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HOMOLOGICAL STABILITY AND GRAHAM-LEHRER

CELLULAR ALGEBRAS

GUY BOYDE

Abstract. We show how to formulate some recent results from

homological stability of algebras in Graham and Lehrer’s language

of cellular algebras. The aim is to begin to connect the new results

from topology to well-established representation theoretic under-

standings of these objects.

1. Introduction

Recently, there has been interest among topologists in certain di-
agram algebras, such as the Temperley-Lieb [BH20; BH21], Brauer
[BHP21], Iwahori-Hecke [Hep22; Mos22], partition [BHP23; Boy23],
and Jones annular algebras [Boy23], as well as equivariant and braided
analogues of these [Gra23]. These algebras have a long history in rep-
resentation theory (see for example [GL96; KX98; KX99; Xi99; HR05;
RS14; BDM22]), and Patzt and Sitaraman [Pat20; Sit20] have shown
that topological language can be used to prove results about represen-
tations, so it would be good to show conversely that the representation
theoretic language can be used to answer topological questions. The
aim of this paper is to make some basic steps in this direction.
Our algebras A (over a commutative unital ground ring R) will

always be equipped with a trivial module 1. For the Brauer and
Temperley-Lieb algebras, for example, this is the one-dimensional R-
module where diagrams with the maximal number of left-to-right con-
nections act by 1, and other diagrams act by zero. By the homology of
A we will always mean the R-modules

TorAq (1,1)

for q ≥ 0. The primary goal on the topology side is the computation
of these modules.
In this paper we attempt to connect this goal to representation theory

by giving reasonably general results which describe the homology, with
hypotheses in a form familiar to representation theorists.
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2 GUY BOYDE

1.1. Classes of algebras. We will define two new classes of algebras,
which we call naive-cellular and diagram-like. Both are inspired by the
Graham and Lehrer’s cellular algebras [GL96], and the definitions are
closely related. For a given algebra, we have a diagram of implications:

cellular diagram-like

naive-cellular

Proposition 2.4

Proposition 2.6

We introduce these classes essentially because we wish to work in
the language of cellular algebras, but view the algebras themselves in
a less refined way. In particular, the Robinson-Schensted correspon-
dence seems to be unnecessary for our purposes and too sensitive to
the ground ring.
Naive-cellular algebras are essentially defined (Definition 2.2) by

stripping away the Robinson-Schensted correspondence from Graham
and Lehrer’s definition. What remains is just the idea (familiar from
Graham and Lehrer’s work) that for example a Brauer diagram may
be uniquely decomposed into ‘two link states and a permutation’ or ‘a
left piece, a right piece, and middle piece’:

=

For some of what we want to do, this definition is not rigid enough,
so we introduce diagram-like algebras (Definition 2.5). Roughly, this
is an algebra with a basis which can be decomposed into ‘a left piece,
a right piece, and middle piece’, as before, but now the product of
two basis elements must be a multiple of another basis element, and
the decomposition of the result must depend in a specific (fairly obvi-
ous) way on the decomposition of the factors. We will show that the
Brauer, Jones annular, and Temperley-Lieb algebras are diagram-like,
hence naive-cellular. The facts we need are essentially already written
down in Graham and Lehrer’s paper. Xi [Xi99] has shown that the par-
tition algebras are cellular, and they are almost certainly diagram-like.
However, Xi takes a different approach to Graham and Lehrer, and this
paper is already quite long, so we chose to omit the partition algebras,
rather than spend more pages proving the necessary basic facts.
One concrete sense in which cellular algebras are ‘too refined’ is as

follows: the results we wish to prove sometimes hold in situations where
the algebra in question is not cellular. For example, we will use our
methods to provide an alternate proof Theorem 1.5 of [Boy23], which
says that the homology of the Jones annular algebra Jn(δ) coincides
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with that of the cyclic group Cn whenever n is odd or δ is invertible, but
Graham and Lehrer’s proof that Jn(δ) is cellular assumes the splitting
of a certain polynomial in the ground ring [GL96, Theorem 6.15].
A word of caution: although cellular algebras are naive-cellular, we

will not in general be working with the naive-cellular structure obtained
from Graham and Lehrer’s cellular structure. This happens to be true
for the Temperley-Lieb algebras (because ‘the only planar permutation
is the identity’) but for the Brauer and Jones annular algebras we use a
different structure (albeit one which shows up in Graham and Lehrer’s
work - see Remark 3.2).

1.2. Overview of results. Our first main result, Theorem 1.1, is for
computing all of the homology of an algebra. We frame it for naive-
cellular algebras, and is intended to illustrate the connection to Gra-
ham and Lehrer’s language, thereby making clear that the hypotheses
are quite mild. As an example, we will use it to recover the ‘global’
results on the Jones annular algebras Jn(δ) from [Boy23], taking the
opportunity to give an entertaining alternative proof via ‘twisting’ that
would not have been possible for the Temperley-Lieb algebras. It could
equally well have been used to recover the known global results on the
Temperley-Lieb [BH20; Sro22], Brauer [BHP21], or Partition algebras
[BHP23], but we will restrict ourselves to a single example. In Section
1.3, we will state this theorem, and then in Section 1.5 we will give the
special case of that statement for cellular algebras. These statements
closely resemble some of Graham and Lehrer’s [GL96].
It is also desirable to make some connection to stability, which is to

say, results which hold under milder hypotheses, but only in a range of
homological degrees. From a topological point of view, these are the
more interesting results. We will prove a technical proposition (Propo-
sition 9.8) and show how to use it in tandem with the main theorem
of our previous paper [Boy23] to prove basic stability results. This is
where we introduce diagram-like algebras. Roughly speaking, we want
to think of Proposition 9.8 as the representation-theoretic ‘front-end’
of this pipeline, and the main theorem from [Boy23] as the topolog-
ical ‘back-end’. As an example, we will recover Sroka’s homological
stability and vanishing result for the Temperley-Lieb algebras. Again,
we could equally well have recovered the known stability results for
the Temperley-Lieb [BH20; Sro22], Jones annular [Boy23], or Partition
algebras [BHP23], but we will restrict ourselves to a single example.
The hope is that by running the machine consisting of Proposition

9.8 and the main theorem of [Boy23], one puts the topology in a black
box, so that users not familiar with e.g. spectral sequences can easily
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establish basic stability results. We stress that stability results ob-
tained in this way will not in general be optimal: Boyd-Hepworth’s
original proof of stability for the Temperley-Lieb algebras obtains a
better range, of slope 1, and requires much more intricate work. That
said, for the partition algebras, one can obtain the optimal stability
range due to Boyd-Hepworth-Patzt [BHP23] in this way [Boy23].

1.3. Global results. Readers familiar with cellular algebras may wish
to first skip to Section 1.5, where we give a version in that context. We
will say that a subset X of a poset Λ is downward closed if whenever
µ ≤ λ and λ ∈ X then µ ∈ X . Many of the symbols appearing here
will not be defined until later: for naive-cellular algebras see Definition
2.2, for the modules W (λ) see Definition 5.1, for the bilinear forms
〈 , 〉τ see Definition 5.5, and for the ideals IX see Definition 4.1.

Theorem 1.1. Let A be a naive-cellular algebra over a ring R, with
naive-cellular datum (Λ, G,M,C, ∗). Let Y ⊂ X be downward closed
subsets of Λ, with X \ Y finite. Suppose that for each λ ∈ X \ Y we
have the following. For every q ∈ M(λ), there exists v ∈ W (λ) such
that for some σ ∈ G(λ) we have

〈Cq, v〉τ =

{
1 if τ = σ, and

0 otherwise.

Then, for any right A-module M and left A-module N , where IX acts
trivially on both, we have

Tor
A�IY
∗ (M,N) ∼= Tor

A�IX
∗ (M,N).

We will prove this theorem in Section 6. In the case of cellular
algebras, our definitions coincide with Graham and Lehrer’s, and their
results suggest that the hypotheses of this theorem are not too strong
(see Section 1.5).

1.4. Results which hold only in a range. In our paper [Boy23] we
made the following definition and proved the following theorem. Write
w for the set {1, 2, . . . , w}.

Definition 1.2. Let A be an R-algebra, let I be a twosided ideal of
A, and let w ≥ h ≥ 1. An idempotent (left) cover of I of height h and
width w is a finite collection of left ideals J1, . . . Jw of A, which cover I
in the sense that J1 + · · ·+ Jw = I, and such that for each S ⊂ w with
|S| ≤ h, the intersection ⋂

i∈S

Ji
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is either zero or is a principal left ideal generated by an idempotent. If
I is free as an R-module, then an idempotent cover is said to be R-free
if there is a choice of R-basis for I such that each Ji is free on a subset
of this basis.

Theorem 1.3. Let A be an augmented R-algebra with trivial module
1. Let I be a twosided ideal of A which is free as an R-module and
acts trivially on 1. Suppose that there exists an R-free idempotent left
cover of I of height h. Then the natural map

TorAq (1,1) → Tor
A�I
q (1,1)

is an isomorphism for q ≤ h− 2, and a surjection for q = h− 1. If h
is equal to the width w of the cover, then this map is an isomorphism
for all q.

In that paper, we constructed covers for standard ideals of the Jones
annular and partition algebras, computed their height, and applied the
theorem to obtain stable homology isomorphisms. The most challeng-
ing step of this process is to compute the height (i.e. to show that cer-
tain ideals are principal and generated by idempotents), and the point
of the second half of this paper is that the (technical) Proposition 9.8
can be used to put this computation into cellular-type language. As a
proof of concept, we will use this method to recover Sroka’s results on
the homology of the Temperley-Lieb algebras.

1.5. The cellular case of Theorem 1.1. Consider Theorem 1.1. In
the cellular case, each G(λ) is trivial (Proposition 2.4), and the single
bilinear form 〈 , 〉1 corresponding to the identity element is their bi-
linear form φλ (c.f. Remarks 5.2 and 5.6). The resulting special case
of Theorem 1.1 is as follows:

Theorem 1.4. Let A be a cellular algebra over a ring R, with cell
datum (Λ,M,C, ∗). Let Y ⊂ X be downward closed subsets of Λ, with
X \ Y finite. Suppose that for each λ ∈ X \ Y we have the following.
For every q ∈ M(λ), there exists v ∈ W (λ) such that

φλ(Cq, v) = 1.

Then, for any right A-module M and left A-module N , where IX acts
trivially on both, we have

Tor
A�IY
∗ (M,N) ∼= Tor

A�IX
∗ (M,N).

