
Task Completeness Assessments
in the Evolution of Domain-Specific

Modelling Languages

Vijanti Ramautar(B), Sergio España, and Sjaak Brinkkemper

Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, Utrecht 3584 CC, The Netherlands
{v.d.ramautar,s.espana,s.brinkkemper}@uu.nl

Abstract. [Background] Domain-specific modelling languages
(DSMLs) are tailored to particular application domains and are com-
mon in model-driven information system engineering. To support new
modelling requirements, increase the maturity of the languages, and keep
them relevant to their domain, DSMLs need to be evolved. [Aims] Since
little is known regarding the complexity of the evolution process, in this
paper, we investigate which incompletions are prevalent in each DSML
evolution activity. [Method] We conduct a quantitative empirical study
where the object of study, a DSML in the domain of ethical, social and
environmental accounting, is supported by a metamodel in UML and a
textual grammar in Xtext. Ninety-two participants grouped in 25 teams
have evolved the DSML based on a set of new requirements, updating
the metamodel and the grammar. We assess the completeness of each
evolution activity and identify incompletions per artefact. We have also
enquired the participants about their perceptions of the evolution pro-
cess. [Results] The completeness of the metamodel evolution activity
is about 1.25 times higher than it is for the grammar. The metamod-
elling primitives that are more likely to cause problems are relationships
and enumerations. With respect to the Xtext grammars most incomple-
tions are localised in rule calls, cross references and cardinalities. This is
consistent with the participants’ perceptions about the difficulty of each
activity and primitive. [Contribution] Our findings are relevant for the
design and testing of DSMLs, as well as for education on DSMLs.

Keywords: Model-driven information systems engineering ·
domain-specific modelling language · evolution · Xtext grammar ·
metamodel

1 Introduction

Model-driven information systems engineering (MDE) aims at decreasing the
developer effort, reducing time-to-market, and reducing development complex-
ity [14,37]. In some project situations, creating a domain-specific modelling lan-
guage (DSML) is a convenient approach [25]; for instance, when engineering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Indulska et al. (Eds.): CAiSE 2023, LNCS 13901, pp. 314–329, 2023.
https://doi.org/10.1007/978-3-031-34560-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34560-9_19&domain=pdf
https://doi.org/10.1007/978-3-031-34560-9_19


Task Completeness Assessments in the Evolution of DSMLs 315

a software product line where a family of related information systems (ISs) is
developed, or when user-modelling is intended. DSMLs are one family of domain-
specific languages (DSL), where the goal leans towards modelling rather than
programming. DSLs can be designed in many application domains, and in con-
trast to general-purpose languages, DSLs provide the right level of abstraction
and expression for the problem domain, while providing critical domain proper-
ties [20]. DSML and DSL engineering methodology has garnered much attention
from practitioners and academia and several development methods exist (e.g.
in [5]). DSMLs are expressed by several types of formalisms, where metamodels
and textual grammars are two common artefacts, the former often specifying
the abstract syntax and the latter often specifying the concrete syntax of the
DSML [13]. Visual notations are another approach to concrete syntaxes [22]. In
such project situations, a DSML evolution will require interrelated activities to
update the metamodel and the grammar or visual notation. In this paper, we
focus on metamodels and grammars.

While DSL evolution and maintenance have been the focus of several inves-
tigations [38], this practice has received less attention in the case of DSMLs.
Moreover, we miss insights on the degradation of DSMLs due to evolution activ-
ities. The introduction of incompletions in the DSML artefacts is likely to affect
the process of the underlying IS engineering endeavours, as well as the quality
of the resulting system. Understanding, anticipating, preventing, and resolving
incompletions in the DSML artefacts that arise as a result of an evolution process
becomes paramount for the overall success of IS engineering practices involving
DSMLs.

This paper aims to investigate which incompletions are prevalent in each
DSML evolution activity. We conduct an empirical study where teams of partic-
ipants are requested to evolve a given DSML based on a set of new requirements,
and then asked about their perceptions of the process. Following the traditional
metrics of task completeness in usability studies [36], we define (task) incomple-
tion as the lack of an element that should have been added, updated or deleted
to implement the requirement.

The main contributions are: (i) an assessment of the prevalence of incom-
pletions in each DSML evolution activity (and its corresponding artefact), (ii)
an analysis of how the incompletions are located in the primitives of the meta-
model and the grammar, (iii) an analysis of the perceptions of the participants,
also in relation to their performance. We analyse whether there is a relation-
ship between problems that arise during metamodel evolution and issues that
arise during grammar evolution. The scientific contributions can be employed
by DSML engineers and teachers to identify where to put emphasis (e.g. elab-
orate explanations, training, and documentation) during DSML development
and evolution. Moreover, the results can provide the focus for DSML testing
to discover whether DSML evolution is likely to be problematic. Lastly, DSML
engineers and researchers can use our results to prevent complications during
model-driven information systems engineering projects.



