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1
INTRODUCTION

Let us begin by asking ourselves the following question “Which of my activities
today involved some form of digital computing?” For most of us in the western
world, the answer will be along the lines of “A lot.” We probably have checked
our email before we ended up here. If we, for example, drive a modern car,
the navigation and many other “smart” features rely on integrated circuits
(ICs). Also, many devices like our televisions are equipped with ICs. Besides
the energy consumption of the integrated circuits in the device itself, it also
request computational power in data centres elsewhere. For instance, every
online search and video you watch require computational power of data centres.
It is estimated that the total information and communications technology
(ICT) ecosystem is responsible for 2− 4% of global carbon emissions [7–10].
Moreover, it is very likely that this percentage will keep increasing in the
coming ten years [7–10].

To avoid the possible catastrophic consequences of climate change to the
habitability of our planet, all sectors of the global economy, including the ICT
sector should aim to reduce their carbon footprint. Without drastic changes
in legislation, the demand for computational tasks is expected to increase
strongly [7]. Given this fact, we should aim to lower, or at least cease the
increase, of carbon emission of the ICT sector by developing more efficient
technology.

Although large efforts are being made to make integrated circuits more ef-
ficient, current technologies are approaching fundamental constraints limiting
its further development [11]. A major problem in making these integrated

1
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Figure 1.1: Figure of a spin wave. It corresponds to the collective precession of spins
in which their phase difference is determined by the wavelength of the spin wave.

circuits more energy efficient is that electric currents induce joule-heating,
which converts part of the electric current into heat. This is an unwanted
byproduct that can be reduced but never completely circumvented. Histor-
ically, integrated circuits became more energy efficient by increasing the
density of transistors. Currently, however, the size of these electronic devices
can not simply be reduced much further and is plateauing [11] and hence their
energy consumption is. A possible way around this problem is to consider
devices that are fundamentally different from current devices and are thus
not susceptible to the same fundamental constraints.

One of the candidates for such a new generation of devices are spintronic
and magnonic devices [12, 13]. Here, spin waves rather than electrons are
used as information carriers. These spin waves, and their quanta called
magnons, are collective excitations that occur in ordered magnets, as shown
in Fig. 1.1. As information carriers, magnons have the advantages of low
power-consumption and efficient parallel data processing, as they do not give
rise to Joule heating. Moreover, they are useful for both classical information
processing, which includes logic gates [14, 15], transistors [16–19] and diodes
[20], and for quantum science and technologies, including single-magnon
states, squeezed states and entanglement with other quantum platforms [21–
25].

A hurdle towards realizing magnon-based technology is the dissipation of
magnons which results from interactions of magnons with their environment,
such as conduction electrons, phonons and impurities. These interactions
dissipate the amplitude and coherence of magnon currents and are detri-
mental for efficient application of magnons in nanoscale spintronic devices.
Therefore, a central challenge in magnonics is to counteract the effect of
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magnon dissipation and to find reliable knobs to sustain the magnon current
for long-distance transport.

Furthermore, in order to combine magnonics with electronics the ability to
efficiently inject, detect and control magnons using electrical currents is crucial.
Coherent excitation of magnons typically uses alternating currents (AC) —
using for instance antennas —, while direct currents (DC) are usually used to
excite magnons diffusively using the spin Hall effect (SHE) to create a local
spin accumulation. Although excitation of coherent magnons with AC currents
is relatively straightforward, excitation of coherent magnons using DC currents
is usually more complex and relies on injection of angular momentum with
either spin-transfer-torque (STT) or spin-orbit-torque (SOT). Since efficient
excitation of magnons by electrical current is crucial to combine magnonic
devices with electronic devices, the ability to inject coherent magnons with
DC currents is significant towards the technological use of magnonics.

In this Thesis, we put forward new ideas to address these two central
questions. Namely, how does one extent the lifetime of, or amplify, magnons
and how can one coherently excite magnons using DC currents? Perhaps
surprisingly, most of the ideas developed in this Thesis draw inspiration from
the field of analogue gravity [26–29] — which tries to mimic quantum field
theories (QFTs) in curved spacetimes in the lab, with special attention to
analogue black-hole (BH) horizons. This is a vast field of research and we
will not try to capture all or even most of its details. Let us nonetheless try
to give some of the essentials for this Thesis.

There are a variety of physical systems in which their quasiparticles act as if
they live in a curved spacetime [26, 31–38]. In most of these systems, but not
necessarily all, this curvature stems from some form of flowing background
which Doppler shifts the dispersion of the excitations of the system. Since the
velocity profile — of for instance flowing water — is easily tunable, artificial
background curvatures such as the Schwarzschild metric near the horizon can
be achieved, see Fig. 1.2. And as a consequence, these analogue horizons should
also spontaneously emit pairs of particles, which, — with a bit of a stretch of
the word — in analogy to astronomical black holes can be called Hawking
radiation. The chance of measuring Hawking radiation in experiments with
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Figure 1.2: An illustration of an analogue event horizon for fish in flowing water.
The water close to the waterfall flows much faster then the water far to the right of
the waterfall. Let us suppose the fish have a maximal speed at which they are able
to swim, which is slower than the flow velocity of the water close to the waterfall,
but faster than the flow of water far to the right of the waterfall. Then there exists
a point of no return for the fish. Once the fish has passed this point it is never able
to swim further upstream and hence has crossed the analogue event horizon. In
physical systems the fish are replaced by quasi particles. For dispersive systems we
abstract even further and define the analogue event horizon as the point beyond
which negative energy excitations exist. This illustration was taken from L. Susskind,
“Black holes and the information paradox,” Scientific American (1997).
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water however is rather small, since its Hawking temperature is approximately
3× 10−7 Kelvin, which according to Unruh [26] “is a rather low temperature,
and is probably undetectable in the presence of turbulent instabilities, etc.,
which would arise in trying to drive the fluid transsonically through a small
nozzle. It is, however, a much simpler experimental task than creating a
10−8-cm black hole.” Recently, a direct measurement of Hawking radiation
has been claimed in flowing Bose-Einstein condensates [32].

Let us consider an observer of an astronomical black hole infinitely far from
the horizon. From this point of view, particles inside the horizon carry negative
energy, and one is thus unable to define a global vacuum state [39]. As a
consequence, quantum fluctuations create a thermal spectrum of spontaneous
emitted pairs of particles from the horizon — Hawking radiation — even if
nothing is moving towards the horizon. From the perspective of this Thesis,
this is the most essential ingredient for application of the ideas developed
within the analogue gravity community. Namely, that the non-existence of a
vacuum state and thus the existence of a region with energetically unstable
excitations, gives rise to novel phenomena. For instance, breaking local
Lorentz invariance, i.e. considering a non-linear dispersion, gives a non-thermal
spectrum of spontaneously emitted particles, but still gives spontaneous
emission. Throughout this Thesis, we further abstract the meaning of analogue
gravity in the sense that we disregard Lorentz invariance and hence have
no background metric to refer to. We do however rely on the existence of
negative energy excitations and their consequences, for instance superradiant
scattering [40]. As a final remark about analogue gravity, we like to mention
the idea, put forward by Corley and Jacobson [41], that a combination of
event horizons can be used as a laser. While they have shown that a slight
superluminal dispersion does not effect the Hawking spectrum of an analogue
BH horizon much [42], the inclusion a second analogue white-hole (WH)
horizon — the time reverse of a black hole horizon — changes this conclusion
drastically. When considering a bosonic theory, the negative energy excitations
between the horizons form closed orbits of specific frequencies and becomes
self amplified [41, 43, 44]. The title of their paper was “Black hole lasers”,
and forms the inspiration for Chapters 5 and 6.



6 introduction

Since the contents of this Thesis, as you might have guessed, center around
the use of magnetic negative energy excitations to answer the questions, “how
does one extend the lifetime or amplify spin waves and how can one coherently
excite them using DC currents?”, we first need to get an understanding of
what spin waves are, what we precisely mean with magnetically ordered
materials, and how one can create long lived excitations that carry negative
magnetic energy.

1.1 the ferromagnetic phase transition

Throughout this Thesis, we work mostly on coherent spin transport in the
ferromagnetic state. Hence, a good starting point would be to question “what
characterises the ferromagnetic state?” Furthermore, we could take a step
back and ask the question, “what characterizes a magnetic state?” The answer
would be along the lines, “a material with a magnetic response.” This means
that the magnetic susceptibility is nonvanishing, i.e. ∂M/∂H ̸= 0, with M

the magnetization of the material and H an external magnetic field. The
ferromagnetic state is a special magnetic state in the sense that it, below
a critical temperature Tc — which is the Curie temperature —, acquires
a non-zero permanent magnetization which is not induced by an external
magnetic field. As a consequence, ferromagnets feel an attractive force in
the neighborhood of most other magnetic materials. From our experience in
day to day life this is also the most well known magnetic effect, of which a
common example is the refrigerator magnet.

The dominant mechanism responsible for magnetic structure is the ex-
change interaction. There are a variety of exchange mechanisms which lead to
a macroscopic magnetic structure, but we will not go into the different mech-
anisms here. What is important to know, however, is that, as a consequence
of the exchange interaction the magnitude of the magnetization at each unit
cell — this can be an atom or a group of atoms — is a conserved quantity
and it can furthermore create a non-vanishing macroscopic magnetization
at sufficiently low temperatures at zero field. Or to state it the other way
around, in a magnet the magnetization in each unit cell is conserved, which
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on the microscopic level stems from an exchange interaction. Hence, as we
will see later, the magnitude of the magnetization is set by strength of the
exchange interaction. In order to describe the ferromagnetic phase transition,
let us denote FL[M] the equilibrium free energy of the magnet in the absence
of an external magnetic field H. Since FL denotes the equilibrium free energy
it should be invariant under time reversal symmetry, i.e. FL[−M] = FL[M]

— if we include an external magnetic field, invariance under time reversal
implies FL[−M,−H] = FL[M,H]. Furthermore, since the atomic exchange
interaction is largely independent of the total magnetic moment with respect
to the crystalline lattice, we assume the free energy to be independent of
the overall direction of the magnetization, i.e. FL[

↔
RM] = FL[M], with

↔
R a

rotation matrix. By assuming |M| and its gradients to be small around the
critical temperature, the Landau expansion of the free energy becomes [45,
46]

FL[M] =

∫
dV Ā(T )(∂iMj)(∂iMj) + a(T )M2 + b(T )M4, (1.1)

where Ā(T ), a(T ) and b(T ) are the Landau parameters that depend on tem-
perature T . These constants stem from the microscopic exchange interaction,
in which Ā(T ) characterizes the non-uniform energetic contribution. Above
the Curie temperature Tc the magnetization should vanish, while below Tc the
ferromagnetic phase acquires a finite magnetization. Furthermore, we assume
the ferromagnetic phase transition to be of second order. Since the free energy
should be minimized in thermal equilibrium and we expect the magnetization
to be uniform, we conclude a > 0 for T > Tc and a < 0 for T < Tc. Thus,
above the Curie temperature the average magnetization vanishes M = 0.
Below the Curie temperature, minimization of the free energy on the other
hand gives

|M| =
√

a(T − Tc)/2b(Tc). (1.2)

Hence, the Landau mean field theory predicts a square root decrease of
the magnetization as we approach the Curie temperature. In reality fluc-
tuations of the magnetization become strong around the magnetic phase
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transition and should thus be taken into account close to the critical temper-
ature. Self consistency implies that the above theory is valid if fluctuations
of the magnetization are smaller than the average value of the magnetiza-
tion, i.e. ⟨M(x)M(x′)⟩ ≪ ⟨M⟩. This is the Levanyuk-Ginzburg criterion
which states that the Landau theory is applicable for temperatures satisfying
|T − Tc|/Tc ≪ 4b2/aA3 [45, 47, 48]. When approaching the critical tempera-
ture past the Ginzburg criterion a renormalization group analyses is necessary,
which is beyond the scope of this Thesis.

1.2 low energy T ≪ Tc dynamics of magnetism

In this section we are interested in weak excitations of the ferromagnetic
state. As mentioned before, these excitations are called spin waves, which
at the semi-classical level, describe precessing spins with a phase difference
corresponding to their wavelength. If the wavenumber k of the spin wave is
much larger than the lattice spacing, the spin wave dispersion ω(k) may be
expressed in the phenomenological parameters that occur in the macroscopic
equations of the magnetic moments.

1.2.1 Non dissipative dynamics and the Landau Lifshitz equation

As it turns out, the minima in the free energy (1.1) are not unique. This
is the case, since the free energy is unchanged under rotations of the mag-
netic moment. The free energy namely has an O(3) symmetry which is
spontaneously broken by the finite magnetization |M| ̸= 0 below the Curie
temperature. Hence, according to Goldstone’s theorem, sponteneous symme-
try breaking leads to gapless excitations for fluctuations in the direction of
the spontaneously broken symmetry group.

Thus, for temperatures far below the Curie temperature T ≪ Tc we expect
the low energy dynamics to be dominated by these Goldstone modes, and
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hence the low energy equation of motion of the magnetic moment M should
conserve |M|. We may thus write

∂M/∂t = Ω×M, (1.3)

where Ω is the angular velocity of the precessing magnetization. Additionally,
the above equation of motion depends crucially on the assumption that the
timescale in which the magnetization relaxes back to thermal equilibrium
is much larger than the intrinsic timescale of precession of the magnetic
moment.

Our next task is to find what the angular velocity Ω would be. We proceed
as follows, up to lowest order in the dynamics, we ignore the dissipation
of energy relaxing the magnetization back to its equilibrium value. This
dissipation of energy of the precessing magnetization, or the work W needed
to bring the system in the out of equilibrium state, can be expressed as
follows

∂E/∂t = −∂W/∂t = −∂F/∂t. (1.4)

Where the derivative of the free energy can be given by taking the functional
derivative w.r.t. the magnetization, i.e.

−∂F/∂t =

∫
dV Heff · (∂M/∂t) =

∫
dV Heff · (Ω×M), (1.5)

with Heff = −δF/δM the effective field. Note, that the field Heff is only
nonvanishing out of equilibrium. Since we assume dissipation towards equi-
librium to be absent, we put ∂F/∂t = 0, which implies Ω ∝ Heff . Thus the
equation of motion, governing the magnetization precession becomes

∂M/∂t = constant×Heff ×M. (1.6)

This describes a precession of the magnetic moment around the effective
magnetic field Heff where the precise angular velocity is still unknown.

In order to fix the remaining constant, we consider how the magnetization
precesses in the presence of an external magnetic field strength H. We
incorporate this in the following way. If we apply and external magnetic field
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to an macroscopic medium, the change in free energy will be given by [45,
49] dF = −SdT +

∫
dV H · dB, with S the entropy, T the temperature,

B the magnetic induction and V the volume of the ferromagnet. Since we
want to consider an ensemble in which H is fixed rather than B, we need to
perform a Legendre transformation such that F̃ = F −

∫
dV H ·B. Hence,

the free energy density of F̃ should satisfy dF̃ /dH = −B. If we furthermore
note that B = µ0(H+M) in a macroscopic medium, we find the free energy
containing H to be

F̃ = F0 −
∫

dV µ0H ·M− µ0H
2/2, (1.7)

with F0 the free energy defined in Eq. (1.1). Note, that the prescense of an
external magnetic field H in principle breaks the O(3) symmetry in F̃ which
allows us to conserve |M|. On the other hand, we assume that the exchange
energy is the dominant energy scale of this problem and hence |M| is still
conserved by the low energy excitations and the above arguments still apply.
If we now consider the uniform precession of the magnetization in a static
external magnetic field we get

∂M/∂t = constant× µ0H×M. (1.8)

Since the above equation of motion should reduce to the precession of a
magnetic moment in an external magnetic field, the constant in the equation
of motion should be given by the gyromagnetic ratio γ = gµB/ℏ = g|e|/2m,
with µB the Bohr magneton, ℏ Planck’s constant, e the electron charge, m
the electron mass and g the g-factor of the ferromagnet. The final equation
of motion that describes the precession of the magnetization is called the
Landau-Lifshitz equation (LL) and is given by [50]

∂M/∂t = γHeff ×M. (1.9)

To conclude, the LL equation gives the precession of the magnetization around
the effective magnetic field in the absence of dissipation for temperatures far
below the Curie temperature.

Furthermore, in order to completely describe the dynamics of the magneti-
zation its magnetic dipole moment should also be taken into account. Thus,
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the magnetization dynamics should also satisfy the Maxwell equations. Since
the frequency of spin waves is typically small compared to the speed of light
times the wavenumber of spin waves ω ≪ ck, the dynamic components of
the Maxwell equations can be ignored and only the magnetostatic Maxwell
equations are important to form a complete set of equations describing spin
waves [49]

∇×H = 0, ∇ ·B = µ0∇ · (H+M) = 0. (1.10)

For both chapters in Part i we will consider both the LL equation and the
magnetostatic Maxwell equations. In Part ii, we will only take the static
contribution of the magnetostatic Maxwell equations into account. This
typically gives a shape anisotropy on the magnetization that can effectively
be incorporated in the free energy.

Let us finish this section by discussing the spectrum of low energy exci-
tations of the magnetization in ferromagnets, which are called spin waves.
The spectrum of spin waves in a macroscopic medium is described by small
fluctuations of the magnetization around the symmetry broken thermal equi-
librium state. The spin wave spectrum that is obtained by linearizing the LL
equation becomes

ω(k) = 2γĀ(T )|M|k2 + γµ0|H|. (1.11)

We thus find a quadratic dispersion with a gap set by the external magnetic
field. The latter is expected, since spin waves are predicted to be gapless in the
absence of an external magnetic field by Goldstone’s theorem. The inclusion
of the magnetostatic Maxwell equations leads to a geometry dependent spin
wave spectrum. We would like to refer the reader interested in the spin
wave spectrum with the inclusion of the magnetostatic Maxwell equation
to Chapters 2 and 3, in which we discuss the dipole-exchange spectrum in
ferromagnetic thin films. Next, we consider how the dissipation of energy
effects the LL equation.
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1.2.2 Dissipation of magnetic energy and damped precession

To phenomenologically include dissipation to the LL equation we follow the
argument presented by Gilbert [51]. In his 1955 article Gilbert argues that the
dissipation of energy can be implemented in a Lagrangian formulation of the
magnetization dynamics using the canonical form of the Rayleigh dissipation
functional. The Euler Lagrange equations of motion in the absence of Rayleigh
dissipation are given by

δL[M, Ṁ]/δM = 0. (1.12)

Here, the Lagrangian that describes the magnetization precession in Eq. (1.9)
is given by

L =

∫
dV A(M) · ∂M/∂t− F̃ , (1.13)

where A is a vector potential defined by ∇M ×A(M) = M/γ. Note that
this vector potential is not unique since it has a gauge degree of freedom,
meaning that one can add the divergence of a scalar function and obtain
the same equation of motion, i.e. A(M) → A(M) − ∇MΛ(M) with Λ a
scalar function. The canonical way of including dissipation in the equation
of motion is by using a Rayleigh dissipation functional proportional to the
square of the velocity Ṁ of the field, i.e.

R =
α

2γ|M|

∫
dV |∂M/∂t|2 , (1.14)

where α is the dimensionless Gilbert damping parameter. Additionally, the
Euler Lagrange equations of motion including Rayleigh dissipation are given
by

δL[M, Ṁ]

δM
+

δR[Ṁ]

δṀ
= 0. (1.15)

Hence, the equation that describes the precession of the magnetization which
dissipatively relaxes back to thermal equilibrium is called the Landau-Lifshitz-
Gilbert (LLG) equation and is according to Eq. (1.15) given by

∂M

∂t
= γHeff ×M+

α

|M|
M× ∂M

∂t
. (1.16)
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This is the most important dynamical equation for the purpose of this Thesis
and will be used in each chapter.

As a final comment we would like to stress that the Rayleigh dissipation
function is a direct measure of the dissipation of energy of the magnetic
system. This can be seen as follows, the dissipation of energy according
to Eqs. (1.15) and (1.16) is given by

−dF̃ /dt =

∫
dV Ṁ · (δR[Ṁ]/δṀ) = 2R[Ṁ]. (1.17)

Thus the dissipation function directly relates to the dissipation of energy for
quadratic velocities, which by the second law of thermodynamics should be
positive, i.e. α/γ > 0.

The use of the Langrangian formalism with Rayleigh dissipation is equiva-
lent to the LLG equation and will appear once more in Chapter 6, since it is
more convenient to change coordinates in the Lagrangian formulation.

So far we have been discussing classical magnetization dynamics at the phe-
nomenological level. In the next section we discuss a widely used microscopic
model to describe magnetic ordering.

1.3 heisenberg model and the curie temperature

At low energies, excitations of electrons into higher electron shells are less
relevant and the electrons can be integrated out to give an effective Hamilto-
nian in terms of only the total spin of the atoms — or group of atoms [52–55].
Here, we take into account exchange interactions, which gives the ground
state total spin at each lattice site, but also gives an interaction between the
relative orientations of the spins. We furthermore consider the interaction of
the magnetic dipole of the spin with an external magnetic field. We will thus
consider the Hamiltonian

H = −
∑
i,j

JijŜi · Ŝj −
∑
i

γµ0H · Ŝi, (1.18)

where Jij is the exchange integral, Ŝi the spin operator at lattice site i and H

the external magnetic field. The Hamiltonian presented in Eq. (1.18) is called
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the Heisenberg Hamiltonian and gives an effective microscopic low energy
description of magnetic ordering. In principle we should also include the
energetic contribution of the dipole-dipole interaction between the spins, but
we ignore them for the moment — claiming that the exchange is the dominant
energy scale to determine for instance the Curie temperature. Additionally,
the exchange interaction between spins drops of quite rapidly and hence
considering the exchange integral as a local interaction is reasonable. We
thus consider the exchange integral to be local and isotropic, which means
that we consider the sum in Eq. (1.18) to only sum over nearest neighbours
with an exchange integral of magnitude J . The isotropic assumption is also
well justified since the exchange interaction is rotationally invariant up to
lowest order in spin-orbit coupling. Under these assumptions, this model
shows ferromagnetic order if J > 0 and antiferromagnetic order for J < 0.

Before we discuss the Curie temperature and the elementary excitations
of this model, let us briefly consider the Heisenberg equation of motion for
the uniform spin mode, expressed in its magnetic moment M̂ = −nγŜ. Here,
n is the atomic density, γ = gµB/ℏ = g|e|/2m the gyromagnetic ratio, g
the g-factor and µB the Bohr magneton. The Heisenberg equation of motion
expressed in terms of the magnetic moment becomes

∂M̂

∂t
=

1

iℏ

[
M̂,H

]
= γµ0H× M̂, (1.19)

which has the operator form of the phenomenologically derived LL equation
in Eq. (1.9).

1.3.1 The Curie temperature in terms of the exchange coupling

Below we approximate the Curie temperature of this model in terms of the
exchange integral Jij . Since the Curie temperature is defined at vanishing
external field we disregard the external magnetic field H and solely consider
the exchange interaction. Again, we assume the exchange integral is isotropic,
thus invariant under global spin rotations and invariant under translations
of the lattice. Furthermore, we take into account only the nearest neighbour
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interactions between the spins. We thus consider the following Heisenberg
Hamiltonian

Ĥ = −J
∑
⟨i,j⟩

Ŝi · Ŝj , (1.20)

with J > 0 and ⟨i, j⟩ displays the sum over nearest neighbours.
We proceed by simplifying Eq. (1.20) using the mean field approximation

Ŝi · Ŝj ≃ Ŝi · ⟨Ŝj⟩+ ⟨Ŝi⟩ · Ŝj − ⟨Ŝi⟩ · ⟨Ŝj⟩. As we have seen in Section 1.1, the
Curie temperature is determined by the constants a(T ) and b(T ) in Eq. (1.1),
which both characterise uniform configurations of the magnetization. Hence,
only the zero wavevector mode in the Fourier transformation of the spin is of
interest to determine the Curie temperature. We may thus assume

⟨Ŝi⟩ ≃ ⟨S0⟩. (1.21)

Note that we should include nonzero wavevectors if we want describe nonuni-
form excitations in the magnet and thus find Ā(T ). In this mean field ap-
proximation the Hamiltonian becomes

HMF = (JzV /2)⟨S0⟩2 − Jz
∑
i

⟨S0⟩ · Ŝi, (1.22)

with z the amount of nearest neighbours and V is the volume of the mag-
net. The partition function corresponding to mean field Hamiltonian (1.22)
becomes

Z = Tr exp

(
−βJzV

2
⟨S0⟩2 + βJz

∑
i

⟨S0⟩ · Ŝi

)
, (1.23)

in which β = 1/kBT , with kB Boltzmann’s constant and T the temperature.
The trace in the above partition function runs over the spin eigenstates with
spin S and quantization axis ⟨S0⟩. The free energy of this model can now be
expressed in terms of the partition function via F = −β−1 logZ, which gives

F = F0 + JzV ⟨S0⟩2/2− β−1V logZ0(⟨S0⟩), (1.24)

with F0 the spin independent part of the free energy and Z0(⟨S0⟩) =∑S
Sz=−S exp

(
− βJz⟨S0⟩ℏSz

)
, the single spin partition function. This is
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a geometric series for which the solution, for general spin S, is given by
Z0(⟨S0⟩) = sinh(βJzℏ⟨S0⟩(S + 1/2))/ sinh(βJzℏ⟨S0⟩/2). We may re-express
the averaged spin in terms of its magnetic moment M = −nγ⟨S0⟩ and as-
sume the magnetic moment to be small |M| ≪ 1 near the phase transition.
Henceforth the approximate free energy density becomes

F/V = F0/V +
Jz

6n2γ2

(
3− S(S + 1)βJzℏ2

)
M2 +O(M4). (1.25)

We thus find a(T ) ∝ 3− βS(S + 1)Jzℏ2 in terms of the Landau free energy
parameters, and as a result, the corresponding Curie temperature is

Tc = S(S + 1)Jzℏ2/3kB. (1.26)

In conclusion, we approximated the Curie temperature of the microscopic
Heisenberg model using mean field theory. We found this temperature to
scale proportional to the zero temperature exchange interaction between
neighbouring spins. In principle one can derive the free energy functional from
the ground up using microscopic models. Throughout this Thesis, however,
we use a more phenomenological approach and take the parameters in the
free energy as material parameters which are given by experiment.

1.3.2 Magnetization dynamics and the total magnetization at low tempera-
tures

In this section we discuss the low energy excitations of the ferromagnetic
Heisenberg model in Eq. (1.18). These excitations are magnons which are
the quanta of spin waves. But, let us begin by describing the ground state
of the Heisenberg model. In order to do so it is convenient to rewrite the
Heisenberg Hamiltonian in terms of the spin raising and lowering operators
Ŝ± = Ŝx ± iŜy, which satisfy the following commutations relations[

Ŝz, Ŝ±
]
= ±ℏŜ±,

[
Ŝ+, Ŝ−

]
= −2ℏŜz. (1.27)

As a result, S+ raises the spin by ℏ on the z axis, while S− lowers the spin by ℏ
along the z axis, i.e. Ŝz|Sz⟩ = ℏSz, Ŝ±|Sz⟩ = ℏ

√
S(S + 1)− Sz(Sz ± 1)|Sz±
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1⟩, with |Sz⟩ shorthand for |S, Sz⟩ where S is the total spin at each lattice
site and Sz the eigenvalue of the z axis projection of the spin operator. When
we express the Heisenberg Hamiltonian in the raising and lowering operators
we find

H = −J

2

∑
⟨i,j⟩

2Ŝz
i Ŝ

z
j + Ŝ+

i Ŝ
−
j + Ŝ−

i Ŝ
+
j −

∑
i

γµ0HŜz
i (1.28)

The ground state |0⟩ of this Hamiltonian will thus be the state with the
maximal spin projection of ℏSN in the z direction, with N = V/a3 the total
number of spins, V the volume of the magnet and a3 the volume of one unit cell.
This state has a ground state energy given by ℏω0 = −Jzℏ2S2N−γµ0HℏSN ,
with z the number of nearest neighbours.