In words, the condition of the theorem asks that for every member
Cq of the canonical basis of W (λ), the image of the function W (λ) → R
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given by v 7→ φλ(Cq, v) is all of R. If R is a field, then this is equivalent
to asking that the elements Cq do not lie in the radical of φλ.
Graham and Lehrer show [GL96, Theorem 7.3] that, over a field,

semisimplicity of A is equivalent to all of the bilinear forms φλ being
nondegenerate, which is a much stronger condition. Since their con-
dition is defined λ-wise, this is actually equivalent to semisimplicity

of the quotients A�IX
for each X . In this case, the above theorem is

trivial: if A�IX and A�IY
are both semisimple, then all exact sequences

of modules over these two algebras are split, so all of their finitely gen-
erated modules are projective, and both of the Tor groups appearing
in Theorem 1.4 vanish automatically.

1.6. The structure of this paper. In Section 2 we will define naive-
cellular and diagram-like algebras (Definitions 2.2 and 2.5), and prove
that diagram like algebras are naive-cellular (Proposition 2.6), and that
cellular algebras are naive-cellular (Proposition 2.4). We will then show
(Section 3) that the Brauer, Jones annular, and Temperley-Lieb alge-
bras are diagram-like. We repeat the caution that the naive-cellular
structures on these algebras that we will work with are not the same
as the ones obtained from Graham and Lehrer’s cellular structures.
In Section 4, we develop the basic theory. This follows Graham and

Lehrer’s development quite closely, with no important surprises. The
basic theory culminates with the definition of the link modules W (λ)
and the associated bilinear form, which again is a direct analogue of
Graham and Lehrer’s definition.
At this stage, we have the language to prove Theorem 1.1, and we do

so in Section 6. We specialise this theorem to subalgebras of the Brauer
algebras in Section 7, and in Section 8 we use the specialised theorem
to recover the odd strand and invertible parameter results for the Jones
annular algebra proven in [Boy23] from a different perspective.
To prove stability results, we need a bit more. In Section 9 we define

the notion of a link state ordering (Definition 9.1) and we use it to
prove our second main theoretical result, Proposition 9.8. In the final
section (Section 10), we use Proposition 9.8 together with the main
theorem of [Boy23] (Theorem 1.3) to give a different perspective on
Sroka’s proof of homological stability for Temperley-Lieb algebras.

1.7. Omissions and further directions. There are many things that
we do not discuss here, but which might be good directions for further
work.
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Patzt [Pat20] and Sitaraman [Sit20] have already studied representa-
tion stability (á la Church-Ellenberg-Farb [CEF15]) for the Temperley-
Lieb algebras, and Patzt also treats the Brauer and partition algebras.
We wonder if there is a useful way to take a cellular point of view on
these results.
There is another point of view on cellular algebras, due to König

and Xi [KX98; KX99]. Some of what we do here closely resembles
some of what they did, and it would be interesting to see if there is any
connection.

Acknowledgements. I would like to thank Richard Hepworth for his
encouragement, and for providing the original impetus for this project,
by telling me about Graham and Lehrer’s paper [GL96], and for sug-
gesting that it might provide the correct language for the results of my
paper [Boy22]. I would also like to acknowledge the substantial tech-
nical debt to Graham and Lehrer. This work was supported by the
European Research council (ERC) through Gijs Heuts’ grant “Chro-
matic homotopy theory of spaces”, grant no. 950048.

2. Classes of algebras

In this section, we define naive-cellular and diagram-like algebras,
recalling first the definition of cellular algebras.

2.1. Cellular algebras. Throughout, R will be a commutative ring
with unit. In [GL96], the authors define a class of algebras that they
call cellular :

Definition 2.1 ([GL96, Definition 1.1]). A cellular algebra over R is
an associative unital algebra A, together with cell datum (Λ,M,C, ∗),
where

C1. Λ is a poset, and for each λ ∈ Λ, M(λ) is a finite set (the set
of tableaux of type λ) such that

∐

λ∈Λ

M(λ)×M(λ) → A

(S, T ) 7→ Cλ
S,T

is an injective map with image an R-basis of A.
C2. The map ∗ is an R-linear anti-involution of A such that

(Cλ
S,T )

∗ = Cλ
T,S.
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C3. If λ ∈ Λ and S, T ∈ M(λ) then for any element a ∈ A we have

aCλ
S,T ≡

∑

S′∈M(λ)

ra(S
′, S)Cλ

S′,T (modA(< λ)),

where ra(S
′, S) ∈ R is independent of T and where A(< λ) is

the R-submodule of A generated by the elements {Cµ
A,B|A,B ∈

M(µ), µ < λ}.

2.2. Naive-cellular algebras. Our main class of algebra will be de-
fined as follows.

Definition 2.2. A naive-cellular algebra over R is an associative unital
algebra A, together with naive-cellular datum (Λ, G,M,C, ∗), where

W1. Λ is a poset. For each λ ∈ Λ, G(λ) is a group, and M(λ) is a
finite set (the set of link states of type λ) such that

∐

λ∈Λ

M(λ)×G(λ)×M(λ) → A

(p, σ, q) 7→ Cσ
p,q

is an injective map with image an R-basis of A.
W2. The map ∗ is an R-linear anti-involution of A such that

(Cσ
p,q)

∗ = Cσ−1

q,p .

W3. If σ ∈ G(λ) and p, q ∈ M(λ) then for any element a ∈ A we
have

aCσ
p,q ≡

∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′σ−1, p)Cσ′

p′,q(modI<λ),

where ra(p
′, σ′σ−1, p) ∈ R depends only on a, p′, p, and the

product σ′σ−1, and where I<λ is the R-submodule of A gener-
ated by the elements {Cτ

p′′,q′′|µ < λ, τ ∈ G(µ), p′′, q′′ ∈ M(µ)}.

Remark 2.3. Much as for cellular algebras, applying the involution ∗
to the equation W3, we get, for any a ∈ A, λ ∈ Λ, σ ∈ G(λ) and
p, q ∈ M(λ),

Cσ−1

q,p a∗ ≡
∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′σ−1, p)C

(σ′)−1

q,p′ (modI<λ).

Here we have used the fact that Axiom W2 implies that I∗<λ = I<λ.
For later use, we record the more useful form of this equation obtained
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by changing variables:

Cτ
p,qb ≡

∑

τ ′∈G(λ)
q′∈M(λ)

rb∗(q
′, (τ ′)−1τ, q)Cτ ′

p,q′(modI<λ).

It follows immediately from the definitions that naive-cellular alge-
bras do indeed generalise cellular algebras:

Proposition 2.4. The map

(Λ,M,C, ∗) 7→ (Λ, 1,M,C, ∗),

given by assigning the trivial group to each λ ∈ Λ, carries a cell datum
to a naive-cellular datum, and identifies cellular algebras with those
naive-cellular algebras where each group G(λ) is the trivial group. �

2.3. Diagram-like algebras.

Definition 2.5. A diagram-like algebra over R is defined identically
to a naive-cellular algebra, except that instead of Axiom W3 of that
definition, we require the following condition on the product of two
basis elements:
For any λ1, λ2 ∈ Λ, σ1 ∈ G(λ1), σ2 ∈ G(λ2), p1, q1 ∈ M(λ1) and

p2, q2 ∈ M(λ2), we have:

Cσ1

p1,q1
Cσ2

p2,q2
= κCσ

p,q,

where the objects (κ, p, q, σ) on the right are implicitly functions of
those on the left, such that (letting λ ∈ Λ be the element corresponding
to Cσ

p,q) we have:

(1) λ ≤ λ1, and λ ≤ λ2

(2) λ and κ depend only on q1 and p2
(3) σ depends only on σ1, q1, p2, and σ2

(4) p depends only on p1, σ1, q1, and p2.
(5) If λ = λ2, then q = q2, and σσ−1

2 depends only on σ1, q1, and
p2.

We will call Conditions (1) - (5) the dependency conditions.

Proposition 2.6. A diagram-like algebra is in particular a naive-
cellular algebra.

Proof. The two definitions differ only in the replacement of the third
axiom (W3) defining a naive-cellular algebra by the condition of Def-
inition 2.5. It therefore suffices to show that, together with the first
two axioms defining a naive-cellular algebra, this condition implies the
third axiom.
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The algebra multiplication is R-bilinear, so in particular it is R-linear
in the first variable, and a ∈ A is of course uniquely expressible in the
basis. It therefore suffices to verify this third axiom in the case that
a = Cσ1

p1,q1
is a basis element.

Thus, consider a product aCσ2

p2,q2
= Cσ1

p1,q1
Cσ2

p2,q2
.

The idea is to transform the problem into one about indicator func-
tions. Definition 2.5 says first of all that

aCσ2

p2,q2
= Cσ1

p1,q1
Cσ2

p2,q2
= κCσ

p,q.

By Dependency Condition (1) of the condition, the product lies in
I≤λ2

, so the above equation may be rewritten as

Cσ1

p1,q1
Cσ2

p2,q2
=

∑

λ′≤λ2

∑

σ′∈G(λ′)
p′∈M(λ′)

κ(q1, p2)χσ(σ
′)χp(p

′)Cσ′

p′,q2

where χσ and χp are the indicator functions of σ and p respectively.
By Dependency Condition (2), there exists a function κ : M(λ1) ×

M(λ2) → R defined by setting κ(q1, p2) =

{
κ λ = λ2

0 λ < λ2.

Modulo I(< λ2), we may therefore write:

aCσ2

p2,q2
= Cσ1

p1,q1
Cσ2

p2,q2
≡

∑

σ′∈G(λ2)
p′∈M(λ2)

κ(q1, p2)χσ(σ
′)χp(p

′)Cσ′

p′,q2
,

and what must be established is that this is of the correct form for
Axiom W3, namely that κ(q1, p2)χσ(σ

′)χp(p
′) ∈ R depends only on a,

σ′σ−1
2 , p2, and p′. It suffices to verify this factor-by factor.
First κ(q1, p2) depends only on q1 and p2 (Dependency Condition (2))

which is to say only on a and p2, as required. This implies the result
when κ(q1, p2) = 0, so it suffices to establish it in the case κ(q1, p2) 6= 0,
which means we may henceforth assume λ = λ2.
On the face of it, χσ(σ

′) depends on σ and σ′, but σ is implicitly
(Dependency Condition (3)) a function of a, p2, and σ2. We must show
that this reduces the dependency of χσ(σ

′) on σ and σ′ to a dependency
on a, p2, and σ′σ−1

2 . Using the fact that χσ is an indicator function on
a group, we get

χσ(σ
′) = χσ(σ

′σ−1
2 σ2) = χσσ−1

2

(σ′σ−1
2 ).

By Dependency Condition (5), σσ−1
2 depends only on a and p2, so,

χσ(σ
′) depends only on a, p2, and σ′σ−1

2 , as required.
Dependency Condition (4) then immediately gives that χp(p

′) de-
pends only on a, p2, and p′, as required. �
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2.4. Restriction of link states and groups. The following ideas
will be useful for verifying examples.

