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Topological insulators have been studied intensively over the last decades. Earlier research focused
on Hermitian Hamiltonians, but recently, peculiar and interesting properties were found by intro-
ducing non-Hermiticity. In this work, we apply a quantum geometric approach to various Hermitian
and non-Hermitian versions of the Su-Schrieffer-Heeger (SSH) model. We find that this method
allows one to correctly identify different topological phases and topological phase transitions for all
SSH models, but only when using the metric tensor containing both left and right eigenvectors.
Whereas the quantum geometry of Hermitian systems is Riemannian, introducing non-Hermiticity
leads to pseudo-Riemannian and complex geometries, thus significantly generalizing from the quan-
tum geometries studied thus far. One remarkable example of this is the mathematical agreement
between topological phase transition curves and lightlike paths in general relativity, suggesting a
possibility of simulating space-times in non-Hermitian systems. We find that the metric in non-
Hermitian phases degenerates in such a way that it effectively reduces the dimensionality of the
quantum geometry by one. This implies that within linear response theory, one can perturb the
system by a particular change of parameters while maintaining a zero excitation rate.

I. INTRODUCTION

The discovery of topological insulators is one of
the most important developments in condensed-matter
physics of the past decades [1–4]. Their peculiar proper-
ties, in particular the co-existence of an insulating bulk
with quantized gapless edge states that are robust against
perturbations, hold promises to revolutionize our current
technology. An elegant classification of the topological
phases based on symmetries and dimensionality has been
proposed for non-interacting systems [5], leading to the
ten-fold way. Later, this classification was extended to
out-of-equilibrium and current efforts focus on interac-
tions. The mechanisms at work in topological systems
have since then been generalized to mechanical systems
[6] and even to the Earth itself [7].

A partly contemporary development is the growing im-
portance of non-Hermitian (NH) quantum systems, both
in theory and experiment [8, 9]. Non-hermiticity can
arise as an effective description of open quantum sys-
tems, e.g. driven and/or dissipative ones. When quan-
tum jumps can be negleted, they can be described by
NH Hamiltonians. In general, NH Hamiltonians can have
complex energy eigenvalues that may appear in various
forms, depending on the system’s symmetries. In partic-
ular, the eigenvalues of PT -symmetric NH Hamiltonians
are real when PT -symmetry is preserved in the topologi-
cal phase, but come in complex-conjugate pairs when this
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symmetry is spontaneously broken [10]. The eigenvalues

of pseudo-Hermitian Hamiltonians Ĥ, for which there ex-
ists an invertible operator η such that Ĥ = η−1Ĥ†η,
appear in complex-conjugated pairs. An essential fea-
ture of NH operators is the fact that their left and right
eigenvectors are no longer related by Hermitian conjuga-
tion. Perhaps the most striking feature of NH systems
is the strong sensitivity of the bulk to boundary condi-
tions. This is known as the NH skin effect, which has
been explained in terms of an intrinsic NH topology [11].
For a NH lattice model with non-reciprocal real-valued
hoppings, the skin effect can simply be understood as the
accumulation of states at a boundary of the system. The
generalization of the ten-fold way to NH topological in-
sulators exhibits an intricate classification structure [12]
[13], and the additional NH parameters lead to enriched
phase diagrams as compared to the Hermitian case [14].

Central to the understanding of Hermitian topologi-
cal insulators is the antisymmetric part of the quantum
geometric tensor, that is, the Berry curvature. From
the Berry curvature, one can calculate the first Chern
number of the U(1)-bundle, which counts the number of
gapless edge modes. The symmetric part of the quan-
tum geometric tensor (QGT), the quantum metric ten-
sor (QMT), was introduced by Provost and Vallee [15].
It provides a natural measure for the distance between
quantum states, and as such, plays an important role in
quantum information theory [16]. In photonics, the QMT
becomes a crucial quantity when determining wavepack-
ets dynamics near exceptional points for NH systems [17].
For flat-band systems, the superfluidity and stable super-
currents are possible if the band has a non-trivial quan-
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tum geometry: superfluid weight1 is connected to the
quantum metric and bounded below by a finite Chern
number, while superconductivity is directly governed by
the the QMT [16].

The QMT in essence describes a pull-back of the
Fubini-Study metric of the Hilbert space to a manifold
of parameter space. It defines a geodesic distance be-
tween points on the parameter manifold and serves as a
measure of the dissimilarity between quantum states as-
sociated with different parameter choices. The whole ma-
chinery of Riemann geometry can then be employed for
characterising phases of quantum matter [18–20]. More-
over, it plays a vital role in understanding equilibrium
quantum phase transitions [21, 22]. In the thermody-
namic limit, phase transitions are signalled by a singu-
larity of the QMT, manifesting as a divergence or a gap.
In fact, the topology of the parameter manifold could
change across a phase transition [23], leading to a change
of the Euler characteristic. The QGT is also useful for
characterising non-equilibrium dynamics, especially close
to phase transitions [24–27].

In this work, we apply quantum geometry to extract
the phase diagrams of various NH Su-Schrieffer-Heeger
(SSH) models with periodic boundary conditions (PBC).
In Sec. II, we present the most general SSH model and
introduce the QMT and its NH generalization. We then
compute the QMT for various SSH models. We treat
these in order of increasing complexity, starting from the
Hermitian SSH with real-hopping parameters in Sec. III.
In Sec. IV, the pseudo-Hermitian Hamiltonian with real
non-reciprocal intracell hoppings is studied. We find that
the QMT arising in the NH phases is degenerate, which
effectively leads to a dimensional reduction of the asso-
ciated quantum geometry from two-dimensional to one-
dimensional. This phenomenon is not known to occur for
Hermitian quantum geometries and appears to be a char-
acteristic of NH ones. Recently, the QGT of a NH sys-
tem has been experimentally measured [28, 29]. We will
show that they have, in fact, observed the dimensional
reduction that we predict theoretically here. Sec. V pro-
ceeds with the study of the Hermitian SSH model with
complex-hopping amplitudes, and its analogous NH ver-
sion with the same complex left- and right-handed intra-
cell hopping parameters is analyzed in Sec. VI. The SSH
Hamiltonian in Sec. VII is similar to that of Sec. IV,
but we now include phases into the non-reciprocal hop-
ping parameters. Again, we find a dimensional reduc-
tion of the associated quantum geometry in the NH
phases. We note that for all models that we have consid-
ered, the phase diagrams known from calculations of the
Chern number are faithfully reproduced by the QMT.
In Sec. VIII, we discuss the physical implications of our
findings. In particular, the aforementioned dimensional
reduction implies that there exists a particular choice of

1 Superfluid weight is an observable that quantifies the ability of
the system to support superfluid transport.

parameters for which the associated QMT component is
equal to zero. By using NH linear response theory, this
means that we can apply a perturbation along this di-
rection in the parameter space, such as a driving or a
quench, without exciting the system to a higher energy
eigenstate, effectively leaving it unaffected. Lastly, we
discuss a possible application of the pseudo-Riemannian
manifolds which arise as the quantum geometries of
pseudo-Hermitian quantum systems. Whereas Rieman-
nian spaces only contain space-like and no time-like di-
rections, pseudo-Riemannian manifolds appear as space-
times in the context of general relativity. This opens
up the possibility of performing ‘quantum simulations’
of space-times.

