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Chapter 1

1.1 Radiotherapy

In 2020, more than nineteen million people were diagnosed with cancer
worldwide1,2, and approximately half of these patients were treated using radiation
therapy (RT)3,4. With external-beam radiotherapy (EBRT), a linear accelerator
(linac) is used to generate photons at megavolt (MV) energy targeting the
malignant tissue to damage the cell DNA and eventually killing all tumor cells
when a sufficient dose is delivered5. Ideally, as much dose as possible is deposited
in the tumor, as increased dose delivery results in better tumor control6. However,
this will also damage nearby healthy tissue and organs at risk (OARs), requiring
a delicate balancing act of dose delivery and healthy tissue sparing for optimal
treatments.

Several strategies are used to spare OARs from the detrimental side effects of
radiation as much as possible. First, the radiation is delivered with varying
intensity from multiple angles around the patient, using the tumor as the focal
point to prevent dose accumulation in healthy tissue. These delivery modes are
now called intensity-modulated radiotherapy (IMRT) and volumetric arc therapy
(VMAT). Second, radiation treatments are often fractionated, allowing the healthy
tissue to recover between treatments as malignant tissue suffers from diminished
cell repair ability7. Modern linear accelerators allow precise shaping of the
radiation beam to match the shape and position of the tumor using a multileaf
collimator (MLC). These three strategies facilitate delivering high radiation dose
to malignant tissue with extreme precision while sparing nearby healthy tissue
and OARs. Nowadays, EBRT with high dose rates per fraction is referred to
as stereotactic ablative radiotherapy (SABR) or stereotactic body radiotherapy
(SBRT)8,9. However, one essential prerequisite to delivering high radiation doses
to malignant tissue is accurate knowledge of the tumor and OARs positions during
treatment.

1.2 Image-guided radiotherapy

Nowadays, the positions of tumors and OARs are derived from structures visible
from medical imaging, enabling image-guided radiotherapy (IGRT). The acquired
images are the principal source of information on tumor and OAR localization and
determine the dose delivery plan throughout the treatment. A radiation oncologist
determines the gross tumor volume (GTV) from imaging acquired during radiation
treatment simulation10. To account for microscopic tumor invasions near the
GTV invisible to the imaging, the GTV is expanded to the clinical target
volume (CTV). Then, to compensate for the motion between radiation fractions
(inter-fraction motion), e.g., geometric uncertainties introduced by the imaging,
changes to patient anatomy, or errors in patient positioning, the CTV is expanded
to the planning target volume (PTV). Finally, motion during radiation delivery
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(intra-fraction motion), e.g., motion due to physiological processes, such as
baseline drift due to relaxation11, respiration, peristalsis, or cardiac activity,
can introduce positional uncertainties12. Physiological processes can greatly
impact the delivered dose due to changes in tumor position. For example,
respiratory-induced motion can cause deformations as large as 40 mm in the
craniocaudal direction in abdominal organs during treatment13,14. This motion
causes the tumor to move outside the radiation window and could result in
underdosing of the malignant tissue, diminishing treatment efficacy. The simplest
option to mitigate large deformations is to increase the treatment margins and
enlarge the PTV encompassing the tumor and the full extent of the motion,
defining the internal target volume (ITV). For example, respiratory-resolved
four-dimensional imaging15,16, where a 3D volumetric image is obtained for several
respiratory phases, can be acquired prior to treatment to estimate the size of
the ITV. Resolving respiratory-induced motion for abdominal radiotherapy with
minimal additional treatment margins will be the prime focus of this thesis.

