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Amyotrophic lateral sclerosis 
Amyotrophic lateral sclerosis is part of the motor neuron disease (MND) spectrum. It 
is a neurodegenerative disease that involves progressive motor impairment affecting 
upper motor neurons (UMNs) and lower motor neurons (LMNs). Typically, symptoms 
occur focally with deficits spreading contiguously across upper and lower motor neu-
rons.1 The estimated incidence rate is around 2-3 new cases per 100 000 every year,2 
which is equivalent to approximately 500 new cases per year in the Netherlands. While 
ALS can affect people of any age, symptom onset is typically between the ages of 55 
and 65.3 Neuromuscular respiratory failure is the most common cause of death in ALS, 
typically 2-5 years after symptom onset.4 To date, no effective treatment is available. 

While traditionally considered as a motor disease only, ALS affects extra-motor func-
tion as well.4 It is now established that there is a substantial overlap between ALS and 
frontotemporal dementia (FTD), which results from atrophy of the frontal and tem-
poral brain lobes and causes cognitive and behavioural impairments that can vary de-
pending on the affected neural networks. Symptoms of FTD include changes in exec-
utive function, language skills, behaviour and personality.5 While only around 15% of 
ALS patients fulfil the criteria for FTD diagnosis,6 it is now established that behav-
ioural and/or cognitive symptoms are present in approximately half of ALS patients.4 

The underlying cause of ALS is unknown in most cases (referred to as ‘sporadic ALS’), 
while inherited ‘familial ALS’ accounts for approximately 10% of cases.7 Mutations 
linked to ALS are not considered clearly causative and the risk of developing ALS is 
established to be affected by both genetic and environmental risk factors.8,9 While the 
first ALS-linked genetic mutation was discovered in the SOD1 gene,10 the most com-
mon and well-established genetic mutation to date is the repeat expansion in the 
C9orf72 gene.11 Typically, more than 30 repeats of the C9orf72 sequence is considered 
pathogenic, although intermediate repeat numbers (24-30) are also significantly prev-
alent in ALS patients.12 This mutation has also been identified to cause FTD.13,14  

Undoubtedly, ALS research has made significant progress over the years, albeit many 
important questions remain unanswered. Perhaps most importantly, the link between 
risk genes and risk factors that can lead to the manifestation of multiple phenotypes 
and their early detection and prognosis are yet to be determined. A better understand-
ing of ALS pathogenesis can aid the identification of therapeutic targets, earlier treat-
ment strategies and improved clinical trial designs. 

Biomarkers in amyotrophic lateral sclerosis 
Biomarkers are quantifiable changes in an individual’s biology that can be used to 
identify the presence or characteristics of a disease. Namely, they can be used for di-
agnosis (to identify that a disease is present) or prognosis (to measure how a disease 
will progress). 
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Diagnosis of ALS remains predominantly contingent on the expertise of experienced 
neurologists, causing a diagnostic delay of approximately 10–16 months.15 Currently, 
diagnosis of ALS is primarily based on patient’s history and clinical examination of 
lower motor neuron (LMN) degeneration (such as atrophy and weakness) and upper 
motor neuron (UMN) degeneration (such as abnormal reflexes). In addition, further 
evidence of LMN degeneration (such as muscle fasciculations) captured by invasive 
needle electromyography (EMG), can be used to confirm diagnosis of ALS. Neverthe-
less, an objective, quantifiable biomarker of UMN degeneration remains to be identi-
fied and is urgently required given that LMN signs can obscure the clinical identifica-
tion of UMN signs16 and that there is a considerable variability in the appreciation of 
UMN signs among physicians.17 

Patient prognosis in ALS can be highly variable and unpredictable, although advance-
ments in prediction models based on patients’ characteristics are made.18 While these 
predictions can be useful for clinical trials, they are limited in ability to demonstrate 
therapeutic effects of drug candidates. Currently, clinical trials use outcome measures 
that are based primarily on survival and on semi-quantitative tools, such as ALSFRS-
R (ALS functional rating scale revised) scores. The subjective nature of ALSFRS-R scor-
ing and its specificity primarily to LMN disease progression, however, limits the sen-
sitivity of this approach to capture all aspects of disease progression sufficiently. As a 
result, it can be challenging to identify significant therapeutic effects on patients 
amidst disease heterogeneity within and between treatment groups. To mitigate this 
effect in clinical trials, current attempts are based on reducing variation in patient 
cohorts through use of restrictive recruitment criteria. This approach, nevertheless, 
substantially limits the number of patients eligible for clinical trials and does not ac-
count for potential heterogeneity across patients with differential brain network im-
pairments.  

These issues could be solved by development of objective, quantitative biomarkers of 
ALS that capture UMN dysfunction and extra-motor changes. Moreover, biomarker 
research improves our disease understanding, which can lead to new therapeutic tar-
gets and strategies, and better prediction of individual disease trajectories. Structural 
magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can point to 
precise locations of atrophy along the neural axis. The tissue atrophy, however, is 
likely to occur after an earlier stage of pre-clinical molecular, cellular and functional 
pathology. This highlights the potential application of electrophysiology in the devel-
opment of biomarkers. Electroencephalography (EEG) refers to the non-invasive re-
cording of electrical brain activity above the scalp, which approximates the firing fre-
quencies of neurons. Using EEG, we thus directly obtain real-time information trans-
mission throughout the whole brain on a millisecond timescale. This is in contrast to 
other modalities that rely on secondary measures (such as blood oxygenation changes 
in functional MRI) and modalities that can assess only a restricted section of the brain 
(such as magnetic resonance spectroscopy). Unlike these neuroimaging modalities, 
EEG is also relatively inexpensive and mobile. While EEG sessions are often consid-
ered repetitive, they are organised in short blocks of several minutes and they do not 
require participants to lie flat for a single continuous period without moving (which 
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would be unsustainable for many ALS patients with respiratory system decline or ex-
cess salivation).  

Electroencephalography 
Electrical brain activity captured by EEG reflects the communication between popu-
lations of neurons, as practically all signals travelling through the nervous system are 
transmitted electrically. A large neuron can receive inputs from other neurons via a 
densely covered network of 104–5 synapses.19 These inputs can generate either an excit-
atory postsynaptic potential or an inhibitory postsynaptic potential: the former makes 
it easier for the target neuron to fire an action potential, while the latter acts in the 
opposite manner. Big pyramidal neurons within the grey matter (i.e., the outer layer 
of the brain) and the postsynaptic potentials are believed to be the primary generators 
of the electric potentials captured by EEG (Fig. 1A). This, however, is only possible 
when at least tens of thousands of neurons (equivalent to a brain patch of a few cm2) 
are arranged in parallel and entrained at the same time, which then results in a poten-
tial of a few microvolts at the scalp surface.20 

The brain produces electrical rhythms in multiple frequencies, which can be isolated 
from the raw EEG signal (Fig. 1B). Different psychological processes are linked to dif-
ferent frequencies, which are often grouped into bands: delta (0.5-4 Hz), theta (4-8 
Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (lower gamma 30-50Hz; upper 
gamma >50 Hz). This allows for an investigation of brain activity in terms of the power 
of oscillations at different frequency bands. In addition, band-specific communication 
between brain areas can be assessed using functional connectivity (which can be 
phase- or amplitude-based).21 These EEG measures are often applied when examining 
activity of the brain while at rest, a so-called ‘resting-state’ paradigm.  

Brain signals can be recorded as well during experimental tasks that activate specific 
networks, such as those engaged in sensory, motor or cognitive processing. The cor-
responding neural signatures are observed in EEG as ‘event-related potentials’ (ERPs; 
Fig. 1C). These potentials are estimated by averaging many EEG signals, which are 
time-locked to a task stimulus or to a response. This approach assumes that only rel-
evant signals occur consistently and will, therefore, be maintained after averaging. The 
sequential activations of brain processes implicated in the task can be individually 
quantified by characterising different peaks within the ERP (e.g., average peak ampli-
tude or its timing). These peaks are often termed as, for instance, N200 (or N2; nega-
tive deflection around 200 ms post-stimulus) or P300 (or P3; positive deflection 
around 300 ms post-stimulus). Here, it is important to note that one peak is not nec-
essarily equivalent to an activation of one brain area. Namely, a summation of multiple 
simultaneously or sequentially activated brain areas can be observed as one peak. It 
is, therefore, said that EEG has low spatial resolution. Nevertheless, these two tradi-
tional approaches (i.e., the resting-state and the ERP analysis) allow us to study brain 
function and can be combined to provide a well-rounded insight into the effects of 
disease pathology on brain network function. 
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Source localisation 
While EEG has many advantages, they have been often negated by its poor spatial 
resolution, which limits the ability to attribute sensor-space activations to specific 
cortical regions. This limitation can, however, be mitigated with the use of source lo-
calisation algorithms, which are based on mathematical models and physiological as-
sumptions. As there is no a unique solution that determines which cortical brain areas 
can give rise to the electrical activity recorded by EEG, there are various algorithms, 
such as minimum-norm (e.g., LORETA)22 and beamforming (e.g., LCMV).23 Regard-
less of the source localisation method used, either an MRI24/DTI25 template or an in-
dividualised scan is needed (Fig. 1D). The scans are used to build a source model, 
which outlines the location and number of brain sources, and a head model, which 
describes the geometry of the head and electrical conductivities of the composite tis-
sues (Fig. 1E). Using this information together with EEG electrode positions, a ‘forward 
model’ is determent, which estimates the activity across the electrodes given activity 
in each location of the source model. A source localisation method is then applied on 
the forward model and the recorded EEG signals to estimate cortical activity pattern 
(Fig. 1F). This ameliorates spatial resolution of EEG data and enables us to interrogate 
activity emerging from specific cortical sources (also referred to as the source-space 
analysis). 

Electroencephalography in ALS 
Electroencephalography research in ALS is still scarce and to date, there are no robust 
EEG biomarkers for diagnosis or prognosis. While some studies have used the task-
based approach to assess specifically either motor or cognitive functioning, other 
studies have used the resting-state paradigm to capture brain changes more generally.  

Studies analysing movement-related oscillations reported decreased pre-movement 
β-band desynchronisation,26,27 and decreased28 or asymmetrical26 post-movement β-
band synchronisation. A study assessing the motor network using the ‘readiness po-
tential’ (which indicates motor preparation) did not observe statistically significant 
difference, but it showed that more severe signs of spasticity are associated with di-
minished amplitudes of the potential.29 A similar study, however, showed that patients 
do have a significantly lower amplitude of the readiness potential.30 These two studies 
suggest that the impairment of the motor network, encompassing the supplementary 
motor area, middle cingulate gyri and the motor cortex, can be detected using EEG. 

Studies assessing cognitive networks in ALS, focused primarily on analysing the N2a 
(a negative peak at approximately 200 ms post-stimulus) and P3 (a positive peak at 
around 200-500 ms) ERPs during an oddball paradigm. While there are many varia-
tions of this paradigm, each of them consists of a ‘standard’ stimulus and an occasion-
ally occurring ‘deviant’ stimulus, and they are used to study covert (captured by the 
N2a) or overt (captured by the P3 peak) attention. While one study using the ‘mis-
match negativity’ paradigm (which elicits the N2a) showed no difference in amplitude 
and timing of N2a,31 a recent study showed increased average delay of MMN that 
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correlated with response-inhibition task performance.32 Finally, studies assessing P3 
ERP showed increase in its latency31,33 and decrease in its amplitude.31,34 

Resting-state EEG studies also identified changes in the sensorimotor cortex, as exem-
plified by the presence of decreased α-band power.26,35–39 In terms of brain connectiv-
ity, previous studies have shown altered patterns, such as increased connectivity in 
the frontoparietal network across a broad spectrum of frequencies,40–42 but also de-
creased widespread connectivity and network impairment implicating α-band43 and 
β-band.43,44 

Most of these studies are explorative, with low number of patients and lacking repro-
ducibility. Namely, task-based studies are largely non-overlapping in terms of para-
digms being used, while the resting-state studies often diverge in their analysis ap-
proach. In fact, all these studies rarely exploit the advances in signal processing by 
using the existing source reconstruction approaches and high-density EEG montages 
to gain better insight into the brain dysfunction. Finally, identification of ALS sub-
groups and assessment of the presymptomatic stages of ALS using EEG are still unex-
plored.  

Thesis outline 
The overarching aim of this thesis is to provide better understanding of ALS through 
EEG. Namely, the thesis tackles how high-density EEG can be used in ALS for identi-
fying network dysfunction, patient subgrouping and early detection of the disease. 
The following four chapters are capitalising on the resting-state paradigm. In chapter 
2, we evaluate the performance of resting-state paradigm to differentiate ALS patients 
from healthy controls by capturing aberrant EEG activity and connectivity patterns in 
sensor-space. In chapter 3, we expand these findings by means of source localisation, 
which demonstrates the ability of source-space analysis to identify specific brain net-
works that are altered in ALS. In chapter 4, we focus on EEG biomarker assessment 
by exploring the role of β-band spectral power as a biomarker of disease severity. In 
chapter 5, we apply a robust clustering approach to determine whether we can iden-
tify specific subphenotypes of ALS patients based on the resting-state network dys-
function. The last two chapters exploit a task-based paradigm that assesses sustained 
attention. In chapter 6, we introduce which brain networks are affected in ALS during 
this task, whilst in chapter 7, we shift our focus to the presymptomatic EEG changes 
in C9orf72 carriers during the same task. At last, in chapter 8, we discuss the key 
findings of this thesis and give directions for future research. 
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Abstract  

Amyotrophic lateral sclerosis (ALS) is a terminal progressive adult-onset neurodegen-
eration of the motor system. Although originally considered a pure motor degenera-
tion, there is increasing evidence of disease heterogeneity with varying degrees of ex-
tra-motor involvement. How the combined motor and non-motor degeneration oc-
curs in the context of broader disruption in neural communication across brain net-
works has not been well characterized. Here, we have performed high-density crossec-
tional and longitudinal resting-state EEG recordings on 100 ALS patients and 34 
matched controls, and have identified characteristic patterns of altered EEG connec-
tivity that have persisted in longitudinal analyses. These include strongly increased 
EEG coherence between parietal-frontal scalp regions (in γ-band) and between bilat-
eral regions over motor areas (in θ-band). Correlation with structural MRI from the 
same patients shows that disease-specific structural degeneration in motor areas and 
corticospinal tracts parallels a decrease in neural activity over scalp motor areas, while 
the EEG over the scalp regions associated with less extensively involved extra-motor 
regions on MRI exhibit significantly increased neural communication. Our findings 
demonstrate that EEG-based connectivity mapping can provide novel insights into 
progressive network decline in ALS. These data pave the way for development of val-
idated cost-effective spectral EEG-based biomarkers that parallel changes in structural 
imaging. 
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Introduction 
Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease 
characterized primarily by degeneration of upper and lower motor neurons1 with var-
iable degrees of extra motor involvement. Clinical manifestations of ALS dichotomize 
into those associated with apparently pure motor system degeneration involving dis-
ruption in motor cortex, corticospinal tracts and motor networks;2,3 and degeneration 
of extra-motor regions, associated with clinical features of cognitive decline, ranging 
from mild executive impairment through to behavioural variant frontotemporal de-
mentia (bvFTD).4,5 

While there is an urgent need for non-invasive biomarkers that address disease heter-
ogeneity, the majority of imaging2 and electrophysiological6 studies to date have fo-
cussed primarily on quantification of the selective structural degeneration and func-
tional deficiencies of motor pathways. The increasing involvement of broader motor 
and non-motor regions and networks suggests that a more extensive assessment of 
large-scale brain connectivity is indicated.  

Previous electro-/magneto-encephalography (EEG/MEG) and functional MRI (fMRI) 
studies have reported abnormal functional connectivity patterns in neuropsychiatric 
diseases,7,8 Alzheimer’s disease,9,10 Parkinson’s disease,11 and fronto-temporal demen-
tia, FTD.12 In ALS, fMRI shows increased functional connectivity in the left motor cor-
tex of ALS patients13 and a previous EEG study has reported increased parietal-to-
frontal connectivity.14 These changes in connectivity have been confirmed by our 
group15 in a small sample size (n = 18) of ALS patients. We have shown that graph-
theoretic measures of connectivity (e.g. degree values, clustering coefficient and as-
sortativity) demonstrate increased connectivity in the θ (central and frontal) and in α 
and γ bands (widespread). Notwithstanding these findings, the nature of ALS-specific 
alteration in cortical connectivity (e.g. the brain regions and frequency bands) has not 
been fully evaluated in the context of disease heterogeneity with broader motor and 
extra-motor involvement,1,16 and the extent by which connectivity changes persist or 
evolve as the disease progresses is not known. Furthermore, the underlying reasons 
for disease-specific changes are unclear, and it remains to be determined whether such 
alterations in connectivity are due to local structural degeneration in motor regions, 
widespread structural decline, or compensatory neural communication. Resolution of 
these challenges will provide translational opportunities in ALS whereby the diagno-
sis, sub-phenotyping and targeted therapeutics can be based on the underlying 
changes in specific neural networks.  

In this study, we have used high-density EEG to investigate the altered cortical con-
nectivity patterns in a large ALS cohort (comprising 100 patients including 78 spinal-
onset, 15 bulbar-onset and 7 ALS-FTD, including 12 probands carrying the pathogenic 
hexanucleotide repeat expansion in C9orf72) and 8 patients with bvFTD who had no 
clinical evidence of motor degeneration. 34 healthy age-matched controls were in-
cluded in the study for comparative purposes. 
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We have identified disease-specific patterns that are significantly different in resting-
state recordings between ALS patients and controls. These changes persist on re-
peated longitudinal assessment, and correlate with structural and diffusion tensor im-
aging (DTI) MRI measurements from the same patients. Our findings, that the effects 
of focal disease-specific and broader structural degeneration can be reproducibly char-
acterized using spectral EEG, provide an exciting prospect for the development of 
novel non-invasive biomarkers in ALS and related neurodegenerative conditions.  

Methods 
Ethical approval 
This study was approved by the ethics committee of Beaumont Hospital, Dublin, Ire-
land (REC reference: 13/102) and the Tallaght Hospital / St. James's Hospital Joint Re-
search Ethics Committee (REC) (REC reference: 2014 Chairman’s Action 7, CRFSJ 
0046) for St James’s Hospital, Dublin, Ireland. The experimental procedure conformed 
with the Declaration of Helsinki. All participants, including the patients and healthy 
controls, provided written informed consent before taking part in the experiments. 

Experimental design 
The study sought to find spectral power and connectivity signatures that distinguish 
ALS patients from healthy controls, using EEG recordings from both groups. No ran-
domisation or blinding was applied, as the potential differences between the groups 
were not known and could not affect the experiment and data acquisition. Power anal-
ysis was performed post-hoc. 

Participants 

Patient recruitment 

Recruitment was undertaken from ALS patients attending the National ALS specialty 
clinic in Beaumont Hospital. Healthy controls were recruited from neurologically-nor-
mal spouses of ALS patients, and from neurologically-normal age-matched individuals 
recruited as part of an existing cohort study of cognition in ALS. 

Inclusion criteria 

The recruited patients, included individuals above 18 years of age diagnosed with ALS, 
ALS-FTD or FTD. In the ALS and ALS-FTD groups, patients were within the first 18 
months since diagnosis and fulfilled the El Escorial diagnostic criteria for Possible, 
Probable or Definite ALS. In the FTD group, patients (including behavioural variant, 
semantic dementia and progressive aphasia) who fulfilled the revised diagnostic cri-
teria for FTD17 were included. 
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Exclusion criteria 

Patients diagnosed with Primary Lateral Sclerosis (PLS), Progressive Muscular Atro-
phy (PMA), Flail Arm/Leg, Transient Ischemic Attack (TIA), Multiple Sclerosis (MS), 
stroke, epilepsy, seizure disorder, brain tumours, structural brain diseases, other de-
generative brain diseases and other comorbidities (e.g. human immunodeficiency vi-
rus) were excluded. 

Demographics of patients and controls 

A total of 100 patients with ALS (f/m: 30/70; age: 60.2 ± 11.1 years in the range 29-82), 
8 patients with FTD (f/m: 5/3; age 66.8 ± 8.1 in the range 57-81) and 34 healthy controls 
(f/m: 19/15; age: 58.1 ± 13.9 in the range 30-78) were recruited (Table 1). The FTD pa-
tients were recruited as part of a parallel study on FTD and the subsequent data anal-
ysis for the FTD group was performed separately from the ALS group. 

Medical profile 

Within the ALS group (excluding ALS-FTD patients), 78 patients had spinal onset, 15 
bulbar onset, and 7 ALS-FTD (4 spinal onset and 3 bulbar onset), as listed in Table 1. 
For 93 patients, the ALS functional rating scale revised, ALSFRS-R,18 was carried out 
±1 month of EEG data acquisition (not biased to before or after recording, p > 0.1, 
Wilcoxon’s Signed Rank test, n = 100) and ranged from 13 to 48, with a mean (±SD) of 
36.0 ± 7.8 (Table 1). Twelve of 83 patients tested for hexanucleotide repeat expansion 
in C9orf72 had positive results (Table 1). From 93 patients with available family history, 
18 had a known family history of at least one first or second degree relative with ALS.19 
From 95 patients with known history of taking riluzole at the time of EEG recording, 
12 patients were off riluzole and 83 were on riluzole with 69.0 ± 63.0 days (median ± 
IQR) past since starting the medication. 

Experiment 

Experimental paradigm 

The experimental paradigm was resting-state with the eyes open, which was under-
taken in 3 blocks of 2 minutes for both the patient and control groups. Subjects sat in 
a comfortable chair and were required to fixate at the letter X (6×8 cm) on an A4-sized 
piece of paper, which was located at a distance of about 1m in front of them. They were 
asked to be relaxed and minimise unnecessary eye movements during the EEG acqui-
sition. 

Data acquisition 

EEG recordings were conducted in dedicated laboratories in the University of Dublin 
and St. James’s Hospital, Dublin using a BioSemi® ActiveTwo system with 128 active 
sintered Ag-AgCl electrodes and headcaps (BioSemi B.V., Amsterdam, The Nether-
lands). For spectral power, the 18 recordings performed in hospital were significantly 
lower (Mann-Whitney U-test, P = 0.0055, AUC = 0.72, n1 = 18, n2 = 82), therefore these 
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recordings were excluded from the comparisons of spectral power. Each subject was 
fitted with an appropriately sized EEG cap. The EEG data were filtered online over the 
range 0-134 Hz, and digitized at 512 Hz. Longitudinal study, included 4 subsequent 
recording sessions (T2-T5) scheduled every 4-months after the first recording session 
(T1), in which 57, 36, 25, and 17 subjects attended, respectively.  

Table 1. Age, gender, diagnosis status and ALSFR-R of the participants. 

Group   n Male Female Age (y)* Dx-EEG T1† (days)* ALSFRS-R 

Control 
 

34 15 19 58.1 ± 13.9 
 

- 

ALS All 100 70 30 60.2 ± 11.1 283 ± 357 36.0 ± 7.8 (n = 93) 

  Spinal 78 57 21 59.8 ± 11.2 292 ± 379 35.8 ± 7.1 (n = 72) 

  Bulbar 15 9 6 57.1 ± 9.6 234 ± 262 35.4 ± 11.1 (n = 14) 

  ALS-FTD 7 4 3 71.5 ± 6.9 289 ± 301 38.9 ± 7.1 (n = 7) 

  C9orf72+ 12 5 7 60.9 ± 8.6 366 ± 313 37.9 ± 8.8 (n = 11) 

  C9orf72- 71 55 16 61.3 ± 11.5 298 ± 395 35.2 ± 8.0 (n = 68) 

FTD 
 

8 3 5 66.8 ± 8.1 - - 

† Dx-EEG T1 is the time interval between diagnosis and the T1 EEG recording. 
* Numbers show mean ± standard deviation. The Spinal and Bulbar groups exclude ALS-FTD patients. 

Data analysis 

EEG preprocessing 

After the quality checks by visual inspection (EyeBallGUI),20 we used an automatic 
artefact rejection method21 based on statistical thresholding22 and verified the efficacy 
of the procedure by visual inspection in 16 subjects. See the Supplementary material 
for details. 

EEG processing 

Bipolar channels (n = 125) were formed by subtracting adjacent electrodes to estimate 
the superficial cortical brain activity and minimise the effects of volume conduction 
and deeper brain sources, as well as to reduce the effects of unrejected artefacts such 
as EMG.23 The EEG signals were high-pass filtered with cut-off frequency of 1 Hz. To 
calculate the spectral power, coherency function and coherence,24 the signal was 
epoched into 1s segments and multiplied by a Hann window function and then the 
auto- and cross-spectra were estimated by taking the median of complex frequency 
domain values across all the data epochs.21 The epoch length did not have a significant 
effect on results as the findings with 10s epochs were the same. The band-specific real, 
imaginary and absolute values of the cortico-cortical coherency function were esti-
mated in the δ (2-4 Hz), θ (5-7 Hz), α (αl: 8-10 Hz, αh: 11-13 Hz), β (βl: 14-20 Hz, βh: 21-
30Hz), and γ (γl: 31-47Hz, γh: 53-97 Hz) frequency bands between all 125 bipolar 
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channel combinations (performed in sensor-space). These frequency bands were se-
lected according to the frequency ranges that change in motor tasks,25–28 as well as 
resting-state studies in ALS15 and in healthy subjects.29 All the signal analysis was per-
formed in MATLAB (Mathworks Inc., Natick, MA, USA), using scripts coded for this 
study (See the Supplementary material for details). 

Measures of spectral power and connectivity 

The log-scale spectral power, log��(1 + 𝐹𝐹��(𝑓𝑓)), where 𝐹𝐹��(𝑓𝑓) represents the auto-
spectrum of the signal 𝑥𝑥𝑥𝑥𝑥𝑥 at frequency 𝑓𝑓, was calculated for each bipolar channel in 
each frequency band as a measure of spectral power. The real and absolute values of 
the complex coherency function 𝐶𝐶��(𝑓𝑓) =  𝐹𝐹��(𝑓𝑓) �𝐹𝐹��(𝑓𝑓)𝐹𝐹��(𝑓𝑓)⁄  (where 𝐹𝐹��(𝑓𝑓) and 
𝐹𝐹��(𝑓𝑓) are the auto-spectra and 𝐹𝐹��(𝑓𝑓) the cross-spectrum of the signals 𝑥𝑥𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦𝑦𝑦 
pertaining to two bipolar EEG channels), were calculated for all channel pairs, in each 
frequency band. For each electrode, the median of the real coherence quantified the 
oscillation synchrony (real coherence corresponds to zero-lag no-delay synchrony), 
and the median absolute coherence quantified the (average) connectivity of the node 
(with arbitrary phase differences); which were calculated between each node and all 
other 124 bipolar channels. The average connectivity or synchrony at each electrode 
was represented by median coherence with all other electrodes, as the change in the 
value of the median can indicate the overall shift of the group of coherence values. As 
pre-whitening the EEG signals7 had negligible effect on the results, it was not used for 
the final analysis. These spectral power, synchrony and connectivity measures were 
analysed as groups of multivariate variables. Additionally, to perform univariate sta-
tistics, each measure of spectral power and connectivity was averaged across all bi-
polar electrodes and additionally assessed in ALS patients versus controls. For verifi-
cation and validation of these connectivity measures, please see the Supplementary 
material. 

Point-to-point analysis of connectivity 

The potential point-to-point pattern of the altered connectivity was assessed using 2 
approaches. First, the changes in the average connectivity were further inspected by 
choosing reference or ‘seeding points’. Second, we found the discriminant eigen-con-
nectivities30 to extract more explicitly point-to-point patterns (see Supplementary ma-
terial). 

Linear discriminant analysis 

Fisher’s linear discriminant analysis (LDA)31,32 was applied separately on the 4 EEG and 
9 MRI measures to find the most discriminant linear combination of measures based 
on the eigenvectors of 𝑆𝑆���𝑆𝑆� (𝑆𝑆� and 𝑆𝑆�: between-group and within-group covariance 
matrices). Additionally, a regularised (λ = 0.05) LDA was performed on high-dimen-
sional EEG measures [8 frequency bands x 3 measures (power, connectivity, syn-
chrony) x 125 channels = 3000 variables]. For EEG measures (but not for MRI), the first 
discriminant component was the dominant (accounting for more than 90% of dis-
criminatory variance). 
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Correlates with MRI scores 

Fifty-nine of the spinal- and bulbar-onset ALS patients (including 5 C9orf72+ and 38 
C9orf72- patients) participated in a parallel MRI study,3 as described in the Supple-
mentary material. We sought to include measures that were maximally different be-
tween the controls and patients2,3,33 and to find potential relations between the alter-
ations in EEG and affected regions as defined by MRI. We have previously shown that 
in spinal onset ALS there is a predominant involvement of posterior internal capsule 
and medial corona radiata pathology, and that the main motor-related degeneration 
is the selective involvement of corticospinal and corticobulbar fibres.3 We also in-
cluded regions (primarily white matter tracts) that are found to contribute to genera-
tion of EEG oscillations.27,34,35 Consequently, 9 structural and DTI measures were cho-
sen for correlation analyses on this basis in advance (a priori) of the analysis: Grey 
matter thickness in the left and right motor areas (separately averaged across precen-
tral gyrus, central sulcus, and superior precentral sulcus), average fractional anisot-
ropy (FA) of the left and right thalamo-cortical pathways, average FA of the left and 
right superior corona radiata, average FA of the left and right corticospinal tracts in 
the internal capsules and cerebral peduncles, and average FA of corpus callosum. 
These regions were defined by atlas-based segmentation, and were selected due to 
their known degeneration in ALS,3 or their potential contribution to oscillatory EEG 
signatures – for thalamo-cortical projections.27 As there was a high level of correlation 
between these 9 MRI measures of degeneration, principal component analysis, PCA,36 
was used to extract the principal directions of neurodegeneration, as ‘degeneration 
modes’. Before PCA, the MRI and EEG scores were transformed to standard normal 
distributions (see Supplementary material). The scores corresponding to each degen-
eration mode were then correlated with measures of spectral power, synchrony and 
connectivity. As a control, the age-dependent degeneration (found by the correlation 
vector of the patients’ age with structural MRI scores in each mode) was calculated 
and the percent variance of each degeneration mode explained by age was found. As 
limiting the analyses to the C9orf72- patients showed negligible confounding effect of 
the C9orf72 genotype on imaging measures,37 the MRI-EEG analyses were performed 
on the entire cohort of 59 patients. 

Statistical analysis 
For statistical analysis, we first used frequentist statistics to discard the unaffected 
measures and to find the potentially interesting effects due to ALS; next, we used Em-
pirical Bayesian Inference (EBI) to more accurately infer the disease-specific effects in 
the presence of complex high-dimensional correlations in the data (difficult to address 
with frequentist methods), but more importantly to estimate the statistical power and 
Bayesian posterior probabilities.  

Frequentist statistics 

The between-group comparisons of spectral power and connectivity measures were 
performed using the p-values of the Mann-Whitey U-test and the area under the curve 
(AUC) for the receiver operating characteristics curve.38 The pairwise comparisons 
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(e.g. for longitudinal data) were performed using Wilcoxon’s Signed Rank test. For 
comparison of several groups (ASL phenotypes), the Kruskal-Wallis non-parametric 
1-way analysis of variance test was employed. Analysis of correlations was performed 
using Spearman’s rank correlation coefficients. The frequency measures were assessed 
within the 8 defined frequency bands. To account for multiple comparisons, rejection 
of null hypotheses was performed by adaptive false discovery rate (aFDR) at q = 
0.05.39,40 For each measure and frequency-band, the FDR was applied on the bipolar 
channels being compared (n = 125), i.e. across channels but not across measures or 
frequency bands. This procedure served as a screening method for potentially signifi-
cant differences between the groups. A similar procedure was used to assess the sig-
nificance of individual connections when seeding from one channel at a specific fre-
quency band at q = 0.10. 

To assess the statistical significance of the eigen vectors from PCA and LDA for EEG 
and MRI measures, a null and non-null bootstrapping resampling approach was used 
to calculate the standard deviations, p -values and statistical power (see Supplemen-
tary material).  

Empirical Bayesian inference 

EBI41,42 is a statistical approach for inferring statistical significance and finding effects 
in individual variables of high-dimensional observations. It uses a test statistic in each 
variable to quantify the level of effect in/between the groups. The test statistic values 
for all variables using the original observations, as well as the null-permuted data are 
used to estimate the probability density function of the data and the null, respectively. 
Subsequently, the prior and posterior probabilities are estimated from the density 
functions; which are used to estimate the FDR and statistical power for each threshold 
level of the posterior probabilities. The EBI was applied on the AUC38 as the test sta-
tistic, for statistical analysis of the spectral power and connectivity measures between 
ALS and controls. For each measure, data from the 8 frequency bands and 125 bipolar 
channels were analysed together (1000 variables). 

Results  
Analysis of differences in neural activity and connectivity between the ALS cohort and 
controls in the characteristic EEG frequency bands showed significant differences af-
ter aFDR corrections (Supplementary Fig. 2-4). Additional analyses based on the sta-
tistical power and Bayesian posterior probabilities further confirmed the findings 
(Supplementary Fig. 2 and 3, rows 4): 

Decreased spectral power  
We detected a significant decrease in the low-frequency (θ-band) spectral power in 
ALS patients (excluding pure FTD patients) versus healthy controls (Fig. 1). This de-
crease of θ-band power in ALS patients was significant over bilateral motor areas of 
scalp, and spread to other scalp locations and the adjacent frequency bands (δ- and 
αl-bands) (Supplementary Fig. 2). 
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Increased average connectivity  
We detected widespread and significant increases in average connectivity in ALS pa-
tients compared to healthy controls (Fig. 1). The most notable changes were detected 
over bilateral motor regions of scalp for θ-band and over parietal and frontal scalp 
regions for γ-band (Supplementary Fig. 3). This strong effect also spread to adjacent 
locations and frequency bands. 

Alterations in average synchronous EEG oscillations were also captured (Supplemen-
tary Fig. 4). In ALS patients, the γ-band average synchrony was significantly reduced 
above bilateral primary motor areas of scalp (with additional but lesser involvement 
of parietal-occipital scalp regions), suggesting that altered neural activity in motor 
cortical areas was a function of structural change.  

The identified increases in the average connectivity were further inspected to deter-
mine whether they originated from specific increases in point-to-point connectivity. 
For this purpose, overall connectivity across regions was inspected in the correspond-
ing frequency bands. The lateral-central C4 and midline-parietal Pz channels (repre-
senting bilateral motor, and parietal scalp regions) were chosen as reference or ‘seed-
ing points’ (Fig. 2), as these regions showed significant ALS-specific changes in the 
average connectivity. This analysis showed that increased connectivity in the θ fre-
quency band originated from increased connectivity between left and right motor ar-
eas of scalp (Fig. 2). Similarly, increased connections in γ frequency band were found 
within parietal scalp areas and between parietal-frontal scalp regions.  

Analysis of changes in the point-to-point connectivity (without reference to average 
connectivity) also showed significant differences between controls and ALS patient 
group (Supplementary Fig. 5). The major effects were the increased coherence in θ-
band between the scalp regions over the 2 motor areas, and pattern of the increased 
coherence in γ-band between the parietal-frontal scalp regions. The main eigen-con-
nectivities (Fig. 2, bottom row) show the dominance of these patterns more explicitly. 