Definition 2.7. Let A be a diagram-like algebra, with naive-cellular
datum (Λ, G,M,C, ∗). A subalgebra A′ of A will be said to be obtained
by restriction if for each λ in Λ there exists a (perhaps empty) subset
M ′(λ) of M(λ) and a subgroup G′(λ) of G(λ) such that

∐

λ∈Λ

M ′(λ)×G′(λ)×M ′(λ) → A

(p, σ, q) 7→ Cσ
p,q

has image an R-basis of A′.

If G′(λ) = G(λ) for each λ, that is, if we have only restricted the set
of available link states, then we will say that A′ is obtained from A by
restriction of link states. Similarly, if M ′(λ) = M(λ) for each λ then
we will say that A′ is obtained from A by restriction of groups.

Proposition 2.8. Let A be a diagram-like algebra, with naive-cellular
datum (Λ, G,M,C, ∗). Let A′ ⊂ A be a subalgebra. If A′ is obtained
by restriction in the sense of Definition 2.7, then A′ is a diagram-like
algebra, with naive-cellular datum (Λ|M ′, G′,M ′, C, ∗), where

Λ|M ′= {λ ∈ Λ | M ′(λ) 6= ∅},

and we abuse notation to identify G′, C, and ∗ with appropriate restric-
tions.

Note that we are taking it as given that A′ is closed under the multi-
plication in A, but not necessarily that it is closed under the involution
∗.

Proof. Either Λ|M ′ is empty, in which case A′ = 0 and we are done, or it
is non-empty, and inherits a poset structure as a subset of Λ. We must
verify Axioms W1 and W2 of Definition 2.2, as well as the dependency
conditions of Definition 2.5.
Axiom W1 follows immediately from the definition of restriction

(Definition 2.7). Axiom W2 holds (in the sense that the involution
∗ preserves A′), since the basis Cσ

p,q of A
′ is closed under interchanging

p and q, and under inversion of σ (since each G′(λ) is a subgroup of
G(λ)). We have assumed that A′ is multiplicatively closed, and the
dependency conditions hold in A′ since they held already in A. This
completes the proof. �
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3. Examples

We will use the ‘priming/unpriming’ convention of [Boy23, Definition
3.1]. The sets that we will use as vertex labels will consist of a positive
integer, together with some number of superscript ‘prime’ markings.
In particular, we write n for the set of symbols {1, 2, . . . , n}, and n′ for
the set {1′, 2′, . . . , n′}.

Example 3.1. Let R be a commutative ring with unit, and let δ ∈ R.
We take the Brauer algebra Brn(δ) [Bra37] to be defined as having
an R-basis consisting of partitions of the set n ∪ n′ where each part
contains two elements. As is standard (see e.g. [GL96] or [BHP21]),
we will think of these basis elements as diagrams on the vertex set n∪n′,
where an edge is drawn between pairs of vertices which lie in the same
part of the partition. The multiplication is given by ‘concatenation
of diagrams and replacement of loops by factors of δ’ (c.f. [GL96;
BHP21]).

Remark 3.2. Graham and Lehrer show [GL96, Theorem 4.10] that the
the Brauer algebra Brn(δ) is cellular. It then follows from Proposition
2.4 that Brn(δ) is naive-cellular. We will work with a more elementary
naive-cellular structure. For the reader familiar with [GL96], our ba-
sis elements Cσ

p,q are what Graham and Lehrer would denote [p, q, σ]
(though they prefer to use different letters, as in [S, T, w]).

Definition 3.3. Formally, we assign a datum (Λ, G,M,C, ∗) (which is
independent of δ, and will be seen to make Brn(δ) into a diagram-like
algebra) as follows:

• Λ : Let Λ = {t ∈ n0 | n− t is even}.
• G : For each t ≥ 1 ∈ Λ, let G(t) = Σt be the symmetric group of
order t. We regard Σ0 as the trivial group, i.e. as self-bijections
of the empty set ∅.

• M : Let M(t) be the Brauer link states on n with t defects :
these are partitions of n into parts of cardinality either 1 or 2.
The parts of cardinality 1 (which may be identified with their
single element) will be called defects or defect vertices.

• C : Let t ∈ Λ. For t ≥ 0, σ ∈ Σt, and p, q ∈ M(t) the basis ele-
ment Cσ

p,q is the unique partition of n∪n′ = {1, . . . , n, 1′, . . . n′}
such that:

– The restriction of Cσ
p,q to n = {1, . . . , n} is p.

– The restriction of Cσ
p,q to n′ = {1′, . . . n′} is the partition

q′ which corresponds to q under the priming/unpriming
bijection {1, . . . , n} ∼= {1′, . . . , n′}.
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∗ If t = 0, then (G(t) is the trivial group, and) C1
p,q has

no parts containing both an element of n and n′.
∗ If t ≥ 1, then the partition Cσ

p,q will have t parts
containing both an element of of n and an element of
n′, as follows. The t defects in p are a well-ordered
subset of n, and this defines a bijection with t. The
vertex mapped to i ∈ t by this correspondence will
be called the i-th i-th defect. Similarly, we put the
parts of q′ having a defect in bijection with t′. The
partition Cσ

p,q consists of the cardinality 2 parts of p
and q′, together with the unions of the i′ − th defect
vertex of q′ with the σ(i)-th defect vertex of p for
each i.

• ∗ : The anti-involution ∗ is the unique bijection which inter-
changes n and n′, and preserves the order of each of these sub-
sets individually.

The following definition will be helpful.

Definition 3.4. Let q, p be Brauer link states with t1 and t2 defects
respectively. The pair graph Γq,p is the graph with vertices n, an edge
(thought of as ‘on the left’) connecting each pair of vertices which are
connected in q, and an edge (thought of as ‘on the right’) connecting
each pair of vertices which are connected in p. The pair set S〈q,p〉 is
the subset of the path components π0(Γ〈q,p〉) given by the intersection
of the maps t1 → Γ〈q,p〉 → π0(Γ〈q,p〉) and t1 → π0(Γ〈q,p〉) marking the
defects. In other words, S〈q,p〉 is the set of path components in the pair
graph which contain a defect vertex from q and a defect vertex from p.

Example 3.5. Taking n = 11, if

q = ∈ M(3), and p = ∈ M(1), then

Γ〈q,p〉 =

and S〈q,p〉 ⊂ π0(Γ〈q,p〉) consists of the single indicated (dashed) path
component:
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Proposition 3.6. With the datum of Definition 3.3, the Brauer algebra
Brn(δ) is diagram-like. In particular, given elements Cσ1

p1,q1
associated

to t1 ∈ Λ and Cσ2

p2,q2
associated to t2 ∈ Λ, we have

Cσ1

p1,q1
Cσ2

p2,q2
= δiCσ

p,q,

where

• i is the number of loops in the pair graph Γ〈q1,p2〉, and
• the element t ∈ Λ associated to the product Cσ

p,q is equal to t2 if
and only if the cardinality of the pair-set S〈q1,p2〉 is t2.

Proof. The ingredients we need are all proven by Graham and Lehrer
(in different notation). They show [GL96, Proposition 4.4] that the Cσ

p,q

do indeed form an R-module basis of Brn(δ) (which is the canonical
basis used to define Brn(δ)) verifying Condition (W1) of Definition 2.2.
The first bullet point above then follows immediately from the defini-

tion of the Brauer algebras. Likewise, Condition (W2) follows immedi-
ately from the definitions, and the dependency conditions of Definition
2.5 are verified by Graham and Lehrer in different notation [GL96,
Proposition 4.7]. Precisely, it follows from the definition of the Brauer
algebra that a product of two basis elements takes the form:

Cσ1

p1,q1
Cσ2

p2,q2
= κCσ

p,q,

and

• Conditions (1) and (2) follows from [GL96, Remark 4.6iii].
• Conditions (3) and (4) follow respectively from the third and
second displayed equations in [GL96, Proposition 4.7]. The sec-
ond bullet point above follows likewise from the third equation.

• Condition (5) follows from the same two displayed equations:
specifically, if λ = λ2, then (in Graham and Lehrer’s notation)
then the restriction functions become the identity, the second
displayed equation becomes

S ′′
2 = S ′

2,

(so q = q2), and the third displayed equation becomes

w′′ = w|TS2
(S2,S

′
1
)w(S2, S

′
1)w

′,
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so
w′′(w′)−1 = w|TS2

(S2,S
′
1
)w(S2, S

′
1),

so σσ−1
2 = w′′(w′)−1 depends only on q1 = S2, p2 = S ′

1, and
σ1 = w, as required.

This verifies the conditions of Definition 2.5, and completes the proof.
�

Recall from e.g. [Jon94; GL96] that the Jones annular algebra Jn(δ)
is the subalgebra of Brn(δ) spanned by diagrams ‘which can be embed-
ded on the cylinder without overlapping edges’. We will freely conflate
the vertex set n with the cyclic group Cn.
The following definition is due to Graham and Lehrer [GL96, Lemma

6.12].

Definition 3.7. Let p be a Brauer link state, that is to say, a parti-
tion of n into subsets of cardinality 1 or 2, and that the defect parts
are precisely those of cardinality 1. We will say that p is annular if
whenever i and j are connected by an edge in p, we have:

• No edge in p connects a vertex from the cyclic interval (i, j) to
one from (j, i). In terms of partitions, (i, j) and (j, i) are unions
of parts of p.

• Either all defects of p are contained in (i, j), or all defects of p
are contained in (j, i).

Example 3.8. As in [Boy23], by the cyclic interval [i, j] in the cyclic
group Cn we mean the set {i, i+ 1, i+ 2, . . . , j}. Open cyclic intervals
are defined similarly. For example, we then have that [i, j] and (j, i)
are disjoint, and that their union is Cn. In what follows, our presenta-
tion will differ from Graham and Lehrer’s because we speak in cyclic
intervals.
Graham and Lehrer [GL96, Proposition 6.14] show (with different

terminology) that annular partitions are precisely those ρ = Cσ
p,q (cor-

responding to t ∈ Λ) for which:

• σ ∈ Ct ≤ Σt is an element of the cyclic group of order t, and
• p and q are annular link states in the sense of Definition 3.7.

These results of Graham and Lehrer show that Jn(δ) is obtained from
Brn(δ), by restriction (Definition 2.7) of both link states and groups.
It follows by Proposition 2.8 that Jn(δ) is a diagram-like algebra. Its

naive-cellular datum coincides with that of Brn(δ) except that:

• For t ∈ Λ = {t ∈ n0 | n − t is even}, we set G(t) = Ct, the
cyclic group of order t (with the convention that C0 is the trivial
group).
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• For t ∈ Λ, M(t) is the set of annular link states with t defects.

Again, the following definition is due to Graham and Lehrer [GL96,
Lemma 6.2].

Definition 3.9. We will say that a Brauer link state p is planar if
whenever i < j and i, j are connected in p, we have:

• If k, ℓ lie in the same part of p and k lies in the closed interval
[i, j], then ℓ also lies in [i, j]. In terms of partitions, [i, j] is a
union of parts of p, and

• the closed interval [i, j] contains no defects.