We expect the low energy excitations to lower the total spin of the projection
along z of the ground state by ℏ, such that total spin projection of this
state becomes ℏ(SN − 1). Furthermore, if we find an operator such that its
commutation relation with the Hamiltonian satisfies(

Ĥ − ℏω0

)
Ŝ−|0⟩ ≡

[
Ĥ, Ŝ−

]
|0⟩ = ℏωŜ−|0⟩, (1.29)

then Ŝ−|0⟩ would be an eigenstate of Ĥ. This state should furthermore satisfy∑
i Ŝ

zŜ−|0⟩ = ℏ(SN − 1) since it creates an excitation with spin ℏ. We will
thus search for an operator that satisfies condition (1.29) and lowers the spin
projection in the z direction by ℏ. This operator can not be Ŝ−

i , since the
Heisenberg Hamiltonian is translationally invariant. We thus consider its
Fourier transform as ansatz

Ψ̂†
k|0⟩ ≡ ℏ−1(2S)−1/2Ŝ−

k |0⟩ = ℏ−1(2SN)−1/2
∑
i

eik·riŜ−
i |0⟩, (1.30)
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where we divided Ŝ−
k by ℏ

√
2S to obtain the normalized state Ψ†

k|0⟩, i.e.
⟨0|Ψ̂kΨ̂

†
k|0⟩ = 1. With this ansatz the commutator of Ψ̂†

k with the Hamiltonian
acting on the ground state becomes(
Ĥ − ℏω0

)
Ψ̂†

k|0⟩ ≡
[
Ĥ, Ψ̂†

k

]
|0⟩ = ℏ−1(2SN)−1/2

∑
i

eik·ri
[
Ĥ, Ŝ−

i

]
|0⟩

=2J(2SN)−1/2
∑
⟨i,j⟩

eik·ri
(
Ŝz
j Ŝ

−
i − Ŝ−

j Ŝ
z
i

)
|0⟩

+ γµ0H(2SN)−1/2
∑
i

eik·riŜ−
i |0⟩

=2JℏS(2SN)−1/2
∑
⟨i,j⟩

eik·ri
(
Ŝ−
i − Ŝ−

j

)
|0⟩+ ℏγµ0HΨ̂†

k|0⟩

=ℏ
[
2ℏS

∑
a

J sin2 (k · a/2) + γµ0H

]
Ψ̂†

k|0⟩

=ℏω(k)Ψ̂†
k|0⟩. (1.31)

Hence, Ψ̂†
k|0⟩ is an eigenstate of the Heisenberg Hamiltonian with excitation

energy ℏω(k) and a spin of ℏ. In the above we defined a = ri − rj as
the spatial difference between nearest neighbours and we furthermore used
Ŝz|0⟩ = ℏS. We thus find the exact dispersion relation for magnons to be
ω(k) = 2ℏS

∑
a J sin2 (k · a/2) + γµ0H. In the long wavelength limit ka ≪ 1

— where a is the lattice spacing — this magnon dispersion relation in a simple
cubic lattice becomes

ω(k) ≃ ℏSa2Jk2 + γµ0H. (1.32)

Comparing this long wavelength dispersion with the phenomenologically
obtained spin wave dispersion in Eq. (1.11) we find Ā(T → 0) = a2+dJ/2γ2,
with d the number of spatial dimensions of the magnet.

For temperatures that are low compared to the atomic total spin — kBT ≪
ℏ2SJ — only relatively few magnons are excited and the total spin projection
should still be close to ℏSN . In this case magnons are approximately bosons,
since the commutation relation of the magnon creation and annihilation
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operators — which are the spin raising and lowering operators over ℏ
√
2S —

is approximately[
Ψ̂k, Ψ̂

†
k′

]
≃ δk,k′ , (1.33)

which is a bosonic commutation relation and this equality does not hold
at high temperatures when a lot of magnon states are occupied. Note that
the temperature range of validity becomes larger as the spin per unit cell
increases. Thus in large-spin ferromagnets, magnons are bosons for most
purposes. Hence, at low temperatures the amount of magnons should be given
by the Bose distribution

nB(k) = 1/(eβℏω(k) − 1), (1.34)

with β = 1/kBT . By noticing that the dispersion of occupied magnons is ap-
proximately quadratic at low temperatures and by ignoring the external mag-
netic field, we find the total decrease in magnetization in a three dimensional
ferromagnet, due to occupation of magnons, to be proportional to nmagnons =∫

dk
(2π)3

nB(k) = 4π
∫

dk
(2π)3

k2nB(k) = T 3/2 × 4π
∫ dq

(2π)3
q2nB(T

1/2q). Thus in
the low temperature limit the magnetization decreases as

M(T ) = M(0)
(
1− constant× T 3/2

)
, (1.35)

which is known as Bloch’s law [56].
To conclude this section, we have derived the low energy magnetic ex-

citations for the ferromagnetic Heisenberg model. We have found that the
elementary excitations of the ferromagnetic Heisenberg model — called
magnons — have a quadratic in k dispersion and have a spin of ℏ. And we
found that these magnons behave like bosons at sufficiently low temperatures
compared to the spin of the atoms. In Section 1.5.6, we will use an alternative
method called the Holstein-Primakoff approximation to approximate the
Heisenberg Hamiltonian and hence the magnon dispersion. In this formalism
the connection between the bosonic nature of magnons and the magnitude of
the atomic spin is more apparent. But before we end there, we first discuss
different methods to inject angular momentum into magnetic materials.
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1.4 spin injection

Throughout this Thesis we propose applications to inject and amplify spin
waves — or magnons — using the existence of negative magnetic energy
excitations. Before we can exploit such excitations, we first need to know how
one can create such excitations in a way that they are long lived. Usually,
negative energy excitations signal an instability if the system is allowed to
dissipate or redistribute its energy. As a result, such systems will reach a new
ground state after some time and the concept of negative energy excitations
is only relevant on timescales much smaller than the timescale in which
the system reaches a new ground state. Things change drastically however,
if we consider non-equilibrium magnetization dynamics. The inclusion of
angular momentum injection into the magnetic may namely reverse the sign
of the magnetic damping, making magnetic energetically unstable excitations
dynamically stable. Hence, one can engineer a ground state in which long-lived
dynamically stable negative energy excitations exist, and as a consequence,
the magnetic system is dynamically not allowed to reach its energetic ground
state. We will treat these cases in more detail in Section 1.5, but let us first
focus on the two methods to inject angular momentum into magnetic systems
that will be employed in this Thesis.

1.4.1 Spin transfer torques in a magnetic continuum

Spin transfer torques are torques on the magnetization that occur in metallic
ferromagnets if an electric current is applied. This current has the property
that it is spin-polarized in metallic ferromagnets which leads to torques on the
magnetic texture by conservation of angular momentum. The polarization of
the current stems from the microscopic details by which the magnetization is
formed in metallic ferromagnets. In short, the exchange interaction that leads
to the spontaneous ferromagnetic state creates a spin-splitting of the electron
conduction bands. As a result, the spin-up and spin-down electron bands are
shifted and typically have a different density of states at the Fermi-energy.
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This leads to uneven charge transport of the spin-up and spin-down states
and hence a spin polarized current.

Let us consider the case in which we have a spin-polarized current jα where
α denotes the direction of the spin polarization. A common assumption is
that the quantization axis of the spin polarized current follows that of the
magnetization profile in the ferromagnet, i.e. the spin-polarized current in
units of angular momentum per surface area per second is expressed as

jα =
gµBP

2eMs
jMα, (1.36)

with µB the Bohr magneton, g the g-factor of the electron, e the electron
charge, P = (σ↑ − σ↓)/(σ↑ + σ↓) the spin polarization with σ↑,↓ the con-
ductivity of the respective spin along the −M direction and Ms = |M| the
saturation magnetization. In the presence of a slowly varying magnetic profile
— compared to the electron mean free path — the electron spin changes
quantization axis and hence by conservation of angular momentum should
exert a torque on the magnetization given by [57–59]

∂tMα|STT adiabatic = −∇ · jα = −vs · ∇Mα, (1.37)

with vs = −gµBP j/2|e|Ms the spin-drift velocity. The above formula can be
interpreted as follows. Consider a unit cell of volume a3 with a total magneti-
zation Ms. The change in the direction magnetic moment of the electrons
per unit cell is a3∇ · jα, hence it exerts a torque on the magnetization of the
opposite sign −a3∇ · jα. The phenomenologically derived torque in Eq. (1.37)
is called the adiabatic spin-transfer torque (STT).

In the derivation of the adiabatic STT we neglected all processes that
relax spin, and a gradient expansion shows that STTs may also induce the
dissipative torque

∂tMα|STT non−adiabatic = (β/Ms)M× (vs · ∇)M, (1.38)

with β the dimensionless constant characterizing this dissipative torque on
the magnetization. In the literature this torque is called the non-adiabatic
STT. Furthermore, microscopic calculations show the order of magnitude of
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the dimensionless parameter β to be comparable to that of Gilbert damping
β ∼ α ∼ 10−2 [58], where we used that α ∼ 10−2 for typical metallic
ferromagnets. In Chapter 2 we show that there exist regimes in which the
non-adiabatic STT can stabilize negative energy excitations induced by the
adiabatic STT. It does so by effectively reversing the sign of the damping.

1.4.2 Spin orbit torques

Another way of injecting angular momentum into the magnetic sample is by
using spin-orbit torques (SOTs). SOTs can be used to inject angular momen-
tum into the magnetic layer of magnetic heterostructures by using a charge
current parallel to the interface between the layers. These heterostructures
typically consist of a non-magnetic conducting layer with strong spin-orbit
coupling and a magnetic — in our case ferromagnetic — layer on top. These
setups are more versatile compared to the STT, since the magnetic layer
is allowed to be insulating. This allows one to use low magnetic damping
materials like the magnetic insulator yttrium-iron-garnet (YIG).

The generation of a torque in the magnetic layer is realized as follows.
If we apply an electric field over the metallic layer it generates an electric
current. This current gets partially converted into a spin current perpendicular
to the direction of the electric current via the spin-Hall effect (SHE). The
generation of the spin current in the SHE is due to an asymmetrical deflection
of spin induced by spin-orbit coupling1— which couples the electron spin
to its orbital degree of freedom. This would describe the spin current if no
boundaries are present. In heterostructures the spin current is flowing towards
the interface of the conductor with the magnet. Not all the spin current is
able to pass the interface and part of the spin accumulates, which is called
the spin accumulation. The part of the spin current that can pass through

1 Most models that consider the SHE restrict to the geometry of a two-dimensional electron
gas (2DEG), in which the electrons are for instance only able to move in the let’s say
(x, y) plane. Typically, the spin polarized current generated by SHE in such a geometry
is characterised by jα ∝ (ζ̂ × j)ζα, where j is current density and ζ̂ = (ẑ × j/|j|) the
spin-polarization axis.
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the interface into the magnet depends on the configuration of the magnet
and on the spin accumulation. A long story short, the effective spin current
through the interface is proportional to the torque on the magnetization, and
is given by [60, 61]

∂tMα|SH dampinglike = ẑ · jα =
gµBηθSH
2eMsd

M× [M× (ẑ × j)]|α, (1.39)

where µB is the Bohr magneton, g the g-factor of the electron, η gives
the efficiency of the interface, d the thickness of the magnetic layer and
θSH = σSH/σ the dimensionless spin-Hall angle, with σSH the spin-Hall
conductivity and σ the conductivity of the conducting layer. Thus Eq. (1.39)
gives a dissipative torque on the magnetization due to injection of angular
momentum into the magnetic layer, and is referred to in literature as the
damping-like torque.

For completeness, we discuss another torque on the magnetization that is
induced by an electric current in such heterostructures. Namely the field like
torque

∂tM|SH fieldlike ∝ M× (ẑ × j). (1.40)

This torque is due to interaction of the magnetization with spin density
created by the SHE at the interface of the layers. This torque describes a shift
in the effective magnetic field and for that reason is called the field-like torque
Since the field-like torque is often rather small compared to the effective
magnetic field we neglect it in the remainder of this Thesis. The damping-like
torque on the other hand competes with the dissipation of magnetic energy
which is approximately related to the effective field via the Gilbert damping
constant α which is a much smaller quantity to compete with. For sufficiently
strong charge currents, SOTs may be used to effectively reverse the sign of
the damping — which only the damping-like torque is capable of.

In the next sections we discuss how one can create long lived negative
energy excitations with the use of SOTs. Furthermore, we discuss how these
excitations are fundamentally different from positive energy excitations and
cover some of the formalism necessary to treat them.
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1.5 low energy excitations on magnetically stable and
magnetically unstable ground states

In the sections below, we formally introduce magnons as excitations on
energetically stable ground states and introduce the concept of antimagnons —
which are excitations that occur in magnetically unstable ground states. While
some of this discussion is well-known in the field of analogue gravity [27–29], it
may not be familiar to researchers working in other fields of research. Because
of this, we try to be detailed and complete in what follows. Moreover, while
touching on treatments that have been presented in the field of analogue
gravity, the discussion that follows adds the specific details for magnetic
systems, such as the various magnetic interactions, damping, and spin currents.
We also note that the while in the first instance this discussion is fully based on
the Landau-Lifshitz-Gilbert (LLG) equation, it also sets the stage for quantum
effects that are beyond the LLG equation. For readers who wish to skip these
details, we give here a brief summary: We discuss how the LLG equation
yields an eigenvalue problem that is well-known in the Bogoliubov theory of
excitations in superfluids, and which leads to the introduction of a specific
conserved norm. This eigenvalue problem yields pairs of eigenfrequencies of
which the eigenmodes have opposite norm and which physically correspond
to the same excitation. Because of this doubling, it is sufficient to consider
only positive or negative frequencies.

For linearization around the true magnetic ground state — referred to as
the energetically-stable situation — the positive-norm modes have positive
frequencies, while the negative-norm modes have negative frequencies. Upon
quantization, we are left with excitations that correspond to magnons, either
with positive norm and positive frequency or with negative norm and negative
frequency. Typically, one restricts oneself to positive frequencies and therefore
one does not need to introduce the negative-norm states.

The situation changes if one considers excitations on top of a state that
is not the magnetic ground state, which we refer to as the energetically
unstable situation. In this case, there may be positive-norm states with
negative frequency, and negative-norm states with positive frequency. Re-
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stricting oneself again to positive frequencies, one now has to consider the
negative-norm states with positive frequencies. We define these excitations
to be antimagnons, as they carry opposite spin to magnons and physically
correspond to negative-energy excitations. This is because the system is now
linearized around an energetically-unstable state, and the excitation lowers
the total energy.

Adding any amount of dissipation would normally make the energetically-
unstable situation dynamically unstable as well: because the environment is
able to dissipate energy, the system dynamically evolves to its true ground
state. The energetically-unstable situation may be made dynamically stable
by external pumping that effectively reverses the sign of the damping. Below
we discuss in detail the example of how this may be achieved by spin-orbit
torque. Once the energetically-unstable state is dynamically stabilized it yields
stable antimagnon excitations that may be coupled to magnons. Examples of
the physics that results from this coupling are discussed in Part ii.

1.5.1 Preliminaries

We consider an insulating ferromagnetic (FM) thin film with hard-axis
anisotropy in the y-direction adjacent to a heavy-metal layer (HM), as shown
in Fig. 1.3. Furthermore, we consider an external magnetic field in the z

-direction. The discussion below may be easily generalized to other examples
of magnetic anisotropies and fields. Far below the Curie temperature, the
dynamics is well described by the LLG equation for the direction n = M/|M|
of the magnetization with spin-orbit torques (SOT),

∂n

∂t
= −γn× heff + αn× ∂n

∂t
+ Jsn× ẑ × n, (1.41)

with γ the gyromagnetic ratio, α the Gilbert damping and Js the strength of
SOTs generated by the spin current which depends on the current flowing in
the HM layer, the spin Hall angle of the HM and the properties of the interface.
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Figure 1.3: Scheme of a magnetic thin film adjacent to a heavy metal layer with
magnetization parallel (a) and antiparallel (b) to the external field. The bottom
panel shows the corresponding dispersion relations of magnetic excitations. The
configuration in (a) corresponds to the energetically stable ground state and hence the
dispersion in (b) is the usual spin wave dispersion. On the other hand, configuration
(c) gives an energetically unstable situation, which is stabilized by SOT. As a result,
the spin-wave dispersion in (d) has negative energy excitations.
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The above equation describes damped precession around the effective magnetic
field heff = −δE/(Msδn), with Ms the saturation magnetization and

E =

∫
dV

{
A(∇in)

2 − µ0HeMsnz +
1

2
Kn2

y

}
(1.42)

the magnetic energy functional of this set-up. In the above A is the exchange
stiffness, He is the external magnetic field strength, µ0 is the vacuum perme-
ability with K the anisotropy, which may be caused by magnetocrystalline
anisotropy or dipolar interactions.

We introduce spin waves as linearized dynamical fluctuations on top of
the static magnetization. As discussed, we consider the static magnetization
to be either in the direction of the external magnetic field or opposite to it,
i.e. n0 = ±ẑ. The former (n0 = ẑ) corresponds to the energetically stable
configuration whereas the latter (n0 = −ẑ) corresponds to the energetically
unstable configuration. We proceed by introducing the complex field Ψ =

(1/
√
2) (ê1 + iê2) · n, with ê1 × ê2 = n0. For convenience we consider ê1 = x̂,

which automatically gives ê2 = ∓ŷ. When linearizing the LLG equation (5.2)
in δn1, δn2, according to n = n0 + (δn1, δn2, 0)

T , it is recast as a Bogoliubov-
de-Gennes like equation

i(1+ iασz)∂t
γµ0Ms

 Ψ

Ψ∗

 = (L± + iIs1)

 Ψ

Ψ∗

 , (1.43)

with

L± =
(
∆± h− Λ2∇2

)
σz + i∆σy. (1.44)

In the above, σy,z are the Pauli matrices and 1 is the 2× 2 identity matrix,
Λ =

√
2A/µ0M2

s the exchange length, h = He/Ms the dimensionless external
magnetic field, ∆ = K/2µ0M

2
s = 1/2 the dimensionless anisotropy constant

and Is = Js/γµ0Ms the dimensionless SOT.
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1.5.2 Symmetries and the conserved norm of the equation of motion

We write the complex wavefunction Ψ in terms of Bogoliubov modes

Ψ(x, t) = u(x)e−iλt + v∗(x)eiλ
∗t (1.45)

and, for later convenience, we define the dimensionless frequency ω =

λ/γµ0Ms. At this point we make several observations. First of all, the dis-
sipationless limit of Eq. (1.43) (α = Is = 0) is pseudo-Hermitian, in other
words

σzL†
±σz = L±. (1.46)

A consequence of this statement is that the inner product ⟨Ψ,Ψ′⟩ ≡ ⟨Ψ|σz|Ψ′⟩ =∫
dV [u∗(x)u′(x)− v∗(x)v′(x)] and hence the non-positive definite magnon

norm

∥Ψ∥ = ⟨Ψ|σz|Ψ⟩ =
∫

dV
(
|u|2 − |v|2

)
, (1.47)

is conserved in the dissipationless limit. Secondly, Eq. (1.43) has the additional
symmetry

σx(L± + iαω∗σz + iIµ1)σx = −(L± − iαωσz + iIµ1)
∗. (1.48)

This implies that if ω is an eigenfrequency of Eq. (1.43) with eigenmode(
u v

)T, then −ω∗ is an eigenfrequency with eigenmode
(
v∗ u∗

)T. These
two modes have opposite norm by construction. Hence, the two branches
of Eq. (1.43) are related to each other via particle-hole symmetry. In our
magnetic system, this doubling is not physical, but merely a result of our
choice to describe spin waves using complex scalar fields. Hence, in order to
determine the full dynamics of the system it is sufficient to consider ω > 0

and take into account the norm of different modes. As we see later, the
sign of the norm in Eq. (1.47) describes whether we work with magnon or
antimagnon commutation relations.
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1.5.3 Spin waves, again

The ground state corresponds to n0 = ẑ. Because of translation invariance,
we introduce spin-wave modes as the Fourier modes of u(x) and v(x) in the
linearized LLG equation (5.2)–around the +ẑ direction. Up to first order
in dissipative terms α and Is, these spin wave solutions have the following
dispersion relation

ωk ≃ ω0
k − i

(
α
[
∆+ h+ Λ2k2

]
− Is

)
, (1.49)

with ω = λ/γµ0Ms the dimensionless frequency and

ω0
k = ∥Ψk∥

√
(∆ + h+ Λ2k2)2 −∆2, (1.50)

the real part of the dispersion relation in which ∥Ψk∥ = ±1 is the norm of the
modes. In Fig. 1.3(b) we show the real part of the dispersion relation, where
the red curve corresponds to the positive norm mode and the blue curve
corresponds to the negative norm mode. From the stability requirement we
discussed in this section we find that the ground state is stable if Is/α < [∆+h].
Hence, the ground state becomes unstable if it is driven sufficiently strong
such that the SOT overcompensates the damping. This is well known to
happen in spin-torque-oscillators.

The energy functional (1.42) for spin-wave excitations per definition gives
us

E ≡ 1

2
⟨Ψ|σzL+|Ψ⟩. (1.51)

By expanding |Ψ⟩ =
∑

k ak|Ψk⟩ in spin-wave eigenmodes, we find

E =
1

2

∑
l,k

a∗l ak⟨Ψl|σzL+|Ψk⟩ (1.52)

=
1

2

∑
l,k

a∗l ak⟨Ψl|σz|Ψk⟩ω0
k

=
1

2

∑
k

|ak|2∥Ψk∥ω0
k,
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Thus, the contribution of the spin-wave modes to the energy is given by
∥Ψk∥ω0

k. Hence, one may choose to work with the positive-norm modes which
have positive frequency and the excitation of which leads to an increase of
energy. Alternatively, one may work with negative-energy modes with negative
frequency, the excitation of which also lead to an increase in energy. The former
choice is the conventional one and, upon quantization, leads to conventional
magnons. Choosing to restrict oneself to negative frequency would lead to
the same magnonic excitations after a particle-hole transformation, but is
an unnecessary complication. This, however, changes when one considers
spin-wave excitations on top of an energetically-unstable state.

1.5.4 Spin-wave excitations around an inverted ground state

Now, we consider spin waves on top of the energetically-unstable configuration
in which the static magnetization is pointing opposite to the external magnetic
field, i.e. n0 = −ẑ. Due to this different quantization axis we find that the
complex field becomes Ψ = (1/

√
2)(x̂+iŷ) ·n instead of Ψ = (1/

√
2)(x̂− iŷ) ·n

which we used in the previous section. This, as we will see in Section 1.5.5,
precisely corresponds to the choice of a different-norm branch and thus
commutation relation for the excitations after quantization. As before, spin
waves are introduced as the Fourier modes of u(x) and v(x) in the linearized
LLG equation (5.2). We find that the dispersion relation, up to first order in
dissipative constants α and Is is given by

ωk ≃ ω0
k − i

(
α
[
∆− h+ Λ2k2

]
− Is

)
, (1.53)

with

Re
(
ω0
k

)
= ∥Ψk∥sgn(Λ2k2 − h)

√
(∆− h+ Λ2k2)2 −∆2 (1.54)

the real part of the dispersion relation in which

∥Ψk∥ =

 ±1, |∆− h+ Λ2k2| > ∆,

0, |∆− h+ Λ2k2| < ∆,
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is the norm of the modes. The real part of the dispersion relation in Eq. (1.54)
is shown in Fig. 1.3(d), in which the red curve corresponds to the positive
norm mode and the blue curve to the negative norm mode. Note that the
above defined norm vanishes precisely in the interval for which the dispersion
relation has a so called exceptional line [62]. In this interval the ground state
becomes unstable towards excitations of specific wavelengths. This instability
also has to overcome by the SOT for our theory to remain valid. Similar to
the previous subsection, the classical stability follows from the sign of the
imaginary part of the spin wave dispersion relation. Here, we see that this
configuration is stable once

−Is/α ≳ max(h−∆,∆/α). (1.55)

Thus the magnetization can in principle be held pointing opposite to the
external field if the angular momentum injected by the SOT is sufficiently
large. To determine this stability condition we furthermore used

Im
(
ω0
k

)
=
(
1− ∥Ψk∥2

)√
(∆− h+ Λ2k2)2 −∆2.

We thus see that reducing the anisotropy ∆, which yields elliptical magneti-
zation precession, will greatly reduce the critical current needed to keep the
energetically-unstable state dynamically stable.

To continue, the energy functional for the excitations is given by

E ≡ 1

2
⟨Ψ|σzL−|Ψ⟩. (1.56)

By expanding in eigenmodes |Ψ⟩ =
∑

k ak|Ψk⟩ we find

E =
1

2

∑
l,k

a∗l ak⟨Ψl|σzL−|Ψk⟩ (1.57)

=
1

2

∑
k

|ak|2∥Ψk∥ω0
k.

Once again we may chose to work with either positive or negative-norm
excitations of which the excitation energy is given by ∥Ψk∥ω0

k which becomes
negative in a specific region of phase space. What is, however, special in
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this case is that at positive frequencies there now exist both positive-norm
excitations and negative-norm excitations. Because they both have positive
frequency, they may couple to each other and examples of this coupling are
discussed in Part ii. Restricting oneself to positive frequencies, one now nece-
sarrily has to explicitly consider the negative-norm modes. Upon quantization,
we define these latter modes to be antimagnons.

1.5.5 Canonical quantization

The formalism discussed in this section is restricted to the dissipationless limit,
i.e. α → 0 and Is → 0, thereby assuming that the quantization procedure is
still valid when turning on the small dissipation. We start out this section
by canonically quantizing the complex scalar field in Eq. (1.43). In this case,
canonical quantization should give us

[Ψ(x, t),Ψ†(x′, t)] = δ(x− x′), (1.58)

since iΨ† is the canonical momentum associated with Ψ. For completeness, the
canonical momentum of Ψ† is −iΨ making the above definition self consistent.

In Section 1.5.1 we have seen that the definition of Ψ depends on the choice
of direction of the static magnetization n0, where a sign change of n0 implies
a complex conjugation of the complex scalar fields, i.e. n0 = ẑ → −ẑ =⇒
Ψ → Ψ∗. Hence, if the quantization axis describes the vacuum opposite to
the fixed point direction used for linearization one obtains the anomalous
commutation relations

[Ψ(x, t),Ψ†(x′, t)] = −δ(x− x′). (1.59)

As we will see in the rest of this section, if we quantize our theory using
the commutation relation in Eq. (1.58) for positive frequency excitations,
the commutation relation for antimagnonic modes will satisfy anomalous
commutations relations. And hence, intuitively, antimagnonic modes may
also be seen as having an opposite quantization axis with respect to magnonic
excitations.
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1.5.6 Quantization from the microscopic Hamiltonian using the Holstein-
Primakoff transformation

In this section we make the connection between the magnons in our canonically
quantized theory and the magnons following from the Holstein-Primakoff
transformation in a spin model [63]. We start from the spin Hamiltonian

H = −J
∑
⟨ij⟩

Si · Sj − γµ0H
∑
i

Sz
i +Kd

∑
i

(Sy
i )

2 (1.60)

where the first term is Heisenberg exchange interaction between neighbour-
ing spins with J being exchange coefficient, which relates to the exchange
coefficient in Eq. (1.42) via A = Ja2+d/2γ2, with d the number of spatial
dimensions and a the lattice spacing. The second term is Zeeman energy
of spins under an external field H with H > 0, which is related to He via
He = H. In the above Kd is the shape anisotropy which is related to the
anisotropy in Eq. (1.42) by K = Kda

d/γ2. The spin operator obeys the
commutation relation [Si, Sj ] = iℏϵijkSk with ϵijk the Levi-Civita symbol.
We consider the static state of the system around which we quantize to be
S = ±Sez. In the true ground state (S = +Sez) the decrease of Sz by ℏ
corresponds to a magnon excitation. On the other hand, in the energetically
unstable state (S = −Sez) an increase of ℏ gives rise to either an magnonic
or an anti-magnonic excitation. The difference between the two is essentially
their handedness and their energy. The antimagnonic excitations carry nega-
tive energy en have opposite handedness with respect to the magnonic ones.
Formally, we introduce the (anti)magnonic excitations on top of the ener-
getically (un-)stable ground state via the Holstein-Primakoff transformation

S±
i = ℏ

√
2S −Ψ†

iΨiΨi, (1.61a)

S∓
i = Ψ†

iℏ
√

2S −Ψ†
iΨi, (1.61b)

Siz = ±ℏ(S −Ψ†
iΨi), (1.61c)

such that the commutation relations are given by

[Ψi,Ψ
†
j ] = δij , [Ψi,Ψj ] = 0. (1.62)
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We would like to stress here, that the definition of S± is with respect to the
quantization axis ±ẑ. If S ≫ ⟨Ψ†

iΨi⟩ the spin Hamiltonian can be expanded
up to second order in Ψ and Ψ† giving

H =± γℏµ0H
∑
i

Ψ†
iΨi − JℏS

∑
⟨ij⟩

[
ΨiΨ

†
j +Ψ†

iΨj − 2Ψ†
iΨi

]
(1.63)

− (KdℏS/2)
∑
i

[
Ψ†

iΨ
†
i +ΨiΨi − 2Ψ†

iΨi

]
.

