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Quantum diffusion is a major topic in condensed-matter physics, and the Caldeira-Leggett model
has been one of the most successful approaches to study this phenomenon. Here, we generalize this
model by coupling the bath to the system through a Weyl fractional derivative. The Weyl fractional
Langevin equation is then derived without imposing a non-Ohmic macroscopic spectral function for
the bath. By investigating the short- and long-time behavior of the mean squared displacement
(MSD), we show that this model is able to describe a large variety of anomalous diffusion. Indeed,
we find ballistic, sub-ballistic, and super-ballistic behavior for short times, whereas for long times
we find saturation, and sub- and super-diffusion.

I. INTRODUCTION

Quantum diffusion [1–6] has been at the attention of
researchers for many years, posing the fundamental ques-
tions on the description of dissipation in open quantum
systems. A more complete understanding of these mech-
anisms could lead to important breakthroughs in engi-
neering devices that have a better energy efficiency. De-
spite the existence of several models, numerous unan-
swered questions remain. For instance, experimental ev-
idence [7–9] indicates that diffusion does not always con-
form to the linear behavior described by Einstein [10], but
instead exhibits a power-law scaling in the mean squared
displacement (MSD), commonly known as anomalous
diffusion [11, 12]. One such example is quantum dif-
fusion on a fractal [13], where the exponent scales with
the fractal dimension. Typically, models that describe
anomalous diffusion assume a different environment com-
pared to regular diffusion. Our aim here is to achieve a
description of anomalous diffusion within the usual envi-
ronment using instead a fractional interaction.

In order to build a dissipative model, the environ-
ment of a system should be included in the Hamiltonian,
since energy is conserved in quantum mechanics. In the
Caldeira-Leggett model [14–19], the system of interest,
which we will take to be a single quantum particle, is
coupled linearly with a thermal bath that consists of har-
monic oscillators. Although this might seem arbitrary at
first, it is a very good approximation for coupling a sys-
tem to an in-equilibrium environment, since each degree
of freedom of such an environment must oscillate around
a local minimum. The benefit of this approximation is
that the harmonic oscillators can be integrated out ex-
actly, thus leading to an effective description of the parti-
cle. In doing so, one needs to know the spectral function
of the bath, which is given by the imaginary part of the
Fourier transform of the retarded dynamical susceptibil-
ity. This spectral function is, however, often difficult to
measure experimentally, and is therefore often assumed
to be linear (Ohmic) for simplicity. This assumption on
the reservoir leads to a Langevin equation, which de-
scribes linear diffusion. However, more recent works [20–
23] have shown that a power-law (non-Ohmic) bath leads

to a fractional Langevin equation, which will typically
have colored noise due to the fluctuation-dissipation the-
orem, but can also have white noise [21].
In the fractional Langevin equation, the first derivative

friction term is replaced by a fractional derivative [24, 25].
These are operators which generalize the order of deriva-
tives to be not just an integer number, like a first or
second derivative, but any real (or even complex) num-
ber. There are, however, many different fractional deriva-
tives, which are not all equivalent [23, 26, 27], and this
can often lead to different results. The first main ques-
tion then is: which fractional derivative should one use?
For this, we have to realize that fractional derivatives are
non-local operators, which means that it is important to
specify the time domain. Refs. [20, 21] both use a Ca-
puto derivative, which is only possible if we have a clear
initialization time. Since we are interested in dynamics,
the boundaries of the action are taken from −∞ to +∞,
which is an issue if we want to use Caputo derivatives
inside the action. Therefore, we must take the domain
of the fractional derivative to be the same as of the ac-
tion. Furthermore, one would like to preserve the Fourier
transform, since this has proven to be a powerful mathe-
matical tool in physics. Hence, we would like a fractional
derivative that is compatible with it. Because of these
two reasons, we thus select the Weyl fractional deriva-
tive [28–30].
Here, we generalize the Caldeira-Leggett model by in-

troducing a Weyl fractional derivative coupling term and
show that it can describe a whole family of anomalous
diffusion. Unlike previous works [20, 21, 23], we derive
a fractional Langevin equation without imposing a non-
Ohmic macroscopic spectral function. Motivated by the
general velocity depended coupling in Ref. [31], we con-
sider a fractional Weyl derivative to couple the system to
the bath. In order to study the Lagrangian, we first de-
rive the Weyl fractional Euler-Lagrange equation in anal-
ogy with Ref. [32]. Then, we are able to derive the Weyl
fractional Langevin equation for an Ohmic bath, which
we solve analytically using Fox H-functions. We calculate
the asymptotic behavior of the MSD and show that it is
comparable to previous results of a non-Ohmic Caldeira-
Leggett model [20, 33–37].
The outline of this paper is the following: In Sec. II
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we introduce the Weyl fractional derivative because it is
not well known. Then, in Sec. III we derive the Weyl
fractional Langevin equation. Its solution for the free
case is presented in Sec. IV. In Sec. V, we investigate
the asymptotic behavior of the MSD, and in Sec. VI we
present our conclusions and outlook.

II. THE WEYL FRACTIONAL DERIVATIVE

Although the Weyl fractional derivative has been men-
tioned briefly in the literature (see Refs. [11, 21, 23, 38–
40]), its mathematical exploration has been very limited,
to the best of our knowledge. Therefore, we provide a
summary of its main properties. Let α ∈ R, then

W
+D

α
t f(t) = F−1 {(iω)αF [f(t);ω] ; t} ;

W
−D

α
t f(t) = F−1 {(−iω)αF [f(t);ω] ; t} (1)

are called theWeyl and pseudo Weyl fractional derivative
of order α, respectively1, where (±iω)α is the principal
value of the complex power function [41]. The sign of the
frequency determines the rotational direction in complex
space, which makes their combination of particular inter-
est, since only scaling remains: The combination

W
−D

α
t

W
+D

α
t f(t) = F−1

{
|ω|2αF [f(t);ω] ; t

}
(2)

is known as the fractional Laplacian (−□t)
2α

[42, 43]. In
particular, α = 1/4 yields the operator

√
−□t which is

encountered among others in the context of Pseudo QED
[44, 45]. This theory emerges from a projected QED [44]
because in 2D systems like graphene, the dynamics of the
electrons is restricted to a 2D plane, whereas the photons
intermediate their interactions in 3D. Fractional Lapla-
cians were shown to be relevant to describe the quantum
valley Hall effect in graphene [46], as well as excitons in
transition metal dichalcogenides [47, 48].

The Weyl and pseudo Weyl fractional derivatives are
linear and real operators. In addition, they commute
W

−D
α
t

W

+D
β
t =

W

+D
β
t

W

−D
α
t and satisfy the semigroup

property, meaning that their orders add up. Some very
important properties of the (pseudo) Weyl fractional
derivative are that their convolution satisfies

g(t) ∗W
±D

α
t f(t) =

W
±D

α
t g(t) ∗ f(t) =

W
±D

α
t [g(t) ∗ f(t)]

(3)

1 The used conventions for the Fourier transform and its inverse
are

F [f(t);ω] =
1

2π

∫ ∞

−∞
dtf(t)e−iωt,

F−1 [f(ω); t] =

∫ ∞

−∞
dωf(ω)eiωt.

and their partial integration formula reads∫ ∞

−∞
dt g(t)W+D

α
t f(t) =

∫ ∞

−∞
dt f(t)W−D

α
t g(t), (4)

where we call the attention to the change of sign, from
W
+D

α
t to W

−D
α
t . The proofs of these statements are shown

in the Appendix A. By making use of Eq. (4), one can
derive the Euler-Lagrange equations for Lagrangians of
the form

L

(
t, y(t),

{
W
+D

αk
t y(t),

W

−D
βj

t y(t)

}
k,j

)
, (5)

where k = 1, ..., n, j = 1, ...,m, and all αk’s and βj ’s
are different from each other and non-zero to avoid
over-counting. In this case, the Weyl fractional Euler-
Lagrange equation reads

∂L
∂y

+

n∑
k=1

W
−D

αk
t

∂L
∂

W
+D

αk
t y

+

m∑
j=1

W

+D
βj

t

∂L

∂
W

−D
βj

t y
= 0.