The geometric accuracy, positional certainty, and image quality directly influence
the treatment outcome: insufficient image contrast between malignant and healthy
tissue can cause failures in tumor delineation, reducing treatment quality17.
Moreover, geometric inaccuracies in the imaging, errors in patient positioning,
and physiological motion will create random and systematic errors, causing a
cumulative error in the delivered dose18. Hence, it is paramount that the images
that dictate where radiation is delivered have sufficient contrast, do not suffer
from geometric distortion, and are of high quality, i.e., free of image artifacts and
high resolution. Several imaging modalities have been used for radiotherapy. For
example, computed tomography (CT), positron emission tomography (PET), and
magnetic resonance imaging (MRI) have been used for treatment planning19–21,
while CT, cone-beam CT (CBCT), ultrasound (US), and MRI have been used
patient positioning22–25. These imaging modalities have complementary properties
and limitations whose information can be used for radiation treatment planning
and dose delivery. For example, the electron density can be derived from CT, which
is essential information for calculating the absorption of radiation beams26. On the
other hand, PET is more sensitive to the metabolic differences between malignant
and benign tissue. MRI is a versatile imaging modality that exhibits excellent
soft-tissue contrast as it is an endogenous imaging modality. It derives its signal
from the number of hydrogen protons with tissue-specific magnetic parameters T1

and T2
27. These parameters are vital for cancer imaging, as they differ between

malignant and healthy tissue28. Examples of some of these contrasts are shown in
Figure 1.1.

1.3 Real-time adaptive MRI-guided radiotherapy

Recently, hybrid treatment systems employing a linear accelerator with an
integrated MRI scanner (MR-Linac) have been clinically introduced (Figure 1.2),
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Figure 1.1 Examples of images used in radiotherapy. Anatomical imaging of the liver
of the same patient using different imaging modalities in the transversal
orientation. On the left is a CBCT, in the middle is a CT, and on the right
is a T2-weighted MRI. The CBCT images are used for position verification
before treatment, while the CT and MR images are also used to identify
tumors and plan treatment. The CBCT has a limited field of view and
limited image contrast. The CT has a larger field of view but limited image
contrast. The MRI shows superior soft-tissue contrast and clear visualization
of the organs and small structures.

enabling the treatment of patients with MRI-guided radiotherapy (MRIgRT)29–32.
Treating patients on MRI-Linacs has several significant advantages. Imaging the
patient immediately before treatment eliminates the need to move them from an
imaging device to an irradiation device, enabling treatment plan adjustment based
on the patient’s current anatomy without repositioning and eliminating the largest
source of geometric uncertainty.33.

Moreover, acquiring MRI can coincide with irradiation of the patient, which
enables the unique opportunity to let the MRI dictate the treatment, succinctly
summarized as the "See it and zap it" paradigm34. This synergy of simultaneous
MRI and radiation delivery can mitigate intra-fraction motion using several
strategies. The first strategy is to correct the treatment for baseline drift11,
which is a change in average tumor position occurring during the treatment
due to, for example, patient relaxation or changes in the respiratory pattern35,
depending on the tumor location. Accounting for baseline drift by shifting the
entire treatment plan can reduce systematic errors and thus greatly reduce the
required PTV. The second strategy is gating : the tumor position is estimated
from the imaging, and the radiation beam is only active when the initial treatment
margin encompasses the tumor36. Gating is a relatively simple technique to
increase treatment conformality while minimizing the irradiation of healthy tissue.
However, this will significantly lengthen radiation therapy as the radiation beam
is only active when the tumor is in the right place, decreasing treatment efficiency
by 50-80%36,37. The more advanced option is tracking : the radiation beam follows
the tumor position using motion estimated from the imaging, achieving maximum
efficiency as there is no downtime. Moreover, tracking removes the need for an ITV
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Figure 1.2 Example hybrid MRI/Linac scanner. Hybrid MRI-Linac scanners combine
an MRI scanner for image guidance with a linear accelerator for dose
delivery. The Elekta Unity is pictured, a commercially-available MR-Linac
that combines a 1.5 T MRI with a 7 MV linac.

by minimizing the size of the PTV and results in minimal irradiation of healthy
tissue38. Here, we focus on facilitating real-time MRI-guided tumor tracking as
this is the most time-efficient dose delivery mode and could lead to the largest
gain in OAR

Tumor tracking requires estimating motion using an image registration
algorithm39–42, which attempts to find a transformation that achieves spatial
alignment between an acquired image (also named the dynamic or moving image)
to an image acquired in the past (also named the fixed or static image)43. Some
types of motion, e.g., head motion, can be defined using a rigid motion model,
describing the translation and rotation of the anatomy. A deformable motion
estimation algorithm is required to resolve the locally-varying anatomical changes
caused by, for example, respiratory motion. Successful image registration results in
a deformation vector field (DVF), a map that denotes the magnitude and direction
of the motion for every voxel in the image independently, which is used to alter the
position and shape of the MLC44, focusing the radiation on the malignant tissue.
An example of image registration is shown in Figure 1.3.