II. MODEL AND THEORETICAL
FRAMEWORK

A. NH SSH model

The SSH model is one of the simplest models to de-
scribe a topological insulator. It consists of spinless
fermions moving on a one-dimensional lattice (i.e chain)
with staggered hopping amplitudes, as shown in Fig. 1.
The chain contains N unit cells, each of them with two
sites, one on sublattice A and another on sublattice B.
Here, we consider real-valued intercell hopping, t2 ∈ R,
between nearest unit cells for simplicity. We have checked
that the physical results do not change if this quantity
is complex 2. We will be considering different choices for
the left- and right-handed intracell hopping amplitudes
tL and tR, which lead to the various SSH models that
we consider in the following sections. The Hamiltonian
is generally of the following form:

Ĥ =

N∑
i=1

(
tL a

†
i bi + tR b

†
iai

)
+ t2

N−1∑
i=1

(
b†iai+1 + a†i+1bi

)
.

(1)

FIG. 1. A general schematic representation of an SSH chain
with sublattices A and B. The hopping parameters are: the
right-handed intracell tR, the left-handed intracell tL, and the
intercell t2.

2 Since the coordinates in the parameter space will involve, for
instance, tR/t2 instead of tR and t2 separately, only the real- or
complex-valuedness of the fraction plays a key role. Therefore,
we can choose t2 ∈ R and define tL and tR later on.
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Here, a†i (ai) denotes the creation (annihilation) operator
of a fermionic particle on sublattice A of the i-th unit

cell, and the same for operator b†i (bi) on sublattice B.
The corresponding Bloch Hamiltonian is

H =

 0 tR + t2e
−ik

tL + t2e
ik 0

 . (2)

Its energy eigenvalues are given by

E± = ±
(
tRtL + t22 + tRt2e

ik + tLt2e
−ik
)1/2

, (3)

which are generally complex numbers. Now, we define
the quantity

ε ≡
(
E±

t2

)2

= 1 +
tR
t2

tL
t2

+
tR
t2
eik +

tL
t2
e−ik , (4)

alongside with its complex conjugate ε∗ for convenience.
The left- and right-eigenstates of the Bloch Hamiltonian
are given by〈

ψL
∣∣ = (∣∣ψL

〉)†
=

1√
2

(
±1

tR
t2

+e−ik

ε1/2

)
,〈

ψR
∣∣ = (∣∣ψR

〉)†
=

1√
2

(
±1

t∗L
t2

+e−ik

ε∗1/2

)
,

(5)

where the superscript ∗ denotes the complex conjugation.
There are two ways to extend a Hermitian hopping

model to the NH domain. The first is to consider NH
complex hopping amplitudes. When the same phase is
attributed to both left- and right-handed intracell hop-
pings, the model is equivalent to a system in which a
magnetic flux is piercing each plaquette. The second
possibility is to consider instead a real but non-reciprocal
term in the original Hermitian intracell hopping ampli-
tude. When all parameters are real, this leads to a pref-
erential direction of propagation for bulk states under
PBC [4]. Here, we considered both options to construct
different versions of the SSH model, as one will observe
in the definition of tL and tR later on.

B. Quantum Geometry

While conventional methods to describe topological in-
sulators rely on the momentum space k, the geometry of
these materials also contain the topological characteris-
tics [23, 30–32] and other interesting features that will be
shown in this work.

1. Hermitian quantum metric tensor

Consider a Hermitian Hamiltonian parameterized by

a set of degrees of freedom λ ≡ {λµ}Kµ=1, H = H(λ).
We are only interested in differentiable and normalized
eigenstates in this parameter space. Thus, the distance

between the states of a Hamiltonian separated by an in-
finitesimal dλ defines the fidelity :

F (λ, λ+dλ) ≡ |⟨ψ(λ)|ψ(λ+ dλ)⟩| = 1− 1

2
(dλ)

2
χF +· · · ,

(6)
which has the property 0 ≤ F (λ, λ + dλ) ≤ 1 [30]. A
Taylor expansion of the fidelity about dλ → 0 gives us
the fidelity susceptibility,

χF =
∂λµ
∂λ

∂λν
∂λ

gµν , (7)

where the vector ∂λµ/∂λ denotes the direction of the
short displacement dλ in the parameter space [30], and
gµν is the symmetric QMT defined as

gµν =
1

2
[⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩ ⟨ψ|∂νψ⟩+ (µ↔ ν)] .

(8)

In general, , away from the quantum critical points, the
fidelity vanishes exponentially with the size of a many-
body system [32]. Hence, it is more convenient to study
a model through the second-derivative term χF , which
exhibits a maximum or diverges at a critical point [32].
The fidelity susceptibility also follows a scaling law close
to a critical point, which can be used to reveal possible
topological phase transitions [32].

The square of the fidelity defines a coordinate-
independent infinitesimal distance [23]

ds2 = 1− |⟨ψ(λ)|ψ(λ+ dλ)⟩|2 ≃ χµνdλ
µdλν . (9)

where the QGT,

χµν ≡ ⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩ ⟨ψ|∂νψ⟩ , (10)

is the O
(
dλ2

)
-term after the Taylor expansion about

dλ → 0. Notice that the QMT, Eq. (8), is actually the
real and symmetric part of the geometric tensor, Eq. (10),

gµν = Re[χµν ] =
1

2
[χµν + χνµ] , (11)

and it is the key term in Eq. (7). Finally, the imaginary
and antisymmetric part of the QGT defines the Berry
curvature [23]

Fµν = i[χµν − χνµ] = ∂µAν − ∂νAµ , (12)

where the Berry connection is

Aµ = i ⟨ψ|∂µψ⟩ . (13)

Since the Berry formalism can be used to characterize
different topological phases and topological phase transi-
tions [4], it is natural to believe that the QMT may also
yield some interesting topological properties of a system.
Consequently, the latter is the focus of this work.