(6)

A detailed derivation of the above equation can be found
in App. A. It is partially inspired by Ref. [32], which how-
ever used a Riemann-Liouville fractional derivative to a
simpler version of Eq. (6). Note that some of the deriva-
tives could be of integer order. This is not excluded.

III. DERIVATION OF THE WEYL
FRACTIONAL LANGEVIN EQUATION

The fractional Caldeira-Leggett model is an extension
of the original model, in which we modify the interac-
tion term by introducing a Weyl fractional derivative in
the coupling between the system and bath. The ratio-
nal behind this modification is that the particle and the
bath remain exactly the same, however the interaction
between them changes. Ref. [31] showed the effect of
modifications in this term. The alteration of the cou-
pling could be attributed to several external factors, such
as the geometry in which the particle or bath resides or
the interaction mechanism. We consider the Lagrangian

L = Lp + Lbath + Lint + LCT , (7)

where

Lp =
1

2
MQ̇2 − V (Q), (8)

Lbath =
1

2

N∑
k=1

mk(q̇k
2 − ω2

kq
2
k), (9)

Lint =
W
+D

α
t Q

N∑
k=1

Ckqk. (10)

Here, Q is the coordinate, M is the mass of the system,
and V (Q) is the potential that the system undergoes.
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The harmonic oscillators of the bath have coordinates
qk, frequency ωk, and mass mk. α ∈ R is the order
of the fractional derivative and LCT is a counter-term
Lagrangian. It is obtained by imposing that the system of
interest must be subject only to the potential V (Q) and
not to some renormalized potential due to the coupling

with the reservoir. Therefore, we must impose that ∂L
∂Q

!
=

−∂V
∂Q . To do this, we first set

0 =
∂L
∂qj

= −mjω
2
j qj + Cj

W
+D

α
t Q, (11)

because we want the bath to be non-interacting, mean-
ing that each particle of the bath should not feel any
potential. This implies that

qj =
Cj

mjω2
j

W
+D

α
t Q. (12)

Now, we can find the minimum of L with respect to Q,
which should be the minimum of the potential, such that

∂L
∂Q

= −∂V

∂Q
+

∂

∂Q

(
W
+D

α
t Q
) N∑

k=1

Ckqk +
∂LCT

∂Q

!
= −∂V

∂Q
. (13)

Upon substituting Eq. (12) into Eq. (13) and solving for
LCT , we find

LCT = −1

2

N∑
k=1

C2
k

mkω2
k

(
W
+D

α
t Q
)2

. (14)

Now that we have the full Lagrangian, we can study
the equations of motion. The Euler-Lagrange equations
for the bath are given by

mj q̈j = −mjω
2
j qj + Cj

W
+D

α
t Q. (15)

Because we want to solve equations using Fourier trans-
forms, we need to find two solutions: a particular solu-
tion, which has no boundary conditions, and a homoge-
neous solution, in which we set the dependence of ex-
ternal functions to zero, yielding precisely the bound-
ary conditions. Taking the Fourier transform of Eq. (15)
yields the particular solution, qpj (t),

qpj (ω) = −
Cj

mj(ω2 − ω2
j )
(iω)αQ(ω). (16)

In time, this can be written as

qpj (t) =
Cj

mjω2
j

{
W
+D

α
t Q(t)

− d

dt
W
+D

α
t [cos(ωjt)Θ(t) ∗Q(t)]

}
. (17)

The details of this derivation can be found in the Ap-
pendix B. The homogeneous part of the solution, qhj (t),
is given by

qhj (t) = A cos(ωjt) +B sin(ωjt), (18)

where A and B are constants determined by the initial
conditions. Thus, the full solution of Eq. (15) is given by

qj(t) = qpj (t) + qhj (t). (19)

Now that we have found the solutions for the bath, we
can use these in the equation of motion of the system,
which can be derived from the Weyl fractional Euler-
Lagrange equation. By applying Eq. (6) to Eq. (7), we
obtain

MQ̈(t) =− ∂V (Q)

∂Q
+

N∑
k=1

[
Ck

W
−D

α
t qk(t)

− C2
k

mkω2
k

W
−D

α
t

W
+D

α
t Q(t)

]
. (20)

The bath coordinates can be eliminated by inserting
Eqs. (17)-(19) into Eq. (20), and we eventually obtain

MQ̈(t) = −∂V (Q)

∂Q

−
N∑

k=1

{
C2

k

mkω2
k

d

dt
W
−D

α
t

W
+D

α
t [cos(ωkt)Θ(t) ∗Q(t)]

+ CkA
W
−D

α
t cos(ωkt) + CkB

W
−D

α
t sin(ωkt)

}
. (21)

Now, we continue by calculating the bath spectral
function associated with the Lagrangian (7), given by the
imaginary part of the retarded dynamical susceptibility
of the bath

J(ω) = Im [−iθ(t− t′) ⟨[F (t), F (t′)]⟩]
= Im [χB(ω)] , (22)

where F (t) is the force acting on the bath by the sys-
tem. The spectral function can be interpreted as de-
scribing how much of each frequency is available in the
bath to interact with the system. The force coming
from the interaction term in Fourier space is given by

F (ω) = (iω)α
∑N

k=1 Ckqk(ω). Eq. (19) shows that qk(ω)
is a function of Q(ω) only via the particular solution,
such that Eq. (16) can be directly used. The dynamical
susceptibility is thus given by

χB(ω) ≡
∂F (ω)

∂Q(ω)
= −

N∑
k=1

C2
k(iω)

2α

mk(ω2 − ω2
k)

. (23)

Writing (iω)2α = |ω|2αe2αiarg(iω) = |ω|2αeαiπsign(ω) =
|ω|2α [cos(απ) + i sign(ω) sin(απ)] yields

χB(ω) = −
N∑

k=1

|ω|2α C2
k

mk(ω2 − ω2
k)

× [cos(απ) + i sign(ω) sin(απ)] . (24)
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Interpreting 1/(ω2 − ω2
k) as its principal value yields

1

ω2 − ω2
k

=
πi

2ωk
[δ(ω + ωk)− δ(ω − ωk)] . (25)

Substituting Eq. (25) into Eq. (24) and taking the imag-
inary part gives

J(ω) = Im [χB(ω)]

=
π

2
|ω|2α cos(πα)

N∑
k=1

C2
k

mkωk
[δ(ω − ωk)− δ(ω + ωk)]

=
π

2
ω2α cos(πα)

N∑
k=1

C2
k

mkωk
δ(ω − ωk)

= ω2α cos(πα)JCL(ω), (26)

where in the second line we imposed that physical fre-
quencies are positive, ω > 0 and ωk > 0. In the last line,
we identified the usual Caldeira-Leggett spectral function
[14], which is given by

JCL(ω) =
π

2

N∑
k=1

C2
k

mkωk
δ(ω − ωk). (27)

Eq. (26) suggests that the Lagrangian (7) can de-
scribe anomalous diffusion without imposing a non-
Ohmic macroscopic spectral function, because the micro-
scopic spectral function has a non-Ohmic prefactor ω2α

that appears naturally. This is in agreement with in-
vestigations of spin-boson models [49–51], where a spin-
half particle is coupled to a bosonic harmonic oscillator
bath. Indeed, in Ref. [51], they show that the effect of
a sub-Ohmic bath can be fully characterized by a single
effective interaction term, which is quadratic in the inter-
action. This explains why we find the modified spectral
function with an extra 2α power in the frequency. In
contrast to just assuming a non-linear spectral function,
however, our method provides a microscopic justification
for the non-linearity from the coupling term. In the limit
of α → 0, we obtain the usual Caldeira Leggett spectral
function.