When taking the continuum limit of the above we find

H =
1

2

∫
dV
(
Ψ† Ψ

)
(σzL±)

 Ψ

Ψ†

 , (1.64)

with L± defined in Eq. (1.44) and

[Ψ(x),Ψ†(x′)] → δ(x− x′), [Ψ(x),Ψ(x′)] = 0. (1.65)

We thus find that according to the Holstein-Primakoff transformation our
canonically quantized fields Ψ and Ψ† correspond at quadratic order to
the spin lowering and raising operators S± and S∓. Hence, the anomalous
operators b† and b describe a vacuum opposite of their quantization axis, up
to second order in their fields.

1.5.7 Representations of magnons and antimagnons

Below we discuss two commonly used representations for magnons, namely
the wavevector representation and the frequency representation. We put
special emphasis on the case in which we linearize around the inverted ground
state in which we need to consider both the magnonic and the antimagnonic
excitations.
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1.5.7.1 Wavevector representation

Let us in first instance restrict ourselves to the commutation relation in Eq. (1.58).
In order to diagonalize the equation of motion (1.43) we take the following
Bogoliubov ansatz

Ψ(x, t) =
∑
k

(
uk(x)ake

−iωkt + v∗k(x)a
†
ke

iωkt
)
, (1.66a)

Ψ†(x, t) =
∑
k

(
vk(x)ake

−iωkt + u∗k(x)a
†
ke

iωkt
)
, (1.66b)

where uk and vk are solutions of Eq. (1.43) and a† and a are the (anti)magnon
creation and annihilation operators. We find that Eqs. (1.58) and (1.66) imply
the commutation relations

∥Ψk∥∥Ψk′∥[ak, a†k′ ] = ⟨Ψk,Ψk′⟩ = ∥Ψk∥δk,k′ , (1.67)

where the last equality in the above equation is only true if both states have
the same norm and is otherwise zero. Thus, if we work with the positive-
norm branch we use the commutation relations [ak, a

†
k′ ] = δk,k′ , while in the

negative norm branch we have to use the anomalous commutations relations
[ak, a

†
k′ ] = −δk,k′ . Furthermore, if two operators correspond to states with

different norm we get the commutation relation

∥Ψk∥∥Ψk′∥[ak, ak′ ] = ∥Ψk′∥δk,k′ , (1.68a)

∥Ψk∥∥Ψk′∥[a†k, a
†
k′ ] = ∥Ψk∥δk,k′ , (1.68b)

and otherwise zero. The latter is a consequence of the particle-hole symmetry
in the equations of motion Eq. (1.43) for the fields. From this point onward
we relabel creation and annihilation operators of the negative norm branch
as b†k and bk such that [bk, b

†
k′ ] = −δk,k′ and the operators in the positive

as ak and a†k with [ak, a
†
k′ ] = δk,k′ . Additionally we relabel solutions of the

negative norm branch of Eq. (1.43) as
(
ũ ṽ
)T . From Eqs. (1.67) and (1.68)

we unsurprisingly find that the operators in the different branches are related
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by particle hole symmetry b†k = a−k and bk = a†−k. We find that the field Ψ

may now be written asΨ(x, t)

Ψ†(x, t)

 =
1√
2

∑
∥Ψk∥=1

uk

vk

 ake
−iωkt+ikx +

v∗k

u∗k

 a†ke
iωkt−ikx


+

1√
2

∑
∥Ψk∥=−1

ũk

ṽk

 bke
−iωkt−ikx +

ṽ∗k

ũ∗k

 b†ke
iωkt+ikx

 (1.69)

The fields b† ≡ a and b ≡ a† give a doubling of the modes, since the same
information is essentially described by the fields a and a† of the positive
norm branch. This can be made more intuitive when we remember that
particle hole symmetry gives

(
v∗ u∗

)T as an eigenmode of Eq. (1.43) with
frequency −ω∗ if

(
u v
)T is an eigenmode with frequency ω. Hence, we see

that the negative norm sector can be mapped onto the positive norm sector
via a particle-hole transformation. One may thus chose to work in whatever
branch we find convenient. As argued previously, for excitations on top of a
energetically-unstable state and after restricting oneself to positive frequency,
one necessarily has to consider the negative-norm excitations. For the field in
Eq. (1.69), this implies considering both the magnon operators a and a† and
the antimagnon operators b and b†.

Let us consider the Hamiltonian for (anti)magnon excitations. Similar to
the previous section this is given by

E ≡ 1

2

∫
dV
(
Ψ† Ψ

)
(σzL±)

 Ψ

Ψ†

 . (1.70)

Using Eq. (1.69) we find that the Hamiltonian in second quantized form
becomes

E =
1

4

∑
∥Ψk,l∥=1

(
a†l ak + aka

†
l

)
⟨Ψl,Ψk⟩ω0

k (1.71)

+
1

4

∑
∥Ψk,l∥=−1

(
blb

†
k + b†kbl

)
⟨Ψl,Ψk⟩ω0

k.



1.5 magnetic excitations on stable and unstable ground states 37

Thus we find

E = E0 +
1

2

∑
∥Ψk∥=1

∥Ψk∥ω0
ka

†
kak +

1

2

∑
∥Ψk∥=−1

∥Ψk∥ω0
kbkb

†
k. (1.72)

In the above E0 is the energy without excitations and b, b† and a, a† the
(anti)magon annihilation and creation operators. As in Section 1.5.4 we
notice that on top of energetically-unstable states there exist negative energy
modes of which, by definition, the product of norm and frequency is negative.
This implies that these modes, which we call antimagnons, have opposite
handedness with respect to their magnonic counterpart. More discussion on
this can be found in Section 1.5.7.2.

1.5.7.2 Frequency representation

For processes in which the frequency ω is conserved but wavevector is no
longer conserved, such as scattering, it is useful to change variables from
k → ω. This representation is useful when coupling magonic excitations to
antimagnon excitations, of which examples are given in Chapters 2, 4 and 6.
Furthermore, this representation makes the need to consider antimagnons on
top of the energetically unstable state explicit. We proceed by expanding the
Ψ and Ψ† in Section 1.5.7.1 in the frequency representation. Due to doubling
of the modes we consider ω > 0 throughout this section. Here, we consider
k to be in the continuum. This implies

∑
k →

∫
ddk, furthermore we define

∥Ψk∥ by ⟨Ψk|σz|Ψk′⟩ = ∥Ψk∥δd(k−k′) and ∥Ψk∥∥Ψk′∥[ak, a†k′ ] = ⟨Ψk,Ψk′⟩ →
∥Ψk∥δd(k − k′). We will see that a change in coordinates k → ω proceeds
very differently in the case where the static magnetization is pointing in the
direction of the external magnetic field, i.e. n0 = ẑ, as compared to the case
in which it points against the external magnetic field, i.e. n0 = −ẑ. Let us in
first instance restrict ourselves to the case in which the magnetization is in
the direction of the external magnetic field, i.e. n0 = ẑ, corresponding to true



38 introduction

equilibrium. From here we perform a coordinate transformation on Eq. (1.69)
to frequency space giving us

Ψ(x, t) =

∫
dΩ⃗

∫ ∞

ωmin

dω
[
uω,Ω⃗(x)aω,Ω⃗ e−iωt + v∗

ω,Ω⃗
(x)a†

ω,Ω⃗
eiωt
]
, (1.73a)

Ψ†(x, t) =

∫
dΩ⃗

∫ ∞

ωmin

dω
[
vω,Ω⃗(x)aω,Ω⃗ e−iωt + u∗

ω,Ω⃗
(x)a†

ω,Ω⃗
eiωt
]
. (1.73b)

Here, Ω⃗ is a vector on the unit sphere of dimension d − 1,
(
uk vk

)T is an
eigenmode in the positive norm branch, ωmin =

√
(∆ + h)2 −∆2 gives the

ferromagnetic resonance and the rescaled fields and operators are given by
uω,Ω⃗(x)

vω,Ω⃗(x)

aω,Ω⃗

a†
ω,Ω⃗

 =
√
kd−1

√
dk

dω


u
k⃗
(x)

v
k⃗
(x)

a
k⃗

a†
k⃗

 . (1.74)

Where these rescaled field and operators are chosen such that their commu-
tation relations become[

aω,Ω⃗, a
†
ω′,Ω⃗′

]
= δ(ω − ω′)δd−1(Ω⃗− Ω⃗′). (1.75)

Due to the isotropic dispersion in Eqs. (1.50) and (1.54) the fields in Eq. (1.74)
may be simplified further. Since the dispersion relation is independent of the
direction of k⃗, the magnitude of k only depends on the magnitude of ω. We
may thus express the fields as

(
uω,Ω⃗(x) vω,Ω⃗(x)

)
=
(
uω vω

)
exp(ik(ω)Ω⃗ · x),

with
(
uω vω

)
=

√
kd−1

√
dk/dω

(
uk vk

)
in which

(
uk vk

)
is an eigenvector

of Eq. (1.43) with |uk|2 − |vk|2 = (2π)−d.
Next, we consider the case in which the equilibrium magnetization is

pointing against the external magnetic field, hence n0 = −ẑ. In this instance
the dispersion relation Eq. (1.54) becomes negative in the positive norm
branch and positive for the negative norm branch. For frequencies below
ωmax =

√
(∆− h)2 −∆2 we find an additional negative energy mode in every

propagation direction. We stress that these modes carry negative energy since
the product of their norm with their frequency is negative, and, following
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our definition, we refer to these modes the antimagnons. For ω > ωmax on
the other hand, these antimagnon modes do not exist. For excitations on top
of the energetically unstable state the frequency representation of Eq. (1.69)
becomes

Ψ(x, t) =

∫
Sd−1

dΩ⃗

∫ ωmax

0
dω
[
uω,Ω⃗(x)aω,Ω⃗ e−iωt + v∗

ω,Ω⃗
(x)a†

ω,Ω⃗
eiωt

+ ũω,Ω⃗(x)bω,Ω⃗ e−iωt + ṽ∗
ω,Ω⃗

(x)b†
ω,Ω⃗

eiωt
]

+

∫ ∞

ωmax

dω
[
uω,Ω⃗(x)aω,Ω⃗ e−iωt + v∗

ω,Ω⃗
(x)a†

ω,Ω⃗
eiωt
]
,

(1.76)

where the conjugated expression becomes

Ψ†(x, t) =

∫
Sd−1

dΩ⃗

∫ ωmax

0
dω
[
vω,Ω⃗(x)aω,Ω⃗ e−iωt + u∗

ω,Ω⃗
(x)a†

ω,Ω⃗
eiωt

ṽω,Ω⃗(x)bω,Ω⃗ e−iωt + ũ∗
ω,Ω⃗

(x)b†
ω,Ω⃗

eiωt
]

+

∫ ∞

ωmax

dω
[
vω,Ω⃗(x)aω,Ω⃗ e−iωt + u∗

ω,Ω⃗
(x)a†

ω,Ω⃗
eiωt
]
.

(1.77)

In the above the modes
(
ũ ṽ

)
have negative norm and positive frequency

ω. Here, the rescaled fields and operator of the negative norm branch are
defined by

ũω,Ω⃗(x)

ṽω,Ω⃗(x)

b†
ω,Ω⃗

bω,Ω⃗

 =
√
kd−1

√
dk

dω


ũ
k⃗
(x)

ṽ
k⃗
(x)

b†
k⃗

b
k⃗

 . (1.78)

Via the particle-hole transformation bω,Ω⃗ ≡ a†
−ω,−Ω⃗

and b†
ω,Ω⃗

≡ a−ω,−Ω⃗ the
same mode is described by positive norm and negative frequency −ω.

In this representation the Hamiltonian becomes

H =

∫
Sd−1

dΩ⃗

∫ ωmax

0
dωω

[
a†
ω,Ω⃗

aω,Ω⃗ − bω,Ω⃗b
†
ω,Ω⃗

]
(1.79)

+

∫
Sd−1

dΩ⃗

∫ ∞

ωmax

dωω
[
a†
ω,Ω⃗

aω,Ω⃗

]
.
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Hence the antimagnons bω,Ω⃗, b†
ω,Ω⃗

or a†
−ω,Ω⃗

, a−ω,Ω⃗ after a particle-hole
transformation, describe excitations with energy −ω and hence have opposite
handedness as compared to the magnonic excitations. From the expression
in Eqs. (1.76), (1.77) and (1.79) it is clear that for frequencies between 0 and
ωmax one has to consider both magnons and antimagnons, and, as a result,
these excitations may couple.

1.6 this thesis

This Thesis constitutes of two parts. In Part i we discuss dipole-exchange
spin waves trying to make a close connection to experiments and include for
magnetostatic — dipole-dipole — interactions, which is not the dominant
energy scale, but nonetheless significant in the long wavelength physics of
ferromagnets. In Chapter 2, we discuss the possibility for spin waves to carry
negative magnetic energy driven by STT. To do so we include magnetostatic
interactions, Dzyaloshinkii-Moriya interaction, crystalline anisotropies as
well as surface anisotropies and the effect of STT, in a manner that should
accurately model ferromagnetic conductors. We, most importantly, investigate
the dynamical stability of these negative energy excitations. Since the spin
waves also experience the non-adiabatic STT this could render these negative
energy excitations dynamically stable. In Chapter 3 we present an analytic
theory that accurately models the dipole-exchange spin wave dispersion for
spin waves travelling perpendicular to an in-plane external magnetic field in
a thin-film geometry. The currently widely used analytic approximation rests
on a diagonal approximation that becomes inaccurate when the ferromagnetic
film gets thick. We suggest a different method to analytically approximate
the spin wave dispersion. This turns out to have an accurate analytic solution
for both thin and thick ferromagnetic films.

The focus of Part ii is on applications of negative magnetic energy ex-
citations and the discussion of non-linear magnetization dynamics due to
the onset of dynamical instabilities. We start this part with Chapter 4, in
which we discuss a method to amplify spin waves of an interface between a
normal ferromagnet and ferromagnetic in which negative magnetic energy
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spin waves exist. In this setup the spin quantization axis between the left
magnet — containing only magnons — and the right region — containing also
antimagnons — are opposite. This implies that magnons in the left magnet
can only scatter to antimagnons in the right magnet since the handedness of
the magnons and antimagnons are opposite. We find that the conservation of
energy predicts a frequency range in which superradiant reflection |R|2 > 1

of spin waves in the left magnet occurs. As we will show, this mechanism is
rather similar to that of the bosonic Klein paradox — where the word paradox
is actually not fitting anymore. In final two chapters, namely Chapters 5 and 6,
we discuss non-linear dynamics in magnetic systems that develop a linear
instability. Both chapters have in common that the onset of the instability
is non-dissipative and stems from the coupling of positive magnetic energy
to negative energy modes. In Chapter 5 we consider a spin-torque oscillator
(STO), which consists of two macrospins. We describe the initial configuration
before the onset of the instability as follows, the bottom macrospin is oriented
against the external magnetic field may be driven by SOT to keep it stable
while the magnetization of the top macroscpin is aligned with the external
magnetic field and is not driven. Both macrospins in principle experience
dissipation in the form of Gilbert damping. At a special point in phase space,
called the exceptional point (EP), this configuration becomes unstable due
to coupling between positive energy excitations in the top macrospin and
negative energy excitations in the bottom macrospin. Since the linear modes
grow exponentially, a non-linear theory is quickly necessary. We thus develop
an analytic theory that fully describes the non-linear limit cycles of the STO.
We find that the dynamics of the STO becomes relatively simple near the EP
and that this STO is extremely sensitive near the EP, for vanishing out of
plane exchange couplings. For nonvanishing out of plane exhange couplings
we find the point of extreme sensitivity to shift slightly away from the EP.
Moreover, the predictions of this analytic theory agree with numerical spin
simulations and give a complete understanding of the steady-state behaviour
of the STO. In the final chapter, namely Chapter 6, we investigate the
non-linear dynamics of a model in which the linear instability follows from
the coupling of a continuum of spin wave excitations in the left magnet to
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a discrete amount of negative energy spin waves in the right magnet. In
the literature of analogue gravity, such a setup is described as a black-hole
laser [41, 43]. Similar to the STO described in Chapter 5, we consider the right
ferromagnet to be driven by SOT such that the magnetization is dynamically
stabilized against the external magnetic field. The left ferromagnet on the
other hand, is pointing in the direction of the external magnetic field and
is not driven. Both magnets experience dissipation in the form of Gilbert
damping. As the main result, we determine the possibility for this setup to
form a one-mode laser and find the range in parameter space for which it
should become a stable one-mode laser. This setup is quite different from
the conventional lasing setup in which a specific mode(s) start lasing due
to driving of the mode(s). Here, the onset of the lasing mode is due to the
coupling between positive and negative energy excitations and this system is
stabilized via the injection of SOT and non-linearities.



Part I

DIPOLE -EXCHANGE SP IN WAVES

“I bought a new notebook, and put at the front: "hoping
for happy accidents". And that’s basically what we were
trying to do.”

—Thom Yorke.





2
DYNAMICALLY STABLE NEGATIVE -ENERGY
STATES INDUCED BY SP IN -TRANSFER TORQUES

This Chapter is based on J. S. Harms, A. Rückriegel, and R. A.
Duine, “Dynamically stable negative-energy states induced by spin-
transfer torques,” Physical Review B 103, 144408 (2021). R.A.D.
conceived the project, J.S.H. performed the calculations and prepared
the manuscript. All authors contributed to the manuscript.

In this Chapter, we investigate instabilities of the magnetic ground state
in ferromagnetic metals that are induced by uniform electrical currents, and,
in particular, go beyond previous analyses by including dipolar interactions.
These instabilities arise from spin-transfer torques that lead to Doppler shifted
spin waves. For sufficiently large electrical currents, spin-wave excitations
have negative energy with respect to the uniform magnetic ground state,
while remaining dynamically stable due to dissipative spin-transfer torques.
Hence, the uniform magnetic ground state is energetically unstable, but is
not able to dynamically reach the new ground state. We estimate this to
happen for current densities j ≳ (1 −D/Dc)10

13A/m2 in typical thin film
experiments, with D the Dzyaloshinskii-Moriya interaction constant, and
Dc the Dzyaloshinskii-Moriya interaction that is required for spontaneous
formation of spirals or skyrmions. The critical current density can be made
arbitrarily small for ultrathin film thicknesses at the order of nanometers, due
to surface- and interlayer effects. From an analogue gravity perspective, the
stable negative energy states are an essential ingredient to implement event
horizons for magnons – the quanta of spin waves – giving rise to e.g. Hawking
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radiation and can be used to amplify spin waves in a so-called black-hole
laser.

2.1 introduction

Unruh’s 1981 paper “Experimental black hole evaporation“ [26] proposed
that following the argument for thermal black-hole radiation [39] a sonic
analogue event horizon can be created by considering sound waves in a
flowing medium. This sonic event horizon emits a thermal spectrum of sound
waves and opens up possibilities for the experimental observation of Hawking
radiation. The event horizon for sound waves is created by a transition from
subsonic to supersonic background flow, such that sound waves incoming
from the subsonic region cannot escape the supersonic region once they have
passed the event horizon. Motivated by Unruh’s work, theoretical proposals of
analogue event horizons based on different systems were put forward [27–29].
These include phase oscillations in a Bose-Einstein condensate [33], slow light
in dielectric media [34, 35], trapped ion rings [36, 37], Weyl semi-metals [38]
and, as discussed in this Chapter, metallic magnets [31]. Although Unruh’s
original proposal considers waves in water which can not be pushed into the
quantum regime, the existence of classically stimulated Hawking emission
has been observed in Ref. [64]. Furthermore, thermal Hawking radiation in a
Bose-Einstein condensate, a system which might be driven to the quantum
regime, has been observed in Ref. [32].

Moreover, the combination of a black-hole and white-hole horizon – the
time-reversed partner of a black-hole horizon – is proposed to lead to huge
amplitude enhancements at specific resonant frequencies [41], thereby acting
as a black-hole laser. The resonance frequencies occur due to constructive
interference of particle-hole coupling at each horizon, which gives rise to
Hawking radiation in the quantum regime. An implementation of the latter
is the spin-wave laser proposed in Ref. [65], which provides a way of injecting
spin angular momentum into a magnetic sample through amplification of
spin waves, driven by current induced spin-transfer torques [57].
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In the subsequent sections, we investigate energetic and dynamic instabili-
ties of spin waves in metallic ferromagnetic thin films, induced by spin-transfer
torques, i.e., torques arising from the interaction of the spin-polarized cur-
rent and the magnetization dynamics [57, 66–70]. More specifically, spin
waves are Doppler shifted in the presence of an electrical current [68, 71],
with an effective spin-drift velocity proportional to the electrical current.
This spin wave Doppler shift was experimentally observed by Vlaminck and
Bailleul [72]. The spin-drift velocity, if large enough, can lead to instabilities
in the ferromagnetic ground state [68, 70, 73]. For the existence of analogue
horizons it is important to distinguish energetic and dynamic instabilities.
Energetic instabilities are characterized by the existence of negative energy
excitations, while dynamical instabilities lead to exponential growth of small
amplitude excitations. Contrary to most physical systems, these instabilities
do not necessarily coincide for spin waves in a ferromagnetic metal, due to
dissipative spin-transfer torques [66]. We find that magnons – the quanta
of spin waves – can be dynamically stable for a wide range of currents that
make the ferromagnetic ground state energetically unstable.

In the context of analogue gravity, the magnonic event horizon is defined
by the transition from a region of positive energy states to a region with
dynamically stable negative energy states. For linearly dispersing sound
waves, such as waves in water, the negative energy region corresponds to
unidirectional movement of sound waves. In general, an event horizon is a
region which couples positive energy states to negative energy states. For
non-linearly dispersing sound waves one can still define the event horizon as
the region that couples positive energy states and dynamically stable negative
energy states. These generalized event horizons are referred to as dispersive
horizons [74].

The ferromagnetic thin film set-up we consider in this Chapter is similar
to Ref. [65], but treated more generally, including effects of surface- and volume
anisotropies, Dzyaloshinskii-Moriya interaction, dipole-dipole interactions
and finite thickness of the thin film. We find that the current density needed
to create energetically unstable, but dynamically stable, states is of the
order j ≳ (1−D/Dc)10

13A/m2 for typical thin film experiments, with D the
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Dzyaloshinskii-Moriya constant, and Dc the Dzyaloshinskii-Moriya interaction
that is required for spontaneous formation of spirals or skyrmions. The critical
current density can be made arbitrarily small for thin film thicknesses at the
order of a nanometer. This decrease is primarily due to the effects of surface
anisotropy and interfacial Dzyaloshinskii-Moriya interaction.

The remainder of this Chapter is organized as follows. We put foreward
our model and discuss spin wave solutions in Section 2.2. Furthermore, the
critical current needed for energetic instabilities to exist and the region of
dynamical stability are derived in Section 2.3. Additionally, we derive the
critical thickness at which the ferromagnetic ground state becomes unstable
due to surface and interfacial effects in Section 2.A. A derivation of the
lowest energy dipole-exchange spin wave mode is presented in Section 2.B.
We conclude with a discussion and outlook.

2.2 metallic thin film ferromagnet

2.2.1 Model and set-up

We consider a ferromagnetic metallic thin film of thickness L in the z direc-
tion with the surfaces corresponding to z = ±L/2. We consider the set-up
in Fig. 3.1 that involves a thin film subject to a static external field He

applied in the y direction and a uniform charge current j pointing in the
−x direction. For temperatures far below the Curie temperature, amplitude
fluctuations in the magnetization are negligible. In this case the dynamics of
the magnetization direction n = M/Ms is described by the Landau-Lifschitz-
Gilbert (LLG) equation, with spin-transfer torques (STTs), and Maxwell’s
equations in the magnetostatic limit. The LLG equation with STTs is given
by [66]

(∂t + vs · ∇)n = −γn×Heff + αn×
(
∂t +

β

α
vs · ∇

)
n, (2.1)

provided that spin-orbit coupling is not very strong so that spin-orbit torques
are negligible. Inclusion of spin-orbit torques in our discussion is straightfor-
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Figure 2.1: Sketch of the set-up. We consider a metallic ferromagnetic thin film of
thickness L which is subjected to an external magnetic field He pointing in the y

direction and an electric current driven along the x direction. Furthermore, θ is the
angle of the steady state magnetisation M0 with the plane and ϕH is the angle
between the spin wave propagation direction and the y axis.

ward but omitted here to reduce the number of parameters. In the above
equation, the adiabatic spin-transfer torque is parametrized by the velocity
vs = −gPµBj/2eMs that is referred to as spin-drift velocity, which is pro-
portional to the current density j. Here g is the Landé factor, µB the Bohr
magneton, e the elementary charge, P the spin polarization of the current and
Ms the saturation magnetization. The LLG equation describes damped pre-
cession of the magnetization around the effective field Heff = −δE/(Msδn).

Here, E[n] is the magnetic energy functional, which we consider to be of the
general form

E = Ms

∫
dV

{
1

2
J(∇in)

2 − µ0H · n− 1

2
Kvn

2
z (2.2)

− 1

2
D
[
ŷ · (n× ∂xn)− x̂ · (n× ∂yn)

]}
.

In the above J is the spin stiffness, D the Dzyaloshinskii-Moriya interaction
(DMI) constant that in this particular set-up may result from interfacing
the magnet with a heavy metal, and Kv is the volume anisotropy constant –
this type of anisotropy is e.g. typical in the Co layer spin wave spectroscopy
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experiments in Ref. [75]. The dimensionless parameters α and β charac-
terise the strength of the Gilbert damping parameter and the non-adiabatic
spin-transfer torques, respectively. Usually these dissipative constants are
comparable, α ∼ β, and of the order 10−2 [58]. For now, we neglect surface
anisotropy in the energy functional, which we discuss in Section 2.B. Addi-
tionally, dipole-dipole interactions are taken into account by considering the
magnetostatic Maxwell’s equations [76]

∇×H = j, ∇ ·B = 0. (2.3)

Here H is the magnetic field strength and B = µ0(H+M) the total magnetic
field. In the steady state, the internal magnetic field H0 and the magnetization
M0 are parallel. For an external magnetic field pointing in the y direction
with, jL ≪ 2He, the internal magnetic field and magnetization are related
to the external magnetic field by

µ0jz sin(θ) ≃(µ0Ms −Kv) sin(2θ)/2 + µ0He sin(θ), (2.4)

with θ the angle between the magnetization direction and the x− y plane.
We find that the steady state magnetization points along the y axis if Kv <

µ0(He+Ms− jL/2). While the steady state magnetization deviates from the
y axis if Kv > µ0(He +Ms − jL/2), where it acquires a component in the
z direction. From this point onward we assume Kv < µ0(He +Ms − jL/2)

such that the steady state magnetization is pointing in the y direction.
Experimentally, this may be achieved by applying a sufficiently large external
magnetic field.

2.2.2 Dipole-exchange spin wave modes

The dipole-exchange spin wave modes [75, 77–84] are generated by dynamical
fluctuations of both the magnetization direction and the demagnetizing field,
which are small compared to M0 and H0,

M = M0 +m(t), H = H0 + hD(t). (2.5)
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Notice that up to linear order in the dynamical fluctuations, m is perpen-
dicular to M0, lying in the x − z plane since we consider the magnitude
of the magnetization to be constant |M| = Ms. Both the static and dy-
namic part of the magnetization and magnetic field strength should sat-
isfy the magnetostatic Maxwell equations (2.3). We accordingly require
∇× hD = 0, ∇ · b = 0, with b = µ0 (hD +m). The first Maxwell equation
allows us to write the dynamic demagnetizing field in terms of a scalar
potential hD = ∇ΦD. The second Maxwell equation accordingly gives
∇2ΦD = −∇ · m, where the magnetization m outside the film is zero.
The Landau-Lifschitz-Gilbert- and magnetostatic Maxwell equations may
be rewritten by means of n ≃ ẑ

√
2Re[Ψ] + x̂

√
2Im[Ψ] + ŷ

(
1− |Ψ|2

)
, with

the complex field Ψ = (1/
√
2) (ẑ + ix̂) · n. In these coordinates the linearised

LLG and magnetostatic Maxwell equations become

Ω̂Ψ =−
(
ΩH −∆v − Λ2∇2

)
Ψ+∆vΨ

∗ +
(∂z + i∂x)√

2Ms

ΦD, (2.6a)

∇2ΦD

M2
s

=− (∂z − i∂x)√
2Ms

Ψ− (∂z + i∂x)√
2Ms

Ψ∗. (2.6b)

Additionally, the exchange boundary conditions for thin films [85] require

±∂zΨ− (Ks/J) (Ψ + Ψ∗)
∣∣
z=±L/2

= 0, (2.7)

with Ks the surface anisotropy constant. In the above, we defined the following
dimensionless operators and variables 1: dimensionless magnetic field ΩH =

µ0He/µ0Ms, dimensionless volume anisotropy ∆v = Kv/2µ0Ms, exchange
length Λ =

√
J/µ0MS and the dimensionless frequency operator Ω̂ = i[(1−

iα)∂t + (1− iβ)vs · ∇+ γD∂x]/(γµ0Ms).