316 V. Ramautar et al.

The paper is structured as follows. Section 2 presents background informa-
tion. The empirical study design is explained in Sect. 3. We present and discuss
the results of the empirical study in Sect. 4. In Sect. 5 we address threats to
validity and formulate our conclusions.

2 Background

2.1 Related Work

One of the most common MDE approaches entails transforming a model, using
model transformation technologies to derive a software product [30]. The models
that provide the input for MDE are created with a DSL. Mernik et al. [25]
define four types of DSLs: i) DSLs with well-defined execution semantics, (ii)
input languages of an application generator, (iii) DSLs not primarily meant
to be executable but nevertheless useful for application generation, and (iv)
DSLs not meant to be executable, for instance, domain-specific data structure
representations. Examples of approaches for DSL implementation are using an
interpreter or a compiler. In this article, we focus on a DSL of the fourth type
(referred to as DSML), which is later interpreted in runtime.

Typical artefacts in DSML engineering are metamodels for specifying the
abstract syntax of the DSML [13], and textual grammars for specifying its con-
crete syntax. Frank emphasises the importance of selecting a suitable meta-
modelling language [11]. Moreover, he describes DSML development as a major
effort that requires a clear division of labour. The tasks can be divided over roles
including domain expert, user, business analyst, language designer, tool expert,
graphic artist, etc [11]. Herrmannsdoerfer et al. researched motivations behind
language evolution and found that metamodels evolve due to user requests and
technological changes [15]. Furthermore, metamodel changes are very likely to
impact artefacts which are directly related to them (e.g. models and transfor-
mators). They conclude that language evolution is similar to software evolution.

We found that in the literary body DSL evolution is often understood as
the co-evolution of parsers, textual syntax and graphical syntax editors, com-
pilers, code generators, etc. In this article, we focus on metamodel and textual
grammar evolution. DSL studies mainly focus on the domain analysis, design
and implementation phases, conclude Kosar et al. [19]. They found that DSL
maintenance/evolution is insufficiently investigated. Another systematic map-
ping study on DSL evolution, specifically, concludes that DSL evolution is a
topic of increasing relevancy [39].

Scientific literature on approaches for DSL evolutions states that the usability
of a DSL is crucial for its maintainability and adaptability [1], discusses the chal-
lenge of integrating several existing DSLs into one single and provides tools for
automated DSL integration [7,18,24,26,28], explores the possibility of improving
DSL evolution through composition [4,34], proposes community-driven language
development [16], and weighs the costs and benefits of developing a DSL [6]. The
typical activities known from software maintenance also apply to metamodel
maintenance [15,23]. Other related work presents high-level insights gained by



Task Completeness Assessments in the Evolution of DSMLs 317

analysing a case of DSML evolution [2]. Our work contributes to the body of
knowledge by pinpointing more exactly where challenges in DSL evolution occur.

2.2 The Application Domain of Ethical, Social Environmental
Accounting

The approach studied in this article entails that the models are interpreted by
an interpreter. The interpreter recognises constructs in the model and inter-
prets these using an instruction cycle [25]. Our empirical study uses a DSML in
the application domain of ethical, social and environmental accounting (ESEA).
ESEA is the process of assessing and reporting on an organisation’s ethical, social
and environmental (ESE) performance [12]. ESEA methods provide guidelines
on how to perform the accounting. The accounting results are typically published
in an annual sustainability (or non-financial, or integrated) report.

The models created with our DSML contain information on the ESEA
method (e.g. the name of the method, the topics assessed, and the indicators
used to measure the ESE performance). We refer to this DSML as the ope-
nESEA DSML. The models produced with the DSML can be uploaded to an
open-source interpreter, also called openESEA1 [33]. The interpreter parses the
models and reacts by activating the appropriate features and displaying the con-
tents of the model. The openESEA DSML consists of a metamodel, which is a
UML Class Diagram [29] and a textual Xtext grammar [3]. We use a metamodel
as part of our DSML, given that metamodelling is a commonly used approach to
capture the abstract syntax of a domain [10,17]. We follow [8] to conceptualise
the domain, and express the concrete syntax with a textual grammar. In our
approach, we always first evolve the metamodel and document the changes, only
then we evolve the textual grammar based on the changes in the metamodel.
We do not prescribe this specific approach for evolving DSMLs. However, most
DSMLs have at least a metamodel or textual grammar. Hence our results are
insightful in the contexts of DSMLs that are specified exclusively with a meta-
model or grammar, and for DSMLs specified with both.