Returning back to Eq. (21), we identify the friction
force Ffr(t) and the fluctuating force f(t),

Ffr(t) =

N∑
k=1

C2
k

mkω2
k

d

dt
W
−D

α
t

W
+D

α
t [cos(ωkt)Θ(t) ∗Q(t)] ,

(28)

f(t) =

N∑
k=1

Ck
W
−D

α
t [A cos(ωkt) +B sin(ωkt)] . (29)

Note that in the limit of α→ 0, we get exactly the same
friction and fluctuating forces as in the usual Caldeira-
Leggett model [14].

Starting with the friction force, we can insert Eq. (27)

into Eq. (28) to obtain

Ffr(t) =
2

π

d

dt
W
−D

α
t

W
+D

α
t

∫ t

0

dτ

∫ ∞

0

dω

× JCL(ω)

ω
cos[ω(t− τ)]Q(τ). (30)

To verify whether the above expression actually is a fric-
tion term, we need to acquire more knowledge of JCL(ω).
The spectral function tells us how the bath reacts to a
given frequency, which means that JCL(0) = 0 if the
bath is in equilibrium. Therefore, we can perform a Tay-
lor approximation of JCL(ω) to get linear behavior for
small frequencies. This is effectively the same as taking
the Caldeira-Leggett spectral function to be Ohmic,

JCL(ω) =

{
ηω for ω < Ω,

0 for ω > Ω,
(31)

where Ω is a high-frequency cut-off (Ω → ∞) and η is
a macroscopic friction coefficient. Although the spectral
function could in principle have any shape, this is the
most common assumption in literature [14, 52]. With
this assumption, we see that the frequency only remains
in the argument of the cosine in Eq. (30), which is a delta
function representation. Hence, we find that

Ffr(t) = 2η
d

dt
W
−D

α
t

W
+D

α
t

[∫ t

0

dτδ(t− τ)Q(τ)

]
= ηW

−D
α
t

W
+D

α
t Q̇(t), (32)

where, like in the calculation for the Caldeira-Leggett
friction term, the delta function is evaluated at the
boundary, which gives an extra factor of 1/2. Notice
that Eq. (32) reduces to a normal friction term in the
limit of α → 0, which is indeed when our model should
reduce to the usual Caldeira-Leggett model.
Next, we turn our focus to the fluctuating force given

by Eq. (29). The first step is to determine the constants
A and B in Eq. (19). This is done by only coupling the
particle coordinate Q(t) to the bath after t = 0, such
that A and B can simply be found by inserting t = 0 in
Eq. (18). We thus find

A = qj(0), B = q̇j(0)/ωj . (33)

Inserting this into Eq. (28) yields

f(t) =

N∑
k=1

Ck
W
−D

α
t

[
qk(0) cos(ωkt) +

q̇k(0)

ωk
sin(ωkt)

]
.

(34)

Eq. (34) is the same as the fluctuating force in the usual

Caldeira-Leggett model up to W
−D

α
t . Since this operator

is linear we ignore it during the calculation such that we
can proceed analogously to the calculation done for the
Caldeira-Leggett model [21]. We then find

⟨f(t)⟩ = 0, (35)

⟨f(t)f(t′)⟩ = 2ηkBT
W
−D

α
t

W
−D

α
t′δ(t− t′). (36)
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We found that Eq. (36) actually describes colored noise.
Indeed, using the definition of the pseudo Weyl frac-
tional derivative acting on the Fourier representation of
the delta function, we obtain

W
−D

α
t

W
−D

α
t′δ(t− t′) =

sin(πα)Γ(2α+ 1)

π
(t− t′)

−2α−1
.

(37)

This representation of colored noise is only valid for (2α+
1) > 0.

Finally, substituting Eqs. (32) and (34) into Eq. (21)
yields

MQ̈(t) +
∂V (Q)

∂Q
+ ηW

−D
α
t

W
+D

α
t Q̇(t) = f(t), (38)

with ⟨f(t)f(t′)⟩ = 2ηkBT
W
−D

α
t

W
−D

α
t′δ(t − t′) and

⟨f(t)⟩ = 0. Note that just by changing the coupling to
the bath, we obtained a modified version of the Langevin
equation that we call the Weyl fractional Langevin equa-
tion. There was no need to assume a non-Ohmic bath
explicitly. This is the first main result of of this paper.

IV. SOLVING THE WEYL FRACTIONAL
LANGEVIN EQUATION FOR THE FREE CASE

When the particle is not subject to any external po-
tential, Eq. (38) reduces to

MQ̈(t) + ηW
−D

α
t

W
+D

α
t Q̇(t) = f(t). (39)

Taking the Fourier transform of Eq. (39), rearranging
and taking the inverse Fourier transform, leads to the
particular solution

Qp(t) = F−1

[
f(ω)

−Mω2 + ηiω|ω|2α
; t

]
=

1

2π
f(t) ∗ F−1

(
1

−Mω2 + ηiω|ω|2α
; t

)
. (40)

The homogeneous solution of Eq. (39) is obtained by solv-
ing ω

(
−Mω + ηi|ω|2α

)
= 0, thus yielding ω = 0 or ω =

i (η/M)
1/(1−2α)

. Hence, the homogeneous solution reads

Qh(t) = F−1

{
Aδ(ω) +Bδ

[
ω − i

( η

M

) 1
1−2α

]}
= C +Dexp

[
−t
( η

M

) 1
1−2α

]
= C +Dexp

(
− t

ts

)
, (41)

where C and D are constants that will be determined
later and ts = (M/η)1/(1−2α) is a characteristic time-
scale of our system. Combining Eqs. (40) and (41), we

obtain

Q(t) = Qp(t) +Qh(t)

=
1

2π
f(t) ∗ F−1

(
1

−Mω2 + ηiω|ω|2α
; t

)
+ C +Dexp

(
− t

ts

)
. (42)

To determine the constants C and D, we proceed in the
same way as for the fluctuating force. We consider that
the particle is only coupled to the bath for t > 0, such
that we can take f(0) = 0. This implies that C andD are
determined solely by the homogeneous part in Eq. (42),
which leads to {

C = Q(0) + Q̇(0)ts,

D = −Q̇(0)ts.
(43)

Since our system is translation invariant, we can chose
for simplicity Q(0) = 0. Eq. (42) then becomes

Q(t) =
f(t)

2π
∗ F−1

(
1

−Mω2 + ηiω|ω|2α
; t

)
+ Q̇(0)ts

[
1− exp

(
− t

ts

)]
. (44)

Next, we can use that ⟨f(t)Q̇(0)⟩ = ⟨f(t)⟩ = 0, ⟨Q̇(0)2⟩ =
kBT/M and ⟨f(t)f(t′)⟩ = 2ηkBT

W
−D

α
t

W
−D

α
t′δ(t− t′), to

calculate the MSD for the above solution. After partial
integration, we find

〈
Q(t)2

〉
=

ηkBT

2π2

∫ t

0

dτ

{
F−1

[
(iω)

α

−Mω2 + ηiω|ω|2α
; τ

]}2

+
kBT

M
t2s

[
1− exp

(
− t

ts

)]2
. (45)

This is the second main result of this paper. Next, we
discuss its physical implications.

V. ASYMPTOTIC EXPANSIONS OF THE
MEAN SQUARED DISPLACEMENT

To determine the asymptotic behavior of Eq. (45), we
need to perform the asymptotic expansions of the in-
verse Fourier integral inside that equation. To achieve
this aim, we first simplify the integral by using the prop-
erty of the inverse Fourier of a product. Then, we take
the Mellin transform of the remaining integral. Next, we
write the expression in a way that is compatible with the
definition of the Fox H-function. After that, we take the
inverse Mellin transform and identify the specific Fox H-
function that solves the problem. Finally, we use known
asymptotic expansions of the Fox H-function to obtain
the asymptotic behavior of Eq. (45). This procedure
was inspired by Ref. [53]. Since the reader might not
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● Poles of Γ(s)

● Poles of Γ
α-s

2 α-1


● Poles of Γ1 -
α-s

2 α-1


FIG. 1: The three different fundamental strips of a
Mellin transform involving the shown gamma functions
in the legend. (a) the first fundamental strip, (b) the
second and (c) the third. Notice that green poles are on
the right of the fundamental strip in (a) and (b) but on
the left and (c).

be familiar with the Mellin transforms and the Fox H-

function, we provide a short overview of their properties
in Apps. C and D, respectively. More specifically, we
start by analysing

I(t) ≡ F−1

[
(iω)

α

−Mω2 + ηiω|ω|2α
; t

]
, (46)

which can be simplified to

I(t) = iΘ(t) ∗ F−1

[
(iω)

α

−Mω + ηi|ω|2α
; t

]
≡ iΘ(t) ∗ I ′(t). (47)

Now, we focus solely on I ′(t). Because of convergence,
we will take α ̸= 0, 1/2. The Mellin transform of I ′(t) is
given by

F (s) = − 2πi

M |2α− 1|
ts−α
s ×

×
Γ(s)Γ

(
1− α−1

2α−1 −
s

2α−1

)
Γ
(

α−1
2α−1 + s

2α−1

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) .