Using the Bogoliubov ansatz, and taking vs in the x direction, we write
Ψ(x, t) = u(x)e−iωt+v∗(x)eiω

∗t and ΦD(x, t) = w(x)e−iωt+w∗(x)eiω
∗t, where

(u(x), v(x), w(x)) ∝ eik·r∥(u(k, z), v(k, z), w(k, z)), with k = (kx, ky) and
r∥ = (x, y). The above plane wave ansatz gives rise to a spectrum of spin wave
solutions. The lowest energy dipole-exchange spin wave dispersion relation
is obtained in Section 2.B for thin films with thicknesses comparable to the

1 We neglected the contribution of the driving current j to the magnetic field H in ΩH .
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exchange length L ∼ O(Λ). Up to linear order in α and β the lowest energy
dipole-exchange spin wave dispersion relation is given by

(ωk − vskx) ≃ ω0
k − iκαω0

k − iκ(α− β)vskx, (2.8)

where(
ω0
k − γDkx

)
/(γµ0Ms) = (2.9)√

[ΩH −∆+Λ2k2 − 1/2 cos2(ϕH)f(k)]2 −
[
∆+ 1/2{1 + sin2(ϕH)}f(k)

]2
,

is the real part of the dispersion in the absence of an electrical current, which
is plotted in Fig. 2.2. Here, f(k) = 1− (1− e−kL)/kL is the form factor, ϕH

the angle between the spin wave propagation direction and the y axis and
∆ ≡ ∆v +∆s − 1/2, with ∆s = (Λ/µ0MsL)Ks the dimensionless parameter
corresponding to the sum of surface anisotropies [80, 85]. In the above, κ is
an overall factor of the imaginary part of the dispersion relation, stemming
from the fact that the isotropic Gilbert damping only enters in the diagonal
part of Eq. (3.5a). This term is not of importance for the stability analyses,
since it remains positive in the region of interest. The precise form of κ can
be found in Section 2.B.

2.3 energetic and dynamical spin wave instabilities

Motivated by theoretical predictions of magnonic black/white-hole hori-
zons [31] and black-holes lasers [41, 65], we investigate energetic and dynamic
instabilities in the spin wave spectrum, due to a spin-polarized electrical
current [68], including effects of dipole-dipole interactions, volume- and sur-
face anisotropies, and DMI. A negative real part of the spin wave dispersion
relation, Eq. (2.8), indicates energetic instabilities, necessary for analogue
black/white-hole setups [27–29]. Dynamical instabilities on the other hand are
characterized by a positive imaginary part of the spin wave dispersion relation
and classically lead to an exponential growth of unstable modes. In contrast
to most physical systems, these two types of instabilities do not necessarily
coincide for the magnetization dynamics in a metallic magnetic system, due
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Figure 2.2: Dispersion relation (2.9) of the lowest energy spin wave mode including
dipolar interactions and anisotropy. Here, we consider ΩH = 1, D/µ0Ms = 0,
∆ = −0.25, L ∼ 40nm and ϕH = π/2.

to the dissipative spin-transfer torques characterised by the parameter β.
Accordingly, we investigate the regime in which the system is energetically
unstable, but dynamically stable, see Fig. 2.3. From Eq. (2.8) we find that
the system is dynamically stable if

|(α− β)vskx + αγDkx| < α(γµ0Ms)Ωk (2.10)

is satisfied for all k, with γµ0MsΩk = ω0
k − γDkx the inversion symmetric

part of the dispersion relation (2.9). Energetic instabilities on the other hand
are present if Reωk < 0, for some k. By considering minima of the dispersion
relation we find the critical current above which energetic instabilities exist
should satisfy ∂kcReωkc |vs=vc = 0 and Reωkc |vs=vc = 0, for some kc. Thus,
energetic instabilities are present for currents vs > vc and do not exist for
vs < vc, which characterises the critical velocity vc. The above constraints
that determine the critical current are equivalent to

∂kcΩ
2
kc = 2Ω2

kc/kc, (2.11a)

vc/γ = [µ0Ms/ sin(ϕH)]Ωkc/kc −D. (2.11b)
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Figure 2.3: Dispersion relation (2.8) for different values of the spin drift-velocity vs,
with α = 0.1 and β = 0.01. (a) Real part of the dispersion relation. (b) Imaginary
part of the dispersion relation. For small vs < vc, spin waves are energetically and
dynamically stable (red). For spin drift-velocities larger than the critical velocity,
vs > vc, we obtain energetically unstable but dynamically stable spin waves (blue).
For very large vs ≫ vc spin waves are both energetically and dynamically unstable
(yellow).
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For spin waves travelling perpendicular to the external magnetic field, ϕH =

π/2 in Eq. (2.9), the constraint in Eq. (2.11a) is explicitly written as

[ΩH −∆]2 − Λ4k4c ∼ [∆ + f(kc)]
[
∆+ f(kc)

2
]
, (2.12)

where we used f(k) − kf ′(k) ∼ f(k)2. We note that f(k) ∈ [0, 1] and
typically ∆ = ∆v +∆s − 1/2 ≳ −1/2 with ΩH ∼ 1. Accordingly, we assume
[∆+ f(kc)][∆+ f(kc)

2]/[ΩH −∆]2 to be small compared to unity around the
critical wavelength kc. Next, we expand k2c = κ2c+δk2c around Λ2κ2c = ΩH−∆,
up to linear order in δk2c and [∆+ f(kc)][∆+ f(kc)

2]/[ΩH −∆]2 in Eq. (2.12).
This gives

Λ2δk2c ∼− 1

2

[∆ + f(κc)]
[
∆+ f(κc)

2
]

ΩH −∆
. (2.13)

Similarly, we find that Ωkc , up to first order in δk2c and [∆+f(kc)]
2/[ΩH−∆]2,

is given by

Ωkc ∼ 2[ΩH −∆] + Λ2δk2c −
1

4

[∆ + f(κc)]
2

ΩH −∆
. (2.14)

Finally, using Eq. (2.11b) we find that the critical current that generates
energetic instabilities is up to linear order in δk2c and [∆+ f(kc)]

2/[ΩH −∆]2

given by

vc/γµ0Ms ≃
(
Ωkc

κc

)(
1− 1

2

δk2c
κ2c

)
−D/µ0Ms. (2.15)

This can be rewritten as

vc = γ(Dc −D), (2.16)

where

Dc/2µ0MsΛ ≃ 4

√
[ΩH −∆]2 − (1/2) [∆ + f(κc)]

2 (2.17)

is the critical DMI constant above which the ground state becomes both
energetically and dynamically unstable. Once DMI reaches this value, the
homogeneous ground state becomes unstable. This results in the spontaneous
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formation of textures, typically spirals and skyrmions. Additionally, we note
that the contribution of δk2c drops out of the critical DMI, up to first order.

Finally, we find from Eq. (2.10) that the region in which electrical currents
generate energetically unstable but dynamically stable spin waves is given by

 γ (Dc −D) < vs < γ (Dc −D) |1− β/α|−1 β < α,

γ (Dc −D) < vs < γ (Dc +D) |1− β/α|−1 β > α.
(2.18)

This provides a large window of stability, given that usually α ∼ β. We note
that this region is determined by solely considering spin waves travelling
along the x axis – perpendicular to the external magnetic field. This is a
consequence of the fact that the critical current for energetic and dynamic
instabilities increases as spin waves travel at increasing angles |ϕH − π/2|
with respect to the x axis. In Fig. 2.4, we plotted the angular dependence of
the critical current. Additionally, in the case where β/α > 2 it is possible to
have dynamically unstable but energetically stable states. This occurs when
the right hand side of Eq. (2.18) becomes smaller than the left hand side. As a
consequence, the DMI should be at least D > Dc(1− 2α/β) for energetically
unstable, but dynamically stable states to exist in the region where β/α > 2.
Therefore, dynamically stable negative energy states are difficult to create in
materials when β ≫ α. For instance in Ref. [86] a value of β ∼ 5α was found.

Taking typical values for the saturation magnetization µ0Ms ∼ µ0He ∼
1T, gyromagnetic ratio γ/2π ∼ 30GHzT−1 and exchange length Λ =√

J/µ0Ms ∼ 5 nm, we find the typical order of magnitude of the critical
current jc ∼ Ms|e|vc/µb ∼ 1013A/m2, where we took g ∼ P ∼ 1, Ms/µB ∼
102 nm−3 and vc ∼ γµ0MsΛ ∼ 103m/s. Furthermore, for typical values of
DMI DL/µ0MsΛ

2 ∼ 0.1 [75, 87, 88], anisotropies ∆v = Kv/2µ0Ms ∼ 0.2

and ∆sL/Λ = Ks/µ0MsΛ ∼ 0.4 [75, 80], we find the critical current that is
needed to create energetic instabilities, given in Eq. (2.16), is significantly
reduced in thin films having thicknesses of a few nanometers, as is shown
in Fig. 2.5. This reduction of the critical current is primarily due to the
cumulative effect of DMI and surface anisotropies, which become prominent
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Figure 2.4: Numeric solution of the dimensionless critical velocity vc/γµ0MsΛ

in Eq. (2.11) – for dispersion relation (2.9) – against the angle ϕH in radians.
We took the typical values ΩH ∼ 1, DL/µ0MsΛ ∼ 0.1, ∆v = Kv/2µ0Ms ∼ 0.2,
∆sL = Ks/µ0MsΛ ∼ 0.4 and L/Λ = 3.
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Figure 2.5: Dimensionless critical velocity vc/γµ0MsΛ against dimensionless thick-
ness L/Λ, taking typical values ΩH ∼ 1, DL/µ0MsΛ

2 ∼ 0.1, ∆v = Kv/2µ0Ms ∼ 0.2,
∆sL/Λ = Ks/µ0MsΛ ∼ 0.4. The dashed line corresponds to the linear approxima-
tion in Eq. (2.16) and the solid line corresponds to the numerically obtained solution
of Eq. (2.11) with dispersion relation (2.9).
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in ultrathin films as a consequence of their inverse scaling with respect to
the thickness of the thin film.

2.4 discussion and outlook

We have investigated the occurrence of energetically unstable but dynamically
stable spin wave excitations, due to spin-transfer torques, including effects
of dipole-dipole interactions, anisotropies and DMI. We have shown that
in typical thin film experiments [72, 75, 80], the critical current needed to
create energetically unstable, but dynamically stable states is of the order
j ≳ (1−D/Dc)10

13A/m2. If one could experimentally enhance the DMI to
be near the critical DMI, above which the homogeneous ground state becomes
unstable towards the formation of textures, such as spirals and skyrmions,
then a relatively small current should be sufficient to create the dynamically
stable negative energy states. Additionally, we found that the critical current
density becomes arbitrarily small for thin film thicknesses of the order of
nanometers. This decrease is primarily due to the cumulative effect of DMI
and surface anisotropies, which become dominant in ultrathin films.

Furthermore, the region in which dynamically stable negative energy spin
wave excitations exist is found to be large, given that typically α ∼ β. In the
case where β ≫ α we note that energetically stable, dynamically unstable
states could occur. Hence, dynamically stable negative energy states are
difficult to create in materials when β ≫ α.

For the typical values considered in Section 2.3, we see a slight deviation
of the first order critical velocity with respect to the numerical critical
velocity at ultrathin film thicknesses, see Fig. 2.5. This is due to the surface
anisotropy contribution becoming larger in the ultrathin film limit, where
the increased inaccuracy stems from the fact that we determine the critical
velocity in Eq. (2.16) up to first order assuming [∆ + f(kc)][∆ + f(kc)

2] and
[∆ + f(kc)]

2/2 to be small compared to [ΩH −∆]2. This approximation is
accurate when anisotropies are small compared to the external magnetic field,
but describes the critical velocity less accurately when anisotropies become
relatively large – especially volume anisotropy – approaching 2∆v ≲ ΩH + 1.
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Additionally, the critical momentum kc becomes small for ultrathin film
thicknesses – if surface anisotropies are dominating –, which makes the
expansion of 1/kc less accurate in this range. When dealing with relatively
large anisotropies, it is more appropriate to expand the k2c around κ2c =√
[ΩH −∆]2 − [∆v +∆s]2 in Eq. (2.12). In this case the critical DMI constant

is given by (Dc/
√
2µ0Ms) ≃

√
(ΩH −∆+ κ2c)

2 − f̃(∆v +∆s + f̃)/κ2c , with
f̃ = f(κc)− 1/2.

Finally, energetically unstable, dynamically stable excitations are necessary
to create analogue black/white-holes with spin waves [27–29, 31]. Furthermore,
the combination of a black- and white-hole horizon is predicted to amplify
spin waves of specific frequencies, giving rise to a spin-wave laser/amplifier [41,
65]. Future research could investigate energetic and dynamic instabilities in
antiferromagnetic metals. Additionally, this model could be used to compute
the resonance frequencies of the spin-wave laser in Ref. [65] more realistically.
Moreover, one could investigate non-linear effects in such a setup, since non-
linear effects quickly become important around the resonance frequencies.
The non-linear regime could be investigated by means of the stochastic
Landau-Lifschitz-Gilbert equation.

appendix

2.a critical thickness of energetic instabilities at zero
current

In this Appendix, we determine the critical thickness at which spin wave excita-
tions become energetically unstable at zero electrical current. These energetic
instabilities are due the increase in magnitude of surface anisotropies and
DMI in the ultra thin film limit and are dynamically unstable by Eq. (2.10).
Additionally, the range of electrical currents that generate energetically unsta-
ble but dynamically stable spin wave excitations decreases when approaching
the critical thickness. This is a direct consequence of decreasing the critical
current, see Section 2.3. If surface anisotropies are dominant at small thick-
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nesses, the critical thickness at which instabilities appear, at zero current
and vanishing DMI, may be approximated at zero’th order by closing the
spin-wave gap in Eq. (2.9), giving

ΩH − 2∆0 ≡ ΩH + 1− 2∆v − 2∆∗
s/L0 ∼ 0, (2.19)

with kcL ≪ 1 and ∆∗
s = ∆sL constant. For non-vanishing DMI, up to first

order in f(κc) ∼ κcL/2 ≪ 1, we find that Eq. (2.11) is equivalent to

[ΩH −∆]2 ∼ [∆ + f(kc)]∆, (2.20)

kc
[
2 (ΩH −∆)− (D∗/L)2

]
∼ [∆ + f(kc)] f

′(kc), (2.21)

where D∗ = (D/µ0MsΛ)L is constant. We expand the above equations around
∆ = ∆0+ δ∆, with δ∆ = −(∆∗

s/L
2
0)δL+O(δL2). Up to first order Eq. (2.20)

gives

kcL0/2 ∼ −4δ∆. (2.22)

We find that Eq. (2.21) in combination with the above equation leads to

δL ∼ ΩHL2
0

32∆∗
s

/{
ΩH

[
1

L2
0

+
1

6
− L0

32∆∗
s

]
− 3

16
−
(
D∗

L2
0

)2
}
, (2.23)

with L0 = 2∆∗
s/(2ΩH + 1− 2∆v) given by Eq. (2.19). We thus find that the

critical thickness for spin wave instabilities is given by L ∼ L0 + δL, in the
case that surface anisotropies dominate in the ultrathin film.

2.b approximate dipole-exchange mode in thin films

Here, we discuss an analytic approximation of the lowest energy spin wave
dispersion relation for the setup discussed in Section 2.2, using the thin film
magnetostatic Greens function [79, 80, 83, 84, 89]. We start by expressing
the demagnetizing field hD in Eqs. (2.5), (3.5a) and (3.5b) in terms of the
magnetization by using the magnetostatic Greens function. It is explicitly
given by

hD(k, z) =

∫ L/2

−L/2
dz′G(k; z − z′)m(k; z′). (2.24)
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Where the magnetostatic Greens function [83, 89] satisfies the magneto-
static Maxwell equation Eq. (3.5b) along with the appropriate boundary
conditions [49]. It is explicitly given by,

Gζ̂η̂ẑ(k; z, z
′) =


−Gp 0 iGq

0 0 0

iGq 0 Gp − δ(z − z′)

 , (2.25)

with ζ̂ ∝ k the in-plane direction of spin wave propagation, η̂ the orthogonal
in-plane direction, ẑ the thickness direction, Gp =

|k|
2 exp(−|k||z − z′|) and

Gq = Gp sign(z − z′). By substituting Eq. (2.24) into the linearised Landau-
Lifschitz-Gilbert equation Eq. (3.5a) we obtain the effective linearised LLG
equation

Ω̂Ψ =−
[
ΩH −∆v/s − Λ2∇2

]
Ψ+∆v/sΨ

∗ +

∫ L/2

−L/2

1

2

[
AkΨk +BkΨ

∗
−k

]
dz′,

(2.26)

where Ak = cos2(ϕH)Gp−δ(z−z′), Bk = {1+sin2(ϕH)}Gp−2 sin(ϕH)Gq−
δ(z−z′) and ϕH the angle between wave vector k and the y axis. Additionally
we introduced the dimensionless anisotropy constant ∆v/s = Kv/s/2µ0Ms,
where we took Kv/s = Kv+K−

s δ(z−L/2)+K+
s δ(z+L/2). Here Ks correspond

to the surface anisotropies of the thin film. Following Gladii et al. [80] we add
the term (K±

s /2)δ(z ± L/2)n2
z in the energy functional Eq. (4.2) to account

for surface anisotropies. This differs from the approach used by Kalinikos
and Slavin [84] where surface anisotropies determine the exchange boundary
conditions of the thin film [85].

Using the Bogoliubov ansatz Ψ(x, t) = u(x)e−iωt+v∗(x)eiω
∗t, with

(
u(x), v(x)

)
=∫

d2k
2π eik·r∥

(
u(k, z), v(k, z)

)
, the linearised LLG equation becomes F̂ + 1/2 1/2−∆v/s

∆v/s − 1/2 −F̂ ∗ − 1/2

u(k, z)

v(k, z)

 (2.27)

+

∫ L/2

−L/2
dz′

 −C(s) D+(s)

−D−(s) C(s)

u(k, z′)

v(k, z′)

 = 0,
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with s = z − z′, F̂ = Ω + (ΩH −∆v + Λ2k2 − Λ2∂2
z ), F̂ ∗ = −Ω∗ + (ΩH −

∆v + Λ2k2 − Λ2∂2
z ), C(s) = (1/2) cos2(ϕζ)Gp and D±(s) = −(1/2){1 +

sin2(ϕζ)}Gp±| sin(ϕζ)|Gq. Furthermore, γµ0MsΩ = (1+iα)ω+(1+iβ)vskx+

γDkx and γµ0MsΩ
∗ = (1− iα)ω + (1− iβ)vskx + γDkx.

The magnetization profile in the thickness direction may be expanded in
eigenfunctions of the unpinned exchange boundary conditions, which form a
complete basis [83]. We approximate the magnetization profile of the lowest
mode by the lowest Fourier mode, for thicknesses of the order L ∼ O(Λ),u(k, z)

v(k, z)

 ∼ u0(k)

√
1

L

1

0

+ v0(k)

√
1

L

0

1

 , (2.28)

which is the uniform mode approximation. Using the above ansatz the lin-
earised LLG equation Eq. (2.27) becomesΩ+ Ωd −Ωi

Ωi Ω∗ − Ωd

 = 0, (2.29)

where

Ωd = ΩH −∆+Λ2k2 − 1/2 cos2(ϕH)f(k), (2.30a)

Ωi = ∆+ 1/2{1 + sin2(ϕH)}f(k). (2.30b)

With f(k) = 1−(1−e−kL)/kL, ∆ = ∆v+∆s−1/2 and ∆s = (Λ/2µ0MsL)(K
−
s +

K+
s ). Hence, the lowest mode dispersion relation, up to first order in α and

β, is given by

(ωk − vskx) ≃ ω0
k − iκαω0

k − iκ(α− β)vskx, (2.31)

with (ω0
k − γDkx)

2/(γµ0Ms)
2 = Ω2

k, κ = (Ωd/Ωk) and

Ω2
k =

[
ΩH −∆+Λ2k2 − 1/2 cos2(ϕH)f(k)

]2 (2.32)

−
[
∆+ 1/2{1 + sin2(ϕH)}f(k)

]2
.
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THEORY OF THE DIPOLE -EXCHANGE SP IN WAVE
SPECTRUM IN FERROMAGNETIC F ILMS WITH
IN -PLANE MAGNETIZAT ION REVIS ITED

This Chapter is based on J. S. Harms and R. A. Duine, “Theory
of the dipole-exchange spin wave spectrum in ferromagnetic films
with in-plane magnetization revisited,” Journal of Magnetism and
Magnetic Materials 557, 169426 (2022). R.A.D. and J.S.H. conceived
the project, J.S.H. performed the calculations and prepared the
manuscript. All authors contributed to the manuscript.

We present a refinement of the widely accepted spin-wave spectrum that
Kalinikos and Slavin [83, 84] computed for magnetic films with an in-plane
magnetization. The spin wave spectrum that follows from the diagonal ap-
proximation in this theory becomes inaccurate for relatively thick films,
as has already been noted by Kreisel et al. [77]. Rather than solving an
integrodifferential equation which follows from the magnetostatic Green’s
function, as done by Kalinikos and Slavin [83, 84], we impose the exchange
and magnetostatic boundary conditions on bulk spin-wave solutions. This
boundary problem has an accurate analytical solution which is quantitatively
different from the commonly used diagonal theory [83, 84] for magnetic films.

3.1 introduction

Dipole-exchange spin waves propagating in in-plane magnetized magnetic thin
films have attracted a lot of attention in recent years, due to their potential
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applications in magnonic devices [90]. Of special interest is the case in which
spin waves travel perpendicular to the external magnetic field – in which case
the spin wave velocity is the largest. As noted by Kreisel et al. [77] the spin
wave spectrum that follows from the diagonal approximation in the commonly
used theory [83, 84] is inaccurate in this case for relatively thick films. The
inaccuracy stems from the diagonal approximation, and disappears when
solving the system numerically with interband interactions. This approach
on the other hand is not feasible for analytic approximations.

In this Chapter, we present an alternative analytic derivation of the dipole-
exchange spin wave spectrum for this scenario. Rather than solving an inte-
grodifferential equation following from the magnetostatic Green’s functions
as done by Kalinikos and Slavin [83, 84], we use an approach resembling that
of Wolfram and DeWames [82] which previously had no analytical solution.
A similar approach has been used by Sonin [91] to derive the spectrum of
spin waves propagating parallel to an in-plane magnetic field for sufficiently
large wave numbers. Moreover, Arias [92] used this approach to find the
spin-wave dispersion numerically and presented a uniform mode solution in
the ultrathin-film limit similar to the uniform mode solution in the diagonal
approximation by Kalinikos and Slavin [83, 84]. Kalinikos and Slavin [83,
84] approximately solved the integrodifferential equations by assuming a
superposition of magnetization profiles which satisfy the exchange boundary
conditions but do not satisfy the bulk equations of motion. Here, however we
impose both the exchange and magnetostatic boundary conditions on bulk
spin wave solutions. This boundary problem turns out to have an accurate
analytical solution – compared with the numerical spectrum – and is quanti-
tatively different from the commonly used diagonal spin wave theory [83, 84]
for relatively thick films.
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Figure 3.1: Sketch of the set-up. We consider a ferromagnetic thin film of thickness
L with the equilibrium magnetization pointing in the y direction.

3.2 thin-film ferromagnet

3.2.1 Model and set-up

We consider the set-up in Fig. 3.1 of a ferromagnetic thin film of thickness L

subject to an in-plane external magnetic field He. We chose the x− y axes
to correspond to the in-plane directions, with the external magnetic field
He = Heŷ pointing in the y direction. Furthermore, the z axis corresponds to
the out of plane direction where the surfaces of the thin film are located at z =

±L/2. For temperatures below the Curie temperature, amplitude fluctuations
in the magnetization are negligible. Hence, the dynamics of the magnetization
direction n = M/Ms is described be the Landau-Lifshitz equation (LL), and
the Maxwell equations in the magnetostatic limit – accounting for dipole-
dipole interactions. The LL equation is given by

∂tn = −γn×Heff , (3.1)

which describes precession of the magnetization direction around the effective
field Heff = −δE/δ(Msn). Here, we consider the magnetic energy functional
E[n] of the form

E[n] = Ms

∫
dV

[
−1

2
Jn · ∇2n− µ0H · n

]
. (3.2)
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In the above J is the spin stiffness and H = He +HD is the magnetic field
strength, where HD is the demagnetization field originating from dipole-
dipole interactions. Furthermore, the magnetostatic Maxwell equations [49] –
accounting for dipole-dipole interactions – are given by

∇×H = 0,∇ ·B = 0, (3.3)

with B = µ0(H + M) the total magnetic field. The boundary conditions
require the normal component of B and the tangential components of H to
be continuous at the thin film surfaces.

In equilibrium the LL equation requires the equilibrium magnetization
Meq and the effective magnetic field strength Heff to be parallel Meq ∥ Heff .
In this case the internal magnetic field strength Heq = He + HD has a
contribution from the external magnetic field He and the demagnetization
field HD = −ẑMz, originating from the magnetostatic boundary conditions.
For an external magnetic field pointing in the y direction, as discussed in this
Chapter, the uniform equilibrium magnetization Meq should also point in
the y direction.

Dipole-exchange spin-wave modes are generated by dynamical fluctuations
of the magnetization and the demagnetizing field around the magnetostatic
equilibrium

M = Meq +m(t), H = Heq + hD(t), (3.4)

where m is perpendicular to Meq up to linear order in mx and mz, lying in the
x−z plane. The latter is a consequence of the magnitude of the magnetization
being constant |M| = Ms. Since the magnetostatic Maxwell equations (3.3)
are linear we require ∇× hD = 0, ∇ · b = 0, with b = µ0 (hD +m). Using
that the dynamic demagnetizing field is has vanishing curl, we express the
dynamic demagnetization field in terms of a scalar potential hD = ∇ΦD.
Hence, the magnetostatic Maxwell equations become ∇2ΦD = −∇ ·m, where
the magnetization outside the thin film vanishes.

The Landau-Lifschitz and magnetostatic Maxwell equations may be rewrit-
ten by means of n ≃ ẑ

√
2Re[Ψ] − x̂

√
2Im[Ψ] + ŷ

(
1− |Ψ|2

)
, with Ψ =
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(1/
√
2) (ẑ − ix̂)·n. Consequently the linearised LL and magnetostatic Maxwell

equations become

Ω̂Ψ =−
(
ΩH − Λ2∇2

)
Ψ+

(∂z − i∂x)√
2Ms

ΦD, (3.5a)

∇2ΦD

M2
s

=− (∂z + i∂x)√
2Ms

Ψ− (∂z − i∂x)√
2Ms

Ψ∗. (3.5b)

Additionally, the exchange boundary conditions for thin films [85, 93] in the
absence of surface anisotropy require

±∂zΨ
∣∣
z=±L/2

= 0. (3.6)

In the above, we defined the dimensionless magnetic field ΩH = µ0He/µ0Ms,

exchange length Λ =
√

J/µ0Ms and the dimensionless frequency operator
Ω̂ = i∂t/γµ0Ms.

