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A B S T R A C T   

We used black carbon data from a mobile monitoring campaign in Oakland, USA measuring street segments up to 40 times and compared a data-only, LUR model and 
mixed-model approach with a long-term average, represented by the average concentration based on 40 drive days on that street segment. The mixed model 
outperformed the data-only and LUR model estimates, with 80% explained variance after 5 drive days and 90% after 14 drive days. The data-only approach needed 8 
and 15 to achieve an explained variance of 80% and 90%, respectively, The LUR model never achieved an explained variance higher than 70%. The mixed model is a 
scalable approach, as it can be used before all street segments in a domain are measured by developing a LUR model and adds information with increasing repeats per 
street segment.   

1. Introduction 

The goal of most air pollution exposure studies for epidemiological 
research is to create spatial maps with exposure predictions at the finest 
spatial scale possible. Over the past decade, mobile monitoring has 
shown that it can offer this high granularity. A disadvantage of using 
mobile monitoring data directly for exposure assessment, however, is 
that it needs a substantial number of repeated air pollution measure-
ments per segment to obtain stable estimates, which is often not a 
realistic approach. Frequent repeats are necessary because of the 
inherent uncertainty of mobile measurements due to the short-term 
nature of the measurements (often seconds per street segment). That is 
why most studies to date have used empirical modelling to stabilize 
exposure estimates. Several studies already showed that robust LUR 
models can be developed with only limited amount of data, both in 
coverage of the spatial domain (not all streets need to be driven) and the 
number of repeats per street segment (Kerckhoffs et al., 2017; Messier 
et al., 2018a; Hatzopoulou et al., 2017). However, by using empirical 
models that transfer knowledge between similar settings, hyperlocal 
information (e.g., unknown sources) may be lost. 

In previous papers, we demonstrated that a mixed-model approach 
can achieve robust spatially-explicit concentration estimates via a land 
use regression (LUR) model (fixed-effects), while allowing street seg-
ments to deviate from the LUR prediction based on between-segment 

variation of the measurements as a random effect (Kerckhoffs et al., 
2022a, 2022b). All street segments were used to develop a LUR model, 
and all individual measurements can alter the prediction of the 
fixed-effect part of a particular street segment based on the measure-
ments of that street segment (random effect). This could be the case for 
streets where the LUR model is unable to predict accurately, due to local 
sources, particular traffic situations or missing street configuration 
variables. When we compared the model with external NO2 measure-
ments in Amsterdam, the mixed model prediction based on mobile 
measurements correlated 0.85 with the external long-term measure-
ments, compared to a correlation of 0.74 and 0.75 for the data-only 
approach and LUR model, respectively. 

However, in our previous work, we only had limited street segments 
with many drive days available to study the scalability of the mixed 
model approach and the trade-off between the fixed and random effects 
components with increasing number of drive days. In another study by 
Messier et al. (2018b), described in more detail below, 20.000 street 
segments were measured over 40 times. It was found that only 4 to 8 
drive days per street segment are needed for a data-only model to 
outperform a LUR model, both tested on the average concentrations of 
those 40 repeats. Here, we use the same dataset to study the influence of 
drive-days on the performance of the mixed model approach and 
compare these to the performance of a LUR or data-only model. To do 
this, we select subsets of drive days per street segment and compare the 
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average of the mobile measurements (measurement data only), the LUR 
prediction (fixed model only) and the mixed-model prediction (fixed 
plus random effects model) with the average concentration based on 40 
drive days on that street segment. 

2. Methods 

2.1. Data 

We used black carbon (BC) data from the Air View mobile moni-
toring campaign in Oakland (Messier et al., 2018a; Apte et al., 2017), in 
which two Google Street View cars collected air pollution measurements 
for over 1 year in Oakland, CA. About 21.000 unique street segments 
were sampled with lab-grade instruments (Teledyne API Model AE-633), 
with 1 s resolution. All 1-Hz measurements were assigned to the nearest 
30-m street segment and averaged per drive day. Different from the data 
processing in Apte et al. (2017), but similar to the data processing in our 
previous work, we computed a mean value per street segment (Mean of 
Means) because this better reflects actual average concentrations, 
opposed to the median value (Median of Means) used in Apte et al. 
(2017) Mean concentrations were on average 1.3 times higher as median 
values and correlated well to the median (r = 0.88). More details of the 
full measurement campaign can be found in Apte et al. (2017). 