Eq. (9), together with invariance under the exchange
dλµ ←→ dλν , yields to the analog metric equation in
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general relativity:

ds2 = gµνdλ
µdλν . (14)

The corresponding covariance property always allows one
to locally diagonalize the QMT, such that only the diag-
onal QMT components,

gµµ = ⟨∂µψ|∂µψ⟩ − ⟨∂µψ|ψ⟩ ⟨ψ|∂µψ⟩
= ⟨∂µψ| (1− |ψ⟩ ⟨ψ|) |∂µψ⟩ , (15)

are not equal to zero. Since gµµ can be written as the
expectation value in the state |∂µψ⟩ of the identity ma-
trix 1 minus a projection operator |ψ⟩ ⟨ψ|, it holds that
gµµ ≥ 0. If we exclude coordinates λκ for which gκκ = 0,
we are left with a metric of purely positive signature. For
coordinate patches where the metric is regular, the metric
signature is constant. We thus conclude that the quan-
tum geometry of Hermitian Hamiltonians is necessarily
Riemannian, and this has been the manifold for most of
the research thus far [23, 28, 30, 32–35]. Furthermore, for
real λµ, one can easily verify that the QMT components
are real as well.

2. Non-Hermitian quantum metric tensor

In the case of NH systems, it is natural to think about
a NH version of the QMT. First we introduce the NH
version of the QGT tensor, given by

χαβ
µν ≡

〈
∂µψ

α
∣∣∂νψβ

〉
−
〈
∂µψ

α
∣∣ψβ
〉 〈
ψα
∣∣∂νψβ

〉
, (16)

with the orthonormality
〈
ψα
∣∣ψβ
〉
= 1 ∀α, β ∈ {L,R},

specifying the left and right vector spaces of the eigen-
function ψ.

While for the Hermitian QMT the real and symmet-
ric part of the QGT coincide, this is not necessarily the
case for non-Hermitian systems. This introduces an am-
biguity, which allows for three different definitions of the
QMT to be taken:

1. the QMT is the symmetric part of the QGT with
respect to the indices µ and ν,

gαβµν =
χαβ
µν + χαβ

νµ

2
, (17)

2. the QMT is the real part of the QGT,

Re
[
χαβ
µν

]
=
χαβ
µν + χβα

νµ

2
, (18)

3. the QMT is the real and symmetric part of the
QGT,

Gµν = Re
[
Gαβ

µν

]
=
χαβ
µν + χβα

νµ + χαβ
νµ + χβα

µν

4
. (19)

The above definitions are equivalent for Hermitian and
pseudo-Hermitian systems, such as the model with real
non-reciprocal hopping that we will consider in Sec. IV.

However, they differ for general NH models, such as those
studied in Secs. VI and VII. Throughout this paper we
will use the first definition (i.e. Eq. (17)).

The energy eigenvalues of a NH Hamiltonian can be
complex even when the space parameters are real-valued,
and the same holds for the corresponding eigenfunctions.
Therefore, Eq. (17) is not restricted to the Riemannian
manifold anymore. In terms of symmetry of the above
QMT, nothing changes when exchanging λµ ↔ λν , and
an additional complex-conjugated relation arises when
interchanging α↔ β:

gαβµν = gαβνµ , gαβµν =
(
gβαµ∗ν∗

)∗
. (20)

In this work, eigenstates of the Bloch Hamiltonian,
Eq. (5), will be applied in Eq. (17). Later, we eliminate
the momentum dependence of the QMT by summing it
over the entire Brillouin zone (BZ) and considering the
factor 1/N [23]. This method results in an intensive met-
ric that completely captures the topological phases and
topological phase transitions:

gαβµν (λ)=
1

N

∑
k∈BZ

gαβµν (λ; k)
N→∞−−−−→ 1

2π

∫
BZ

dkgαβµν (λ; k) ,

gαβµν (λ)
notation−−−−−→ gαβµν .

(21)

For a continuous momentum space, the metric is also con-
tinuous. This can be achieved by considering the ther-
modynamic limit (N →∞). Then, the sum turns into a
Riemann integral. Since both gαβµν (λ; k) and gαβµν (λ) sat-

isfy Eq. (20), we keep the notation gαβµν in this work for
simplicity.

Note that the partial derivative operation ∂µ in
Eq. (16) yields the same QMT for ± eigenstates in Eq. (5)
because ∂µ(±1) = 0.

Finally, it is worth mentioning that the orthonormal-
ity condition in Eq. (16), when using eigenstates of a
Hamiltonian like Eq. (5), is satisfied only when we com-
bine L and R terms, such as

〈
ψL
∣∣ψR

〉
= 1. Since the

QMT is only well-defined for orthonormal bases, gααµν with
α ∈ {L,R} are not strictly speaking legitimate QMT’s.
Nevertheless, as we will show later, it is interesting to
compute them, and we will not distinguish them from
the real QMT in terms of notations.

III. QUANTUM GEOMETRY FOR THE
HERMITIAN SSH MODEL: REAL HOPPING

(H-SSH)

We start with the most familiar and simplest Hermi-
tian SSH model with real intracell hopping parameter
tR = tL ≡ t ∈ R [14] to introduce the concept of QMT.
The eigenstates are given by

⟨ψ| = (|ψ⟩)† = 1√
2

(
±1 y+e−ik

ε
1/2
r

)
, (22)
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FIG. 2. Metric tensor gyy in the parameter space y for N =
{50, 200, 800} and N → ∞.

and Eq. (4) becomes εr = 1 + y2 + 2y cos(k) ∈ R, with
y ≡ t/t2 ∈ R the coordinate of the parameter space and
the subscript r denotes real intracell hopping amplitude.

By applying Eqs. (17)-(21), one obtains the one-
component QMT

gyy=
1

N

∑
k∈BZ

sin2 (k)

4 ε2r

N→∞−−−−→


1

8y2(y2−1) |y| > 1 ,

1
8(1−y2) |y| < 1 .

(23)

Note that the singularity manifests as divergences for
y2 = 1, and that gyy is a positive quantity, in agreement
with the Hermitian definition of the QMT detailed in
Sec. II B.