Example 3.10. We take the Temperley-Lieb algebra TLn(δ) to be a
subalgebra of Brn(δ), defined identically to the Jones annular algebra,
except that diagrams are now required to have planar representatives
in the square [0, 1] × [0, 1] when i is embedded as ( i−1

n−1
, 0) and i′ is

embedded as ( i−1
n−1

, 1). These algebras were originally defined by Tem-
perley and Lieb [TL71], and their diagrammatic interpretation is due
to Kauffman [Kau90].
Graham and Lehrer show [GL96, Proposition 6.5ii] that the Temperley-

Lieb algebra has a basis consisting of those partitions ρ = Cσ
p,q for which

σ = id is the identity permutation, and p and q are planar link states.
As usual, this implies that TLn(δ) is diagram-like (obtained by re-

striction from Jn(δ)), with diagram-like data which coincides with that
of Brn(δ) except that:

• Each G(t) is trivial, and
• M(t) is the set of planar link states with t defects.

4. Basic properties

4.1. Twosided Ideals. Throughout this subsection, to clean up the
statements, A will be a fixed naive-cellular algebra, with naive-cellular
datum (Λ, G,M,C, ∗).

Definition 4.1. Let X ⊂ Λ. Define

IX := SpanR{C
σ
p,q | µ ∈ X, σ ∈ g(µ), p, q ∈ M(µ)}.

In particular, given λ ∈ Λ, write

I≤λ := SpanR{C
σ
p,q | µ ≤ λ, σ ∈ g(µ), p, q ∈ M(µ)},

and
I<λ := SpanR{C

σ
p,q | µ < λ, σ ∈ g(µ), p, q ∈ M(µ)}.

The following lemma is an immediate consequence of Axiom W2.

Lemma 4.2. Let X ⊂ Λ be any subset. Then (IX)
∗ = IX . �
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A free R-module modulo a subset of a basis is again a free R-module
on the complement of this subset. In our case, we have:

Lemma 4.3. Let X ⊂ Λ be any subset, and let πX : A → A�IX
denote

the projection. Then A�IX
is a free R-module with basis

{πX(C
σ
p,q) | µ 6∈ X, σ ∈ g(µ), p, q ∈ M(µ)}. �

Recall that a subset X of a poset Λ is said to be downward closed if
whenever µ ≤ λ and λ ∈ X then µ ∈ X .

Lemma 4.4. Let X ⊂ Λ be downward closed. Then IX is a twosided
ideal of A. In particular, for each λ ∈ Λ, both I≤λ and I<λ are twosided
ideals.

Proof. Since X ⊂ Λ is downward closed, we have that if µ ∈ X then
I<µ ⊂ IX . The result then follows from Axiom W3 and its dual, Re-
mark 2.3. �

If IX is a twosided ideal of A, then the quotient A�IX
is again an

R-algebra. In fact, it is again a naive-cellular algebra:

Proposition 4.5. Let X ⊂ Λ be a downward closed proper subset.

Then A�IX
is a naive-cellular algebra with naive-cellular datum

(Λ \X,G,M, πX ◦ C, ∗),

where πX is the projection A → A�IX
, and we abuse notation by still

writing G, M , and C for the restrictions of those assignments to Λ\X,
and by identifying ∗ with the induced map on the quotient.

Proof. Since X is downward closed, IX is a twosided ideal, so A�IX
is

again an associative R-algebra. Since X is proper, IX is a proper ideal

of A, so A�IX is unital. The set Λ\X is a poset by restricting the order.

The functions G and M still assign a group and a set respectively to

each λ ∈ Λ \X , and πX ◦C assigns an element of A�IX , to each triple

(p, σ, q) in
∐

λ∈Λ\X M(λ)×G(λ)×M(λ). The involution ∗ descends to
the quotient by Lemma 4.2. This establises that the datum is of the
correct form, and we must now check that it satisfies the axioms.
Axiom W1 follows from Lemma 4.3. Axiom W2 is automatic. Axiom

W3 is essentially the correspondence theorem: note that for λ ∈ Λ\X ,
the projection πX gives an isomorphism between the ideal πX(I<λ) of
A�IX

and the ideal I<λ + IX of A. This latter ideal certainly contains

I<λ, so Axiom W3 for A�IX is implied by Axiom W3 for A. �
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Remark 4.6. We will often abuse notation by writing Cσ
p,q for πX(C

σ
p,q),

which is to say we will identify the basis of A�IX with the appropriate

subset of the basis of A.

If λ is a minimal element of Λ \X , then I<λ ⊂ IX . This implies the
following refinement of Axiom W3, and its dual, Remark 2.3, in the

quotient A�IX .

Proposition 4.7. Let X be a downward closed subset of Λ, and con-

sider the quotient algebra A�IX
. For any minimal element λ of Λ \X,

any σ ∈ G(λ), any p, q ∈ M(λ), and any a ∈ A�IX
, we have the

equalities

aCσ
p,q =

∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′σ−1, p)Cσ′

p′,q

and
Cσ

p,qa =
∑

σ′∈G(λ)
q′∈M(λ)

ra∗(q
′, (σ′)−1σ, q)Cσ′

p,q′

in A�IX
. �

The following two lemmas are elementary.

Lemma 4.8. If X is a downward closed subset of a poset Λ, and λ is a
minimal element of Λ\X, then X ∪{λ} is again downward closed. �

Lemma 4.9. If Y ⊂ X are downward closed subsets of a poset Λ, and
λ is minimal in X \ Y , then Y ∪ {λ} is again downward closed. �

4.2. The product of two basis elements. For any minimal element
λ of Λ \ X , consider the product of two basis elements Cσ1

p1,q1
Cσ2

p2,q2

using the formulae of Proposition 4.7 (with σ1, σ2 ∈ G(λ), and any
p1, p2, q1, q2 ∈ M(λ)). The first formula shows that only basis elements
of the form Cσ′

p′,q2
may appear with nonzero coefficient, and the second

shows that only basis elements of the form Cσ′

p1,q′
may appear with

nonzero coefficient, so in fact only basis elements of the form Cσ′

p1,q2

may appear.
We therefore have:

Cσ1

p1,q1
Cσ2

p2,q2
=

∑

σ′∈G(λ)

rCσ1
p1,q1

(p1, σ
′σ−1

2 , p2)C
σ′

p1,q2

=
∑

σ′∈G(λ)

r
C

σ
−1

2
q2,p2

(q2, (σ
′)−1σ1, q1)C

σ′

p1,q2
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Equating coefficients, we have

rCσ1
p1,q1

(p1, σ
′σ−1

2 , p2) = r
C

σ
−1

2
q2,p2

(q2, (σ
′)−1σ1, q1)

for each σ′ ∈ G(λ). In this equality, p1 appears only on the left hand
side, q2 appears only on the left, and the two appear in the same
two entries. Thus, rCσ1

p1,q1
(p1, σ

′σ−1
2 , p2) is independent of p1, and the

function

s(σ1, q1, p2, τ) := rCσ1
p1,q1

(p1, τ, p2) ∈ R

is well defined. We have established the following corollary of Proposi-
tion 4.7.

Corollary 4.10. Let X be a downward closed subset of Λ, and consider

the quotient algebra A�IX
. For any minimal element λ of Λ \X, any

σ1, σ2 ∈ G(λ), and any p1, p2, q1, q2 ∈ M(λ), we have

Cσ1

p1,q1
Cσ2

p2,q2
=

∑

σ′∈G(λ)

s(σ1, q1, p2, σ
′σ−1

2 )Cσ′

p1,q2

=
∑

σ′∈G(λ)

s(σ−1
2 , p2, q1, (σ

′)−1σ1)C
σ′

p1,q2

in A�IX
. In particular, for each σ′ ∈ G(λ) we have

s(σ1, q1, p2, σ
′σ−1

2 ) = s(σ−1
2 , p2, q1, (σ

′)−1σ1). �

4.3. Onesided ideals. Again, in this subsection, A will be a fixed
naive-cellular algebra, with naive-cellular datum (Λ, G,M,C, ∗).

Definition 4.11. Let λ ∈ Λ, and let q ∈ M(λ). Define

Jq := SpanR{C
σ
p,q | σ ∈ g(λ), p ∈ M(λ)} ⊂ A.

If λ is minimal in Λ \X then I<λ ⊂ IX . Axiom W3 then implies the
following lemma.

Lemma 4.12. If X is a downward closed subset of Λ (so that by Propo-

sition 4.5, A�IX is again a naive-cellular algebra), and λ is minimal in

Λ \X, then πX(Jq) is a left ideal of A�IX
. �

Axiom W1 says that if q 6= q′ then the canonical bases of Jq and Jq′

are disjoint subsets of the canonical basis of A. This gives the following
structural property.

Lemma 4.13. Let λ, λ′ ∈ Λ, q ∈ M(λ), and q′ ∈ M(λ′). If q 6= q′ then
Jq ∩ Jq′ = 0 in A. �
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From this lemma, we obtain the next one, which will be very impor-
tant to us.

Lemma 4.14. If X is a downward closed subset of Λ, and λ is a
minimal element of Λ \ X, then the inclusions Jq → Iλ induce an
isomorphism

πX(IX∪{λ}) =
IX∪{λ}�IX

∼=
⊕

q∈M(λ)

πX(Jq)

of left A-modules.

Proof. By Lemma 4.12, the quotients πX(Jq) are indeed left A-modules.
By Lemma 4.8, X ∪ {λ} is again downwards closed, so by Lemma 4.4,
IX∪{λ}, hence the quotient, is a left (in fact twosided) A-module.
The twosided ideal IX of A is defined to be the R-span of the elements

Cµ
p,q, for µ ∈ X and p, q ∈ M(µ). It follows that IX∪{λ}�IX

is the R-

span of the elements Cλ
p,q for p, q ∈ M(λ), hence that every element of

IX∪{λ}�IX
is an R-linear combination of elements drawn from the Jq,

for q ∈ M(λ):
IX∪{λ}�IX

∼=
∑

q∈M(λ)

πX(Jq).

By Lemma 4.13, this sum is in fact direct. This completes the proof.
�

4.4. Equivariance. Let R be a commutative ring, and let A be a
naive-cellular algebra over R, with naive-cellular datum (Λ, G,M,C, ∗).
We here give a perhaps more intuitive reformulation of the equivari-

ance condition of Axiom W3, and its dual, Remark 2.3. Let λ ∈ Λ,
σ, τ ∈ G(λ) and p, q ∈ M(λ) then for any element a ∈ A, Axiom W3
gives

aCστ
p,q ≡

∑

σ′′∈G(λ)
p′∈M(λ)

ra(p
′, σ′′τ−1σ−1, p)Cσ′′

p′,q(modI<λ),

and reindexing the sum via σ′ = σ′′τ−1 gives

aCστ
p,q ≡

∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, (σ′τ)τ−1σ−1, p)Cσ′τ

p′,q(modI<λ)

=
∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′σ−1, p)Cσ′τ

p′,q(modI<λ).