Regarding the geographic variables used in the LUR development, 
we used the same set that was used in Messier et al. (2018a). These 
variables included street classifications, binary local truck routes, local 
zoning classifications, normalized difference vegetative index, percent 
landcover, road length, population density in buffers of 50–2500 m, and 
continuous point source variables such as National Priority Listing sites, 
airports, and ports. 

2.2. Model development 

We compare three different methods to predict long-term average 
concentrations of BC on every street segment, (i) Data-Only, (ii) LUR 
model and (iii) Mixed models, with different number of driving days. 
Like the study by Messier et al. (2018a), we assume that the average of 
40 repeated short-term measurements on different driving days during a 
year represents a robust long-term average concentration of a street 
segment. Then, for each approach, we select a subsample of driving days 
(bootstrapped 100 times per number of drive days) and compute the 
average value for the data-only approach and develop a model for the 
LUR model and mixed model approach. These subsamples are then 
compared to the full set of 40 driving days per street segment. 

All LUR models are developed with a stepwise forward linear 
regression model, in which the variable explaining the most variation in 
BC measurements enters the model first. The model continues to add 
variables adding the most explained variance (R2) step by step until no 
variable can increase model performance by at least 1%. Mixed models 
use the same variables as the LUR as the fixed-effect part of the model 
and use the street segments as the random effect. This means that a 
mixed model with only one driving day cannot be computed and is the 
same as the LUR model. More details on the mixed model approach can 
be found in Kerckhoffs et al. (2022a). 

2.3. Performance evaluation 

We evaluate two different strategies to subsample the data. One 
randomly selects street segments from the entire study period, while the 
other strategy selects driving days in a chronological manner (e.g., 
twenty consecutive days). This means that the first comparison is a 
generalisable approach to indicate how many days of driving are needed 
to achieve a stable estimate of an average concentration per street 
segment. The second strategy is a more practical scenario but is more 
difficult to generalize as it depends on the size of the spatial domain 
sampled. 

For the first comparison, we select 40 drive days for street segments 
with more than 40 drive days. This means that a ‘subset’ of 40 drive days 
yields a perfect score. Next, we randomly select drive days from the full 
dataset, starting with one drive day and continue adding drive days in 
steps of one up to ten drive days and subsequently in steps of five drive 
days to the maximum of 40 drive days. We repeated this sampling 
scheme 100 times and recorded the R2 and RMSE for each subset. In 
every repeat a new subset of 40 drive days was selected. 

For the second approach, we used a more realistic strategy, because it 
is impossible to randomly drive on street segments throughout the city. 
Here, every subset was based on a random start date and drive days were 
added in chronologically. This means that after 10 driving days, some 
street segments are measured ten times, while other street segments 
might have been measured only once. Like the other analysis, we first 
selected street segments with at least 40 drives days. To allow for start 
dates towards the end of the campaign and still allow a dataset of 150 
consecutive drive days for example, driving days from the start of the 
campaign were added after the last drive day of the original campaign as 
if the whole driving campaign was 360 days. Subsets started with ten 
drive days and were subsequently increased with 10 drive days until 180 
drive days. Also, this sampling scheme was repeated 100 times. 

3. Results and discussion 

3.1. Data-only mapping 

Predicting long-term air pollution concentrations only based on 
mobile measurements can be very labour intensive, especially on a large 
scale. In our analyses, the data-only approach predicts less than 30% of 
variation in the long-term average concentration if the measurement 
consists of one drive-day per street segment. We found that at least 15 
drive days are needed per street segment to generate a robust (R2 > 0.9) 
long-term average BC concentration (Fig. 1), like what was found for BC 
measurements in the study by Messier et al. (2018a). For a R2 of 0.8, 
eight drive days were needed. However, when compared to a LUR 
model, a data-only approach outperforms a LUR model at about 5 drive 
days on average. Regarding RMSE, a data-only approach always out-
performs a LUR model (Fig. 1). 