These 4 spectral power and connectivity measures that showed significant changes in 
ALS (θ-band spectral power, θ-band connectivity, γ-band connectivity and γ-band 
synchrony), were used as 4 average (across all electrodes) measures to further study 
the changes in the ALS group. 
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Figure 1. In ALS patients, spectral EEG power is significantly decreased in θ-band over the bilateral 
motor regions of scalp, while the median coherence is significantly increased in θ-band over motor 
areas and in γ-band over parietal and frontal scalp regions. The spectral power and median coherence 
are shown in 2 representative electrodes C4lp (right motor region) and Pz (parietal region) over scalp as a 
function of frequency. The spatial spread of the altered features is shown topographically in the θ- and γh- 
frequency bands. Significant difference between the healthy controls (n = 34) and ALS patients (n = 100) 
was assessed in the 8 defined frequency bands using Man-Whitney U-test and adaptive false discovery rate 
(FDR), as elaborated on in Supplementary Fig. 2 and 3. Notice the extension of changes to adjacent fre-
quency bands (from γ to βh). AUC: Area under the receiver operating characteristics curve. 
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Figure 2. The dominant changes in EEG 
connectivity include increased θ-band in-
ter-cortical and γ-band fronto-parietal 
coherence over scalp. The average values in 
controls and ALS groups, as well as between-
group (ALS-Control) differences in coher-
ence is shown with reference to (i.e. taken as 
connectivity seeds) the areas with dominant 
change in median connectivity: Left: Change 
in θ-band median coherence over scalp mo-
tor areas (see Supplementary Fig. 3) ex-
panded by seeding from right M1 (location 
C3). Notice the higher connectivity between ○ 
(right) and the left motor areas over scalp. 
Right: Changes in γ-band median absolute 
coherence in parietal and frontal scalp areas 
(see Supplementary Fig. 3), expanded by 
seeding from parietal area (location Pz). No-
tice the higher connectivity between ○ and 
both parietal and frontal scalp areas. Only the 
statistically significant connections (adaptive 
FDR, q = 0.1) are shown. AUC: Area under the 
receiver operating characteristics curve. Bot-
tom Row: Point-to-point connectivity pat-
terns from discriminant eigen-connectivity 
analysis (see Supplementary material), con-
firming the increase in θ-band inter-cortical 
and γ-band frontoparietal coherence. 
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ALS can be discriminated from controls using spectral 
EEG-based mapping 
A comparison between ALS and controls was performed in individual channels (topo-
graphic maps), as well as on average across all bi-polar electrodes in the affected fre-
quency bands using the linear discrimination combination of 4 spectral power and 
connectivity measures (Fig. 3). The findings closely resembled the individual patterns 
of change in both average quantitative measures and topographic maps, confirming 
that the detected changes are not only valid detections, but also key discriminants 
between ALS and controls. 

 

 
Figure 3. The linear discriminant analysis (LDA) direction for spectral EEG power and connectivity 
measures is similar to the differences of individual measures between ALS and controls, both for 
topographic maps and individual measures. The 4 EEG measures include the θ-band spectral power (θ 
Pow), θ-band median coherence (θ Coh), γh-band median coherence (γ Coh), and γh-band median real co-
herence (γ rCoh), all averaged across all electrodes, as in Fig. 3. Bar plots (right): The individual measures 
are compared on top, while the eigenvector of LDA is shown on the bottom. AUC: Area under the receiver 
operating characteristics curve. The p-value and β.05 correspond to the shape (and not the presence of) of 
the LDA eigen vector. Topographic maps (left): comparison of individual electrodes for each measure 
between controls and ALS patients is shown on top, while the 1st eigen-vector (LDA C1) of high-dimensional 
regularised LDA (125 channels × 3 measures × 8 frequency bands = 3000) is shown on the bottom (only 
4×125 = 500 relevant variables of the vectors are shown in the topographic map). See text for methods and 
statistics. Error bars: standard deviations.  
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EEG differences between ALS patients and controls do 
not discriminate between ALS subgroups 
Connectivity measures that discriminated between ALS patients and controls were 
used to measure differences between traditionally-defined ALS subgroups (bulbar on-
set, spinal onset, ALS-FTD, FTD and the presence or absence of the C9orf72 variant) 
(Fig. 4). While these measures were different between ALS and controls, there was no 
difference between ALS subgroups (Supplementary Fig. 6), although increased parie-
tal-frontal connectivity was strongly present in FTD patients without ALS, and the 
median γh connectivity measure (Fig. 4) was significantly higher for FTD compared to 
the control group (Mann-Whitney U-test, p = 0.0073, AUC=0.83, 1-β0.05=0.87, n1 = 34, 
n2 = 8) but was not higher than the ALS group.  

Degeneration in structural MRI shows discriminatory 
power comparable to EEG features, but with a complex 
pattern 
To validate the findings of altered connectivity as markers of selective networks dis-
ruption, we sought to determine the relationship of our observed neurophysiologic 
signatures with ALS-specific MRI changes in 59 ALS patients who had undergone con-
temporaneous scans.3,33 The focus was on nine regions of interests (including both 
grey and white matter) that show maximal degeneration and/or contribute to EEG 
oscillations which were selected from MRI data. The AUC values for these MRI 
measures (Fig. 5, top) were comparable to the EEG measures (Fig. 3, top) in terms of 
discriminatory power. The maximally discriminant MRI (Cortico-Spinal Tract’s Frac-
tional Anisotropy) and EEG (γ-band median connectivity) measures had similar AUC 
of 0.73, while the average of the AUC values for the 4 EEG measures (0.69) was higher 
than the one for 9 MRI measures (0.66). See Supplementary Table 1. 

Linear discriminant components are shown in Figure 5. While all of the MRI measures 
decreased in ALS, the discriminant components were not symmetric. We found that 
the discriminant vectors did not resemble the average changes in MRI individual 
measures (Figure 5, top). Rather, the average changes in MRI measures were due to 
the combined effect of several sub-components (in contrast to the EEG where the 
main discriminant component resembled the average changes in individual 
measures). These data suggest that the relationship between MRI changes and EEG 
changes in ALS is complex (a multi-parameter relationship/correlation that cannot be 
explained by a simple one-to-one relationship). Because it was not possible to infer 
the overall differences by inspection, we used a combination of PCA and several low 
and high-dimensional correlations to further study the complex relationship between 
MRI and EEG findings. 
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Figure 4. The spectral EEG power and connectivity measures are different between ALS and con-
trols, but not between ALS subgroups. A, D, G & J: Comparison between healthy controls and all ALS 
patients. B, E, H & K: Comparison between ALS subgroups. ‘Con’, ‘Spn’, ‘Bul’, ‘Cog’, ‘C9+’ and ‘C9-’ stand for 
Control, Spinal, Bulbar, ALF-FTD, C9orf72-positive and C9orf72-negative subgroups, respectively. C, F, I & 
L: Receiver operating curve (ROC), comparing the discriminatory power, the optimal level of sensitivity-
specificity (red dot), as well as the area under the curve (AUC), achieved for linear discrimination of controls 
and ALS patients using each measure. For each measure and frequency band, the average of all bipolar 
electrodes is used. See text for methods and statistics. 
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Changes in EEG power and coherence correlate with 
changes in structural MRI measures 
As there was a high level of correlation between the MRI indices, PCA was used to 
extract the principal modes of neurodegeneration. The scores corresponding to each 
degeneration mode were correlated with measures of spectral power, synchrony and 
connectivity using the spectral EEG datasets, while recognizing that the MRI degen-
eration modes were combinations of changes in both grey and white matter.  

The PCA-extracted modes of degeneration included 3 principal components that ac-
counted for 57.3, 20.4, and 8.4 percent of normalised variance. The first 3 degeneration 
modes accounted for variances larger than (or comparable to) those of age and the 
direction of their eigenvectors were statistically consistent (Fig. 6). The first of these, 
involved wide-spread general degeneration in all regions of interest (consistency: p = 
0.0001, β0.05 = 1e-6), which resembled the variability modes in healthy controls and 
age-related degeneration, albeit accounting for more than 4 times the variance than 
was explained by age. This mode was correlated with median cortico-cortical coher-
ence in θ-band (and in γ-band), as well as the spectral power in θ-band. The overall 
correlation of the scores of this mode with the EEG scores along the individual EEG-
MRI correlation vector was r = 0.28 ± 0.096 (p = 0.043, β0.05 = 0.25). The second degen-
eration mode was formed primarily by the differential degeneration of corticospinal 
tracts and motor cortex, thus representing a motor-related disease-specific degenera-
tion (consistency: p = 0.00033, β0.05 = 0.00033). This emphasised the differential de-
generation of white and grey matters in motor cortical regions and tracts. Importantly, 
this mode was strongly correlated with θ-band spectral power (and γ-band syn-
chrony). The overall correlation with EEG scores along the individual EEG-MRI cor-
relation vector was r = 0.42 ± 0.1 (p = 0.0094, β0.05 = 0.041). The third degeneration 
mode did not show any notable correlations with the EEG measures. The topographic 
maps of these correlations were similar to the topographic maps of the significant 
changes in ALS vs. controls. (See Supplementary Fig. 7 and 8 for the detailed topo-
graphic maps of EEG correlations with MRI scores and the corresponding statistical 
inference.)  

Taken together, these data showed increased connectivity and reduced synchrony and 
spectral power measures in ALS patients which correlated to the MRI scores of struc-
tural neurodegeneration in the regions extensively or moderately affected in ALS (see 
the correlation data in Fig 7, top). The scalp regions with increased EEG connectivity 
extended beyond the regions over motor areas affected in ALS, which is an indication 
of both direct and indirect effects of neurodegeneration on spectral EEG measures. 
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Longitudinal study of EEG measures shows progressive 
increase in connectivity 
We examined the longitudinal changes in spectral EEG at 4 subsequent recording ses-
sions (T2-T5) scheduled every 4-months after the initial recording session (T1) for each 
patient. Significant progressive changes were noted in connectivity, when the average 
quantitative measures were examined as univariate measures (Fig. 7). These changes 
were all consistent in direction as the disease progressed, showing an accentuation of 
the signatures. However, when the multivariate topographic maps were tested for sig-
nificant changes (corrected for multiple testing), only the θ- and γ-band coherences 
exhibited a significant increase in specific scalp locations (Supplementary Fig. 9). 

Gender, age and medication effects on EEG measures 
To ensure that the observed effects were not affected by other confounding factors 
(e.g. the effect of medications including the anti-glutamate drug riluzole) and to eval-
uate the effect of age, gender and clinical disability, additional confirmatory tests were 
performed. 

There was no effect of age or gender in the controls for EEG spectral power or connec-
tivity measures. Neither was there any effect of age, gender, or disease-duration in the 
ALS patients for any of the EEG measures. More importantly, none of the major EEG 
indices (as shown in Fig. 4) was different between patients on riluzole and those not 
on riluzole ALS therapy (p > 0.10, Mann-Whitney U-test, n1 = 83, n2 = 12). Spearman’s 
rank correlation did not show any significant relationship (p > 0.1, n = 83) between the 
EEG measures and the time duration that patients had been on riluzole at the time of 
EEG recordings. Similar analysis found no correlations of the EEG measures with time-
since-diagnosis or the clinical disability scale (ALSFRS-R scores, sub-scores, nor 
fine/gross motor factor-scores).18 Therefore, the identified EEG signatures were not 
directly related to motor disability, but rather reflected key patterns of disease-specific 
network alterations. Finally, potential changes in the peak frequency, a commonly in-
spected spectral measure, were analysed. There were no significant shifts in the peak 
frequency for spectral power or median coherence in any of the 125 EEG channels 
(Mann-Whitney U-test, n1 = 34, n2 = 100, ncomparisons = 125, qFDR = 0.1). 
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Figure 7. TOP: The MRI and EEG scores 
show the correlation of the degeneration 
modes 1 (general uniform degeneration) 
and 2 (motor-specific decline) with the al-
tered EEG measures. The scores and the lin-
ear regression lines correspond to the rows 2 
and 3 in Fig. 6. BOTTOM: The Longitudinal 
spectral EEG power and connectivity 
measures continue to change in a 16-
month follow-up, in the same direction as 
ALS versus healthy controls. The bar plots 
show the pairwise differences of the 4 EEG 
measures (used in Fig. 3, Fig. 4 and Fig. 6) in 
follow-up sessions T2, T3, T4, and T5 against 
the first recording T1. The numbers above the 
box-plots show the aFDR-corrected signifi-
cant p-values of the Wilcoxon’s Signed Rank 
test. The arrows on the right show the direc-
tion of change of the measures in ALS (T1) 
versus healthy controls (see Fig. 4). 



2

Characteristic increase in EEG connectivity in ALS 

 37 

Discussion  
Our data demonstrate that high-density spectral EEG mapping is a potentially robust 
tool in the assessment of selective changes in neural connectivity in ALS. Notably, 
spectral power (decrease in θ-band over motor scalp areas), oscillation synchrony (de-
crease in median real coherence in γ-band) and functional connectivity (higher me-
dian coherence in θ-band between bilateral scalp regions over motor areas, and in γ-
bands between parietal and frontal scalp regions) are reliable characteristic discrimi-
nating factors between ALS patients and healthy controls. Furthermore, changes in 
spectral power and EEG coherence correlate with structural changes in key brain re-
gions (Fig. 6). Our findings therefore point to a novel, network-wise characterisation 
of neurodegeneration in ALS, which is based on altered connectivity patterns with a 
specific signature of increased θ-band coherence between the motor regions of scalp 
and increased γ-band parietal-frontal coherence. 

These changes are unlikely to originate from artefacts, as the location of electrodes 
that show maximal connectivity increase are not the expected locations for eye-move-
ment (frontal electrodes) or EMG (peripheral electrodes) artefacts. This was addition-
ally confirmed using ICA pre-processing for further artefact removal (see Supplemen-
tary material). Moreover, the seeding patterns (Fig. 2 and S5) show that the patterns 
of increased connectivity are maximal over 2 scalp regions (parietal and frontal; left 
and right) and not only in a single large region. Additionally, the increased connectiv-
ity due to an increased activity in a focal source (a single neural brain source or an 
artefactual component), would simultaneously lead to increased spectral power, while 
we observed unchanged or decreased spectral power in ALS. Furthermore, the phase 
values for a notable number of coherence values are distant from 0 or ±π (values ex-
pected due to point-spread or single artefactual components). Finally, the attempt to 
map the changes in cross-spectra to focal sources failed, as it led to distributed sources 
across the brain regions (Supplementary material). Taken together, the observed in-
creased connectivity is not likely to be due to artefacts or a single deep source. (See 
also Supplementary material for the extended methods and results on the verification 
of the connectivity measures.) 

Inference from high-dimensional data 
Previously, high-dimensional analyses of connectivity patterns have been challenging 
due to multiple comparison problem and lack of reproducibility, especially for fMRI 
studies.45 Our study implemented several approaches to avoid false discoveries. These 
included a large sample size and the use of a frequentist method (adaptive false dis-
covery rate, aFDR) to limit the false discoveries. We also used Empirical Bayesian in-
ference (EBI) to validate the achieved false discovery rate and importantly estimate 
the Bayesian posterior probability. We estimated statistical power for low-dimen-
sional and high-dimensional data to validate the reproducibility of findings and relied 
on inference from average values rather than hand-picked measures. The longitudinal 
follow-up data show similar patterns of changes in the course of the disease and act 
as re-tests. 
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Potential mechanisms of changes in EEG 
The distinct correlations between MRI metrics and EEG measures indicate the in-
volvement of corresponding structural regions which provides the anatomical sub-
strate of the EEG alterations detected. Specifically, the decreased spectral power in θ-
band (and adjacent frequency bands) and the altered γ-band synchrony in bilateral 
motor regions of scalp are paralleled by structural degeneration in motor cortex and 
corticospinal tracts in ALS. This interpretation is supported by our data: firstly, both 
the power and synchrony changes are concentrated above motor regions (about C3 
and C4 locations) where the disease-specific degeneration is maximal; secondly, the 
2nd degeneration mode represents ALS-specific degeneration (including the differen-
tial white-grey-matter degeneration) with strong correlation with θ-band spectral 
power. Finally, although the changes in the spectral power were not as strong as 
changes in coherences, the spectral power showed a stronger correlation with motor-
related disease-specific degeneration.  

Segregation of variability in our MRI data into degeneration modes also yielded a 
widespread pattern of degeneration (resembling the normal covariance in controls) 
that included areas known to be severely affected in ALS (grey matter motor regions 
and corticospinal tracts); moderately affected in ALS (superior corona radiata and cor-
pus callosum) and areas that are clinically less apparent (Thalamocortical pathways). 
EEG correlates of this degeneration mode are a decline in spectral power, with a con-
comitant increase in functional communication (θ-band intercortical coherence and 
γ-band parietal-frontal coherence over scalp). These changes can be interpreted based 
on the existing knowledge on the neuropathology of the condition. In typical ALS, 
progression is thought to involve initial primary degeneration within the motor sys-
tem (especially the upper and lower motor neurons),46,47 with spread to other regions 
as the disease progresses.33,48 Therefore, the spectral power decrease in θ-band which 
is maximal above the motor regions of scalp and maximally correlated with motor-
related degeneration modes, mainly reflects the primary motor aspect of the disease. 
On the other hand, the connectivity increases (especially the γ-band increase between 
parietal and frontal scalp regions; also strongly present in FTD) that shows consider-
able longitudinal progression, reflect mostly the spread of the disease to other regions. 
Further validation of this explanation is warranted in future studies. 

In a situation where the baseline neural activity and communication is constant, de-
generation in white matter is expected to attenuate communication and connectivity. 
The observation of increased coherence is therefore likely to reflect extra compensa-
tory activity within and outside areas associated with white matter degeneration. This 
change may be a signature of network over-activity and a reflection of the disease se-
verity. Our data therefore indicate that coherence, which quantifies neural communi-
cation in the brain, can also indirectly reflect structural degeneration, and can be po-
tentially harnessed to characterise progressive neurodegeneration. Future studies us-
ing computational neural modelling would be of utility in assessing this perspective, 
as invasive neurophysiological recordings in human disease would be precluded by 
ethical considerations. 
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The underlying mechanisms for ALS are not yet fully understood and are most likely 
heterogeneous.49 One possibility is that early neurodegeneration of interneurons in-
terrupts the balance between excitatory and inhibitory network activity.50 Another 
possibility is that pathological changes in excito-inhibitory networks are driven by a 
combination of ‘dying-forward’ and ‘dying-back’ of individual groups of neurons, and 
that neuronal death occurs as a function of excessive excitotoxicity.51 There is prelim-
inary evidence for both possibilities, and while the structural neurodegeneration is 
reflected in the MRI measures and the unbalanced excito-inhibitory network activity 
reflected in EEG measures, the causality between the changes in the EEG and MRI 
measures remains to be determined.  

In this study, we used the real part of the cortico-cortical coherence measure to index 
frequency-specific synchronous oscillations (i.e., oscillations with zero lag), as has 
been previously described for the time domain using pre-whitened cross-correlations 
in MEG.7,8 These synchronous oscillations were interpreted as originating from struc-
tural neural pathways such as thalamo-cortical pathways (loops) that lead to simulta-
neous zero-lag propagation of oscillatory brain activity.8 Consequently, the observed 
patterns of synchrony alteration (Fig. 3), is an indication of structural separation and 
isolation of motor cortex from more frontal and parietal regions in the brain. This 
measure was specifically included as the zero-lag synchronous neural oscillations and 
has been shown previously to discriminate between healthy individuals and neuro-
psychiatric patients.7 The utility of this measure was afforded by the bipolar spatial 
filters applied that attenuate the field-spread effects of deeper sources, hence, allow-
ing the bona fide zero-lag synchrony be aggregated between superficial sources. The 
correlation with motor-specific degeneration in MRI and concentration over bilateral 
M1 areas support the validity of this measure. 

Utility of EEG for studying and diagnosing neurodegen-
eration 
The observed EEG signatures provide additional and important insights into ALS 
pathogenesis, which are beyond the scope of current structural MRI and clinical eval-
uation. Despite the traditional view that ALS is a focal structural degeneration of mo-
tor neurons, these data point to major changes that occur at the network level (found 
by EEG measures of neural activity and connectivity) which correlate in a complex 
manner with structural degeneration. Furthermore, these changes are related (though 
through a complex mechanism with direct and indirect effects) to the structural de-
generation. The absence of a correlation with clinical phenotypes, while not intuitive, 
suggests that the patterned changes that we observed in both crossectional and lon-
gitudinal datasets are consistent markers of the disease process, regardless of the clin-
ical disability profile. This is an important observation, indicating that spectral EEG 
has potential for development as a novel biomarker of network degeneration. The cor-
relation with MRI findings, and the progression of observed changes over time support 
the potential clinical utility of spectral EEG as a disease biomarker, and refinement of 
these combined measures could form a new basis for novel definition of disease clas-
sification.16 Moreover, this spectral and connectivity-based characterisation is also 
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applicable in cognate neurodegenerative diseases, particularly FTD. The increased 
Frontal-Parietal connectivity changes identified in ALS are also strongly present in the 
FTD cohort, supporting the notion that it is a neural signature indicative of frontal 
dysfunction in FTD. Overall, the connectivity-based characterisation informs of the 
altered functions of the network and paves the way for future network-based charac-
terisation and mapping of the neurodegenerative diseases. 

While the primary goal of this study was to elucidate disease specific changes and 
their underlying mechanisms, these measures also have potential as future targets for 
diagnosis and prognosis of specific aspects of the disease. Our data provide a robust 
proof of concept for the use of spectral EEG for patient stratification based on net-
work-based pathology in the neurodegenerative disorders. Such an approach has sig-
nificant advantages over other imaging and diagnostic modalities (e.g. MRI). Given 
the relative differences between EEG and MRI in terms of cost and accessibility, it is 
noteworthy that the discriminatory power of EEG coherence measures (based on AUC 
values) was actually comparable or higher than individual MRI measures (see Supple-
mentary Table 1). EEG closely reflects the real-time neural activity with excellent tem-
poral resolution, is widely accessible, portable and inexpensive. Spectral EEG record-
ings can be performed comfortably in extended ranges of patients with neurological 
impairments within existing clinical settings. We have shown that the potential diag-
nostic utility can be further enhanced using previously reported pattern analysis tech-
niques7,52 and/or neuroelectric source imaging.53,54 Future studies using task-based 
paradigms, including motor55 and cognitive tasks,56 carry additional potential in de-
constructing sensory or motor aspects of neuro-pathology, including those that are 
specifically captured by these resting-state measures. 

Limitations 
The identified changes in spectral power and cortico-cortical connectivity have been 
assessed in the sensor-space corresponding to scalp locations that provide relatively 
low spatial resolution. Using source analysis29,57,58 to identify the corresponding brain 
regions that give rise to the reported findings has the potential to further enhance our 
understanding of the underlying disease pathophysiology in future studies. While 
challenging and requiring special considerations due to the potential confounding fac-
tors of neurodegeneration and the resulting structural changes in the brain, the po-
tential benefits would be considerable.  

Additionally, investigation of the effects of mimic disease conditions and other neu-
rological diseases (other than the ALS-FTD range) on the identified EEG signatures 
will be required to establish the specificity of this technology for adjunct diagnostic 
purposes.  

Conclusion 
This is the first study of its kind to demonstrate the validity of spectral EEG as a meas-
ure of structural degeneration in ALS. Correlations between EEG measures and con-
temporaneous changes in structural MRI indicate that changes in neural activity in 
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motor areas mirror focal disease-specific structural changes in amyotrophic lateral 
sclerosis. Moreover, the increased connectivity (cortico-cortical coherences) reflects 
network over-activity in affected motor regions (inter-cortical θ-band) and less de-
generated regions such as parietal and frontal areas (γ-band), and likely represents an 
indirect potentially compensatory effect of degeneration.  

Our data confirm that spectral EEG is a novel and potentially sensitive methodology 
by which the neurodegeneration in ALS and related conditions can be characterised 
in terms of specific disruptions in neural communication. This technology can be har-
nessed as an inexpensive and clinically useful disease biomarker in assessing the effi-
cacy of targeted drug therapies for neurodegeneration. 
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Supplementary material 
Supplementary methods 

EEG preprocessing 

After the quality of the acquired datasets from controls and patients were checked by 
visual inspection (EyeBallGUI, http://eyeballgui.sf.net),1 we used an automated arte-
fact rejection method, based on a verified statistical thresholding approach FASTER,2 
which accounts for major types of artefacts and provides high sensitivity and specific-
ity. Contaminated epochs were detected using 4 statistical features (amplitude range, 
mean shift, variance, and mean spectral power in 0-2 Hz and 20-40 Hz frequency 
bands) of the data at Z-scores threshold of ±3.5 separately on each channel, each epoch 
(containing all the channels), mean channel and mean epoch. The contaminated 
epochs and channels, detected with the set thresholds were removed from the analy-
sis. The details of the preprocessing method has been published elsewhere.3 To make 
sure of the efficacy of the preprocessing, the rejections by the preprocessing routine 
was visually inspected in 8 random controls and 8 random patients to verify the suc-
cess in exclusion of contamination by eye movements, movement artefacts, and facial 
EMG. The data rejection rates in the controls and patients were 9.3 ± 2.7 % (range: 3-
14 %) in controls and 11.4 ± 6.4 % (range: 3.4-50.5 %) in patients. 

EEG processing 

Bipolar channels were formed by subtracting adjacent electrodes along the tangential 
directions (See Supplementary Fig. 1) to estimate the superficial cortical brain activity 
and minimise the effects of volume conduction and deeper brain sources. Addition-
ally, the use of spatial filters considerably reduces the effects of artefacts such as EMG,4 
that may not have been fully excluded from the analysis. Simple bipolar spatial filter 
was preferred over surface Laplacian,5 as it relies on two monopolar channels rather 
five; hence providing more independent pairwise coherence connectivity values that 
do not share common (surrounding) reference electrodes. Using a tangential pattern 
(and the corresponding directions as in Supplementary Fig. 1) for forming bipolar 
channels did not affect the nature of the results. In separate analyses, similar results 
were obtained when radial pattern and directions were used for forming bipolar chan-
nels. This referencing method provided 125 bipolar channels from 128 monopolar re-
cordings. The EEG signals were high-pass filtered by a dual-pass 5-th order Butter-
worth filter with cut-off frequency of 1 Hz. To calculate the spectral power, coherency 
function and coherence,6 the signal was epoched into 1s segments and multiplied by a 
Hann window function and then the auto- and cross-spectra were estimated. The 
epoch length did not have a significant effect on results as the findings with 10s epochs 
were the same. The band-specific real, imaginary and absolute values of the coherency 
function were estimated in the δ (2-4 Hz), θ (5-7 Hz), α (αl: 8-10 Hz, αh: 11-13 Hz), β (βl: 
14-20 Hz, βh: 21-30 Hz), and γ (γl: 31-47 Hz, γh: 53-97 Hz) frequency bands between all 
125 bipolar channel combinations (performed in sensor-space). These frequency bands 
were selected according to the frequency ranges that change in motor tasks,7,8 as well 
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as resting-state studies in ALS9 and in healthy subjects.10 The elements of cross-spec-
tral matrices (used for calculation of spectral power, coherency function and coher-
ence) were estimated by taking the median (as opposed to the conventional mean) of 
complex frequency domain values across all the data epochs. The use of median for 
coherence and power suppresses the effect of outlier and artefactual data,3 especially 
should their nature be different in controls versus patients. All the signal analysis was 
performed in MATLAB (Mathworks Inc., Natick, MA, USA), using scripts coded for 
this study.  

Transformation to normal for correlation analysis  

MRI and EEG measures were transformed to standard normal distributions, by first 
rank-transforming the data, and subsequently replacing the rank data 𝑘𝑘 with 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖������(���𝑘 = (2𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘, where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the inverse cumulative distribution 
function and 𝑛𝑛 the number of data points.11 

Discriminant eigen-connectivities for point-to-point analysis 

First, the 125×125 connectivity matrix was thresholded at p < 0.025 to reduce the di-
mensions by selecting the point-to-point connections that afford higher levels of dis-
crimination. Next, regularised (λ = 0.001) Fisher’s linear discriminant analysis 
(LDA)12,13 was applied to the significantly different point-to-point variables. The point-
to-point variables constituting the largest 10% of the vector components in the first 
dominant principal discriminant vector were selected as the representatives for the 
dominant difference pattern in the corresponding frequency. The thresholding values 
(p < 0.025 and 10%) had negligible effects on the nature of outcome and was therefore 
chosen to provide visually informative number of connections.  

Summary of MRI data acquisition methods 

A 3T Achieva system (Philips, Amsterdam, The Netherlands) was used to acquire the 
MR data (gradient strength: 80 mT/m, slew rate: 200 T/m/s, 8-channel receive-only 
head coil) for the T1-weighted images (FOV = 256 × 256 × 160 mm, spatial resolution: 
1 mm3) and DTI images (FOV = 245 × 245 × 150 mm, spatial resolution: 0.5 mm3). Dif-
fusion Tensor Imaging (DTI) datasets underwent corrections for eddy current, motion 
and brain-tissue extraction using FSL.14 Subsequent extraction of grey and white mat-
ter data for regions of interest were extracted from existing atlases.15,16 See Schuster et 
al.17 for full details. 

Statistics for MRI and EEG principal components using bootstrap-
ping 

To assess the statistical significance of the eigen vectors from PCA and LDA for EEG 
and MRI measures the following null and nonnull bootstrapping resampling approach 
was used: In 10,000 random null resampling (with replacement) where the group la-
bels for controls and ALS were not respected, as well as in 10,000 nonnull bootstraps 
with replacement where the data was resampled from the same group, the absolute 
dot-product of the eigenvectors by the original eigen-vector was used to form the null 



2

Characteristic increase in EEG connectivity in ALS 

 47 

and nonnull distributions. The p-value was taken as the average empirical quantile of 
250 randomly selected nonnull values against the null data, while the empirical prob-
ability density function for null and nonnull distributions were used to calculate the 
power by numerical integration at α = 0.05. The eigenvectors generated from boot-
strap re-sampling were used to estimate the standard deviation for the components of 
the eigen-vectors, and when required to estimate the distribution and standard devi-
ation of the correlation and correlation-vectors with EEG measures.  

Verification of the estimated connectivity 

To investigate if the estimated coherence patterns and the observed changes reflect 
an underlying neural connectivity, three additional analyses were performed.  

Eigen-spectrum of the cross-spectral matrices: The eigen-spectrum of the cross-spec-
tral matrices can reveal the potentially spurious or nonglobal dynamics (extreme un-
balanced large/small values or almost equal values), and was therefore found in indi-
vidual frequency bands for each healthy control and ALS patient. To assess the signif-
icance of eigen-spectrum of the cross-spectral matrix, parallel-analysis,18 together with 
FDR was employed. This was followed by estimation of both the magnitude and phase 
of the coherence matrices in controls and patients in individual frequency bands.  

Testing for a neural or artefactual focal source underlying the estimated connectivity: 
A general 3-layer head model based on an MRI template (27),19 was used to find an 
average lead field matrix for the 128-channel EEG montage, using the FieldTrip 
Toolbox.20 Following the calculation of the bipolar lead field matrix, the observed ALS-
Control pattern of change in the cross-spectral matrix was mapped to the source-
space, under the (null) hypothesis that the changes originate from changes in mini-
mum/limited number of focal active sources. This null condition was realised by cal-
culation of the inverse lead-filed matrix under the constraint of minimum number of 
active (nonzero) sources. 

Re-calculation of connectivity with ICA-based preprocessing: To ensure that the po-
tentially unrejected artefacts in the γ-band, especially the high-frequency frontal com-
ponents due to ocular EMG and micro-saccades, or other high-frequency spikes or 
EMG components21 did not influence the findings, we used independent component 
analysis (ICA),22 a blind source separation method23 for artefact removal. After the ap-
plication of the previously explained artefact rejection by statistical thresholding, ICA 
(FastICA)24 was used on the remaining data to extract the independent components. 
The artefactual components were subsequently rejected by visual inspection. All the 
subsequent steps for signal analysis were similarly applied on the ICA-cleaned data.  

Supplementary results 

Verification of neural connectivity 

Eigen-spectrum of the cross-spectral matrices: The cross-spectra matrices for individ-
ual frequency bands in the controls and ALS patients show that the cross-spectral pat-
terns are nonuniform (including low and high values) and depend on electrode 
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combinations and frequencies (Supplementary Fig. 10). This suggests that the bipolar 
coherences reflect multiple complex patterns (between the parietal, frontal and 
left/right sensorimotor scalp areas) that are not local effects or global effects coming 
from simple single origins. Importantly, the eigen-spectra for all of the cross-spectral 
matrices show more than 6 significant eigen values, indicating a complex dynamic 
that cannot be explained by a simple underlying source. Notably, the majority of phase 
values for the corresponding coherence matrices and a notable number of values with 
significant between-group differences (Supplementary Fig. 11) had nonzero phase val-
ues (distant from 0 or ±π), which cannot be due to volume conduction effect of limited 
focal (deep) sources. 

Distributed source underlying the estimated connectivity: Supplementary Fig. 12 
shows that in the attempt to map the observed changes in the cross-spectra to a few 
focal sources (either neural or artefactual), the results still point to several wide-spread 
underlying brain sources. This suggests that the observed changes in coherence 
measures are unlikely to originate from limited focal brain sources or a few artefactual 
components in the periphery; hence, confirming that they represent the changes in 
the neural connectivity between the different regions of the brain. 

Effect of ICA preprocessing: The results with and without ICA preprocessing were very 
similar for both the θ-band and γ-band changes in the connectivity. Supplementary 
Fig. 13 shows the γ-band average connectivity measure (that could potentially be more 
prone to contamination by high-frequency artefacts) and its changes in the ALS pa-
tients against healthy controls. It is shown that the difference between controls and 
ALS patients is present with a similar level of significance, regardless of performing 
the preprocessing with or without ICA. ICA led to increased levels of connectivity in 
both group (equally for controls and patients), which implies the lack of major con-
tamination without ICA preprocessing. The θ-band connectivity pattern was similarly 
unaffected by ICA. 

In addition to these findings, the observed connectivity patterns were reproducible 
when we changed the epoch length from 1s to 10s. In summary, these results suggest 
that the estimated coherence measures reflect the neural connectivity between dis-
tinct brain regions; therefore, the observed differences between the controls and pa-
tients reflect a pathological change in connectivity which cannot be explained by focal 
neural or artefactual sources or by other known types of artefacts. 
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Supplementary figures and tables 
 

 

 
Supplementary Figure 1. Bipolar channels are formed from unipolar EEG recordings. Each arrow 
represents a bipolar channel, where the electrode at the tip is subtracted from the electrode at the end. 
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Supplementary Figure 6. High γ-band increase in average connectivity in ALS is also strongly pre-
sent in FTD. The difference between healthy controls (n = 34) and ALS/FTD patient subgroups in median 
coherence between bipolar EEG channels. Statistically significant differences with reference to healthy con-
trols, as assessed by adaptive false discovery rate (aFDR) at q = 0.05.  
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Supplementary Figure 9. The longitudinal spectral EEG power and connectivity measures continue 
to change in a 16-month follow-up, where the 2 average connectivity measures show maximum 
changes but at different rates. The topographic maps show the statistically significant pairwise differ-
ences of the 4 EEG measures (used in Fig. 3, 4 and 6) in follow-up sessions T2, T3, T4, and T5 against the 
first recording T1. The significance was inferred from the null-permutations in Empirical Bayesian Inference 
analysis of pairwise changes in individual electrodes in times T2-T5 versus T1 (n’s show the number of sub-
jects in follow-up recording sessions). The significance threshold W is the normalised Wilcoxon’s Signed 
Rank test-statistic where 1 shows maximum increase, 0, maximum decrease and 0.5 no change. The topo-
graphic maps for the ALS- CON differences (left column) are provided for comparison. 
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Supplementary Figure 11. The coherence matrices show nonzero phase differences, unlikely to be 
due to field-spread of single focal (deep) sources or artefacts. The magnitude (||) and phase values (∠) 
of the complex coherency matrices (𝐶𝐶��) in individual frequency bands show location- and frequency-de-
pendent patterns in controls, ALS patients and in their difference (Δ). A notable proportion of the high-
coherence connections in the coherence matrix (row 1) have nonzero (different from 0 or ±π) phase values 
in controls (row 2, highlighted by blue/red). The coherence values in ALS (row 3) include both similar and 
different patterns compared to controls. The significant effects in CON-ALS differences (highlighted in row 
4, aFDR q = 0.1) similarly show nonzero phase values in ALS (row 5) and nonzero differences between con-
trols and ALS patients (row 6). Notice especially the stronger effects in the θ- and γh-bands, where the main 
connectivity changes were found (see Supplementary Fig. 3). This is unlikely to be due to field-spread of 
single focal (deep) source or artefactual components. 
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Supplementary Figure 12. The attempt to deliberately associate the observed average changes in 
the cross-spectra between CON-ALS to only a few focal active sources failed, yielding distributed 
sources across brain. The changes in the bipolar cross spectral matrices (which includes both power and 
coherence information) in the θ and γh frequency bands (where maximum ALS-related change was ob-
served) were mapped to the brain sources (n = 16,008). The source activity density in 3 anatomical directions 
for changes in each frequency bands are shown. Notice that the mapping under the constraint of minimum 
active (nonzero) number of sources, failed to find limited focal activities. The commonly-used minimum-
norm estimate (MNE) results are provided for comparison only. 
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Supplementary Figure 13. ICA-preprocessing does not affect the observed differences of connectiv-
ity between ALS and controls. The median γh-band connectivity (the measure most prone to high-fre-
quency artefacts) is significantly higher in ALS versus controls with and without ICA-preprocessing; even 
though the ICA effect in general was to increase the connectivity (equally for both controls and patients). 