(48)

Details of this derivation can be found in App. E. The
pole structure of Eq. (48) depends on α, which has con-
sequences when identifying a Fox H-function. This re-
sults in a region of convergence of the Mellin transform,
known as the fundamental strip, that also depends on
α. The behavior of the different gamma functions can be
observed in Fig. 1. Therefore, we separate the analysis in
3 distinct cases: α > 1, 1/2 < α < 1 and α < 1/2, which
we will refer to as the first, second and third fundamen-
tal strips, respectively. Here, we present the calculation
for the first fundamental strip. The calculations for the
second and third fundamental strips are similar and can
be found in App. E.
In the first fundamental strip, for α > 1, we rewrite

Eq. (48) in such a way that after taking the inverse Mellin
transform of that equation, we can identify the Fox H-
function given by

I ′(t) = − 2πi

M |2α− 1|
t−α
s H21

23

 t

ts

∣∣∣∣∣∣
(

α−1
2α−1 ,

1
2α−1

)
,
(

α2

2α−1 ,
1
2

)
(0, 1)

(
α−1
2α−1 ,

1
2α−1

)
,
(

α2

2α−1 ,
1
2

)  , (49)

where we again identified the characteristic timescale of
the system, ts. Using the asymptotic expansion of the
Fox H-function developed in App. D, we find

I ′(t) ∼

{
1 when t→ 0,

t−α when t→∞.
(50)

Substituting Eq. (50) into Eq. (47) gives

I(t) ∼

{
t when t→ 0,

t−α+1 when t→∞.
(51)

For t → 0, we Taylor expand the exponential inside
Eq. (45) up to linear order and discard it for t → ∞.
Substituting Eq. (51) into Eq. (45) together with the ap-
proximations of the exponential function, as explained
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before, results in

〈
Q(t)2

〉
∼

{
t2 when t→ 0,

t−2α+3 when t→∞,
(52)

for α > 1. Combining this with the results from the
second and third fundamental strips derived in App. E,
we find that the short-time behavior of the MSD is given
by

〈
Q(t)2

〉 t→0∼

{
t2 for α > −1−

√
5

4 , α /∈ P,
t2α+3 for α < −1−

√
5

4 , α /∈ P,
(53)

with P =
{
(−3 −

√
21)/4, (−1 −

√
3)/2,−1/2, 0, (1 +√

3)/2, (−3 +
√
21)/4, 1/2, 1

}
. On the other hand, the

long-time limit yields

〈
Q(t)2

〉 t→∞∼

{
t−2α+3 for α > 1, α /∈ P,
t2α+1 for α < 1, α /∈ P.

(54)

This is the third main result of this paper. Next, we
discuss its implications and compare it with results in
the literature.

VI. DISCUSSION AND CONCLUSION

We have introduced the Weyl fractional derivative
which, due to its properties with the boundary and
Fourier transforms, can be directly used inside the La-
grangian. We did this by imposing a fractional derivative
in the coupling term between the system and bath, which
we called a fractional Caldeira-Leggett model. Doing so
required the introduction of the Weyl fractional Euler-
Lagrange equation to derive the equations of motion,
which we solved for the harmonic oscillators using Fourier
transforms. We noted that the fractional bath spectral
function could be written in terms of a fractional power
prefactor and the original Caldeira-Leggett spectral func-
tion. Inserting the commonly used Ohmic assumption for
the Caldeira-Leggett spectral function, we found an ef-
fective spectral function which has a power law of order
2α+ 1. This led to a Weyl fractional Langevin equation
with colored noise. We provided the analytical solutions
for several quantities in terms of an inverse Fourier trans-
form, which we could interpret as a Fox H-function with
the help of Mellin transforms. Finally, the asymptotic
limits of these solutions were calculated for a wide range
of values. For short times, we found both ballistic and
non-ballistic regimes. This means that, in some cases,
friction can dominate the short-time dynamics. For long
times we found everything ranging from sub-, normal-,
and super-diffusion, as well as saturation, which could
hint to a relation with glassy physics. Overall, we found
a very broad range of anomalous diffusion.

We are now in a position to compare our results, given
by Eqs. (53) and (54), with the results of Ref. [20], in

which, to the best of our knowledge, a fractional Langevin
equation was investigated for the first time. First, we
note that we use the Weyl fractional derivative, while
Ref. [20] used the Caputo fractional derivative. It is
known that the Caputo fractional derivative and Weyl
fractional derivatives lead to different results in a lot of
cases. One such example is when the fractional derivative
of the exponential function is calculated (see App. A).
This makes it very interesting to compare the results.
The friction force in Eq. (39) is of order 2α + 1, which
corresponds to the derivative order from Ref. [20] (which
we will call αL). Therefore, to compare the results, we
must make the substitution α = (αL − 1)/2 in Eq. (54).
Second, we note that Ref. [20] only considered the two
cases, 0 < αL < 1 and 1 < αL < 2. For those restric-
tions, our result from Eq. (54) becomes〈

Q(t)2
〉 t→∞∼ tαL , (55)

which is exactly what was found in Ref. [20]. It is re-
markable that the same result is obtained for a Caputo
derivative instead of Weyl, and derived using completely
different techniques. Moreover, we generalized the result
of the Caputo derivative, which in Ref. [20] was obtained
for 0 < αL < 2 (corresponding to −1/2 < α < 1/2), to
the entire real line, except for α = 0, α = ±1/2, α = 1
(corresponding to αL = 0, 1, 2, 3, which are well-known

integer derivative cases) and α = (−3 ±
√
21)/4, α =

(−1±
√
3)/2, which are cases for which a logarithm would

appear because of integration. We can thus conclude
that our model, given by Eq. (7), describes sub-diffusion
for −1/2 < α < 0, and super-diffusion for 0 < α < 1,
while 1 < α < 3/2 yields sub-diffusion. Remarkably,
when α > 3/2 and when α < −1/2 we find a nega-
tive MSD exponent, which typically indicates saturation
in the MSD [21], possibly describing glassy states. The
short-time behavior of the MSD exhibits the usual bal-
listic (∼ t2) behavior when α > −(1 +

√
5)/4 ≈ −0.809.