We are entering the real-time adaptive MRI-guided radiotherapy age using
fast, high-contrast, high-quality imaging combined with fast and accurate image
registration45. With real-time adaptive MRIgRT, the MRI and MLC must operate
in a real-time feedback loop to track the tumor. While the MRI signal is acquired,
the tumor motion relative to the treatment plan is quickly estimated, and the
MLC position is altered to match the current shape and position of the tumor.
Real-time tumor tracking results in highly accurate dose delivery, minimizing the
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Figure 1.3 Example of image registration for coronal 2D MRI acquired at different
time points. Respiratory motion can cause significant deformations between
images acquired at different time points, such as images (A) and (B). Image
registration finds a DVF to register a dynamic image (B) towards a reference
image (A) to resolve the motion (C), re-aligning, for example, the liver dome,
as illustrated by the red lines. The found DVF is shown in D, which can be
used to drive the MLC. Image registration reduces the intensity difference
between images (E,F).

irradiation of healthy tissue and enabling delivery of high dose rates with minimal
PTV and ITV margins. As minimal healthy tissue is irradiated due to the removal
or reduction of treatment margins, highly fractionated treatments are no longer
necessary to achieve a high accumulated dose rate in malignant tissue while sparing
healthy tissue. Instead, hypofractionated treatment regimes become possible46,47,
enabling improved local control as a higher tumor dose can be achieved. Also,
hypofractionation may reduce the treatment cost by reducing the patient’s hospital
visits.

1.4 Advances in accelerated MRI acquisition

Enabling real-time adaptive MRIgRT requires that MRI acquisition and motion
estimation are performed in real-time, displaying high spatiotemporal resolution
and low latency48. In this work, we consider real-time methods for resolving
the abdominothoracic motion to have a maximum latency of 400 ms49,50 and a
minimum temporal resolution of 200 ms (≥ 5 Hz)51. Resolving motion from MRI
within these time constraints becomes challenging due to the limited sampling
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speed of MRI. The MRI acquisition involves measuring the harmonic oscillations of
precessing hydrogen atoms at specific locations ~k in the frequency domain (hence,
the frequency domain is also called k-space)52. Generally, the k-space is sampled
line-by-line in multiple shots and must be densely filled to transform k-space
into high-quality MRI. Specifically, the Shannon-Nyquist theorem53 dictates the
minimum number of samples required to obtain an MRI with a specific resolution.
Failing to meet this requirement can result in image defects due to aliasing,
i.e., image artifacts. A sufficiently dense k-space is reconstructed to an MR
image by applying the inverse fast Fourier transform (FFT)54,55, transforming
the frequency domain into the spatial domain.

Sampling k-space is time-consuming, and densely filling k-space typically exceeds
the maximum allowable latency. There are essentially four ways to accelerate the
MRI acquisition:

1. Reducing the resolution or field of view, requiring fewer k-space samples.
2. Traverse k-space more efficiently to increase the sampling rate per read-out.
3. Alter the imaging sequence to sample shots faster.
4. Sample fewer k-space points, violating the Shannon-Nyquist theorem.

Typically, the first option is unavailable due to the resolution and field of view
size requirements to accurately image and treat the patient. It is well-known
that no free lunch can be offered for the remaining options: acquisitions cannot
be infinitely shortened without sacrificing SNR or resolution. The third option
involves changing the used scan parameters to, for example, acquire multiple
k-space lines in a single shot or shorten the time between shots. However, this will
also alter the image contrast and SNR, which might diminish the image quality.