 

Supplementary Table 1. The discriminatory power of the EEG vs. MRI measures 

MRI Measure AUC ± SD 
 

EEG Measure AUC ± SD 

GM-Motor-L 0.67 ± 0.002 
 

FA-CC 0.65 ± 0.003 

GM-Motor-R 0.68 ± 0.002 
 

FA-CC 0.67 ± 0.0028 

FA-TC-L 0.58 ± 0.0023 
 

FA-CC 0.73 ± 0.0024 

FA-TC-R 0.56 ± 0.0023 
 

FA-CC 0.72 ± 0.0022 

FA-SCR-L 0.67 ± 0.002 
   

FA-SCR-R 0.63 ± 0.0022 
   

FA-CST-L 0.72 ± 0.0018 
   

FA-CST-R 0.73 ± 0.0018 
   

FA-CC 0.66 ± 0.002 
   

For MRI measures, the area under the curve (AUC) values for the receiver operating characteristic curve 
were found from MRI data of 59 ALS patients and 69 healthy controls. For EEG Measures, the AUC values 
were found from 100 ALS patients and 34 healthy controls. 
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Abstract  
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease pri-
marily affecting motor function, with additional evidence of extensive non-motor in-
volvement. Despite increasing recognition of the disease as a multi-system network 
disorder characterised by impaired connectivity, the precise neuroelectric character-
istics of impaired cortical communication remain to be fully elucidated. Here, we 
characterise changes in functional connectivity using beamformer source analysis on 
resting-state electroencephalography recordings from 74 ALS patients and 47 age-
matched healthy controls. Spatio-spectral characteristics of network changes in the 
ALS patient group were quantified by spectral power, amplitude envelope correlation 
(co-modulation) and imaginary coherence (synchrony). We show patterns of de-
creased spectral power in the occipital and temporal (δ- to β-band), lateral/orbito-
frontal (δ- to θ-band) and sensorimotor (β-band) regions of the brain in patients with 
ALS. Furthermore, we show increased co-modulation of neural oscillations in the cen-
tral and posterior (δ-, θ- and γl-band) and frontal (δ- and γl-band) regions, as well as 
decreased synchrony in the temporal and frontal (δ- to β-band) and sensorimotor (β-
band) regions. Factorisation of these complex connectivity patterns reveals a distinct 
disruption of both motor and non-motor networks. The observed changes in connec-
tivity correlated with structural MRI changes, functional motor scores and cognitive 
scores. Characteristic patterned changes of cortical function in ALS signify widespread 
disease-associated network disruption, pointing to extensive dysfunction of both mo-
tor and cognitive networks. These statistically-robust findings, that correlate with 
clinical scores, provide a strong rationale for further development as biomarkers of 
network disruption for future clinical trials.  
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Introduction 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of upper and lower 
motor neurons resulting in progressive loss of bulbar and limb function.1 Although 
originally considered a disease exclusively of the motor system,2 widespread non-mo-
tor3 and subcortical4 structural changes are now recognised.5 Clinical and neuroimag-
ing evidence confirms extensive involvement of motor5–7 and cognitive8,9 pathways 
and networks. These network impairments manifest as measurable changes in cortical 
connectivity, informing altered dynamics within different networks, which may lead 
to widespread changes in neural signalling beyond the regions of direct disease pa-
thology. 

Functional magnetic resonance imaging (fMRI) studies have identified increased con-
nectivity in the sensorimotor networks of ALS patients5,10 based on BOLD (blood oxy-
gen-level dependent) signal. However, network impairment can also be interrogated 
using neuroelectric signals captured with electroencephalography (EEG). These sig-
nals appear in varying frequency bands and can differ substantially across networks.11 
This variability is due to the complex hierarchal organisation of projections between 
different granular layers forming connections between different areas,12,13 which oscil-
late at either lower or higher frequencies.14 These spectral signatures of connectivity 
require high temporal resolution and cannot be captured by fMRI.15,16 

Previous EEG studies have shown altered patterns, such as increased frontal-to-parie-
tal connectivity in ALS.6,8,17 To date however, there have been limited attempts to lo-
calise abnormal EEG patterns to specific brain regions. A recent magnetoencephalog-
raphy study in ALS has focussed on slow/broadband fMRI-like activity, and has 
demonstrated widespread changes within the posterior brain regions.18 However, be-
cause network interactions are often marked by narrow band cortical oscillations,19 it 
has not been possible to address the spectral aspects of ALS-specific changes in brain 
networks using broadband signals. Moreover, although source-space studies that use 
frequency-specific analysis have also been performed in ALS,20,21 the phase- and am-
plitude-based connectivity profiles of specific brain networks affected by ALS remain 
to be established.  

The majority of the commonly used EEG connectivity measures falls into two catego-
ries: amplitude-based and phase-based indices. Within a given frequency-band, these 
two different groups of measures reflect two conceptually different aspects of the cor-
tical communication. Amplitude-based measures are predominantly used to quantify 
co-modulation of the oscillatory activity in distinct brain areas at infra-slow rates (<0.1 
Hz), which are shown to resemble slow co-modulations observed in resting-state 
fMRI.22,23 These fluctuations seem to emerge from the regulation and coordination of 
the network activity for an (upcoming) functionally distinct task in the brain at larger 
temporal and spatial scales; therefore, reflecting the functional organisation of the 
brain networks.11,24,25 Phase-based coupling likely informs on facilitation and regula-
tion of communication between distinct brain areas on faster timescales.11,26 In princi-
ple, these two measures are independent of one another.27 For instance, the activity in 
two brain regions can strongly co-vary, albeit their phase values being randomly 
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distributed. These two types of measures and their corresponding underlying mecha-
nisms seem to interact and work together; with the amplitude-based coupling indi-
cating the priming of the activation of brain areas needed for an upcoming task, and 
the phase-based coupling indicating the instantaneous synchronous influences in the 
networks.26 Nevertheless, exploring brain dynamics exclusively using either ampli-
tude- or phase-based connectivity measure provides limited insights into the under-
lying functional changes and ALS pathophysiology in general.  

To date, evidence of correlation between the brain network impairments in ALS ob-
served from neuroelectric signals and clinical scores of motor and cognitive function 
has been limited. In addition to this, the observed changes have not discriminated 
between the traditionally-defined clinical ALS subgroups (e.g. bulbar- versus spinal-
onset ALS or ALS with presence or absence of the pathologic hexanucleotide expan-
sion in C9orf72).6,28 

Here, we have reconstructed resting-state brain activity and performed functional 
connectivity analysis using both amplitude- and phase-based measures in a large 
group of ALS patients and healthy controls. Our findings correlate with clinical 
measures, providing robust evidence that measurement of functional connectivity can 
be used as a complementary investigative tool to interrogate ALS-associated changes 
in brain networks. 

Methods 
Ethical approval 
Approval was obtained from the ethics committee of Beaumont Hospital, Dublin, Ire-
land (REC reference: 13/102) and the Tallaght Hospital / St. James's Hospital Joint Re-
search Ethics Committee (REC) (REC reference: 2014 Chairman’s Action 7, CRFSJ 
0046) for St James’s Hospital, Dublin, Ireland. The experimental procedure conformed 
to the Declaration of Helsinki. All participants provided written informed consent be-
fore taking part in the experiments. 

Participants 
Patient recruitment 

Patients with ALS were recruited from the National ALS clinic in Beaumont Hospital 
Dublin. Healthy controls were recruited from an existing control cohort of a neuro-
psychology study in ALS.29 

Inclusion criteria 

All ALS patients were within the first 18 months of their diagnosis and fulfilled the 
revised El Escorial diagnostic criteria for Possible, Probable or Definite ALS.30  



3

Network disruption in ALS 

 69 

Exclusion criteria 

Patients diagnosed with primary lateral sclerosis, progressive muscular atrophy, flail 
arm/leg syndromes, prior transient ischemic attacks, multiple sclerosis, stroke, epi-
lepsy, seizure disorder, brain tumours, structural brain abnormalities, other neuro-
degenerative conditions and other medical morbidities, such as human immunodefi-
ciency virus, were excluded. 

The demographic profile of patients and controls 

A total of 56 ALS patients with spinal onset (m/f: 41/15; mean age: 57.9±12.2 years), 15 
patients with bulbar onset (m/f: 10/5; age: 59.0±8.4 years) and three patients with res-
piratory onset (m/f: 2/1; age: 62.0±5.3 years) were recruited, along with 47 healthy con-
trols (m/f: 15/32; age: 58.4±12.3) (see Table 1). Patients and controls were matched for 
age (Mann-Whitney U-test, p = 0.87). The post-hoc 2-way ANOVA analysis of gender-
imbalance (Chi-Square test, p < 0.001) showed no significant interaction effects on the 
main findings (Supplementary Fig. 1). 

Genetic profile 

Seven (m/f: 4/3; age: 61.0±7.4) of 73 genetically tested patients had the hexanucleotide 
repeat expansion in C9orf72 (see Table 1). 

Experiment 
Experimental paradigm 

The experiment was resting-state with eyes open, divided into three 2-minute record-
ing blocks, allowing for rest between blocks. Subjects were seated in a comfortable 
chair, asked to relax and let their mind wander, while they fixate their gaze at the 
letter X (6 cm × 8 cm) printed on an A4 sheet of paper placed approximately 1 m in 
front of them. 

EEG acquisition 

EEG data with 128 channels were collected using the BioSemi® Active Two system (Bi-
oSemi B.V., Amsterdam, The Netherlands) and sampled at 512 Hz after a low-pass anti-
aliasing filter (0-104 Hz) which was applied by the acquisition hardware. Recordings 
were conducted in dedicated laboratories in the University of Dublin and St. James’s 
Hospital, Dublin. 

MRI data 

Magnetic resonance data were available for 37 ALS patients.31 Structural T1-weighted 
MRI data were acquired on a 3 Tesla Philips Achieva system with a gradient strength 
of 80 mT/m and slew rate of 200 T/m/s using an 8-channel receive-only head coil. 
They were obtained using a three-dimensional inversion recovery prepared spoiled 
gradient recalled echo (IR-SPGR) sequence with Field-of-view = 256×256×160 mm, 
spatial resolution = 1 mm3.31,32 MRI scans were individually screened for the presence 
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of vascular alterations on FLAIR and DWI sequences and patients with co-morbid vas-
cular white matter lesions were not included.33 

Table 1. Breakdown of demographics. 

Group N Male Female Age 
(years)† 

Disease 
duration 
(days)† 

EEG delay 
(days)† 

ALSFRS-R† 

Controls 47 15 ‡ 32 ‡ 58.4±12.3    

ALS        

ALL 74 53 ‡ 21 ‡ 58.3±11.3 694±623 221±327 37.5±6.5 
(n = 61) 

Spinal 56 41 15 57.9±12.2 736±688 239±370 37.4±6.2 
(n = 47) 

Bulbar 15 10 5 59.0±8.4 497±225 185±100 38.5±8.4 
(n = 11) 

Thoracic 3 2 1 62.0±5.3 890±617 79±46 35.0±5.6 
(n = 3) 

C9orf72+ 7 4 3 61.0±7.4 908±917 385±408 34.8±9.5 
(n = 6) 

C9orf72- 66 49 17 58.4±11.2 673±593 204±318 37.8±6.3 
(n = 54) 

† Numbers show mean ± standard deviation 
‡ Effects of gender imbalance were found insignificant 
· Disease duration is the time interval between the estimated symptom onset and the EEG recording 
· EEG Delay is the time interval between the date of diagnosis and the EEG recording 
· ALSFRS-R = Amyotrophic lateral sclerosis functional rating scale revised 
· C9orf72± = Presence/Absence of the repeat expansion in the chromosome 9 open reading frame 72 

Disease severity and neuropsychology data 

The ALS functional rating scale revised (ALSFRS-R) scores34 from 61 patients, and con-
temporaneous scores from a standardised neuropsychological battery35,36 from 34 pa-
tients were obtained for clinico-neurophysiological correlations. The scores from the 
neuropsychological battery were standardised into z-scores, adjusting for age and ed-
ucation from a sample of 100 healthy controls. 

Data analysis 
EEG data preprocessing 

An automatic artefact rejection method37 based on statistical thresholding was used 
to discard data contaminated by noise (Controls: mean 10%, range 2-19%; ALS: mean 
11%, range 4-24%). After visual inspection, channels with higher levels of noise (Con-
trols: mean 2, range 0-7; ALS: mean 3.8, range 0-10) were removed and then 
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interpolated from the rest of the electrodes using spherical spline interpolation.38 Data 
were band-pass (1-97 Hz) and notch (50 Hz) filtered, and referenced to common av-
erage. 

EEG source localisation 

EEG data were source-reconstructed using the linearly constrained minimum variance 
(LCMV) beamformer39 to obtain time-varying signals originating from the brain. An 
atlas-based approach was applied to estimate signals from 90 brain regions. The in-
cluded regions of interest (ROI) were from the automated anatomical labelling (AAL) 
atlas,40 excluding the cerebellum and including the subcortical regions (see Supple-
mentary Fig. 2). 

Estimating spectral power 

For each ROI, spectral power was calculated using the auto-spectrum: 

𝑆𝑆� =  |𝐹𝐹𝐹𝐹{𝑥𝑥𝑥𝑥𝑥𝑥}|� 

where 𝑥𝑥𝑥𝑥𝑥𝑥 is a time-domain signal corresponding to brain region and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is a Fou-
rier transformation. Spectral power was estimated in six frequency bands, as the sum 
of the auto-spectrum values within each frequency band. 

Estimating functional connectivity 

For each pair of ROI, functional connectivity was calculated from two different per-
spectives to inform on different aspects of connectivity between brain regions.  

An amplitude-based measure, the ‘amplitude envelope correlation’ (AEC),23 measures 
the correlation between the power envelopes of two oscillatory time-series. It reflects 
the simultaneous presence and co-modulation of the intensity of the oscillatory activ-
ity in two regions. The phase synchrony of the oscillations in the two ROI is not re-
flected in AEC. This amplitude-based measure was chosen because of its capability to 
mirror the functional networks obtained in fMRI studies.41  

A phase-based measure, the ‘imaginary coherence’ (iCoh),42 captures the extent to 
which two signals have a constant relative non-zero phase. This measure reflects the 
neuronal communication between the brain regions that contribute to synchronous 
neural oscillations, even though the intensity of the activities in the two ROI may be-
have differently. 

Estimating the functional connectivity in source-space requires caution, since signals 
beamformed at spatially separate cortical locations are not necessarily independent.43 
This signal leakage can lead to spurious zero-lagged connectivity between recon-
structed signals.44 Hence, removing instantaneous relationships between pairs of pro-
jected signals would mitigate the problem, albeit at the expense of removing true in-
stantaneous interactions between them. The implementation of the connectivity 
measures in this study corrects for this zero-lag leakage.  
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Amplitude envelope correlation 

To mitigate the problem of spurious connectivity caused by source localisation meth-
ods, we performed time-domain orthogonalisation of the reconstructed time-series45 
between each pair of the ROI before estimating the power envelopes, as following: 

𝑝𝑝� = |𝐻𝐻𝐻𝐻{𝑥𝑥𝑥𝑥𝑥𝑥}|  
𝑝𝑝� = |𝐻𝐻𝐻𝐻{𝑦𝑦𝑦𝑦𝑦𝑦}| 

where 𝑥𝑥𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦𝑦𝑦 are time-domain signals representing two brain regions and fil-
tered to a specific frequency band, and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is a Hilbert transformation. Estimated 
power envelopes were then down-sampled to 0.5 Hz. As a measure of association, an 
absolute value of Pearson’s correlation was used on the entire log-transformed power 
time-series, as following: 

��𝑖𝑖 = � ��𝑙𝑙���𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝�), 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑥�� 

Imaginary coherence 

Unlike AEC, iCoh is not affected by the limitation of source localisation methods.44 It 
is defined as following: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) = |ℐ𝑚𝑚�𝑆𝑆��(𝑓𝑓)�|���𝑆𝑆�(𝑓𝑓)𝑆𝑆�(𝑓𝑓) 

where ℐ𝑚𝑚𝑚𝑚𝑚��} denotes the imaginary part of cross-spectral density between the signal 
𝑥𝑥𝑥𝑥𝑥𝑥 and 𝑦𝑦𝑦𝑦𝑦𝑦, whereas 𝑆𝑆� and 𝑆𝑆� are the auto-spectral densities calculated for those 
signals. Imaginary coherence was estimated from 2 s long epochs. 

These two measures were calculated for all possible pairs of estimated ROI signals, 
resulting in two symmetric 90×90 connectivity matrices for each subject. This was 
carried out for six separate frequency bands: δ (2-4 Hz), θ (5-7 Hz), α (8-13 Hz), β (14-
30 Hz) and γ (γl: 31-47 Hz, γh: 53-97 Hz). Frequencies of 48-52 Hz were excluded from 
the analysis due to the potential power-line noise. This resulted in 12 connectivity ma-
trices per subject which are referred to as ‘Point-to-point connectivity’. These matrices 
can be seen as weighted network matrices with elements representing link weights 
between network nodes. Additionally, each matrix was averaged using algebraic mean 
across ROI to estimate the average connectivity of each brain region. This resulted in 
one value per ROI, representing mean node strength (average link weight), from each 
connectivity matrix. 

Connectivity modules 

To extract and compare the connectivity modules/networks affected in ALS, we used 
non-negative matrix factorisation (NMF).46 This method factorises a given matrix V, 
such that 𝑉𝑉�×� ≈ 𝑊𝑊�×� ∙ 𝐻𝐻�×�, where matrices 𝑊𝑊 (weight vectors) and 𝐻𝐻 (basis vec-
tors) are non-negative and 𝑛𝑛, 𝑘𝑘 and 𝑚𝑚 denote the number of subjects, number of basis 
vectors and number of all possible brain connections, respectively. The non-negativity 
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constraint makes the NMF purely additive and therefore, suitable for the decomposi-
tion of complex connectivity patterns (𝑉𝑉���) into 𝑘𝑘 basis vectors (that is, connectivity 
modules or networks) represented as a positive connectivity matrix (𝐻𝐻���). Addition-
ally, weight matrix (𝑊𝑊���) informs us of the level of activation of each network per 
subject. 

Factorisation of concatenated connectivity data from both healthy controls and ALS 
patients was used to reveal latent discriminant networks that are altered in ALS. To 
identify the networks that are affected in ALS, we applied NMF on all point-to-point 
connections that reached significant difference (Mann-Whitney U-test, p < 0.05) be-
tween healthy controls and ALS patients. Factorisation was applied on a data matrix 
containing an equal number (n = 47) of healthy controls and ALS patients (selected at 
random) to avoid any bias towards one of the groups. The random sampling of ALS 
patients was repeated 250 times and the matrices 𝑊𝑊 and 𝐻𝐻 were averaged over the 
outcomes. At each run, to avoid the local minimum problem during the numerical 
solutions, multiple random starting values (n = 100) for 𝑊𝑊 and 𝐻𝐻 matrices were used. 
The number of modules to be extracted from the connectivity matrices was deter-
mined as the value that minimised the Bayesian information criterion.47 

Correlates of EEG with MRI, neuropsychology and disease sever-
ity 

We correlated the signal analysis findings with the structural MRI data, motor disease 
severity (ALSFRS-R) and cognitive scores derived from a neuropsychological battery. 

MRI studies have consistently shown motor and extra-motor grey matter atrophy48,49 
and correlation between motor system pathology with ALSFRS-R.3,50–52 Consequently, 
we first sought to correlate the alterations in connectivity within motor and frontal 
networks (algebraic mean of the network connectivity matrix) with the cortical vol-
ume of those networks; where both motor and frontal networks are represented by 
several ROI (see section ‘Network definitions for correlation analysis’ in the Supple-
mentary material). 

Subsequently, the algebraic mean of the motor network connectivity matrix was cor-
related with the ALSFRS-R scores. In addition, the scores from the neuropsychological 
battery were correlated with the alterations in frontoparietal and frontotemporal net-
works as captured by the weights corresponding to these networks from the NMF 
analysis. More specifically, we used the composite of summed executive function 
scores for the correlation with the alterations in frontoparietal network, and the com-
posite of summed language function scores for the correlation with the alterations in 
frontotemporal network. The executive composite score included the following tests: 
Verbal fluency,53 Backward Digit span,53 D-KEFS Sorting Test,54 D-KEFS Colour-Word 
Interference Test,54 Reading the Mind in the Eyes55 and Conflicting Emotional Prosody 
from the Florida Affect Battery.56 The language composite score included: the PALPA 
(Auditory Lexical Decision, Visual Lexical Decision, Word Spelling, Word Reading, 
and Auditory Sentence-Picture Matching and Written Sentence-Picture Matching 
subtests)57 and the Boston Naming test.58 
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In all cases, except in correlations with cognitive scores, the Spearman’s partial corre-
lation was used to test the presence of the hypotheses, and at the same time to correct 
for the age of patients. In the case of correlations with cognitive scores, the Spearman’s 
correlation was used, since the cognitive scores were z-scored, already accounting for 
age. 

Statistical analysis 
Statistical analysis of high-dimensional measures suffers from high rates of false posi-
tive findings, which necessitates the use of advanced statistics to mitigate the prob-
lem. To determine the statistical significance of the observed differences in each of 
the three high-dimensional measures (spectral power, AEC and iCoh), we used fre-
quentist statistics together with an implementation of the Empirical Bayesian infer-
ence (EBI)59,60 suited to neuroelectric signal analysis.61 EBI provides major benefits, 
such as reliable estimation of FDR, calculation of statistical power and the posterior 
Bayesian probability, which are not afforded by alternative methods.  

We used the area under the curve (AUC) of the receiver operating characteristics 
curve to make the between-group comparisons.62 To further infer statistical signifi-
cance in a high-dimensional space, EBI is applied on the test statistics (i.e. AUC), 
which exploits both the original (non-null) observations and null-permuted data to 
estimate the probability density function of the data and null, respectively. We then 
estimated the posterior probability (P1) and the statistical power (1-β). The statistical 
analysis was performed separately for each of the three measures and for each fre-
quency band in the case of point-to-point connectivity, while in the case of spectral 
power and average connectivity the analysis was done on the concatenated data across 
frequencies. False discovery rate (FDR) was set to 10%. This selection was based on 
careful inspection of curves that explain the relationship between FDR and power (or 
between Type I and Type II errors) as a function of thresholds.61 

To assess the statistical significance and statistical power of the connectivity modules 
from the NMF analysis and the correlations between EEG connectivity and other 
measures, a null and non-null bootstrapping resampling (n = 10000) approach was 
applied.6,61 In the former case, the resampling was applied on the NMF weights, 
whereas in the latter case, it was applied on the data used in the correlation analysis. 
Here, to control for multiple comparisons, rejection of null hypothesis was addition-
ally checked using adaptive FDR (aFDR)63 set to 5%.  

In the analysis of ALS subgroups 2-way ANOVA was applied on all three EEG measures 
(spectral power, AEC and iCoh) in two frequency bands that showed the most prom-
inent changes in ALS patients compared to healthy controls. The analysis was per-
formed on each measure and frequency band separately, with the C9orf72 status (pres-
ence/absence of the gene mutation) and the site of symptom onset (bulbar/spinal) 
chosen as independent variables. Data used were averaged from selected brain regions 
that had the highest discriminatory power between heathy controls and ALS patients 
in each measure and frequency band separately. Prior to the ANOVA analysis, data 
were transformed to standard normal distributions using the inverse normal transfor-
mation.60,64 
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The analyses were carried out in MATLAB (v2018a Mathworks Inc., Natick, MA, USA) 
using the FieldTrip toolbox,65 EBI toolbox,61 and custom written scripts. 

Results 
Spectral power revealed similar decrease across low- 
and mid-frequency bands 
Spectral power in ALS was significantly decreased and widespread from δ- to β-band 
(Fig. 1). The most notable changes were found in the occipital and temporal (from δ- 
to β-band), lateral/orbitofrontal (δ- and θ-band) and sensorimotor (β-band) regions. 

 

 
Figure 1. In ALS, spectral power is significantly decreased between δ and β frequency bands. Notice 
the dominant decrease in the posterior and temporal regions. Statistical difference between healthy con-
trols (n = 47) and ALS patients (n = 74) was assessed in the six defined frequency bands using EBI. FDR was 
set to 10%, yielding an estimated statistical power of 1 - β = 0.82 and posterior probability of P1 = 0.64 (across 
all frequency bands). AUC: Area under the receiver operating characteristic curve. No changes were de-
tected in the γ frequency bands; therefore, they are not shown. Frequency bands: δ (2-4 Hz), θ (5-7 Hz), α 
(8-13 Hz) and β (14-30 Hz). 
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Average connectivity reflects frequency-dependent 
changes in co-modulation and synchrony 

Changes in the amplitude envelope correlation revealed in-
creased co-modulation at δ, θ & γl bands 

ALS patients showed a significant and widespread increase in AEC connectivity com-
pared to healthy controls (Fig. 2), with most notable changes in the central and pos-
terior (δ-, θ- and γl-band), and frontal (δ- and γl-band) regions. 

Changes in imaginary coherence revealed decreased synchrony at 
δ & β-bands 

ALS patients showed significant decrease in iCoh connectivity across multiple fre-
quency bands compared with healthy controls (Fig. 3). The changes were observed in 
temporal and frontal lobes from δ- to β-band, while in β-band the decreased connec-
tivity was additionally observed in the sensorimotor cortex. For an overview of results 
from the statistical analysis of spectral power, and average co-modulation and syn-
chrony, see Supplementary Fig. 3. 

Changes in point-to-point connectivity patterns are 
widespread 
Significant widespread increase in the point-to-point co-modulation of the neural ac-
tivity was found in ALS patients compared with healthy controls in θ- and γl-band 
(Fig. 4, upper). The θ-band co-modulation was observed within the regions encom-
passing the central, parietal and occipital lobe, as well as between these regions and 
the remainder of the brain; whereas the γl-band co-modulation was present in the 
whole brain, but to a lesser extent within the frontal, between frontal and subcortical, 
and within and between temporal and subcortical regions. 

Conversely, we detected significant decreases in the point-to-point synchrony in ALS 
patients compared with healthy controls in δ- and β-band (Fig. 4, lower). As it was the 
case for co-modulation, the changes in synchrony were widespread – the δ-band syn-
chrony was decreased within the frontal regions, between the frontal and the occipital, 
temporal and subcortical regions, as well as between and within the temporal and 
subcortical regions; the β-band synchrony was primarily decreased between and 
within the central and parietal regions and the rest of the brain (except the frontal 
region), and to a lesser extent within the occipital and subcortical regions. 
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Figure 2. In ALS, the average co-modulation is significantly increased in the δ, θ & γ frequency 
bands. Notice the increase of amplitude envelope correlation (AEC) in the central and posterior regions 
(δ-, θ- and γl-band) and frontal regions (δ- and γl-band). Statistical difference between healthy controls (n = 
47) and ALS patients (n = 74) was assessed in the six defined frequency bands using EBI. FDR was set to 
10%, yielding an estimated statistical power of 1 - β = 0.93 and posterior probability of P1 = 0.71 (across all 
frequency bands). AUC: Area under the receiver operating characteristic curve. Frequency bands: δ (2-4 
Hz), θ (5-7 Hz), α (8-13 Hz), β (14-30 Hz) and γ (γl: 31-47 Hz, γh: 53-97 Hz). 
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Figure 3. In ALS, the average synchrony is significantly decreased in the δ & β frequency bands. 
Notice the decrease of imaginary coherence (iCoh) in temporal and frontal lobes (δ-, θ- and α-band), and 
in the sensorimotor cortex (β-band). Statistical difference between healthy controls (n = 47) and ALS pa-
tients (n = 74) was assessed in the six defined frequency bands using EBI. FDR was set to 10%, yielding an 
estimated statistical power of 1 - β = 0.55 and posterior probability of P1 = 0.77 (across all frequency bands). 
AUC: Area under the receiver operating characteristic curve. No changes were detected in the γ frequency 
bands; therefore, they are not shown. Frequency bands: δ (2-4 Hz), θ (5-7 Hz), α (8-13 Hz) and β (14-30 Hz). 
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Figure 4. The increase of point-to-point co-modulation and the decrease of point-to-point syn-
chrony have a widespread pattern in ALS patients. Note that the widespread patterns of increased co-
modulation (AEC) are predominantly in the θ- and γl-bands, while synchrony (iCoh) patterns were predom-
inantly in the δ- and β-bands. Statistical difference between healthy controls (n = 47) and ALS patients (n = 
74) was assessed separately in the six defined frequency bands using EBI. FDR was set to 10% (in each fre-
quency band), yielding an estimated statistical power of 1 - β = 0.96 and posterior probability of P1 = 0.56 in 
the θ-band AEC and an estimated statistical power of 1 - β = 0.89 and posterior probability of P1 = 0.7 in the 
γl-band AEC. For synchrony measures, the 10% FDR threshold yielded an estimated statistical power of 1 - 
β = 0.39 and posterior probability of P1 = 0.8 in the δ-band iCoh and an estimated statistical power of 1 - β = 
0.16 and posterior probability of P1 = 0.83 in the β-band iCoh. AUC: Area under the receiver operating char-
acteristic curve. No changes were detected in the other frequency bands; therefore, they are not shown. The 
abbreviations ‘Front, ‘Cntr/Prtl, ‘Occp, ‘Tmp’, ‘Subcort’ stand for Frontal, Central/Parietal, Occipital, Tem-
poral and Subcortical, respectively. For the order of ROI used in the connectivity matrix, see Supplementary 
Fig. 2. Frequency bands: δ (2-4 Hz), θ (5-7 Hz), β (14-30 Hz) and γl (31-47 Hz). 
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The connectivity modules describe the (sub-)networks 
affected in ALS 
Considering the non-specific widespread connectivity patterns identified in point-to-
point analysis, we sought to further analyse the complex patterns into distinct net-
works. The Bayesian information criterion determined the preferred number of con-
nectivity modules (M) to be one or two in each frequency band and measure. The 
factorised networks (i.e. the basis vectors extracted by NMF) resemble the occipital 
network (θ-AEC M1; Fig. 5A), motor-loops of basal ganglia and/or thalamus (γl-AEC 
M1; Fig. 5B), frontal network (δ-iCoh M1; Fig. 5C), sensorimotor network (β-iCoh M1; 
Fig. 5D), frontoparietal network (θ-AEC M2; Fig. 5E), frontotemporal network (γl-AEC 
M2; Fig. 5F) and combined occipitofrontal and uncinate fasciculus (δ-iCoh M2; Fig. 
5G).  

Statistical analysis of the weights corresponding to both modules of AEC and iCoh 
showed the networks that were significantly different in the ALS patient group. 
Namely, weights corresponding to θ-AEC M1 (p < 0.001; 1-β0.05 = 0.99) and M2 (p < 
0.001; 1-β0.05 = 1) and γl-AEC M1 (p < 0.001; 1-β0.05 = 0.97) and M2 (p = 0.001; 1-β0.05 = 
0.89) were significantly higher in ALS patients. Conversely, weights corresponding to 
δ-iCoh M1 (p < 0.001; 1-β0.05 = 0.9) and M2 (p = 0.014; 1-β0.05 = 0.65) and β-iCoh M1 (p < 
0.001; 1-β0.05 = 0.99) were significantly lower in ALS patients. In all cases, the statistical 
significance and statistical power of the connectivity modules were estimated using a 
bootstrapping method and controlled for false positives with an aFDR set to 5%. Fig-
ure 5 points to the increased or decreased activity of each network in ALS, where all 
the network connections in a module were pooled, normalised to the range between 
0 and 1, and then each network was multiplied with the sign of the AUC value (centred 
around zero). The AUC value for each network corresponds to NMF weights of both 
groups. 

EEG differences between ALS patients and controls do 
not discriminate between ALS subgroups 
To assess the differences between ALS subgroups based on site of onset (spinal, 
bulbar) and presence or absence of the pathologic hexanucleotide expansion in 
C9orf72, we used EEG measures that discriminated between ALS patients and healthy 
controls (Fig. 6). Brain regions that reached the highest AUC values between ALS pa-
tients and healthy controls in each of the following measures include: spectral power 
in θ-band (L/R occipital gyri) and β-band (L/R post-central gyri and precuneus); co-
modulation in δ-band (L/R postcentral and superior parietal gyri) and θ-band (L/R 
calcarine fissure and lingual gyri); synchrony in δ-band (L/R anterior cingulate gyri) 
and β-band (L/R pre- and post-central gyri). Although these measures showed differ-
ence between ALS patients and healthy controls, they did not discriminate between 
subgroups based on site of onset (p1) or genomic status (p2) in any of the measures 
(i.e. spectral power in θ-band (p1 = 0.471; p2 = 0.218) and β-band (p1 = 0.484; p2 = 0.301); 
co-modulation in δ-band (p1 = 0.554; p2 = 0.445) and θ-band (p1 = 0.708; p2 = 0.267); 
synchrony in δ-band (p1 = 0.826; p2 = 0.35) and β-band (p1 = 0.409; p2 = 0.717)). 
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Figure 5. The connectivity modules reveal the (sub-)network with frequency-specific increase of 
co-modulation and decrease of synchrony in ALS. The factorised (sub-)networks resemble the occipital 
network (A), motor-loops of basal ganglia and/or thalamus (B), frontal network (C), sensorimotor network 
(D), frontoparietal network (E), frontotemporal network (F) and combined occipitofrontal and uncinate 
fasciculus (G). The connectivity modules from NMF analysis of the affected co-modulation or synchrony in 
ALS reveal the altered brain networks, while the changes in module’s weights show the increase or decrease 
in the activity of these networks. Statistical analysis between ALS patients and healthy controls (nc = 47 & 
np = 47) of the weights corresponding to the connectivity modules reached significance in all cases (marked 
with asterisk) as controlled by aFDR at q = 0.05. Frequency bands: δ (2-4 Hz), θ (5-7 Hz), β (14-30 Hz) and 
γl (31-47 Hz).  
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Figure 6. The observed EEG spectral power and connectivity changes are not different between ALS 
subgroups. The comparison shows the differences between healthy controls and ALS subgroups. Statistical 
difference between healthy controls and pooled ALS patients was assessed using Mann-Whitney U-test, 
whereas statistical difference between patient subgroups was assessed using 2-way ANOVA in all three 
measures, each in two frequency bands with the most prominent changes (see Fig. 1-3). None of the 
measures showed statistically significant difference among ALS subgroups. Spectral power data were log-
transformed for plotting purposes. The abbreviations ‘HC’, ‘SPN’, ‘BULB’, ‘C9-’, ‘C9+’ stand for Healthy con-
trols, Spinal, Bulbar, C9orf72-negative and C9orf72-postive, respectively. The number of ALS patients in 
each subgroup are n = 55, 15, 63 and 7, respectively. There are six C9orf72-postive patients in the spinal and 
one in the bulbar subgroup. Frequency bands: δ (2-4 Hz), θ (5-7 Hz) and β (14-30 Hz). 
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The EEG measures of connectivity change reflect the 
neurodegeneration and functional impairment in both 
motor and cognitive domains 
The changes in cortico-cortical EEG connectivity were correlated with the changes 
captured by other modalities in both cognitive and motor domain; namely, the iden-
tified discriminant measures correlated with structural degeneration as captured by 
MRI, as well as the functional scores (ALSFRS-R for motor function and neuropsycho-
logical battery scores for cognitive function). Figure 7 shows the significant correla-
tions in each domain and for functional and structural measures.  

For EEG-MRI (Fig. 7A-B), these correlations were between the altered connectivity of 
motor and frontal networks with the grey matter volume of those networks. In the 
case of the motor network, the average motor network β-band iCoh was correlated 
with the average cortical volume (Fig. 7A), whereas in the case of the frontal network, 
the average δ-band iCoh connectivity was correlated with average cortical volume 
(Fig. 7B). We also found correlations between altered EEG connectivity and functional 
scores (Fig. 7C-E). In the motor domain, the correlation was between the ALSFRS-R 
scores with the average β-band iCoh connectivity changes in the motor network (Fig. 
7C). In the cognitive domain, we found correlations between the neuropsychological 
battery scores and the alterations in the frontoparietal and frontotemporal networks 
(Fig. 7D-E); Namely, between the composite of executive function scores and the θ-
band AEC NMF weights (frontoparietal network), as well as between the composite of 
language function scores and the γl-band AEC NMF weights (frontotemporal net-
work). 