However, when −3/2 < α < −(1 +
√
5)/4 we find sub-

ballistic behavior, meaning that the MSD goes as tp,
where 0 < p < 2, when t→ 0. In particular, we have that
0 < p < (5 −

√
5)/2 ≈ 1.382. Finally, for α < −3/2, we

find super-ballistic behavior of the MSD for t→ 0, which
in our words means that the short time behavior goes as
a negative exponent. The different behavior of the MSD
for short and long times in terms of the parameter of our
model, α, and the total order of the friction force, αL, is
summarized in Fig. 2.
When we calculated the spectral function, we were able

to identify the regular Caldeira-Leggett spectral function
inside it, but there is some delicate interpretation that
needs to be done here. The spectral function describes
the susceptibility of the bath to an external system in
the frequency domain. However, as it turns out, this
is not just a property of the bath, but also depends on
the way that you couple to it, which is almost always
linear. This is done because it is typically the lowest-
order contribution, and it gives excellent options to pro-
ceed mathematically, with e.g. completing the square.
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Ballistic
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Sub-
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Ballistic

Super-diffusion

Ballistic
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diffusion
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Satu-
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Sub-ballistic

Saturation

Super-ballistic

Saturation

3/2

4

1

3

0

1

-1/2

0

-0.809

-0.618

-3/2
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t

t

0

∞
α

αL

~t2~t2~t2~t2~t2

~t3-2α

= t4-αL
~t3-2α

= t4-αL
~t2α+1

= tαL
~t2α+1

= tαL
~t2α+1

= tαL
~t2α+1

= tαL
~t2α+1

= tαL

~t2α+3

= tαL+2
~t2α+3

= tαL+2

× ×××

× ×××
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×× × ×

FIG. 2: The behavior of the MSD for small and large times are shown in terms of the used parameter in this paper,
α, but also in terms of the total friction force order, αL, which are linked by αL = 2α+ 1. Some specific values of α,
and in turn αL, should be ignored in this plot, namely α ∈

{
(−3±

√
21)/4, (−1±

√
3)/2,±1/2, 0, 1

}
. The light red

crosses indicate the values excluded for simplicity while the red crosses indicate the values for which our calculation
did not apply.

Since baths are typically thought to be Ohmic (linear
in frequency) in this fashion, we believe that the most
likely assumption should be to keep this part identical,
and thus retain an Ohmic JCL(ω) ∼ ω. In turn, this
means that the fractional coupling spectral function goes
as J(ω) ∼ ω2α+1, which resulted in a Weyl fractional
Langevin equation. The results of the latter remarkably
match with Ref. [20], despite a different definition being
used there, and even expand the domain of available pa-
rameters. Previously, this equation has only been derived
using non-Ohmic baths, but this derivation shows that it
can also be achieved for Ohmic baths, as long as the cou-
pling term is changed accordingly. Hence, understanding
the coupling mechanism is as important as understand-
ing the bath properties in order to describe (anomalous)
quantum diffusion.

As we have demonstrated, the Weyl fractional
Langevin equation can describe anomalous diffusion for
many different exponents. In experiments of quantum
transport on fractals [13], theory of diffusion on confin-
ing geometries [54], and random walks [11, 55], several
connections have been made to link either the order of
the derivative or the diffusion exponent itself to a frac-
tal dimension. Fractals can exhibit a dimension that is
non-integer, such as the Sierpiński gasket which has a
dimension of df ≈ 1.58. Ref. [13] has shown that the
MSD exhibits a regime where the exponent is equal to
df . Although the mechanism for this is still not fully
understood, this could be explained by an effect of the
fractal dimension on the interaction between the under-
lying material and the quantum particle. If we assume
that α = (df − 1)/2, then the Weyl fractional Langevin
equation reproduces this result.

Moving forward, an important aspect that requires fur-
ther investigation is the realization of a fractional deriva-
tive coupling as an effective theory. One promising ap-
proach is to couple the bath to another bath and sub-

sequently integrate out the intermediate bath degrees of
freedom to obtain an effective bath with the desired frac-
tional derivative coupling, or perhaps by some interaction
within the bath that could add frequency dependence.
Another potential method that could result in Eq. (7) is
inspired by the projection scheme used in Refs. [44, 45]
and the fractal delta function used in Ref. [56]. In this
approach, one would project the initial theory down to a
fractal, which could result in a fractional coupling. Addi-
tionally, applying fractal statistics to the bath could lead
to the fractional derivative coupling. Furthermore, it is
also interesting to explore quantization for the Weyl frac-
tional derivative further than has already been done in
the literature [40, 57, 58]. To do this, one would first need
to develop the Hamiltonian formalism for these fractional
derivatives, which can be inspired by Ref. [59]. After
that, one chooses either for canonical quantization [40],
path integral quantization [57] or the less known Weyl-
Wigner quantization [58]. The last is in our opinion the
most natural one to use for the Weyl fractional deriva-
tive and therefore the most promising method. Finally,
we believe that it would be interesting to see if previ-
ous works [49, 60, 61], that assumes a non-Ohmic bath,
could be reproduced by the approach used in this paper,
as it would introduce a new way to justify the models
microscopically.
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Appendix A: Fractional derivative properties

As shortly mentioned in the introduction, there exist
many fractional derivatives. One that is often used in
the literature [20, 21] is the Caputo fractional derivative,
defined as

CDs
t f(t) =

1

Γ(n− s)

∫ t

0

dτ (t− τ)
n−s−1

f (n)(τ), (A1)

where n ∈ N such that n − 1 ≤ s < n. However, the
Caputo derivative is not compatible with Fourier trans-
forms, and for this reason we use the Weyl fractional
derivative, which is defined in Eq. (1) in this paper. To
illustrate the difference between the Caputo and Weyl
fractional derivative, we shortly discuss what happens
to the exponential function when applying both of these
fractional derivatives to it. One of the defining properties
of the exponential function is that it is an eigenfunction
of the derivative, meaning that the derivative of the ex-
ponential function is itself an exponential function up to
some scaling. When generalizing integer order deriva-
tives, this might be one of the properties that one wants
to keep. The Weyl fractional derivative is one of those
generalizations that satisfies this property, namely

W
+D

α
t e

at = F−1
{
(iω)αF

[
eat;ω

]
; t
}

= F−1 {(iω)αδ(ω + ia); t}
= aαeat. (A2)

This is in stark contrast with what happens when one ap-
plies the Caputo fractional derivative to the exponential
function. In that case, we obtain

CDs
t e

at =

∞∑
i=0

Γ(n+ 1)

Γ(n− s+ 1)
tn−α. (A3)

Thus, the exponential function is clearly not an eigen-
function of the Caputo fractional derivative. This is one
of the many differences between the Caputo and Weyl
fractional derivatives.

In what follows, we present mathematical proofs of cer-
tain properties of the Weyl fractional derivative. First,
we note that the (pseudo) Weyl fractional derivative is
a linear operator, which directly follows from the defini-
tion and linearity of integrals. Next, we show that these
operators are indeed real operators, meaning that[

W
±D

α
t f(t)

]∗
= W

±D
α
t f(t). (A4)

It indeed holds that[
W
±D

α
t f(t)

]∗
=

[∫ ∞

−∞
dωeiωt(±iω)α

∫ ∞

−∞

dτ

2π
e−iωτf(τ)

]∗
=

∫ ∞

−∞
dωe−iωt(∓iω)α

∫ ∞

−∞

dτ

2π
eiωτf(τ)

=

∫ ∞

−∞
dωeiωt(±iω)α

∫ ∞

−∞

dτ

2π
e−iωτf(τ)

= W
±D

α
t f(t). (A5)

In addition,

W

−D
α
t

W

+D
β
t f(t) = F−1

{
(−iω)αF

[
W
+D

α
t f(t);ω

]
; t
}

= F−1
{
(−iω)α(iω)βF [f(t);ω] ; t

}
= F−1

{
(iω)βF

[
W
−D

α
t f(t);ω

]
; t
}

=
W

+D
β
t

W

−D
α
t f(t), (A6)

which means that the pseudo and the Weyl fractional
derivative commute. They also satisfy the semi-group
property, meaning that their orders add up. This is
proved by

W

±D
β
t

W

±D
α
t f(t) = F−1

{
(±iω)α(±iω)βF [f(t);ω] ; t

}
= F−1

{
(±iω)α+βF [f(t);ω] ; t

}
=

W

±D
α+β
t f(t). (A7)

Next, we will proof Eq. (3). The Fourier transform of a
convolution, where one of the terms is a Weyl fractional
derivative of a function f , can be rewritten as

F
[
g(t) ∗W

±D
α
t f(t);ω

]
= F [g(t);ω]F

[
W
±D

α
t f(t);ω

]
= F [g(t);ω] (±iω)αF [f(t);ω]

= F
[
W
±D

α
t g(t);ω

]
F [f(t);ω]

= F
[
W
±D

α
t g(t) ∗ f(t);ω

]
. (A8)

Furthermore, we know that

F
{
W
±D

α
t [g(t) ∗ f(t)] ;ω

}
= F [g(t);ω] (±iω)αF [f(t);ω] .