3 Quantitative Empirical Study Design

3.1 Research Questions and Objective

The aim of our research is to find out which problems arise during DSML evo-
lution, hence we formulate the following research questions.
MRQ: Which incompletions are prevalent in DSML evolution activi-
ties?

RQ1.1: What is the task completion of DSML evolution activities?
RQ1.2: Which primitives of the metamodel and grammar specification languages

are more likely to result in incompletion?

1 https://github.com/sergioespana/openESEA.

https://github.com/sergioespana/openESEA


318 V. Ramautar et al.

We run a quantitative empirical study [41] to identify incompletions in DSML
evolution. The objective, expressed with the Goal/Question/Metric method [40],
is to (i) analyse incompletions that arise during DSML evolution activities, and
(ii) to discover how the process of DSML evolution can be improved. The purpose
of our study is to identify which aspects of DSML evolution require emphasis in
DSML education and DSML testing. We do this by measuring the completeness
of the models constructed, from the point of view of DSML engineers, in the
context of extending the openESEA DSML.

3.2 DSML Evolution Process

The DSML evolution process, shown in Fig. 1 is based on earlier research in
DSML development and evolution [8,9,33]. This process comprises six activ-
ities. During the first activity, new requirements are elicited (A1), previously
implemented and backlogged requirements can provide input for this activity.
The output is a collection of new requirements that will provide the backbone for
the DSML evolution. Next, in A2, the metamodel is evolved, resulting in a new
version of the metamodel. The corresponding documentation, explaining each
element of the DSML, is updated (A3) to reflect the changes. In A4, the Xtext
grammar is evolved, so it corresponds to the new version of the metamodel.
Then, the interpreter is updated (A5), to ensure that it can parse and interpret
the models that comply with the new grammar version. Lastly, the model is
updated (A6) so that it adheres to the grammar. We investigate incompletions
in activities A2, A3, A4, and A6. Strictly speaking, activities A2, A3, and A4 are
performed by DSML engineers, whereas activity A6 is performed by the DSML
users (i.e. IS engineers, domain modellers, etc.).

Fig. 1. The DSML evolution process

3.3 Object of Study: openESEA DSML

Every DSML engineering project can have a different infrastructure, but we con-
sider an infrastructure such as in Fig. 2. This figure is a metamodel of DSMLs and
details the deliverables involved in the DSML evolution process as seen in Fig. 1.



Task Completeness Assessments in the Evolution of DSMLs 319

For simplification purposes, we left out the documentation, models, and inter-
preter. The object of study is the openESEA DSML, which is specified with a
metamodel, and an Xtext grammar. All changes to the DSML are documented
in an openESEA DSML manual. New requirements lead to a metamodel and
grammar change. In case of a metamodel change, a metamodel element has to
be changed. Metamodel elements are common primitives, used in UML class dia-
grams [29]. In case of a grammar change, the changes affect grammar elements,
which can either be rules or elements of rules. Our Xtext grammar comprises
standard Xtext prmitives [3].

The users of the openESEA technology use the DSML to specify ESEA meth-
ods which will later be supported by the interpreter. The metamodel is shown in
Fig. 3, and the grammar can be found in a technical report [32]. ESEA methods
typically consist of a set of Topics (e.g. gender diversity and greenhouse gas emis-
sion), the topics are measured using Direct indicators (e.g. number of non-
binary employees) and Indirect indicators (e.g. non-binary to male ratio).
Data is collected using Surveys, which consist of Sections and Questions.
In case of a multiple choice question, Answer options can be defined. Some
methods issue certification, if the certification requirements are met. Multiple
Certification levels can be obtained (e.g. bronze, silver, or gold certifica-
tion). To automatically validate the data, Validation rules can be defined. A
validation rule can, for instance, state that the number of women in executive
positions cannot be greater than the number of women staff.

Fig. 2. Metamodel of the deliverables involved in the DSML evolution process



320 V. Ramautar et al.

Fig. 3. The openESEA metamodel, with colour-coded changes required of study partic-
ipants: green depicts additions, yellow updates and red deletions (Color figure online)

3.4 Subjects

We selected subjects using convenience sampling [41]. The subjects are students
of the Business Informatics master’s programme from Utrecht University (the
Netherlands). The empirical study is performed as part of a course on Respon-
sible ICT and is repeated over two years (2021 and 2022). In 2021 45 students,
divided over 12 teams, participated; in 2022, 47 students divided over 13 teams
participated. The students are educated in method engineering, but prior to the
study, they had no knowledge of DSML development and ESEA.