We plot gyy in Fig. 2. The graphical representations
for N = {50, 200, 800} and N → ∞ overlap with each
other, except at points near the peaks. These maxima
become higher when N becomes larger, until turning into
divergences in the thermodynamic limit. Here, it is clear
that the system reveals the same topological information
for almost any system size N .

From previous works, we know beforehand that the
H-SSH model has topological-phase transition points at
|y| = 1, which separate the trivial phase |y| > 1 and the
topological regime |y| < 1 [4, 14]. This agrees with the
results of the QMT in Eq. (23) and Fig. 2: the topological
phase transitions manifest as a divergent singularity at
|y| = 1 and each phase has its own metric in the param-
eter space. Physically, the QMT measures the distance
between different states. Since the trivial phase has iden-
tical states, the metric tends to zero rapidly for |y| > 1.
The topological phase has a fundamental difference be-
tween bulk and boundary states, so the metric is bounded
below for |y| < 1 with a finite value gyy = 1/8. Moreover,
the two limits,

lim
y→∞

gyy = 0 and lim
y→0

gyy = 1/8 ,

are exactly the two fully dimerized cases of the current
SSH model [4]: y → ∞ and y → 0 belong to the triv-
ial and topological phases, respectively. A topological
regime is unaltered under an adiabatic deformation up
to a phase transition, so |y| > 1 and |y| < 1 are the same

phases as y →∞ and y → 0, respectively.

The above results ensure the validity of this approach
when describing topological insulators.

IV. PSEUDO-HERMITIAN SSH MODEL: REAL
NON-RECIPROCAL HOPPINGS (NH-SSH-NR)

Continuing with real hopping parameters, we now con-
sider an additional non-reciprocal term δ as tR ≡ t−δ ∈ R
and tL ≡ t+ δ ∈ R, which introduces non-Hermiticity to
the model. Defining {y ≡ t/t2, z ≡ δ/t2} ∈ R, the eigen-
states in Eq. (5) are〈

ψL
∣∣ = (∣∣ψL

〉)†
=

1√
2

(
±1 y−z+e−ik

εNRr
1/2

)
,〈

ψR
∣∣ = (∣∣ψR

〉)†
=

1√
2

(
±1 y+z+e−ik

ε∗NRr
1/2

)
,

(24)

where εNRr = 1 + y2 − z2 + 2y cos(k) − i2z sin(k) ∈ C,
and the subscript NRr denotes non-reciprocal real in-
tracell hopping amplitudes. By applying Eqs. (17)-(21),
the discrete version of all independent QMT components
are 3 4

gLR
yy =

1

N

∑
k∈BZ

−[z + i sin(k)]
2

4 ε2NRr

∈ R ,

gLR
zz = − 1

N

∑
k∈BZ

[y + cos(k)]
2

4 ε2NRr

∈ R ,

gLR
yz =

1

N

∑
k∈BZ

[y + cos(k)] [z + i sin(k)]

4 ε2NRr

∈ R ,

gααyy =
1

N

∑
k∈BZ

[
z2 + sin2(k)

]
Kαα ∈ R ,

gααzz =
1

N

∑
k∈BZ

[y + cos(k)]
2
Kαα ∈ R ,

gααyz =
1

N

∑
k∈BZ

[z (y + cos(k))]Kαα ∈ R ,

(25)

3 Equations are written in a format such that one can correctly
obtain their graphical results by using Wolfram Mathematica.
Other formats may lead to inconsistent results. For LR-QMT
components, they are also the appropriate format for computing
their Riemann integral using the same program. In addition, the
integration can be analytically performed by applying the residue
theorem, when the momentum k is written in the exponential
form e±ik.

4 Keep in mind that gαα
µν with α ∈ {L,R} are not legitimate

QMT’s, and we are considering only PBC.
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where the superscript α ∈ {L,R} and

KLL =
1

2 ε
1/2
− ε

3/2
+

− 1

4 ε2+
∈ R ,

KRR =
1

2 ε
3/2
− ε

1/2
+

− 1

4 ε2−
∈ R ,

ε± ≡ 1 + (y ± z)2 + 2(y ± z) cos(k) ∈ R .

(26)

The singular points of a QMT component are those
with a vanishing denominator and a finite numerator.
Therefore, the previous equations imply that the metric
diverges at

εNRr = 0 =⇒ z = ±y ± 1 ,

ε− = 0 =⇒ z = y ± 1 ,

ε+ = 0 =⇒ z = −y ± 1 .

(27)

Specifically, the QMT components with LR-
combinations (LR-QMT components) have four
topological phase-transition lines, given by z = ±y ± 1.
However, LL-QMT components and RR-QMT compo-
nents only contain two: z = y ± 1 and z = −y ± 1,
respectively. This phenomenon can be clearly visualized
in Fig. 3, where the yz-component for N = 200 is
presented as an example (see App. 1).

This demonstrates that the LL- and RR-QMT com-
ponents only provide half of the total phase diagram,
while the LR-QMT components contain the complete in-
formation. Thus, it confirms the need to use biorthog-
onal quantum mechanics when dealing with NH sys-

FIG. 3. The QMT components gαβ
yz with α, β ∈ {L,R} in the

parameter space y, z ∈ R for N = 200. Their imaginary parts
are non-zero (order 10−19) due to finite-size effects: Im[gαβ

µν ] ≈
0 ∀λµ, λν ∈ {y, z}. Note: keep in mind that gαα

µν with α ∈
{L,R} are not legitimate QMT components.