(A9)

Hence, we conclude, by uniqueness of the Fourier trans-
form, that

g(t) ∗W
±D

α
t f(t) =

W
±D

α
t g(t) ∗ f(t) =

W
±D

α
t [g(t) ∗ f(t)] .

(A10)

Next, we will proof the partial integration formula,
namely Eq. (4). By definition∫ ∞

−∞
dtg(t)W+D

α
t f(t) =

∫ ∞

−∞
dtg(t)

∫ ∞

−∞
dωeiωt(iω)α×

× 1

2π

∫ ∞

−∞
dτe−iωτf(τ)

=

∫ ∞

−∞
dτf(τ)

∫ ∞

−∞
dωeiωτ (−iω)α×

× 1

2π

∫ ∞

−∞
dte−iωtg(t)

=

∫ ∞

−∞
dtf(t)W−D

α
t g(t), (A11)

where, in the second line, we made the substitution ω →
−ω and in the last line we renamed t ←→ τ . Finally,
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we prove that the equations of motion for Lagrangians of
the form given in Eq. (5), are given by Eq. (6). We start
by taking a variation of the action, which results in

δS[y] =

∫ ∞

−∞
dt

(
∂L
∂y

δy +

n∑
k=1

∂L
∂

W
+D

αk
t y

δ
W
+D

αk
t y

+

m∑
j=1

∂L

∂
W

−D
βj

t y
δ
W

−D
βj

t y

)
. (A12)

Swapping the order of the variation and the fractional
derivatives and applying the partial integration formula
yields

δS[y] =

∫ ∞

−∞
dt

(
∂L
∂y

+

n∑
k=1

W
−D

αk
t

∂L
∂

W
+D

αk
t y

+

m∑
j=1

W

+D
βj

t

∂L

∂
W

−D
βj

t y

)
δy. (A13)

Because Eq. (A13) holds for all δy, setting that equation
equal to zero implies

∂L
∂y

+

n∑
k=1

W
−D

αk
t

∂L
∂

W
+D

αk
t y

+

m∑
j=1

W

+D
βj

t

∂L

∂
W

−D
βj

t y
= 0.

(A14)

Appendix B: Eliminating the bath

In this appendix, we show how to pass from Eq. (16) to
Eq. (17), since it is highly non-trivial. Taking the inverse
Fourier transform of Eq. (16) yields

qpj (t) = −F
−1

[
Cj

mj(ω2 − ω2
j )
(iω)αQ(ω); t

]

= F−1

[
(iω)αCj

mjω2
j

(
1− ω2

ω2 − ω2
j

)
Q(ω); t

]

=
Cj

mjω2
j

{
W
+D

α
t Q(t)−F−1

[
(iω)α

ω2

ω2 − ω2
j

Q(ω); t

]}

=
Cj

mjω2
j

{
W
+D

α
t Q(t) +

d2

dt2
F−1

[
(iω)α

1

ω2 − ω2
j

Q(ω); t

]}

=
Cj

mjω2
j

{
W
+D

α
t Q(t) +

1

2π

d2

dt2
F−1

(
1

ω2 − ω2
j

; t

)
∗ F−1 [(iω)αQ(ω); t]

}
, (B1)

where in the second line we separated a term that will cancel the term coming from LCT and in the last line we
used the property of the inverse Fourier of a product in our conventions. We further simplify the above expression by
making use of

F−1

(
1

ω2 − ω2
j

; t

)
= − 1

2ωj

[
F−1

(
1

ω + ωj
; t

)
−F−1

(
1

ω − ωj
; t

)]
= −2π

ωj
sin(ωjt)Θ(t), (B2)

where in the last line we interpreted the inverse Fourier integrals in the positive iϵ-interpretation. By the positive
iϵ-interpretation, we mean that first we move the pole to the upper half of the complex plane, see Fig. 3. After, we
close the contour from above (below) for positive (negative) times. This allows one to use the residue theorem and
Jordan’s lemma to yield a finite value for these integrals. Finally, we put the added imaginary part to zero. This
results in F−1 [1/(ω − b); t] = Θ(t)2πieibt, where b is real. The positive iϵ-interpretation is justified, since in the limit
of α → 0, we would like to recover the usual Caldeira-Leggett model. The physical justification is that the particle
is only put in the bath after time t = 0. Therefore, the interaction term should not have an impact before t = 0. A
Heaviside function, which automatically comes out of the positive iϵ-interpretation, ensures that, only after t = 0,
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coupling between the bath and the particle occurs2. Substituting Eq. (B2) into Eq. (B1) results in

qpj (t) =
Cj

mjω2
j

[
W
+D

α
t Q(t)− 1

ωj

d2

dt2
sin(ωjt)Θ(t) ∗W

+D
α
t Q(t)

]
=

Cj

mjω2
j

{
W
+D

α
t Q(t)− d

dt

[
cos(ωjt)Θ(t) +

1

ωj
sin(ωjt)δ(t)

]
∗W

+D
α
t Q(t)

}

=
Cj

mjω2
j

[
W
+D

α
t Q(t)− d

dt
cos(ωjt)Θ(t) ∗W

+D
α
t Q(t)

]
=

Cj

mjω2
j

{
W
+D

α
t Q(t)− d

dt
W
+D

α
t [cos(ωjt)Θ(t) ∗Q(t)]

}
, (B3)

where in the first line we acted with a derivative on
sin(ωjt)Θ(t), in the second line we used the fact that
d
dtΘ(t) = δ(t) which results in a term of the form
δ(t) sin(ωjt) ∗ Q(t) ∼ sin(0) = 0, and in the last line we
applied Eq. A10 to switch the order of the convolution
and fractional derivative.

iϵ

t > 0

Re(z)

Im(z)

1

FIG. 3: The pole structure of the function 1/(z − iϵ) is
depicted in the above figure. After applying complex
analysis and taking ϵ→ 0, one can give a finite value to
a divergent integral over 1/z, which we call the positive
iϵ-interpretation. Note that the shown contour is only
chosen for t > 0.

2 The first term in Eq. (B1) still shows a coupling between the
bath and the particle, even for t < 0. However, this term will
exactly cancel the term coming from LCT , such that it has no
contribution in the equation of motion of the particle.

Appendix C: The Mellin transform

The Mellin transform is defined by

M [f(t); s] =

∫ ∞

0

dtf(t)ts−1. (C1)

In general, the integral exists only for complex values of
s = a+ib, such that a1 < a < a2, where a1 and a2 depend
on the function f(t) to transform. This introduces what
is called the strip of definition of the Mellin transform,
which will be denoted by S(a1, a2). The Mellin transform
of the exponential function is, e.g., given by

M
[
e−at; s

]
= a−sΓ(s), (C2)

which converges even for complex values of a [62] and
Re(s) > 0. Investigation of the Mellin transform of a
more difficult function, namely 1/ (1 + cta), is done by
starting with the following equation∫ ∞

0

du
u

s
a−1

1 + u
= Γ

( s
a

)
Γ
(
1− s

a

)
, (C3)

which can be derived from the beta function. Next, we
apply the substitution u = cta on the left-hand side,
which results in3∫ ∞

0

dt
ts−1

1 + cta
=

1

|a|
c−

s
aΓ
( s
a

)
Γ
(
1− s

a

)
. (C4)

Finally, we can identify the Mellin transform of the func-
tion f(t) on the left-hand side of equation (C4), to con-
clude that

M
[

1

1 + cta
; s

]
=

1

|a|
c−

s
aΓ
( s
a

)
Γ
(
1− s

a

)
, (C5)

where the region of convergence is given by 0 <
Re(s)/a < 1, see Ref. [62]. The inverse Mellin trans-
form of a function, F (s), defined on a strip S(a1, a2) (see

3 Note that the modulus is due to the reversal in the direction of
integration for a negative power.
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Fig. 4), is given by

f(t) =M−1 [F (s); t] =
1

2πi

∫ a+i∞

a−i∞
dsF (s)t−s, (C6)

where a1 < a < a2.