We record this congruence, and the dual obtained from Remark 2.3,
as the next lemma.
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Lemma 4.15. For any λ ∈ Λ, σ, τ ∈ G(λ) and p, q ∈ M(λ), and any
a ∈ A, we have

aCστ
p,q ≡

∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′σ−1, p)Cσ′τ

p′,q(modI<λ),

and
Cτσ

p,qa ≡
∑

σ′∈G(λ)
q′∈M(λ)

ra∗(q
′, (σ′)−1σ, q)Cτσ′

p,q′(modI<λ). �

For a product of basis elements corresponding to the same λ, in terms
of the function s of Corollary 4.10, we get:

Corollary 4.16. Let X be a downward closed subset of Λ, and consider

the quotient algebra A�IX
. For any minimal element λ of Λ \X, any

σ1, σ2 ∈ G(λ), and any p1, p2, q1, q2 ∈ M(λ), we have

Cτ1σ1

p1,q1
Cσ2τ2

p2,q2
=

∑

σ′∈G(λ)

s(σ1, q1, p2, σ
′σ−1

2 )Cτ1σ
′τ2

p1,q2

=
∑

σ′∈G(λ)

s(σ−1
2 , p2, q1, (σ

′)−1σ1)C
τ1σ

′τ2
p1,q2

in A�IX
. �

One useful consequence of equivariance is the following, which will be
necessary to show that the link modules of the next section are indeed
A-modules (Proposition 5.4).

Lemma 4.17. For each λ ∈ Λ, and every a, b ∈ A, the function ra
satisfies the equation

∑

σ′∈G(λ)

rab(p
′, σ′, p) =

∑

σ′∈G(λ)

∑

σ′′∈G(λ)
p′′∈M(λ)

ra(p
′, σ′, p′′)rb(p

′′, σ′′, p)

Proof. This lemma is essentially a consequence of the following: since
A is associative, we have

(ab)C1
p,q = a(bC1

p,q).

Applying Axiom W3 to the left hand side, one sees that the coefficient
of Cρ

p′,q in (ab)C1
p,q is rab(p

′, ρ, p). Applying the same axiom (twice)
to the right hand side, one sees that the coefficient of the same ba-
sis element in a(bC1

p,q) is
∑

σ′′,p′′ ra(p
′, ρ(σ′′)−1, p′′)rb(p

′′, σ′′, p). These
coefficients must be equal, that is:

rab(p
′, ρ, p) =

∑

σ′′,p′′

ra(p
′, ρ(σ′′)−1, p′′)rb(p

′′, σ′′, p).
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The point is now that equivariance allows us to reindex in the desired
manner on the right hand side, at least after an additional sum over ρ.
Namely,

∑

ρ∈G(λ)

rab(p
′, ρ, p) =

∑

ρ∈G(λ)

∑

σ′′∈G(λ)
p′′∈M(λ)

ra(p
′, ρ(σ′′)−1, p′′)rb(p

′′, σ′′, p)

=
∑

(ρ,σ′′)∈G(λ)×G(λ)
p′′∈M(λ)

ra(p
′, ρ(σ′′)−1, p′′)rb(p

′′, σ′′, p)

=
∑

(τ,σ′′)∈G(λ)×G(λ)
p′′∈M(λ)

ra(p
′, τ, p′′)rb(p

′′, σ′′, p)

=
∑

τ∈G(λ)

∑

σ′′∈G(λ)
p′′∈M(λ)

ra(p
′, τ, p′′)rb(p

′′, σ′′, p),

where we used the fact that

(ρ, σ′′) 7→ (ρ(σ′′)−1, σ′′) = (τ, σ′′)

is a self-bijection of G(λ)×G(λ). This completes the proof. �

5. Link modules and bilinear forms

In this subsection, fix a commutative ring R, and a naive-cellular
algebra A over R, with naive-cellular datum (Λ, G,M,C, ∗).

Definition 5.1. For λ ∈ Λ, let the link module W (λ) be the free
R-module on the symbols Cp, together with a left action of A given by

aCp =
∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′, p)Cp′.

Remark 5.2. If A is a cellular algebra in the sense that each G(λ) is
trivial (Proposition 2.4), then this definition reduces to Graham and
Lehrer’s definition [GL96, Definition 2.1] of the cell module associated
to λ (which they also denote by W (λ)).

Remark 5.3. As in the cellular case, note that the definition ‘mimics
the multiplication from A’ in the sense that Axiom W3 gives that,
modulo A(< λ), we have

aCτ
p,q =

∑

σ′∈G(λ)
p′∈M(λ)

ra(p
′, σ′, p)Cσ′τ

p′,q,

where we use the form of equivariance from Lemma 4.15.
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We must verify that this multiplication rule actually makes W (λ)
into a left A-module.

Proposition 5.4. Each link module W (λ) is a left A-module.

Proof. We must check that the multiplication is bilinear, and that for
x ∈ W (λ) and a, b ∈ A, we have 1 · x = x, and a(bx) = (ab)x.
Since the algebra multiplication in A is bilinear, for fixed p′, σ, and

p, we have that ra(p
′, σ, p) is R-linear in a. The action of A on Cp is

therefore R-linear in the first variable. Linearity in the second variable
is automatic, because the action is defined as the R-linear extension of
an action on the basis Cp. This establishes bilinearity, and it therefore
suffices to check the equalities 1 · x = x and a(bx) = (ab)x in the case
that x = Cp is a basis element.
The first equality then follows immediately from Remark 5.3. For

the second equality, we must check that
∑

σ′∈G(λ)
p′∈M(λ)

rab(p
′, σ′, p) =

∑

σ′∈G(λ)
p′∈M(λ)

∑

σ′′∈G(λ)
p′′∈M(λ)

ra(p
′, σ′, p′′)rb(p

′′, σ′′, p),

but this is just the sum over p′ of the equality given in Lemma 4.17.
This completes the proof. �

5.1. Bilinear forms. Let Cσ1

p1,q1
and Cσ2

p2,q2
be basis elements associated

to the same λ ∈ Λ. Recall that by Corollary 4.10, there is a function
s, defined by

s(σ1, q1, p2, ρ) := rCσ1
p1,q1

(p1, ρ, p2) ∈ R,

such that, modulo I(< λ), we have

Cσ1

p1,q1
Cσ2

p2,q2
=

∑

σ′∈G(λ)

s(σ1, q1, p2, σ
′σ−1

2 )Cσ′

p1,q2

=
∑

σ′∈G(λ)

s(σ−1
2 , p2, q1, (σ

′)−1σ1)C
σ′

p1,q2

Definition 5.5. Let λ ∈ Λ, and let τ ∈ M(λ). The bilinear form (on
W (λ)) associated to τ is defined on the basis by setting

〈Cq, Cp〉τ := s(1, q, p, τ),

and then extended bilinearly over all of W (λ)×W (λ).

In other words, 〈Cq, Cp〉τ is the coefficient of Cτ
p1,q2

in C1
p1,q

C1
p,q2

for
any p1, q2 ∈ M(λ).
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Remark 5.6. If A is a cellular algebra in the sense that each G(λ) is
trivial (Proposition 2.4), then (Remark 5.2) the moduleW (λ) coincides
with Graham and Lehrer’s cell module, and this definition reduces
immediately to Graham and Lehrer’s definition [GL96, Definition 2.3]
of the bilinear form φλ.

We record some easy properties of this bilinear form.

Proposition 5.7. We have the following properties.
(1) 〈Cq, Cp〉τ is equal to the coefficient of Cσ1τσ2

p1,q2
in Cσ1

p1,q
Cσ2

p,q2
for

any σ1, σ2 ∈ G(λ) and any p1, q2 ∈ M(λ).
(2) We have the symmetry property

〈u, v〉τ = 〈v, u〉τ−1.

Proof. Since 〈Cq, Cp〉τ is the coefficient of Cτ
p1,q2

in C1
p1,q

C1
p,q2

for any
p1, q2 ∈ M(λ), the first property follows from Corollary 4.16.
By bilinearity, it suffices to verify the second property in the case

u = Cq, v = Cp, but in this case the result is immediate from Corollary
4.10. This completes the proof. �

If A is a diagram-like algebra, then the definition of the bilinear form
becomes more comprehensible. It is given by the next lemma, which
follows immediately from the definitions.

Lemma 5.8. Suppose that A is diagram-like, let λ ∈ Λ, p, q ∈ M(λ),
and τ ∈ G(λ). From Definition 2.5, we have, for any p1, q2 ∈ G(λ),

C1
p1,q

C1
p,q2

= κCσ
p1,q2

,

where the basis element on the right is associated to µ ∈ Λ depending
only on p and q, and κ and σ also depend only on p, q. Writing these
two variables as functions of p and q, we have

〈Cq, Cp〉τ =

{
κ(p, q)χσ(p,q)(τ) if λ = µ(p, q), and

0 otherwise.
�

Remark 5.9. If one just wishes to work with diagram algebras, it may
be better to define a single bilinear form on W (λ) as 〈Cq, Cp〉 = κ(q, p).
We do not do so because this definition doesn’t work well for naive-
cellular algebras, and we wanted to be able to compare our Theorem
1.1 with Graham and Lehrer’s results on cellular algebras (as in Section
1.5).

The reason for introducing these bilinear forms is the next proposi-
tion. Recall the definition of the ideals Jq (Definition 4.11), and recall
that by Lemma 4.12, if X is a downward closed subset of Λ, and λ is
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a minimal element of Λ \ X , then the image πX(Jq) in A�IX
is a left

ideal.

Proposition 5.10. Let X be a downward closed subset of Λ, and let
λ be a minimal element of Λ \ X. Fix q ∈ M(λ). Then there exists

an idempotent eq in A�IX
which generates πX(Jq) as a left ideal if and

only if the indicator function of the identity in G(λ) lies in the R-span
of the functions

G(λ) → R

τ 7→ 〈Cq, Cp〉τσ−1 ,

for p ∈ M(λ), σ ∈ G(λ).

We will use the following lemma in the proof.

Lemma 5.11. Let A be an R-algebra, let J be a left ideal of A, and
let e ∈ J . Then ye = y for every y ∈ J if and only if e is idempotent
and generates J as a left ideal.

Proof. If e is idempotent and generates J , then every element y ∈ J

has the form xe, so ye = xe2 = xe = y.
Conversely, if ye = y for every y ∈ J , then e generates J as a left

ideal, and, since we have in particular that e ∈ J , setting y = e gives
that e is idempotent. �

Proof of Proposition 5.10. In this proof, we will commit the abuse of

Remark 4.6, and write Cσ
p,q for the image of that basis vector in A�IX

.