These correlations (Fig. 7) were significant between the changes in connectivity and 
grey matter volume in the motor network (r = 0.34; p = 0.032; 1-β0.05 = 0.55) and frontal 
network (r = 0.47; p = 0.006; 1-β0.05 = 0.82); changes in connectivity of the motor net-
work and ALSFRS-R (r = 0.27; p = 0.029; 1-β0.05 = 0.57); changes in frontoparietal net-
work with the executive function scores from the neuropsychological battery (r = -
0.34; p = 0.033; 1-β0.05 = 0.54); and changes in frontotemporal network with the lan-
guage scores from the neuropsychological battery (r = -0.38; p = 0.034; 1-β0.05 = 0.59). 
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Figure 7. The changes in EEG connectivity correlate with the structural atrophy in MRI in the motor 
(A) and cognitive (B) networks, as well as measures of functional motor impairment (C. ALSFRS-
R), functional cognitive impairment (D. and E. Standardised neuropsychological battery scores). 
The values of 𝒓𝒓 and 𝒑𝒑 correspond to Spearman’s partial correlation corrected for age (A-C) and Spearman’s 
correlation (D and E), whereas 1-β0.05 represents statistical power at 0.05. The number of ALS patients used 
in the analyses are n = 37, 37, 61, 34 and 34, respectively. The shown p-values are aFDR-corrected at q = 0.05. 
Frequency bands: δ (2-4 Hz), θ (5-7 Hz), β (14-30 Hz) and γl (31-47 Hz). 

Discussion 
This study demonstrates that neuroelectric signal analysis can capture and quantify 
important changes that occur in functional networks in ALS. Using spectral power and 
two conceptually different measures of connectivity that reflect co-modulation (AEC) 
and synchrony (iCoh) we have demonstrated statistically-robust neurophysiological 
evidence of a multisystem disruption of networks in ALS patients. These disruptions 
correlate with functional impairment as detected using ALSFRS-R and neuropsycho-
logical assessment, as well as with structural changes captured by MRI. 

Spectral power changes in ALS disease 
The observed changes in spectral power are consistent with previously described θ- 
and α-band power decrease above the sensorimotor network.6,66 Other studies in ALS 
have similarly identified decreased post-movement β-band power above motor corti-
ces,67,68 which is considered a reflection of idling and/or an active inhibition of the 
motor network.69 

Different frequency bands are mediated by complex neurochemistry and oscillations 
of frequencies 12-80 Hz are linked to pyramidal neurons, regulated by GABAA inhibi-
tory interneurons.70 Loss of GABAergic interneurons, together with pyramidal neu-
rons, has been observed in both motor and non-motor areas in ALS; 71 consequently, 
the decrease in the lower frequency spectral power can be attributed to structural de-
generation of pyramidal cells and/or loss of interneurons that entrain them. These 
changes in spectral power observed beyond motor network4,6,9 across multiple 
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frequency bands, support the evolving recognition of significant involvement of non-
motor networks in ALS. 

Correlating connectivity changes in networks affected 
by ALS with structural MRI and clinical scores 
Our AEC connectivity findings are consistent with resting-state fMRI findings of in-
creased connectivity changes in the cingulate5,10 and parietal cortices,72 and prefron-
tal,5 temporal and parahippocampal73,74 regions in ALS patients. Factorised AEC net-
works from NMF analysis, showing increased connectivity in the θ- and γl-band, re-
semble the frontoparietal and frontotemporal networks, respectively.  

The frontoparietal network is required for active maintenance of information relevant 
for successful performance in working memory.75 Functional connectivity within this 
network,6,8,17 as well as the white matter volumes of association fibres within the 
frontal brain regions and cingulum are known to be affected in ALS; while the latter 
changes show correlation with memory impairments in ALS patients.76 In addition, 
degeneration of neurons in frontal and temporal regions3 and associated tracts76 is 
linked to language impairment77 in ALS. We have identified significant correlations 
between our observed neurophysiological changes in the frontoparietal and fronto-
temporal network and composite scores of executive and language function, respec-
tively. The observed negative correlation supports the role of such network dysfunc-
tion in cognitive impairment. These observations confirm the validity of neuroelectric 
signalling as a measure of clinically relevant network disruption in ALS.  

Analysis of the iCoh networks using NMF showed that the most prominent changes 
are in the δ-band frontal and β-band sensorimotor networks, further demonstrating 
impaired connectivity in ALS patients. The identified positive correlation with struc-
tural MRI indicates that functional abnormalities we have detected are due to the loss 
of cortical atrophy in these regions. Taken together with a positive correlation be-
tween the average β-band iCoh in the motor network and the ALSFRS-R, these data 
support the use of advanced neurophysiological tools to characterise motor network 
decline.  

Spectral EEG measures as a marker of ALS disease 
Numerous studies in neurodegenerative diseases, particularly in dementias, have 
identified the potential of EEG resting-state measures as biomarkers for differential 
diagnosis and clinical trial outcome measures (see the review by McMackin et al.78). 
By definition, ALS is a clinical diagnosis. The El Escorial criteria30 often used in clinical 
practice, allows for supportive evidence of both upper and lower motor neuron de-
generation, the latter based on clinical neurophysiological studies. Diagnosis relies on 
physicians’ expertise in marking specific set of symptoms corroborated by objective 
findings from laboratory, neurophysiological and neurological examination. Current 
clinical trial outcome measures similarly rely on semi-quantitative tools, such as the 
ALSFRS-R scale, a 48-point clinical measure of motor, bulbar and respiratory decline. 
To date, there have been no reliable objective measures of cognitive/behavioural 
change suited for use as outcomes in clinical trials. 
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Quantitative EEG has the potential to capture upper motor system changes in ALS. 
Transcranial magnetic stimulation (TMS) studies have already demonstrated the util-
ity of quantitative upper motor neuron biomarkers that distinguish ALS from mimic 
disorders.79 These TMS measures do not capture the broader, non-motor degenera-
tion established in ALS, such as that in cognitive networks. Conversely, EEG can cap-
ture both motor and non-motor disruption. This is especially desirable from the clin-
ical trial design perspective, where not only the severity of the disease, but specific 
(sub)phenotypes of disease that can be characterised by differential change in brain 
network architecture, are likely to be important in the evolution of a precision medi-
cine approach towards treatments.80 Our observed alterations in functional connec-
tivity corelate with structural degeneration, and functional motor and cognitive 
measures. These changes confirm that neuroelectric signal analysis has a potential to 
be developed as a novel marker of ALS that reflects additional and previously unchar-
acterised dimensions of the disease, regardless of the site of onset. The high level of 
AUC values for the co-modulation (0.72) and synchrony measures (0.27 or 0.73), show 
that these read-outs can be used to develop quantitative biomarkers after further anal-
ysis of the sensitivity-specificity characteristics, establishing normative values, and 
further validation steps. 

Conclusions  
This study is the first to simultaneously interrogate power activity, co-modulation and 
synchrony of brain networks in ALS to decipher the nature of change in network func-
tion caused by the disease using standard 128-channel EEG recordings. In doing so, we 
have identified increased co-modulation and decreased synchrony in both motor and 
non-motor networks. Taken together, these data provide a compelling argument for 
the development of quantitative EEG, a non-invasive and inexpensive technology, as 
a robust data-driven tool for measuring network disruption in ALS. 
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Supplementary material 
Supplementary methods 
EEG source localisation 

For source analysis, we pursued the following stages for head modelling, as well as 
projection of data to the source-space in order to obtain time-varying signals, wherein 
each signal represents a brain region. 

Head models 

For each subject with an MRI scan, a realistically-shaped volume conduction model 
was built. A three-layer conduction model, accounting for the brain, skull and scalp, 
was constructed using the Boundary Element Models (BEM) method,1,2 implemented 
in the open source software OpenMEEG.3 The BEMs were piece-wise approximated 
with 1000, 2000 and 3000 elements for scalp, skull and brain, respectively. Similarly, 
for controls and patients who did not undergo MRI, a realistically-shaped BEM based 
on the ICBM152 template4 with the same characteristics was constructed, as template-
based BEM and BEM based on individual MRI scans provide comparable localisation 
accuracy.5 For both groups, a 5 mm regular grid was generated in normalised space 
using the ICBM152 template and, separately for each subject, it was wrapped around 
the individual’s MRI data. Wrapping ensures that each potential source corresponds 
to the same location in the brain irrespective of individual anatomical differences. In 
addition, for each individual subject, a template with EEG electrode positions was re-
aligned using the fiducial points, obtained manually from the individual’s MRI data. 
Aligned in the same coordinate system, these structures were used for the calculation 
of normalised leadfields. The use of normalised leadfield avoids the potential norm 
artefact of the leadfield, in which the norm of the leadfield changes with location.6  

Projection to source-space 

EEG data were source-reconstructed using the linearly constrained minimum variance 
(LCMV) beamformer, a time-domain beamforming method.7 

Covariance matrices, needed for the reconstruction, were computed over a time win-
dow spanning the whole recording and using broadband data (1-97 Hz). In order to 
account for outliers in the data, the orthogonalised Gnanadesikan-Kettenring algo-
rithm was used for the robust estimation of the covariance matrix 8. Covariance ma-
trices were regularised using the Tikhonov method by 𝜇𝜇𝜇𝜇,9 where the regularisation 
parameter, 𝜇𝜇, is set to 5% of the mean variance of all EEG channels and 𝐼𝐼 is an identity 
matrix. This was done to avoid reaching an unstable arbitrary solution, caused by re-
duction in dimensionality due to interpolation of noisy channels. Additionally, it in-
creases temporal signal-to-noise ratio, albeit at the expense of increased spatial 
smoothness of the beamformed data.  

At each grid point we sought to estimate a dipole in the optimal orientation. To 
achieve this, we estimated the orientation of maximum power of the dipole using the 
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singular value decomposition (SVD) on the source-level covariance matrix.7 Beam-
former weights, constructed for the source localisation, spatially filter the scalp rec-
orded data and here were used to reconstruct time-series at each dipole location on 
the grid. One limitation of the LCMV beamformer is the overestimation of the sources 
in the centre of the head.6,7 To compensate for this, we normalised the weights by their 
vector norm before reconstructing the time-series.10 Source localisation was done us-
ing the FieldTrip toolbox.11 

Estimation of neural time-series at regions of interest 

An atlas-based approach was used to evaluate source-space data with respect to the 
anatomical brain regions.12,13 The cortex of each subject was parcelled according to the 
automated anatomical labelling (AAL) atlas.14 This was done by using a 5 mm regular 
grid based on the ICBM152 template and labelling all the cortical sources according to 
the AAL atlas. In this study we used 90 ROI from AAL atlas, excluding the cerebellum 
and including all the subcortical regions (olfactory cortex, insula, anterior/mid-
dle/posterior cingulate, hippocampus, parahippocampal gyrus, amygdala, caudate, 
putamen, globus pallidus and thalamus). For each ROI the centre of mass was calcu-
lated. To derive a single time-series for each ROI all the time-series within a ROI were 
weighted using a Gaussian weighting function with the half width at half maximum 
set to approximately 17 mm,13,15 as following: 

 𝑞𝑞��� � ������(−𝑟𝑟
�(𝑖𝑖𝑖

400 )
�

∙ 𝑦𝑦���(𝑖𝑖𝑖 (1)  

Where 𝑖𝑖 represents a count of all dipoles within a ROI, 𝑟𝑟 represents a distance in mil-
limetres of each dipole from the centre of mass of the given ROI and 𝑡𝑡 represent the 
length of the reconstructed signal. This means that signals that are 17 mm far from the 
centre of the ROI will be attenuated by a factor of 0.5. However, the direction of each 
estimated dipole is not necessarily the same as the other dipoles in the ROI. In such 
situations, simple averaging of neighbouring dipoles’ time-series would lead to can-
cellations and incorrect estimation of the effective activity of the ROI. Therefore, be-
fore deriving a single time-series of each ROI, we estimated the direction along the 
maximum power for each region by performing singular value decomposition on the 
orientations of dipoles within each ROI. Dipoles with the opposite direction (>90 de-
grees) to the estimated ROI’s maximal activity vector were sign-flipped. After com-
pleting these steps, we obtained 90 broadband time-series, each representing one ROI 
from the AAL atlas. This pipeline was applied to each subject individually.  

Network definitions for correlation analysis 

Two different anatomical atlases were used in the correlation analysis: AAL atlas for 
the connectivity and Destrieux atlas16 for the structural MRI analysis.  

The ROI used to represent the motor network in the connectivity analysis are: L/R 
supplementary motor area, L/R paracentral lobule, L/R precentral gyrus and L/R 
rolandic operculum; whereas for the MRI analysis are: L/R paracentral gyrus and 
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sulcus, L/R subcentral gyrus and sulcus, L/R precentral gyrus, L/R central sulcus, L/R 
precentral inferior sulcus and L/R precentral superior sulcus.  

Similarly, ROI used to represent the frontal network in both connectivity and MRI 
analyses are the anterior cingulate gyrus and all the frontal regions defined by AAL 
and Destrieux atlases, respectively. Namely, in the former case the included ROI are: 
L/R anterior cingulate, L/R rectus, L/R frontal superior orbital, L/R frontal medial or-
bital, L/R frontal middle orbital, L/R frontal inferior orbital, L/R frontal superior, L/R 
frontal middle, L/R frontal inferior opercular, L/R frontal inferior triangular and L/R 
frontal superior medial gyri. In the latter case the included ROI are: L/R anterior cin-
gulate gyrus and sulcus, L/R frontomarginal gyrus and sulcus, L/R transverse fronto-
polar gyrus and sulcus, L/R frontal inferior opercular gyrus, L/R frontal inferior orbital 
gyrus, L/R frontal inferior triangular gyrus, L/R frontal middle gyrus, L/R frontal su-
perior gyrus, L/R frontal inferior sulcus, L/R frontal middle sulcus and L/R frontal su-
perior sulcus. 
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Supplementary figures 

 
Supplementary Figure 1. The effects of gender and ALS disease in all three EEG measures in two 
frequency bands with the most prominent changes using 2-way ANOVA. Note that the interaction 
effects are not significant (n.s.) in all cases, eliminating the possibility of the gender-effect on the main 
findings. The statistical analysis, similar to the analysis of the ALS sub-groups, had two independent varia-
bles: gender (M/F) and group (HC/ALS). Prior to the analysis, data were transformed to standard normal 
distributions using the inverse normal transformation.17,18 Spectral power data were log-transformed for 
plotting purposes. The abbreviations ‘M’, ‘F’, ‘HC’ stand for Male, Female and Healthy controls, respectively. 
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Supplementary Figure 2. An Example of an AAL atlas-based connectivity matrix. From the Auto-
mated anatomical labelling (AAL) atlas 90 brain regions (excluding those in cerebellum) were grouped and 
colour-coded in the following order: frontal (blue), central and parietal (orange), occipital (green), temporal 
(purple) and subcortical (cyan) regions. Each group has regions from the left (L) hemisphere first and then 
from the right (R). The same connectivity matrix organisation was used in co-modulation and synchrony 
figures. The figure corresponds to co-modulation in α frequency band in heathy controls. 
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Abstract 
Background: Resting-state electroencephalography (EEG) holds promise for as-
sessing brain networks in amyotrophic lateral sclerosis (ALS). However, its ability to 
measure motor symptom severity remains unclear. We investigated whether neural 
oscillations in the sensorimotor network could serve as an objective, quantitative 
measure of progressive motor impairment and functional disability in ALS patients. 

Methods: Resting-state EEG was recorded in 18 ALS patients and 38 age- and gender-
matched healthy controls. We estimated source-localised β-band spectral power in 
the sensorimotor cortex. Clinical evaluation included lower (LMN) and upper (UMN) 
motor neuron scores, ALSFRS-R score, fine motor function (FMF) subscore, and pro-
gression rate. Correlations between clinical scores and β-band power were analysed 
and corrected using a false discovery rate of q = 0.05. 

Results: β-band power was significantly lower in patients than controls (P = 0.004). 
It correlated with LMN score (R = -0.65, P = 0.013), FMF subscore (R = -0.53, P = 0.036), 
and FMF progression rate (R = 0.52, P = 0.036). 

Conclusions: β-band spectral power in the sensorimotor cortex reflects clinically 
evaluated motor impairment in ALS. It merits further investigation as a biomarker for 
progressive functional disability. 
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Background 
Amyotrophic lateral sclerosis (ALS) is a multi-network neurological disorder with im-
pairment in the upper and lower motor neurons, as well as in the cognitive and be-
havioural systems.1 Whereas the diagnosis is primarily based on clinical examination 
as well as on electromyographic findings, clinical trial outcome measures rely on semi-
quantitative tools, such as ALSFRS-R (amyotrophic lateral sclerosis functional rating 
scale revised). A consensus on ALS clinical trials has emphasised the necessity for eas-
ily measured, objective biomarkers,2 which quantify the progression of specific aspects 
of motor or cognitive decline.  

The network-based approach using neurophysiological techniques has promise in the 
development of biomarker candidates in neurodegenerative diseases3 including ALS.4,5 
Spectral electroencephalographic (EEG) measures have an excellent temporal resolu-
tion as they capture electrical activity generated in the brain, whereas the limited spa-
tial resolution can now be ameliorated using high-density EEG and source-localisation 
techniques.6 Consequently, more spatially precise and sensitive network interrogation 
methods can now be used in clinical settings.7 Biomarkers based on resting-state EEG 
have recently shown promise for interrogating multiple networks and for discovering 
complex ALS phenotypes.4,8 

The utility of these EEG-based measures for specific assessment of progressive motor 
impairment and functional disability in ALS patients, however, has not been ade-
quately established. We hypothesised that the oscillations in the cortical sensorimotor 
network can quantify the severity and progression of motor symptoms in ALS. Based 
on previous studies,4,8,9 we chose the source-localised β-band spectral power in the 
sensorimotor network as the candidate-biomarker. The upper and the lower motor 
neuron (UMN and LMN) scores as well as the ALSFRS-R were used to measure motor 
symptoms. Here, we provide evidence that the β-band spectral power differs between 
ALS patients and healthy controls, and that it correlates with patients’ progressive 
motor impairment and functional disability.  

Methods 
Participants 
The study was approved by the Tallaght University Hospital/St. James's Hospital Joint 
Research Ethics Committee Dublin [references: 2014 Chairman’s Action 7; 2019-05 List 
17 (01)] and performed in accordance with the Declaration of Helsinki. All patients 
provided informed written consent, were prospectively recruited from the multidisci-
plinary ALS clinic based in Beaumont Hospital (Dublin, Ireland) and were all diag-
nosed with definite/probable/possible ALS in accordance with the El-Escorial Revised 
Criteria. Patients diagnosed with ALS restricted phenotypes or suffering from any 
other neurological condition were excluded.  
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Clinical assessment and motor symptom scores  
Motor impairment was graded by a LMN score representing a sum of the Medical Re-
search Council (MRC) muscle power scores in the following upper limb muscles: del-
toid, triceps, biceps, wrist flexors and extensors, fingers flexors and extensors, FDI and 
APB;10 it ranged from 0 (severe LMN signs) to 90 (absent LMN signs) corresponding 
to: 9 (muscles) × 2 (sides) × 5 (max. MRC score) = 90. Clinical examination included 
deep tendon reflexes and Hoffman’s sign. The UMN score was calculated by adding 
one point for each abnormal reflex observed11 ranging from 0 (absent UMN signs) to 8 
(severe UMN signs) corresponding to: [3 (brisk reflexes) + 1 (positive Hoffmann sign)] 
x 2 (sides) = 8. 

Functional disability was assessed with the ALSFRS-R. The fine motor function (FMF) 
subscore was calculated considering four items from the scale (handwriting, cutting 
food and handling utensils, dressing and hygiene, turning in bed and adjusting bed 
clothes). ALSFRS-R progression rate was estimated as (48 - ALSFRS-R score)/disease 
duration in months, while FMF progression rate was calculated as (16 - FMF sub-
score)/disease duration in months. All measures were evaluated on the day of EEG 
recording. 

EEG data acquisition and analysis 
Six minutes resting-state eyes-open EEG data were acquired using the BioSemi Active 
Two system (BioSemi B.V., Amsterdam, The Netherlands) at the Clinical Research Fa-
cility in St. James’s Hospital, Dublin. Participants were seated in a chair and asked to 
remain relaxed while they fixate their gaze at the letter X printed on a sheet of paper 
approximately 1 meter away. Source localisation was performed using the linearly-
constrained minimum-variance beamformer to obtain time-varying signals originat-
ing from the brain. An atlas-based approach, based on the Automated anatomical la-
belling atlas, was used to estimate β-band (14-30 Hz) spectral power in six regions: 
left/right precentral, postcentral and paracentral areas. Spectral power was estimated 
using the Fourier analysis and normalised using the total power of the filtered data (1-
97 Hz), and averaged using the six sensorimotor regions. For further details see Dukic 
et al. 2019. 

Statistical analysis 
Differences in demographics between groups were calculated using the Mann-Whit-
ney U-test for age and Fisher’s exact test for sex distribution differences. The Shapiro-
Wilk test was used to assess the normality of the EEG and clinical data distributions. 
As all variables had a normal distribution, the t-test was used to assess the β-band 
spectral power difference between the two groups and Pearson’s correlation was used 
to determine the relationship between β-band spectral power and UMN, LMN, FMF 
subscore and disease progression. In the correlation analysis with UMN scores, only 
those with observed UMN signs (i.e., UMN score > 0, N = 11) were included. The pre-
sented P-values are after correction for multiple comparisons using false discovery 
rate (FDR, q = 0.05). Age did not demonstrate statistical significance as a covariate, 
thus it was not included in the analysis. 
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Results 
Eighteen ALS patients and 38 healthy controls were prospectively enrolled. De-
mographics and clinical characteristics are listed in Table 1. 

The β-band power in the motor network was significantly lower in ALS patients com-
pared to healthy participants (P = 0.004; Fig. 1A). The β-band power significantly cor-
related with patients’ motor impairment as measured by the LMN score (R = -0.65, P 
= 0.013; Fig 1B), where higher β-power being associated with greater muscular weak-
ness. Moreover, the β-band power showed a significant correlation with the FMF sub-
score (R = -0.53, P = 0.036; Fig. 1D) and the FMF progression rate (R = 0.52, P = 0.036; 
Fig. 1E), where higher β-power was associated with higher functional disability and 
faster disease progression. Although data suggests that more severe UMN impairment 
is associated with lower β-power, this correlation was not significant (Fig. 1C). The 
presented P-values are after FDR correction. 

 

Table 1. Demographics and clinical profiles. 

 ALS Controls P-value 

N 18 38  

Age (years) 65.75 [60.15-72.88] 66.00 [62.00-68.00] 0.60 

Sex (male/female) 12 / 6 22 / 16 0.57 

Site of onset (spinal/bulbar/respiratory) 14 / 3 / 1   

Disease duration (months) 21.85 [18.6-27.8]   

ALSFRS-R 36 [34-41]   

FMF subscore 12 [11-14]   

ALSFRS-R progression rate (point/month) 0.48 [0.26-0.7]   

FMF progression rate (point/month) 0.2 [0.1-0.25]   

LMN score 78 [70-84]   

UMN score (N = 11) 6 [3.25-8]   

Data are shown as median [interquartile range], except for sex and site of onset, which are shown as counts. 
Abbreviations: ALS = amyotrophic lateral sclerosis; ALSFRS-R = ALS functional rating scale revised; FMF = 
fine motor function; LMN = lower motor neuron; UMN = upper motor neuron. 
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Figure 1. Normalised β-band power in the sensorimotor network is decreased in ALS patients and 
shows correlation with the clinical measures of motor symptom severity (LMN score), disease bur-
den (FMF subscore) and progression. The presented P-values are after false discovery rate (FDR, q = 
0.05) correction and the significance is considered as P < 0.05. Abbreviations: ALS = Amyotrophic lateral 
sclerosis; LMN = Lower motor neuron; UMN = Upper motor neuron. 

Conclusions 
In this cross-sectional study, we show that source-localised β-band power in the sen-
sorimotor network reflects motor impairment and functional disability of ALS pa-
tients. These findings expand the previously-described use of resting-state EEG as a 
multi-dimensional tool for interrogating different networks and phenotyping ALS pa-
tients.4,8 

Confirming the previous findings4,5 ALS patients had a decreased source-localised β-
band power in the sensorimotor network, supporting the hypothesis that β-band os-
cillations are pathologically affected in ALS.12,13 Here we have demonstrated a correla-
tion between the β-band power and disability in ALS. These findings suggest that β-
band power not only reflects cortical dysfunction but also the state of the entire motor 
system, encompassing UMNs, the spinal cord, LMNs, and peripheral nerves. This 
aligns with the notion that neural β-band oscillations are influenced by cortico-spinal 
projections from the motor system to muscles, indicating the activity of both motor 
neurons and local interneurons. 

ALS patients at the group level showed lower β-band power compared to heathy con-
trols, and we identified a trend towards a progressive increase in patients with higher 
motor impairment. This result is in keeping with a recent study,9 which showed that 
the median β-band power is higher in ALS patients compared to healthy controls, 
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when participants with more severe clinical conditions and longer disease duration 
are considered. As reduction in β activity is associated with an activation of the motor 
cortex, our findings support the notion that cortical hyperexcitability is an early fea-
ture of ALS,14 which is progressively reduced over time,15 and could explain the in-
creasing β-band power in our results. Consistent with this, we also showed that β-
band power correlates with the ALS-related progressive disability: patients with lower 
FMF subscore and higher rate of disease progression tended to have a higher β-band 
power in the sensorimotor network.  

This study is limited by the relatively small, heterogeneous dataset recorded, compris-
ing patients in different stages of disease severity and progression.9 Larger and longi-
tudinal studies that include patients in wider range of disease stages, could help to 
better determine the evolving patterns of cortical dysfunction in the course of disease. 

In conclusion, our results show that the β-band power in the sensorimotor network 
has potential as an accessible and quantitative EEG-based candidate biomarker of 
functional disability in ALS, which can be used along other EEG-based biomarkers of 
network dysfunction.
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Abstract 
Amyotrophic lateral sclerosis (ALS) is a devastating disease characterised primarily by 
motor system degeneration, with clinical evidence of cognitive and behavioural 
change in up to 50% of cases. ALS is both clinically and biologically heterogeneous. 
Subgrouping is currently undertaken using clinical parameters, such as site of symp-
tom onset (bulbar or spinal), burden of disease (based on the modified El Escorial 
Research Criteria) and genomics in those with familial disease. However, with the ex-
ception of genomics, these subcategories do not take into account underlying disease 
pathobiology, and are not fully predictive of disease course or prognosis. 

Recently, we have shown that resting-state EEG can reliably and quantitatively cap-
ture abnormal patterns of motor and cognitive network disruption in ALS. These net-
work disruptions have been identified across multiple frequency bands, and using 
measures of neural activity (spectral power) and connectivity (co-modulation of ac-
tivity by amplitude envelope correlation and synchrony by imaginary coherence) on 
source-localised brain oscillations from high-density EEG. Using data-driven methods 
(similarity network fusion and spectral clustering), we have now undertaken a clus-
tering analysis to identify disease subphenotypes and to determine whether different 
patterns of disruption are predictive of disease outcome.  

We show that ALS patients (N = 95) can be subgrouped into four phenotypes with 
distinct neurophysiological profiles. These clusters are characterised by varying de-
grees of disruption in the somatomotor (α-band synchrony), frontotemporal (β-band 
neural activity and γl-band synchrony) and frontoparietal (γl-band co-modulation) 
networks, which reliably correlate with distinct clinical profiles and different disease 
trajectories. Using an in-depth stability analysis, we show that these clusters are sta-
tistically reproducible and robust, remain stable after re-assessment using a follow-up 
EEG session, and continue to predict the clinical trajectory and disease outcome.  

Our data demonstrate that novel phenotyping using neuroelectric signal analysis can 
distinguish disease subtypes based exclusively on different patterns of network dis-
turbances. These patterns may reflect underlying disease neurobiology. The identifi-
cation of ALS subtypes based on profiles of differential impairment in neuronal net-
works has clear potential in future stratification for clinical trials. Advanced network 
profiling in ALS can also underpin new therapeutic strategies that are based on prin-
ciples of neurobiology and designed to modulate network disruption. 
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Introduction  
Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disorder 
that primarily affects the motor system, causing varying degrees of upper and lower 
motor neuron dysfunction,1 with additional involvement of extra-motor regions2 pre-
senting as cognitive and/or behavioural impairment that overlaps with frontotem-
poral dementia (FTD).3,4 The ALS population is clinically heterogeneous both in 
presentation and prognosis, and with variability in underlying disease pathobiology.5 
Current clinical phenotypes are based on the predominant site of symptom onset (spi-
nal, bulbar and respiratory), family history (sporadic and familial) and relative degree 
of upper and lower motor neurone involvement (lower and upper motor predomi-
nant). In addition, ALS patients are often categorised on the basis of their survival 
period (short, average and long).5 Quantitative measurements that correlate with the 
clinical subgroups have been sought using structural and functional MRI,6 PET7,8 and 
neurophysiological (EEG and EMG) data.9–12 

Additional refinements in clinical phenotyping in ALS include the interrogation of 
behavioural subphenotypes13, data from early clinical consultation to determine 
ranges of survival probability14 and genomic characterisation. At least 30 identified 
genes and three main pathophysiological processes (i.e. RNA biology, protein turno-
ver, and axonal transport) have been associated with ALS.15 Taken together, these ob-
servations, along with the absence of a clear correlation between ALS-associated 
genes, and highly distinctive molecular neuropathological and clinical subtypes,16 pro-
vide evidence that ALS can no longer be considered as a single disease with a singular 
pathophysiology and clinical course.  

Current imaging and neurophysiology evidence suggests that differential disruption 
of neural networks, underpinned by biological pathology and genetic factors,17,18 is 
likely to reflect heterogeneous clinical presentations. This heterogeneity cannot be 
fully discerned using existing clinical tools, such as the ALS functional rating scale 
revised (ALSFRS-R),19 which measures motor decline, and the Edinburgh cognitive 
and behavioural ALS screen (ECAS),20 which screens for cognitive and behavioural 
change.21 Though validated as a primary outcome measure in clinical trials, the ALS-
FRS-R is ordinal, semi-quantitative and the subscales within the instrument are sub-
ject to floor and ceiling effects.22  

Technological improvements in neuro-electro-physiological measures, and more spe-
cifically EEG, can provide additional insights into functional changes associated with 
different neurodegenerative diseases at a network level.21 Using this approach with 
task-based paradigms, we have shown changes implicating dysfunction of the fron-
toparietal network.9,23,24 Furthermore, we have shown that resting-state EEG, which 
can provide distinct measures that reflect different processes in the brain,25 can quan-
titatively capture both motor and cognitive networks affected in ALS. More specifi-
cally, using sensor-space analysis, we have found resting-state EEG changes that are 
correlated with structural changes in MRI10 and in line with other EEG studies.26–28 In 
a follow-up study using advanced source-space analysis, we further delineated 
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dysfunctional networks and corroborated the findings with both structural MRI and 
clinical data.29 

Here, we hypothesise that patient subgroups can be identified based on patterns of 
network disruption that could be used to reveal potentially different responses to ther-
apy and thus, should be monitored and studied as complementary profiling measures. 
We show how the EEG measures of activity and connectivity in the brain networks 
provide the information for forming stable clusters of ALS patients and the distinct 
neurophysiological profiles associated with these patient clusters. 

Methods 
Ethical approval 
Approval was obtained from the ethics committee of Beaumont Hospital, Dublin, Ire-
land (reference: 13/102) and the Tallaght Hospital / St. James's Hospital Joint Research 
Ethics Committee (reference: 2014 Chairman’s Action 7) for St James’s Hospital, Dub-
lin, Ireland. The experimental procedure conformed to the Declaration of Helsinki. 
All participants provided written informed consent before taking part in the experi-
ments. 

Participants 
Patient recruitment 

Patients with ALS were recruited from the National ALS clinic in Beaumont Hospital 
Dublin. Healthy controls included neurologically normal, age-matched individuals re-
cruited from an existing population-based control bank.  

Inclusion criteria 

All ALS patients were within the first 18 months from diagnosis and fulfilled the re-
vised El Escorial diagnostic criteria for Possible, Probable or Definite ALS.30 All pa-
tients underwent cognitive screening and were classified according to the revised 
Strong Criteria.31 

Exclusion criteria 

Patients diagnosed with primary lateral sclerosis, progressive muscular atrophy, flail 
arm/leg syndromes, prior transient ischemic attacks, multiple sclerosis, stroke, epi-
lepsy, seizure disorder, brain tumours, structural brain abnormalities, other neuro-
degenerative conditions and other medical morbidities, such as human immunodefi-
ciency virus, were excluded. 

The demographic profiles 

A total of 95 ALS patients: 70 with spinal onset (m/f: 52/18; mean ± standard deviation 
age: 59±12 years), 21 patients with bulbar onset (m/f: 14/7; age: 60±11) and 4 patients 
with respiratory onset (m/f: 3/1; age: 62±4) were included, along with 77 healthy 
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controls (m/f: 29/48; age: 60±11). Five patients (m/f: 2/3; age: 70±9) were diagnosed as 
ALS-FTD (based on the Strong criteria)31 and 11 patients (m/f: 6/5; age: 61±6) had the 
hexanucleotide repeat expansion in the C9orf72 gene. Patients and controls were 
matched for age (Mann-Whitney U-test, p = 0.73), but not for gender (Fisher’s exact 
test, p < 0.001). 

Experiment 
Experimental paradigm 

The experiment was resting-state with eyes open, divided into three 2-minute record-
ing blocks, allowing for rest between blocks and to ensure patients remained awake. 
Subjects were seated in a comfortable chair, asked to relax, while they fixated their 
gaze at the letter X (6 cm × 8 cm) printed on an A4 sheet of paper placed approxi-
mately 1 m in front of them. 

EEG data 

EEG data with 128 channels were collected using the BioSemi Active Two system (Bi-
oSemi B.V., Amsterdam, The Netherlands) and sampled at 512 Hz, after a lowpass anti-
aliasing filter (0-104 Hz) was applied by the acquisition hardware. Additional filtering 
was applied during the analysis. Recordings were conducted in a dedicated laboratory 
with a Faraday cage isolation at St. James’s Hospital, Dublin. Besides the initial record-
ing session for 95 ASL and 77 healthy controls, 36 ALS patients had one follow-up EEG 
session after 4-6 months.  

Disease severity and neuropsychology data 

The scores from ALSFRS-R (N = 88)19, ECAS (N = 72)20 and Beaumont behavioural 
inventory (BBI, N = 87)32 were used to provide clinical profiles of clusters based on 
neurophysiological patterns. All clinical subscores were either normalised or stand-
ardised: ALSFRS-R subscores were normalised by dividing by the maximum possible 
value in each subscore and subtracting it from one; ECAS subscores were z-score 
standardised using age and education matched normative data from an Irish popula-
tion33,34 and multiplied by minus one; and BBI score was normalised by dividing by the 
maximum possible value. This ensured that all subscores had the same direction of 
change, wherein an increased subscore means an increased impairment in the corre-
sponding function. 

In addition to this, King’s staging (N = 84),35 which assesses the disease burden in 
patients in stages from one (single region involved) to four (ventilatory support and/or 
gastrostomy), was used. 

Data analysis 
EEG data 

The preprocessing and processing procedures were identical to those described in our 
cross-sectional study29. Briefly, we have applied the linearly constrained minimum 
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variance beamformer36 on the bandpassed (1-97 Hz) EEG data to obtain time-varying 
signals originating from 90 brain regions (excluding the cerebellum) based on the au-
tomated anatomical labelling atlas (see Supplementary Note 1).37 Using the 90 source-
reconstructed signals, we estimated normalised spectral power (w.r.t total spectral 
power), co-modulation (amplitude envelope correlation) and synchrony (imaginary 
coherence). Spectral power was estimated for each region, while co-modulation and 
synchrony were estimated between all pairs of brain regions resulting in a 90×90 sym-
metrical connectivity matrix, wherein 4005 (90×89/2) connectivity features were 
unique. All three measures were estimated in six frequency bands: δ (2-4 Hz), θ (5-7 
Hz), α (8-13 Hz), β (14-30 Hz) and γ (γl: 31-47 Hz, γh: 53-97 Hz). The analysis resulted 
in three groups of EEG features: spectral power (90×6 = 540 features), co-modulation 
(4005×6 = 24030) and synchrony (24030). This analysis was applied on both healthy 
control and ALS data (see Supplementary Note 1). 