tems [23, 36]. Furthermore, the imaginary part of the
LR-QMT components is effectively zero. The latter also
occurs for the LL- and RR-QMT components.
We now take N → ∞, where the sum for the QMT

components turns into an integral, which can be solved
exactly. The 3D top-view representations of gLR

yy , gLR
zz ,

and gLR
yz are shown in Fig. 4. We see that they faith-

fully reproduce the boundaries of the topological phase
diagram presented in Fig. 5, where the pairs of numbers
taking values 0 and 1/2 are the NH topological wind-
ing numbers [14, 37]. The green and red areas in Fig. 5
describe the Hermitian trivial and topological phases, re-
spectively, while the blue and yellow regions depict NH
topological phases. Finally, the diagonal QMT compo-
nents in Fig. 4 show two distinct geometries in the green
domain with the same two-components winding number
(0, 0) (see Fig. 5). The regions I and II are governed
by the same QMT, but are not adiabatically connected
due to the phase transitions. If the two regions would be
exactly the same topological regime, then the QMT com-
ponents should be symmetric upon exchanging y ↔ z,
as it happens for the QMT components in the blue and
yellow domains. However, this is not the case. Hence,
regions I and II should be different. Physically, the area
I is the extended Hermitian trivial regime due to the
non-Hermicity, but there is no argument to support this
idea in the area II. This result indicates that the final
insulating regime (i.e. Hermitian trivial phase) may have
different origin in regions I and II.
Here, it is worth pointing out that the symmetry by

exchanging λµ → −λµ relies on the metric equation
ds2 = gLR

µν dλµdλν , where the line element also has the
negative sign, instead of the QMT itself.
The QMT’s corresponding to distinct regions in Fig. 5

provide a more complete understanding of topological
systems. All components are real-valued, which corre-
sponds to the conventional quantum geometry frame-
work. Moreover, we note the existence of negative diago-
nal QMT components in all topological regions, which is
not possible for any Hermitian system. Therefore, the ex-
tension from the Riemannian to the pseudo-Riemannian
manifold definitely opens the door to a more complex
realm.
The next point is about the topological phase-

transition lines. These curves are coincidentally light-
like trajectories when the metric equation equals zero,
ds2 = 0. One can check that there is an exception in
the Hermitian trivial domain due to the distinct origin
in regions I and II discussed above. Another point con-
cerns each QMT component of the green areas, which
is the result of a linear combination of the rest of QMT
components:

gLR
µν (‘green’) = gLR

µν (‘blue’)+ gLR
µν (‘yellow’)− gLR

µν (‘red’) .

This peculiar relation would be particularly relevant if
it is not limited to the current model. For instance, we
could understand that the entire space is divided into
sub-spaces, each with some kind of “restrictions”, which
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FIG. 4. QMT components Re[gLR
µν ] with xµ, xν ∈ {y, z} in the parameter space y, z ∈ R for N −→ ∞. Top viewpoint. Their

imaginary parts are zero: Im[gLR
µν ] = 0 ∀λµ, λν ∈ {y, z}. Therefore gLR

µν = Re[gLR
µν ].

FIG. 5. The phase diagram with associated metric components gLR
yy , gLR

zz and gLR
yz in the parameter space y, z ∈ R. The

symmetry by exchanging xµ → −xµ relies on the metric equation ds2 = gLR
µν dλµdλν , where the line element also has the

negative sign, instead of the QMT itself. This domain matches perfectly with the topological phase diagram found by using a
more conventional method in Refs. [14, 37]. Different topological phases are distinguished by colours and the two-component
winding number (ν1, ν2). Hermitian topological phases have ν1 = ν2, while ν1 ̸= ν2 only happens for NH regimes. Specifically,
(0, 0) represents a Hermitian trivial phase, while (1/2, 1/2) is a Hermitian topological phase, and (0, 1/2) and (1/2, 0) represent
NH topological phases. Notice that the Hermitian phase diagram is recovered when z = 0.

would be related to the properties of each topological
phase. However, this requires further investigation. Fi-
nally, the degeneracy of the QMT in the blue and yellow
areas gives rise to a dimensional reduction. This can be

clearly appreciated when we perform a transformation

of the QMT, gµν = ∂λδ

∂λµ
∂λσ

∂λν gδσ, to the new coordinates
x± ≡ y ± z ∈ R:

gLR
µν =

− 1
16x2

−
0

0 0

 , gLR
µν =

 0 1
16(1−x−x+)

1
16(1−x−x+) 0

 ,

gLR
µν =

(
0 0
0 − 1

16x2
+

)
, gLR

µν =

 − 1
16x2

−
− 1

16(1−x−x+)

− 1
16(1−x−x+) − 1

16x2
+

 .

(28)

Eq. (28) implies that the blue regions have a dark coor-
dinate x+, whereas this happens for the x−-direction in
the yellow areas.

V. HERMITIAN SSH MODEL: COMPLEX
HOPPING (H-SSH-C)

We now introduce a complex hopping parameter
into the Hermitian SSH model: tR ≡ teiθ ∈ C
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and tL ≡ te−iθ ∈ C, with t ∈ R and θ ∈
[0, 2π) . Following the same method as before, the two
complex parameters,

{
u ≡ (t/t2)e

iθ, u∗ ≡ (t/t2)e
−iθ
}
∈

C, give rise to three independent QMT components:
{guu ∈ C, gu∗u∗ ∈ C, guu∗ ∈ R}. In the thermodynamic
limit, the QMT reads

gµν =



 − 1
16u2 − 1

16(1−uu∗)

− 1
16(1−uu∗) − 1

16u∗2

 |u|2 > 1 ,

 0 1
16(1−uu∗)

1
16(1−uu∗) 0

 |u|2 < 1 .

(29)

We see that the metric is singular at |u|2 = 1, dividing the

domain into two: |u|2 > 1 and |u|2 < 1. Note that guu
and gu∗u∗ vanish for |u|2 < 1, and the QMT components
are purely real-valued in this region. We now switch to
variables {y, θ}:

gµν =




1

8y2(y2−1) 0

0 2y2−1
8(y2−1)

 y2 > 1 ,


1

8(1−y2) 0

0 y2

8(1−y2)

 y2 < 1 ,

(30)

where gyθ = gθy = 0, and the metric is diagonal,
with real-valued and positive-definite QMT components.
That is, we indeed get a Riemannian metric for this Her-
mitian SSH model, as expected. The topological phase-
transition occurs at |u|2 = y2 = 1, splitting the parame-
ter space into the topological (y2 < 1) and trivial (y2 > 1)
phases. Looking back at Eq. (29), this argument im-
plies that both the real and imaginary parts of the QMT
present information about topological phases and topo-
logical phase-transitions. Returning to Eq. (30), on one
hand, it is clear that the QMT only depends on the pa-
rameter y, meaning that the topological phenomenon is
independent of the phase θ in the hopping. On the other
hand, while the QMT component gyy agrees with the
one-component MT of the H-SSH model in Sec. III, the
QMT component gθθ is indeed caused by the complex
extension of the hopping amplitudes. The latter gives
us some additional information about the system, which
is not captured by using conventional methods [4]. This
can be seen in Fig. 6, where gθθ behaves reversed with re-
spect to gyy. Specifically, gθθ is finite in the trivial regime
(i.e. limy2→∞ gθθ = 1/4) and it goes to zero rapidly in
the topological phase (i.e. limy2→0 gθθ = 0), whereas
limy2→0 gyy = 1/8 in the topological phase and goes to
zero in the trivial one.