3.2.2 Bulk dipole-exchange spin-waves and it’s boundary conditions

Using the Bogoliubov ansatz, we write Ψ(x, t) = u(x)e−iωt+v∗(x)eiωt and ΦD(x, t) =

w(x)e−iωt+w∗(x)eiωt, where
(
u(x), v(x), w(x)

)
∝ eik·r∥

(
u(k, z), v(k, z), w(k, z)

)
,

with k =
(
kx ky

)
and x =

(
x y z

)
. In these coordinates the linearised LL

and magnetostatic Maxwell equation Eq. (3.5) become

G ·
(
u(k, z) v(k, z) w(k, z)

)
= 0, (3.7)

with

G =


−
√
2MsF 0 (∂z + kx)

0 −
√
2MsF

∗ (∂z − kx)

Ms√
2
(∂z − kx)

Ms√
2
(∂z + kx) (∂2

z − k2)

 . (3.8)

and F̂ = Ω+Ωh+Λ2(k2−∂2
z ) , F̂ ∗ = −Ω+Ωh+Λ2(k2−∂2

z ) the dimesionless
LL spin-wave operators and Ω = ω/γµ0Ms the dimensionless frequency.
Furthermore, k2 = k2x + k2y, which becomes k2 = k2x for spin waves travelling
perpendicular to the external magnetic field. The above bulk equation of
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motion gives rise to a sixth order homogeneous differential equation in position
space, which is cubic with respect to ∂2

z . For spin waves travelling in the x

direction, perpendicular to the external magnetic field, the general solution
of Eq. (3.7) is given by the linear combination of plane waves

u(x)

v(x)

w(x)

 =

6∑
l=1

Ckl


F ∗
l (kl + kx)/

√
2Ms

Fl(kl − kx)/
√
2Ms

F ∗
l Fl

 eklz+ikxx, (3.9)

where Fl = Ω+Ωh+Λ2(k2−k2l ) and F ∗
l = −Ω+Ωh+Λ2(k2−k2l ). The wave

numbers kl satisfy the bulk equations of motion which follow from setting
the determinant of Eq. (3.8) to zero

F ∗
l Fl(k

2 − k2l ) + (1/2)(F ∗
l + Fl)(k

2
x − k2l ) = 0. (3.10)

This is explicitly written as

(k2 − k2l )
{[

Ωh + 1/2 + Λ2(k2 − k2l )
]2 − 1/4− Ω2

}
= 0. (3.11)

We find that the bulk equation of motion in Eq. (3.10) gives rise to one volume
mode kl = ±iq and two real surface modes kl = ±k1,2, with {q, k1, k2} real
and positive. Furthermore, the bulk equation of motion Eq. (3.11) may be
rewritten in the dispersive form

Ω2 =
[
ΩH + 1/2 + Λ2k2 + Λ2q2

]2 − 1/4, (3.12)

where the precise form of the volume mode q follows from the boundary
conditions on the system. From Eqs. (3.10) and (3.12) we find that the
remaining two surface modes k1,2 may be expressed as

k21 = k2x, (3.13a)

k22 = k2x + Λ−2
[
2ΩH + 1 + Λ2k2 + Λ2q2

]
. (3.13b)

The surface mode with wavelength k1 is the Damon-Eshbach (DE) surface
mode [76], which is confined to the surface with width 1/kx. The remaining
surface mode k2 ≫ k1 is a much more confined to the surface with a width of
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1/k2. We will find this mode to be evanescent due to the boundary conditions
of the thin film.

The exchange boundary conditions in Eq. (3.6) evaluated for the spin-wave
modes in Eq. (3.9) give

6∑
l=1

CklklF
∗
l (kl + kx)e

±klL/2
∣∣
z=±L/2

= 0, (3.14a)

6∑
l=1

CklklFl(kl − kx)e
±klL/2

∣∣
z=±L/2

= 0, (3.14b)

with kl ∈ {±k1,±k2,±iq} as defined in Eqs. (3.10) and (3.13). The magneto-
static boundary conditions on the other hand require a bit more work. We
start by noting that the magnetization vanishes Ψ = 0 outside the magnetic
thin film (z < −L/2 and L/2 < z). Hence, the magnetostatic Maxwell equa-
tions (3.3) outside the thin film give ∇2w(x) = (−k2 + ∂2

z )w(k, z)e
ik·r∥ = 0.

The asymptotically bound solutions outside the magnet are thus given by

w(k, z) ∝

 e−kz, z > L/2,

ekz, z < −L/2.
(3.15)

Since the tangential components of hD are continuous across the thin film
surfaces, the scalar field w(k, z) should also be continuous across the thin
film surface. Furthermore, continuity of the normal component of b in the
Bogoliubov ansatz requires

∂zw(k, z
±) =∂zw(k, z

∓) +
Ms√
2
[u(k, z∓) + v(k, z∓)]|z=±L/2, (3.16)

with z± = z±0+. This boundary condition (3.16) in combination with Eq. (3.15)
gives the effective magnetostatic boundary condition

(±k + ∂z)w(k, z) +
Ms√
2
[u(k, z) + v(k, z)]|z=±L/2 = 0. (3.17)
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Evaluated for the spin-wave modes in Eq. (3.9) the above effective magneto-
static boundary condition (3.17) gives∑

±
C±k1

[(
2F ∗

1F1 + F ∗
1

)
δ± − F1δ∓

]
e±k1L/2 −

∑
l

CklF
∗
l e

klL/2|z=L/2 = 0,

(3.18a)∑
±

C±k1

[
(2F ∗

1F1 + F1)δ∓ − F ∗
1 δ±

]
e∓k1L/2 −

∑
l

CklFle
−klL/2|z=−L/2 = 0,

(3.18b)

with δ± ≡ δ1,±1 the Kronecker delta and kl ∈ {±k2,±iq} as defined in Eqs. (3.10)
and (3.13). Note here that we used the bulk equation of motion in Eq. (3.10)
to simplify the above boundary conditions.

3.3 dipole-exchange dispersion relation

3.3.1 General derivation

For notational simplicity we introduce the dimensionless wavenumbers Λk →
k, Λq → q and the dimensionless thickness L/Λ → L.

3.3.1.1 Effective boundary conditions for spin waves

We start this section by noting that Eq. (3.13) yields k2 ≫ k ≡ kx, ek2L/2 ≫
e−k2L/2 and |F ∗

2 | ≫ |F2|. This allows us to approximate the exchange bound-
ary conditions in Eq. (3.14) by

a+F
∗
k k

2ekL/2 + b+ = cF ∗
q

(
q2 cos[(q + δ)L/2] + kq sin[(q + δ)L/2]

)
, (3.19a)

a+F
∗
k k

2e−kL/2 + b− = cF ∗
q

(
q2 cos[(q − δ)L/2]− kq sin[(q − δ)L/2]

)
,(3.19b)

a−Fkk
2e−kL/2 = cFq

(
q2 cos[(q + δ)L/2]− kq sin[(q + δ)L/2]

)
, (3.19c)

a−Fkk
2ekL/2 = cFq

(
q2 cos[(q − δ)L/2] + kq sin[(q − δ)L/2]

)
.(3.19d)
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where a± = C±k, b± ≃ C±k2F
∗
2 k

2
2/2e

k2L/2 and e±iδL/2c = C±q. Note that δ

can in principle be a complex number. For future convenience we rewrite the
above exchange boundary conditions to

b̄+ + a−Fkk
2e−kL/2 = 2cFqq

2 cos[(q + δ)L/2], (3.20a)

b̄+ − a−Fkk
2e−kL/2 = 2cFqkq sin[(q + δ)L/2], (3.20b)

b̄− + a−Fkk
2ekL/2 = 2cFqq

2 cos[(q − δ)L/2], (3.20c)

−b̄− + a−Fkk
2ekL/2 = 2cFqkq sin[(q − δ)L/2]. (3.20d)

where b̄+ = (Fq/F
∗
q )b+ + a+(Fq/F

∗
q )F

∗
k k

2ekL/2 and b̄− = (Fq/F
∗
q )b− +

a+(Fq/F
∗
q )F

∗
k k

2e−kL/2 are free parameters since k2 ≫ k implies that b+

and b− are – to good approximation – not restricted by the magnetostatic
boundary conditions. From here we find that the contributions of q and δ

can be separated by making use of the trigonometric identities{
cos[(q ± δ)L/2] = cos(qL/2) cos(δL/2)∓ sin(qL/2) sin(δL/2),

sin[(q ± δ)L/2] = sin(qL/2) cos(δL/2)± cos(qL/2) sin(δL/2).

The above trigonometric identities allow us to express b̄+ and b̄− in Eq. (3.20)
in terms of the variables a−, k and q, which gives

b̄+ =
a−Fkk

2

k2 + q2

[
(q2 − k2)e−kL/2 + 2kq

(
csc(qL)ekL/2 − cot(qL)e−kL/2

)]
,

(3.21a)

b̄− =
a−Fkk

2

k2 + q2

[
(q2 − k2)ekL/2 + 2kq

(
cot(qL)ekL/2 − csc(qL)e−kL/2

)]
,

(3.21b)

where csc(qL) ≡ 1/ sin(qL) and cot(qL) ≡ cos(qL)/ sin(qL). Hence, Eqs. (3.20)
and (3.21) allow us to express 2cF ∗

q Fqq
2 cos[(q ± δ)L/2] in terms of the vari-

ables a−, k and q, which to leading order in exponential functions is given
by

cFq cos[(q + δ)L/2] =
a−Fkk

2ekL/2

k2 + q2

(
e−kL + kL csc(qL)/qL

)
, (3.22a)

cF ∗
q cos[(q − δ)L/2] =

a−Fkk
2ekL/2

k2 + q2
F ∗
q

Fq
(1 + kL cot(qL)/qL) . (3.22b)
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So far we have used the exchange boundary conditions Eq. (3.19) to express
2cF ∗

q Fqq
2 cos[(q ± δ)L/2] in terms of the variables a−, k and q. From here,

we impose the magnetostatic boundary conditions to find a closed expression
for q satisfying all boundary conditions.

The remaining magnetostatic boundary conditions (3.18), for k2 ≫ kx,
ek2L/2 ≫ e−k2L/2 and |F ∗

2 | ≫ |F2|, are well approximated by

a+(2FkF
∗
k + F ∗

k )e
kL/2 − a−Fke

−kL/2 =2cFq cos[(q + δ)L/2], (3.23a)

a−(2FkF
∗
k + Fk)e

kL/2 − a+F
∗
k e

−kL/2 =2cF ∗
q cos[(q − δ)L/2]. (3.23b)

3.3.1.2 Dipole-exchange spin-wave modes

The above magnetostatic boundary conditions together with the effective
exchange boundary conditions in Eq. (3.22) give two linear homogeneous
equations in a+ and a−. Hence, we have spin-wave solutions when the de-
terminant of this square matrix vanishes. At leading order in exponential
functions of the trigonometric contribution we find this to be the case when

det

(2Fk + 1) (3k2 + q2)e−kL

e−kL D(k, q)

 = 0, (3.24)

with

D(k, q) = (2F ∗
k + 1)

[
(3k2 + q2) + 2k3L cot(qL)/qL

]
+4k2(k2 + q2) (1 + kL cot(qL)/qL).

In the above we used the bulk equation of motion 2FqF
∗
q + Fq + F ∗

q = 0

to obtain F ∗
q /Fq = −(2F ∗

q + 1). Note that we neglected 2k3L csc(qL)/qL

in Eqs. (3.22a) and (3.24) since it is exponentially suppressed in the equation
of motion and thus not of importance for the dispersion relation. The spin-
wave modes hence satisfy[

(Fk + 1/2)(F ∗
k + 1/2)− e−2kL/4

]
(3k2 + q2)

+(Fk + 1/2)2k2(k2 + q2)

+(Fk + 1/2)(F ∗
k + 1/2 + k2 + q2)2k3L cot(qL)/qL

=0.

(3.25)
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When interested in the n-th spin-wave mode the above equation is well
approximated by[

(Fk,n + 1/2)(F ∗
k + 1/2)− e−2kL/4

](
3k2 + n2π2/L2 + δnπ

2/4L2
)

+(Fk,n + 1/2)2k2(k2 + n2π2/L2)

+(Fk,n + 1/2)(F ∗
k,n + 1/2 + k2 + n2π2/L2)2k3L cot(qL)/qL

=0,

(3.26)

with δn ≡ δn,0 the Kronecker delta, Fk,n ≡ Fk|q→nπ/L and F ∗
k,n ≡ F ∗

k |q→nπ/L.
In order to proceed we use the identity

π cot(πx) =
1

x
+ 2x

∞∑
n=1

1

x2 − n2
. (3.27)

To make use of the above identity we consider πx = qL. Furthermore, we
note that q for n-th spin-wave is in the interval nπ/L < q < (n+ 1)π/L. For
the n-th spin wave mode we obtain

cot(qL)

qL
≃ 2− δn

q2L2 − n2π2
+

2

q2L2 − (n+ 1)2π2
− αn, (3.28)

with δn ≡ δn,0 the Kronecker delta and

αn =
4

3π2

1

(1 + n)2
. (3.29)

We expand q2L2 around n2π2 for the n-th spin-wave mode. From here it
follows that Eq. (3.26) can be written explicitly as

an,kz
3 + bn,kz

2 + cn,kz + dn,k = 0, (3.30)

with z = q2L2 − n2π2. Furthermore,

an,k ≈− 1, (3.31a)

bn,k =Bn,k − αnCn,k − an,k (2n+ 1)π2, (3.31b)

cn,k =(4− δn)Cn,k − (Bn,k − αnCn,k)(2n+ 1)π2, (3.31c)

dn,k =− Cn,k(2− δn)(2n+ 1)π2, (3.31d)
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and

Bn,k ≃ 1− e−2kL

4γn,k/L2
− (k2L2 + n2π2)

k2L2 + n2π2 + δnπ
2/4

3k2L2 + n2π2 + δnπ2/4
, (3.32a)

2Cn,k ≃
k3L5 × γ−1

n,k

3k2L2 + n2π2 + δnπ2/4
, (3.32b)

where γn,k = 2(ΩH+1/2+k2+n2π2/L2). For the n-th spin-wave mode Eq. (3.30)
gives the formal solution

zn,k = −1

3

bn,k
an,k

+

√
−4Pn,k

3
cos

[
1

3
arccos

(
3Qn,k

2Pn,k

√
−3

Pn,k

)
− 2π

3

]
, (3.33)

with

Qn,k =
dn,k
an,k

− 1

3

bn,k
an,k

cn,k
an,k

+
2

27

(
bn,k
an,k

)3

, (3.34a)

Pn,k =
cn,k
an,k

− 1

3

(
bn,k
an,k

)2

. (3.34b)

The dispersion relation of the n-th spin-wave mode is accordingly given
by Eq. (3.12)

Ω2
n =

[
ΩH +

1

2
+ k2 +

n2π2

L2
+

zn
L2

]2
− 1

4
. (3.35)

Note that Eqs. (3.33) and (3.35) are expressed in terms of the dimensionless
wavenumber Λk → k and the dimensionless thickness L/Λ → L. Further-
more, Eq. (3.35) gives the dispersion relation for the dimensionless frequency
Ω = ω/γµ0Ms. This is the main result of this paper. In Fig. 3.2 we compare
the analytic dipole-exchange mode in Eq. (3.35) with the full numeric solution.
We see that the analytic dispersion derived above is in good agreement with
the full numeric solution of Eqs. (3.14) and (3.18). We like to stress that the
analytic spin wave modes given in Eq. (3.35) do not experience level crossing.
Hence, the n-th mode does not cross the (n− 1) and (n+1)-th energy modes.
In the remaining Subsections 3.3.2 and 3.3.3 we will simplify Eq. (3.35) for
relative thin and thick films respectively.
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Figure 3.2: The first seven modes of the dipole-exchange spin-wave dispersion relation
for ΩH = 1/2 and L = 24 are shown. The dashed lines correspond to the analytic
dispersion in Eq. (3.35), while the solid lines correspond to the full numeric solution
of Eqs. (3.14) and (3.18).

3.3.2 Thick thin-film approximation for the lowest exchange mode

In relatively thick films, L > O(10
√
J/µ0Ms), for sufficiently long wave-

lengths, the lowest energetic mode will be dominated by the first exchange
mode. Away from the DE mode, we may approximate exchange mode so-
lutions of Eq. (3.24) by D(k, q) = 0 with F ∗

k → F ∗
k,n. This is equivalent to

an,k → 0 in Eq. (3.30) and e−2kL → 0 and δnπ
2/4/L4 → 0 in Eq. (3.32). The

above results in a second order equation in z when the exchange mode has
a small avoided crossing with the DE mode. For the lowest exchange mode
n → 0 this becomes

2kL cot(qL)/qL =4k2γk − 3. (3.36)

Hence, we obtain a quadratic equation in z

bkz
2 + ckz + dk = 0, (3.37)
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where

bk =Bk −
4Ck

3π2
, (3.38a)

ck =
13

3
Ck − π2Bk, (3.38b)

dk =− π2Ck, (3.38c)

and

Bk ≃ 3− 8(ΩH + 1/2 + k2)k2, (3.39a)

Ck ≃ 2kL. (3.39b)

We thus find

z = − ck
2bk

+ sgn(bk)

√(
ck
2bk

)2

− dk
bk

. (3.40)

The lowest exchange mode dispersion is thus

Ω2 =
[
ΩH + 1/2 + k2 + z/L2

]2 − 1/4. (3.41)

In Fig. 3.3 we compare the above dispersion relation with the numeric solution
of the lowest energy mode. We find good agreement between the approximated
dispersion relation in Eq. (3.41) and the numerical lowest energy mode for
wavelengths k larger than the level crossing point with the DE mode. Note
that the above simplification is not restricted to the lowest energy exchange
mode, but can be applied to the higher exchange modes as long as there is
no large avoided crossing with the DE mode.

3.3.3 Thin film approximation for the lowest energy mode

For very thin films, L ∼ O(
√
J/µ0Ms), only the DE wave is of importance

for the lowest energy mode. For very thin films it is reasonable to assume
q2L2 < (3/4)2π2, we may thus approximate

cot(qL)

qL
≃ 1

(qL)2
− 1

3
. (3.42)
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Figure 3.3: Dipole-exchange dispersion relation of the lowest energy mode for
ΩH = 1/2 and L = 24. The dashed line correspond to the analytically derived
dispersion in Eq. (3.41), while the solid line gives the numeric solution to Eqs. (3.14)
and (3.18) for the lowest energy mode.
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Figure 3.4: Dipole-exchange dispersion of the lowest energy mode for ΩH = 1/2

and L = 4. The dashed line corresponds to the approximate dispersion relation
in Eq. (3.47). The solid line corresponds to the numeric solution of Eqs. (3.14)
and (3.18).
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Thus the lowest energy mode in very thin films is described by a quadratic
equation in z

akz
2 + bkz + ck = 0. (3.43)

Where

ak ≈ −2(ΩH + 1/2 + k2)/L2, (3.44a)

bk ≃ Bk − ck/3, (3.44b)

ck ≃ kL/6, (3.44c)

and

Bk ≃ 1− e−2kL

4
− 2

3
(ΩH + 1/2 + k2)k2. (3.45a)

The lowest energy mode in very thin films is thus given by

z = − bk
2ak

+

√(
bk
2ak

)2

− ck
ak

, (3.46)

where the lowest energy dispersion relation is given by

Ω2 =
[
ΩH + 1/2 + k2 + z/L2

]2 − 1/4. (3.47)

This is plotted in Fig. 3.4. We again find good agreement between the analytic
result in Eq. (3.47) and the numerical solution of the full boundary conditions
in Eqs. (3.14) and (3.18). Note that we took δnπ

2/4L2 → 0 of Eq. (3.32) in
the very thin-film limit, since it simplifies the expressions for Bk and ck and
does not have a big impact on the dispersion relation for very thin-films.

3.3.4 Comparison with Kalinikos and Slavin [83, 84]

In the paper by Kalinikos and Slavin [83, 84] the dipole-exchange spin-
wave spectrum that follows from the diagonal approximation for spin waves
propagating perpendicular to a tangentially magnetized thin-film was given
by

Ω2
n = [ΩH + 1/2 + k2 + n2π2/L2]2 − [Pn − 1/2]2, (3.48)
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Figure 3.5: The first seven modes of the dipole-exchange spin-wave dispersion relation
for ΩH = 1/2 and L = 24are shown. The dashed lines correspond to the analytic
dispersion derived by Kalinikos and Slavin [83, 84] in Eq. (3.48). The solid lines
correspond to the full numerical solution of Eqs. (3.14) and (3.18). We did not plot
the analytic results in Eq. (3.35) and Fig. 3.2, since it agrees very well with the
numerical solution.
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Figure 3.6: Dipole-exchange dispersion of the lowest energy mode for ΩH = 1/2

and L = 4. The dashed line corresponds to the dispersion relation by Kalinikos
and Slavin [83, 84] in Eq. (3.48). The solid line on the other hand corresponds to
the numeric solution of Eqs. (3.14) and (3.18). We did not plot the analytic results
in Eq. (3.35) and Fig. 3.4, since it agrees very well with the numerical solution.
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with

Pn =
k2L2

k2L2 + n2π2

[
1− k2L2

k2L2 + n2π2

2

1 + δn

(
1− (−1)ne−kL

kL

)]
. (3.49)

In Fig. 3.5 we plotted the spin-wave dispersion by Kalinikos and Slavin [83,
84] in Eq. (3.48) for relatively thick films. We see that the analytic spin-wave
dispersion by Kalinikos and Slavin [83, 84] shows quantitative differences with
the analytic spin-wave dispersion derived in this Chapter Eqs. (3.35) and (3.41)
and the numerical solution of the full problem. For very thin films on the other
hand, we find good agreement between the theory of Kalinikos and Slavin [83,
84], the analytic results derived in this Chapter Eqs. (3.35) and (3.47) and
the numeric solution of the full boundary conditions, see Fig. 3.6.

3.4 discussion and conclusions

We considered the theory of spin waves in ferromagnetic films. More specif-
ically, the theory of spin waves propagating perpendicular to an in-plane
magnetic field. This case is of special interest since it is the most typical
configuration used in spin wave experiments. The main result of this Chapter
is the spin wave spectrum in Eq. (3.35) which we derived by imposing the
exchange and magnetostatic boundary conditions on bulk spin wave solu-
tions. This derivation differs significantly from the derivation of Kalinikos
and Slavin [83, 84] where the magnetostatic Green’s function was used to
construct the spin wave spectrum. The boundary problem we obtained has an
accurate analytical solution which agrees well with the numerical solution and
shows quantitative differences with the commonly used theory in Refs. [83, 84]
in relative thick films. This inaccuracy of the spin wave spectrum that follows
from the diagonal approximation in the theory by Kalinikos and Slavin [83,
84] has already been observed by Kreisel et al. [77]. Furthermore, our results
could be verified experimentally, for example using Brillouin light scattering
and spin-wave spectroscopy [94].

Future research could generalize the method presented here to describe
spin waves propagating in an arbitrary direction with respect to a generally
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oriented external magnetic field. This is relatively straightforward for in-plane
magnetizations. Another way to generalize this model is to include the effects
of both surface and boundary anisotropies. Lastly, the magnetization profile
of spin wave modes could relatively straightforwardly be determined from
the spin wave spectrum in Eqs. (3.35), (3.41) and (3.47).
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Part II

APPL ICAT IONS OF NEGATIVE ENERGY
MODES AND NON-L INEAR DYNAMICS

“If you think you’re boring your audience, go slower not
faster.”

—Credited to Gustav Mahler.

“How wonderful that we have met with a paradox. Now
we have some hope of making progress.”

—Niels Bohr.





4
ENHANCED MAGNON SP IN CURRENT US ING THE
BOSONIC KLE IN PARADOX

This Chapter is based on J. S. Harms, H. Y. Yuan, and R. A. Duine,
“Enhanced magnon spin current using the bosonic klein paradox,”
Physical Review Applied 18, 064026 (2022). R.A.D. conceived the
project, J.S.H. did the analytic calculations and H.Y.Y performed the
numerical simulations. H.Y.Y and J.S.H. prepared the manuscript.
All authors contributed to the manuscript.

We propose to amplify magnon currents based on the realization of the
bosonic Klein paradox in magnetic nanostructures. This paradox involves the
antimagnon, carrying opposite spin and energy, whose existence is usually
precluded by ferromagnetic instabilities as it is an excitation at negative energy.
We show that, by appropriately tuning the effective dissipation through spin-
orbit torques, both magnons and antimagnons are dynamically stabilized.
As a result, we find that the reflection coefficient of incident magnons at an
interface between two coupled magnets can become larger than one, thereby
amplifying the reflected magnon current. Our findings can lead to magnon
amplifier devices for spintronic applications. Furthermore, our findings yield a
solid-state platform to study the field theoretical behavior of bosonic particles,
which is an outstanding challenge with fundamental particles.
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4.1 introduction

We show that the magnon spin current can be significantly amplified at
an interface between a magnet that is not driven externally and a magnet
into which angular momentum is injected using spin-orbit torque (SOT)
[60, 95–98]. By designing the balance of this external driving with intrinsic
dissipation, both magnons (positive-energy excitations) and antimagnons
(negative-energy excitations) are dynamically stabilized. This results in en-
hanced reflection of magnons from the interface with the driven-dissipative
magnet. The enhanced reflection is accompanied by a transmitted antimagnon
current. This suggests a method to amplify magnon spin currents that is
relatively straightforward to implement, which may be generalized to both
ferromagnetic and antiferromagnetic materials, different types of driving,
and to both metals and insulators. Below, we explicitly illustrate the basic
physics for a magnetic heterostructure involving yttrium-iron-garnet (YIG)
and platinum.

Our result can be interpreted as a realization of the bosonic Klein paradox,
which refers to the counterintuitive reflection or transmission of relativistic
particles from a potential barrier [99–104], and is a natural consequence of
quantum field theories. The experimental test of this paradox using funda-
mental particles is nearly impossible because of the extremely high energy
barrier that needs to be overcome [105]. While its solid-state realization
for fermionic particles in 2D materials with gapless excitations was recently
reported [106–108], the study of the Klein paradox for bosonic quasiparticles
remains an outstanding challenge because the presence of bosonic antiparticles
in a solid-state system usually signals instabilities. In our implementation,
these instabilities are prevented by the external driving via SOT. Hence, in
addition to the application-motivated magnon amplification that is discussed
above, our results launch driven magnetic systems as a suitable solid-state
platform to experimentally study field theoretical of bosonic particles.
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4.2 physical model

4.2.1 Set-up and magnonic and antimagnonic excitations

We consider two exchange coupled ferromagnetic (FM) insulating thin films
adjacent to a heavy-metal layer (HM) subject to an in-plane external magnetic
field in the z direction, as shown in Fig. 4.1(a). The magnetization of the right
FM aligns antiparallel to the external field. This situation is energetically
unstable but dynamically stable due to the presence of an electrical current
in the HM layer which exerts a SOT on the magnetization dynamics. This
can be understood as follows: the spin current produced by the electric
current through the spin Hall effect in the HM will keep injecting angular
momentum to the FM layer to counteract the damping of magnetization and
to prevent the magnetization to align with the external field, thereby yielding
a region with dynamically stable antimagnons. In general, the dynamics of the
magnetization nν = Mν/Ms is well described by the Landau-Lifschitz-Gilbert
(LLG) equation with SOT [60], i.e.,

∂nν

∂t
= −γnν × heff,ν + αnν ×

∂nν

∂t
+ Jνnν × ẑ × nν , (4.1)

where ν = L,R labels the (L)eft and (R)ight magnet, and, γ is the gyro-
magnetic ratio, α is the Gilbert damping and Jν characterizes the strength
of SOTs generated by the spin current which depends on the current flow-
ing in the HM layer, the spin Hall angle of the HM and the properties of
the interface. The LLG equation describes damped precession around the
effective magnetic field heff,ν = −δEν/(Msδnν), with Ms being saturation
magnetization. Here, we consider the magnetic energy functional Eν [nν ] in
the left and right magnet to be of the form

Eν =

∫
dV

{
A(∇inν)

2 − µ0He,νMsnz,ν +
1

2
Kn2

y,ν

}
, (4.2)

with A the exchange stiffness, He,ν is the external magnetic field strength,
µ0 is the vacuum permeability and K = µ0M

2
s the effective shape anisotropy

caused by the dipolar interaction.
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（a）

（b）

（c）

Figure 4.1: (a) Schematic of the driven-dissipative magnetic system containing
two exchange-coupled magnetic films. (b) Magnon dispersion for the left and right
ferromagnets respectively. The red dotted curves give the positive energy excitations
while the blue curve corresponds to the negative energy excitations. In other words,
negative energy excitations exist for the wavenumbers −2.1 ≲ Λk ≲ 2.1 between the
zeros of the dispersion in the right magnet. (c) Physical picture of the anomalous
magnon reflection. Blue and red arrows represent the directions of phase and group
velocity, respectively.
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Spin waves or magnons are introduced as linear dynamical fluctuations on
top of the equilibrium magnetization n0,ν with n0,L = ez and n0,R = −ez.
By introducing the complex field Ψν = (1/

√
2) (x̂∓ iŷ) · nν , the linearized

LLG equation [109–111] accordingly becomes

i(1+ iασz)∂t
γµ0Ms

Ψν

Ψ∗
ν

 = (L± + iIν1)

Ψν

Ψ∗
ν

 , (4.3)

with

L± =
(
∆± hν − Λ2∇2

)
σz + i∆σy. (4.4)

In the above, σy,z are the Pauli matrices, Λ =
√
2A/µ0M2

s the exchange
length, hν = He,ν/Ms the dimensionless external magnetic field, ∆ =

K/2µ0M
2
s = 1/2 the dimensionless anisotropy constant and Iν = Jν/γµ0Ms

the dimensionless SOT. The ± sign in the definition of Ψν and Eqs. (4.3)
and (4.4) comes from the linearization around the ±ez direction in the left
and right ferromagnets respectively. We introduce spin wave solutions of the
linearized LLG equation (4.3) in the form of Bogoliubov modes

Ψν(x, t) = uν(x)e
−iλt − v∗ν(x)e

iλ∗t. (4.5)

Here, the Fourier transform of uν(x) and vν(x) satisfy, up to first order in α

and Iν , the following dispersion relation

ωk,ν ≃ ω0
k,ν − i

(
α
[
∆± hν + Λ2k2

]
− Iν

)
, (4.6)

with ω = λ/γµ0Ms the dimensionless frequency,

(ω0
k,ν)

2 =
(
∆± hν − Λ2k2

)2 −∆2, (4.7)

the dissipationless dispersion relation and

∥Ψk,ν∥ = |uk,ν |2 − |vk,ν |2, (4.8)

the norm of the two different branches of Eq. (4.3) [112]. In Fig. 4.1(b) we
plot an example of the real part of the dispersion relation for both the left
and right ferromagnets, with hL = 0.5 and hR = 4.5 and ω > 0.
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At this point it is good to take a step back to stress a couple of things.
First of all, the dissipationless limit of Eq. (4.3) is pseudo-Hermitian, in other
words

σzL†
±σz = L±. (4.9)

A consequence of this statement is that the magnon norm ∥Ψk,ν∥ in Eq. (4.8)
is conserved in the dissipationless limit. Secondly, Eq. (4.3) has the additional
symmetry

σx(L± + iαω∗σz + iIµ1)σx = −(L± − iαωσz + iIµ1)
∗. (4.10)

This implies that if ω is an eigenfrequency of Eq. (4.3) with eigenmode(
uν vν

)T, then −ω∗ is also an eigenfrequency with eigenmode
(
v∗ν u∗ν

)T.
These two modes have opposite norm by construction. Hence, the two branches
of Eq. (4.3) are related to each other via particle hole symmetry. In our
magnetic system, this doubling is not physical, but merely a result of our
choice to describe spin waves using complex scalar fields. Hence, in order to
describe the full dynamics of the system it is sufficient to consider ω > 0 and
take into account the norm of different modes.