-5 5
Re(s)

-0.5

0.5

Im(s)

Fundamental strip

a1 a a2

FIG. 4: A depiction of the fundamental strip, needed
for the inverse Mellin transform. Here, we chose
a1 = 1.3, a = 2.7 and a2 = 3.9. This means that the
fundamental strip in the figure is S(1.3, 3.9).

Appendix D: The Fox H-function

In this appendix, we briefly introduce the Fox H-
function, see Refs. [63–65]. The usefulness of the Fox
H-function is that there are known asymptotic expan-
sions. Therefore, when we derive an equality between
Eq. (46) and a Fox H-function, we also find the asymp-
totic expansions of the original integral.

Let m,n, p, q ∈ N with 0 ≤ n ≤ p and 1 ≤
m ≤ q, Ai, Bj ∈ R+, ai, bj ∈ C for i = 1, ..., p
and j = 1, ..., q. The Fox H-function with parameters
m,n, p, q, ai, Ai, bj , Bj and argument z ̸= 0 is defined by

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1) , ..., (ap, Ap)
(b1, B1) , ..., (bq, Bq)

]
=

1

2πi

∫
L

dsΥ(s)z−s,

(D1)

where z−s is not necessarily the principal value complex
power function and Υ(s) is given by

Υ(s) =

∏m
i=1 Γ(bi + sBi)

∏n
l=1 Γ(1− al − sAl)∏q

i′=m+1 Γ(1− bi′ − sBi′)
∏p

l′=n+1 Γ(al′ + sAl′)
.

(D2)

Here, an empty product is always interpreted as unity
and L is a suitable contour, which separates the poles
of the two factors in the numerator of Υ(s). For more
information about the contour, L, see Ref. [63]. We will
also denote the Fox H-function as

Hm,n
p,q (z) ≡ Hm,n

p,q

[
z

∣∣∣∣ (a1, A1) , ..., (ap, Ap)
(b1, B1) , ..., (bq, Bq)

]
(D3)

when the specification of the parameters, al, Al, bi, Bi, is
not necessary. Let us now consider a simple example,
namely, how the exponential function can be expressed
in terms of the Fox H-function. We start with

H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
=

1

2πi

∫
L

dsΓ(s)z−s. (D4)

Now, we choose the contour L to be the vertical line,
Re(s) = γ, γ > 0, which lies to the right of the poles of
Γ(z). Thus, we have

H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
=

1

2πi

∫ γ+i∞

γ−i∞
dsΓ(s)z−s. (D5)

Next, we assume that we can close the contour such that
it picks up all the poles of the gamma function4. Ap-
plying the residue theorem to the poles of the gamma
function yields

H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
=

∞∑
ν=0

zν
(−1)ν

ν!
,

= e−z, (D6)

which shows that

e−z = H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
. (D7)

Some quantities that will be important to determine
the asymptotic behavior of Fox-H functions are defined
as

µH ≡
q∑

j=1

Bj −
p∑

j=1

Aj , (D8)

δH ≡
q∑

j=1

bj −
p∑

j=1

aj +
p− q

2
, (D9)

αH ≡
n∑

j=1

Aj −
p∑

j=n+1

Aj +

m∑
j=1

Bj −
q∑

j=m+1

Bj . (D10)

Now, we can use Section 1.7 from Ref. [63], which shows
the following properties.

(i) If αH > 0 and |arg(z)| < 1
2παH , then the Fox

H-function has the asymptotic expansions at zero
given by

Hm,n
p,q (z) = O(zc), |z| → 0 (D11)

for µH ≥ 0 and

Hm,n
p,q (z) = O

(
zc |ln(z)|N−1

)
, |z| → 0 (D12)

4 A more formal treatment of this example can be found in
Ref. [66]. In the same reference, more advanced examples are
presented.
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for µH < 0, with c = min1≤i≤m [Re(bi)/Bi] and
N is the order of the poles of Γ(bi + sBi), to which
some other poles of another gamma function Γ(bk+
Bks) with 1 ≤ i ≤ m and 1 ≤ k ≤ m could coincide.

(ii) If µH < 0, αH = 0, then the asymptotic expansion
near zero becomes

Hm,n
p,q (z) = O(zσ), |z| → 0, |arg(z)| ≤ ϵ̃, (D13)

where ϵ̃ is a constant with
0 < ϵ̃ < (π/2)min1≤i≤m;m+1≤k≤q (Ai, Bk) and σ =
min1≤i≤m

{
Re(bi)/Bi, [Re(δH) + 1/2]/µH

}
.

(iii) If αH > 0, then the Fox H-function has the asymp-
totic expansion at infinity given by

Hm,n
p,q (z) = O(zd), |z| → ∞ (D14)

for µH ≤ 0 and

Hm,n
p,q (z) = O(zd |ln(z)|M−1

), |z| → ∞ (D15)

for µH > 0, with d = min1≤l≤n [(Re(al)− 1)/Al]
and M is the order of the poles Γ (1− al − sAl) to
which some of the poles of Γ (1− ak − sAk) with
1 ≤ l ≤ n and 1 ≤ k ≤ n could coincide.

(iv) If µH > 0 and αH = 0, then

Hm,n
p,q (z) = O(zρ), |z| → ∞, |arg(z)| ≤ ϵ, (D16)

where ϵ is a constant with
0 < ϵ < (π/2)minn+1≤j≤p;1≤k≤m (Aj , Bk) and
ρ = max1≤l≤n

{
[Re(al) − 1]/Al, [Re(δH) +

1/2]/µH

}
.

Appendix E: Asymptotic expansion of the MSD

Taking the Mellin transform of I ′(t), see Eq. (47), we
get

F (s) ≡M [I ′(t); s]

=

∫ ∞

0

dtts−1

∫ ∞

−∞
dωeiωt (iω)α

iη|ω|2α −Mω

=
1

M
Γ(s)

∫ ∞

−∞
dω

(iω)
α
(−iω)−s

i η
M |ω|2α − ω

, (E1)

where in the last line we used Eq. C2. This already gives
a restriction on s, namely Re(s) > 0. Next, we apply
properties of the complex power function, together with
the fact that ω ∈ R, which results in

F (s) =
1

M
Γ(s)

∫ ∞

−∞
dω
|ω|α−searg(iω)iα−arg(−iω)is

i η
M |ω|2α − ω

=
1

M
Γ(s)

∫ ∞

−∞
dω
|ω|α−seiarg(iω)(α+s)

i η
M |ω|2α − ω

. (E2)

We can further simplify the above equation by splitting
the integral in its positive and negative parts. Doing the
substitution ω → −ω in the latter yields

F (s) =
1

M
Γ(s)

[
ei

π
2 (α+s)

∫ ∞

0

dω
ωα−s

i η
M ω2α − ω

+ e−iπ
2 (α+s)

∫ ∞

0

dω
ωα−s

i η
M ω2α + ω

]
=

1

M
Γ(s)

[
e−iπ

2 (α+s)

∫ ∞

0

dω
ωα−s−1

1 + i η
M ω2α−1

− ei
π
2 (α+s)

∫ ∞

0

dω
ωα−s−1

1− i η
M ω2α−1

]
=

1

M |2α− 1|

[
e−iπ

2 (α+s)
(
i
η

M

) s−α
2α−1 − ei

π
2 (α+s)

(
−i η

M

) s−α
2α−1

]
Γ(s)Γ

(
α− s

2α− 1

)
Γ

(
1− α− s

2α− 1

)
=

1

M |2α− 1|

( η

M

) s−α
2α−1

[
e
−iπ

2

(
s+ 2α2

2α−1

)
− e

iπ
2

(
s+ 2α2

2α−1

)]
Γ(s)Γ

(
α− s

2α− 1

)
Γ

(
1− α− s

2α− 1

)
= − 2i

M |2α− 1|
ts−α
s sin

[
π

2

(
s+

2α2

2α− 1

)]
Γ(s)Γ

(
α− s

2α− 1

)
Γ

(
1− α− s

2α− 1

)
, (E3)

where in the third line we applied Eq. (C5) to each term separately and in the last line we identified the characteristic
time-scale of the system given by ts = (M/η)1/(1−2α). However, using this example restricts the values of s even

further. The additional constraint reads 0 < Re
(

α−s
2α−1

)
< 1. Together with the previous constraint that we already

mentioned, Re(s) > 0, we obtain three different regions of convergence that are important to define the inverse Mellin
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transform, see Eq. (C6). Just like in the definition, we call them fundamental strips (FS) and they are given by

FS =


S(0, α) if α > 1,

S(1− α, α) if 1
2 < α < 1,

S(0, 1− α) if α < 1
2 .