FIG. 6. gyy and gθθ in the parameter space {y ≡ t/t2, θ} for
N → ∞ (i.e. thermodynamic limit). Note that both QMT
components are independent of the parameter θ.

VI. NON-HERMITIAN SSH MODEL:
COMPLEX HOPPINGS (NH-SSH-C)

Another way to construct a NH SSH model is to have
the same complex left- and right-handed intracell hop-
ping amplitudes: tR = tL ≡ teiθ ∈ C, with t ∈ R and
θ ∈ [0, 2π) . While {u, u∗} ∈ C are the two parameters of
the system, there is only one non-zero QMT component
for each independent {L,R}-combination of the QMT:

gLR
uu =

1

N

∑
k∈BZ

sin2(k)

4 ε2NHc

∈ C ,

gLL
uu∗ =

1

N

∑
k∈BZ

[
sin2(k)

4
√
εNHc

√
ε∗NHc(u+ eik)(u∗ + e−ik)

− sin2(k)

8(u+ eik)2(u∗ + e−ik)2

]
∈ R ,

gRR
uu∗ =

1

N

∑
k∈BZ

[
sin2(k)

4
√
εNHc

√
ε∗NHc (u

∗ + e+ik) (u+ e−ik)

− sin2(k)

8 εNHc ε∗NHc

]
∈ R ,

(31)

where εNHc = 1+u2 +2u cos(k) ∈ C. Like the NH-SSH-
NR model in Sec. IV, both LL- and RR-MT’s cover half
of the total topological information (see App. 2). Thus,
one can focus the study on the LR-MT only. Writing the
parameter in the complex form u = uR + iuI , we realise
that all QMT components depend only on gLR

uu :

gLR
uRuR

= gLR
uu ,

gLR
uIuI

= −gLR
uu ,

gLR
uRuI

= igLR
uu .

(32)

Notice that gLR
uu in Eq. (31) is exactly the complex

version of Eq. (23), where we now have the parameter
u ≡ yeiθ instead of y. Therefore, its Riemann integral
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in the thermodynamic limit also follows this analogy. In
the {u, u∗}-space, the matrix form of the QMT,

gLR
µν =




1

8u2(u2−1) 0

0 0

 |u|2 > 1 ,


1

8(1−u2) 0

0 0

 |u|2 < 1 ,

(33)

shows clearly a dimensional reduction in the u∗-direction.
In particular, there is a topological phase-transition unit
circle in the {uR, uI}-space, |u|2 = 1, that separates the

extended topological (|u|2 < 1) and trivial (|u|2 > 1)
phases, as shown in Fig. 7. Here, one can observe that
both the real and imaginary part of gLR

uu contain topologi-
cal information, as in the previous model. If, however, we
consider the third definition of the QMT (i.e. Eq. (19)),
which merely extracts the real part of gLR

µν , we find that
Gu∗u∗ is non-zero and that there is no dimensional re-
duction.

VII. NON-HERMITIAN SSH MODEL:
COMPLEX NON-RECIPROCAL HOPPING

(NH-SSH-NR-C)

We now include phases into the non-reciprocal hop-
ping parameters of the pseudo-Hermitian SSH model
presented in Sec. IV, such that tR ≡ teiθ − δeiϕ ∈ C
and tL ≡ te−iθ + δe−iϕ ∈ C, with t, δ ∈ R and
θ, ϕ ∈ [0, 2π) in the principal branch. Thus, the pa-

FIG. 7. Real and imaginary parts of the QMT component
gLR
uu in the parameter space {uR, uI} ∈ R for N → ∞.

rameters of the model are again {u, u∗} ∈ C together
with

{
v ≡ (δ/t2)e

iϕ, v∗ ≡ (δ/t2)e
−iϕ
}
∈ C. In this case,

we find that the most promising LR-combination results
in three independent QMT components, due to the fol-
lowing additional relations:

gLR
uu = gLR

vv = −gLR
uv ,

gLR
u∗u∗ = gLR

v∗v∗ = gLR
u∗v∗ ,

gLR
uu∗ = gLR

uv∗ = −gLR
vv∗ = −gLR

u∗v .

(34)

Here, we choose the set of gLR
{u,u∗} QMT components for

simplicity. In the thermodynamic limit, the matrix rep-
resentation of the metric tensor,

gLR
µν =

gLR
uu gLR

uu∗

gLR
uu∗ gLR

u∗u∗

 ,

for distinct topological regions reads

gLR
µν =



(
− 1

16(u−v)2
0

0 0

)
|u− v|2 > 1 ∧ |u∗ + v∗|2 < 1 ,

(
0 0

0 − 1
16(u∗+v∗)2

)
|u− v|2 < 1 ∧ |u∗ + v∗|2 > 1 ,

(
0 1

16
1

1−(u−v)(u∗+v∗)
1
16

1
1−(u−v)(u∗+v∗) 0

)
|u− v|2 < 1 ∧ |u∗ + v∗|2 < 1 ,

(
− 1

16(u−v)2
− 1

16
1

1−(u−v)(u∗+v∗)

− 1
16

1
1−(u−v)(u∗+v∗) − 1

16(u∗+v∗)2

)
|u− v|2 > 1 ∧ |u∗ + v∗|2 > 1 ,

(35)
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where ∧ denotes the logic and. One may verify that the
above QMT components reduce to those of the H-SSH-
C model in Sec. V (i.e. Eq. (29)) when v = 0 = v∗.
Furthermore, the QMT components of the NH-SSH-NR
model in Sec. IV can be obtained with θ = 0 = ϕ.
Lastly, the mathematical structure of Eqs. (28) (35) are
the same, which allows one to directly identify the QMT
corresponding to the distinct topological phases: going
from up to down in Eq. (35), they are ‘NH topologi-
cal phase’, ‘NH topological phase’, ‘Hermitian topolog-
ical phase’ and ‘Hermitian trivial phase’. The phase-
transitions curves of the system are |u− v|2 = 1 and

|u∗ + v∗|2 = 1. The above analysis implies that the cur-
rent SSH model combines all the physical results in both
NH-SSH-NR and H-SSH-C cases. Note that while this
metric has complex components and dimensional reduc-
tion, when we use the definition of the QMT that is both
real and symmetric (Eq. (19)), the metric becomes real
and we no longer have dimensional reduction, as we saw
in section VI.