Clustering 

Without prior knowledge of the EEG features that distinguish one ALS patient from 
the other, an unsupervised clustering approach was chosen and applied on all availa-
ble EEG features. First, the similarity network fusion (SNF) method38 was used for 
combining and preparing the high-dimensional dataset and subsequently the spectral 
clustering39 was used for inference of the clusters.  

For preparation of the data before the clustering, each EEG feature was z-scored. 
Three patient similarity matrices (one for each group of EEG features) based on the 
Euclidean distance, were constructed with multiple Gaussian kernels40 and fused into 
one similarity matrix using the SNF method. The SNF method iteratively updates each 
matrix with the information from the other matrices, thus fusing in the complemen-
tary information. To ensure that the irrelevant associations between patients emerg-
ing from the accumulated noise over many features are removed, the fused similarity 
matrix was denoised using the network enhancement method.41 Finally, subgrouping 
of patients was undertaken using spectral clustering.39 For additional information, see 
Supplementary Note 2. This clustering pipeline was selected based on the non-para-
metric and robust nature of these methods pertinent for clustering, especially in com-
bining the EEG measures, which served to avoid finding clusters that heavily depend 
on specific mathematical assumptions or individual data values.  

Statistical significance of clusters 

The optimal number of patient subgroups (k = 2, …, 7) was chosen using a statistical 
approach applied on the eigengap and rotation cost indices,42 which are based on the 
eigenvalues and eigenvectors in the spectral clustering method, respectively. The big-
gest eigen gap and the smallest rotation cost indicate the optimal number of clusters 
in the dataset (see Supplementary Note 3).  

Taking a conservative approach, a statistical procedure that tests whether the two in-
dices are likely to give such high (eigengap) and low (rotation cost) values under null 
hypothesis of no actual clusters in data (i.e. homogenous data) was applied. In our 
Monte-Carlo procedure, the null hypothesis was that the data come from the same 
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dataset but with randomly permuted values within each EEG feature. The clustering 
was performed on the permuted dataset and the two indices were calculated. This 
procedure was repeated 5000 times to obtain the empirical null distributions and the 
p-values.43 In addition to this, bootstrapping was used to estimate the non-null distri-
bution of the indices, statistical power at α = 0.05 (1-β0.05) and Cliff’s delta (a non-
parametric measure of effect size).44 All the statistical measures were calculated for 
each clustering solution, k = 2, …, 7. 

Neurophysiological profiles 

For each participant, 90 ‘EEG networks’ were defined based on the networks that are 
known to be activated at rest45 and affected in ALS.9,29,46,47 Namely, the 90 networks 
were constructed by separately averaging spectral power, co-modulation and syn-
chrony in five anatomical networks (somatomotor, frontotemporal, frontoparietal, de-
fault mode and salience) and in six frequency bands (3×5×6 = 90, see Supplementary 
Note 4). For each combination (i.e. ‘EEG network)’ an AUC (area under the curve of 
the receiver operating characteristics curve) was used to make the comparison be-
tween each ALS cluster and the control data. To further infer statistical significance 
in the multidimensional space and to control for multiple comparisons (q = 0.1, false 
discovery rate, FDR)29, empirical Bayesian inference (EBI)43 was applied on the AUC 
test statistics. This statistical tool exploits both the original (non-null) observations 
and null-permuted data to estimate the probability density function of the data and 
null, respectively. 

The obtained AUC values were then used to determine brain networks that are 
strongly and exclusively associated with each of the identified clusters. An EEG net-
work was considered as a potential and exclusive characteristic of a cluster if it was 
statistically significant compared to controls, and unique or directionally opposite in 
its change compared to other clusters (see Supplementary Note 4). Here, we reported 
the most characteristic EEG network that is affected for each cluster. Additionally, for 
each EEG network, the statistical difference between clusters (χ2-statistic, Kruskal-
Wallis one-way analysis of variance) was tested, while accounting for multiple com-
parisons (q = 0.05, FDR)48,49, and a Monte-Carlo permutation procedure was applied 
to estimate the associated statistical power (1-β0.05). 

Additionally, complete brain maps for each EEG measure and frequency band were 
obtained in a similar manner using AUC and EBI between each cluster and the control 
data. These maps were then masked using p-values from Kruskal-Wallis one-way anal-
ysis of variance to distinguish the EEG abnormalities that are shared by all identified 
clusters and those specific to each cluster. 

Clinical profiles 

Clinical profiles of subgroups were compared using the subscores of motor (ALSFRS-
R), cognitive (ECAS) and behavioural (BBI) dysfunction. Significant difference of 
scores across the clusters was tested using Kruskal-Wallis one-way analysis of vari-
ance. In addition to this, associations between the identified EEG clusters and known 
clinical factors (type of initial diagnosis, site of disease onset and C9orf72 gene status) 
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that could influence our findings were tested using the Fisher’s exact test. Survival 
probability was analysed using the Kaplan-Meier method, wherein patients that were 
alive at the time of analysis were right-censured and survival was measured from the time 
of the reported symptom onset. Logrank test was used for testing of the difference between the 
survival curves. 

Cluster validation 

For a reliable interpretation of the derived clusters, we have assessed the accuracy, 
robustness and stability of clusters mathematically as well as experimentally. Specifi-
cally, four validation approaches were implemented using: a different clustering 
method (the Louvain method for community detection)50, a classification approach, 
and by inspecting the re-assignment of patients under small perturbations of data and 
when using a single follow-up EEG assessment (after 4-6 months following the initial 
session, N = 36 ALS patients). These validation methods are detailed in Supplementary 
Note 5. 

Clustering using clinical data 

To assess whether the derived EEG clusters simply recapitulate the subtypes that can 
be derived directly from the clinical data, the clustering procedure was applied on N 
= 60 patients with the complete clinical dataset. A fused similarity matrix was con-
structed from three similarity matrices based on 12 ALSFRS-R, 5 ECAS and 1 BBI sub-
scores (N = 18 subscores in total). The optimal number of clusters was determined 
using the statistical approach as in the main analysis. Furthermore, the accuracy and 
the robustness of the clustering solution was evaluated using the same procedures 
that are described above. 

Additionally, for comparison with our identified EEG clusters, we inspected the clini-
cal profiles of ALS subgroups that are based on four stages of the King’s staging system.  

Results 
EEG measures identify four clusters of ALS patients 
Four distinct clusters were identified based on analysis of spectral EEG patterns of 
neural activity and connectivity. As assessed by eigengap and rotation cost indices 
(Fig. 1), the solution of four clusters had high statistical power (0.85 and 0.52, respec-
tively) and a large to medium (0.92 and 0.69, Cliff’s d, respectively) effect size, sug-
gesting reproducible findings. The demographics of the identified clusters is shown in 
Table 1. 
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Table 1. Breakdown of cluster characteristics. 

Group N Gender 

(m/f) 

Age  

(years) 

Disease 
duration 
(months) 

Site of 
onset 

(S/B/T) 

Diagnosis 
(ALS/ 

ALS-FTD) 

C9orf72 

(+/-) 

ALL 95 69/26 59.2±11.6 21.9±17.5 70/21/4 90/5 11/84 

Cluster 1 23 14/9 61.0±12.7 21.3±16.8 17/5/1 23/0 0/23 

Cluster 2 28 22/6 56.6±13.0 25.7±24.3 23/2/3 28/0 3/25 

Cluster 3 19 14/5 58.5±11.5 17.8±8.9 14/5/0 16/3 2/17 

Cluster 4 25 19/6 60.7±9.0 22.8±20.2 16/9/0 23/2 6/19 

Disease duration: time interval between the estimated symptom onset and the EEG recording; Site of onset: 
Spinal/Bulbar/Thoracic; C9orf72: presence (+) or absence (-) of the repeat expansion in the chromosome 9 
open reading frame 72; Age and disease duration: mean ± standard deviation. 

 

 

 
Figure 1. EEG measures identify four ALS clusters: Fused similarity matrix and the optimal number 
of ALS clusters. (A) Fused similarity matrix of ALS patients is sorted based on the clusters, which were 
identified using spectral clustering; (B) At k = 4, both measures reflecting the optimal number of clusters 
(eigen gap, black; rotation cost, grey) reach the highest significance (p < 0.008, Bonferroni corrected; red 
dashed line) with statistical power (1-β0.05) 0.85 and 0.52, and effect size (Cliff’s d) 0.92 and 0.69, respectively. 
The number of patients in cluster 1-4 is N = 23, 28, 19 and 25. 
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EEG clusters show distinct neurophysiological profiles 
Analysis of neurophysiological profiles of the four clusters based on EEG measures 
revealed evidence of distinctly impaired neural networks for each cluster (Fig. 2). For 
example, cluster 1 shows a characteristic increase in β-band spectral power in the fron-
totemporal network, whereas the clusters 3 and 4 show decreased power in the same 
network. Similarly, cluster 2 shows a characteristic increase in α-band synchrony in 
the somatomotor network, cluster 3 decrease in γl-band synchrony in the frontotem-
poral network and cluster 4 increase in γl-band co-modulation in the frontoparietal 
network. The Kruskal-Wallis one-way analysis of variance showed that the four net-
works vary significantly across clusters (p < 0.001, FDR). The EEG abnormalities asso-
ciated with all four clusters were identified as increased co-modulation (δ- to α-band 
oscillations) and decreased synchrony (δ- to β-band) in the somatomotor and fronto-
temporal brain regions (see Supplementary Fig. 1). 

 
Figure 2. Distinct neurophysiological profiles of ALS clusters. For each cluster, a unique neurophysio-
logical change (brain network, frequency band and EEG measure) was identified using AUC statistics esti-
mated between the ALS clusters and control data (see Supplementary Note 4). The networks vary signifi-
cantly across clusters in all four cases (Kruskal-Wallis one-way analysis of variance, p < 0.001, FDR). The 
potential effects of age and gender on the identified changes were rejected based on the linear model anal-
ysis (see Supplementary Note 6). AUC: Area under the receiver operating characteristic curve centred 
around zero; positive values indicate an increase, whereas negative values indicate a decrease compared to 
healthy controls. 

EEG clusters have concordant clinical and neurophysio-
logical profiles 
The analysis of clinical profiles using the functional scores shows clinical characteris-
tics of each cluster (Fig. 3A-B, see also Supplementary Fig. 2). Although none of the 
clinical scores vary significantly across the clusters (p > 0.05, FDR), the changes are 
concordant with altered neurophysiological profiles. More specifically, cluster 1 
(which has a uniquely increased β-band spectral power in the frontotemporal net-
work) shows moderate limb and mild verbal fluency, executive and memory dysfunc-
tion, but no apparent change in the language domain; cluster 2 (which has a uniquely 
increased α-band spectral power in the somatomotor network) is characterised by 
mild impairment of limb and verbal fluency, and moderate language and memory im-
pairment, with preservation of executive domain; cluster 3 (which has a uniquely de-
creased γl-band synchrony in the frontotemporal network) was characterised by 
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marked impairment of limb, language and verbal fluency; cluster 4 (which has a 
uniquely increased γl-band co-modulation frontoparietal network) was primarily 
characterised by impairments in bulbar function, verbal fluency, executive and 
memory. None of the clusters has notable impairment in the visuospatial domain, 
whereas all but cluster 2 exhibited mild aspects of behavioural impairment. 

In addition to clinical subphenotypes, the clusters were associated with significant 
differences in overall survival (Logrank χ2 = 13.84; p = 0.003). The survival probability 
curves (Fig. 3C) show that cluster 4 has the shortest survival (median: ~3 years), 
whereas cluster 2 has the longest survival (~6 years). 

Although the associations between the clusters and commonly-used clinical stratifi-
cation parameters (type of initial diagnosis, site of disease onset and C9orf72 gene sta-
tus; Fig. 3D-F) are not significant (p > 0.05, FDR), the results are consistent with clin-
ical profiles of clusters. Specifically, cluster 3 and 4 (which have the greatest degree of 
impairment across most cognitive subscores; Fig. 3B) included all patients with the 
initial diagnosis of ALS-FTD (3/19 and 2/25; ALS-FTD/total). Furthermore, cluster 4 
has the highest proportion of C9orf72-positive patients (6/25), compared to cluster 2 
and 3 (3/28 and 2/19).  

There were no significant between-group differences in disease duration, King’s stag-
ing, age, gender or riluzole usage, which could have affected EEG measures and the 
reported results (Supplementary Fig. 2). Additionally, we demonstrated that King’s 
staging cannot explain the clusters identified by EEG networks nor how the progres-
sion patterns differ in the EEG clusters (Supplementary Fig. 3). The potential effects 
of age and gender on the identified changes in neurophysiological profiles were tested 
and rejected based on the linear model analysis (see Supplementary Note 6). 

Patient clusters show stability across multiple tests 
Further analysis revealed that each cluster has high accuracy, robustness and re-
mained stable at re-assessment. Specifically, the clustering solution based on the Lou-
vain community detection method converged to the same number of clusters (k = 4) 
and had a very high overlap with the spectral clustering solution from the main anal-
ysis, wherein only seven patients were assigned differently. Furthermore, the esti-
mated clustering accuracy reached 89%, and the analysis of robustness showed that 
in the presence of data perturbation 82% of the cluster labels remain stable (both tests 
are conservatively quantified by the average adjusted Rand index, which controls for 
chance level). Lastly, using the longitudinal dataset (N = 36, with one follow-up EEG 
measurement 4-6 months after the initial recording session), the overall cluster (re)as-
signment is 72% (p < 0.001, Fisher’s exact test; Fig. 4), showing an experimental stabil-
ity of the discovered clusters. 
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Figure 3. Clinical profiles of ALS clusters derived from EEG measures are concordant with the neu-
rophysiological profiles. The four EEG clusters (colour-coded) suggest different trends in functional/clin-
ical scores in different domains: (A) Normalised ALSFRS-R (bulbar, limb and respiratory) and (B) z-scored 
ECAS (language, fluency, executive, memory and visuospatial) and normalised BBI (behaviour) score are all 
non-significant (p > 0.05, FDR); (C) Kaplan-Meier survival curves corresponding to the ALS clusters; (D-F) 
Clinical characteristics. Clinical subscores (A-B) are all normalised or standardised, see Methods section. 
Note that there are in total: five ALS-FTD, 11 C9orf72-positive and four respiratory-onset patients. Statistical 
tests: Kruskal-Wallis one-way analysis of variance (A-B), logrank test (C) and Fisher’s exact test (D-F); all 
FDR corrected.  
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Figure 4. Clusters show high stability at re-assessment. The overall stability is 72% and statistically 
significant (p < 0.001, Fisher’s exact test). Total number of patients with a follow-up (mean ± standard de-
viation: 5.1 ± 1.8 months after the initial recording session) is N = 36, wherein 9, 13, 4 and 10 patients belong 
to cluster 1-4, respectively. 

Clustering based solely on clinical data does not identify 
stable subgroups 
Using the same methodology, all the clinical measures were combined and underwent 
statistical analysis of the indices that estimate the optimal number of clusters. No sig-
nificant clusters were identified, demonstrating that commonly-applied clinical de-
terminants were not driving the neurophysiological clustering data (see Supplemen-
tary Note 7 and Supplementary Fig. 4). 

Discussion 
We have shown that analysis of network disturbance using multi-dimensional quan-
titative EEG can identify subgroups within ALS that are not discoverable using stand-
ard clinical assessment tools. Each of the subgroups, identified by data-driven cluster-
ing, demonstrates a distinct neurophysiological profile that in turn recapitulates a dif-
ferent combination of clinical attributes. These neurophysiological profiles are stable 
at re-assessment and are associated with different prognostic outcomes. 

Identified EEG clusters characterise distinct brain net-
work impairments  
Clinical heterogeneity has emerged as a major obstacle in understanding the patho-
physiology of neurodegenerative diseases. This has implications for drug development 
as clinical stratification parameters remain relatively insensitive as predictors of 
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disease progression and survival. While it is not surprising that the network disrup-
tions that characterise our identified clusters do not strongly correlate or overlap with 
the commonly-defined clinical phenotypic subtypes of disease, our results are in align-
ment with the observations from previous studies. For instance, cluster 4 in this study 
has the highest proportion of patients with C9orf72 expansion, which is known to im-
plicate frontotemporal, temporoparietal and subcortical MRI6,51 and EEG9 changes, 
and is frequently associated with cognitive and behavioural impairment.52 Accord-
ingly, in our study the neurophysiological profile of this cluster is characterised by the 
distinctive abnormal changes in γl-band co-modulation within the frontoparietal net-
work (also commonly known as central executive network), while the clinical profile 
of this cluster shows marked dysfunction in the verbal fluency, executive and memory 
domain. Similarly, this cluster has the highest proportion of bulbar patients, in which 
MRI studies have shown extensive thinning in frontotemporal, temporoparietal and 
subcortical brain regions.6 Furthermore, while cluster 4 has the highest proportion of 
patients with C9orf72 expansion, which is associated with both ALS and FTD, cluster 
3 and 4 include all the ALS-FTD patients. Consistent with other studies,53 these two 
EEG phenotypes show the lowest survival probability in our analysis. Considering the 
presence of notably increased dysfunction in cognitive and behavioural profile of these 
two clusters, these ALS patients are likely to have clinical features that align with the 
FTD-side of the ALS-FTD spectrum.31 Interestingly, C9orf72 patients did not form one 
separate cluster, suggesting diverging network impairments caused by the same ge-
netic mutation. These findings confirm a complex and heterogeneous nature of the 
variables (e.g. gene mutation status and presence/absence of FTD) currently used in 
ALS classification systems. By contrast, subphenotypes derived from EEG measures 
transcend traditional classification systems of ALS patients and characterise distinct 
brain networks affected in each subgroup. 

Our findings are consistent with previous neuro-electro-magnetic studies in ALS. For 
example, a recent resting-state magnetoencephalography (MEG) connectivity study 
reports increased broadband co-modulation in the posterior parts of the brain.54 Ad-
ditionally, studies investigating brain network topology using graph theory, showed 
diverging MEG γ-synchrony (as assessed by phase lag index)55 affecting global brain 
patterns56 and increased EEG γ-synchrony (as assessed by partial directed coherence)57 
patterns in the frontal networks.46 These resting-state findings are in line with the 
identified connectivity patterns in cluster 3 and 4. 

The neurophysiological profiles of cluster 1 and 2 point to the characteristic changes 
in the β-band frontotemporal and α-band motor network respectively, whilst the cor-
responding clinical subscores in the language, verbal fluency and motor domains in-
dicate relative preservation of these functions. These abnormal network activations 
could be attributed either to the topological resilience or active compensation mech-
anisms that are unique to each cluster,58,59 or likely, to subtle impairments to which 
current clinical tools are not sufficiently sensitive.60–62 

Our work emphasises that not all cluster-specific patterns may be identifiable when 
ALS patients are compared to controls as a single group. This is due to due to the 
difference in the patterns of impairment between different clusters. The identified β-
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band power changes suggest two diverging patterns, which could explain the contra-
dictory findings between an MEG study63 that reported an increased cortical β-desyn-
chronisation in ALS patients and EEG studies that reported decreased27–29 or no dif-
ference.64 Additionally, the findings in resting-state studies investigating brain net-
work topology using graph theory, show globally-increased EEG α-synchrony (as as-
sessed by partial directed coherence)46 and increased α-band co-modulation mostly 
in the central brain regions.65 Furthermore, our findings support the relevance of γ-
oscillations in ALS (see Supplementary Note 8). 

Clinical relevance 
We have shown that clusters based on patterns of disruption in brain networks are 
associated with reproducible aggregates of clinical attributes and rate of disease pro-
gression, confirming the clinical relevance of our findings. EEG-based subphenotypes 
with superior statistical power do not recapitulate phenotypes that can be found using 
clinical data or burden of disease (e.g. King’s staging). This indicates that these neu-
rophysiologic patterns provide additional information to that which is discerned by 
clinical evaluation alone. The EEG-based clusters are statistically robust with distinct 
patterns, whereas the clinical scores alone could not form meaningful significant clus-
ters. A more in-depth analysis that further explores associations between EEG and 
clinical observations, would require larger and detailed clinical and genomic datasets. 

The identification of such stable subtypes with high statistical power has significant 
biological and clinical implications. Our findings could contribute to modification of 
the existing stratification system, which is purely based on the clinical observations. 
In fact, simulated analysis resulting in high classification accuracy (89%) of new pa-
tients – where individual patients are classified to clusters – suggests the potential of 
our clustering approach to render clinically meaningful findings on an individual pa-
tient level. While the underlying neurobiological processes that determine these pat-
terns or network disruption cannot be discerned at this point, the stability of the clus-
ters could reflect pre-morbid patterns of network function and integrity. 

Analysis of cluster stability using follow-up data shows that for many patients in our 
dataset the cluster assignment does not change. This stability further supports that 
our findings are based on characteristic pathological changes that are reasonably sta-
ble over a period spanning several months. Notwithstanding, future studies with more 
systematic inclusion of the disease stages and the analysis of longitudinal evolution of 
clusters (over multiple follow-ups) are warranted. 

Limitations 
This study is limited by its single-site nature. Alternative solutions with more than 
four clusters are likely to exist, especially if additional more sophisticated neurophys-
iological measures are included in the clustering analysis. Notwithstanding these lim-
itations, our conservative validation analyses of clustering solutions show that the 
findings are both robust and reproducible. 

Translation of our findings into a clinical setting will require medical-grade equip-
ment with equal or lower number of EEG electrodes (e.g. 32 or 19 from the 10-20 
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system), which warrants an additional validation study. While this could reduce the 
preparation time, it should be approached with caution.66 Studies showed that elec-
trode arrays with less than 32 sensors lead to severe mislocalisations.67 Moreover, our 
neurophysiological profiles include γ-band findings, and in this context, decreasing 
the number of electrodes might have a negative effect on our ability to capture these 
oscillations.68,69 Nevertheless, since localisation accuracy starts to plateau from 64 
channels,67,70 a medical grade 64-channel system could be considered as a candidate 
for future translational steps. 

Conclusion 
Our findings have shown for the first time that EEG measures of neural activity and 
connectivity can be used to reproducibly group ALS patients into subphenotypes with 
distinct clinical patterns and neurophysiological signatures. Replication of our find-
ings in an independent population with additional clinical and genomic data will be 
required to further understand the neurobiological factors that underpin these differ-
ent patterns of network disruption. The demonstration that each cluster is associated 
with a different disease trajectory and outcome opens a new path towards the discov-
ery of quantitative biomarkers of disease heterogeneity. 
Taken together, our results highlight the strengths of using EEG data in identifying 
ALS subtypes, which have distinct clinical and neurophysiological profiles. The iden-
tification of data-driven ALS subtypes based on patterned changes in neuronal net-
works can facilitate the identification of targeted therapies that are effective across the 
subtype. The development of reliable biomarkers to identify subtypes will also provide 
much needed prognostic information for patient stratification. 
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Supplementary material 
Supplementary Note 1: Source localisation 
Head models 

For each subject with an MRI scan, a realistically-shaped volume conduction model 
was built. A three-layer conduction model, accounting for the brain, skull and scalp, 
was constructed using the Boundary Element Method (BEM),1,2 implemented in the 
open source software OpenMEEG.3 Similarly, for controls and patients who did not 
undergo MRI, a realistically-shaped BEM based on the ICBM152 template 4 with the 
same characteristics was constructed, as template-based BEM and BEM based on in-
dividual MRI scans provide comparable localisation accuracy.5 

Beamforming 

EEG data were source-reconstructed using the linearly constrained minimum variance 
(LCMV) beamformer.6 Covariance matrices, needed for the reconstruction, were com-
puted over a time window spanning the whole recording and using broadband data 
(1-97 Hz). In order to account for possible outliers in the data, the orthogonalised 
Gnanadesikan-Kettenring algorithm was used for the robust estimation of the covari-
ance matrix.7 Covariance matrices were regularised using the Tikhonov method by 
𝜇𝜇𝜇𝜇,8 where the regularisation parameter, 𝜇𝜇, is set to 5% of the mean variance of all EEG 
channels and 𝐼𝐼 is an identity matrix. 

The optimal orientation of each dipole was estimated as the orientation of maximum 
power of the dipole using the singular value decomposition (SVD) on the dipole’s (x-
y-z direction) covariance matrix.6 The scalar beamformer weights were then used to 
reconstruct time-series of each dipole. Source localisation was done using the 
FieldTrip toolbox. 9 

Neural signal estimation 

An atlas-based approach was used to evaluate source-space data with respect to the 
anatomical brain regions.10,11 The cortex of each subject was parcellated according to 
the automated anatomical labelling (AAL) atlas.12 In this study, we used 90 regions 
from AAL atlas, excluding the cerebellum. To derive a single time-series for each re-
gion, all the time-series within a region were weighted using a Gaussian weighting 
function (half width at half maximum ~ 17 mm)11,13 as following: 

 𝑞𝑞��� � ������(−𝑟𝑟
�(𝑖𝑖𝑖

400 )
�

∙ 𝑦𝑦���(𝑖𝑖𝑖 (2)  

Where 𝑖𝑖 represents a count of all dipoles within a region, 𝑟𝑟 represents a distance of 
each dipole from the centre of mass of the given region and 𝑡𝑡 represent the length of 
the reconstructed signal. However, before applying the Gaussian formula, we esti-
mated the direction along the maximum power for each region by performing SVD on 
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the orientations of dipoles within each brain region. Dipoles with the opposite direc-
tion (>90 degrees) to the estimated maximal activity vector were sign-flipped.  

After completing these steps, we obtained 90 broadband time-series, each represent-
ing one brain region from the AAL atlas. This pipeline was applied to each subject 
individually. 

Supplementary Note 2: Similarity matrix construction 
Similarity matrix 

For each of these three EEG measures, a separate patient similarity (or affinity) matrix 
was constructed using Gaussian kernels: 

𝐾𝐾�𝑥𝑥�, 𝑥𝑥�� 𝑝 1
𝜀𝜀��√2𝜋𝜋 𝑒𝑒

�
��������

�

�����
 

Where �𝑥𝑥� − 𝑥𝑥��� is the Euclidean distance (a special case of the p-norm, ‖𝑥𝑥‖�, 𝑝𝑝 𝑝 𝑝) 
between patient 𝑥𝑥� and 𝑥𝑥� in the desired measure. The variance, 𝜀𝜀��, can be locally 
estimated for the kernel: 

𝜇𝜇� = ∑ ‖�����‖��∈�������
� , 𝜀𝜀�� =  ��������)

�  

Where 𝑥𝑥���,�� ∈ 𝐾𝐾𝐾𝐾𝐾𝐾{𝑥𝑥�} is a set of 𝐾𝐾-nearest-neighbours of the patient 𝑖𝑖 and 𝜎𝜎 is an 
adjustable coefficient. In order to improve the performance, we generated 55 different 
kernels using the combination of the following values 𝐾𝐾𝐾𝐾𝐾𝐾  𝐾𝐾𝐾𝐾𝐾  𝐾 𝐾 𝐾 𝐾 𝐾𝐾 and 𝜎𝜎 𝜎
1, 1.25, 1.5, 1.75, 2, which are suggested in the original study.14 These 55 kernels re-
sulted in 55 similarity matrices which were then mean averaged to obtain a single sim-
ilarity matrix per EEG measure.  

Fusion of similarity matrices 

The three patient similarity matrices (one for each EEG measure) were then combined 
into one using the similarity network fusion (SNF) method, a non-linear approach 
which creates a unified view of patients based on multiple data sources that capture 
different characteristics of patients.15 Starting with 𝑚𝑚 different patient similarity net-
works from 𝑁𝑁 patients, SNF iteratively updates each network with the complementary 
information from the other networks, making them more similar with each step. Once 
converged, the final fused network of patients represents the average of 𝑚𝑚 non-line-
arly fused matrices. The method has been proven powerful in finding patterns in large 
scale data,16 it does not necessitate a priori selection of features and is robust to differ-
ent types of noise.15 In our study, 𝑚𝑚𝑚𝑚𝑚𝑚   and 𝑁𝑁𝑁𝑁𝑁  𝑁𝑁. 

The fusion was done with K-nearest-neighbours parameter set to 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  𝐾 (although 
similar values of 𝐾𝐾𝐾𝐾 resulted in similar clustering solutions). Due to the varying num-
ber of patients used in subsequent analyses, 𝐾𝐾𝐾𝐾 parameter was proportionally adjusted 
in: the analysis of stability under small perturbations (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾   𝐾𝐾 𝐾𝐾 𝐾 patients), the 
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analysis of stability using longitudinal data (𝐾𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾𝐾 𝐾 𝐾𝐾𝐾) and the comparison 
of clustering solutions based on clinical data only (𝐾𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝐾𝐾 𝐾 𝐾𝐾). 

Similarity matrix enhancement 

Further improvement of the fused similarity matrix was done using the network en-
hancement method.17 This approach relies on a diffusion-based algorithm for network 
denoising that does not require any supervision or prior knowledge. The main as-
sumption of the method is that nodes connected through paths with high-weighted 
edges are more likely to have a direct, high-weighted edge between themselves. The 
method, therefore, improves the input similarity matrix by strengthening similarities 
that are either close to other strong similarities in the matrix (according to method’s 
diffusion distance) or are supported by many weak edges. On the other hand, the 
edges that are not supported by many strong edges are weakened. The network en-
hancement was applied with K-nearest-neighbours parameter, 𝐾𝐾𝐾𝐾, set to the same 
values that were used when constructing the similarity matrices (see above ‘Fusion of 
similarity matrices’). 

Supplementary Note 3: Optimal number of clusters 
In spectral clustering, eigengap and rotation cost are two commonly used indices of 
the optimal number of clusters. Both indices are based on the eigenvalue decomposi-
tion of a similarity matrix. 

The eigengap is defined as the difference between the 𝑖𝑖�� and (𝑖𝑖 𝑖 𝑖𝑖�� eigenvalue 
(previously sorted in an descending order), wherein the number of clusters is indi-
cated by the biggest difference between two successive eigenvalues.18 

The rotation cost exploits the structure of eigenvectors (of a similarity matrix), 𝑋𝑋, and 
defines the optimal number of clusters as the case in which the rotational cost of ei-
genvectors is the lowest.19 Namely, for each solution of 𝑘𝑘 clusters, the following cost 
function is minimised by optimising the rotation matrix, 𝑅𝑅: 

� 𝐾 𝐾��𝑍𝑍���
𝑀𝑀�

�

�

���

�

���
 

Where 𝑍𝑍 𝑍𝑍𝑍  𝑍 𝑍𝑍 and 𝑀𝑀� = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑍𝑍��. The function is minimised using the gradient de-
scent method, which applies rotation to the eigenvectors, 𝑋𝑋, such that the rotated 
matrix, 𝑍𝑍, has a single non-zero entry in each row.19 

Supplementary Note 4: Neurophysiological profiles of 
the clusters 
EEG networks 

For the purpose of defining neurophysiological profiles of clusters, co-modulation 
(amplitude envelope correlation) and synchrony (imaginary coherence) connectivity 
matrices were separately averaged to reflect median connectivity within each brain 
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network, whereas spectral power within each brain network was averaged to reflect 
its median neural activity. Here, we used five brain networks (somatomotor, fronto-
temporal, frontoparietal/central executive network, default mode and salience) 
known to be activated during rest20 and to be affected in ALS.21–23 

Somatomotor: Supplementary motor area L/R, paracentral lobule L/R, precentral L/R, 
postcentral L/R, putamen L/R, thalamus L/R 

Frontotemporal: Frontal middle orbital L/R, frontal inferior orbital L/R, frontal middle 
L/R, frontal inferior opercularis L/R, frontal inferior triangularis L/R, heschl L/R, tem-
poral superior L/R, temporal middle L/R, temporal inferior L/R, temporal pole supe-
rior L/R, temporal pole inferior L/R, hippocampus L/R, parahippocampal L/R, amyg-
dala L/R 

Frontoparietal (central executive network): Frontal middle L/R, frontal inferior oper-
cularis L/R, frontal inferior triangularis L/R, parietal inferior L/R, supramarginal L/R, 
angular L/R 

Default mode: Frontal superior L/R, frontal superior medial L/R, cingulum anterior 
L/R, cingulum posterior L/R, precuneus L/R, supramarginal L/R, angular L/R, tem-
poral pole superior L/R, temporal pole inferior L/R 

Salience: Insula L/R, cingulum anterior L/R, amygdala L/R, thalamus L/R 

 

The brain regions were from the automated anatomical labelling (AAL) atlas.12 Fre-
quency bands were δ (2-4 Hz), θ (5-7 Hz), α (8-13 Hz), β (14-30 Hz) and γ (γl: 31-47 Hz, 
γh: 53-97 Hz). Total number of EEG networks in this analysis was, thus, 90 (three 
measures × five networks × six frequency bands). 

Determining cluster-characteristic EEG changes 

For each of the 90 EEG networks, an AUC (area under the receiver operating charac-
teristic curve) value was calculated for each ALS cluster by comparing with the control 
data while controlling for the multiple comparisons using empirical Bayesian infer-
ence (EBI; FDR at 𝑞𝑞𝑞 𝑞 𝑞𝑞𝑞𝑞)22. The obtained AUC values were then used to determine 
measures that are strongly and exclusively associated with each of the four clusters. 
Namely, for each EEG network the four AUC values were ordered (𝑢𝑢 𝑢 {𝑢𝑢�, 𝑢𝑢�, 𝑢𝑢�, 𝑢𝑢�}, 
such that 𝑢𝑢� < 𝑢𝑢� < 𝑢𝑢� < 𝑢𝑢�) and the clusters associated with extreme values (i.e. 𝑢𝑢� 
and 𝑢𝑢�) were each given a score. The score represents an absolute difference between 
these two values (𝑢𝑢� and 𝑢𝑢�) and the nearest AUC value (i.e. 𝑢𝑢� and 𝑢𝑢�, respectively): 
𝑢𝑢� − 𝑢𝑢� and 𝑢𝑢� − 𝑢𝑢�. The score was calculated only if the extreme AUC value was sta-
tistically significant as determined by EBI. Here, we report one characteristic EEG net-
work per cluster, which is determined as the highest score across all 90 EEG networks 
for the given cluster. For plotting purposes, AUC values were centred around zero, 
thus ranging between -0.5 and 0.5. 
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Supplementary Note 5: Cluster validation  
First approach 

We validated our clusters by employing another clustering method. The Louvain 
method for community detection is an iterative approach that measures the relative 
density of edges inside subgroups with respect to edges outside subgroups and merges 
similar clusters until it converges, thus not requiring a predetermined number of clus-
ters.24 In its original implementation (which is used in this study), the only required 
input is a similarity matrix. For this purpose, we have reused the same similarity ma-
trix as for the spectral clustering method (which was used in the main analysis). The 
clusters obtained from the Louvain method were compared to the clusters from the 
main analysis.  

Second approach 

We evaluated the accuracy of our cluster assignments using a classifier, with the aim 
to test how accurate we could classify at individual level, the new, future patients. 
Here, we used label propagation,25 which makes predictions that are based on the 
well-defined similarities between the patients from the similarity matrix. The classifier 
was applied by excluding five randomly selected patients for 5000 times. The excluded 
patients were treated as test data, while the remaining patients were treated as train-
ing samples. The stability was estimated as the agreement between the propagated 
labels of the test patients and the corresponding labels obtained in the main analysis. 
Additionally, to control for correct classifications emerging due to chance, the ad-
justed Rand index26 was used. 

Third approach 

We evaluated the robustness of our cluster assignments under small perturbations of 
data. This was achieved by randomly removing five patients and repeating the pipeline 
from the main analysis 5000 times. The stability was estimated as the agreement be-
tween the newly obtained labels and the corresponding labels obtained in the main 
analysis, using the adjusted Rand index. 

Fourth approach 

We further validated our clusters by assessing the robustness of cluster assignment 
over time. The label propagation classifier25 was applied on a subset of patients (𝑁𝑁𝑁 𝑁
 36) that had a follow-up EEG recording (5.1 ± 1.8 months after the initial recording 
session). Namely, the follow-up dataset was treated as test data, while the original 
dataset (𝑁𝑁𝑁 𝑁 𝑁𝑁𝑁) was treated as a training sample. The stability of cluster assign-
ments was reported as a confusion matrix and the Fisher’s exact test was used to assess 
the statistical significance. 