By Lemma 5.11, an element eq of πX(Jq) is an idempotent generator
of πX(Jq) if and only if yeq = y for all y ∈ πX(Jq), if and only if
Cσ

p,qeq = Cσ
p,q for every basis element Cσ

p,q of πX(Jq).
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Expressing eq in this basis gives eq =
∑

p′∈M(λ)
σ′∈G(λ)

αp′,σ′Cσ′

p′,q, and we

write:

Cσ
p,qeq = Cσ

p,q

∑

p′,σ′

αp′,σ′Cσ′

p′,q

=
∑

p′,σ′

αp′,σ′Cσ
p,qC

σ′

p′,q

=
∑

p′,σ′

αp′,σ′

∑

τ ′∈G(λ)

〈Cq, Cp′〉τ ′C
στ ′σ′

p,q

=
∑

τ ′

∑

p′,σ′

αp′,σ′〈Cq, Cp′〉τ ′C
στ ′σ′

p,q

=
∑

τ

(
∑

p′,σ′

αp′,σ′〈Cq, Cp′〉τ(σ′)−1)Cστ
p,q,

where the third equality is by Proposition 5.7. This last expression is
equal to Cσ

p,q if and only if
∑

p′,σ′ αp′,σ′〈Cq, Cp′〉τ(σ′)−1 is equal to 1 if τ
is the identity, and zero otherwise.
That is, the coefficients αp′,σ′ express the indicator function of the

identity in G(λ) as a linear combination of the τ 7→ 〈Cq, Cp′〉τ(σ′)−1 if

and only if they define an element eq (as a linear combination of Cσ′

p′,q)
which satisfies Cσ

p,qeq = Cσ
p,q for each p and σ.

In particular, the indicator function can be expressed as such a linear
combination if and only if πX(Jq) is principal and generated by an
idempotent, as required. �

We will use Proposition 5.10 in conjunction with the following lemma.
Note that this actually verifies something stronger than the hypothesis
of that proposition, since it expresses the indicator function as a span
of only those functions corresponding to a particular element σ.

Lemma 5.12. Let λ ∈ Λ, and fix q ∈ M(λ). If there exists v ∈ W (λ)
such that for some σ ∈ G(λ) we have

〈Cq, v〉τ =

{
1 if τ = σ, and

0 otherwise,

then the indicator function of 1 ∈ G(λ) lies in the span of the functions

G(λ) → R

τ 7→ 〈Cq, Cp〉τσ,

for p ∈ M(λ).
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Proof. The hypothesis gives χσ(τ) = 〈Cq, v〉τ .
Expressing v in the basis Cp of W (λ) gives

v =
∑

p∈M(λ)

αpCp

for coefficients αp ∈ R. We may then write

χ1(τ) = χσ(τσ) = 〈Cq, v〉τσ =
∑

p∈M(λ)

αp〈Cq, Cp〉τσ,

which is of the desired form. �

6. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. To do so, we will apply
the following observation from [Boy22] inductively.

Theorem 6.1 ([Boy22, Theorem 3.3]). Let A be an R-algebra, let M
be a right A-module and let N be a left A-module. Let I be a twosided
ideal of A which acts trivially on M and N , and which as a left ideal
is a direct sum I ∼= J1 ⊕ · · · ⊕ Jk. Suppose that each Ji is generated as
a left ideal by finitely many commuting idempotents. Then

TorA∗ (M,N) ∼= Tor
A�I
∗ (M,N). �

Remark 6.2. The hypotheses of this theorem are reminiscent of the
definition of a block of an associative algebra (see for example [Ben98,
Section 1.8]) though of course we are asking for something much weaker
than a block decomposition.

Proof of Theorem 1.1. We are given

• a naive-cellular algebra A over a ring R (commutative with
unit), with naive-cellular datum (Λ, G,M,C, ∗), and

• two downward closed subsets Y ⊂ X of Λ, with X \ Y finite.

We assume that for each λ ∈ X \ Y we have the following.

• For every q ∈ M(λ), there exists v ∈ W (λ) such that

〈Cq, v〉τ =

{
1 if τ = 1, and

0 otherwise.

In this situation, we must show that for any right A-module M and
left A-module N , where IX acts trivially on both, we have

Tor
A�IY
∗ (M,N) ∼= Tor

A�IX
∗ (M,N).
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Since X \ Y is assumed to be finite and Y is arbitrary downward
closed, it suffices by induction and Lemma 4.9 to prove that for any
minimal element λ of X \ Y we have

Tor
A�IY
∗ (M,N) ∼= Tor

A�IY ∪{λ}
∗ (M,N).

By Lemma 4.14, we have an isomorphism of left A-modules

IY ∪{λ}�IY
∼=

⊕

q∈M(λ)

πX(Jq),

so by Theorem 6.1 applied to the ideal IY ∪{λ}�IY
of the algebra A�IY

,

it suffices to show that each left ideal πX(Jq) of A�IX is generated by a

single idempotent, but this follows from the assumption by Proposition
5.10 and Lemma 5.12. This completes the proof. �

7. Specialisation of Theorem 1.1 to subalgebras of the

Brauer algebras

Our first job is to give a concrete interpretation of the bilinear form
of Definition 5.5 in the examples. Since all of the examples we consider
here are obtained by restriction from the Brauer algebras, it suffices to
do so in that case.

Lemma 7.1. Consider the Brauer algebra Brn(δ) (Example 3.1). Let
t ∈ n, and let q, p ∈ M(t) be link states with t defects. Form the
pair-graph Γ〈q,p〉 (Definition 3.4).
Recall that the pair-set S〈q,p〉 ⊂ π0(Γ〈q,p〉) is the intersection of those

path components containing a defect vertex of both q and p. Note that
S〈q,p〉 ≤ t.
The bilinear forms 〈Cq, Cp〉τ in the Brauer algebra Brn(δ) are deter-

mined as follows:

• If |S〈q,p〉| < t, then 〈Cq, Cp〉τ = 0 for all τ .
• If |S〈q,p〉| = t, then 〈Cq, Cp〉τ = δiχσ(p,q)(τ), for some σ =
σ(p, q) ∈ G(t), where i is the number of components in π0(Γ〈q,p〉)
not hit by either copy of t.

Proof. Combine Lemma 5.8 and Proposition 3.6. �

Definition 7.2. Let A be a diagram-like subalgebra of Brn(δ) on a
subset of the diagrams, with naive-cellular datum (Λ,M,G,C, ∗) ob-
tained by restriction (Definition 2.7) from the datum for Brn(δ) given
in Definition 3.3. Let t be an integer with 0 ≤ t ≤ n− 1. We will say
that A satisfies Hypothesis (†) at t if:
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• For all q ∈ M(t) there exists p ∈ M(t) such that in the pair-
graph Γ〈q,p〉, we have that the cardinality of the pair-set |S〈q,p〉| is
t, and that δi is invertible, where i is the number of components
in π0(Γ〈q,p〉) not hit by either copy of t.

The following theorem specialises Theorem 1.1 to subalgebras of the
Brauer algebras, and is what we will use in our first application. Recall
that I≤t (Definition 4.1) is the twosided ideal of A spanned by diagrams
with at most t left-to-right connections.

Theorem 7.3. Let A be a diagram-like subalgebra of Brn(δ) on a subset
of the partitions, with naive-cellular datum (Λ,M,G,C, ∗) obtained by
restriction from the datum for Brn(δ) given in Definition 3.3. If there
exist integers a and b ≤ n − 1 such that A satisfies Hypothesis (†) for
all t with a < t ≤ b, then the quotient map induces an isomorphism

Tor
A�I≤a

∗ (1,1) ∼= Tor
A�I≤b

∗ (1,1).

Proof. We wish to apply Theorem 1.1 with X = {t ∈ Λ | t ≤ b} and
Y = {t ∈ Λ | t ≤ a}, noting that b ≤ n− 1, so IX acts trivially on 1.
To verify the hypothesis, we must fix q ∈ M(t) and find v ∈ W (t)

such that 〈Cq, v〉τ , regarded as a function of τ , is the indicator function
of some σ ∈ G(t) = Σt.
Letting p be as given in the hypotheses, since δi is invertible, we may

form the element

v =
1

δi
Cp ∈ W (t),

which will suffice by Lemma 7.1. �

8. Application: global results for Jones annular

algebras

8.1. Jones annular algebras. Recall that the Jones annular algebra
Jn(δ) is diagram-like, with naive-cellular datum obtained by restriction
from that of the Brauer algebra Brn(δ) (Example 3.8).
We have the following lemma (see e.g. [Boy23]):

Lemma 8.1. The quotient Jn(δ)�I≤n−1
of the topological partition al-

gebra by the twosided ideal I≤n−1 spanned by diagrams having at most
n − 1 left-to-right connections is the group algebra RCn of the cyclic
group of order n. �

Recall the definition of the pair graph Γ〈q,p〉 (Definition 3.4).
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Lemma 8.2. Let q ∈ M(t) be an annular link state in Jn(δ), for t ≥ 0.
Let p ∈ M(t) be the link state obtained by ‘rotating q by one place’, so
that (mod n) if i and j are connected in q then i + 1 and j + 1 are
connected in p.
Then, for each i ∈ n, either i has a defect in q, or i is connected to

i+ 1 in Γ〈q,p〉.

Proof. We will show that if i does not have a defect in q, then i is
connected to i+ 1 in Γ〈q,p〉.
If i does not have a defect in q, then i is connected to some j via an

edge in q. Since q is annular (Example 3.8), all of its defects lie in either
the cyclic interval (i, j) or in the cyclic interval (j, i). By definition, p
has an edge between i + 1 and j + 1, so i and i + 1 are connected in
Γ〈q,p〉 if and only if j and j + 1 are. We may therefore assume without
loss of generality (i.e. perhaps interchanging i and j) that q has no
defects in the cyclic interval (i, j).
By definition, p has no defects in the cyclic interval (i+ 1, j + 1), so

in particular j cannot be a defect in p. Since p is annular, (i+1, j+1)
is a union of parts of p, so j must lie in the same part of p as some
k ∈ (i + 1, j) (to which it is connected by an edge in p). A picture of
this portion of Γ〈q,p〉, with q on the left and p on the right, is as follows:

j + 1
j

k

i+ 1
i

...
...

Continuing, k is connected via an edge in q to some vertex ℓ, which
must be contained in (i, j) and not have a defect, so is connected in
turn to some vertex m via an edge in p, and so on. This sequence can
only terminate by reaching vertex i+ 1 via some edge in q.
The conclusion is that j and i+ 1, hence i and i+1, lie in the same

component of Γ〈q,p〉, as required. �

Corollary 8.3. Let q ∈ M(t) be an annular link state in Jn(δ), for
t ≥ 0. Let p ∈ M(t) be the link state obtained by ‘rotating q by one
place’, so that (mod n) if i and j are connected in q then i+1 and j+1
are connected in p.
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Then, if t > 0, Γ〈q,p〉 consists of t contractible path components, each
containing a single defect from q and a single defect from p. If t = 0
then Γ〈q,p〉 ≃ S1.