A similar pattern is shown in Fig. 2. We found that about 80 
consecutive driving days (with an average of 4 h per day on street seg-
ments with at least 40 drive days)) are required to establish a robust 
long-term estimate on each street segment (R2 > 0.9). To explain 80% of 
the variance, an average of 35 (CI: 20–40) consecutive driving days are 
needed. We note that this analysis is more difficult to generalize, as the 
number of days needed for a robust model depends on the size of the 
domain that needs to be sampled. In this case, an area of about 30 km2 

and about 21.000 street segments. Since not all street segments are 
covered in the first driving days, we restricted our analyses to the street 
segments covered within those days. Alternatively, missing street seg-
ments can be imputed with the average concentration of all street seg-
ments, which is shown by the dotted line in Fig. 2. 

3.2. LUR models 

Regarding R2 values, LUR model performance is hardly influenced by 
the number of drive days per street segment. With one drive-day on 
every street, the LUR model explained 63% of the variation, with limited 
improvement in performance with increasing number of drive-days 
(70% for 40 drive-days). It is important to note that the test set 
(average of 40 drive day measurements) in this analysis is kept the same 
for all correlations. 

Training model R2 values were a lot lower with less drive days, as 
shown in figure S1. Mobile measurements consist of a few seconds per 
street segment and are therefore very variable, making the mobile 
measurements itself difficult to predict with a LUR model. However, for 
its use in epidemiological studies, we are often more interested in 
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predicting long-term average concentrations than short-term mobile 
measurements. Increasing the accuracy of individual measurements, for 
example by having more repeats, increases the training model R2 of LUR 
models (figure S1). This was also found by Hatzopoulou et al. (2017). 
They compared LUR models based on 3 repeats per street segment with 
LUR models based on 16 repeats and found that a model based on 16 
repeats achieved a better adjusted model R2. However, external model 
performance depends more on the accuracy of the test data than the 
accuracy of the training data. Multiple studies have shown that it is 
possible to predict robust long-term concentrations based on mobile 
monitoring data (Kerckhoffs et al., 2017; J et al., 2019; Shairsingh et al., 
2018; Hasenfratz et al., 2015; Sabaliauskas et al., 2015; Weichenthal 
et al., 2016). Models with low training R2 can still achieve high R2 values 
when tested on higher-quality data. Figure S2 shows that BC predicted 
concentrations based on a model developed with one drive day per street 
segment correlates very well (average r = 0.95) with predicted con-
centrations based on the full model with 40 drive days per street 
segment. 

Several studies found that is not even necessary to measure all street 
segments for a stable LUR model (Kerckhoffs et al., 2017; Messier et al., 
2018a; Hatzopoulou et al., 2017). The total number of street segments in 
certain domains can be reduced significantly if the coverage and vari-
ation in road network and other predictors is preserved. Hatzopoulou 
et al. (2017) decreased the number of road segments from 611 to only 

100 road segments in steps of 50 and R2 values remained stable up until 
200 road segments. Even LUR models based on 100 segments predicted 
on average 73% of the variation (opposed to 74% for the full dataset), 
albeit with a wider confidence interval (55–85% opposed to 70–78% for 
the full dataset). 

Regarding the RMSE, the LUR model only stabilizes after 10 drive 
days per street segment. The LUR model is able explain the variation 
between street segments with high and low concentrations very well but 
seems to miss some nuance in absolute values within those categories in 
the first 10 drive days. 

For the analysis with consecutive driving days, we show that the LUR 
model becomes stable after about 35 consecutive driving days (Fig. 2 
and Figure S3). A LUR model based on 35 consecutive days of driving 
results in a similar LUR model based on the full measurement campaign. 
Even a LUR model based on only 10 days of driving correlates on 
average very well (average r = 0.90) to the LUR model based on the 
same street segments with measurements from the full campaign, 
though that depends if all types of street segments and all types of land 
use in the spatial domain are covered within those 10 driving days 
(Figure S4). 