From this point onwards we refer to the positive norm excitations as
magnons, and the excitations carrying negative norm as antimagnons. This
distinction between magnons and antimagnons is only allowed if one would
solely consider excitation with positive sign of ω, i.e. ω > 0. Note that it is
sufficient to consider ω > 0, due to the particle doubling. We can make two
important observations. One, anti-magnons only exist in the right magnet.
And second, antimagnons carry negative energy and most importantly they
have opposite handedness w.r.t. the magnonic excitations.

The antimagnons in this setup can be stabilized, since in driven magnetic
systems, energetic and dynamical stability do not necessarily coincide. For
the system to be dynamically stable we need

Im(ωk,ν) ≃ Im
(
ω0
k,ν

)
− α

[
∆± hν + Λ2k2

]
+ Iν < 0, (4.11)

for all wavenumbers k, because then small-amplitude fluctuations die out.
This identity imposes that the magnons on the right side are dynamically
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stable if −IR ≳ max [α(hR −∆),∆]. Whereas, energetic instabilities exist if
the (anti)magnon excitation energy is negative, i.e. ∥Ψk,ν∥ω0

k,ν < 0. We thus
note that the magnons on the right FM are energetically unstable for a range
of wavenumbers but may be stabilized by injecting angular momentum via
SOT, see Fig. 4.1. Physically, this means that the internal energy of the right
ferromagnet can be lowered by small spin fluctuations (antimagnons), but
injection of angular momentum prohibits the system to reach a new ground
state.

4.2.2 Exchange coupling at the interface

Additionally, the left and right thin films are exchange coupled 1, which
results in effective boundary conditions for the magnetization. In terms
of the Bogoliubov ansatz (4.5), the four boundary conditions follow from
varying the energy functional in Eq. (4.2) after including the boundary term
Ebn = −JcnL(0) · nR(0) at the interface (x = 0). This gives

Λ∂xφL − Λc(φR + φL) =0, (4.12a)

Λ∂xφR + Λc(φL + φR) =0, (4.12b)

with φ = u, v and Λc = Jc/Λγµ0Ms. To analytically solve the scattering
problem, we shall first focus on the isotropic case (∆ = 0) and further show
the essential physics still holds for elliptical magnons (∆ ̸= 0).

1 Here the interface of left and right domains may be a normal-metal layer that generates
the interlayer exchange interaction between left and right domain, an irradiated region
where magnetic parameters can be effesitively designed or other regions that could induce
an effective exchange coupling between left and right domains.
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4.3 scattering off the interface

Due to doubling of the modes we consider ω > 0 without loss of generality.
Solutions of Eq. (4.3) without dissipative terms have the formu(x)

v(x)

 =

uk

vk

 eikx. (4.13)

At a given ω > ωmin ≡ hL, we find four different wavenumbers k. In the left
region with only positive energy excitations, we find two real kLr , kLl and two
complex kL+, k

L
− wavenumbers. These wavenumbers are, according to Eq. (4.6),

given by

ΛkLr/l = ±
√
ω − hL, ΛkL± = ±i

√
ω + hL. (4.14)

The complex modes are either blowing up or are damped, where only the
damped mode is physically allowed [113]. However, in the right magnet – mag-
netized against the external magnetic field – there are four real wavenumbers
if ω < ωmax ≡ hR, which are explicitly given by

ΛkRr/l = ±
√

ω + hR, ΛkR± = ±sgn(ω − hR)
√

hR − ω. (4.15)

The kr and kl modes correspond to positive energy modes (magnons) with
positive and negative group velocity respectively. Furthermore, k+ and k−

correspond respectively to additional right- and left moving modes carrying
negative energy (antimagnons). We included sgn(ω−hR) in the expression of
k± here, such that k+ corresponds both to the right moving negative energy
mode and the exponentially damped mode when ω > ωmax ≡ hR.

We now construct the scattering solutions satisfying the boundary condi-
tions in Eq. (4.12). The general solution for bulk modes at frequency ω are
given by

uν(x) =Aν
rukr,νe

ikrx +Aν
l ukl,νe

iklx +Aν
+uk+,νe

ik+x +Aν
−uk−,νe

ik−x,

(4.16a)

vν(x) =Aν
rvkr,νe

ikrx +Aν
l vkl,νe

iklx +Aν
+vk+,νe

ik+x +Aν
−vk−,νe

ik−x,

(4.16b)
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with Aν
j are amplitudes of the scattering modes in Eqs. (4.14) and (4.15)

and
(
uk,ν , vk,ν

)
solutions to Eq. (4.3) with ansatz (4.13) and normalization

condition ||uν,k|2 − |vν,k|2| = 1. By disregarding spatially growing modes, the
boundary conditions in Eq. (4.12) for incident magnons from the left imply

M


1

AL
l

0

AL
−

 =


AR

v

0

AR
+

0

 . (4.17)

Here, the matrix M is defined by the boundary conditions given in Eq. (4.12)
and is given by

M =
1

λR
u,l − λR

u,r

0 1

0 0

⊗λR
u,lλ

L
v,+ − 1 λR

u,lλ
L
v,− − 1

1− λR
u,rλ

L
v,+ 1− λR

u,rλ
L
v,−


+

1

λR
v,− − λR

v,+

0 0

1 0

⊗λR
v,−λ

L
u,r − 1 λR

v,−λ
L
u,l − 1

1− λR
v,+λ

L
u,r 1− λR

v,+λ
L
u,l

 ,

(4.18)

with

λL
φ,j =+ iΛ−1

c Λkj − 1 and λR
φ,j = −iΛ−1

c Λkj − 1. (4.19)

By solving (4.17), we derive the reflection amplitudes as,

AL
l = −

1− λR
v,+λ

L
u,r

1− λR
v,+λ

L
u,l

, AL
− = 0. (4.20)

We want to find the ratio between the incoming and reflected magnon spin
current. Here, we define the spin current as the spatial current following from
the conservation of the norm – without dissipative terms – ∥Ψ∥ = |u|2 − |v|2,
i.e., −i∂t∥Ψ∥ ∓Λi∂xJs = 0. Using the equations of motion (4.3), we find that
the spin current is given by iJsΛ = u∂xu

∗−u∗∂xu+ v∂xv
∗− v∗∂xv. Far from

the interface, the Fourier transform of the spin current is dominated – for
wave packets – by

Js/Λ =
∑
kj

|Aj |2kj
(
|ukj |

2 + |vkj |
2
)
. (4.21)
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Finally, we derive the reflection coefficient as the ratio of reflected and incident
spin currents, by combining Eqs. (4.14), (4.20) and (4.21),

R2 ≡ −JR
s /JI

s = |AL
l |2. (4.22)

We now distinguish between the cases ω > hR and hL < ω < hR. (i) If
ω > hR then |AL

l |2 = 1, hence we have perfect reflection in this instance. (ii)
If hL < ω < hR, then the reflection coefficient

R2 =
hR − hL + Λ−2

c (ω − hL)(hR − ω) + 2
√
ω − hL

√
hR − ω

hR − hL + Λ−2
c (ω − hL)(hR − ω)− 2

√
ω − hL

√
hR − ω

. (4.23)

For Λc >
√
hR − hL/2, the above expression is maximal at ω = (hL + hR)/2

with the maximal reflection

R2
max = 1 + 8Λ2

c/(hR − hL). (4.24)

On the other hand, if Λc <
√
hR − hL/2, the expression (4.23) is maximal

for ω = (hR + hL)/2 ±
√

(hR + hL)(hR + hL − 4Λ2
c)/4 with the maximal

reflection

R2
max =

√
hR − hL + |Λc|√
hR − hL − |Λc|

. (4.25)

For both cases, we find the maximum reflection Rmax > 1, which gives rise to
spin wave amplification and is the magnonic analogue of the Klein paradox.

The physical picture of this anomalous reflection is illustrated in Fig. 4.1(c).
Magnons with angular momentum (AM) ℏ are excited in the left domain and
incident at the interface. The overlap of the magnon band in the left magnet
with the antimagnon band in the right magnet, produced by the unequal
external fields, guarantees that the magnons can propagate into the right film.
According to AM conservation, a magnon current with AM ℏ propagating
forward is expected to be produced in the right domain. However, magnons
with AM ℏ are forbidden due to the antiparallel orientation of magnetization
with respect to external field. To conserve AM, antimagnon currents with
AM −ℏ propagating backward are generated and thus enlarge the reflected
current. Throughout the scattering process, the group velocity of transmitted
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Figure 4.2: Steady state nz of the right magnet as a function of current density (J)
obtained by simulations. The insets shows the simulated magnon spectrum for J = 0

and −1.5× 10−12 A/m2, respectively. The white lines are the analytical dispersions.
The horizontal dashed line is the driving frequency of the microwave (ω0/2π = 20

GHz) to initiate magnon scattering.

antimagnons (vg) is always positive to guarantee the forward flow of energy.
As a comparison, in the original Klein paradox, an electrostatic potential lifts
the positron band in the right region and makes it overlap with the electron
band in the incident region, while in the present case an inhomogeneous field
lifts the antimagnon band and makes it overlap with the magnon band (see
Appendix A).

4.4 numerical verification

To verify the analytical predictions and to account for effects of dissipation
and non-linearities, we perform micromagnetic simulations on two exchange-
coupled ferromagnetic thin films as shown in Fig. 4.1(a) (see Appendix B for
simulation details). Here the inter-domain coupling Ai is a tunable coefficient
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and is related to Jc in the theory as Jc = −2Ai/d. By applying a global driving
microwave h(t) = h0sinc(ωct)x̂ with ωc/2π = 100 GHz and h0 = 50 mT, we
first quantify the response of the magnetic system and identify two regimes
as shown in Fig. 4.2. (i) When the current density J > −1.4× 1012 A/m2 ,
the antiparallel state of the right domain (nR ∥ −hR) is dynamically unstable
and the magnetization switches to the parallel state spontaneously (nR ∥ hR).
The magnon spectrum of the right magnet for the steady parallel state is a
normal parabola (left inset of Fig. 4.2) 2. (ii) When J < −1.4× 1012 A/m2,
the antiparallel state becomes dynamically stable and the antimagnon states
in the negative energy branch are excited, and a sombrero-like spectrum is
identified (right inset of Fig. 4.2), consistent with the theory.

To study the magnon scattering off the interface between left and right
magnets, a microwave source h(t) = h0 sin(ω0t)x̂ is applied at the left domain
at x = −dsi, with dsi = 800 nm. The excited magnons propagate in the +x̂

direction and scatter at the interface (x = 0). By making a Fourier transform
of nx(x, y, t) in the propagating direction (x̂) 3, we derive the response of
the system in momentum space as shown in Fig. 4.3(a). An antimagnon
state with kx < 0 is clearly identified in the right domain while the reflection
coefficient is larger than one. This demonstrates the enhancement of magnon
spin current via an analogue of the Klein paradox. In the absence of injection,
the antimagnon current is barely excited. A detailed analysis of the evolution
of incident, transmitted and reflected magnon current further verifies their
correlation (see Appendix C).

Figure 4.3(b) shows that the reflected coefficient, defined as the peak-height
ratio of the reflection magnons and incident magnons, increases with inter-

2 Here the lineshape of dispersion is consistent with the theoretical predictions (white lines),
while we also notice a series of standing wave modes in the transverse direction (kyw = nπ,
n = 0, 1, 2,...). For a real magnetic film with a sufficiently larger width, the lower modes of
the standing waves will merge together. This will not have a significant influence on our
results.

3 Here to eliminate the influence of magnons on the regions x < −di, which have the same
wavevector and propgating direction as the reflecting magnons, the FFT is only performed
at the region between the microwave source and the interface while same sized region is
taken in the right domain.
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Figure 4.3: (a) Scattering of magnons at the interface of left and right domains.
h0 = 10 mT, Ai/A = 1. The red vertical lines represent the theoretical predictions
of magnon wavevectors. (b) Reflection of magnons as a function of inter-domain
exchange couplings. The DMI strength is D = 0 (red circles) and D = 0.1 mJ/m2

[114] (blue triangles). The purple dashed line is prediction by Eq. (4.23), and the
solid line is the prediction with shape anisotropy.
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domain exchange coupling. For comparison, we also simulate the magnon
scattering in the parallel configuration (nR ∥ hR) and find that the reflection
keeps decreasing to zero with increasing the coupling between the magnetic
films (black diamonds). As expected, no antimagnon state is excited in this
case. We find a good agreement between the analytical prediction in Eq. (4.23)
and the micromagnetic simulations for small couplings. For large exchange
couplings, however, we see quantitative differences, which are not explained
by including dipolar anisotropy – see purple solid line in Fig. 4.3(b). We
expect the quantitative difference at large couplings to stem from non-linear
effects, which are not treated in the analytical formalism. The reflection
amplitudes become increasingly large at increasing couplings, thereby making
non-linear effects important.

4.5 discussions and conclusions

In conclusion, we have analytically shown and numerically confirmed that the
magnon spin current can be amplified through the realization of the bosonic
Klein paradox in a driven-dissipative magnetic system. The Dzyaloshinskii-
Moriya interaction (DMI) caused by the interfacial symmetry breaking in
the hybrid system does not change the results significantly, as shown in Fig.
4.3(b). In our proposal, we dynamically stabilize the antimagnons by the
SOT. The essential physics is applicable to a wide class of materials and
driving knobs which are able to maintain the magnetization against the
external field. For example, electric currents through spin-transfer torque
[115], optical waves through magneto-optical interaction [116] and other
effective techniques capable of producing a positive damping of the magnons.
Our proposal therefore can be realized in ferromagnetic insulators as well as
metals. Experimentally, the magnons may be detected by optical, inductive
and even electric techniques [117–119].
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4.a detailed comparison between the original and the
magnon klein paradox

In this section, we address the analogue between the original Klein paradox
and the magnon Klein paradox presented in the main text. In the original
Klein paradox, Klein studied scattering of an electron off a potential barrier
[99], as shown in the top panel of Fig. 4.4(a). The electrostatic potential
in the right domain will lift the negative energy band of positrons [blue
line in Fig. 4.4(a)] and makes it overlap with the positive energy band of
electrons on the left (red line). Then, the incident electrons from the left
domain can excite positron current moving to the right in the right domain.
This corresponds to left-moving electron current and thus could enhance the
reflection of electrons at the interface. A detailed treatment of this scattering
process can be found in the literature [104]. In the magnon Klein paradox,
an inhomogeneous external field, for example, can induce the band overlap of
the magnons band in the left domain with the antimagnon band in the right
domain, as shown in Fig. 4.4(b). Again, the antimagnon current generated
at the interface enhances the strength of the reflected magnon current. The
underlying physics of the original and magnon Klein paradox is therefore the
same. This is so despite that the magnon bands on the left and right domains
also overlap, but their coupling is very weak in our setup, and thus does not
change the essential physics.

4.b parameter specification in numerical simulations

The magnetization dynamics of the two exchange-coupled magnetic films
are simulated by numerically solving Eq. (5.2). Note that the dissipation
of magnon spin current caused by its interaction with the environment is
phenomenologically covered by the Gilbert damping, while identifying its
microscopic mechanism including spin-orbit interaction, spin pumping and
two-magnon scattering [25] is not the focus of our current work.

The dimensions of the nanostrip on each domain are length l = 2048 nm,
width w = 64 nm and thickness d = 2 nm. The SOT strength JL = 0, and
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（b）

（a）

Figure 4.4: Comparison between the original and magnon Klein paradox. The top
panel (green line) sketches the “potential" distribution while the bottom panel
sketches the dispersion relation of particles (red lines) and antiparticles (blue lines).
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JR = JℏθSH/(2Ms|e|d), where J is current density, θSH is the spin-Hall
angle of the heavy-metal layer, and e is electron charge. Here we use the
magnetic parameters of YIG/Pt, i.e., exchange coefficient A = 3.1×10−12 J/m,
saturation magnetization Ms = 1.92× 105 A/m, spin-Hall angle θSH = 0.1

[120], Gilbert damping α = 10−2. The inter-domain coupling Ai is assumed
to be a tunable coefficient and it is related to the coupling coefficient Jc

in the theory as Jc = −2Ai/d. The mesh size is 2× 2× 2 nm3. Absorptive
boundary conditions are taken on the left domain to eliminate the influence
of boundary reflection of magnons. The Mumax3 [121] package is employed
to numerically solve the LLG equation (5.2).

4.c correlations of incident, reflected, and transmit-
ted magnon spin current

In the main text, we consider a classical model in which the antimagnons
in the right domain can only be excited by an incoming magnon current
from the left domain dynamically stabilized by SOTs. Without an incoming
spin current from the left magnet, the right domain stays in the dynamically
stabilized state, where the magnetization is pointing against the external
field. Continuous emission of antimagnons would be present in a quantum
mechanical treatment of the problem since there is no true ground state of the
system. This can be interpreted as an analogue of Hawking radiation. Since
we are considering a classical theory in this Letter, spontaneous emission of
antimagnons is not captured by our classical model.

To verify the temporal correlation of antimagnon excitation and injected
magnons, we plot the evolution of incident, reflected and transmitted magnon
spin current in Fig. 4.5. Right after the microwave source located in the left
domain is turned on, the excitations of both magnons and antimagnons are
nearly zero [Fig. 4.5(a)], where the tiny excitations are mainly resulting from
the fluctuation of spins in the ground state. Around 0.5 ns, the magnons on
the left domain are significantly injected and propagate toward the interface
[Fig. 4.5(b)]. Around 0.7 ns, the magnons reach the interface of left and right
domains and inject the antimagnon current in the right domain [Fig. 4.5(c)].



102 enhanced magnon spin current using the klein paradox

Meanwhile, the reflected spin current appears and is amplified. As more
antimagnons are excited, the reflection also becomes stronger [Fig. 4.5(d)].
This indeed verifies the temporal correlation between incident, reflected and
transmitted magnon spin current.
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Figure 4.5: Evolution of incident, reflected and transmitted magnons at t = 0.05 ns
(a), 0.5 ns (b), 0.7 ns (c) and 1.0 ns (d), respectively. The microwave source located
on the left domain is turned on at t = 0 ns to excite magnons and then the magnons
propagate toward the interface 800 nm away from the microwave source. All the
other parameters are the same as Fig. 3(a) of the main text.
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NON-L INEAR DYNAMICS NEAR EXCEPT IONAL
POINTS OF SYNTHETIC ANTIFERROMAGNETIC
SP IN -TORQUE OSC ILLATORS

This Chapter is based on R. A. Duine, V. Errani, and J. S. Harms,
“Nonlinear dynamics near exceptional points of synthetic antiferro-
magnetic spin-torque oscillators,” Phys. Rev. B 108, 054428 (2023).
R.A.D. conceived the project, J.S.H. did the analytic calculations and
V.E performed the numerical simulations. V.E. and J.S.H. prepared
the manuscript. All authors contributed to the manuscript.

In this chapter, we consider a synthetic antiferromagnetic spin-torque os-
cillator with anisotropic interlayer exchange coupling. This system exhibits
exceptional points in its linearized dynamics. We find the non-linear dynam-
ics and the dynamical phase diagram of the system both analytically and
numerically. Moreover, we show that, near one of the exceptional points, the
power of the oscillator depends extremely sensitively on the injected spin
current. Our findings may be useful for designing sensitive magnetometers
and for other applications of spin-torque oscillators.

5.1 introduction

For the design of many applications, such as magnetometers, converters and
amplifiers, a strong response to perturbations is preferred. One way to achieve
this strong response, is to make use of the existence of exceptional points
(EPs) [122–124]. EPs are characterized by a square-root dependence of the
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imaginary part of the eigenfrequencies on some system parameters, which
enables a large dynamic response as a result of a small change in a parameter.
Mathematically, EPs correspond to the coalescence of different eigenvalues
and eigenvectors in parameter space [62, 125]. EPs are studied intensely since
they might lead to better sensors [122–124], and yield a variety of interesting
phenomena such as lasing [126], spontaneous emission [127], and give rise to
geometric phases when encircling them [128]. Examples of physical systems
that exhibit EPs are optical microcavities [129] and other photonic systems
[124, 130], optical lattices with engineered defects [131], electromechanical
systems [132], superconducting resonators [133], nodal superconductors [129],
semimetals [134–136] and magnetic systems [137–143]. While EPs have been
studied intensely in the linear regime, the non-linear regime remains relatively
unexplored.

In this Chapter, we consider a synthetic antiferromagetic (SAF) spin-
torque oscillator (STO), i.e., a spin-torque oscillator that consists of two
magnetic layers that are coupled by the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interactions. We consider the situation that one of the two magnetic
layers is driven by means of the injection of spin current. This could be
achieved by spin-orbit torque or by spin-transfer torque [144]. Generically,
an STO is a magnetic system in which the damping is compensated by the
injection of spin angular momentum from a spin current to yield precessional
magnetic dynamics [143, 145–147]. These oscillators have potential for a wide
range of applications, such as detectors, microwave signal sources [148, 149],
microwave-assisted magnetic recording and neuromorphic computation [150,
151].

The SAF STO that we consider has anisotropic RKKY coupling and
exhibits EPs in its linearized dynamics. We consider the full non-linear
dynamics analytically and find the limit cycles of the magnetization dynamics.
Moreover, we show that the dynamics becomes relatively simple close to
the EPs because the power and precessing frequency depend linearly on
the injected spin current. These analytical results agree with numerical
computations and lead to a complete understanding of the steady-state
behaviour of the system. Furthermore, we find from our analysis that the
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magnetization dynamics is extremely sensitive to small changes in parameters
in the sense that the slope of the steady-state power with respect to injected
spin current diverges close to one of the EPs. This result cannot be obtained
from a linear analysis and the non-linear description is therefore needed. A
complementary work to ours is that of Deng et al. [152] who numerically
consider the non-linear dynamics of an STO near a different type of EP.
Another recent closely-related complementary work is that of Ref. [153].

The remainder of this Chapter is organized as follows. In the next section, we
present the model and determine the eigenfrequencies and stability conditions
from a linear analysis. In the second section, we consider the non-linear
dynamics close to the EPs and find the limit circles of the magnetic dynamics.
In the third section, we consider the magnetization dynamics numerically
and find the dynamical phase diagram. We end with a brief conclusion and
outlook.

5.2 linear analysis

We consider a spin-torque oscillator composed of two RKKY coupled nano-
magnets subject to the same external magnetic field and uniaxial anisotropy,
see Fig. 5.1. For simplicity, we take both magnetic layers to be identical.
Furthermore, spin angular momentum is injected into the bottom magnetic
layer. The magnetic energy is given by

E =−B(mU,z +mL,z)−K(m2
U,z +m2

L,z)/2 (5.1)

− J⊥(mU,xmL,x +mU,ymL,y)− JzmU,zmL,z ,

where U denotes the upper- and L the lower macrospin, and mL/U,i the
i-th Cartesian component of the macrospin. Furthermore, K is the uniaxial
anisotropy constant, B > 0 the external magnetic field directed along the z

axis, J⊥ the in-plane RKKY interaction, and Jz its out-of-plane component.
We take the RKKY interaction to be anisotropic because, first of all, it will
typically be anisotropic, and second, the anisotropic coupling enriches the
phase diagram.
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Figure 5.1: A synthetic antiferromagnetic spin torque oscillator in an external
magnetic field Bẑ. Spin angular momentum is injected into the bottom magnetic
layer.

For temperatures below the Curie temperature the magnetization dynamics
is well described by the Landau-Lifschitz-Gilbert (LLG) equation with the
inclusion of the injected spin current

∂mν

∂t
= −mν × heff,ν + αmν ×

∂mν

∂t
+ Is,νmν × (mν × ẑ), (5.2)

with the effective field heff,ν = −γδE/δmν . Here, ν denotes either the lower
(L) or the upper (U) macrospin, α the dimensionless Gilbert damping and
Is,U = 0, Is,L = Is > 0 the spin current. The sign of the spin current is such
that it tends to align the bottom magnetic layer against the external field.
Since the Gilbert damping is typically small, α ≪ 1, we work in most of
what follows to lowest order in α and discard terms of the order αIs as well.
Furthermore, we set γ = 1 so that B,K, J⊥ and Jz have units of frequency.

For the case that K > 0, the magnetic energy (5.1) yields four configurations
where the torques on the magnetization direction in both layers vanish
simultaneously: these are both layers pointing up, both pointing down, and
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the two anti-parallel configurations. Depending on the parameters, these
configurations are energy extrema that are stable, or unstable. For large
fields, the configuration with both spins pointing up is stable. For large spin
currents, the bottom layer is forced to point downward, while, depending on
the strength and sign of the RKKY coupling, the top layer may point down
or up.

The most interesting configuration for our purposes is the antiparallel
configuration. As we shall see below, the linearized dynamics around this
configuration yields an EP. This may be anticipated because, in the absence
of dissipation, i.e., when α = 0 and Is = 0, the antiparallel configuration in an
external field is reminiscent of a system of two coupled harmonic oscillators
with one of the oscillators having a potential energy that is inverted. This
latter system is known to yield an EP [154]. Because Is > 0 we consider the
situation where the bottom magnetic layer is pointing against the field.

We investigate the stability of a given magnetic state by linearizing the LLG
equations for small deviations around that state. For the reasons mentioned
above, we focus on the antiparallel configuration with the magnetization
of the bottom layer pointing against the external field, which yields the
eigenfrequencies

(α2 + 1)ω± = B − iα(K − Jz)− (i− α)Is/2

±
√
[K − Jz − iαB + (i− α)Is/2]2 − (α2 + 1)J2

⊥ . (5.3)

From this expression, we find that the parameters for which the system
exhibits an EP by setting the expression under the square root equal to zero.
To lowest order in α and Is this yields J2

⊥ = (K − Jz)
2 and Is = 2αB. Close

to this EP and, in particular, when the expression underneath the square-
root is negative, the imaginary part of the eigenvalues depends strongly on
small changes in parameters. Physically, this implies that a small change
in parameters may yield a strong dynamic response, because a positive
imaginary part of the eigenfrequency corresponds to exponential growth of
small-amplitude fluctuations. By determining when the imaginary part of the
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above eigenfrequency changes sign, we find that the antiparellel configuration
is stable when

Is
2α

>
−K − Jz + |K − Jz|B/

√
(K − Jz)2 − J2

⊥

1 + |K − Jz|/
√
(K − Jz)2 − J2

⊥

, (5.4a)

Is
2α

<
−K − Jz − |K − Jz|B/

√
(K − Jz)2 − J2

⊥

1− |K − Jz|/
√

(K − Jz)2 − J2
⊥ .

. (5.4b)

In the next section we focus on the non-linear dynamics outside this range
of dynamical stability. As we shall see, the power of the STO is extremely
sensitive to small changes in the current around this EP for K > 0, but not
when K < 0.

5.3 non-linear dynamics

In this section we discuss the non-linear dynamics of the system described in
Section 5.2 and in specifically focus on the limit cycles of the model.