Proof. Let i ∈ n be any vertex. By Lemma 8.2, either i has a defect in
q, or i is connected to i+ 1 in Γ〈q,p〉. By symmetry, we also have that
either i has a defect in p or i is connected to i− 1 in Γ〈q,p〉. It follows
that if t ≥ 1 then the (preimages in n of) connected components of
Γ〈q,p〉 are the cyclic intervals [i, j], where j is a defect in q, i is a defect
in p and there are no defects in (i, j). Since all vertices have valence 2,
this establishes the result for t ≥ 1.
If p has no defects (t = 0) then all vertices lie in the same connected

component of Γ〈q,p〉. Again, since all vertices have valence 2, the result
follows. �

Theorem 8.4. Let R be a commutative ring, and let δ ∈ R. The Jones
annular algebra Jn(δ) satisfies Hypothesis (†) for 1 ≤ t ≤ n− 1, and if
δ is invertible, then additionally Hypothesis (†) holds for t = 0.

Proof. For the first claim, let q ∈ M(t) for t ≥ 1. Let p ∈ M(t) be
obtained by rotation, so that if i and j are connected in q then i + 1
and j + 1 are connected in p.
By Corollary 8.3, |S〈q,p〉| = t, and each path component of Γ〈q,p〉 is

contractible, so i = 0 by Lemma 7.1. This establishes Hypothesis (†).
When δ is invertible and t = 0, we still have |S〈q,p〉| = t, so Hypothesis

(†) again holds. This completes the proof. �

Corollary 8.5. Let R be a commutative ring, let δ ∈ R, and consider
the Jones annular algebra Jn(δ) (Example 3.8). Let I0 denote the ideal
spanned by partitions ρ such that no part of ρ contains both primed and
unprimed elements.
We have

Tor
Jn(δ)�I0
∗ (1,1) ∼= TorRCn

∗ (1,1),

and if ε is invertible or n is odd then additionally

TorJn(δ)∗ (1,1) ∼= Tor
Jn(δ)�I0
∗ (1,1).

Proof. All parts of the claim apart from the case n odd follow from
Theorem 7.3, Lemma 8.4, and Theorem 8.1.
If n is odd then a partition of n∪ n′ where all parts have cardinality

2 must have at least one part with both a primed and an unprimed
element. It follows that I0 = 0, so the result follows. �
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9. Link state orderings

Definition 9.1. Let A be a naive-cellular algebra over a ring R, with
naive-cellular datum (Λ, G,M,C, ∗). A link state ordering on the naive-
cellular datum is a partial order < on

MΛ :=
∐

λ∈Λ

M(λ),

such that:

(1) whenever p, q ∈ MΛ have a common lower bound, then they
have a greatest common lower bound,

(2) the map

π :
∐

λ∈Λ

M(λ) → Λ

sending p ∈ M(λ) to λ is strictly order-preserving, and
(3) the ordering is compatible with the multiplication in the sense

that for all a ∈ A, λ ∈ Λ, p, q ∈ M(λ) and σ ∈ G(λ) we have

aCσ
p,q ∈ SpanR{C

σ
p,q′ | µ ≤ λ, σ ∈ g(µ), p, q′ ∈ M(µ), q′ ≤ q}

By a link state ordered naive-cellular algebra, we mean a naive-cellular
algebra with a prescribed choice of naive-cellular datum and link state
ordering.

We write < for both the order on λ and that on Mλ.

9.1. Ideals. In this subsection we fix a naive-cellular algebra over R,
with naive-cellular datum (Λ, G,M,C, ∗), and a choice of link state
ordering.
Recall that for λ ∈ Λ, and q ∈ M(λ), we define an R-submodule Jq

of A via
Jq := SpanR{C

σ
p,q | σ ∈ g(λ), p ∈ M(λ)}.

Using the link state ordering, we now further define

J≤q := SpanR{C
σ
p,q′ | µ ≤ λ, σ ∈ g(µ), p, q′ ∈ M(µ), q′ ≤ q}.

Definition 9.1, Condition (3) is then equivalent to:

Lemma 9.2. J≤q is a left ideal of A. �

Write MΛ ∪ {−∞} for the set consisting of MΛ, together with a
single additional element −∞, with the convention that −∞ < p for
all p ∈ MΛ. By Definition 9.1, Condition (1), we then have:

Lemma 9.3. MΛ ∪ {−∞} has all meets. �

By using the convention that J≤(−∞) = J−∞ = 0, we can avoid a
case statement in the next lemma:
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Lemma 9.4. For p, q ∈ MΛ, we have J≤p ∩ J≤q = J≤(p∧q) �

9.2. Idempotent generation. In this section we fix a naive-cellular
algebra over R, with naive-cellular datum (Λ, G,M,C, ∗), and a choice
of link state ordering.

Definition 9.5. A link state ordering will be said to be (left) generating
if Jq generates J≤q as a left ideal.

Suppose that A is diagram-like. Then, the product of two basis
elements Cσ1

p1,q1
Cσ2

p2,q2
associated to the same λ ∈ Λ is a multiple of

some element of the basis of I≤λ, associated to some λ′, and knowledge
of q1 and p2 is sufficient to determine whether λ = λ′. Let Sq ⊂ M(λ)
be the set of those p for which the product Cσ1

p1,q
Cσ2

p,q2
lies in the span

of the basis elements associated to λ (this question being independent
of p1, σ1, q2, and σ2), and let

ρq : Jq → Jq

be the projection onto those basis elements Cσ′

p′,q for which p′ ∈ Sq.

Lemma 9.6. For any a ∈ Jq, right multiplication by ρq(a) preserves
Jq.

Proof. It suffices to verify the lemma in the case that a = Cσ
p,q is a basis

element. Then

ρq(C
σ
p,q) =

{
Cσ′

p,q p ∈ Sq, and

0 otherwise.

That is, we must establish that if p ∈ Sq then right multiplication by
Cσ

p,q preserves Jq. The definition of a diagram-like algebra gives that:

Cσ′

p′,qC
σ
p,q = κCσ′′

p′′,q′′,

and then, since p ∈ Sq, we have either that κ = 0, or that Cσ′′

p′′,q′′ is
associated to λ. In the first case we are done, and in the second case,
the definition of a diagram-like algebra (Definition 2.5, Condition 5)
gives that q′′ = q, as required. �

Lemma 9.7. Suppose that A is diagram-like. Let λ ∈ Λ, q ∈ M(λ). If
the right action of e ∈ Jq (equivalently, the right action of π(e) ∈ π(Jq))

fixes the submodule π(Jq) ⊂ A�I<λ
, then the right action of ρq(e) fixes

Jq.

Proof. The kernel of ρq acts trivially on π(Jq) (from the right), so the

right multiplication maps ·ρq(e) and ·e coincide as maps π(Jp) → A�I<λ

on the quotient. By Lemma 9.6, the action of ρq(e) preserves Jq, so we
get a commutative diagram
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Jq Jq

π(Jq) π(Jq).

π

·ρq(e)

π

·e

The vertical map π is an isomorphism of R-modules, so since the bot-
tom map is assumed to be the identity, the top map is too. This
completes the proof. �

Proposition 9.8. Suppose that A is diagram-like. Suppose that the
link state ordering is left generating (Definition 9.5). Let λ ∈ Λ, q ∈
M(λ). If there exists v ∈ W (λ) such that for some σ ∈ G(λ) we have

〈Cq, v〉τ =

{
1 if τ = σ, and

0 otherwise,

then there exists an idempotent eq in Jq which generates J≤q as a left
ideal.

Proof. By Proposition 4.12, the image π(Jq) in the quotient algebra
A�I<λ

is a left ideal. By Lemma 5.12 and Proposition 5.10, the condi-

tion of this theorem guarantees that π(Jq) is generated by some idem-
potent εq. This means that every element of π(Jq) is of the form xεq
for x ∈ A, so since εq is idempotent, right multiplication by εq fixes
π(Jq).
Let ε̃q ∈ Jq be the unique element with π(ε̃q) = εq, and let eq =

ρq(ε̃q). By Lemma 9.7, right multiplication by eq fixes Jq.
By the assumption that the link state ordering is left generating,

we have that any y ∈ J≤q is of the form ax for x ∈ Jq. Since right
multiplication by eq fixes Jq we have x = xeq, so y = ax = axeq. That
is, eq generates J≤q as a left ideal of A.
Lastly, eq is itself in Jq, so is fixed by right multiplication by eq:

eq · eq = eq. This establishes that eq is idempotent, and completes the
proof. �

10. Application: Homological stability for

Temperley-Lieb algebras

In this section, we will convert Sroka’s proof of homological stability
for the Temperley-Lieb algebras into our language. We wish to use
Proposition 9.8, so we must first write down a link state ordering and
show that it is left generating.
For the most part, the maneuvers we make with diagrams will be

familiar ones: see for example [Kau90; DGG97a; DGG97b; BH21].
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Definition 10.1. Let p and q be Temperley-Lieb link states. Say that
p ≤ q if each connection from q is present in p.
Equivalently, p ≤ q if each defect from p is present in q, and for each

connection in p, either this connection is present in q, or both of its
endpoints are defects in q.

Lemma 10.2. The ordering of Definition 10.1 defines a link state or-
dering on the Temperley-Lieb algebra TLn(δ).

Proof. We must verify the three conditions of Definition 9.1.
We begin with Condition (C1). Suppose that link states p and q

have a common lower bound. By Definition 10.1, this means that
each connection in p is either present in q or has endpoints which are
defects in q, and vice versa. In particular, a connection from p and a
connection from q are either equal or disjoint. We will frequently use
this fact without comment in the remainder of the proof.
We may therefore let b be the link state having all connections from

p, all connections from q, and defects elsewhere. We must show that
b is planar. By the definition of planarity (Definition 3.9) this means
we must argue that no two connections from b can cross, and that no
defect can lie inside a connection.
Suppose first that two connections cross. Since p and q are planar,

it must be that one of these connections is drawn from each. Write cp
for the connection from p and cq for the connection from q. Since cp
is not present in q, its endpoints must be defects in q. Since cp and
cq overlap, one of these defects must lie inside cq, but this contradicts
planarity of q. Thus, no two connections in b can cross.
Suppose then that a defect of b (at height i, say) lies inside a con-

nection. Without loss of generality, we may assume that i is a defect
in p lying inside a connection cq in q. Since i lies inside cq, by planarity
of q we must have that i lies at one end of a connection in q. But then,
by definition, i must also lie at one end of a connection in b, contra-
dicting the assumption that i was a defect in b. This establishes that
b is planar.
By construction, b is a common lower bound for p and q, and we must

show that it is the greatest such. If c is another common lower bound,
then c ≤ p implies that c has all connections from p, and c ≤ q implies
that c has all connections from q. This says precisely that c ≤ b, so b is
indeed the greatest common lower bound for p and q. This establishes
that our ordering satisfies Condition (C1).
Condition (C2) follows from the observation that if p < q then p

must have strictly fewer defects than q.
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Condition (C3) holds, since (the underlying diagram of) a product of
Temperley-Lieb diagrams Cσ′

p′,q′C
σ
p,q must retain all right-to-right con-

nections from Cσ
p,q.