1.4.1 Beyond Cartesian MRI acquisitions

Significant research has been dedicated to exploring option 2, efficient sampling
of k-space. So far, we have assumed that k-space is traversed in a line-by-line
fashion with equal distance to other k-space points in every direction, also called
Cartesian imaging, as the sampled points will lie on a Cartesian grid. However,
MRI is not limited to this Cartesian constraint, and non-Cartesian trajectories,
such as spiral or radial trajectories, to traverse k-space have been proposed56.
Examples of these trajectories are shown in Figure 1.4.

Non-Cartesian MRI offers several advantages over Cartesian imaging. First,
non-Cartesian sequences can potentially sample more k-space points in a single
shot, increasing the sampling efficiency and reducing the acquisition time per
location ~k in the frequency domain. Second, a Cartesian trajectory samples the
low-frequency region only once, while non-Cartesian acquisitions may sample the
low-frequency region multiple times. While this sounds like a disadvantage, as
repeated sampling should result in longer acquisition times, oversampling the
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Figure 1.4 Examples of undersampled 2D trajectories. In every trajectory, seven shots
are shown, with the sampled points as black dots. On the left, a Cartesian
trajectory is shown. Notice that all points lie on intersections of the
grid. In the middle is a golden-angle radial trajectory. On the right is a
variable-density spiral. The latter two are non-Cartesian trajectories, as the
distance between the sampled points on different shots is not constant, and
the points do not necessarily lie on grid intersections. A NUFFT is required
for reconstruction rather than an FFT for these trajectories. However,
the center of the k-space is densely oversampled, and some trajectories
achieve better coverage of the k-space. Moreover, non-Cartesian acquisitions
promote incoherence, as shown in Figure 6.1.

low-frequency region of k-space makes these acquisition strategies significantly
more motion-robust than their Cartesian counterparts57. In this sense, the ability
for fast spatio-temporal imaging and the ability to resolve motion-induced spatial
uncertainty make them particularly suited for MRIgRT and are further explored
in this thesis.

However, there are also disadvantages to using non-Cartesian readouts. Hardware
imperfections in the gradient system, such as gradient delays or non-linearities, can
cause deviations from the nominal trajectory, leading to signal loss or geometric
distortions58,59. Moreover, the rapid switching of the gradient field can cause
eddy currents due to dB/dt effects, resulting in shifts in the k-space. While
benign for Cartesian acquisitions, they can cause significant image artifacts
during non-Cartesian acquisitions60. Finally, non-Cartesian acquisitions must
be reconstructed using a more costly non-uniform Fourier transform (NUFFT)
algorithm as they violate the equidistant sampling assumption of the FFT61.

For MRIgRT, hybrid Cartesian/non-Cartesian acquisitions are often used for
volumetric imaging62. These trajectories use a discretized non-Cartesian sampling
pattern to obtain Cartesian spacing63, or use a Cartesian spacing in the slice
dimension and a 2D non-Cartesian radial or spiral trajectory is used in-plane,
i.e., a stack-of-stars or stack-of-spirals trajectory64. However, k-space can
also be sampled using three-dimensional non-Cartesian trajectories, such as a
golden-mean kooshball65.
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1.4.2 Undersampling

Violating the Shannon-Nyquist criterion and acquiring fewer k-space samples is
perhaps the simplest way to accelerate MRI acquisitions. However, it will result
in severe aliasing artifacts as the reconstruction from k-space to image-space
becomes ill-conditioned. However, the Shannon-Nyquist sampling theorem is not
a necessary condition to reconstruct artifact-free images66. High-quality MRI
can be obtained from undersampled acquisitions by exploiting complementary
information during sampling or by exploiting prior knowledge of the signal
properties, even if the Shannon-Nyquist criterion is violated, making this an active
area of research.