3.5 Empirical Study Protocol

In the empirical study, the participants are asked to perform activities A2, A3,
A4, and A6 of the DSML evolution process (see Fig. 1). Before they start the
evolution process, they receive training, during which they are familiarised with
DSML development, including metamodelling and Xtext grammar development.
After the training, they receive an initial metamodel, initial documentation and
16 requirements. Two examples of requirements can be found in Table 1. Based
on the requirements, they have to evolve the metamodel and update the docu-
mentation accordingly. The requirements can be implemented by adding, updat-
ing or removing attributes, relationships, cardinalities, and classes. If all require-
ments are implemented correctly the metamodel should resemble the reference
model in Fig. 3. Next, the participants evolve the Xtext grammar based on the



Task Completeness Assessments in the Evolution of DSMLs 321

Table 1. Two examples of requirements (full list in the technical report [32])

ID Requirement

R5 Right now, the topics are just a flat list. There is also the need to convert
that into a taxonomy; that is, a tree of topics. This way, the information is
more structured

R14 Based on conversations with a network that could become a future client,
we have discovered that their method has indicators whose datatype is a
date. We would like to support this in the next version, so we have better
chances of convincing them to use our tool

Table 2. The number of metamodel and grammar elements that are necessary to
implement each of the requirements.

Requirement ID

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 Total

Metamodel element 37

Class - - - - - - - - 1 - - - - - - 1 2

Attribute 1 5 1 1 - - 1 1 2 - 1 1 - - 1 4 19

Relationship - - - -
2

1
1 - - 3 1 - - - - - 2

9

8

Enumeration - - - - - - - - - - - - - - 1 - 1

Enumerated literal - - - - - - - - - - - 1 3 2 - 6

Grammar element 34

Cross-reference - - - - 1 - - - - 1 - - - - - 1 3

Keyword 1 5 1 1 - - 1 1 2 - 1 - 1 -
0

1
4

18

19

Rule call - - - -
1

0
1 - - 3 - - - - 2 - 1

8

7

Enum rule - - - - - - - - - - - - - 1
1

0
-

2

1

Assignment - - - - - - - - 1 - - - - - - 1 2

Cardinality - - - - - - - - - - - 1 - - - - 1

same set of requirements. They receive the reference solution of the metamodel
and documentation in advance. This prevents them from making mistakes in
their Xtext grammar evolution due to a mistake in their metamodel and docu-
mentation solutions. Table 2 shows how each of the requirements can be imple-
mented in the metamodel and grammar. For instance, implementing requirement
5 (R5) requires the participant to add a relationship in the metamodel, and one
cross-reference in the grammar. R15 and R5 can be implemented in multiple
ways. In R5, another relationship can be updated and a rule call can be added.
R15 requires either adding a keyword or an enum rule in the grammar. To
assess artefacts created by the participants, we have created a template where,
for each requirement, we have listed all the implementations we had conceived
beforehand. This acted as a completeness benchmark. We then systematically
checked whether the participant had implemented each requirement and; if so,
which solution they had opted for, and whether they implemented it correctly.



322 V. Ramautar et al.

While we were prepared to extend our list of possible implementations in case
they had come up with one that we had not conceived, this did not happen.

After updating the Xtext DSML, the participants should update a model of
an ESEA method to make it compliant with the new version of the DSML and
showcase the changes they made in the grammar. The DSML evolution activities
are performed in groups of four participants, with a couple of teams having fewer
participants to accommodate course-related exceptional circumstances. After the
DSML evolution tasks, the participants are asked to fill in an extended version
of the Method Evaluation Model (MEM) questionnaire [27] where they reflect
on the evolution process.

3.6 Variables

For each participant team, we inspect the four evolved DSML artefacts (i.e.
metamodel, documentation, Xtext grammar, and model) to identify incomple-
tions. That is, elements that should have been added, updated or deleted to
implement the requirements, but the team failed to. This allows us to measure
their completeness by dividing the number of correctly implemented changes per
primitive or artefact by the number of required changes per primitive or artefact.

Apart from completeness, we measured the perceived ease of use, perceived
usefulness, and intention to use by deploying a 5-point Likert scale based on
the MEM questionnaire. Moreover, we asked the participants to indicate their
perceived difficulty of the metamodel and grammar elements, and to reflect on
the evolution process in an open question.

3.7 Analysis Procedure

We analyse the task completeness per metamodel and grammar primitive. More-
over, we know the mapping between elements of the metamodel and elements of
the grammar; this relationship is labelled “is mapped to” in Fig. 2 and quantified
in Table 2. This allows us to also analyse which metamodel primitives suffer from
more incompletions when implemented in the grammar. The MEM questionnaire
responses are quantitatively analysed and illustrated in box plots. Regarding the
open question, we used Nvivo [31] to analyse the responses by creating a taxon-
omy of codes (e.g. a code for each metamodel primitive) and mapping the part
of the response that discusses the code.