Supplementary Note 6: Effects of age and gender 
To test whether the main findings (Fig. 2) are underpinned by the potential differences 
in age and apparent differences in gender between the identified clusters and controls, 
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we have applied general linear modelling. Namely, for each dysfunctional network, we 
assessed the differences between each cluster and all controls (N = 77), while control-
ling for gender and age (i.e. EEG ~ GROUP + AGE + GENDER, expressed in Wilkinson 
notation). Here, EEG data were transformed to a standard normal distribution using 
the inverse normal transformation.27 The p-values associated with the group effect 
(and corrected for age and gender) remained significant after multiple comparisons 
correction (q = 0.05, false discovery rate)28,29; thus, showing that the identified differ-
ences between ALS clusters and controls are not driven by gender or age. 

Supplementary Note 7: Clustering based on clinical data 
Statistical analysis of clustering solutions (𝑘𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘 𝑘 𝑘 subgroups) based only on the 
clinical data indicate that none of the solutions are statistically significant (Supple-
mentary Fig. 3A). The lack of statistical significance is likely to be due to the low sta-
tistical power associated with these clinical data. Furthermore, the stability of the clin-
ical-based clusters was poorer compared to the EEG-based clusters (Supplementary 
Fig. 3B) across all clustering solutions. For the solution of 𝑘𝑘𝑘 𝑘 𝑘𝑘 clusters, neurophys-
iological profiles of the clinical-based clusters did not reach statistical significance in 
any of the 90 EEG networks. 

Supplementary Note 8: EEG γ-oscillations 
In our study, we have used a high-density EEG system with 128 electrodes, which al-
lows for accurate disentangling of γ-band findings.30,31 Since γ-band EEG overlaps with 
the frequency spectrum of the (scalp) muscle activity, we took a cautious approach 
and, as part of the preprocessing, we discarded EEG epochs that were marked as noise 
(eye movements, blinks, muscle activity, etc).32 Further, we have used a robust covar-
iance matrix estimator (needed for source localisation method) to account for poten-
tial outliers that are missed in the previous step. Nevertheless, studies have shown 
that source localisation methods can efficiently account for cranial and ocular muscle 
artifacts33 and successfully detect cortical γ-activity.34,35 In our previous study,22 from 
which we use the spectral power and connectivity measures, we have detected γ-band 
changes (in the frontotemporal network), which were correlated with clinical scores 
assessing language function. Furthermore, in our sensor-space analysis,36 we have 
identified γ-band changes that remained even after applying the independent compo-
nent analysis (ICA) to remove noise (eye movements, blinks and muscle activity). 
These two studies, together with studies from other groups,37 support the implication 
and importance of γ-band changes in ALS. Finally, we report changes in the low γ (31-
47 Hz), which has a better signal-to-noise ratio (SNR) compared to high γ-band (53-
97 Hz).38  
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Supplementary figures 
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Supplementary Figure 2. Clinical profiles of ALS clusters and potential factors that may affect the 
clustering results. Comparison of the four identified clusters (colour-coded) using the (A) functional 
scores in different domains, including ALSFRS-R (bulbar, limb and respiratory), ECAS (language, fluency, 
executive, memory and visuospatial) and BBI (behaviour) scores; (B) Disease duration measured from the 
reported time of disease onset until the date of EEG recording; (C) King’s stages (1-4,early-late) reflecting 
the disease burden; (D-F) Age, gender and Riluzole usage. Data standardisation: data (A, B, D) were trans-
formed to standard normal distributions using the inverse normal transformation27 and then z-scored. Sta-
tistical tests: Kruskal-Wallis one-way analysis of variance (A,B,D), Fisher’s exact test (C,E,F). ALSFRS-R: ALS 
functional rating scale revised; ECAS: Edinburgh cognitive and behavioural ALS screen; BBI: Beaumont be-
havioural inventory. 
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Supplementary Figure 3. ALS patients subgrouped by King’s staging do not have differential sur-
vival probabilities. (A) The four King’s subgroups (colour-coded) show statistically significant (p < 0.05, 
FDR) differences in normalised ALSFRS-R (bulbar, limb and respiratory), but not in (B) z-scored ECAS 
(language, fluency, executive, memory and visuospatial) and normalised BBI (behaviour), (C) Kaplan-Meier 
survival curves and (D-F) clinical characteristics. Clinical subscores (A-B) are all normalised or standard-
ised, see Methods section. Note that there are in total: five ALS-FTD, 11 C9orf72-positive and four respira-
tory-onset patients. Statistical tests: Kruskal-Wallis one-way analysis of variance (A-B), logrank test (C) and 
Fisher’s exact test (D-F); all FDR corrected. 
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Supplementary Figure 4. The optimal number of ALS clusters and the stability of clustering solu-
tions based on clinical data compared to EEG data. (A) The statistical analysis shows that the optimal 
number of clusters when using only EEG data (blue) is k = 4, since both the eigengap and rotation cost peak 
at that point. The clustering solutions using only clinical data (red) do not reach significance for any inves-
tigated k. (B) The two analyses of accuracy and robustness show consistently poorer stability of clinical 
data-based solutions across all k. 
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Abstract 
Objective: To identify cortical regions engaged during the sustained attention to re-
sponse task (SART) and characterise changes in their activity associated with the neu-
rodegenerative condition amyotrophic lateral sclerosis (ALS). 

Methods: High-density EEG was recorded from 33 controls and 23 ALS patients dur-
ing the SART paradigm. Differences in associated event related potential peaks were 
measured for Go and NoGo trials. Sources active during these peaks were localised 
and ALS-associated differences were quantified.  

Results: Go and NoGo N2 and P3 peak sources were localised to the left primary mo-
tor cortex, bilateral dorsolateral prefrontal (DLPFC) and lateral posterior parietal cor-
tices (PPC). NoGo trials evoked greater bilateral medial PPC activity during N2 and 
lesser left insular, PPC and DLPFC activity during P3. Widespread cortical hyperactiv-
ity was identified in ALS during P3. Changes in the inferior parietal lobule and insular 
activity provided very good discrimination (AUROC > 0.75) between patients and con-
trols. Activation of the right precuneus during P3 related to greater executive function 
in ALS, indicative of a compensatory role.  

Interpretation: The SART engages numerous frontal and parietal cortical structures. 
SART-EEG measures correlate with specific cognitive impairments that can be local-
ised to specific structures, aiding in differential diagnosis. 



6

SART source analysis in ALS 

 145 

Introduction 
The sustained attention response task (SART) has been developed to detect clinically 
relevant lapses in attention. It represents a simple and quantitative task of executive 
functions that has been used to capture attentional impairments in different neuro-
degenerative diseases.1–4 Drifts in attention are captured by a failure to inhibit motor 
responses to targets (i.e. commission errors). As the task requires only button press 
responses it is suitable for performing during EEG recording with little to no electro-
myographic artefacts. Recently, SART-generated event-related potentials (ERPs) 
time-locked to Go and NoGo trials have been interrogated in healthy individuals using 
quantitative EEG. These ERPs have individual peaks which relate to sensory detection 
(‘P1’ and ‘N1’),5 motor control (‘N2’) and attentional engagement (‘P3’). The latter two 
peaks are typically larger during correct response withholding.6 By combining the 
SART with EEG, distinct indices of the neural network activities required for different 
aspects of task performance can therefore be determined. This facilitates specific in-
terrogation of the sequentially engaged sensory, motor and cognitive networks on a 
millisecond-by-millisecond basis in a quantitative, economical manner. Further, by 
requiring both motor and cognitive performance, the SART is expected to engage net-
works that bridge cognitive and motor functions, as oppose to tasks that demand only 
the individual functions. This suggest that the SART has potential as an instrument to 
assess the neurophysiological substrates underpinning motor and executive decline in 
conditions such as amyotrophic lateral sclerosis (ALS), Huntington’s disease and Par-
kinson’s disease.7 

Despite these advantages, the cortical regions engaged by the SART remain unclear. 
Low-resolution sensor-level topographies have indicated frontoparietal engagement 
during the task6,8 and dorsolateral prefrontal and anterior cingulate malfunctioning 
during the SART has been reported in Huntington’s disease.9 However, the sources of 
the SART ERPs in healthy individuals have yet to be reported in high spatial and tem-
poral resolution.  

Such source-resolved measures could provide important insights into and biomarkers 
of different cognitive and/or motor neurodegenerations, such as occurs in the neuro-
degenerative condition ALS.  

ALS is the most common form of motor neurone disease and is characterised by the 
presence of upper and lower motor neuron degeneration. Clinical,10,11 neuroimaging12 
and neuropathological13 evidence have demonstrated extensive additional non-motor 
involvement, however quantitative measurement of this decline in cognition and be-
haviour in ALS remains challenging.  

Detailed neuropsychological assessment with appropriate adjustments for motor im-
pairment has provided information on the nature and frequency of different cognitive 
domain impairments in ALS.10 However, these types of assessments are excessively 
time consuming for clinical trials, in some instances are subject to learning effects, 
and are insensitive to early, presymptomatic network deterioration. Screening tools, 
such as the Edinburgh Cognitive and Behavioural Screen (ECAS) for ALS, are useful in 
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a clinical setting but have limited utility in clinical trials and are not sufficiently sen-
sitive for a detailed assessment of cognitive/behavioural change.14 Function magnetic 
resonance imaging (fMRI) and positron emission tomography (PET) have been used 
to measure cortical activity during specific tasks, but these technologies are limited 
by cost,15 low temporal resolution and variance across different scanners.16 

By contrast, we and others have recently demonstrated how the source localisation of 
EEG facilitates spatially and temporally precise functional imaging of ALS cortical pa-
thology.17–19 Therefore, given the motor and cognitive pathology of ALS, measurement 
of SART-associated ERPs using source-resolved EEG provides an opportunity to sim-
ultaneously interrogate motor and cognitive network functions and investigate their 
relationship to symptomatic impairments.  

Here, we have spatially resolved the sources of these cognitive indices in healthy indi-
viduals and patients with ALS by linearly constrained minimum variance (LCMV)-
based source imaging. We demonstrate how quantifying changes in SART-ERP indices 
and their relation to cognitive and motor symptoms facilitates investigation of neuro-
physiological changes associated with cognitive impairment in ALS. 

Methods 

Ethical approval 
Ethical approval was obtained from the ethics committee of St. James's Hospital (REC 
reference: 2017-02). All participants provided written informed consent before partic-
ipation. All work was performed in accordance with the Declaration of Helsinki.  

Participants 

Recruitment 

Patients were recruited at the Irish National ALS specialty clinic in Beaumont Hospi-
tal. Healthy controls included appropriately consented, neurologically-normal, age-
matched individuals recruited from an existing population-based control bank. 

Inclusion criteria 

Patients were over 18 years of age and diagnosed within the previous 18 months with 
Possible, Probable or Definite ALS in accordance with the El Escorial Revised Diag-
nostic Criteria.20 

Exclusion criteria 

Exclusion criteria included any diagnosed psychological, neurological or muscular dis-
ease other than ALS, use of CNS medications (e.g. antidepressants, anti-seizure med-
ication) except riluzole, inability to participate due to ALS-related motor decline (e.g. 
inability to sit in the chair for the required time or click the mouse to respond), or 
evidence of significant respiratory insufficiency. Participants were also rescheduled if 
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they slept two or more hours below normal the night before the session and were 
asked to abstain from consuming alcohol the night before the recording.  

Demographics and characteristics of patients and controls 

Patient and control characteristics are summarised in Table 1. None of the participants 
met the criteria for FTD diagnosis. One patient was using non-invasive ventilation at 
night time but was clinically asymptomatic with respect to respiratory impairment 
and had ALS functional rating scale revised (ALSFRS-R) orthopnea and dyspnea scores 
of 3 (out of 4). 

Table 1. Characteristics of ALS patients and controls. 

 Patients Controls 

n 23 33 

Mean age at EEG [range] (years) 63 [32-78] 63.21 [46-82] 

Gender (f/m) 3/20 17/16 

Site of onset (spinal/bulbar/thoracic) 17/5/1 N/A 

Mean disease duration [range] (months) 20.01 [4-42] N/A 

Handedness (right/left/ambidextrous) 22/0/1 31/2/0 

C9orf72+  3 Untested 

Mean ALSFRS-R score [range] 38.24 [24-43] N/A 

Mean ECAS total score [n abnormal] 105.33 [3] Untested 

Mean ECAS ALS specific score [n abnormal] 78.47 [3] Untested 

Mean ECAS ALS non-specific score [n abnormal] 26.65 [2] Untested 

Handedness was determined by the Edinburgh Handedness Index. ECAS scores are out of a maximum total 
score of 136, ALS non-specific score of 36 and ALS specific score of 100. C9orf72+ = Carrying a repeat expan-
sion of the C9orf72 gene. ECAS = Edinburgh Cognitive and Behavioural Assessment Scale; n abnormal = 
Number of participants scoring below the abnormality cut off score, accounting for years of education. 

Experimental paradigm 

Task design 
EEG was recorded across 128-channels during 4 × 5-minute-long consecutive sessions 
during which participants undertook the SART. Participants were seated 1 ± 0.1 m from 
a computer monitor where numbers one to nine in single digit format were appearing 
in random order for 250ms, using Presentation software (NeuroBehavioural Systems 
Inc., CA, USA). Digits were presented in light grey (RGB code: 250, 250, 250 from 255) 
on a black background to reduce discomfort associated with the bright light from 
purely white numbers, reported during protocol testing. Font size was randomised 
between 100, 120, 140, 160 and 180 point to avoid participants using a perceptual 
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template of the number three’s features for target recognition, and to encourage cog-
nitive processing of the numerical value.1 Each stimulus was followed by an interstim-
ulus interval of randomised duration between 1120 and 1220 ms during which time a 
black screen was presented. Responses were registered by clicking the left button of a 
computer mouse with the right index finger. Each recording session contained 252 
trials of which the number 3 appeared at random in 11% of trials. During these sessions 
lights were turned off and experimenters were outside the room to avoid visual/audi-
tory distractions. Online performance and EEG measures were monitored by the ex-
perimenter in the neighbouring recording room. Appropriate break times were pro-
vided to minimise fatigue. Five behavioural measures of performance were captured: 
NoGo accuracy (percentage of 3-digit stimuli followed by response omission), Go ac-
curacy (percentage of non-3 digit stimuli followed by a response in the permitted time 
window), total accuracy (combined NoGo and Go accuracy), anticipation (clicking less 
than 150 ms after a go stimulus) and response time. 

Participant instructions 
At the beginning of the session the task was explained to participants using the fol-
lowing instructions: Participants were instructed to click the left mouse button every 
time they saw a number except for the number three. Participants were requested to 
equally prioritise speed and accuracy as both were used as measures of performance. 
They were asked to refrain from lifting their finger away from the mouse button be-
tween clicks as this would increase response time measures. Instructions to use their 
finger only to click the mouse, avoiding tension in the arm and shoulder, to reduce 
noise in the EEG signal, were also given. Participants were then given one practice 
round to ensure they understood the task, which had up to 45 trials (without perfor-
mance being measured) and it was performed under supervision of the experimenter.  

Data acquisition 

EEG data  

EEG recordings were conducted in the Clinical Research Facility at St. James’s Hospi-
tal, Dublin using a BioSemi® ActiveTwo system (BioSemi B.V., Amsterdam, The Neth-
erlands) within a room electromagnetically shielded as a Faraday cage. Subjects were 
measured with an appropriately-sized 128-channel EEG cap. Data were online filtered 
to a bandwidth of 0-134 Hz and digitised at 512 Hz. Participant responses and response 
time were measured and recorded in individual files as well as being marked on the 
EEG recording to allow for precise time-locking and categorisation of EEG data 
epochs. 

Cognitive- and motor-function tests 

Fifteen patients underwent psychological assessment using the ECAS within 4 weeks 
of the EEG recording. Additionally, ALSFRS-R was collected longitudinally by neurol-
ogists at the Irish National ALS specialty clinic in Beaumont Hospital. Total and ALS 
specific ECAS scores within 30 days of EEG data collection were available for 15 
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patients, while ALS non-specific scores were available for 17 patients and ALSFRS-R 
scores were available for 14 patients. Three additional patients had ALSFRS-R data 
within three months before and after the EEG recording date. Using the data from 
these two time points, ALSFRS-R scores for these three patients were estimated by 
interpolation assuming linear decline such that ALSFRS-R scores were available for 17 
patients in total. Scores are summarised in Table 1. Of those patient who performed 
abnormally in the ECAS, two had abnormal ALS non-specific scores but not total or 
ALS-specific scores, one had an abnormal ALS non-specific score but could not com-
plete the language, fluency and spelling tasks to provide remaining scores and one 
performed abnormally in total and ALS-specific scores but not in their ALS non-spe-
cific score. 

Data analysis 

Signal preprocessing  

Signal pre-processing was performed using custom MATLAB (R2014a and R2016a, 
Mathworks Inc., Natick, MA, USA) scripts and the EEGLAB21 and FieldTrip22 
toolboxes. Data were filtered using a 0.3 Hz dual-pass 5th order Butterworth high-pass 
filter and a 30 Hz dual-pass 117th order equiripple finite impulse response low-pass 
filter. Highly contaminated and non-stereotyped artefacts were removed by visual in-
spection before epoching data from 200 before the stimulus to 900 ms post-stimulus. 
In cases where responses occurred 150 ms or less after stimulus onset, trials were re-
jected and counted as an ‘anticipation error’. Stereotyped artefacts (e.g. eye blinks, eye 
movements and noisy single electrodes) were then removed by independent compo-
nent analysis.21 Data were common average referenced and mean baseline amplitude 
was subtracted. Mean correct Go (clicking upon a non-three digit) and NoGo (not 
clicking upon a ‘3’ digit) ERPs were calculated for each participant. Due to low error 
number there were insufficient number of clean epochs for incorrect trial-associated 
ERP analysis. Mean number of included artefact-free correct Go/NoGo trials was 
810.13/82.22 for patients and 815.42/82.79 for controls out of a maximum of 897/111.  

Sensor-space analysis 

Electrodes of primary interest were chosen based on established topographic maps of 
the SART N2 and P3 peaks.6,8 Four characteristics of the N2 and P3 peaks of each mean 
Go and NoGo epoch were measured in Fz, FCz, Cz and Pz electrodes. Namely, the 
peak (maximal positive amplitude for P3, maximal negative amplitude for N2) ampli-
tude and latency, mean amplitude and area of the peak within the 220-350 and 350-
550 ms time windows associated with N2 and P3, respectively. These time windows 
were chosen based on visual inspection of group mean ERPs and the existing SART 
ERP literature. 6,23–25 Time windows for quantifying peaks of interest were also limited 
to a maximum of 200 ms to facilitate baseline correction in source analysis (which 
required matching baseline and peak time windows) while using the same windows 
for sensor and source analysis.  
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For assessment of correlations with cognitive performance measures, where similarly 
significant correlations existed between performance measures and all peak size 
measures (peak amplitude, mean amplitude and mean area), we report 𝑝𝑝 and 𝑟𝑟𝑟𝑟𝑟 val-
ues with respect to peak amplitude where describing peak size (e.g. ‘smaller’ or 
‘larger’) and. 

Source-space analysis 

Channels with continuously noisy data were excluded (excluded channels mean 
[range] in controls: 0.18 [0-4], patients: 0.22 [0-4]) and data from these channels were 
modelled by spline interpolation of neighbouring channels. Source localisation was 
performed using custom MATLAB scripts and linearly constrained minimum variance 
(LCMV) beamforming26 as implemented in the FieldTrip toolbox. Boundary element 
head models27 incorporating geometries for the brain, skull and scalp tissues were 
generated using the ICBM152 MRI template,28 as template-based and individualised 
boundary-element head models are found to provide comparable localisation accu-
racy.27,29 

Brain power maps were estimated for the Go and NoGo trials during two time win-
dows, 220-350 and 350-550 ms post-stimulus onset, to localise sources of the N2 and 
P3 ERPs, respectively. Localisation was performed of Go and NoGo trials, as well as of 
the corresponding baseline windows of equal duration (N2: -130-0ms, P3: -200-0ms). 
Source localisations were performed using common spatial filters (estimated sepa-
rately for Go and NoGo and for N2 and P3) calculated from epoched data spanning 
the start of the peak’s baseline window to the end of that peak’s time window. These 
common spatial filters were then used to source localise baseline and peak time win-
dows separately. Covariance matrices, used by LCMV, were calculated for individual 
trials and mean averaged. Regularisation of the covariance matrices was implemented 
at 5% of the average variance of EEG electrodes for each subject separately. Sources 
within the brain volume were modelled by a grid with 10 mm resolution. The leadfield 
matrix was normalised to avoid potential norm artefacts.30 Finally, Go and NoGo 
source activity maps are estimated by incorporating baseline data as 
10 log��(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃���� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��������⁄ ), whereas the difference between Go and NoGo 
source activity maps are estimated as 10 log��(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃���� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃��⁄ ).  

Statistics 

Behavioural analysis 

Group level comparisons of performance during the SART were implemented with 
Mann-Whitney U-test. Adaptive false discovery rate (FDR) of 5% was implemented to 
correct for multiple comparisons, calculated by the Benjamini Hochberg method.31 P-
values are reported as uncorrected values where significant (determined by a cor-
rected p-value of <0.05). 
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Sensor-space analysis 

A four factor ANOVA was performed for each of the four peak characteristics for both 
N2 and P3, resulting in eight ANOVA. For each ANOVA the variables included were 
sex (male or female, accounting for non-gender imbalance), trial type (Go or NoGo), 
electrode (Fz, FCz, Cz or Pz) and group (ALS patient or control). Post-hoc analysis 
was implemented by Tukey’s honestly significant difference.32 Adaptive false discovery 
rate (FDR) of 5% was implemented to correct post-hoc p-values for multiple compar-
isons as described for behavioural analysis. 

Source-space analysis 

A 10 mm grid in the brain volume yields 1726 sources including white matter. To ana-
lyse these high-dimensional data, a 10% FDR33 was used as a frequentist method for 
determining significant source activity differences. Discrimination ability between pa-
tients and controls is quantified by the area under the curve for the receiver operating 
characteristics curve (AUROC).34 Empirical Bayesian inference (EBI)35 was used to cal-
culate the Bayesian posterior probability and statistical power. 

Neuropsychology correlation 

Spearman’s rank correlation was used to test the association of the changes in EEG 
measures (peak characteristics or mean power within a cortical region) and cognitive 
and functional measures based on inter-individual differences. These measures were: 
Performance in the SART task during EEG collection, performance in the Delis Kaplan 
Colour Word Interference Task (CWIT),36 ECAS scores and ALSFRS-R scores. Multiple 
comparison correction was implemented using FDR31 set to 5%. For source-space cor-
relation analysis, mean power was calculated for brain regions identified as major 
sources of peak activity, defined by the Automated Anatomical Labelling atlas.37 
Where significant correlations are reported regarding Go and NoGo combination 
measures, for example total (Go and NoGo) performance accuracy or the difference 
between NoGo and Go ERP measures, the relationship was verified not to be due to 
only Go or NoGo trials. 

Results 
Performance 
Patients (N = 23) and controls (N = 33) did not differ significantly in response time or 
accuracy. However, patients committed significantly more anticipation errors (patient 
mean [standard deviation]: 8.73% [13.85%], control mean [standard deviation]: 1.01% 
[3.26%], p = 0.0031). 
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Control characteristics 

Sensor-space 

Mean patient and control Go and NoGo ERPs in electrodes of interest are shown in 
Fig. 1. ANOVAs did not reveal any significant gender effects on waveform features.  

N2 in Cz was significantly smaller in Go trials than NoGo trials in controls (peak area 
p = 0.018, peak amplitude p = 0.006). This N2 difference significantly correlated with 
faster response times (p = 8.08×10-6, r = 0.69) and poorer NoGo accuracy (p = 0.0086, 
r = 0.45) in controls (Fig. 2A).  

P3 was significantly smaller for Go trials compared to NoGo trials in all four electrodes 
of interest (Fig. 1, Tukey’s post-hoc p = 3.50×10-5-8.15×10-7). P3 peak latency in the Pz 
electrodes was also significantly greater in NoGo trials compared to Go trials (p = 
5.12×10-7). Controls with later responses had later NoGo P3 peaks in Fz (p = 0.0020, r = 
0.52) while those with better NoGo accuracy had smaller Go P3 peaks in Cz (p = 0.011, 
r = -0.43) and FCz (p = 0.0034, r = -0.50) and those with better Go accuracy had larger 
NoGo P3 peaks in Pz (p = 0.0070, r = 0.46). Better overall accuracy also correlated 
significantly with smaller NoGo P3 peaks in Fz (p = 1.26×10-4, r = -0.62). Correlations 
are illustrated in Fig. 3A-D. 

Source-space 

The left primary motor cortex and bilateral dorsolateral prefrontal cortex (DLPFC) 
and lateral posterior parietal cortex (PPC) were identified as primary mean sources of 
both Go and NoGo N2, with greater bilateral precuneus activation during NoGo trials 
(Fig. 4). 

Mean P3 sources were similar to those of N2 for Go and NoGo trials, although controls 
showed decreased left insular, PPC, and DLPFC activity during NoGo trials relative to 
Go trials (Fig. 5). 
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Figure 1. Mean Go (blue) and NoGo (red) trial ERPs in controls ALS patients. N2 peaks are visible in 
the NoGo trial ERP in Fz and Cz in the 220-350 ms window. P3 peaks are present in the 350-550 ms window 
in both Go and NoGo trial ERPs in all electrodes. Green asterisks represent significantly larger P3 peak 
amplitudes in NoGo vs Go trials. Red asterisks represent significantly larger (more negative) N2 peak am-
plitudes in NoGo vs Go trials. Black asterisks represent significant differences in NoGo-Go N2 peak ampli-
tude between ALS patients and controls. **p<0.01, **** p<0.0001. CON = Controls. 
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Figure 2. Correlations between NoGo minus Go (NoGo-Go) N2 peak amplitude in Cz and cognitive 
task performance. (A) Correlation with response time and NoGo trial accuracy in controls demonstrates 
that those with smaller NoGo versus Go N2 peak differences had significantly faster response times and 
better NoGo accuracy. (B) Correlation with patient ECAS total and ALS specific score demonstrates that 
those with smaller (less negative) N2 peak differences had lower ECAS scores.  
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Figure 3. Correlations between P3 peak characteristics and SART performance. In controls, (A) later 
responses correlate with later P3 peaks in Fz during NoGo trials, (B) better NoGo accuracy inversely corre-
lates with Go P3 peak size in Cz, (C) Go accuracy positively correlates with NoGo P3 peak amplitude in Pz 
and (D) overall accuracy inversely correlates with NoGo P3 peak amplitude in Fz. In all participants, (E) 
later response correlate with longer peak latency and (F) smaller peak amplitude during Go trials in Cz. In 
patients, (G) greater overall accuracy correlates with longer Go P3 peak latency in Cz. 
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Figure 4. Primary sources (regions with top 5% power) of N2 during Go trials, NoGo trials and NoGo 
trials relative to Go trials (‘difference’) in controls (first rows) and patients (second rows). 
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Figure 5. Primary sources (regions with 5% power) of P3 during Go trials, NoGo trials and NoGo 
trials relative to Go trials in controls (first rows) and patients (second rows). 
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ALS patient differences 
Differences in peak and source measures between patients and controls are summa-
rised in Table 2.  

Sensor-space differences 

N2: Patients did not show a significant difference in the N2 peak between Go and 
NoGo trials. Correspondingly, N2 was significantly smaller for NoGo trials in ALS pa-
tients compared to controls in FCz (p = 5.08×10-4) and Cz (p = 0.001). Unlike controls, 
the difference in N2 between Go and NoGo trials did not correlate with SART perfor-
mance, however those patients with greater N2 NoGo-Go differences in Cz had higher 
ECAS total (p = 0.0022, r = -0.73, Fig. 2A) and ALS-specific (p = 0.017, r = -0.61) scores, 
indicating better cognitive performance, particularly in tasks of executive function 
and language (Fig. 2B). 

P3: The P3 peak did not differ significantly between patients and controls for any trial 
type or characteristic. Patients and control with longer response times had later (p = 
0.0074, r = 0.35), smaller (p = 2.31×10-5, r = -0.53) Go P3 peaks in Cz (Fig. 3E-F). Other-
wise, patients did not display the correlations between their P3 peak characteristics 
and task performance that were observed for controls. Overall accuracy was found to 
significantly correlate with later Go P3 peaks in Cz in patients (p = 0.0069, r = 0.54, 
Fig. 3G). 

Source-space differences 

Patients showed similar patterns of source activity to controls during N2 (Fig. 4). 
While similar locations of source activity were observed in patients and controls dur-
ing Go and NoGo trials, ALS patients showed similar differences between NoGo and 
Go source differences to N2 during P3 (Fig. 5), unlike controls. Correspondingly, ALS 
patients displayed widespread, significantly increased activity during NoGo trials rel-
ative to Go trials when compared to controls, with the most discriminant differences 
(AUROC > 0.75) being in the left inferior parietal lobule and left insula (Fig. 6).  
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Table 2. Significant differences in ALS sensor- and source-level measures compared to controls. 

Sensor-space 

Peak Trial Electrode Change in ALS 

N2 NoGo Cz ↓ Peak amplitude 

  FCz ↓ Peak amplitude 

 NoGo-Go Cz No correlation to task performance 

P3 Go Cz Later peak positively correlates with greater overall 
accuracy, no correlation between peak amplitude 
and accuracy. 

 NoGo Fz, Pz No correlation between amplitude or latency to 
performance 

Source-space 

Peak Trial Source  Change in ALS 

P3 NoGo-Go Left posterior parietal 
and insular cortex 

↑ Activation, area under receivership operating 
curve >0.75 

 

 

 
Figure 6. P3 sources with statistically significant differences in activity in ALS compared to con-
trols. Differences between NoGo and Go trial source activity during the P3 peak were compared between 
ALS patients and controls. All highlighted areas represent significant (FDR = 10%, type II error = 0.38, Bayes-
ian posterior probability = 0.87) increases in power with heat map values representing AUROC-0.5 (i.e. 
perfect discrimination = 0.5). Orthogonal MRI scans show only those differences with an AUROC > 0.75, 
i.e. very good discriminators. AUROC = Area under the receivership operating curve. 
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Source-space correlations in ALS patients 

Greater right precuneus power during P3 in NoGo relative to Go trials negatively cor-
relates with CWIT inhibition score (p = 0.0015, r = -0.91, Fig. 7). As greater scores in 
this task indicated poorer behavioural inhibition, this relationship demonstrated that 
the abnormal activation of this area was associated with greater preservation of this 
executive function.  

 
Figure 7. Greater behavioural inhibition in ALS is associated with increased right precuneus activ-
ity during NoGo P3 relative to Go P3. Higher CWIT inhibition score indicates poorer behavioural inhibi-
tion. 

Discussion  
This study demonstrates for the first time the specific cortical structures that contrib-
ute to performance of the SART and quantifies the relationship between SART perfor-
mance measures and underlying cognitive performance. Furthermore, we have iden-
tified abnormalities in cortical function which strongly correlate with executive im-
pairment in ALS. 

ERP peak characteristics 
At sensor-space, our control findings were consistent with the literature, demonstrat-
ing the robustness of SART-associated ERPs. N2 and P3 peaks were present in the an-
ticipated time windows and, as expected, larger for healthy individuals during correct 
response omission.  

Central N2 

NoGo N2 was maximal in Cz, as previously established. We identified that smaller 
differences in N2 size between NoGo and Go trials was associated with faster reaction 
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times. We also identified a correlation between smaller NoGo N2 peaks and better 
NoGo trial accuracy. As the N2 peak has been association with automated motor re-
sponse control,6 this may reflect greater ability to withhold and greater response speed 
where less cortical resources are required to inhibit upper motor neurons.  

Notably, these correlations were not present for ALS patients, which may represent 
the compensatory engagement of alternative cortical resources. Alternatively, the es-
tablished malfunction of inhibitory cells of the motor system38 in addition to upper 
motor neurons may lead to reduction in NoGo N2 in combination with slowing reac-
tion times. 

Frontal and parietal P3 

The P3 peak was present across the frontoparietal axis of sensors during NoGo trials 
in keeping with the SART ERP literature.6,8,23 Such spatially distributed P3 peaks asso-
ciated with other cognitive tasks have been shown to consist of two distinct entities, 
namely the frontal and parietal P3. Frontal P3 peaks have been associated with orien-
tation to novel stimuli, declining over task duration although remaining elevated in 
distractible children39 and those with panic disorder.40 By contrast, parietal P3 peaks 
are associated with working memory and attention to target stimuli.39,40 

Here we have identified similarly distinct behaviours in the frontal and parietal SART-
associated P3 peaks. In frontocentral electrodes, P3 latency related to response timing 
and is likely to provide an index of orientation speed. Smaller frontocentral P3 peaks 
were associated with more accurate performance in the opposite trial type (i.e. better 
Go performance with smaller NoGo peaks and vice versa). By contrast, larger NoGo 
parietal P3 was associated with better Go trial performance. This is in keeping with 
the cognitive resources required for accurate Go and NoGo SART performance. The 
engagement of working memory and attentional control was indicated by a large 
NoGo parietal P3, and quick orientation to the task was indicated by earlier, smaller 
frontal P3 peaks.39,40 

The orienting frontal P3 is typically earlier than the parietal P3, however it has been 
hypothesised that frontal P3 peaks may also encompass compensatory prefrontal en-
gagement due to parietal decline.41 This may explain why ALS patients, but not in con-
trols, demonstrated greater Cz P3 peak latencies during Go trials in those with better 
accuracy.  

Cortical source imaging  
At source-space both Go and NoGo N2 and P3 peaks were associated with extensive 
prefrontal and motor cortex engagement, particularly in the left cortex, in keeping 
with use of the right hand for task performance. Such widespread cortical engagement 
is expected, given the numerous cognitive and motor domains required for accurate 
task performance. The medial PPC (i.e. the precuneus) was additionally engaged dur-
ing NoGo trials relative to Go trials during N2, in keeping with its role in both volun-
tary attention shifting and movement control.42 By contrast, the left insula and inferior 
parietal lobule show lower power in NoGo trials relative to Go trials during P3, in 
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keeping with role of the left insula in the salience network43 and goal directed behav-
iour.44 The left inferior parietal lobule has been attributed numerous functions, among 
which are object-directed action45 and expectancy violation.46 This engagement of nu-
merous cortical structures by different elements of the SART highlights the range of 
cortical pathologies that could contribute to decline in SART performance measures. 
While SART ERP analysis can temporally dissect the cause of such performance de-
cline, it is clear from source imaging that a specific peak abnormality could also result 
from dysfunction in several different cortical structures. Source imaging can therefore 
not only inform on source contributing to cognitive and motor symptoms but could 
also discriminate between psychiatric or neurodegenerative syndromes with similar 
symptoms driven by differing cortical pathologies. 

Quantifying cortical pathology driving cognitive impair-
ment in ALS 
ALS patients maintained similar Go and NoGo accuracy but were more likely to at-
tempt to complete trials rapidly clicking before cognitively processing the presented 
digit, resulting in greater anticipation error. Despite sensor-space differences, patients 
and control activity did not differ significantly at a specific N2 source. This is likely to 
be a function of spatially distributed differences in activity which summate in signals 
captured by individual electrodes at source-space. Patients did, however, demonstrate 
very similar elevation in precuneus activity during NoGo relative to Go trials in both 
N2 and P3. As this elevation in right precuneus activity during P3 was associated with 
greater behavioural inhibitory function, this may represent a compensatory recruit-
ment of this region. Indeed, this exemplifies the utility of source localised EEG during 
task performance for quantifying cognitive pathology during presymptomatic phases 
of compensatory cortical activity that are more amenable to clinical intervention. 

ALS patients demonstrated additional widespread cortical activity elevation during 
NoGo relative to Go trials during P3, particularly in the left insula and inferior parietal 
lobule, which showed very good discrimination between patients and controls (AU-
ROC > 0.75). Such posterior parietal hyper-engagement has previously observed dur-
ing involuntary attention switching19 and at rest,17,47 and may provide additional dis-
criminatory power in the development of cortical diagnostic biomarkers. A previous 
study in Huntington’s disease identified reduced activity in the left DLPFC,9 right me-
dial frontal and anterior cingulate cortex during the NoGo P3, while we find hyperac-
tivity in these areas in ALS, highlighting the ability of this task to identify differing 
underlying cortical pathologies in neurodegenerations with overlapping cognitive and 
behavioural symptoms.  