One of the earliest techniques to accelerate the MRI acquisition exploits the
complementary signal encoding introduced by using multiple receiver coils to
remove the aliasing artifacts or interpolate missing k-space points, a technique
known as parallel imaging (PI)67–69. However, the achieved acceleration factor
(R) is typically limited to a factor of 3-4 in a single direction70. Another
way to reconstruct high-quality MRI from accelerated k-space is by using
prior information about the imaged subject. For example, compressed sensing
(CS)71 exploits transform-domain sparsity by assuming natural images are
compressible while carefully constructed k-space sampling trajectories introduce
non-compressible aliasing artifacts. A combination of PI/CS can achieve a
reduction factor of up to 12.5 for reconstructing volumetric MRI while maintaining
diagnostic quality72. An undersampling factor of 20 can be achieved for
reconstructing dynamic imaging with diagnostic image quality by exploiting the
spatio-temporal sparsity of the signal73.

At first sight, CS seems suitable for online adaptive MRIgRT: the high acceleration
factor enables MRI reconstruction with high spatiotemporal resolution. However,
CS suffers from long reconstruction time (i.e., several minutes for volumetric MRI)
and introduces a large latency between the event and availability between images
and is not feasible for online adaptive MRIgRT48,49.

While MRI can achieve the required spatiotemporal resolution, resolving
abdominothoracic motion with minimal latency is a challenging problem with
traditional image reconstruction and motion estimation methods. Alternative
model-based techniques, such as machine learning, might provide a solution
to overcome this problem. Recent advancements in deep learning have shown
promising results with low inference time, as the model training phase is performed
only once before usage. This thesis will focus on developing model-based image
reconstruction and motion estimation methods for real-time adaptive MRIgRT
using deep learning.
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1.5 Deep learning

Deep learning (DL) involves developing highly-parameterized models trained to
“learn” to detect implicit features from data74,75. This is a radically different
approach from traditional algorithms for regression and classification, which rely
on the features and inductive biases as defined by their human implementer.

Supervised machine learning involves training on a non-linear model f that is
parameterized by Θ using a large dataset consisting of pairs of desired input
and output (xi, yi). The training phase aims to find the weights Θ such that
a loss function L(fΘ(xi), yi) is minimized for the entire dataset. These weights
are found by performing gradient descent. In the simplest form, the parameters
are found by Θt+1 = Θt − η∇L, where η is the step size or learning rate, and
∇L is the gradient of the cost function over the dataset. However, more advanced
optimization schemes can also be used76. The most widely-used algorithm for
gradient computation in deep neural networks is backpropagation77. On GPUs,
this is efficiently implemented using reverse-mode automatic differentiation78. The
choice of cost function L depends on the problem to be solved but is commonly
chosen as the mean-squared error LMSE = 1

N

∑
i=0...N−1 ||fΘ(xi)−yi||2 (MSE) for

regression tasks. The power of neural networks is that they are universal function
approximators79. A model can learn the transform function to map some xi to
yi after sufficient training, depending on the quality and size of the data, the
model capacity80, the specific model architecture, and the hyperparameters such
as batch size or learning rate. However, depending on the size of the dataset, the
optimization procedure, and the specific model parameters, finding the minimum
of L is a costly operation, and training such models on commodity hardware can
take days to weeks. When the relatively costly training step of deep learning
models has been completed, inference of deep convolutional neural networks using
GPUs is fast (e.g., milliseconds or seconds).

With the advent of high-performance graphics processing units (GPUs) and
the availability of large datasets, deep learning has become a feasible approach
for regression and classification. Modern deep neural networks for image
tasks are implemented using the convolutional inductive bias81,82, consisting
of multiple hierarchical layers with non-linear activation functions to learn
robust, high-level, and expressive features83,84. By training efficiently on
large datasets, DL models with millions of trainable parameters have been
demonstrated to outperform handcrafted models for regression and classification
problems85. Specifically for IGRT, convolutional neural networks have been
applied to image segmentation86, image registration87, contour propagation88,
MRI reconstruction89–94, CBCT-to-CT synthesis95, and MRI-to-CT synthesis96,
among other tasks, achieving state-of-the-art performance.