This completes the proof. �

Lemma 10.3. The link state ordering of Definition 10.1 is left gener-
ating.

Proof. Fix a Temperley-Lieb link state q. It suffices to argue that any
diagram C1

p,q′ with right link state q′ strictly less than q is a left multiple
of a diagram with right link state precisely q. Note that by Condition
C2 of Definition 9.1, this implies that q has at least one defect (since
q′ must have strictly fewer).
We will take the liberty of giving the remainder of the proof by

pictures. These pictures will be drawn in the case n = 11 (i.e. in
TL11(δ)), where

q = , q′ = , C1
p,q′ =

First ‘stretch out’ the right hand side of C1
p,q′, so that the connections

which were already present in q stay as they were, and the connections
which are new to q′ come into the middle. In the example this looks as
follows.

C1
p,q′ =

We add vertices at the intersection of these connections with the
central vertical, push these new vertices to the bottom, and insert new
ones above:

C1
p,q′ “=”

The number of new vertices inserted is n− t, where t is the number
of defects in q (i.e. q ∈ M(t)). It is automatic that n − t must be
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even. As noted at the start of the proof, t ≥ 1, so there exists at least
one left-to-right connection in the right-hand half of this ‘diagram’.
The topmost such connection may now take a ‘detour’ through the
remaining vertices, since there are an even number of them:

C1
p,q′ “=”

This expresses C1
p,q as a product of the desired form, namely:

C1
p,q′ = ·

This completes the proof. �

10.1. The idempotent cover. In [Sro22], Sroka constructs a resolu-
tion of the trivial module 1 by projective left TLn(δ)-modules. In the
language of [Boy23], his complex can be described as an idempotent
cover (indeed, it was the motivation for introducing that terminology).
In this section, we will reconstruct Sroka’s complex in this language.
For 1 ≤ i ≤ n−1, let Ki be the left ideal of TLn(δ) spanned by those

diagrams which have a connection between the (right-hand) nodes i′

and (i+ 1)′, and let I≤n−1 be the twosided ideal spanned by diagrams
with fewer than n left-to-right connections.

Lemma 10.4. There is an equality of left ideals K1 + · · · + Kn−1 =
I≤n−1, where the sum is the internal sum in TLn(δ).

In the language of [Boy23], this says that the ideals Ki cover I≤n−1.

Proof. Any diagram with a right-to-right connection must have fewer
than n primed vertices with a left-to-right connection, hence in partic-
ular fewer than n left-to-right connections. This gives that Ki ⊂ I≤n−1

for each i, and it suffices to show that any diagram with fewer than n

left-to-right connections must be contained in some Ki.
Any diagram having fewer than n left-to-right connections must have

a primed vertex without a left-to-right connection. This vertex, j′0, say,
must be connected via a right-to-right connection to some other primed
vertex k′

0. If |j0 − k0| = 1 then we are done, otherwise, since the right
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link state is planar (Definition 3.9), the primed vertices lying between
j′0 and k′

0 can only be connected to one another. Choose a connection
among this set, say from j1 to k1, and repeat. Necessarily at each
stage we have |jℓ − kℓ| < |jℓ−1 − kℓ−1|, so we must eventually reach a
connection between adjacent vertices i and i+1, which shows that the
diagram lies in Ki, as required. �

Following Sroka, call a subset S of n innermost if there exists no i

for which i and i + 1 are both elements of S. The following lemma is
immediate.

Lemma 10.5. For S ⊂ n, the intersection
⋂

i∈S

Ki

is the R-span of those diagrams having a connection from i′ to (i +
1)′ for each i ∈ S. This intersection is non-zero if and only if S is
innermost. �

Lemma 10.6. For S ⊂ n innermost, let q = q(S) be the link state hav-
ing a connection from i to i+1 whenever i ∈ S, and defects elsewhere.
We have an equality of left ideals

⋂

i∈S

Ki = J≤q.

Proof. To say that a diagram C1
p′,q′ lies in

⋂
i∈S Ki is precisely to say

that q′ ≤ q in the link state ordering (Definition 10.1). Since the link
state ordering is left generating (Lemma 10.3), and since link state
orderings respect the multiplication (Definition 9.1, Condition (C3))
this is equivalent to saying that C1

p′,q′ lies in J≤q(S). �

Proposition 10.7. Let t ≥ 1, q ∈ M(t). There exists p ∈ M(t) such
that the pair-graph Γ〈q,p〉 has no loops and such that the cardinality of
the pair-set |S〈q,p〉| is t.

After the proof, we will give an example of the algorithm.

Proof. We will build p inductively, adding one edge or defect at a time.
Let L ⊂ n be the set of live vertices. Initially, set L equal to the

defects of q. Since we assume t ≥ 1, L is initially non-empty. We will
also describe each edge of q as either available or unavailable. Write A
for the set of available edges. Initially, all edges are available.
At each stage of the algorithm, select a live vertex i ∈ L ⊂ n. If

there exists at least one j ∈ n such that

• j lies at one end of an available edge e in q, and
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• no live vertex i′ ∈ L lies between i and j

then select from among such j one closest to i, and

• add a connection in p from i to j,
• replace i in the set of live vertices by the vertex k lying at the
other end of e from j, and

• remove e from the set of available edges.

If no such j exists, then add a defect at i, and remove i from the set L
of live vertices.
This algorithm terminates when the set of live vertices is empty.
We must argue that after performing this algorithm all vertices have

exactly one edge in p (so that p is a Brauer link state), that p is planar
(hence a Temperley-Lieb link state) and that the conditions of the
proposition statement are satisfied.
If at some stage at least one available edge remains, then it is auto-

matic that it satisfies the criterion of the algorithm for some live vertex
(i.e. one of possibly two closest to it). This means that the algorithm
terminates precisely when all edges have become unavailable and all
remaining live vertices have been converted to defects.
For a given edge e from i to j in q, we see that e starts the algorithm

available, and can receive a connection only while it is available. Upon
receiving a connection (at i, say), the other end j of e then becomes a
new live vertex, and must later either become a defect or be connected
to something else. The algorithm will produce no further connections
to i or j, since e is now unavailable. Since the algorithm terminates
when all edges have become unavailable and all remaining live vertices
have been converted to defects, it follows that in p, the ends i and j of
e either both have connections in p, or one has a connection and one
has a defect. In particular, this says precisely that the resulting p is a
Brauer link state.
By induction, the unavailable edges at each stage of the algorithm

are precisely those which are connected by a sequence of edges in Γ〈q,p〉

to some defect of q. Also by induction, an unavailable edge must be
connected at each stage by a sequence of edges to some live vertex,
hence ultimately to some defect of p. Since all edges are ultimately
unavailable, all edges of q, hence all vertices in n, are ultimately con-
nected to both a defect of q and a defect of p. This gives that the
cardinality of the pair set |S〈q,p〉| is t, and that the pair graph Γ〈q,p〉 has
no loops, as required.
It remains to argue that p is planar (Definition 3.9). We must argue

for each edge e from i to j (say i < j) in p:

• no defects of p lie in the interval (i, j), and
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• no vertex in (i, j) is connected to a vertex outside (i, j).

At each stage, the algorithm begins from a live vertex and selects a
nearest vertex lying at the end of an available edge in q, with no live
vertices in between. In particular, after adding this new edge e to p,
no available edges of q have an end lying inside e. It follows that (i, j)
consists only of vertices which already had an edge in p when e was
added. Such an edge e′ must necessarily go to another vertex in the
interval (i, j), because otherwise when e′ was added there was a closer
available vertex, contradicting the definition of the algorithm.
In total, this shows that the interval (i, j) consists entirely of ver-

tices connected by an edge to another vertex in (i, j). In particular,
no defects can be created in this interval because it contains no live
vertices, and no live vertices can be created in it, all of its edges be-
ing unavailable. This establishes that p is planar, and completes the
proof. �

Example 10.8. We will give an example of the algorithm, with n = 16,
and

q =

Live vertices will be drawn in red, and unavailable edges (and the
edges of p) will be drawn in grey. Note that the algorithm involves a
choice at each stage. One sequence of choices leads to the following
construction of p:

1: 2: 3: 4: 5: 6:
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7: 8: 9: 10:

so

p =

is as required.

Proposition 10.9. Let t ≥ 1, q ∈ M(t). The left ideal J≤q is principal
and generated by an idempotent.

Proof. By Lemma 10.3, the link state ordering on the Temperley-Lieb
algebras is left generating. Since the Temperley-Lieb algebras are
diagram-like (Example 3.10), we may attempt to use Proposition 9.8.
To do so, we must construct v ∈ W (t) such that

〈Cq, v〉τ =

{
1 if τ = σ, and

0 otherwise.

Since for all t, the group G(t) in the naive-cellular datum is the
trivial group (i.e. the naive-cellular structure on the Temperley-Lieb
algebras is just Graham and Lehrer’s cellular structure), this reduces
to constructing v such that 〈Cq, v〉 = 1, where the bilinear form is
Graham and Lehrer’s (c.f Remark 5.6).
By Lemma 7.1, it suffices to take v to be the element Cp provided

by Proposition 10.7. The result follows. �

We are now ready to give a variant proof of Sroka’s theorem [Sro22].
It is not a completely new proof because the topological ‘back-end’ (in
the guise of Theorem 1.7 of [Boy23]) is essentially unchanged, and the
‘front-end’ has just been dressed up in the language of cellular algebras,
to permit a ‘bilinear form’ verification of the fact that the

⋂
i∈S Ki are

principal ideals generated by idempotents.
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Sroka’s result is as follows:

Theorem 10.10. For all commutative rings R, all δ ∈ R, and n ≥ 0,
we have

TorTLn(δ)
q (1,1) ∼=

{
R q = 0 and

0 0 < q ≤ n
2
− 2.

Furthermore, if n is odd, then actually TorTLn(δ)
q (1,1) ∼= 0 for all q > 0.

Proof. By Lemma 10.5, Lemma 10.6, and Proposition 10.9, the ideals
Ki form a principal idempotent cover [Boy23, Definition 1.6] of I≤n−1,
and this cover has height n

2
− 1 if n is even, and height n − 1 if n is

odd.
Then apply Theorem 1.3, together with the observations that TLn(δ)�I≤n−1

∼=

R, and

TorRq (1,1)
∼=

{
0 q > 0 and

R q = 0

to complete the proof. �
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