our work shows that
new physics emerges at fractal dimensions, which is dif-

ferent from the lower and upper integer boundaries. It
remains to verify whether this behavior is specific to the
Sierpinski triangle, with dimension 1.58, or whether it is
generic to other fractal lattices with dimension between
one and two. We hope that these findings will stimulate
both theoretical and experimental research in interacting
systems at non-integer dimension.
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