The capability to perform fast and accurate regression makes DL a promising
approach for real-time MRI reconstruction and motion estimation from
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Figure 1.5 Trade-offs in image reconstruction and registration. Three pathways are
shown to obtain DVFs from MRI along with a bar visualizing the latency
to acquire the MRI (blue), reconstruct the k-space (orange), and estimate
the motion (yellow). The original approach (top) acquires a fully-sampled
k-space. While image reconstruction is fast, MRI acquisition image
registration induces a long latency. The middle pathway uses compressed
sensing to reduce the acquisition latency. However, this induces a long
reconstruction latency due to its iterative nature. The bottom pathway
uses deep learning (green) to replace the traditional counterparts (red) and
acquires, reconstructs, and registers highly undersampled MRI with minimal
latency.

highly-undersampled k-space, leveraging the parallel processing capabilities of
modern GPUs during inference while the time-consuming training phase is
performed offline. This potential benefit is illustrated in Figure 1.5, where DL
is a low-latency alternative to computationally expensive image reconstruction
and motion estimation algorithms.

However, deep learning has not yet been applied to real-time image reconstruction
and motion estimation for real-time adaptive MRI-guided radiotherapy. This
thesis explores this exciting intersection of technology and opportunity.
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1.6 Thesis outline

This thesis explores the use of deep learning models to enable real-time adaptive
MRI-guided radiotherapy using MRI-Linacs. With deep learning models, we
aim to obtain high-quality MRI and accurate motion estimation from highly
undersampled acquisitions with low latency and high temporal resolution,
traditionally very challenging with classical approaches. In this work, we develop
and evaluate DL-based methods for resolving the abdominothoracic motion to
enable online adaptive MRIgRT. Moreover, we investigate the role of loss functions
when training these models and apply deep learning to high-dimensional image
reconstruction to accelerate the radiotherapy workflow.

DVFs must be accurately estimated from undersampled acquisitions to enable
real-time adaptive radiotherapy. Deep learning can be individually applied to the
image reconstruction and motion estimation steps. Alternatively, deep learning
can replace both steps simultaneously in an end-to-end approach. Chapter 2
examines where to best use deep learning by comparing all four combinations.
We examine the latency and performance of the best-performing approach for
retrospectively-undersampled radial 2D cine imaging and establish the maximum
achievable undersampling factor.

Based on these results, we extended this approach to volumetric imaging
in Chapter 3 using MRI acquired with a golden-angle stack-of-stack radial
trajectory. To overcome the low temporal resolution of the acquisition, the
model was trained with respiratory-resolved four-dimensional abdominal MRI.
A volumetric, multi-resolution motion network was proposed, and a network
hyperparameter and model architecture optimization was conducted. The stability
and performance at high undersampling factors were evaluated using time-resolved
3D MRI, a digital phantom, a physical motion phantom, and four-dimensional
respiratory-resolved CT.

Chapter 4 examines the properties of conventional loss functions for deep
neural networks when applied to noisy regression in the complex domain.
Using previously-trained motion networks, we empirically observed a systematic
underestimation in the reconstructed magnitude of the DVFs. We propose and
examine a new loss function for complex regression tasks to resolve this magnitude
underestimation and evaluate its properties for complex-valued regression tasks,
such as image reconstruction and image registration.

Respiratory-resolved 4D-MRI is a versatile tool in the MRIgRT workflow: it
can quantify the motion extent to determine the ITV and is used to develop
personalized motion models for online adaptive MRIgRT. However, 4D-MRI
suffers from long acquisition and reconstruction times. In Chapter 5, we propose
and evaluate a new deep learning architecture that employs low-dimensional
convolution kernels to reconstruct 4D-MRI efficiently.
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Finally, we summarize and discuss the main findings of this work in Chapter 6,
reflecting on the potential impact, limitations, and challenges of applying deep
learning to real-time adaptive MRI-guided radiotherapy.
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Chapter 2