We acknowledge that while these cross-sectional-data serve well to characterization 
of ALS disease heterogeneity, these measure demand larger-scale studies for ade-
quately-powered subgroup analysis. Additional larger, longitudinal studies will be re-
quired to further evaluate the application of this technology in clinical trials and dis-
ease prognostics. 
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In conclusion, here we have provided a spatially and temporally precise description of 
the cortical activity which underlies the N2 and P3 peaks of the randomised SART-
ERP in healthy adults and illustrated the applications of this methodology for interro-
gating cognitive and motor malfunction in a complex neurodegenerative disease. 
While larger patient recruitment is required for further investigation of the use of 
SART as an ALS biomarker, we have established that the SART-ERP and its underlying 
source activity can provide objective, quantitative, early markers of cognitive and mo-
tor pathology. The localisation of EEG recorded during a wider battery of cognitive, 
motor and sensory tasks has considerable potential to provide patient-specific profiles 
of cortical network disturbance which could in turn provide biomarkers that improve 
patient subgrouping, clinical trial stratification and prognostic accuracy.  
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Abstract  
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease char-
acterised primarily by the degeneration of motor neurons. While the aetiology of ALS 
remains complex and multifactorial, a notable subset of approximately 10% of ALS 
cases in European populations exhibit a discernible genetic inheritance pattern, pre-
dominantly associated with the C9orf72 hexanucleotide repeat expansion. Accurately 
assessing individuals at risk of developing ALS yields insights into early cerebral 
changes, promising the identification of biomarkers for timely diagnosis and interven-
tion. We, therefore, aim to evaluate functional alterations in asymptomatic C9orf72 
repeat expansion carriers using electroencephalography (EEG). 

A total of 36 family members of 18 patients with familial C9orf72 hexanucleotide repeat 
expansion ALS were analysed: 15 with the hexanucleotide repeat expansion in the 
C9orf72 gene (C9+) and 21 without it (C9-). High-density EEG data with 128 channels 
were collected while participants undertook the sustained attention to response task 
(SART), a variation of a Go/NoGo task entraining frontoparietal and motor networks, 
known to be affected in ALS. The EEG data were analysed in the sensor- and source-
space during N2 (220-350 ms) and P3 (350-750 ms) time windows. Differences between 
the two cohorts were quantified using linear mixed effects model analysis, incorporat-
ing pedigree information to correct for familial relations and lessen effects of other 
genetic factors. 

The results reveal that there is a statistically significant difference between C9- and 
C9+ family members in the P3 event-related potential. Namely, sensor-space analysis 
show that the potential is lower across the midline electrodes (P < 0.01), while source-
space analysis show that the potential is lower in the bilateral sensorimotor cortex (P 
< 0.05), suggesting a lower engagement of the cortical motor system in C9+ family 
members compared to C9- family members. 

These results provide evidence of brain function difference in asymptomatic family 
members with the C9orf72 repeat expansion, suggesting a functional impairment of 
the cortical motor system. These findings could have implications for the develop-
ment of biomarkers for early detection and intervention, and could be further inves-
tigated whether they are predictive of future symptom onset. 
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Introduction 
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease char-
acterised by the involvement of upper and lower motor neurons. While the majority 
of ALS cases occur sporadically, a notable subset of approximately 10% of patients ex-
hibit a discernible genetic inheritance pattern, primarily linked to the hexanucleotide 
repeat expansion within the C9orf72 (chromosome 9 open-reading-frame 72) gene.1 
Notably, the C9orf72 repeat expansion is not fully penetrant and it is also linked to 
frontotemporal dementia (FTD).2 The early diagnosis of ALS presents a significant 
clinical challenge. Additionally, therapy responses may vary due to disease heteroge-
neity, highlighting the potential need for phenotype-specific inclusion criteria, ideally 
in the form of objective and quantitative biomarkers. Better assessment of individuals 
at risk in their presymptomatic phase can elucidate the brain circuits affected by ALS-
associated genetic mutations, thereby potentially uncovering early biomarkers of the 
disease. Such advancements could help us in the discovery of new therapeutic targets, 
which could be administered before the irreversible damage occurs. 

By the time patients fulfil diagnostic criteria for ALS, considerable disease burden can 
already be detected. Namely, studies indicate that a significant portion of lower motor 
neurons, which innervate the muscle, are already lost up to a year before clinical signs 
appear,3 while centrally, the intracortical motor connectivity becomes significantly 
impaired, possibly even decades earlier.4 Although the presymptomatic stage of ALS 
is still not fully characterised, several research groups have shown, using structural 
MRI, that asymptomatic C9orf72 repeat expansion carriers exhibit widespread 
(sub)cortical grey and white matter alterations.5,6 Besides structural degeneration, a 
PET study has recently produced evidence of glucose metabolism dysfunction in the 
frontotemporal regions, precuneus, basal ganglia and thalamus in asymptomatic 
C9orf72 repeat expansion carriers.7,8  

Although the neurophysiological changes in asymptomatic C9orf72 repeat expansion 
carriers have not been elucidated, research using electroencephalography (EEG) and 
magnetoencephalography (MEG) has shown alterations in the motor cortex and fron-
toparietal networks in ALS.9–13 A recent EEG study14 using the sustained attention to 
response task (SART),15 a variation of a Go/NoGo task, showed increased engagement 
in the insula and the parietal cortex in ALS patients. By requiring both motor and 
cognitive performance, the SART is a highly suitable candidate for interrogating co-
horts of those who are at risk of developing motor and cognitive impairments, such as 
C9orf72 repeat expansion carriers. 

Early detection of ALS is crucial, as the optimal therapeutic window is likely to be in 
the earliest stages of the disease, prior to observable clinical symptoms. Unlike struc-
tural imaging modalities, electrophysiological methods can capture both network dys-
function and compensation, providing sensitive measures of early pathology, which 
may precede imaging evidence of atrophy. Interestingly, an FTD study of C9orf72 re-
peat expansion carriers showed evidence that suggests that the onset of structural and 
cognitive changes may be preceded by alterations of intracortical connectivity 
measures.4 In recent years, EEG has been proven useful in detecting changes occurring 
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in ALS patients9,10,14 and it has been suggested as a candidate for clinical trials in Alz-
heimer’s disease.16 

The improvement in recording equipment, and the establishment of advanced noise 
removal tools and signal analysis methods allow more spatially precise and sensitive 
network interrogation suitable, for use in clinical trials17,18 and for early disease detec-
tion. As neurophysiological alterations in asymptomatic C9orf72 repeat expansion car-
riers have yet to be elucidated, this study aimed to investigate the presence of neuro-
physiological changes in asymptomatic C9orf72 repeat expansion carriers by assessing 
cognitive and motor network differences between C9orf72-positive and -negative ALS 
family members through the analysis of event-related neuroelectric activity from 
high-density EEG. 

Methods 
Participants 
Between December 2020 and December 2022, we included 36 asymptomatic family 
members (AFM) of patients with C9orf72-associated familial ALS, who were ap-
proached by their relatives diagnosed with ALS at the motor neuron disease outpa-
tient clinic of the University Medical Centre Utrecht. All included participants were 
asymptomatic, defined as absence of signs of upper or lower motor neuron disease, 
bulbar dysfunction, and cognitive changes. Methods to ascertain asymptomatic status 
were described previously.6 All participants were 18 years or older and gave written 
informed consent according to the Declaration of Helsinki. The medical research eth-
ics committee of University Medical Centre Utrecht approved this study 
(NL70373.041.19). Participants with a history of severe head injury, neurodegenerative 
and neuropsychological conditions and those using psychoactive medication at the 
time of recording were excluded. 

Experimental paradigm 
Participants undertook the SART, for which they were instructed to click the left 
mouse button every time they saw a number on the screen except for the number 
three. The task was divided into four blocks of 5 minutes, with short break times to 
minimise fatigue. Participants were seated approximately 1 meter from a computer 
monitor where numbers from one to nine in single-digit format were appearing in 
random order for 250 milliseconds (ms), using Presentation software (Version 22.1, 
Neurobehavioral Systems Inc., Berkeley, CA). Digits were presented in light grey (RGB 
code: 250, 250, 250 from 255) on a black background to reduce discomfort associated 
with bright light from purely white numbers. Font size was randomised between 100, 
120, 140, 160, and 180 points to avoid participants using a perceptual template for target 
recognition of the number three and to encourage cognitive processing of the numer-
ical value.15 Each stimulus was followed by an interstimulus interval of randomised 
duration, ranging between 1120 and 1220 ms, during which a black screen was 
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presented. Each recording block contained 252 trials, the number three appearing at 
random in 11% of trials.  

Participants were requested to prioritise speed and accuracy equally since both were 
used as measures of performance. Under supervision by the experimenter, partici-
pants were given one practice round, consisting of up to 45 trials, to ensure they un-
derstood the task. During the recording lights were switched off to avoid visual dis-
tractions. 

Data acquisition 
The pedigree of all participants was determined and all were tested for the pathogenic 
C9orf72 hexanucleotide repeat expansion using methods described previously.19 All 
participants underwent a standardised and comprehensive neurological examination 
to rule out signs of upper and lower motor neuron involvement, as described previ-
ously.20 In addition, to rule out signs of cognitive changes, cognitive status (2.3% cut-
off)21 of the participants was determined using the Dutch version of the Edinburgh 
Cognitive and Behavioural ALS Screen (ECAS), a screening tool to determine cognitive 
and behavioural changes specific for ALS.21 

Task performance was recorded by Presentation software and six behavioural 
measures were extracted: NoGo accuracy (percentage of three-digit stimuli followed 
by response omission), Go accuracy (percentage of nonthree digit stimuli followed by 
a response in the permitted time window), total accuracy (combined NoGo and Go 
accuracy), anticipation (clicking less than 200 ms after a Go stimulus), response time 
and response time variability (standard deviation). 

High-density EEG data were collected with 128 channels using the BioSemi Active Two 
system (BioSemi B.V., Amsterdam, The Netherlands), sampled at 512 Hz and lowpass 
filtered (0-104 Hz) by the acquisition hardware to prevent aliasing. Trials that were 
incorrect, containing multiple responses, containing responses within the baseline pe-
riod or those with response times shorter than 200 ms or longer than 800 ms were 
excluded from the EEG data analysis. 

EEG data analysis 
The analysis was performed using custom scripts in MATLAB (Version R2022b, The 
MathWorks Inc., Natick, Massachusetts) which rely in part on publicly available 
FieldTrip22 and EEGLAB23 toolboxes. Data were downsampled to 256 Hz before further 
processing. Artefacts in the data were identified and removed using the following 
steps. To improve stationarity of the signals, the data were temporarily highpass (non-
causal finite impulse response, Hamming window: 1 Hz passband edge, filter order 
1690) and lowpass (non-causal finite impulse response, Hamming window: 40 Hz 
passband edge, filter order 86) filtered, and then bad channels were automatically de-
tected and removed.24 Independent component analysis (ICA) was applied to com-
mon-average referenced signals using CUDAICA (Compute unified device architec-
ture ICA; GPU optimised Infomax-ICA)25 and artefacts representing ocular (probabil-
ity >0.8) and muscle (probability >0.8) activity were automatically detected using 
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ICLabel.26 The computed ICA weights were then transferred to EEG data that were 
highpass (non-causal Butterworth, 0.1 Hz cut-off, 24 dB/oct roll-off) and lowpass 
(non-causal Butterworth, 30 Hz cut-off, 24 dB/oct roll-off) filtered, and the previously 
identified artefact ICA components were removed. Bad channels were interpolated 
using spherical spline interpolation,27 and the cleaned signals were epoched (extend-
ing −200 ms to 900 ms relative to the stimulus onset) and baseline corrected. Epochs 
and channels exceeding ±75 μV were interpolated to correct potential high voltage 
jumps and drifts in the data. If the number of channels exceeding this threshold was 
above 10, then the epoch was removed. Finally, the epochs were referenced to the 
common-average and averaged over trials to estimate a Go and a NoGo event-related 
potential (ERP) for each participant. Breakdown of the preprocessing outcomes and 
data quality assessments is given in the Supplementary Table 1. 

The ERP data were source-reconstructed using the standardised low resolution elec-
tromagnetic tomography (sLORETA)28 to obtain time-varying signals originating from 
the brain. A realistically-shaped finite element model29 was used, based on 
ICBM15230,31 template with anisotropic white matter conductivity.32,33 A regular grid 
with 6,264 locations confined to the grey matter and spaced 5 millimetres apart was 
used for source estimation. For each participant and task condition, noise regularisa-
tion was applied using a diagonal matrix constructed from a diagonal of a covariance 
matrix of the template leadfield matrix, which was scaled using the estimated signal-
to-noise ratios.34  

An atlas-based approach was applied to estimate signals from 62 cortical regions, 
which were defined by the Cerebrum Atlas35 and labelled according to the Desikan-
Killiany-Tourville labelling protocol.36 For each task condition, using the singular 
value decomposition on a source-level covariance matrix (300-750 ms) from dipoles 
within a given region, we computed an equivalent region dipole in the direction of 
maximum power.37 Finally, the absolute value of each source-reconstructed ERP was 
taken to obtain time-varying power changes and to account for arbitrary dipole orien-
tations.  

In all our analyses, when comparing the two groups, we assessed both the sensor-
space difference wave and the source-space power difference between the two condi-
tions (i.e., NoGo-Go). Group differences were evaluated using the mean of the ampli-
tude and the power during two time windows of interest: N2 (220-350 ms) and P3 (350-
750 ms). 

Statistical analysis 
In this study, we contrasted AFM with the C9orf72 repeat expansion (C9+) against 
those without it (C9-), to identify differences in EEG activations. 

Differences in demographics between groups were calculated using the Mann-Whit-
ney U-test for continuous variables and Fisher’s exact test for categorical variables. 
Group-level comparisons of performance of the SART and of ECAS scores were imple-
mented with Mann-Whitney U-test, while the differences of the physical examination 
outcomes used Fisher’s exact test. For upper motor neuron functioning, assessed by 
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physical examination, the signs most deviant from ‘normal’, either left or right, were 
used. 

The difference between the two groups were evaluated using a linear mixed effects 
model with age, sex and C9orf72 carriership as fixed effects, and a random term for 
pedigree ID to incorporate familial effects. The random effect was included as it sig-
nificantly improved the model fit (Likelihood ratio test: Λ = 14.39, P < 0.001) The mean 
group differences were evaluated using the mean N2 and P3 ERPs. For sensor-space 
data, we used the average of central midline electrodes (C21-23 and A1-2; equivalent to 
the electrodes between Fz and CPz from the 10-10 EEG system), which are typically 
used in Go/NoGo data analyses38–40 and previously in the analysis of SART data in 
ALS.14 For source-space data, using a hypothesis-free whole-brain analysis, we applied 
the same linear mixed effects models to each brain region and corrected for multiple 
comparisons using false discovery rate (FDR, q = 0.05).41 Values of P < 0.05 after cor-
rection for multiple testing were considered statistically significant. 

Data availability 
The data that support the findings of this study are available from the corresponding 
author, upon reasonable request. 

Results 
The demographic profiles 
A total of 36 AFM of patients with familial C9orf72 hexanucleotide repeat expansion 
ALS were analysed: 15 with the hexanucleotide repeat expansion in the C9orf72 gene 
and 21 without it. Total number of pedigrees was 18, with a median number of AFM 
per pedigree: 2 (range: 1-5). All participants were up to the third degree of consanguin-
ity with respect to the closest family member with ALS. Demographics of the partici-
pants are summarised in Table 1. 

Group differences at physical examination and cogni-
tive functioning 
No clinical signs of lower motor neuron involvement (i.e., muscle atrophy, weakness, 
fasciculations, hyporeflexia) were found on physical examination. Signs that can be 
associated with mild upper motor neuron involvement were observed in both groups 
without significant differences between them. None of the participants showed cog-
nitive impairments on their ECAS test and there were no significant differences be-
tween groups when comparing: ECAS total score, ALS-specific and ALS-nonspecific 
subscores. The breakdown of physical examination and cognitive screening are pre-
sented in Supplementary Table 2.  
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Task performance results 
The two groups did not significantly differ in any of the SART performance measures 
(Table 2). 

 

Table 1. Demographic and clinical characteristics of asymptomatic family members. 

 AFM C9- (N = 21) AFM C9+ (N = 15) P-value 

Age 41.9 (28.7-47.4) 48.4 (38.7-56.1) 0.15 

Sex (M/F) 10/11 5/10 0.50 

Education level (low/high) 4/17 8/7 0.07 

Handedness (L/R) 2/19 0/15 0.50 

Pedigrees 18 (2; 1-5)  

Age data are shown as median (interquartile range), pedigree data as total number pedigrees (median num-
ber of AFM per pedigree; range) and other data as count. Education level was assessed using the interna-
tional standard classification of education (ISCED, 2011 version), which was dichotomised into low (level 0-
4) and high (level 5-8) education. Abbreviations: AFM = asymptomatic family member; C9− = carriership 
of C9orf72 with normal repeat length; C9+ = carriership of C9orf72 repeat expansion; M/F = male/female; 
L/R = left-/right-handed. 

 

Table 2. Performance measures of the SART. 

 AFM C9- (N = 21) AFM C9+ (N = 15) P-value 

Correct NoGo (%) 75 (61-89) 82 (69-87) 0.81 

Correct Go (%) 97 (90-99) 96 (93-99) 0.60 

Correct total (%) 95 (88-98) 94 (90-98) 0.91 

Anticipation error (%) 3 (0-9) 2 (0-5) 0.50 

Response time (ms) 306.25 (268.68-331.67) 313.9 (275.22-369.53) 0.40 

Response time variability (ms) 70.43 (55.51-99.76) 81.77 (61.78-88.74) 0.59 

Data are shown in percentages (%) or milliseconds (ms) and as median (interquartile range). P-values are 
calculated using Mann-Whitney U-test. Abbreviations: AFM = asymptomatic family member; C9− = carri-
ership of C9orf72 with normal repeat length; C9+ = carriership of C9orf72 repeat expansion. 
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Sensor-space results 
For both cohorts, average brain responses (NoGo-Go difference waves; Δ Amplitude) 
across the average of the midline electrodes reveal the N2 ERP to be within 220-350 
ms and the P3 ERP within 350-750 ms (Figure 1A). Linear mixed effects model analysis 
shows that there is a statistically significant difference between C9- and C9+ AFMs in 
the average P3 peak (difference [95% confidence interval]: 1.21 [0.35 2.06] μV; P = 
0.007), but not in the N2 peak (-0.08 [-1.17 1.00] μV; P = 0.876). Average brain responses 
across individual channels are shown in Figure 1B. 

Source-space results 
Based on the findings from the sensor-space analysis, we further analysed the P3 time 
window only (Figure 2). Average brain activations (NoGo-Go power difference; Δ 
Power) during the P3 time window indicate frontoparietal activation in both groups. 
Superior frontal and precentral cortices are primarily activated in C9- AFM, while 
precuneus, cuneus, inferior parietal and lateral occipital cortices are primarily acti-
vated in C9+ AFM. Linear mixed effects model analysis revealed a significant decrease 
in the average P3 power in C9+ AFM across the bilateral sensorimotor cortex: the pre- 
and postcentral cortex, and the paracentral lobules (Supplementary Table 3). 

 

Figure 1. Sensor-space brain 
responses for C9- and C9+ 
asymptomatic family mem-
bers diverge in the central 
electrodes during the P3 
ERP. (A) Linear mixed effects 
model analysis revealed a sig-
nificant (P = 0.007) decrease 
in the average P3 in the aver-
aged midline brain response 
in C9+ AFM (red line) com-
pared to C9- AFM (blue line). 
The N2 difference between 
the two groups was not signif-
icant (n.s., P = 0.876); (B) 
Topoplot differences between 
the two groups point to a de-
creased activation in the fron-
tocentral midline electrodes 
in C9+ family members. A dif-
ference wave of each group 
was used; vertical bars at 0 ms 
represent stimulus onset. 
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Figure 2. Source-space activation patterns in C9- and C9+ asymptomatic family members diverge 
in the sensorimotor cortex. Both groups show similar patterns of activation involving the frontoparietal 
areas, wherein frontocentral areas are primarily activated in C9- AFM, while occipitoparietal areas are pri-
marily activated in C9+ AFM. Linear mixed effects model analysis (correcting for age, sex and pedigree ID) 
revealed a significant (P < 0.05, FDR) decrease in the average P3 power in the bilateral sensorimotor cortex 
in C9+ AFM compared to C9- AFM; A power difference (NoGo-Go) of each group was used in all plots. 

Discussion 
This study demonstrates the ability of EEG to capture subtle abnormalities in cortical 
functioning in asymptomatic family members with the C9orf72 hexanucleotide repeat 
expansion. We compared those with (C9+) to those without the C9orf72 repeat expan-
sion (C9-) in order to identify EEG differences specific to the mutation during their 
asymptomatic phase. We found a significant decrease in P3 ERP activation in the bi-
lateral sensorimotor cortex of AFM with the C9orf72 hexanucleotide repeat expansion. 
Our findings indicate that the C9orf72 repeat expansion affects the function of the 
sensorimotor network, which may contribute to the development of ALS in conjunc-
tion with other factors. These results demonstrate that EEG has the potential to detect 
functional differences in C9+ AFM, which may aid in the identification of biomarkers 
for early ALS diagnosis. 

Both the N2 and the P3 ERP were present across the frontoparietal axis of sensors in 
keeping with our SART study in ALS14 and previous literature.38–40 The functional role 
and neural generators of both ERPs are still not well-defined; however, both N2 and 
P3 processes contribute to successful inhibition. The N2 precedes the response and is 
often interpreted as an index of conflict monitoring and possibly motor inhibition, 
and its neural generators are thought to be located within the anterior cingulate, or-
bitofrontal and dorsolateral prefrontal, and presupplementary motor areas.42 In the 
case of P3 ERP, research suggests that it is associated with inhibitory processing, as 
well as performance monitoring.43 In tasks like SART, spatially distributed P3 activity 
has been shown to be generated by multiple neural sources.44 Our data supports this 
notion and demonstrates that the P3 peak is at the group level associated with the 
engagement of frontoparietal areas and temporoparietal junction, in accordance with 
prior Go/NoGo literature.14,45–48 In addition, our findings are in line with a study show-
ing that the P3 is partially related to the processing within the motor system.49  
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In our study, the sensor-space N2 ERP was not significantly different between C9- and 
C9+ AFM. We, however, show that C9+ AFM have decreased activation of the sen-
sorimotor area during P3 ERP. These finishings suggest that cognitive processes asso-
ciated with conflict monitoring and inhibition reflected in N2 are not differential be-
tween the two cohorts, while the P3 inhibition processes within the motor system are. 
This finding is consistent with observations of dysfunctional glucose metabolism8 and 
grey matter aberration5,6 in the sensorimotor area in asymptomatic C9orf72 repeat ex-
pansion carriers. Interestingly, M/EEG studies focusing on the movement-related pro-
cessing in ALS found reduced post-movement cortical activation, which was observed 
bilaterally to movement execution.13,50,51 This impairment, however, was not observed 
in a heterogeneous group of asymptomatic carriers (N = 12, 10 SOD1 and 2 C9orf72 
repeat expansion).13 The post-movement cortical activity is associated with deactiva-
tion and inhibition of cortical areas primarily in the hemisphere contralateral to move-
ment execution.52 Since it is interpreted as a state of decreased neural excitability or 
inhibited thalamo-cortical circuitry, our finding could suggest an impaired inhibit/ex-
citatory balance in C9orf72 pathology, which is hypothesised to underpin ALS.53 Nev-
ertheless, further research is needed to explore this potential relationship. Future re-
search could employ magnetic resonance spectroscopy data to assess the levels of 
brain metabolites associated with excitatory and inhibitory processes, such as gluta-
mate and GABA, in order to elucidate the neurochemical mechanisms underlying the 
observed ERP activations. 

In our previous SART EEG study, ALS patients demonstrated widespread cortical hy-
peractivity during P3, particularly in the parietal lobule, which is the area of cortical 
thinning,6 and in left insula, which could be hypometabolic,7,8 in asymptomatic 
C9orf72 repeat expansion carriers. In the present study, however, we did not observe 
significant changes in these areas, although the parietal areas, especially bilateral 
precuneus, are among main observed generators of the P3 ERP in C9+ AFM. While the 
observation that thinner cortex may not necessarily result in impaired function is in-
triguing, it is plausible that the finding is influenced by the inadequate statistical 
power of our study and the relatively low sensitivity of EEG towards deeper sources. 
Furthermore, our previous study investigating the SART in ALS did not detect any 
changes in the sensorimotor cortex, which could have been obscured by the identified 
widespread cortical hyperactivity. Nonetheless, it is worth noting that the P3 ERP win-
dow in that study was shorter (350-550 ms) compared to the current study (350-750 
ms), and hence, it may have reduced the sensitivity to detect the motor impairment 
that might be more evident in the later stages of P3 processing. Finally, our previous 
study primarily included C9- ALS patients, making the findings more representative 
of general ALS pathology. In addition, it is noteworthy that none of the participants 
in our AFM cohort exhibited abnormal cognitive functioning, although some demon-
strated signs of motor involvement. This may have somewhat restricted our ability to 
assess alterations within cognitive networks and increased the likelihood of detecting 
those within motor network. 

Despite the observed involvement of the sensorimotor region, none of the participants 
reported any symptoms, and this was confirmed by a thorough physical examination 
conducted at our outpatient clinic for neuromuscular disorders. However, some 
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findings suggestive of mild upper motor neuron involvement (such as pseudobulbar 
reflexes and brisk tendon reflexes) were equally observed in both groups. Neverthe-
less, these mild signs of upper motor neuron involvement can also be present in 
healthy individuals and may not necessarily imply any pathological changes.54 Given 
that the deterioration of the sensorimotor region is considered a key hallmark of ALS, 
the current observations could indicate early signs of the disease and therefore, re-
quire further longitudinal investigations to elucidate their potential significance.  

In our study, we have excluded family members (both C9- and C9+) who exhibited 
abnormal cognitive functioning. It is, however, worth noting that a recent study has 
demonstrated the presence of a cognitive/behavioural endophenotype among certain 
C9- family members.55 To assess potential EEG differences in family members, irre-
spective of the repeat expansion length, obtaining a dataset consisting of population-
based controls is necessary. 

Some limitations of our study merit consideration. Radially-oriented brain sources ex-
hibit greater prominence in EEG as compared to tangentially-oriented sources, result-
ing in reduced sensitivity to activations in medial and deep brain regions. In our study, 
we excluded brain dipoles located in the subcortical structures due to their lower sig-
nal-to-noise ratio, which precluded the examination of their potential involvement. 
However, such limitations could potentially be addressed by utilising more sophisti-
cated source modelling that integrates individualised source-localisation models. Ad-
ditionally, based on our findings, it is not possible to determine whether these changes 
represent early compensatory mechanisms or early signs of the disease. Indeed, these 
differences may be neurodevelopmental, given that previous research has demon-
strated that C9+ AFM have lower gyrification than C9- AFM.6 Although our cross-
sectional dataset was useful in detecting C9orf72-associated brain alterations, larger-
scale and longitudinal investigations, perhaps involving multiple centres, are neces-
sary to discern whether these changes precede ALS symptoms. 

Conclusion 
We have provided evidence of functional changes in the sensorimotor network of 
asymptomatic C9orf72 repeat expansion carriers using EEG. The identification and 
characterisation of such differences could be further studied as biomarkers for early 
ALS, and consequently help in the early diagnosis and in the development of an early 
treatment strategy, as well as enhance our understanding of causal (patho)physiolog-
ical processes. 
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Supplementary material 
Supplementary Table 1. Preprocessing outcomes and data quality assessments. 

 AFM C9- (N = 21) AFM C9+ (N = 15) P-value 

Preprocessing outcomes    

Removed ICs 11 (8-15) 10 (8-15) 1.000 

Interpolated channels 6 (3-9) 4 (1-8) 0.421 

Interpolated trials (%) 10.7 (7.1-12.8) 10.9 (9.3-15.1) 0.386 

Removed trials (%) 0.1 (0-0.2) 0.1 (0-0.3) 0.684 

Total Go trials 824 (738-869) 841 (810-871) 0.564 

Total NoGo trials 82 (64-98) 89 (75-97) 0.563 

Data quality assessments    

RMS(SME) Go1 0.155 0.136 / 

RMS(SME) NoGo 0.464 0.415 / 

Group-level dependability Go2 1 0.99 / 

Group-level dependability NoGo 0.98 0.98 / 

Data are shown as median (interquartile range). Abbreviations: AFM = asymptomatic family member; C9− 
= carriership of C9orf72 with normal repeat length; C9+ = carriership of C9orf72 repeat expansion; IC = 
independent component; RMS = root mean square; SME = standardised measurement error. 
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Supplementary Table 2. Outcomes of physical examination and cognitive screening. 

 AFM C9- (N = 21) AFM C9+ (N = 15) P-value 

Physical examinationa    

Dysarthria 0 (0.0) 0 (0.0) 1.00 

Impaired tongue movement 0 (0.0) 0 (0.0) 1.00 

Sustained glabellar reflex 0 (0.0) 0 (0.0) 1.00 

Jaw jerk reflex presence 1 (0.05) 2 (0.12) 0.58 

Snout reflex presence 0 (0.0) 1 (0.06) 0.45 

Palmomental reflex presence 3 (0.14) 3 (0.18) 1.00 

Hypertonia arm muscles 0 (0) 0 (0) 1.00 

Biceps tendon reflex 

- Low-Normal 
- Brisk 
- Very brisk 

16 (0.76) 

5 (0.24) 

0 (0.0) 

13 (0.76) 

4 (0.24) 

0 (0.0) 

1.00 

Triceps tendon reflex 

- Low-Normal 
- Brisk 
- Very brisk 

16 (0.76) 

5 (0.24) 

0 (0.0) 

14 (0.82) 

3 (0.18) 

0 (0.0) 

0.71 

Deltoid tendon reflex presence 4 (0.19) 5 (0.29) 0.70 

Trapezoid tendon reflex presence 3 (0.14) 2 (0.12) 1.00 

Pectoral tendon reflex presence 1 (0.05) 2 (0.12) 0.58 

Hoffmann’s reflex presence 1 (0.05) 3 (0.18) 0.31 

Abdominal reflex absence 1 (0.05) 3 (0.18) 0.31 

Hypertonia leg muscles 0 (0.0) 0 (0.0) 1.00 

Knee jerk reflex 

- Low-Normal 
- Brisk 
- Very brisk 

16 (0.76) 

5 (0.24) 

0 (0.0) 

12 (0.71) 

4 (0.24) 

1 (0.06) 

0.84 

Ankle jerk reflex 

- Low-Normal 
- Brisk 
- Very brisk 

17 (0.81) 

4 (0.19) 

0 (0.0) 

13 (0.76) 

4 (0.24) 

0 (0.0) 

1.00 
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Adductor reflex presence 5 (0.24) 5 (0.29) 1.00 

Plantar reflex Babinski response 0 (0.0) 0 (0.0) 1.00 

Cognitive screening (ECAS)b    

Total 119 (110.5-122.3) 116 (112.5-121.8) 0.65 

ALS specific 87 (81.8-90.3) 85 (84.0-90.5) 0.96 

ALS nonspecific 32 (29.8-32.0) 31 (28.3-31.8) 0.18 

Presence of (the highest) reflex or muscle tone either left or right are used per subject. Abbreviations: 
AFM = asymptomatic family member; C9− = carriership of C9orf72 with normal repeat length; C9+ = car-
riership of C9orf72 repeat expansion; ECAS = Edinburgh Cognitive and Behavioural ALS Screen; ALS = 
amyotrophic lateral sclerosis.  
a Data are shown in count (%). P values are calculated using Fisher's exact probability test. 
b Data are shown as median (interquartile range). P values are calculated using Mann-Whitney U-test. 

 

Supplementary Table 3. Linear mixed model outcomes for the significant brain regions. 

 Difference [95% confidence interval] P-value 

Paracentral R 10.25 [3.43 17.05] 0.004 

Paracentral L 10.73 [4.94 16.54] 0.0007 

Postcentral R 8.59 [3.11 14.06] 0.003 

Postcentral L 9.74 [4.76 14.71] 0.0004 

Precentral R 9.21 [3.34 15.08] 0.003 

Precentral L 8.22 [2.85 13.59] 0.004 
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This thesis offers insights into the underlying network pathology of ALS and individ-
uals at risk of developing ALS, utilising EEG as a key investigative tool. These findings 
provide promising directions and guidelines for future research endeavours aimed at 
finding the cure of ALS. 

Multisystem disruption of resting-state net-
works in ALS 
Traditional neuroscience research often employs activation paradigms to selectively 
target brain functions of clinical interest. However, such paradigms require sustained 
attention and minimal muscle tension and movement, which are often difficult to 
achieve due to the motor, cognitive, and behavioural impairments characteristic of 
ALS. In contrast, the ‘resting-state’ paradigm, which instructs patients to relax and let 
their minds wander for several minutes, has emerged as a promising alternative ap-
proach to studying the brain in the absence of specific external stimuli. In this thesis, 
we have utilised the resting-state paradigm in chapters 2-5 to examine the EEG char-
acteristics of ALS patients. Our results demonstrate the advantages of this approach 
and shed light on the potential of EEG as a clinical tool for the diagnosis and monitor-
ing of ALS. 

While there are several resting-state EEG studies in ALS, they are all limited by a small 
sample size of patients (around N ≤ 20).1–9 Conversely, our study from chapter 2 is the 
first to analyse EEG data from a larger cohort of ALS patients (N = 100). Here, we have 
shown that in ALS spectral power in the θ-band (but also in the neighbouring fre-
quency bands) over central electrodes is decreased, which is in line with previous find-
ings of decreased spectral power in θ- and α-band.1,3,8–10 These findings could be linked 
with observations of the α-peak frequency shift towards the lower end of the EEG 
spectrum in locked-in ALS patients.3,6,7 In contrast, connectivity patterns in ALS are 
still understudied and equivocal, mostly due to the different connectivity measures 
being used. In our study, we observed increased widespread connectivity (as assessed 
by absolute coherence) in θ- and γ-band, with the strongest changes in the central and 
frontoparietal electrodes. 

Although these results were robust and novel, they were lacking specificity in terms 
of the exact brain areas that are affected in ALS. Our follow-up study from chapter 3, 
therefore, expanded the results by source reconstructing resting-state EEG data. Using 
spectral power and two conceptually different measures of connectivity (amplitude 
envelope correlation and imaginary coherence), we have demonstrated for the first 
time neurophysiological evidence of a multisystem disruption of cortical networks in 
ALS patients. First, we have confirmed our previous findings of decreased spectral 
power over multiple frequency bands (from δ- to β-band) and associated them with 
dysfunctions in the specific cortical areas: primarily in the posterior and temporal ar-
eas, but also in the frontal and sensorimotor regions. Also, we have evaluated connec-
tivity through the amplitude envelope correlation, which mirrors fMRI connectiv-
ity,11,12 and showed that it is increased over the whole frequency spectrum, but most 
notably in θ- and γ-band. These increases were observed in multiple networks (i.e., 
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frontotemporal, frontoparietal, motor and visual), thus conforming previous fMRI13–16 
and MEG findings.17,18 Additionally, we have evaluated connectivity through imaginary 
coherence, showing decreased connectivity in δ- and β-band in the frontal and sen-
sorimotor networks, respectively. Although these findings might seem contradictory 
to our findings of increased absolute coherence in ALS (chapter 2), note that these 
two measures reflect somewhat different aspects of connectivity. Namely, imaginary 
coherence captures nonzero lagged connectivity only, whilst absolute coherence cap-
tures both zero and nonzero lagged connectivity; therefore, the results are not directly 
comparable. In chapter 5, we show that γ-band imaginary coherence can have oppo-
site directions of change in ALS patients, which could also partially explain the diverg-
ing results we observed in the results. Notably, both studies point to the role of in-
creased θ- and γ-band connectivity in ALS. 

Relationship between EEG and other modalities  
Although the observed aberrations in the EEG were consistent with the existing liter-
ature, we aimed to augment our findings by exploiting data from other modalities that 
were available to us, thus allowing us to further validate our results. In chapter 2 of 
our study, we made a pioneering effort to demonstrate that spectral EEG can be used 
to quantify the structural degeneration in ALS. Specifically, we identified a significant 
correlation between a combination of EEG measures and contemporaneous changes 
in structural MRI, which provided evidence that changes in neural activity are reflec-
tive of disease-specific structural changes in ALS. In chapter 3, this relationship was 
corroborated using δ- and β-band imaginary coherence in the frontal and the motor 
network, respectively. In the same analysis, we observed that EEG changes also reflect 
the changes in motor and cognitive functioning. Notably, we found that θ- and γ-band 
connectivity were associated with cognitive impairments, while β-band connectivity 
was linked to motor dysfunction.  