4 Results

4.1 Metamodel and Documentation Completeness

The completeness of the evolution activities of the metamodel and documen-
tation is shown in Table 3. The completeness is the lowest for the enumeration
and the relationship elements. Requirements related to the enumeration ele-
ment entailed creating new enumerations, including the enumerated literals. The



Task Completeness Assessments in the Evolution of DSMLs 323

Table 3. The completeness percentages for the metamodel (Meta) and documentation
(Docu), aggregated per metamodel primitive (Meta primitive)

2021 (n=12) 2022 (n=13)

Meta Docu Meta Docu

Class 100.0% 98.1% 100.0% 100%

Attribute 92.6% 93.6% 95.5% 98.3%

Enumeration literal 82.3% 73.1% 87.7% 72.4%

Enumeration 61.5% 69.2% 84.6% 46.2%

M
et

a
p
ri

m
it

iv
e

Relationship 64.5% 74.6% 70.2% 77.5%

Table 4. Left, the initial metamodel and grammar fragments for R5, and right their
solutions.

relationship-related tasks entailed adding or deleting relationships and updat-
ing cardinalities. As an example, implementing requirement 5 entailed adding a
reflective relationship to the Topic class to support a taxonomy of topics. The ini-
tial metaclass and metaclass in the reference solution are shown in Table 4. Evi-
dently, these types of evolution activities resulted in the most incompletions. The
overall completeness for the metamodel and documentation evolution, shown in
Fig. 4, is quite high (>80%). Strikingly, in some cases, the completeness is higher
for the documentation evolution than for the metamodel evolution. This indi-
cates that the participants were able to document the required change well, but
they did not implement them correctly in the metamodel. Strictly speaking,
when following the sequence of activities as described in Fig. 1 this should not
be possible.

4.2 Grammar and Model Completeness

The task completeness of the grammar and model yields Table 5. The left table
shows the grammar and model task completeness per grammar element, whereas



324 V. Ramautar et al.

the right depicts the grammar task completeness per metamodel element. We
express the grammar completeness also in terms of metamodel elements because
metamodel elements are commonly known and intuitive. This analysis shows
that implementing relationships in Xtext caused most incompletions, which is
in line with our findings presented in Sect. 4.1. When examining the table on
the left, the overall completeness of the metamodel solutions is 1.25 times higher
than that of the grammar solutions, and Fig. 4 shows that the completeness of
the grammar evolution activity is the lowest of all artefacts. Cross-references,
cardinalities, and rule calls are the source of most incompletions. To provide an
example of what a cross-reference entails, we present the example in Table 4,
which shows the initial and solution grammar fragments related to requirement
5. The requirement can be implemented in Xtext by adding a cross-reference,
which links a parent topic to a subtopic, using the parent topic ID. Such cross-
references have proven to be difficult for the participants. The other element
that causes incompletions is the rule call, which is a rule that calls on another
rule. For implementing requirement 14, the participants had to create a new rule
named MultipleChoice, comprising of two keywords and one rule call to the rule
AnswerOption. Moreover, they had to create a call to the rule MultipleChoice
in the Datatype rule. Such tasks resulted in low completeness. The other element
with low overall task completeness is cardinality. Rule calls, cardinalities, and
cross-references generally refer to relationships in the metamodel. Given that
participants had problems modelling relationships in the metamodel, it seems
rather logical that these primitives resulted in incompletions. The participants
also updated a model to reflect the grammar changes. In some cases, the model
task completeness is higher than the grammar completeness. In practice, this
is an invalid outcome since the model has to adhere to the grammar rules.
However, we noticed that participants divided tasks among the members of their
group, where some group members only evolved the grammar, whereas others
only updated the model, resulting in models that do not adhere to the team’s
grammar.

Table 5. Left, the task completeness of the grammar per grammar primitive. Right,
the task completeness of the grammar per metamodel primitive.

2021 (n=12) 2022 (n=13)

Gram. Model Gram. Model

Keyword 93.6% 84.6% 94.0% 80.1%

Assignment 82.1% 87.5% 100.0% 82.1%

Enum rule 87.5% 33.3% 98.2% 35.7%

Cardinality 39.3% 80.6% 65.2% 73.2%

Rule call 43.1% 29.2% 40.0% 59.6%G
.
p
ri
m
it
iv
e

Cross-reference 22.3% 43.8% 39.3% 50.0%

2021

n= 12

2022

n=13

Gram. Gram.