The reactive dynamics is formulated by means of the Poisson bracket
{mα,mβ} = ϵαβγmγ . From here we define the canonical coordinates pU/L =

mU/L,z and θU/L = arctan(mU/L,y/mU/L,x), that correspond to the total
power and angle of the oscillator and which have non-zero Poisson brackets
{pU/L, θU/L} = 1. We continue performing yet another coordinate transfor-
mation that makes use of the rotational symmetry around the z-axis:

µ = (pU + pL)/2, η = (pU − pL)/2,

θ = θU + θL, ϕ = θU − θL,
(5.5)

where µ ∈ [−1, 1] and η ∈ [−1 + µ, 1 − µ]. The above coordinates have
{µ, θ} = 1 and {η, ϕ} = 1 as non-vanishing Poisson brackets. In these
coordinates the Hamiltonian (internal energy) in Eq. (5.1) becomes

h ≡ E =− 2Bµ−K(µ2 + η2)− Jz(µ
2 − η2) (5.6)

− J⊥
√
[1− (µ+ η)2][1− (µ− η)2] cos(ϕ),
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where the rotation symmetry around the z-axis ensures that the right-hand
side of the above does not depend on θ. The Hamilton equations of motion
are accordingly given by

µ̇ ={µ,E} = {µ, θ}∂θE = 0, (5.7a)

θ̇ =2B + 2(K + Jz)µ− 2J⊥µ(1 + η2 − µ2) cos(ϕ)√
[1− (µ+ η)2][1− (µ− η)2]

, (5.7b)

ϕ̇ =2(K − Jz)η − 2J⊥η(1 + µ2 − η2) cos(ϕ)√
[1− (µ+ η)2][1− (µ− η)2]

, (5.7c)

η̇ =2J⊥
√

[1− (µ+ η)2][1− (µ− η)2] sin(ϕ), (5.7d)

where the rotation symmetry guarantees that the total power is conserved.
For the limit cycles we expect ϕ̇ = η̇ = 0, since both spins experience the
same magnetic field strength and are thus expected to have equal angular
velocity. Using this ansatz, we find two possible expressions for the difference
in power η in terms of the total power µ for J2

⊥ < K2, which are given by

η = 0, η2 = 1 + µ2 − 2|K − Jz||µ|√
(K − Jz)2 − J2

⊥

. (5.8)

In case J2
⊥ > (K − Jz)

2 we are only left with η = 0 as a solution, since we
require η to be real.

The model under consideration furthermore has dissipative contributions
in the form of Gilbert damping and the injection of spin angular momentum.
Up to first order in the Gilbert damping constant α the dynamics of total
power µ and the relative power η due to Gilbert damping is given by

µ̇/α = [B + (K + Jz)µ] (1− µ2 − η2)− 2(K − Jz)η
2µ

−J⊥
√

[1− (µ+ η)2][1− (µ− η)2] cos(ϕ)µ (5.9a)

=B(1 + µ2 − η2) + [h+ Jz +K(1− 2η2)]µ.

η̇/α =
[
− 2Bµ+K(1− 3µ2 − η2)− Jz(1 + µ2 − η2)

−J⊥
√

[1− (µ+ η)2][1− (µ− η)2] cos(ϕ)
]
η. (5.9b)

=[h+K(1− 2µ2)− Jz]η.
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The influence of SOT, up to first order in Is, on the dissipative dynamics is,
on the other hand, given by

µ̇/Is =[(µ− η)2 − 1]/2, (5.10a)

η̇/Is =[1− (µ− η)2]/2. (5.10b)

With this set up we are in the position to discuss the limit cycles of the
model and their stability. Again for all values of J⊥, η = 0 will be a solution
of ϕ̇ = η̇ = 0. Furthermore, for J2

⊥ < K2 we additionally have η2 = 1 + µ2 −
2|K||µ|/

√
K2 − J2

⊥ as a solution. Below we address limit cycles and stability
in for the solution η = 0, which covers, as we shall see, the behaviour near
the EP. For completeness, we address the other type of limit cycles and their
stability in Sections 5.A to 5.D.

When η = 0 the equation for the total power µ becomes

µ̇/α =[B − Is/2α+ (K + Jz − |J⊥|)µ](1− µ2). (5.11)

This has two steady state solutions

µ = ±1, µ =
B − Is/2α

|J⊥| − Jz −K
, (5.12)

with µ = mU,z = mL,z. The first solution describes both macrospins aligning
in the ±ẑ direction. The second solution on the other hand describes the
limit cycle towards which the system converges for sufficiently large times.
Furthermore, this limit cycle has a precessional frequency of

θ̇ = Is/α. (5.13)

From the fixed point analyses presented in Section 5.B these fixed points
are stable if ∂µµ̇ < 0 and |J⊥|(1 + µ2) > (K − Jz)(1 − µ2). Alternatively,
these limit cycles are unstable if one of the above constraints is not satisfied.
The limit cycle solution µ = (B − Is/2α)/(|J⊥| − Jz −K) is thus stable if
max

[
K + Jz, (K − Jz)(1− µ2)/(1 + µ2)

]
< |J⊥|. While the static solution

with µ = ±1 on the other hand is stable if ∓(B − Is/2α) < K + Jz − |J⊥|.
In conclusion, we find that the power of the SAF is quite sensitive to small

perturbations around the point |J⊥| ≳ K + Jz, where the slope of the total
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power µ = mU,z = mL,z with respect to Is/2α is given by (|J⊥| − Jz −K)−1

in Eq. (5.12). The total power of the oscillator therefore depends sensitively
on injected spin current around this point. Hence, we find an enhanced
sensitivity if K + Jz > 0 for J⊥ > K + Jz.

5.4 numerical results

In this section we determine all the dynamical phases of the synthetic anti-
ferromagnetic oscillator using numerical solutions. For concreteness, we focus
on the case that Jz = 0. We solve the LLG equation (5.2) numerically for
different values of the coupling J⊥ and current Is starting from the antipar-
allel configuration with a small initial perturbation. In Fig. 5.2 we present
the long-time behaviour in each region of the dynamical phase diagram, with
the blue spin denoting the magnetic layer that is driven by spin current. We
note that a change in the external magnetic field B results in a rigid upward-
or downward shift of the phase diagram. The black lines in Fig. 5.2 are the
analytically predicted phase boundaries from Eqs. (5.4) and (5.12). We find
a very good agreement between the analytic predictions and the results from
numerical solutions.

There are three regions where the spin configuration is static (I, II, and
III), and one region, IV, where the magnetization is oscillating. The region
in Fig. 5.2 with J⊥ < K may be interpreted in the following way. If we start
from zero coupling and increase the current we observe that the configuration
is initially parallel with both macrospin aligned upward (region I). This is
what we expect since for small values of the current the spin current is not
large enough to compensate the Gilbert damping and the two macro-spins
both align with the external magnetic field. Increasing the current further,
the system is able to keep the initial configuration (region II), since now
the current is enough to compensate for the damping (light-blue macro-
spin pointing downwards), but the coupling is too small to make the white
macrospin, i.e., the magnetic layer into which no spin current is injected, flip.
Indeed for increasing values of the coupling and sufficiently high current both
macro-spins are aligned against the external field (region III).
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Figure 5.2: Dynamical phase diagram for K > 0 as a function of coupling J⊥ and
current Is. The analytical predictions from Eqs. (5.4) and (5.12) are plotted as the
black lines. The steady-state configuration is indicated for each region. The region
IV correspond to oscillations. The z-component of the magnetization in this region
depends on the injected spin current. We took B/K = 1.5 and Jz = 0.

Figure 5.3: Plot of the z direction of the macrospins in both synthetic layers as a
function of the current Is. The three different lines correspond to different values in
the coupling strength (J⊥/K = 1.2, 1.6, 2), with the steeper slope corresponding to
decreasing J⊥. These values are depicted by the dotted lines in Fig. 5.2. Parameters
taken are B/K = 1.5 and Jz = 0.
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When considering the non-linear behaviour beyond the EP, region IV is
of most interest. In this region the two macro-spins are oscillating, with a
frequency Is/α depending only on the current Is and the damping α. These
two macrospins exhibit nearly parallel orientations for positive values of the
coupling and antiparallel orientations for negative values. In Fig. 5.3 we show
the z component of the magnetization as a function of the current Is, in which
the different lines correspond to the vertical dashed lines in Fig. 5.2. The
numerical simulations confirm that the current and the macrospin orientation
are related in a linear way given by Eq. (5.12).

We have focused on the situation that Jz = 0, which is the most interesting
because all the four phases (I, II, III, IV) meet at one point . In fact, starting
from (Fig. 2) and increasing Jz, only the three regions I, III and IV meet
at the two points, since the antiparallel region progressively shrinks and
the points shift outward. If instead we consider negative values of Jz, the
antiparallel region progressively enlarges and the region I decreases.

5.5 discussion and conclusions

We analytically and numerically explored the non-linear behaviour of a
synthetic antiferrmagnetic spin-torque oscillator with anisotropic RKKY
coupling. We found that the EP which is found in its linearized dynamics
leads to enhanced sensitivity of the power of the oscillator, in particular as a
function of injected spin current. This enhanced sensitivity may be used to
engineer magnetometers or sensors of spin current. Furthermore, recent work
shows that it is possible to use spin torque nano-oscillators to implement
different computing schemes and to classify waveforms [151]. Moreover, spin-
torque oscillators may be used as tunable spin-wave emitters that excite a
specific spin wave depending on the current. We expect that the enhanced
sensitivity we predict is an asset for such applications.

Regarding the experimental realization of our model, an ingredient is the
anisotropic interlayer coupling. This anisotropic exchange coupling is not
essential but makes the phase diagram much richer. Anisotropic exchange
coupling has been proposed and experimentally observed in Refs. [155, 156].
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The required anisotropies may be engineered by interfaces with heavy metals
and/or engineering the shape of the magnetic layers, whereas the interlayer
coupling may be tuned by varying the thickness of the non-magnetic spacer.
In our approach we have relied on a macrospin approximation. This is a
good description and is in agreement with micromagnetic simulation and
experimental results for STOs with diameters < 30 nm [157].

Future work could focus on the inclusion of thermal fluctuations. We expect
that these will affect the phase but not the orientation or the amplitude of
the oscillations. Finally, we hope that our work, together with that of Deng et
al. [152], inspires the operation of STOs near EPs. In fact, while resubmitting
this work a recent preprint appeared [158] which has experimentally observed
EPs in STOs, albeit in a set-up that is slightly different from ours.
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5.a second type of limit cycles for J 2
⊥ < K 2 for Jz → 0

For J2
⊥ < K2 we also need to consider η2 = 1 + µ2 − 2|K||µ|/

√
K2 − J2

⊥ as

a solution to ϕ̇ = η̇ = 0. Using the above ansatz we find that Eqs. (5.9a)
and (5.10a) give

µ̇/α =

[
B +Kµ− Is

2α

]−2µ2 +
2|K||µ|√
K2 − J2

⊥

− µ
J2
⊥
K

2|K||µ|√
K2 − J2

⊥

(5.14)

−2Kµ

1 + µ2 − 2|K||µ|√
K2 − J2

⊥

− Is
α
sgn(η)µ

√√√√1 + µ2 − 2|K||µ|√
K2 − J2

⊥

.

In first instance we note that µ = 0 gives a static solution to the above
equation. This describes the configuration in Fig. 5.1, in which two spins
point in opposite direction. From Section 5.C it follows that a requirement
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for stability of this phase is ∂µµ̇ < 0 at the fixed point. This requirement for
stability, with sgn(η) = 1, becomes

−K − |K|B/
√
K2 − J2

⊥

1− |K|/
√

K2 − J2
⊥

>
Is
2α

>
−K + |K|B/

√
K2 − J2

⊥

1 + |K|/
√
K2 − J2

⊥

. (5.15)

These are precisely the same conditions as in Eq. (5.4) for Jz → 0. The fixed
point with sgn(η) = −1 on the other hand is stable if

K + |K|B/
√

K2 − J2
⊥

1 + |K|/
√
K2 − J2

⊥

>
Is
2α

>
−K + |K|B/

√
K2 − J2

⊥

−1 + |K|/
√
K2 − J2

⊥

. (5.16)

we see that the configuration with sgn(η) = −1 is always unstable, since
there is no interval for stability.

In order to make progress in the regime where we expect limit cycles we
rewrite Eq. (5.14)

g(Is, µ) = µ̇/α|µ| (5.17)

= (1− 2ϵ|µ|)×
[
2K[µ− sgn(µ)ϵ] +

(
B − Is

2α

)]
− sgn(µ)ϵ

Is
α
η(µ),

where ϵ ≡
√

K2 − J2
⊥/2|K| ∈ (0, 1/2). Let us analyse te above equation in a

bit more detail. We assume that µ > 0 at the fixed point, from here we find
that Eq. (5.17) implies

Is
2α

=
B + 2K(µ− ϵ)

1 + 2ϵη/(1− 2ϵµ)
. (5.18)

From Section 5.C we find the stability requirement µ̇ ≤ 0 for limit cycles
of Eq. (5.17) to be

Is
2α

1− 4ϵ2

(1− 2ϵµ)2
+ 2Kη <0. (5.19)

We like to find the minimal current Is for these limit cycles to be stable,
hence we like to find the current for which Eq. (5.19) is zero, in other words
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∂µµ̇ = ∂µg(Is, µ)|Is(µ) = 0. On the other hand we know g(Is(µ), µ) = 0 is
the limit cycle –fixed point– condition. From here we find dµg(Is(µ), µ) =

(∂Isg)(∂µIs) + ∂µg = 0, and hence ∂µIs = 0 ↔ ∂µg ≡ ∂µµ̇ = 0. Thus when
looking for the critical current it is sufficient to consider ∂µIs = 0. We proceed
by writing Eq. (5.18) as

(1− 2ϵµ+ 2ϵη)Is/2α = (1− 2ϵµ)(B + 2K(µ− ϵ)).

Furthermore, we take the derivative with respect to µ of the above and note
that we are considering points which satisfy ∂µIs = 0. This leaves us with

(1− 2ϵµ+ 2ϵη)Is/2α = [2ϵ(B + 2K(µ− ϵ)) + 2K(1− 2ϵµ)]η.

which according to Eq. (5.18) gives us

(1− 2ϵµ)(B + 2K(µ− ϵ)) = [2ϵB − 2K(1− 4ϵµ+ 2ϵ2)]η. (5.20)

In order to proceed we assume η2 ≪ 1 around the critical current. A conse-
quence of the above is that we assume µϵ − δµ ≪ 1 with

µϵ =
1

2ϵ

(
1−

√
1− 4ϵ2

)
, (5.21)

and from relation (5.8) we see that η2 ∼ (2ϵ)−1
√
1− 4ϵ2 δµ at linear order in

δµ and η2. By squaring Eq. (5.20) and expanding up to linear order in δµ we
find the solution to be

2δµ ∼
√

1

4ϵ2
− 1

[
K
(
1− 2ϵ2 −

√
1− 4ϵ2

)
+ ϵB

]2
[
K
(
1− 2ϵ2 − 2

√
1− 4ϵ2

)
+ ϵB

]2 . (5.22)

Accordingly the critical current is well approximated by using Eq. (5.18)

Is,c ≃ Is(µϵ − δµ). (5.23)

We thus have two forms of stable limit cycles for −|J⊥| < K < 0 and Is > Is,c,
namely one described in Section 5.3 where η = 0 and one with η ̸= 0 which
we described in this Appendix.
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5.b stability requirements for limit cycles with η = 0

To perform the stability analyses, we first determine the fixed points in ϕ

and η up to first order in dissipative terms. Including dissipative correc-
tions Eq. (5.7d) become

δη̇ = 4|J⊥|(1− µ2)δϕfp −
Is
2
(1− µ2) = 0. (5.24)

The above implies δϕfp = Is/8|J⊥|. We continue the stability analyses by
linearizing around the fixed point η = 0, sin(ϕ) = Is/4J⊥ and µ = (B −
Is/2α)/(|J⊥| −K),

ϕ̇

η̇

µ̇

 =


0 γϕη 0

γηϕ ϵηη 0

0 ϵµη ϵµµ



δϕ

δη

δµ

 . (5.25)

Where γ is zeroth order in α and Is, and ϵ is first order in dissipation. The
eigenvalues λ of the above matrix are given by

(ϵµµ − λ)[(ϵηη − λ)λ− γηϕγ
ϕ
η ] = 0. (5.26)

Hence, one eigenvalue is given by ϵµµ and the real part of the other two
eigenvalues is given by ϵηη. The fixed point is stable if the real part of all
eigenvalues is negative. The constraint ϵµµ < 0 precisely gives ∂µµ̇ < 0

in Eq. (5.11). The requirement that ϵηη < 0 on the other hand gives ϵηη/α =

(K − Jz)(1− µ2)− |J⊥|(1 + µ2) < 0, which is satisfied for K − Jz < |J⊥|.

5.c stability requirements for limit cycles with η ̸= 0

In case η ̸= 0, the angle ϕ shifts due to dissipative corrections on Eq. (5.7d).
We denote this shift by δϕfp. We find that the linearized equations of motion
around the fixed point give

ϕ̇

η̇

µ̇

 =


ϵϕϕ γϕη γϕµ

γηϕ ϵηη ϵηµ

0 ϵµη ϵµµ



δϕ

δη

δµ

 . (5.27)
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With γ zeroth order in α and Is, and ϵ first order in dissipation. The eigenval-
ues λ of the above matrix are given by the third order polynomial equation

(ϵµµ − λ)[(ϵϕϕ − λ)(ϵηη − λ)− γηµγ
ϕ
η ] + γηµγ

ϕ
µϵ

µ
η − ϵµµϵ

η
µ(ϵ

ϕ
ϕ − λ) = 0. (5.28)

Hence, the eigenvalues – up to first order in α and Is are given by λ1 =

ϵµµ − (γϕµ/γ
ϕ
η )ϵ

µ
η and λ± = (ϵϕϕ + ϵηη)/2 ±

√
γηϕγ

ϕ
η ± ϵµηγ

η
ϕγ

ϕ
η /
√
γηϕγ

ϕ
η . Since

we’re only interested in the real part of the eigenfrequencies for our stability
analyses, we find that the limit cycle is stable if

Re(λ1 ) = ϵµµ − (γϕµ/γ
ϕ
η )ϵ

µ
η = ϵµµ + (∂µη)ϵ

µ
η = ∂µµ̇ ≤ 0, (5.29a)

Re(λ±) = (ϵϕϕ + ϵηη)/2 ≤ 0. (5.29b)

First we note that (ϵϕϕ+ ϵηη)/2 = (µ− η)Is/2α−µ(B+2K(µ− ϵ)) ≤ 0, which
implies sgn[B+2K(µ− ϵ)]η > 0. This condition is satisfied at the limit cycle.
Hence we’re left with the stability condition ∂µµ̇ ≤ 0.

5.d phase diagram for K < 0 with Jz → 0

In this appendix we describe the phase diagram in case K < 0, which is
given in Fig. 5.4. For J2

⊥ > K2 this system once again only has limit cycles
with η = 0 and the dynamics of the system is described by Eqs. (5.12)
and (5.13). On the other hand, when K2 < J2

⊥, two types of limit cycles
are stable if Is > Is,c, as we have seen in Sections 5.A, 5.C and 5.3. One
of these limit cycles has η = 0 and is described by Eqs. (5.12) and (5.13).
The stability requirement |J⊥|(1 + µ2) > K(1− µ2) for K < 0, in this case
leads to (B − Is/2α)

2 < (K − J⊥)
3/(J⊥ + K). The second type of limit

cycle has η ̸= 0 is discussed in Section 5.A and only exist for current larger
then Eq. (5.23). We denote the region in Fig. 5.4 in which both limit cycles
exist as the hysteretic regime.

The regions of stable static configurations with η = 1 and µ = 0 are given
by Eqs. (5.11) and (5.15). Additionally, we find the region of stability with
µ = ±1 and η = 0 by requiring ∂µµ̇ < 0 on Eq. (5.11). This results in
B − Is/2α < ∓(K − |J⊥|).
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Figure 5.4: Numerical phase diagram for the case K < 0 as a function of coupling J⊥
and current Is. In black the analytical predictions from Eqs. (5.4), (5.15) and (5.23)
are plotted. In each region the corresponding long time configuration is indicated.
The regions for large and small J⊥ correspond to oscillations. The z-component of the
magnetization in this region depends on the injected spin current. The characteristic
of the hysteretic region is the dependence of the long-time configuration on the
initial conditions. We took B/K = 1.5 and Jz = 0.
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6.1 introduction

An important topic in magnonics is the ability to inject, detect and control
magnons using electrical currents. Coherent excitation of magnons typically
uses alternating currents (AC)— using for instance antennas —, while direct
currents (DC) are usually used to excite magnons diffusively using spin Hall
effect (SHE) to create a local spin accumulation. Although excitation of
coherent magnons with AC currents is relatively straightforward, excitation
of coherent magnons using DC currents is usually more complex and relies
on injection of angular momentum with either spin-transfer-torque (STT) or
spin-orbit-torque (SOT). Since efficient excitation of magnons by electrical
current is crucial to combine magnonic devices with electronic devices, the
ability to inject coherent magnons with DC currents is significant towards
the technological use of magnonics.

One possibility to inject coherent magnons using DC currents was put
forward by Slonczewki [67] and Berger [159, 160]. In their proposals, they
argued that a spin-polarized current could be used to drive magnetic precession
or reorient the magnetization. To achieve this spin-polarized current, an
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Figure 6.1: Figure of the setup we propose in this Chapter.

electric current is run through a fixed magnet layer, creating a STT on the
free magnetic layer. These devices, as put foreward by Slonczewki and Berger,
are described in the literature as spin-torque nano oscillators (STNOs) or
spin-wave amplification by stimulated emission of radiation (SWASER). The
injection of angular momentum in these devices gives rise to an angular
precession of the free magnetization, which in turn stimulates the emission
of spin waves [161–163]. Experimentally, the macrospin precession [164],
magnetization reversal [165] and spin wave emission [166–169] in STNOs
or SWASERs have been observed. Although coherent spin-wave emission
using an STNO should be possible, in practice it seems difficult to get
single mode coherent spin-wave emission and usually a handfull of modes
with a wavelength determined by the size of the STNO are excited and the
frequency of excited spin waves depends on the injected current due non-linear
interactions [161, 162]. Besides spin-torque oscillators (STOs) based on the
injection of spin angular momentum using STT, angular momentum can
also be injected into a magnet layer using the SHE, creating an SOT in the
magnetic layer. The use of SOT rather than STT has the advantage that the
spin current that is injected into the magnetic layer is perpendicular to the
charge current. This allows for the injection of angular momentum in both
insulating and conducting magnets, and gives a torque that can be exerted
over a much larger area as compared to STT. SOT-based spin-wave emitters
should be similar to the ones proposed by Slonczewki and Berger and hence
also face the similar challenges injecting coherent spin waves [170–172].
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In this Chapter, we propose a setup to excite coherent spin waves using
SOT, in which spin waves are coherently excited by coupling to a confined
spatial region with negative energy spin waves, see Fig. 6.1. We will show
that there exist regimes in coupling strength, size of the system and injected
angular momentum for which it becomes a single mode laser for spin waves
in the non-linear regime. This setup should have the advantage that it is
tunable and does not experience a non-linear frequency shift depended on
the injection of angular momentum.

Fundamentally, the setup under consideration is quite different from a
usual STO or SWASER setup [67, 159, 160] and is considered in the literature
on analogue gravity as a realization of a black-hole laser [26, 41]. The main
difference is the fact that a black-hole laser starts lasing in the linear regime
without the need of dissipation. This instability can exist due mode coalescence
between positive energy modes in the left magnet and a negative energy mode
in the right magnet. In short, negative magnetic energy spin-waves form
closed orbits of specific frequencies, which — for sufficiently strong coupling
strengths — become self amplified and hence start lasing. On the other hand,
the conventional STOs or SWASERs start lasing due to pumping of specific
mode(s) and hence require dissipation for the onset of the laser. For stability
of our black-hole lasing setup we, on the other hand, need to dynamically
stabilize the system by injecting angular momentum into the right magnet in
the form of SOT.

6.2 model

We consider a set-up of two exchange coupled ferromagnetic thin insulating
films subject to an external magnetic field pointing along the z direction. The
right film is subject to SOTs keeping the equilibrium magnetization against
the direction of the external magnetic field. We assume temperatures far below
the Curie temperature for which amplitude fluctuations of the magnetization
are negligible. Accordingly, the dynamics of the magnetization direction
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n = M/Ms is well described by the Landau-Lifschitz-Gilbert equation (LLG)
with spin orbit torques given by

∂tnν − αn× ∂tnν = −γnν ×Heff,ν + Jνnν × (ẑ × nν), (6.1)

where ν ∈ {L,R} denotes the left or right ferromagnet. The LLG equation
describes damped precession around the effective magnetic field strength
Heff,ν = −δEν/(Msδn). Here, we consider the magnetic energy functional
Eν [n] in both magnets to be of the form

Eν =Ms

∫
dV

{
J

2
(∇inν)

2 − µ0Hνnν,z

}
, (6.2)

with J the exchange constant and He the external magnetic field strength.
In the above α is the dimensionless Gilbert damping constant and Jν char-
acterizes the SOTs — which is only non-vanishing in the right ferromagnet.
In principle, anisotropies can relatively straightforwardly be included in the
above energy functional, but we don’t expect them to change the qualitative
physics and omit them here for brevity.

We proceed by defining the canonical coordinate Ψ to be
√

2− |Ψ|2Ψ =

(x̂∓ iŷ) · n and notice that nz = ±(1− |Ψ|2) – since the magnetization lives
on the sphere. In these coordinates the energy functional (6.2), up to fourth
order in Ψ and Ψ∗, becomes

Eν ≃ Ms

∫
dV

{
J
(
1− |Ψν |2/2

)
(∂xΨ

∗
ν)(∂xΨν) (6.3)

+
J

4

(
∂x|Ψν |2

)2 ∓ µ0He

(
1− |Ψν |2

)}
.

To incorporate the effect of dissipation, that is, Gilbert damping and SOT, in
these canonical coordinates we introduce the Rayleigh dissipation functional

Wν =
Ms

γ

∫
dV
{α
2
(∂tnν)

2 − Jν ẑ · (nν × ∂tnν)
}

(6.4)

=
Ms

γ

∫
dV
{
α
[
1− |Ψν |2/2

]
(∂tΨ

∗
ν)(∂tΨν) +

α

4
(∂t|Ψν |2)2

±iJν
[
1− |Ψν |2/2

]
(Ψν∂tΨ

∗
ν −Ψ∗

ν∂tΨν)
}
.



6.2 model 127

We stress that the Rayleigh dissipation functional is also expanded up to
fourth order in the fields Ψν and Ψ∗

ν . The Euler-Lagrange equations with
Rayleigh dissipation yields the two equations of motion describing the non-
linear magnetization dynamics

i∂tΨν ≃ −Λ2(1− |Ψν |2/2)∂2
xΨν − Λ2

(
∂2
x|Ψν |2

)
Ψν/2 (6.5)

−Λ2(∂xΨ
∗
ν)(∂xΨν)Ψν/2± hΨν

+α
[
1− |Ψν |2/2

]
(∂tΨν) + α(∂t|Ψν |2)Ψν/2

±iIν
[
1− |Ψν |2/2

]
Ψν ,

where the second equation of motion is given by the complex conjugate of
the above. In the above we defined the dimensionless time t → t/γµ0Ms, the
exchange length Λ =

√
J/γµ0Ms, the dimesionless SOT Iν = Jν/γµ0Ms and

the dimensionless magnetic field h = He/Ms.
We find the linear spin-wave excitations in the left and right magnet using

a plane wave ansatz and linearizing the equation of motion. This gives the
following dispersion relation for spin waves

ωL = Λ2(kL)2 + hL − iαReωL, (6.6a)

ωR = Λ2(kR)2 − hR − i(IR + αReωR), (6.6b)

where ωL/R gives the dispersion in the left and right magnet respectively with
kL ∈ R and kR = πm/L with m ∈ N — since the right ferromagnet has finite
size. Dynamical stability of the right ferromagnet, at the linear level, in the
absence of coupling between the left and right magnet, requires ImωR < 0.
We thus find that the SOT should satisfy −IR > αhR for the right magnet
to be dynamically stable. From this point onward we ignore Gilbert damping
in the left magnet and, for future purposes, note that the wavenumber of the
left moving mode in the left magnet at the precessional frequency ω is given
by ΛkLl = −

√
ω − hL.
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Next, we determine the boundary conditions between the continuum of
magnons in the left ferromagnet and the discrete states in the energetically
unstable right ferromagnet. The RKKY interaction energy of the magnets is

Eint = −JcnL · nR|x=0 = Jc

[
(1− |ΨL|2)(1− |ΨR|2) (6.7)

−
√

(1− |ΨL|2/2)(1− |ΨR|2/2)(ΨLΨR +Ψ∗
LΨ

∗
R)
]
|x=0.