VIII. PHYSICAL IMPLICATIONS

A. Signature of the quantum metric and
dimensional reduction

We found that when we consider the NH version of the
QMT in Eq. (17), we can have negative QMT compo-
nents. Choosing the definition of the metric such that it
is both real and symmetric (i.e. Eq. (19)), nonetheless,
makes sense because of its function as a measure of dis-
tances on the manifold.5 This real symmetric QMT is
also the metric that has been derived for PT -symmetric
Hamiltonians specifically [39]. Still, NH QMT’s sig-
nificantly increase the scope of possible QMT’s from
Riemannian to pseudo-Riemannian (with mixed positive
and negative signatures). In the context of relativity,
both special and general, one typically considers pseudo-
Riemannian manifolds. Here, the coordinates with neg-
ative signature describe time-like dimensions in the pa-
rameter manifold. We believe that these observations are
general features of NH quantum systems, going beyond
the scope of NH SSH models.

We also observe that a dimensional reduction of the
parameter space appears in NH phases. We remind the
reader that the signature of a metric is fixed in regions
where the metric is regular. Therefore, dimensional re-
duction from 2D to 1D only occurs at the loci where the
metric is not regular. These are precisely the critical
points where a phase transition occurs. The occurrence
of dimensional reduction may arise from the behaviour of
the winding vector around exceptional points, from which
one determines the winding number. For a Hermitian

5 Even so, in Ref. [38], the author works with complex QMT com-
ponents in complex manifolds.

SSH model, there is only one point, whereas the NH ap-
proach splits it into two [37]. In the latter case, a winding
vector has the chance to spin around only one of them,
so it does not cover the information regarding the other
exceptional point. This missed information may mani-
fest as a dimensional reduction in the QMT, although it
is not clear by which mechanism this should occur. Fur-
thermore, this phenomenon has been recently measured
experimentally in a plasmonic lattice, where the relation
gkxkx

≈ gkyky
≈ −gkxky

in the 2D momentum space has
been found [29]. This completely agrees with the QMT
in the blue region of the NH-SSH-NR model in Sec. IV
(see Fig. 5 for the exact equation).

B. Linear response to external driving

The QMT is an experimentally measurable quantity, as
shown for Hermitian systems in Refs. [28, 34, 40]. The
former work also contains a relation between the diagonal
QMT components and the transition rate from an initial
state to all possible final states. Inspired by that and
following the methodology in Refs. [33, 34, 41], here we
derive a similar relation for NH topological systems.
Consider a NH time-dependent system in a parameter

space λ with the Hamiltonian given by Ĥ(λ) = Ĥ0(λ)+

V̂ (λ). Ĥ0(λ) denotes the unperturbed part and

V̂ (λ) = ∂λ1
Ĥ(λ0)

2E

ℏω
cos(ωt) (36)

is the periodic perturbation potential, where E is the
driving amplitude and λ0 is the initial vector parameter
at t = 0. If we modulate one parameter

λ1(t) = λ01 +
2E

ℏω
cos(ωt)

with real frequency ω, we find that the integrated transi-
tion rate reads

Γint =
2πE2

ℏ2
∑
f ̸=i

〈
∂λ1

ψL
i

∣∣ψR
f

〉 〈
ψL
f

∣∣∂λ1
ψR
i

〉
=

2πE2

ℏ2
gLR
λ1λ1

,

(37)

where subscripts i and f indicate the initial and final
states, respectively. Combining this formula with the di-
mensional reduction discussed previously, it results in a
regime of parameters where the system does not respond
to a perturbation, something that has not been observed
in a quantum system thus far. Next, the negative di-
agonal QMT components in the NH-SSH-NR model im-
plies that the transition rate can be negative, which may
due to an inverse population. Notice that some diagonal
QMT components are complex, which requires further
investigations to understand whether the usual Kubo for-
mula formalism can still be applied beyond the Hermi-
tian and pseudo-Hermitian realm or whether a relation
should be made to the real and symmetrized version of
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the metric. Measurements of the metric components for
non-Hermitian systems have thus far used real versions
of the QMT [29, 42].

C. Emergent space-times, black holes, and event
horizons

We noted above that pseudo-Riemannian geometries,
which we have found to arise as the quantum geometries
of NH systems, appear in the context of general relativ-
ity (GR) as space-times, whereas Riemannian manifolds,
arising from Hermitian systems, have only space-like di-
mensions. Further, quantum geometry is experimentally
accessible, as the QMT appears in the form of measurable
physical quantities, such as in Eq. (37). This opens up
the possibility of quantum simulating space-times in the
form of quantum geometries in NH systems. This seems
particularly interesting here, as there appear various un-
expected relations between some of the QMT’s derived
here and black holes in GR, which we outline below.

In the context of GR, trajectories which traverse zero
metric distance, i.e. for which ds2 = gµνdλ

µdλν = 0,
are the trajectories followed by massless particles and
are therefore referred to as ‘lightlike’ or ‘null-like’. In
Riemannian geometries, the metric distance is always
positive semi-definite, since gµµ ≥ 0 after diagonalizing.
Conversely, pseudo-Riemannian metrics generally have
negative QMT components after diagonalizing, leading
to non-trivial trajectories which traverse zero metric dis-
tance. Consider the metric of the NH-SSH-NR model,
for example. One can see that lightlike trajectories
for these metrics correspond to lines at 45 degrees, i.e.
y = ±z + constant 6, which is coincidentally how light-
like trajectories are typically represented in the Penrose
diagrams used to study space-times [43].

Consider black holes, which are objects that are so
heavy that outgoing light cannot escape from beyond a
certain critical radius, where the event horizon is located.
This event horizon manifests as a singularity in the metric
for the corresponding space-time [43], which is precisely
how a phase transition manifests in the quantum met-
ric. The fact that light cannot escape from beyond the
event horizon implies that the event horizon is a lightlike
surface. In particular, if one considers a spherical shell
of outgoing massless particles at the event horizon which
are directed away from its center, this shell will remain
located at the event horizon. In this sense, points on the
event horizon of a black hole follow the same trajecto-
ries as massless particles, i.e. lightlike trajectories. This
means that the event horizon of a black hole appears at
45 degrees in the Penrose diagram of the corresponding
space-time [43]. The singularities of the QMT for the
NH-SSH-NR model, where the phase transitions occur,

6 The QMT for the Hermitian phase is an exception due to the
different origin in the regions I and II.

also appear precisely at 45 degrees. By analogy with
black holes, then, the phase transitions are analogous
to black hole event horizon(s).7 We thus see that NH
systems broaden the scope of quantum geometry to en-
compass space-times, including those which exhibit basic
features of black holes mentioned above. This opens up
the possibility of simulating space-times in NH systems,
where concepts from GR translate to physical proper-
ties of quantum systems which may be measured in the
laboratory.