A combination of the amount of drive days per street segment and 
percent coverage of the domain was analysed with similar data as this 
paper by Messier et al. (2018a) Model performance was only slightly 
lower with 1 drive day per street segment and with only 10% of the 

Fig. 1. Model performance for the explained variance (top) and RMSE (bottom) when the average BC concentration based on a subset of drive days per street 
segment is compared to an average BC concentration based on 40 drive days per street segment. 
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streets covered than a LUR model with all drive days and 100% 
coverage. 

3.3. Mixed models 

The mixed model outperformed the data-only and LUR model esti-
mates, with 80% explained variance after five drive-days and 90% after 
14 drive-days (Fig. 1). This is because the mixed model can start from a 
LUR model with one drive day per street segment and can already add 
extra information on every street segment with two drive days per street 
segment. With about 15 repeats per street segment, the mixed model 
performance is nearly identical compared to a data-only approach. More 
importantly, the mixed model performs not less than the data-only 
approach after 15 drive days, so there is no harm using the mixed 
model approach either. This makes the mixed model a very scalable 
approach as it difficult to predict what the optimal number of drive days 
per street segments should be in other campaigns. For RMSE, the mixed 
model always outperforms the data-only and LUR model approach. 

In our previous work, a mobile monitoring campaign in Amsterdam 
and Copenhagen, we only managed to have 7 repeats per street segment 
on average. However, also with less repeats than in this paper, we found 
that the mixed model was able to outperform data-only and LUR model 
approaches when compared to external long-term measurements (r =
0.85 vs 0.74 and 0.75). We found comparable results in this study. The 

mixed model based on 7 repeats correlated 0.83 to the long-term 
average of 40 repeats, while the data-only and LUR model with 7 re-
peats correlated 0.75 and 0.65, respectively. 

For the consecutive days analyses, we also found that the mixed 
model outperforms the other two methods. Within the first few drive 
days, there is wide variance in performance since not all streets have 
been measured yet and the mixed model can only use the LUR model as 
estimate for the average concentration on each street segment. After 
about 100 days, the data only approach has enough repeats to match the 
performance of the mixed model. 

4. Conclusions 

The mixed model approach was able to explain variance in the street 
level average BC concentrations in Oakland with fewer repeated mea-
surements per street segment than the data-only and LUR model 
approach. The mixed model approach needed on average five repeats 
per street segment to achieve 80% explained variance, whereas eight 
repeats were needed in the data-only approach. The LUR model never 
achieved an explained variance higher than 70%. We found that at least 
15 repeats are needed to generate a robust (R2 > 0.9) long-term average 
concentration per street segment based on measurements only. This 
would be possible in a small area, like a few streets or a neighbourhood 
but is a huge effort for a regular city. This means that when looking for 

Fig. 2. Model performance for the explained variance (top) and RMSE (bottom) when the average BC concentration based on a certain number of consecutive driving 
days per street segment are compared to the full average BC concentration based on 180 consecutive drive days. 
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hotspots in concentration levels a large number of repeated measure-
ments are needed, though this holds for mixed models as well because a 
LUR model can only find hotspots related to known sources. 

So far, very few mobile monitoring campaigns could measure every 
street segment at least 15 times in a city. On the other hand, LUR models 
can generate robust long-term average concentration maps with only a 
limited number of mobile measurements (in coverage of the domain and 
repeats), but then hyperlocal variation in air pollution is lost. The mixed 
model is therefore a flexible and scalable solution because it can create a 
long-term average concentration map with limited effort without having 
to measure every street segment, while being able to update the map 
when more drives per street segment become available. If the goal of a 
mobile monitoring campaign is predicting the absolute values of long- 
term concentration levels closely, measuring with differing meteo-
rology, at different times of the day, and in different seasons is 
important. 

We found that the mixed-model already improves predictions 
compared to LUR models and data-only with two drive days (both in R2 

and RMSE). This means it can be used in a dedicated sampling campaign 
and in an opportunistic setting where commercial vehicles measure air 
pollution along their routes. Since mixed models cannot perform worse 
than the LUR model and data-only approach going into the model, using 
mixed models in mobile monitoring campaigns has no downside, sug-
gestingthat this method can be used with other pollutants and in other 
locations. 
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