Class 82.1% 100.0%

Attribute 97.4% 98.9%

Enumeration literal 98.2% 100,0%

Enumeration 75.0% 96.4%

M
.
p
ri

m
it

iv
e

Relationship 43.4% 51.1%



Task Completeness Assessments in the Evolution of DSMLs 325

Fig. 4. The completeness per artefact

4.3 Participant Perceptions

The responses to the extended MEM questionnaire reveal the participants’ per-
ceptions about three aspects of DSML evolution.

Aspect 1: Difficulty Per Element. In general, the participants perceived
evolving the metamodel as quite easy. They described the task as “doable”,
“intuitive”, and “not too difficult”. They found updating the documentation
rather dull and repetitive, but they understood the necessity for it and acknowl-
edged that it helped them understand the requirements better.

The majority of the students perceived evolving the Xtext grammar as the
most difficult step in the evolution process. They found the Xtext framework
difficult to work with and the rules were hard to grasp. They described the Xtext
grammar as somewhat abstract, and expressed that they were having trouble
staying consistent in their application of the rules. Moreover they expressed that
they were often able to pinpoint which lines had to be edited, but it was hard
to figure out how the lines had to be edited.

In the questionnaire we asked the students to indicate how difficult they
found each of the metamodel and grammar primitives, the results are presented
in Fig. 5. The perceived difficulty seems to align with the task completeness. The
students indicated that they found relationships in metamodels and cardinali-
ties, rule calls, and cross-references in grammars the most difficult. The task
completeness is the lowest for these elements. There seems to be a correlation
between the perceived difficulty of elements and the task completeness of those
elements. However, more data points are needed to prove such a relationship.

Aspect 2: Sequence of Activities.The participants were positive about the
sequence of evolution activities. They stressed that the metamodel was essen-
tial for evolving the Xtext grammar. A quote by a student that emphasises
this reads: “While reading the metamodel I figured [out how] some parts of the
grammar should look and operate. Without the metamodel, the grammar alone
would be dramatic to understand. The documentation helped in understanding
the metamodel itself since [it] showed what the classes in the metamodel did and
what attributes they consisted of”.

Aspect 3: Perceived Efficacy and Intention to Use. The results of the
MEM questionnaire are shown in Fig. 6. Five is the highest score, indicating



326 V. Ramautar et al.

Fig. 5. The perceived difficulty of the metamodel primitives (left) and the grammar
primitives (right) for the 2022 edition

Fig. 6. The results of the Method Evaluation Model questionnaire (2022 edition)

that the participants found evolving the artefact useful and easy to use, and that
they intend to use the artefact in the future. As for usefulness, the metamodel
is perceived as more useful than the grammar, although they are generally both
perceived as useful. Interestingly, the perceived ease of use for the grammar and
metamodel is similar. Almost half of the participants expressed that they do not
intend to use Xtext grammars in the future.

5 Discussion, Validity and Conclusions

Discussion. When reflecting on the evolution process, the participants
expressed the need for longer training sessions with more guidance and literature
they could refer back to. They expressed that they found using and evolving the
metamodel easier due to their prior training in method engineering. Based on
the numerous suggestions by students we conclude that training is a crucial part
of DSML evolution. We improved the training in 2022, hoping that it would
improve the results. Generally, the results are better in the second edition of
the study. In the first year, the training did not include the openESEA DSML,
instead, the participants were trained on DSMLs in different domains. The par-
ticipants were only confronted with the openESEA DSML during the empirical
study. In the second year, the training included an explanation of each of the
openESEA metamodel and grammar primitives. Additionally, in the second year,
the students were provided with self-paced learning material on Xtext.

We use completeness to refer to task completeness of the evolution activities;
that is, the extent to which the team evolving the DSML successfully made all
the changes that were required to implement the requirements in each DSML



Task Completeness Assessments in the Evolution of DSMLs 327

artefact, as is typical in usability studies [36]. Therefore, completeness should not
be understood in the same way as it is defined by SEQUAL [21]. Task complete-
ness aggregates both dimensions of SEQUAL’s semantic quality: completeness
and validity. Moreover, we solely focus on DSML evolution based on functional
requirements. To limit the scope we have purposely left out quality requirements.