In these correlation analyses, it was evident that β-band frequency plays an important 
role in the motor network disruption in ALS. As phase-based connectivity measures 
(such as coherence) are susceptible to noise, we have explored the β-band spectral 
power as a prognostic and disease severity biomarker of ALS. In chapter 4, we used a 
pilot dataset of patients (N = 18) with complementary assessments of lower and upper 
motor neuron (LMN/UMN) function, and ALSFRS-R scores. Here, we show that β-
band power is negatively correlated with fine motor function and LMN scores (both 
likely reflecting the same motor impairment), suggesting the increase in β-band power 
with disease burden. Furthermore, we show that β-band power is positively correlated 
with the disease progression rate. These findings confirm results from a recent EEG 
study19 and further support the importance of β-band oscillations in assessing disease 
severity in ALS.5 Interestingly, a recent MEG study in frontotemporal dementia (FTD) 
and early ALS did not show differences in spectral power in ALS patients compared to 
controls; however, they showed a decrease in β-band power in FTD patients, suggest-
ing that this could be a characteristic of ALS patients with FTD-like symptoms.18 Fi-
nally, we observed no correlation with the UMN scores. While this might be somewhat 
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surprising, UMN assessment is known to be unreliable20 and subjective,21 and it war-
rants better assessment tools.22 

While this thesis has primarily focused on the association between structural MRI and 
EEG findings, the combination of EEG with other modalities, such as electromyogra-
phy (EMG) and magnetic resonance spectroscopy (MRS) can provide a more compre-
hensive understanding of changes in neural activity in ALS. For instance, combining 
EMG with EEG allows for the assessment of how changes in neural activity correspond 
to changes in muscle activity, providing a more detailed picture of the brain-muscle 
control dysfunction in ALS. Similarly, MRS can measure the levels of different chemi-
cals in the brain, including neurotransmitters (such as glutamate and GABA) and me-
tabolites (such as lactate and N-acetyl-aspartate; NAA), and in combination with EEG, 
it can provide additional insights into the neurochemical basis of aberrant neural ac-
tivity in ALS. This multimodal approach has the potential to uncover unique infor-
mation that may not be revealed by any single modality alone, allowing for a more 
comprehensive understanding of the underlying mechanisms of brain dysfunction in 
ALS. However, it is important to note that combining modalities also presents chal-
lenges, such as technical considerations, sample size requirements, and data integra-
tion issues, which need to be carefully addressed. Despite these challenges, the inte-
gration of multiple modalities holds promise in identifying new biomarkers and treat-
ment targets for the diagnosis and progression of ALS, and warrants further investi-
gation in future research. 

Differential disruption of resting-state networks 
in ALS 
The absence of clear correlations between genes, molecular neuropathological and 
clinical subtypes, provides evidence that ALS can no longer be considered as a single 
disease with a singular pathophysiology and clinical course. This has implications for 
drug development as clinical stratification parameters remain relatively insensitive as 
predictors of disease progression and survival. To better understand if EEG can be 
used for patient stratification with similar network impairments, in chapter 5, we ap-
plied a spectral clustering approach on a cohort of ALS patients with resting-state EEG 
data. Here, we have identified four subgroups with distinct neurophysiological profiles 
and that are not discoverable using standard clinical assessment tools. While, unsur-
prisingly, the network disruptions that characterise our clusters do not strongly cor-
relate or overlap with the commonly-defined clinical subtypes of ALS, our results are 
in alignment with previous observations (see the Discussion section in chapter 5 for 
more details). Our results from chapters 2 and 3 point to the importance of β-band 
spectral power in ALS, albeit our clustering results show that this measure is also un-
derpinning heterogeneity in network dysfunction. More specifically, we have shown 
that ALS patients as a group have decreased β-band spectral power, while one of the 
ALS subgroups showed a unique increase. Taken into account that the subgroup of 
patients with increased β-band spectral power showed the lowest stability over time 
and that the results from chapter 4 suggest that β-band might be correlated with 
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disease burden, this warrants an in-depth investigation using a bigger dataset. Never-
theless, a recent MRI clustering study23 revealed three clusters with unique structural 
changes in the motor, frontotemporal and posterior networks, which is in line with 
our clustering results implicating the same networks.  

Although these findings confirm a complex and heterogeneous nature of clinical ob-
servations currently used in ALS classification systems, our results suggest that a mod-
ification of the existing stratification system is warranted. In fact, our simulated anal-
ysis, in which individual patients are classified to clusters, resulted in high classifica-
tion accuracy (89%) showing evidence that our clustering approach can render clini-
cally meaningful findings on an individual level, which is pivotal for clinical trial strat-
ification. 

Attention networks in ALS and asymptomatic 
C9orf72 carriers 
The use of resting-state paradigms in assessing patient populations, due to their sim-
plicity, may be suboptimal for assessing specific brain functions and at-risk cohorts 
such as asymptomatic repeat expansion carriers. A more effective approach is to chal-
lenge the brain with paradigms that selectively target brain functions of clinical inter-
est, such as computing event-related potentials (ERPs) to enhance clinically relevant 
signals while suppressing irrelevant factors. One such paradigm is the sustained at-
tention to response task (SART), which has been used to detect attention lapses and 
executive impairments in neurodegenerative diseases.24–27 As the task requires motor 
responses as well, it is suitable for characterising both motor and cognitive networks. 
The SART-generated ERP consists of the N2 and P3 peaks, which start around 200 ms 
and 300 ms post-stimulus, respectively. In this thesis, we used the SART in ALS pa-
tients (chapter 6) and asymptomatic C9orf72 repeat expansion carriers (chapter 7). 

In chapter 6, we employed the SART to investigate motor and cognitive network dys-
function in ALS patients. Our findings revealed significantly smaller N2 ERPs in 
frontal electrodes, but no differences in N2 source activity patterns. However, during 
P3 ERP, ALS patients showed significantly increased source activity, particularly in the 
left inferior parietal lobule and left insula. Such posterior parietal hyperactivation has 
been previously observed during involuntary attention switching28, and in our resting-
state EEG (chapters 2 and 3) and in resting-state MEG.17 Further analysis of ERP char-
acteristics and task performance measures showed some correlations in controls but 
not in patients, and vice versa, indicating a combination of pathophysiological and 
compensatory mechanisms contributing to the network disruption in ALS. Such 
measures of compensatory activity, which sustain the performance of task/functional 
measures, may serve as potential indicators of presymptomatic ALS pathology. 

To achieve timely diagnosis and to disentangle disease-related effects from confound-
ing effects, studying cohorts genetically predisposed to developing ALS is crucial.29,30 
In chapter 7, we used the SART to investigate asymptomatic family members with 
C9orf72 repeat expansion. Similar to the analysis from the previous chapter, by 
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comparing brain responses during N2 and P3 processing between mutation carriers 
and non-carriers, we found decreased activation in the sensorimotor network, which 
is consistent with findings of dysfunctional glucose metabolism31 and grey matter de-
terioration.32 Additionally, studies focusing on movement-related processing in ALS 
using EEG/MEG have reported reduced post-movement cortical activation on both 
contralateral and ipsilateral sides to movement execution.10,33,34 The post-movement 
cortical activity is associated with deactivation and inhibition of cortical areas primar-
ily in the hemisphere contralateral to movement execution.35,36 Since it is interpreted 
as a state of decreased neural excitability or inhibited thalamo-cortical circuitry, our 
findings could suggest an impaired excitatory/inhibitory (E/I) balance in C9orf72 pa-
thology, which is hypothesised to be underpinning ALS.37 These are important early 
findings calling for more extensive research into the presymptomatic phase of the dis-
ease involving different modalities and larger datasets. 

While the SART paradigm has been the primary focus of these investigations, it is 
important to consider other paradigms that may corroborate these findings and pro-
vide complementary insights into the pathophysiology of ALS. For example, the mis-
match negativity (MMN) paradigm causes involuntary attention shifts and activates 
frontotemporal networks, which are implicated in ALS pathology. Moreover, this pas-
sive paradigm is relatively simple to administer as it involves an administration of 
standard and deviant tones in a random sequence. Studies in schizophrenia have 
linked the reduction of MMN amplitude to impaired E/I balance, and EEG-derived 
measures from this paradigm have shown promise in investigating effects of pharma-
cological interventions on E/I balance. Additionally, transcranial magnetic stimula-
tion (TMS) studies have shown disrupted E/I balance in ALS patients, with a reduction 
in short intracortical inhibition (SICI) in the motor cortex, and abnormal SICI in some 
presymptomatic SOD1 mutation carriers before symptom onset. Although TMS meas-
urements can be challenging, especially in the case when muscle wasting and fascicu-
lations are present, a novel method that uses resting-state EEG to quantitatively meas-
ure the E/I ratio has been developed. This approach can be exploited to further study 
the hypothesis of impaired E/I balance in the sensorimotor network and help in the 
development of biomarkers for early detection of ALS that are suitable for clinical tri-
als. 

Synergy of sensor- and source-space analysis 
As source analysis algorithms are capable of improving the spatial resolution of EEG, 
the sensor-space approach might be presumed redundant. The findings of this thesis, 
however, highlight the advantages and disadvantages of both the source- and the sen-
sor-space analysis. In the case of sensor-space measures, spatial resolution is poor due 
to the conduction of electrical signals to the electrode from both adjacent and distant 
cortical sources, thus limiting the ability to prescribe detected abnormalities to spe-
cific anatomical regions. For instance, in chapter 2, we identified spatially diffuse con-
nectivity changes at sensor-level, and in chapter 3, source analysis was used to deter-
mine the underpinning networks. Similarly, using source localisation, we were able to 
associate the θ-band power changes in central electrodes to the frontotemporal and 



8

General discussion and future perspectives 

 193 

mid cingulate areas. Yet, the spatial summation of cortical activity may be advanta-
geous in the investigation. In chapter 6, for example, the sensor-level N2 ERP was sig-
nificantly reduced in ALS. At source-level, however, a specific region that underpins 
the abnormality was not discerned, suggesting that a summation of mild cortical dis-
ruptions might be present. If sensor-level analysis had been skipped in favour of ad-
vanced source-level analysis alone, this diffuse pathophysiology would have remained 
undetected due to insufficient statistical power. It is, therefore, paramount to investi-
gate EEG at both sensor- and source-level. 

The field of EEG is undergoing rapid evolution, with advancements in high-
density EEG technology, multimodal integration, and signal processing and 
machine learning algorithms showing promising results in clinical settings. 
For instance, source localisation techniques now allow for mapping of brain 
activity and localisation of abnormalities in conditions like epilepsy.38 How-
ever, challenges such as variability in data acquisition and analysis techniques, 
and lack of standardised protocols still exist and need to be addressed to en-
sure the reliability and reproducibility of EEG findings. Nonetheless, these 
limitations are becoming widely recognised,39,40 and as EEG continues to ma-
ture, it has the potential to significantly impact our understanding of brain 
disorders. 

Future directions 
The search for effective targets, treatments, and timing in ALS research remains a for-
midable challenge, despite significant progress. Finding a cure for this devastating dis-
ease requires addressing the low incidence rate and heterogeneity of network dysfunc-
tion in ALS, which pose significant challenges in terms of sample size, reproducibility 
of results, and complexity of analyses. However, several considerations can be pursued 
in parallel to accelerate the overall research process and advance our understanding 
of ALS. 

One potential solution to the challenges of sample size and heterogeneity in ALS re-
search is through multi-centre collaborations. Collaborative efforts, such as the estab-
lishment of partnerships between ALS centres in different locations, can facilitate data 
sharing, thereby increasing statistical power and external validation of research find-
ings. For example, one such collaboration, between the ALS centres in Dublin and 
Utrecht, has emerged from this thesis and has demonstrated the value of such part-
nerships in advancing ALS research. 

Increasing sample size is crucial as it will allow for accounting of the observed heter-
ogeneity among ALS patients. EEG and MRI studies have revealed differential sub-
groups of ALS patients, and it has been observed that some compounds may be effec-
tive only in specific subgroups of ALS patients. These findings underscore the im-
portance of adopting a precision medicine approach in ALS, wherein therapies are 
tailored to individuals or groups of individuals based on their unique characteristics. 
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In addition to addressing sample size and heterogeneity, the identification of bi-
omarkers that can bridge the gap between preclinical and clinical research is critical 
for the development of new treatments for ALS. Biomarkers can serve for stratifica-
tion, allowing for the definition of pathophysiologically homogeneous patient popu-
lations, and for target engagement assessment, enabling verification of treatment ef-
fects across preclinical and clinical interventions. EEG has shown promise as a tool 
that can be used at clinical and commercial trial sites for tracking disease progression 
and treatment effects in other neurodegenerative diseases, such as Alzheimer's dis-
ease41,42 and schizophrenia.43–45 Moreover, gene expression atlases46 that measure the 
activity of thousands of genes in multiple brain regions offer opportunities to elucidate 
the molecular mechanisms underlying ALS-related brain changes.32 By understanding 
the effects of ALS risk-genes on brain oscillations and identifying new pathologically 
relevant genes, novel therapeutic targets may be identified.47 

Although a preventive approach would be ideal, similar to the success seen in spinal 
muscular atrophy trials,48 conducting large prevention trials for late-onset ALS poses 
significant challenges and may not be feasible due to the prolonged duration of treat-
ment required to achieve a clinical endpoint. Moreover, concerns regarding the cost 
and safety of treating individuals who may never develop the pathology further com-
pound the challenges. Currently, the only eligibility criterion for treatment therapies 
is a history of familial ALS or the presence of an ALS-linked genetic mutation. How-
ever, the optimal stage for initiating treatment remains unknown. Notably, only pa-
tients with established ALS diagnosis are typically included in ALS research,23,49,50 
which overlooks valuable information on early, presymptomatic changes.51 Incorpo-
rating presymptomatic data into research could not only enhance our understanding 
of early disease phenotypes but also potentially unveil new disease pathways and ther-
apeutic targets, thereby contributing to improved disease management and treatment 
strategies. 

Nevertheless, ALS research should diversify. Namely, research groups usually focus on 
one modality (e.g., EEG, MRI, MRS or TMS) only, which is likely to be sensitive to an 
aberration occurring at a certain stage of the disease and possibly only within different 
subgroups of patients. This unimodal approach causes a multiverse of findings that is 
otherwise hard to consolidate into one complete observation – as exemplified by the 
model of the major biomarkers of Alzheimer's disease, in which different modalities 
become sensitive at different disease stages.52 A more beneficial way, therefore, would 
be to apply a multimodal approach, in which the same patients are assesses using an 
array of tests and modalities.  

Finally, although high-density EEG recordings are valuable for research purposes, 
their practicality in clinical trials is limited. Future investigations should prioritise the 
development and utilisation of more time-efficient data collection methods, such as 
EEG systems that employ sponge-based or dry electrodes. The optimisation of data 
collection procedures is expected to yield substantial benefits, including reduced bur-
den on patients and staff, thereby facilitating the implementation of EEG-based as-
sessments in clinical trial settings. 
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In conclusion, it is imperative that future EEG research in ALS prioritises collaborative 
efforts to address the challenges of sample size and heterogeneity. One potential ave-
nue for advancement is the identification of biomarkers that can bridge the gap be-
tween preclinical and clinical research, which holds promise in enhancing our under-
standing of the pathophysiology of ALS and identifying novel therapeutic targets. 
Moreover, a multimodal approach that integrates various assessments within the 
same patients could provide a more comprehensive and holistic view of the disease. 
Furthermore, optimising data collection methods, such as the utilisation of EEG sys-
tems with electrodes that do not require gelling, could streamline data collection pro-
cedures and alleviate burden on patients and staff. Despite the inevitable challenges 
that lie ahead, sustained research efforts and innovative approaches are essential in 
the pursuit of effective treatments and ultimately a cure for ALS. 

 

Figure 1. A roadmap for de-
velopment of translational 
EEG biomarkers for treat-
ment development in ALS. 
Future EEG research in ALS 
should prioritise collaborative 
efforts to address challenges in 
sample size and heterogeneity. 
Additionally, leveraging com-
plementary paradigms and im-
aging modalities, advancing 
translational research, and op-
timising EEG setup for clinical 
trial use are crucial steps. De-
spite the inevitable challenges 
that lie in each of these steps, 
these research efforts are es-
sential in the pursuit of preci-
sion medicine treatments for 
ALS. 
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Summary 
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that 
affects both upper and lower motor neurons, leading to motor dysfunction. It has an 
estimated annual incidence rate of 2-3 new cases per 100,000 individuals, typically af-
fecting those between the ages of 55 and 65. The most common cause of death in ALS 
is respiratory failure, which typically occurs 2-5 years after the onset of symptoms. It 
also affects nonmotor functions, resulting in cognitive and behavioural impairments. 
Although the precise cause of ALS remains largely unknown, genetic and environmen-
tal risk factors are known to contribute to its development. The most prevalent and 
well-established genetic mutation associated with ALS is the repeat expansion in the 
C9orf72 gene. Despite notable advancements in ALS research, many crucial questions 
remain unanswered, including understanding the relationship between risk genes, the 
manifestation of diverse phenotypes, and the early detection and prognosis of the dis-
ease. Addressing these questions can facilitate the identification of therapeutic tar-
gets, the development of earlier treatment strategies, and the enhancement of clinical 
trial designs. 

Biomarkers are measurable biological changes that are utilised for diagnosing and pre-
dicting the prognosis of diseases. In the context of ALS, the current diagnosis heavily 
relies on clinical examinations conducted by experienced neurologists, often resulting 
in diagnostic delays. Furthermore, patient prognosis remains unpredictable, and ex-
isting outcome measures in clinical trials have limitations in accurately assessing dis-
ease progression. Consequently, there is an urgent need to develop objective and 
quantifiable biomarkers that can capture dysfunction in upper motor neurons 
(UMNs) as well as changes in nonmotor aspects of the disease. Electrophysiology, spe-
cifically electroencephalography (EEG), holds promise in fulfilling this requirement. 
EEG provides real-time information transmission throughout the entire brain at a mil-
lisecond timescale and is relatively cost-effective and portable. By surpassing the lim-
itations of other neuroimaging techniques, EEG emerges as a promising tool for the 
development of biomarkers in ALS. 

Findings 
In chapter 2, we aimed to investigate the altered cortical activity and connectivity pat-
terns in ALS using resting-state EEG data. Prior investigations in EEG and ALS were 
constrained by limited sample sizes, whereas our study analysed a larger cohort of ALS 
patients (N = 100). Our findings revealed a significant decrease in spectral power in 
the θ-band (and extending to neighbouring bands) over central electrodes, corrobo-
rating previous research outcomes. Furthermore, we observed enhanced widespread 
connectivity in both θ- and γ-bands, with the most pronounced changes occurring in 
the central and frontoparietal electrodes. Importantly, the correlation analysis be-
tween the EEG data and structural magnetic resonance imaging (MRI) scans demon-
strated a concurrence between disease-specific structural degeneration in motor areas 
and corticospinal tracts, and the observed alterations in neural activity. These results 
contribute to our understanding of the progressive network decline in ALS and lay the 
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groundwork for the development of validated and cost-effective spectral EEG-based 
biomarkers. 

In chapter 3, we extended the previous findings by reconstructing resting-state EEG 
data and examining spectral power and two measures of connectivity: co-modulation 
and synchrony. Our analysis confirmed the presence of reduced spectral power across 
multiple frequency bands, ranging from δ to β, indicating dysfunction in specific cor-
tical areas, particularly in the posterior and temporal regions, as well as the frontal 
and sensorimotor regions. Moreover, we observed increased co-modulation across the 
entire frequency spectrum, with notable enhancements in θ- and γ-bands, within mul-
tiple networks including the frontotemporal, frontoparietal, motor, and visual net-
works. Additionally, we identified decreased synchrony in the δ- and β-bands within 
the frontal and sensorimotor networks. These findings shed light on the role of height-
ened θ- and γ-band connectivity in ALS. Importantly, the observed changes in con-
nectivity exhibited correlations with alterations in structural MRI, functional motor 
scores, and cognitive scores. Overall, our results underscore the extensive disruption 
of disease-associated networks in ALS, indicating widespread dysfunction in both mo-
tor and cognitive networks. 

In chapter 4, we examined the role of β-band motor network disruption in ALS. Our 
findings suggest that an increase in β-band power is associated with the increase in 
the disease burden and the progression rate. The study also observed a negative cor-
relation between β-band power and fine motor function, as well as with lower motor 
neuron (LMN) scores, which are likely reflective of the same motor impairment. We, 
however, did not observe any correlation with upper motor neuron (UMN) scores, 
which may warrant higher sample size and further research into better assessment 
tools. The study provides preliminary evidence for further research in β-band oscilla-
tions in assessing disease severity in ALS. 

In chapter 5, we demonstrate the ability of EEG to identify four distinct subgroups 
among ALS patients, each characterised by unique neurophysiological profiles that 
cannot be detected through conventional clinical assessment tools. Our findings align 
with a recent MRI clustering study, which identified three clusters displaying distinct 
structural changes in the motor, frontotemporal, and posterior brain networks, thus 
implicating the same networks as observed in our study. The identification of ALS 
subtypes based on profiles of differential impairment in neuronal networks holds 
promise for future stratification in clinical trials. Furthermore, it lays the foundation 
for the development of novel therapeutic strategies grounded in neurobiological prin-
ciples that aim to modulate network disruption. 

In chapter 6, our objective was to examine the dysfunction of motor and cognitive 
networks in individuals with ALS, employing the sustained attention to response task 
(SART). We found that ALS patients exhibited significantly reduced N2 event-related 
potential (ERP) amplitudes in frontal electrodes, indicating diminished neural re-
sponses during the 220-350 ms time window. However, we did not observe any differ-
ences in the patterns of N2 source activity. Furthermore, our findings revealed a sig-
nificant increase in source activity during the P3 ERP component (350-550 ms), 
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particularly within the left inferior parietal lobule and left insula, suggesting compen-
satory mechanisms at play. Taken together, our results point towards a combination 
of pathophysiological processes (reflected by diminished N2) and compensatory 
mechanisms (reflected by overactivated P3), contributing to the disruption of net-
works along the frontoparietal axis in ALS. 

In chapter 7, our focus shifted to a cohort with a genetic predisposition to developing 
ALS, as early diagnosis is critical in managing the condition effectively. Specifically, 
we employed the SART to investigate asymptomatic family members with the C9orf72 
repeat expansion, a known genetic risk factor for ALS. While we did not observe any 
discernible alterations in N2 ERP processing, we identified reduced activation during 
the P3 ERP component within the sensorimotor network among repeat expansion car-
riers, in comparison to noncarriers. This finding aligns with observations of dysfunc-
tional glucose metabolism and grey matter deterioration within the same network. 
Our results could suggest a potential disruption in the excitatory/inhibitory balance 
associated with C9orf72 pathology, which is hypothesised to underlie the development 
of ALS. These preliminary yet promising findings warrant further investigation into 
the presymptomatic phase of the disease, using diverse modalities and larger datasets, 
to enhance our understanding of its pathophysiology. 

Taken together, this thesis provides compelling evidence that EEG is useful in gaining 
deeper understanding of ALS as a multinetwork disorder. Our results showed that the 
spectral power in lower frequency bands is decreased in ALS patients; however, there 
is some evidence that β-band power has a nonlinear effect, and it is increasing with 
the disease burden. The brain communication is overall increased (as per co-modula-
tion) but with low efficiency (as per synchrony). ALS patients can be clustered into 
four stable subgroups with differential EEG profiles, corroborating that ALS is a het-
erogeneous disease affecting multiple brain networks and that frontotemporal and 
frontoparietal networks play a role in ALS. Finally, we showed that EEG could be sen-
sitive enough to detect differences in the motor network function between ALS family 
members.  

However, challenges persist in the pursuit of effective targets, treatments, and timing 
in ALS research. To address these challenges, potential strategies can be considered. 
Multicentre collaborations have the potential to tackle issues related to sample size 
and heterogeneity by enabling data sharing and enhancing statistical power. Precision 
medicine approaches that account for differential subgroups of ALS patients, coupled 
with the utilisation of biomarkers, hold promise in developing tailored treatments. 
Furthermore, a multimodal research approach encompassing various assessment mo-
dalities, along with the optimisation of data collection methods such as time-efficient 
EEG systems, holds promise for advancing ALS research and improving the conduct 
of clinical trials. These strategies, in conjunction with the findings presented in this 
thesis, provide promising avenues for future investigations in ALS research aimed at 
developing effective treatments and ultimately finding a cure. 
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Summary in Dutch (Nederlandse samenvatting) 
Amyotrofische laterale sclerose (ALS) is een progressieve neurodegeneratieve ziekte 
die zowel de bovenste als de onderste motorneuronen aantast, wat leidt tot motori-
sche disfunctie. Het heeft een geschatte jaarlijkse incidentie van 2-3 nieuwe gevallen 
per 100.000 individuen en treft doorgaans mensen tussen de leeftijden van 55 en 65 
jaar. De meest voorkomende doodsoorzaak bij ALS is respiratoir falen, dat meestal 2-
5 jaar na het begin van de symptomen optreedt. Het beïnvloedt ook niet-motorische 
functies, wat resulteert in cognitieve en gedragsstoornissen. Hoewel de exacte oorzaak 
van ALS grotendeels onbekend blijft, zijn genetische en omgevingsfactoren bekend 
die bijdragen aan de ontwikkeling ervan. De meest voorkomende en bekende geneti-
sche mutatie die verband houdt met ALS is de herhaling van het gen C9orf72. Ondanks 
opmerkelijke vooruitgang in ALS-onderzoek blijven veel cruciale vragen onbeant-
woord, waaronder het begrijpen van de relatie tussen risicogenen, de manifestatie van 
diverse fenotypen en de vroege detectie en prognose van de ziekte. Het aanpakken 
van deze vragen kan de identificatie van therapeutische doelen vergemakkelijken, de 
ontwikkeling van vroegere behandelingsstrategieën mogelijk maken en de verbetering 
van klinische onderzoeksontwerpen bevorderen. 

Biomarkers zijn meetbare biologische veranderingen die worden gebruikt voor de di-
agnose van ziekten en het voorspellen van het beloop ervan. In het geval van ALS 
steunt de huidige diagnostische aanpak sterk op klinisch onderzoek van ervaren neu-
rologen, wat leidt tot vertragingen in de diagnose. Bovendien kan de prognose van de 
patiënt onvoorspelbaar zijn en hebben bestaande uitkomstmaatregelen in klinische 
onderzoeken beperkingen bij het nauwkeurig beoordelen van de ziekteprogressie. 
Daarom is er een dringende behoefte aan de ontwikkeling van objectieve en meetbare 
biomarkers die motorneuron-dysfunctie kunnen vastleggen, samen met veranderin-
gen in niet-motorische aspecten van de ziekte. Elektrofysiologie, met name elektro-
encefalografie (EEG), lijkt veelbelovend om aan deze eis te voldoen. EEG biedt real-
time informatie over de hele hersenen op een tijdschaal van milliseconden en is rela-
tief kosteneffectief en draagbaar. Door de beperkingen van andere neurobeeldvor-
mingstechnieken te overtreffen, komt EEG naar voren als een veelbelovend hulpmid-
del voor de ontwikkeling van biomarkers bij ALS. 

Resultaten 
In hoofdstuk 2 hebben we getracht de veranderde corticale activiteit en connectivi-
teitspatronen bij ALS te onderzoeken met behulp van het EEG in rusttoestand. Eer-
dere onderzoeken naar EEG en ALS werden beperkt door kleine steekproefgroottes, 
terwijl onze studie een groter cohort van ALS-patiënten analyseerde (N = 100). Onze 
bevindingen toonden een significante afname van de spectrale kracht in de θ-band 
(en aangrenzende banden) over de centrale elektroden, wat eerdere onderzoeksresul-
taten bevestigde. Bovendien observeerden we een versterkte uitgebreide connectivi-
teit in zowel θ- als γ-band, waarbij de meest uitgesproken veranderingen plaatsvonden 
in de centrale en frontopariëtale elektroden. Belangrijk is dat de correlatieanalyse tus-
sen de EEG-gegevens en structurele magnetic resonance imaging (MRI) scans een 
overeenkomst aantoonde tussen ziekte-specifieke structurele degeneratie in motor-
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ische gebieden en corticospinale banen en de waargenomen veranderingen in neurale 
activiteit. Deze resultaten dragen bij aan ons begrip van de progressieve netwerkaf-
name bij ALS en leggen de basis voor de ontwikkeling van gevalideerde en kostenef-
fectieve spectrale EEG-gebaseerde biomarkers. 

In hoofdstuk 3 breidden we de eerdere bevindingen uit door bronreconstructie uit te 
voeren op het EEG in rusttoestand en de spectrale kracht en twee maten van connec-
tiviteit te onderzoeken: co-modulatie en synchronie. Onze analyse bevestigde de aan-
wezigheid van verminderde spectrale kracht over meerdere frequentiebanden, vari-
erend van δ tot β, wat wijst op disfunctie in specifieke corticale gebieden, met name 
in de posterieure en temporale regio's, evenals de frontale en sensorimotorische re-
gio's. Daarnaast observeerden we een toename van co-modulatie over het gehele fre-
quentiespectrum, met opmerkelijke verhogingen in de θ- en γ-band, binnen meerdere 
netwerken, waaronder de frontotemporale, frontopariëtale, motorische en visuele 
netwerken. Bovendien identificeerden we verminderde synchronie in de δ- en β-band 
binnen de frontale en sensorimotorische netwerken. De waargenomen veranderingen 
in connectiviteit vertoonden correlaties met veranderingen in structurele MRI, func-
tionele motorscores en cognitieve scores. Dit hoofdstuk benadrukt de implicatie van 
verbeterde connectiviteit binnen de θ- en γ-band, evenals uitgebreide stoornissen in 
netwerken die verantwoordelijk zijn voor motorische en cognitieve functies. 

In hoofdstuk 4 onderzochten we de rol van β-band motorische netwerkverstoring bij 
ALS. Onze bevindingen suggereren dat een toename van het vermogen van de β-band 
gekoppeld kan worden aan een toename van de ziektebelasting en de progressiesnel-
heid. De studie observeerde ook een negatieve correlatie tussen het vermogen van de 
β-band en fijne motorische functie, evenals met scores voor lagere motorneuronen, 
die waarschijnlijk dezelfde motorische beperking weerspiegelen. We observeerden 
echter geen correlatie met scores voor bovenste motorneuronen, wat mogelijk vraagt 
om een grotere steekproefomvang en verder onderzoek naar betere beoordelingsin-
strumenten. De studie levert voorlopig bewijs voor verder onderzoek naar β-band os-
cillaties bij het beoordelen van de ernst van ALS. 

In hoofdstuk 5 laten we zien dat EEG in staat is om vier verschillende subgroepen bij 
ALS-patiënten te identificeren, elk gekarakteriseerd door unieke neurofysiologische 
profielen die niet kunnen worden gedetecteerd via conventionele klinische beoorde-
lingsinstrumenten. Onze bevindingen komen overeen met een recente MRI-cluster-
studie, die drie clusters identificeerde met verschillende structurele veranderingen in 
de motorische, frontotemporale en posterieure hersennetwerken, wat wijst op de-
zelfde netwerken zoals waargenomen in onze studie. Het identificeren van ALS-sub-
groepen op basis van profielen van verschillende stoornissen in neuronale netwerken 
is veelbelovend voor toekomstige stratificatie in klinische onderzoeken. Bovendien 
legt het de basis voor de ontwikkeling van nieuwe therapeutische strategieën geba-
seerd op neurobiologische principes die tot doel hebben netwerkverstoring te modu-
leren. 

In hoofdstuk 6 was ons doel om de disfunctie van motorische en cognitieve netwerken 
bij mensen met ALS te onderzoeken, met behulp van de sustained attention to re-
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sponse task (SART). We ontdekten dat ALS-patiënten significant verminderde N2 
event-related potential (ERP) vertoonden in frontale elektroden, wat wijst op vermin-
derde neurale responsen binnen het tijdvenster van 220-350 ms. We observeerden 
echter geen verschillen in de N2-bronactiviteit. Tijdens de P3 ERP (350-550 ms) werd 
een significante toename van bron- (maar niet sensor-) activiteit waargenomen, met 
name binnen de linker inferieure pariëtale kwab en linker insula, wat wijst op de be-
trokkenheid van compensatiemechanismen. Samen wijzen onze resultaten op een 
combinatie van pathofysiologische processen (weerspiegeld door verminderde N2) en 
compensatiemechanismen (weerspiegeld door overactieve P3), die bijdragen aan de 
verstoring van netwerken langs de frontopariëtale as bij ALS. 

In hoofdstuk 7 richtten we ons op een cohort met een genetische aanleg voor ALS, 
waarbij we het belang van een vroege diagnose voor een effectieve behandeling van 
de aandoening erkenden. Specifiek gebruikten we de SART om asymptomatische fa-
milieleden te onderzoeken met de herhaling in het gen C9orf72, een bekende geneti-
sche risicofactor voor ALS. Hoewel we geen waarneembare veranderingen in N2 ERP-
verwerking waarnamen, identificeerden we verminderde activatie tijdens de P3 ERP 
binnen het sensorimotorische netwerk bij dragers van de mutatie, in vergelijking met 
niet-dragers. Deze bevinding komt overeen met waarnemingen van disfunctioneel 
glucosemetabolisme en achteruitgang van grijze stof binnen hetzelfde netwerk. Onze 
resultaten zouden kunnen wijzen op een mogelijke verstoring in het excitatoire/inhi-
bitoire evenwicht dat geassocieerd wordt met de C9orf72-pathologie, die wordt ver-
ondersteld grondslag te liggen aan de ontwikkeling van ALS. Deze voorlopige maar 
veelbelovende bevindingen vereisen verder onderzoek naar de presymptomatische 
fase van de ziekte, met het gebruik van diverse modaliteiten en grotere datasets, om 
ons begrip van de onderliggende pathofysiologie te verbeteren. 

Samengevoegd biedt deze scriptie overtuigend bewijs dat EEG waarde heeft bij het 
bevorderen van een dieper begrip van ALS als een stoornis van meerdere netwerken. 
Onze resultaten toonden aan dat de spectrale kracht in de lagere frequentiebanden 
verminderd is bij ALS-patiënten; er is echter enig bewijs dat het vermogen van de β-
band een niet-lineair effect heeft en toeneemt met de ziektebelasting. De hersencom-
municatie is over het algemeen verhoogd (zoals blijkt uit co-modulatie), maar met 
lage efficiëntie (zoals blijkt uit synchronie). ALS-patiënten kunnen worden ingedeeld 
in vier stabiele subgroepen met verschillende EEG-profielen, wat bevestigt dat ALS 
een heterogene ziekte is die meerdere hersennetwerken aantast en dat de frontotem-
porale en frontopariëtale netwerken een rol spelen bij ALS. Ten slotte hebben we aan-
getoond dat EEG gevoelig genoeg kan zijn om verschillen in de functie van het moto-
rische netwerk tussen familieleden met ALS te detecteren. 

Er blijven echter uitdagingen bestaan in de zoektocht naar effectieve behandelingen 
voor ALS, wat aanzet tot de overweging van verschillende potentiële strategieën om 
ze te vinden. Samenwerkingen met meerdere centra hebben de potentie om proble-
men met betrekking tot steekproefomvang en heterogeniteit aan te pakken door het 
eenvoudiger uitwisselen van gegevens. Benaderingen voor precisie-geneeskunde die 
rekening houden met verschillende subgroepen van ALS-patiënten, in combinatie met 
het gebruik van biomarkers, doen verwachten tot de ontwikkeling van geperson-



Addenda | Summary in Dutch (Nederlandse samenvatting) 

208 

aliseerde behandelingen. Bovendien geven multimodale studies die complementaire 
technieken integreren, samen met geoptimaliseerde gegevensverzameling, de moge-
lijkheid tot vooruitgang binnen het ALS-onderzoek en zijn ze in staat de uitvoering 
van klinische onderzoeken te verbeteren. Deze strategieën, in combinatie met de be-
vindingen gepresenteerd in deze scriptie, bieden veelbelovende wegen voor toekom-
stig onderzoek naar ALS met als doel effectieve behandelingen te ontwikkelen en uit-
eindelijk een remedie te vinden. 
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