(E4)

Finally, we use Euler’s reflection formula to get

F (s) = − 2πi

M |2α− 1|
ts−α
s

Γ(s)Γ
(

α−s
2α−1

)
Γ
(
1− α−s

2α−1

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) , (E5)

which completes the derivation of Eq. (48). In the case of the first and second fundamental strip, where 2α− 1 > 0,
we rewrite Eq. (E5) as

F (s) = − 2πi

M |2α− 1|
ts−α
s

Γ(s)Γ
(
1− α−1

2α−1 −
s

2α−1

)
Γ
(

α−1
2α−1 + s

2α−1

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) . (E6)

Finally, we take the inverse Mellin transform, defined by Eq. (C6), which results in

I ′(t) =M−1 [F (s); t] =
1

2πi

∫ a+i∞

a−i∞
dsF (s)t−s, (E7)

where F (s) is given by Eq. (E6). Comparing the above equation with Eqs. (D1) and (D2), we get

I ′(t) = − 2πi

M |2α− 1|
t−α
s H21

23

 t

ts

∣∣∣∣∣∣
(

α−1
2α−1 ,

1
2α−1

)
,
(

α2

2α−1 ,
1
2

)
(0, 1)

(
α−1
2α−1 ,

1
2α−1

)
,
(

α2

2α−1 ,
1
2

)  , (E8)

which is exactly Eq. (49). Note that Eq. (E8) holds for both the first and second fundamental strips. Next, we focus
on the third fundamental strip, and rewrite Eq. (E5) as

F (s) = − 2πi

M |2α− 1|
ts−α
s

Γ(s)Γ
(

α
2α−1 + s

1−2α

)
Γ
(
1− α

2α−1 −
s

1−2α

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) , (E9)

which, when taking the inverse Mellin transform and comparing with Eqs. (D1) and (D2) results in

I ′(t) = − 2πi

M |2α− 1|
t−α
s H21

23

 t

ts

∣∣∣∣∣∣
(

α
2α−1 ,

1
1−2α

)
,
(

α2

2α−1 ,
1
2

)
(0, 1)

(
α

2α−1 ,
1

1−2α

)
,
(

α2

2α−1 ,
1
2

)  . (E10)

What remains is to apply the known asymptotic expan-
sions for the Fox H-function to Eqs. (E8) and (E10).
First, we note that in both cases we have µH , αH > 0.
This means that the short and long time expansion are
given by Eqs. (D11) and (D15), respectively. The short-

time behavior is given by

I ′(t)
t→0∼



1 for α > 1,

tα−1 for 1
2 < α < 1,

t
2α2

2α−1 for 1
4 < α < 1

2 ,

t−α for 0 < α ≤ 1
4 ,

t
2α2

2α−1 for α < 0,

(E11)

and the long-time behavior is

I ′(t)
t→∞∼

{
t−α for α > 1,

tα−1 for α < 1, α ̸= 0.
(E12)
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From now on we will discard the case where α =
−1/2, (−1 ±

√
3)/2, (−3 ±

√
21)/4. This is because we

want to keep the calculation as simple as possible and
therefore do not want any logarithms while integrat-
ing the expansions. We thus have that α ∈ R \ P
with P =

{
(−3 −

√
21)/4, (−1 −

√
3)/2,−1/2, 0, (1 +√

3)/2, (−3 +
√
21)/4, 1/2, 1

}
. Substituting the expan-

sions given by Eqs. (E11) and (E12) into Eq. (47) adds
a one to the exponents of the asymptotic expansions due
to the integration5. Thus, we obtain

I(t)
t→0∼



t for α > 1,

tα for 1
2 < α < 1,

t
2α2

2α−1+1 for 1
4 < α < 1

2 ,

t−α+1 for 0 < α ≤ 1
4 ,

t
2α2

2α−1+1 for α < 0,

(E13)

where α /∈ P. Finally, we can substitute these asymptotic
expansions into Eq. (45) and Taylor expand the exponen-
tial factor up to first order, to get the small time behavior
of the MSD, which is given by

〈
Q(t)2

〉 t→0∼

{
t2 for α > −1−

√
5

4 , α /∈ P,
t2α+3 for α < −1−

√
5

4 , α /∈ P.
(E14)

We can do exactly the same for the long-time behavior,
except that now we discard the exponential in Eq. (45)
because it vanishes as t→∞. The long-time behavior of
the MSD is

〈
Q(t)2

〉 t→∞∼

{
t−2α+3 for α > 1, α /∈ P,
t2α+1 for α < 1, α /∈ P.

(E15)
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Kärtner, and K. J. Vahala, Quantum diffusion of micro-
cavity solitons, Nat. Phys. 17, 462 (2021).

[2] Y. Kagan, Quantum diffusion in solids, J. Low Temp.
Phys. 87, 525 (1992).

[3] P. Kleinert, Theory of hot-electron quantum diffusion in
semiconductors, Phys. Rep. 485, 1 (2010).

[4] V. G. Storchak and N. V. Prokof’ev, Quantum diffusion
of muons and muonium atoms in solids, Rev. Mod. Phys.
70, 929 (1998).

[5] I. Guarneri, Spectral properties of quantum diffusion on
discrete lattices, EPL 10, 95 (1989).

[6] M. Biagetti, G. Franciolini, A. Kehagias, and A. Riotto,
Primordial black holes from inflation and quantum diffu-
sion, J. Cosmol. Astropart. Phys. 2018 (07), 032.

[7] Y. Sagi, M. Brook, I. Almog, and N. Davidson, Observa-
tion of anomalous diffusion and fractional self-similarity
in one dimension, Phys. Rev. Lett. 108, 093002 (2012).
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[27] S. Ş. Bayın, Definition of the Riesz derivative and its
application to space fractional quantum mechanics, J.
Math. Phys. 57, 123501 (2016).

https://doi.org/10.1038/s41567-020-01152-5
https://doi.org/10.1007/BF00114916
https://doi.org/10.1007/BF00114916
https://doi.org/https://doi.org/10.1016/j.physrep.2009.10.003
https://doi.org/10.1088/1475-7516/2018/07/032
https://doi.org/10.1103/PhysRevLett.108.093002
https://doi.org/10.1016/j.bpj.2013.01.049
https://doi.org/10.1016/j.bpj.2013.01.049
https://doi.org/https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1017/CBO9781139035439
https://doi.org/10.1017/CBO9781139035439
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/10.1103/PhysRevE.64.051106
https://doi.org/https://doi.org/10.1155/2014/238459


16

[28] F. Ferrari, Weyl and Marchaud derivatives: A forgotten
history, Mathematics 6, 6 (2018).

[29] S. G. Samko, A. A. Kilbas, O. I. Marichev, et al.,
Fractional integrals and derivatives, Vol. 1 (Gordon and
breach Science publishers, Yverdon Yverdon-les-Bains,
Switzerland, 1993).

[30] K. S. Miller, The Weyl fractional calculus, in Fractional
Calculus and Its Applications: Proceedings of the In-
ternational Conference Held at the University of New
Haven, June 1974 (Springer, 2006) pp. 80–89.

[31] R. A. Mulder, M. A. Caracanhas, and C. M. Smith,
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