Validity. Regarding construct validity, we use the MEM questionnaire to analyse
the participants’ perceptions, since the MEM has been validated thoroughly [27].
We analyse incompletions in DSML evolution by calculating completeness of the
DSML evolution activities. Variables, such as efficiency and consistency were left
for future studies. Concerning external validity, we expect that our results can
be generalised outside the setting of our study since we present our results in the
context of commonly used UML and Xtext primitives. However, we acknowledge
that there are other factors that influence the DSML evolution process, such
as the usability of the DSML [1], or the participants’ knowledge of the ESEA
domain. Although we have opted for an approach that seems intuitive to us
(i.e. first evolving the metamodel, then involving the grammar), and we tried to
ensure human readability in the grammar, we cannot assess the usability of our
DSML. Thus, we cannot identify the effect of the usability of our DSML on the
incompletions witnessed in our study. Given that the study only assesses task
completeness, there might be a threat to content validity. Nonetheless, we deem
our results valuable in the evolution of domain-specific modelling languages,
to prevent complications during MDE projects. To mitigate another content
validity threat, we built upon an existing reengineering framework, and used the
conceptual model evolution traces defined in [35]; this is reflected in 3, where
we show model element additions, updates and deletions with green, yellow and
red, respectively.

Next Steps. Regarding the evolution of the DSML, our next steps involve
extending the language to support more aspects of ethical, social and environ-
mental accounting. We would, for instance, like to include classes and primitives
that allow for auditing and visualising accounts. With regards to our research
on DSML evolution, the next steps could entail measuring additional variables
such as the efficiency of DSML evolution and studying which cognitive aspects
are related to the various artefacts.

Conclusion. In summary, we presented an empirical study that analyses which
incompletions are prevalent in DSML evolution activities. Our results reveal
that the completeness of the metamodel evolution activity is about 1.25 times
higher than it is for the grammar. The metamodelling primitives that are more
likely to cause problems are relationships and enumerations. With respect to
the Xtext grammars, most incompletions are localised in rule calls, cross refer-
ences and cardinalities. We also found that the metamodel is perceived as an
important artefact to understanding and evolving the DSML. Additional train-
ing with emphasis on the problematic elements may result in fewer incompletions
in DSML evolutions.



328 V. Ramautar et al.

References

1. Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S., Abrahão, S., Ribeiro, A.:
Quantifying usability of domain-specific languages: an empirical study on software
maintenance. JSS 101, 245–259 (2015)

2. Aschauer, T., Dauenhauer, G., Pree, W.: A modeling language’s evolution driven
by tight interaction between academia and industry. In: ICSE, IEEE (2010)

3. Behrens, H., et al.: Xtext user guide. Eclipse Foundation (2010)
4. Cazzola, W., Poletti, D.: DSL evolution through composition. In: RAM-SE (2010)
5. Ceh, I., Crepinšek, M., Kosar, T., Mernik, M.: Ontology driven development of

domain-specific languages. Comput. Sci. Inf. Syst. 8(2), 317–342 (2011)
6. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with

Visual Studio dsl tools. Pearson, London (2007)
7. De Geest, G., Vermolen, S., Van Deursen, A., Visser, E.: Generating version con-

vertors for domain-specific languages. In: WCRE, pp. 197–201. IEEE (2008)
8. España, S., Bik, N., Overbeek, S.: Model-driven engineering support for social and

environmental accounting. In: RCIS, pp. 1–12. IEEE (2019)
9. España, S., Ramautar, V., Overbeek, S., Derikx, T.: Model-driven production of

data-centric infographics: an application to the impact measurement domain. In:
Guizzardi, R., Ralyté, J., Franch, X. (eds.) Research Challenges in Information
Science. RCIS 2022. Lecture Notes in Business Information Processing, vol. 446, pp
477–494. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05760-1 28

10. Falazi, G., Breitenbücher, U., Daniel, F., Lamparelli, A., Leymann, F., Yussupov,
V.: Smart contract invocation protocol (SCIP): a protocol for the uniform integra-
tion of heterogeneous blockchain smart contracts. In: Dustdar, S., Yu, E., Salinesi,
C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 134–149. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 9

11. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 133–157. Springer, Berlin (2013). https://doi.org/
10.1007/978-3-642-36654-3 6

12. Gray, R., Adams, C.A., Owen, D.: Accountability, social responsibility and sus-
tainability. Pearson, London (2014)

13. Gronback, R.C.: Eclipse Modeling Project: a Domain-Specific Language (DSL)
Toolkit. Pearson Education, London (2009)

14. Hailpern, B., Tarr, P.: Model-driven development: the good, the bad, and the ugly.
IBM Syst. J. 45(3), 451–461 (2006)

15. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice:
the history of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009.
LNCS, vol. 5969, pp. 3–22. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12107-4 3