From here we find the boundary conditions by employing the variational
derivative at the boundaries. This yields the boundary condition at the left
RKKY interface

J(1− |ΨL|2/2)∂xΨL + JΨL∂x|ΨL|2/2 = (6.8)

Jc

[√
(1− |ΨL|2/2)(1− |ΨR|2/2)Ψ∗

R + (1− |ΨR|2)ΨL

−
√

(2− |ΨR|2)/(2− |ΨL|2)(ΨLΨR +Ψ∗
LΨ

∗
R)ΨL/4

]
.

The boundary condition at the right RKKY interface is similar with ΨL ↔ ΨR

and ∂x → −∂x.
We proceed by treating the spin wave fluctuations in the left ferromagnet to

be much smaller in amplitude than the amplitude of the standing wave in the
right ferromagnet. This assumption follows from energy conservation at the
weakly coupled interface and by noting that we only allow for outgoing modes
in the left magnet. As a result we treat the continuum in the left ferromagnet
using linear spin-wave theory, while treating the right ferromagnet non-linearly.
We furthermore assume −ΛkLl ≫ Λc, which corresponds to weak coupling.
The boundary condition in Eq. (6.8), for weak coupling strengths, becomes
J∂xΨL|x=0 ≃ Jc

√
1− |ΨR|2/2Ψ∗

R.|x=0 This leaves us with

iΛkLl ΨL|x=0 ≃ Λc

√
1− |ΨR|2/2Ψ∗

R|x=0, (6.9)

with Λc = Jc/Λγµ0Ms.
Rather than incorporating the RKKY interaction at the right interface as

a boundary condition, we include this interaction as a boundary term in the
equation of motion of the right ferromagnet after which we substitute Eq. (6.9).
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The contribution of the RKKY interaction to the equation of motion of ΨR,
in this instance, gives

δEint/δΨ
∗ =
[
ΛcΛΨR − i(Λ2

c/k
L
l )(1− |ΨR|2/2)ΨR

]
δ(x), (6.10)

which should be added to the equation of motion in Eq. (6.5). The first
term in the above describes an energetic boundary contribution, while the
second term gives the flow of energy from the right ferromagnetic to the left
ferromagnet.

6.3 non-linear analyses of the spin-wave lasing mode

Because the RKKY coupling between the left and right magnet is small com-
pared to their exchange coupling, it is natural to consider a mode expansion
which satisfies the exchange boundary conditions, ∂xΨ|x∈{0,L} = 0, at the
boundaries in the right magnet

ΨR =
∑
m

Am(t)eiϕm(t)e−iωmt

√
2− δn,0

L
cos[kmx]. (6.11)

with km = πm/L for m ∈ N and ωm = Λ2k2m+hR the precessional frequency
of the right magnet. We note that the energetic boundary contribution of the
RKKY interaction could in principle be included using the Sturm-Liouville
expansion. We however disregard this. Since we consider α, IR and Λ2

c to be
small, there is no need to include this correction up to first order in these
parameters. In the above expansion, we explicitly expect the timescale in
which An and ϕn changes to be much larger then the timescale set by ω−1

n .
We are ultimately interested in the possibility of limit cycles at finite

amplitude because they will correspond, as we shall see, to lasing or coherent
emission of spin waves. We start with the approximation in which only one
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non-uniform mode is present. For a non-uniform mode, n ≠ 0, the equations
of motion in Eq. (6.5) become

∂tϕn ≃− α(∂TAn)(1 + 3A2
n/4L) + 2ΛcΛ/L, (6.12a)

∂tAn ≃− (2Λ2
c/k

L
l L)(1−A2

n/L)An (6.12b)

− (αωn − α∂tϕn + IR)(1− 3A2
n/4L)An.

The first equation gives corrections to the processional frequency due to
amplitude fluctuations and the RKKY interaction. The second equation
describes the dissipative dynamics of the amplitude of the n-th spin-wave
mode. As we have seen before, the linear equation of motion in Eq. (6.6b)
predicts that IR > αhR for the spin waves in the right ferromagnetic to be
stable to start with. Furthermore, Eq. (6.12b) predicts the onset of a linear
instability for coupling strengths Λc exceeding −2Λ2

c/k
L
l,nL > IR+αωn, where

we used the shorthand notation kLl,n ≡ kLl (ωn) = −
√
ωn − hL. Hence, the

closed orbits of negative energy spin waves become self amplified for sufficiently
strong coupling strengths. This instability is due to mode coalescence between
spin waves in the left ferromagnet and the negative energy standing waves in
the right magnet [43]. The mechanism behind this is similar to the formation of
an exceptional point [44]. Including the non-linear contributions in Eq. (6.12b),
we find the amplitude of the self amplified mode to be stabilized by the non-
linear interactions and to be given by

A2
n

L
≃ xn − 1

xn − 3/4
, (6.13)

with xn = −2Λ2
c/(αωn + IR)k

L
l,nL > 1.

We may express the emitted spin current in terms of the above spin wave
amplitude. This can be done since the amplitude of emitted spin waves
is related to the amplitude of the spin wave mode in the right magnetic
via Eq. (6.9). We further define the dimensionless spin-current in the left
ferromagnet by iJspin = ΨL∂xΨ

∗
L −Ψ∗

L∂xΨL. This yields that the coherent
spin current carried by spin waves of frequency ωn emitted by this lasing
setup is given by

Jspin = |AL|2ΛkLl,n, (6.14)
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with |AL|2 = 2(Λc/Λk
L
l,n)

2(1 − A2
n/L)A

2
n/L. In the proceeding section we

consider the current interval for which this one-mode laser remains stable.

6.4 current interval for a stable one-mode laser

From this point onwards we consider the n-th mode to be the linearly most
unstable mode and the interaction between this lasing mode and the other
modes close to the resonant condition ωn′ = ωn1 −ω∗

n2
+ωn3 , with n1, n2 and

n3 arbitrary for the moment. Since by assumption the n-th mode is the only
mode with non-vanishing amplitude, we consider n2 = n and either n1 = n

and n3 = n′ or n1 = n′ and n3 = n. We therefore consider only modes that
appear twice in Eq. (6.5). To recap, we are interested in the stability of the
situation in which the n-th mode is lasing and the other modes remain stable,
in the sense that their amplitude remains vanishing. The equation for the
amplitude of these other modes is follows from Eqs. (6.5) and (6.9) as

∂tAn′

An′
≃ −αωn′ − IR +

(2− δn′)Λ2
c

kLl,n′L
(6.15)

+

[
αωn + IR +

Λ2k2n
2

− 2(2− δn′)Λ2
c

kLl,n′L

]
A2

n

L
< 0,

where the last equality is the stability requirement. This condition, for the
n′-th mode, thus gives a constraint on the amplitude of the lasing mode

A2
n

L
<

IR − αh+ αΛ2k2n′ − (2− δn′)Λ2
c/k

L
l,n′L

IR − αh+ 3αΛ2k2n/2− 2(2− δn′)Λ2
c/k

L
l,n′L

. (6.16)

Hence, the one mode laser is stable if the amplitude in Eq. (6.13) satisfies
the above constraint for arbitrary n′. We expect the uniform mode or the
first non-uniform be the most susceptible to the instability, but foremost
the uniform mode. Therefore we consider n′ → 0 in the following. With use
of Eq. (6.13), the constraint in Eq. (6.16) can be written as a quadratic
equation in IR − αR + αΛ2k2n. Namely, (IR − αh + αΛ2k2n)

2 + (IR − αh +

αΛ2k2n)[5αΛ
2k2n + 5Λ2

c/k
L
l,0L] + (4Λ2

c/k
L
l,nL)[2Λ

2
c/k

L
l,0L+ 3αΛ2k2n] ≳ 0. From

the fact that this equation is quadratic we find that all currents within the



132 single-mode spin-wave laser driven by spin-orbit torque

0.00 0.05 0.10 0.15 0.20 0.25
0.000

0.002

0.004

0.006

0.008

Figure 6.2: Figure of the current interval presented in Eq. (6.18), for hR − hL = 1/2,
L/Λ = 8 and α = 10−2. The solid curve describes the lower bound, while the
dashed curve describes the upper bound. We furthermore notice a sudden drop in
the required current IR for coupling strengths Λc > Λc,critical.

linearly unstable range −2Λ2
c/k

L
l,nL > IR + αωn > 0 are in principle allowed

if the discriminant is negative. By assuming 1/kLl,n′L to be small compared
to 1/kLl,nL we find the critical coupling strength to be approximately

Λ2
c,critical ≳ 3αΛ2k2n|kLl,0|L/2. (6.17)

If Λc, on the other hand, is smaller than this critical value, the current interval
in which there exists a stable one mode laser becomes

− 2Λ2
c/k

L
l,nL ≥ IR − αh+ αΛ2k2n ≳ 5

(
αΛ2k2n + Λ2

c/k
L
l,0L
)

(6.18)

× 1

2


√√√√1− 48Λ2

c

25

kLl,0

kLl,n

αΛ2k2nk
L
l,0L+ 2Λ2

c/3

(αΛ2k2nk
L
l,0L+ Λ2

c)
2
− 1

 .

The upper bound in the injected current comes from the lasing condition
−2Λ2

c/k
L
l,nL ≥ IR − αh+ αΛ2k2n which makes the An = 0 an unstable fixed

point in Eq. (6.12b). In Fig. 6.2, we plot the current interval as a function of
the coupling strength Λc. From this figure, we notice that the lower boundary
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in the current IR for Λc > Λc,critical becomes the requirement of spin waves
with frequency ωn to be dynamically stable, i.e., IR > α(hR − Λ2k2n).

Lastly, the upper bound in the current — above which there is no self
amplification of the n-th mode — and the quadratic constraint equation
which follows from Eqs. (6.13) and (6.16), predicts a lower bound in the
coupling strength below which a stable one mode laser can not exist. We find
this lower bound in the coupling strength to be

2Λ2
c,lower bound ≳ αΛ2k2n|kLl,n|L. (6.19)

Let us finish by checking the self-consistency of the assumption −ΛkLl,n ≫ Λc,
which allows us to treat the spin waves in the left domain linearly. This
assumption implies 1 ≫ Λ2

c/(Λk
L
l,n)

2 ≳ αk2nL/2|kLl,n|, which is equivalent to
(2L/Λ)

√
hR − hL − n2π2Λ2/L2 ≫ αn2π2. Hence, a one mode laser is stable

if only a few — and most likely only two or three — energetically unstable
modes are present.

6.5 conclusion, discussion and outlook

In this Chapter, we proposed a way to inject spin-waves of a specific fre-
quencies, thereby constituting what is called a black-hole laser [41]. This
realization depended crucially on the coupling of magnonic excitations to
negative energy magnon excitations in a confined region. Via the coupling of
magnons to these negative energy magnons, the system can form closed orbits,
thereby dynamically destabilizing the system. The formation of the dynamical
unstable modes is similar to that of the mode coalescence forming an excep-
tional point. Since the finitely many modes start lasing, i.e., exponentially
growing, the non-linear theory is quickly important in this model. Hence, we
investigated the non-linear regime for which the one-mode laser would be
stable. More specifically, we considered the case in which one mode dominates
and analyzed its stability towards instabilities in other modes. We found there
to be a region in parameter space for which this one-mode black-hole laser
is stable and hence emits a beam of coherent magnons. The results in this
Chapter have been found using the approximation that −ΛkLl ≫ Λc, which
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allows us to treat spin waves in the left magnet linearly. This approximation
becomes less exact when the resonant frequencies in the right magnet are close
to the Kittel frequency of the left magnet or when exploring stronger coupling
strengths. Developing a theory beyond this limit is in principle of interest,
since Λc/Λk

L
l is responsible for the onset of the lasing mode. In future work,

one could develop a theory that treats the left magnet non-linearly, possible
by inserting a static soliton profile in the left magnet. Furthermore, it could
useful to consider this set-up with two interfaces in the quantum regime.
This is due to the fact that this setup is likely to produce entangled pairs
of magnons. Another direction would be to consider the coupling between
positive and standing wave negative energy magnons in antiferromagnets to
create a one-mode laser in this class of materials to.



7
CONCLUS ION AND OUTLOOK

In this Thesis, we developed new ideas to inject and amplify spin waves
in ferromagnetic materials. The key concept behind the proposals is that
the coupling of positive energy excitations to long lived negative energy
excitations can lead to novel phenomena. This Thesis consisted of two parts.
We discussed dipole-exchange spin waves in Part i, while we considered
applications of the coupling between positive and negative energy spin waves
in Part ii.

In the first chapter of Part i, namely Chapter 2, we discussed how spin-
transfer torques (STTs) can be used to create negative magnetic energy
excitations that are dynamically stable. The effect of STTs on the dynamics
of metallic ferromagnets is twofold. One effect is due to the adiabatic torque
which Doppler shifts the spin-wave dispersion and thus intuitively drags spin
waves along with the charge current. The spin-wave dispersion can now become
negative for sufficiently strong injected currents, which yields an energetic
instability. The other effect of driving a charge current through a magnetic
conductor is that a non-adiabatic STT is also exerted onto the magnetization.
This is a dissipative torque that competes with Gilbert damping. Usually, if a
system becomes energetically unstable it also becomes dynamically unstable
due to dissipation. In metallic ferromagnets however, the dissipation of energy
can be counteracted by the injection of angular momentum in the form of
non-adiatic STT. In this work, we determined the critical current for spin
waves to become energetically unstable due to adiabatic STT and determined
the dynamical stability of these spin waves. To be concrete, we included

135
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the effects of magnetostatic interactions, Dzyaloshinskii-Moriya interactions
(DMI) and crystalline and surface anisotropies. For typical magnetic fields
and system parameters found in experiments, we found the critical current to
be of the order jc ∼ (1−D/Dc)10

13A/m2, with Dc the critical DMI constant
above which the ferromagnet becomes unstable towards the formation of
spirals or skyrmions. In principle 1013A/m2 is a rather large current, at
the limit of what is experimentally possible. By fine tuning the magnetic
parameters such that the ferromagnetic state is close to a phase transition,
however, one can make the critical current arbitrarily small.

In Chapter 3 we developed an analytic theory to describe the dipole-
exhange spin wave dispersion of ferromagnetic films, in the Damon-Eshbach
configuration. We focused on this configuration, since it is most typically
used in experiments. Currently, the spin wave spectrum that follows from the
diagonal approximation in the widely used analytic theory by Kalinikos and
Slavin [84, 111] becomes inaccurate in relative thick ferromagnetic films —
as they also noted in their article. Rather than solving an integrodifferential
equation, as done by Kalinikos and Slavin, we derived the dipole-exchange
spin wave dispersion by applying the magnetostatic and exchange boundary
conditions on bulk spin wave solutions. This boundary problem turned out
to have an accurate analytic solution, which agreed well with the numerically
obtained dispersion relations. The main result of this chapter is the analytic
spin wave dispersion in Eq. (3.35), which is quantitatively different from the
spin wave spectrum in Kalinikos and Slavin [84, 111]. At last, the spin wave
dispersion in Eq. (3.35) can be further simplified in the thin and thick film
limits of the ferromagnet as shown in Eqs. (3.41) and (3.47).

The first chapter of Part ii is Chapter 4. Here, we discussed how spin
currents can be amplified of an interface with an energetically unstable ferro-
magnet. The mechanism behind this amplification is superradiant scattering
of magnons with antimagnons at this interface. This is analogous to the mech-
anism which causes superradiant scattering in the bosonic Klein paradox. We
considered a setup of two coupled ferromagnets, in which the magnetization
in the left magnet is pointing along the external magnetic field and the
magnetization in the right magnet is pointing against the external magnetic
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field and is stabilized by SOT. Thus, in the left magnet only magnons exist,
while in the right magnet both antimagnons and magnons exist since the
steady state magnetization direction is inverted with respect to the external
field. In order to achieve a coupling between magnons in the left magnet
and antimagnons in the right magnet the steady state directions of both
magnets should be opposite. This can be made intuitive by remembering
that magnons and antimagnons have opposite handedness. In conclusion,
we found that conservation of energy at the interface implies superradiant
reflection magnons of the interface with antimagnons — |R|2 > 1 —, within
the range of frequencies in which magnons and antimagnons couple. Hence,
this setup can be used as an amplifier for spin waves and quite possibly emits
entangled pairs of magnons.

In Chapter 5, we discussed the non-linear dynamics of a spin-torque os-
cillator (STO) consisting of two anisotropic exchange coupled macrospins.
We considered the initial situation in which the bottom spin is directed
against the external magnetic field and is driven by SOT, while the upper
spin is aligned with the external magnet. Here both of the magnets experience
dissipation in the form of Gilbert damping. We found there to be a point in
the coupling strength between the magnets beyond which the STO becomes
unstable. To be precise, the linearised dynamics exhibits an exceptional point
(EP), which is characterised by the mode coalescence of the eigenvectors
and eigenvalues and a square root dependence of the imaginary part of the
eigenvalues. While the details of the EP are not really of concern here, we
like to highlight that the coupling of a dynamically stable magnon with a
dynamically stable antimagnon can lead to an instability, for sufficiently
strong coupling strengths. Since the unstable modes blow up exponentially in
time, a non-linear theory is necessary to describe the dynamics. In this work,
we developed an analytic theory that described the non-linear limit cycles of
the STO. We found a relative simple description of the STO dynamics near
the EP. Furthermore, we have shown that the power of the STO depends
extremely sensitively on the injected spin-current for vanishing out of plane
couplings. For non-vanishing out of plane coupling strengths, we found that
the point in phase-space at which the extreme sensitivity in the power occurs
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shifts slightly away from the EP. Moreover, we found excellent agreement
between the analytic theory and numerically performed spin simulations
which gives a complete understanding of the steady-state behaviour of the
STO.

In the final chapter, namely Chapter 6, we investigated the non-linear
dynamics in a system consisting of two coupled ferromagnets, in which a
linear instability is initiated by coupling continuum spin wave excitations in
the left magnet to a discrete amount of negative energy spin waves in the
right magnet. The antimagnonic excitations in the right magnet are realized
by considering the magnetization to be opposite to the external magnetic field
and are again stabilized by SOT. In the literature of analogue gravity, such a
setup is called a black-hole laser [41, 43], and in this Chapter, we determined
the range in currents and parameter space for which this setup becomes a
stable one-mode laser. Such a one-mode laser would be quite useful within
the field of magnonics, since it gives the ability to inject magnons using DC
currents. This setup is quite different from the conventional lasing setup in
which a specific mode(s) start lasing due to driving of the mode(s). Here,
the onset of the lasing mode is initiated by the coupling between positive
and negative energy excitations and is stabilized by injection of SOT and
non-linearities.

outlook

As we move towards the end of this Thesis, we like to give an outlook into
possible paths for future research. First and most foremost, experimental
realization of antimagnons will be an important building block. While this
work, until thus far, has been solely theoretical, its eventual usefulness will
depend on experimental realizations of these proposals. Since the models
presented in Part ii contain the bare essentials for the desired effects to
occur, more accurate modelling of realistic experimental situations might
be necessary. One way to proceed is described in Chapter 2, in which we
determined experimentally realistic situations driven by STT. We found
there that the order of magnitude of the critical current is typically rather
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large and close to the limit what is experimentally realizable. But we also
found that this critical current can be made arbitrarily small by considering
ferromagnetic metals that are close to a structural phase transition, induced
by either anisotropies or Dzyaloshinskii-Moriya interaction. In this case it
might be worthwhile — in an experimental collaboration — to optimize the
choice of ferromagnetic metals, such that the critical current is significantly
reduced. The proposals discussed in Part ii, on the other hand, rely on SOTs
to stabilize antimagnons. At the moment of writing, the electric currents
needed to stabilize a reversed magnetization are still large for experimentally
realistic parameters, but may still be within experimental reach. If materials
with a larger SH angles are discovered both the efficiency and the realizability
of our proposals drastically increases.

A continuation of the work presented in Chapter 3 would be to generalize
the analytic dipole-exchange spin wave dispersion derived to arbitrary an-
gles between the spin wave propagation direction and an in-plane external
magnetic field. Also, the magnetization profile of the spin waves could be
derived analytically in continuations of this work. As a broader theme, further
theoretical efforts can be put in the study of the quantum regime of the
models presented in Part ii of this Thesis. The reason this would be interesting
is the fact that most of the set-ups we consider are expected to spontaneously
generate entangled pairs of magnons. This might become useful for quantum
computational operations. It would also be interesting to consider the initial
time behaviour of the model presented in Chapter 4 in the absence of SOT.
Thus, to consider two coupled magnets, in which the initial magnetization
direction of one of these magnets is directed against the external magnetic
field. In this case the initial time behaviour is expected to be characterized by
spontaneously emitted pairs of magnons at the interface between the magnets
and a generic timescale at which fluctuations grow exponentially, set by the
coupling between the magnets and the Gilbert damping. Still, within this
timescale for instance the amplification of spin waves and the spontaneously
emitted pairs of magnons and antimagnons will occur. Another direction to
continue is to model the non-linear dynamics of the spin wave laser presented
in [65]. From the standpoint of analogue gravity this would also be called a
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black-hole laser. In this model however, the antimagnonic states are created
and stabilized by STT. The description of the non-linear dynamics in this
model will be a bit more involved than the one presented in Chapter 6, since
the amplitude of emitted spin waves is not expected to be small. A possible
approach to model this, is to consider spin wave soliton profiles near the
interface between magonic and antimagnonic excitations. Finally, while the
proposals in this Thesis are realized in ferromagnets, in future work these
models could be generalized to antiferromagnets.
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NEDERLANDSE SAMENVATTING

Tegenwoordig gebruikt elektronica een significant deel van de wereldwijde
energieconsumptie. Niet alleen het energieverbruik van onze persoonlijke
apparaten draagt hieraan bij, maar onze apparaten vragen ook veel data op
uit data centra die veel energie verbruiken. Verder wordt verwacht dat de
vraag naar rekenkracht, zonder politiek ingrijpen, alleen maar zal stijgen in de
komende jaren. Met een klimaatcrisis voor de deur, is het belangrijk dat alle
sectoren, dus ook de ICT sector hun uitstoot proberen te verminderen of op
zijn minst niet verder doen stijgen. Gegeven dat de vraag naar rekenkracht zal
stijgen, zullen we moeten proberen efficiëntere technologieën te ontwikkelen.

Ondanks dat er op dit moment veel tijd en geld in de innovatie van geïn-
tegreerde schakelingen wordt gestopt, raakt de energieconsumptie van deze
geïntegreerde schakelingen een plateau. Dit komt doordat historisch gezien
hogere efficiënties werden behaald door het verkleinen van deze geïntegreerde
schakelingen. Dit gaat helaas niet langer meer, omdat de ontwikkeling van
deze geïntegreerde schakelingen tegen fundamentele limieten aanloopt. Een
mogelijke oplossing is om nieuwe technologie te ontwikkelend die fundamenteel
verschillend is van huidige elektronica en dus geen hinder heeft van dezelfde
fundamentele limieten.

Een zo’n kandidaat is spintronica. Hierin worden spin golven in plaats van
elektronen gebruikt om informatie over te dragen. Deze spingolven, en hun
quanta magnonen, zijn excitaties die voorkomen in geordende magneten. Als
dragers van informatie hebben ze het voordeel dat ze energie efficiënt zijn
en omdat er geen verplaatsing van lading hoeft plaats te vinden. Hierdoor
hebben spintronische systemen geen last van dezelfde fundamentele limieten
als elektronische systemen.

Een obstakel binnen de spintronica is het verval van spin golven door
interacties met zijn omgeving, zoals, vrije elektronen, roostertrillingen en
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onzuiverheden. Dit zorgt ervoor dat de amplitude en coherentie van spin
golven uitdempt over tijd, wat onpraktisch is voor spintronische toepassingen.
Een andere te overkomen hindernis is de mogelijkheid om coherent spin golven
te injecteren met gelijkstromen. Om spintronische toepassingen compatibel
te maken huidige elektronica is een efficiënte injectie van spin golven met
gelijkstroom noodzakelijk. Op dit moment is het exciteren van coherente
spin golven met wisselstroom relatief eenvoudig, maar het injecteren van
magnonen met gelijkstroom blijkt een stuk complexer.

In dit proefschrift hebben we naar manieren gekeken om de levensduur
spin golven te verlengen en om spin golven te injecteren met een gelijkstroom.
Het gros van de ideeën die we hebben ontwikkeld ontlenen hun oorsprong
uit analogieën tussen de natuurkunde van de gecondenseerde materie en
de hoge energie fysica. De essentie voor de toepassingen die wij voorstellen
zit in de koppeling tussen positieve energie excitaties en negatieve energie
excitaties. Dit is een concept dat natuurlijk is in de hoge energie fysica en
komt bijvoorbeeld voor rond de horizon van een zwart gat, maar ook als je
elektronen wilt beschrijven die verstrooien tegen een zeer sterk elektrisch
veld. In het kort, in de toepassingen beschreven in dit proefschrift kan deze
koppeling gebruikt worden om de amplitude van spin golven te versterken
dan wel om coherent spin golven te injecteren met een gelijkstroom.

In Hoofdstuk 1 introduceren we magnetisme, spin golven en hoe we
negatieve energie spin golven kunnen creëren die desondanks toch stabiel
zijn. Het vervolg van dit proefschrift is opgedeeld in twee delen. In het eerste
deel beschrijven we voornamelijk de invloed die dipool-dipool interacties op
spin golven hebben. Terwijl we in het tweede deel vooral concrete voorstellen
bespreken om spin golven te versterken en te injecteren met gelijkstroom.

Hoofdstuk 2 beschrijft een opstelling waarin spin golven negatieve energie
kunnen krijgen door een elektrische stroom door een ferromagneet te laten
lopen. Verder zorgt deze stroom tevens dat deze spin golven stabiel kunnen
blijven. Dit is uniek voor magnetische systemen, normaal gesproken zorgt
het bestaan van negatieve energie excitaties dat een systeem onstabiel is en
vervalt naar de grondtoestand. In magnetische systemen pompt de elektrische
stroom impulsmoment in de magneet wat er toe kan leiden dat de toestand
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van magneet stabiel is omdat die zijn energie niet voldoende kwijt kan. In
dit hoofdstuk bepaalden we wanneer deze negatieve energie spin golven
stabiel zijn, en nemen hierbij de interacties, zoals dipool-dipool interactie, in
ogenschouw die relevant zijn in experimenteel realistische situaties.

In Hoofdstuk 3 beschrijven we de dispersie van spin golven in dunne films
als zowel dipool-dipool interactie als de exchange interactie belangrijk zijn.
Tot op heden is de diagonale benadering gedaan door Kalinikos en Slavin
(1986) de theorie die veel wordt gebruikt om dipole-exchange spin golven
te beschrijven. Deze theorie werkt echter niet even goed voor alle diktes en
wordt vooral inaccuraat voor dikkere films. In dit hoofdstuk beschrijven we
een analytische theorie die zeer goed overeen komt met numerieke oplossingen
van de dipole-exchange spin golf dispersie voor alle diktes.

Het tweede deel van dit proefschrift ging over de toepassing van negatieve
energie spin golven. In Hoofdstuk 4 behandelen we hoe een spin golf versterkt
kan worden door te kaatsen van een interface waarachter negatieve energie
spin golven bestaan. De inspiratie voor dit hoofdstuk komt uit de hoge energie
fysica en wordt daar de Klein paradox genoemd.

Hoofdstuk 5 geeft een niet lineaire analyse van een model met twee gekop-
pelde macrospins waarvan de onderste macrospin wordt aangedreven met
SOT. In het specifiek bekijken we een geval waarin deze opstelling instabiel
wordt door de koppeling tussen beide magneten, waarbij de twee spin blijven
oscilleren voor sterkere interacties. We vonden de niet-lineaire dynamica
zowel analytisch als numeriek en beiden bleken zeer goed overeen te komen.
Verder lieten we zien dat de sterkte van oscillaties zeer sterk afhangt van de
parameters en dat deze opstelling dus nuttig kan blijken als sensor.

In het laatste hoofdstuk van dit proefschrift, namelijk Hoofdstuk 6, kijken
we naar de niet-lineaire dynamica van een opstellingen die coherente spin
golven uitzendt door een gelijkstroom. Om preciezer te zijn, we bekijken twee
gekoppelde magneten, waarvan één magneet eindig en energetisch onstabiel
is maar stabiel wordt gehouden door injectie van impulsmoment met een
gelijkstroom. Inspiratie voor dit hoofdstuk komt uit het vakgebied van analoge
zwaartekracht en een vergelijkbare opstelling wordt daar een zwarte gat laser
genoemd.
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