IX. CONCLUSIONS

In conclusion, we have applied a NH quantum geome-
try approach to different versions of the SSH model with
PBC. We have successfully identified distinct topologi-
cal phases and topological phase-transitions in complete
agreement with those found by conventional methods
[4, 14, 37]. This confirms the validity of the quantum
geometric method. Furthermore, the topological infor-
mation is independent of the system size N , except when
it is too small such that topological phenomena do not
appear.
From the pseudo-Hermitian SSH model with real non-

reciprocal hoppings, we firstly found that all QMT com-
ponents are real-valued, despite the complex character
introduced by the non-Hermicity. This indeed helps one
to identify them with the conventional QMT. However,
when we analyse the definition of eigenstates and NH
QMT used (see Eqs. (5), (17)), the resulting QMT com-
ponents could be in principle complex, although the hop-
ping parameters of the system are real. Nonetheless, this
inherently depends on the definition chosen for the QMT,
currently the authors are still unsure about which should
be employed. Secondly, both LL- and RR-QMT com-
ponents contain half of the total amount of topological
information, and only LR-QMT components reproduce
the entire picture. This is actually a generic phenomenon
that happens for any NH system, and justifies the need to
use biorthogonal quantum mechanics when dealing with
them [23, 36]. Next, the diagonal QMT components of
the Hermitian trivial phase reveal that regions I and II
may have different origin, despite being characterized by
the same two-components winding number (see Fig. 5).
Lastly, we found that non-Hermicity gives rise to negative
diagonal QMT components, which expand the workspace
from the Riemannian space to pseudo-Riemannian mani-
folds. This opens a door to a new realm in NH topological
systems.
From SSH models with complex hopping parameters,

we find that the additional phase terms, compared to
cases with real hopping amplitudes, directly expand the

7 We mention horizon(s) because there are various black hole with
multiple event horizons, including charged (Reissner-Nordström)
and rotating (Kerr) black holes [43].
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symmetric version of the QMT, gαβµν , to a complex-
valued one, where we need to use a different defini-
tion of the QMT to retrieve real components. Further-
more, since phase terms (i.e. complex number) cannot
be gauged away in the quantum geometric approach,
we find that they provide additional information about
the system, compared to the results obtained with con-
ventional methods by studying Hamiltonians themselves
[4] (see Fig. 6). This raises the question whether some
modifications of the transition rate calculations are re-
quired to study these systems, such as symmetrization;
e.g. Refs. [39, 44].

In general, we find that the NH approach introduces a
dimensional reduction in NH systems and NH topological
phases. This leads to a dark direction where the system
is unaffected by a periodic time-dependent perturbation,
something that has not been observed in a quantum sys-
tem thus far.

In analogy to general relativity, this method also allows
one to identify “event horizons” when the metric equation
is zero, ds2 = 0. We find that the lightlike paths coin-
cide with the topological phase-transition curves, mainly
manifesting as discontinuities in the parameter space and
as a divergence in the Hermitian limit.
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APPENDIX

1. NH-SSH-NR model

Fig. 8 shows the 3D-graphical representation of each
QMT component in Eq. (25) for N = 200. Specifically,
their real part from the top viewpoint with the corre-
sponding legend bar. The four phase-transition lines,
z = ±y ± 1, are clearly visible for all LR-QMT compo-
nents, whereas those ones for LL-QMT components and
RR-QMT components, z = −y ± 1 and z = y ± 1, re-
spectively, appear as divergences according to the legend
bars.

2. NH-SSH-C model

The transformation of a QMT from the {u, u∗}-space
to their real and imaginary {uR, uI}-space leads to

FIG. 8. Re[gαβ
µν ] with α, β ∈ {L,R} in the parameter space

λµ, λν ∈ {y, z} ∈ R for N = 200. Top viewpoint.

Eq (32) for LR-QMT components, and the LL- and RR-
QMT components read

gLL
uRuR

= 2 gLL
uu∗ ∈ R, gRR

uRuR
= 2 gRR

uu∗ ∈ R,

gLL
uIuI

= 2 gLL
uu∗ ∈ R, gRR

uIuI
= 2 gRR

uu∗ ∈ R,

gLL
uRuI

= 0 , gRR
uRuI

= 0 .

(38)

Fig. 9 shows the 3D-graphical representation of
Re[gLR

uu ], Im[gLR
uu ], Re[gLL

uu∗ ] and Re[gRR
uu∗ ] in the complex

plane for N = 200, from the front viewpoint. The imagi-
nary part of LL- and of RR-QMT components are nearly
zero due to finite-size effects. It is clear that only the LR-
QMT component is complex and both its real and imag-
inary parts have divergences going to ±∞. However, the
LL-QMT component only diverges to −∞, and similarly
for the RR-QMT component, but to +∞. This tells us
that whereas LR-QMT components form a complete set
by themselves, the singularity in LL-QMT components
complements that in RR-QMT components, as one can
observe in Fig. 10. Therefore, we conclude that LL- and
RR-QMT components cover half of the total topological
information each, whereas LR-QMT components contain
the entire data. This result agrees with that found in
the NH-SSH-NR model, although the topological incom-
pleteness on LL- and RR-QMT components manifests in
a distinct form, supporting the argument of the neces-
sity to use biorthogonal quantum mechanics when deal-
ing with NH systems.
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FIG. 9. Re[gLR
uu ], Im[gLR

uu ], Re[gLL
uu∗ ] and Re[gRR

uu∗ ] in the pa-
rameter space uR, uI ∈ R for N = 200. Im[gLL

uu∗ ] ≈ 0 and
Im[gRR

uu∗ ] ≈ 0 due to finite-size effects.

FIG. 10. Comparison between Re[gLL
uu∗ ] and Re[gRR

uu∗ ] in the
parameter space uR, uI ∈ R for N = 200.
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