16. Izquierdo, J.L.C., Cabot, J.: Community-driven language development. In: MISE,
pp. 29–35. IEEE (2012)

17. Jazayeri, B., Schwichtenberg, S., Küster, J., Zimmermann, O., Engels, G.: Modeling
and analyzing architectural diversity of open platforms. In: Dustdar, S., Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 36–53.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 3

18. Juergens, E., Pizka, M.: The language evolver lever-tool demonstration-. Electron.
Notes Theor. Comput. Sci. 164(2), 55–60 (2006)

https://doi.org/10.1007/978-3-031-05760-1_28
https://doi.org/10.1007/978-3-030-49435-3_9
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-12107-4_3
https://doi.org/10.1007/978-3-642-12107-4_3
https://doi.org/10.1007/978-3-030-49435-3_3


Task Completeness Assessments in the Evolution of DSMLs 329

19. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping
study. IST 71, 77–91 (2016)

20. Kosar, T., et al.: Comparing general-purpose and domain-specific languages: an
empirical study. Comput. Sci. Inf. Syst. 7(2), 247–264 (2010)

21. Krogstie, J.: Model-based Development and Evolution of Information Systems:
A Quality Approach. Springer, New York (2012). https://doi.org/10.1007/978-1-
4471-2936-3

22. Kulkarni, V., Reddy, S., Clark, T.: Advanced Digital Architectures for Model-
Driven Adaptive Enterprises. IGI Global, Hershey (2020)

23. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. AW, Boston
(1980)

24. Mayer, P., Schroeder, A.: Towards automated cross-language refactorings between
Java and DSLs used by Java frameworks. In: WRT (2013)

25. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. CSUR 37(4), 316–344 (2005)

26. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages.
Sci. Comput. Program. 76(12), 1223–1246 (2011)

27. Moody, D.L.: The method evaluation model: a theoretical model for validating
information systems design methods (2003)

28. Nikolov, N., Rossini, A., Kritikos, K.: Integration of DSLs and migration of models:
a case study in the cloud computing domain. Procedia CS 68, 53–66 (2015)

29. OMG: Unified Modeling Language, Version 2.5.1 (2017)
30. Pastor, Ó., España, S.: Full model-driven practice: from requirements to code gen-

eration. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012.
LNCS, vol. 7328, pp. 701–702. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31095-9 48

31. Phillips, M., Lu, J.: A quick look at NVivo. J. Electron. Resour, Librariansh (2018)
32. Ramautar, V., España, S.: Evolution of the openESEA DSL. Technical Report

(2022). https://doi.org/10.17632/2xjbs6x6bp.1
33. Ramautar, V., España, S.: Managing the complexity in ethical, social and environ-

mental accounting: engineering and evaluating a modelling language. In: ManComp
(2022)

34. Rieger, C., Westerkamp, M., Kuchen, H.: Challenges and opportunities of modular-
izing textual domain-specific languages. In: MODELSWARD, pp. 387–395 (2018)

35. Ruiz, M., España, S., Pastor, Ó., Gonz, A., et al.: Supporting organisational evo-
lution by means of model-driven reengineering frameworks. In: IEEE 7th Inter-
national Conference on Research Challenges in Information Science (RCIS), pp.
1–10. IEEE (2013)

36. Seffah, A., Kececi, N., Donyaee, M.: Quim: a framework for quantifying usability
metrics in software quality models. In: APSEC, IEEE (2001)

37. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

38. Strembeck, M., Zdun, U.: An approach for the systematic development of domain-
specific languages. Softw. Pract. Experience 39(15), 1253–1292 (2009)

39. Thanhofer-Pilisch, J., Lang, A., Vierhauser, M., Rabiser, R.: A systematic mapping
study on DSL evolution. In: Euromicro, pp. 149–156. IEEE (2017)

40. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal question metric
(GQM) approach. Encyclopedia of software engineering (2002)

41. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, New York (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-1-4471-2936-3
https://doi.org/10.1007/978-1-4471-2936-3
https://doi.org/10.1007/978-3-642-31095-9_48
https://doi.org/10.1007/978-3-642-31095-9_48
https://doi.org/10.17632/2xjbs6x6bp.1
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

	Task Completeness Assessments in the Evolution of Domain-Specific Modelling Languages
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 The Application Domain of Ethical, Social Environmental Accounting

	3 Quantitative Empirical Study Design
	3.1 Research Questions and Objective
	3.2 DSML Evolution Process
	3.3 Object of Study: openESEA DSML
	3.4 Subjects
	3.5 Empirical Study Protocol
	3.6 Variables
	3.7 Analysis Procedure

	4 Results
	4.1 Metamodel and Documentation Completeness
	4.2 Grammar and Model Completeness
	4.3 Participant Perceptions

	5 Discussion, Validity and Conclusions
	References