Abstract
Purpose: To enable magnetic resonance imaging (MRI)-guided radiotherapy
with real-time adaptation, motion must be quickly estimated with low latency.
The motion estimate is used to adapt the radiation beam to the current anatomy,
yielding a more conformal dose distribution. As the MR acquisition is the largest
component of latency, deep learning (DL) may reduce the total latency by enabling
much higher undersampling factors compared to conventional reconstruction and
motion estimation methods. The benefit of DL on image reconstruction and
motion estimation was investigated for obtaining accurate deformation vector
fields (DVFs) with high temporal resolution and minimal latency.
Methods: 2D cine MRI acquired at 1.5T from 135 abdominal cancer patients
were retrospectively included in this study. Undersampled radial golden angle
acquisitions were retrospectively simulated. DVFs were computed using different
combinations of conventional- and DL-based methods for image reconstruction
and motion estimation, allowing a comparison of four approaches to achieve
real-time motion estimation. The four approaches were evaluated based on the
end-point-error and root-mean-square error compared to a ground-truth optical
flow estimate on fully-sampled images, the structural similarity (SSIM) after
registration and time necessary to acquire k-space, reconstruct an image and
estimate motion.
Results: The lowest DVF error and highest SSIM were obtained using
conventional methods up to R ≤ 10. For undersampling factors R > 10, the
lowest DVF error and highest SSIM were obtained using conventional image
reconstruction and DL-based motion estimation. We have found that, with this
combination, accurate DVFs can be obtained up to R = 25 with an average
root-mean-square error up to 1 millimeter and an SSIM greater than 0.8 after
registration, taking 60 milliseconds.
Conclusion: High-quality 2D DVFs from highly undersampled k-space can be
obtained with a high temporal resolution with conventional image reconstruction
and a deep learning-based motion estimation approach for real-time adaptive
MRI-guided radiotherapy.
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2.1 Introduction

Magnetic resonance imaging-guided radiotherapy (MRIgRT) is increasingly
adopted in clinical practice. Hybrid MRI scanners with an integrated linear
accelerator (MR-linac) have shown to be very efficient in dealing with inter-fraction
anatomical changes by employing online re-planning prior to each treatment
session30,33.

The future promise of hybrid MR-linac systems is to not only account for
inter-fraction motion but also adapt the radiation delivery in real-time during
treatment to accommodate for respiration or cardiac-induced intra-fraction
motion45,97–100, peristaltic motion and tissue deformation, e.g. due to bladder
filling or passing air bubbles.

Real-time adaptive radiotherapy requires imaging with extremely high temporal
resolution as well as a very low total latency (i.e., the time between an event and
response) of the MR-linac feedback chain49. The most significant source of latency
in the MR-linac feedback chain is MR image acquisition101. If acquisitions could
be significantly undersampled, motion could be estimated with minimal latency.
Although dense array radio-lucent receiver coils improve the acquisition speed
of MR-linac systems by use of parallel imaging102, most motion quantification
techniques are image-based and rely on high-quality images, which limits the
maximum acceleration factors achievable with parallel imaging70. Regularized
reconstruction methods like compressed sensing71 may achieve even higher
acceleration factors, but the iterative nature of compressed sensing reconstruction
algorithms make it unsuitable for real-time applications.

Recently, deep learning (DL) has become a popular technique in many scientific
fields due to its high-quality results and speed. The use of neural networks
to generate a hierarchical representation of the input data to achieve high
task-specific performance without the need of hand-engineered features has proven
extremely powerful for imaging applications103–105. In computer vision, various
DL methods have been developed that outperform traditional motion estimation
algorithms106–108, while for MRI several DL methods have been proposed to
replace the computationally expensive compressed sensing reconstructions89,90,93.

In this paper, we investigate the performance of DL for image reconstruction
and motion quantification on highly undersampled golden-angle (GA) radial
acquisitions for real-time MRIgRT with the goal of providing accurate
motion quantification with minimal latency. We hypothesize that the benign
undersampling artifacts in GA radial MRI in combination with DL image
reconstruction provides high acceleration factors with image quality on par with
CS reconstruction but at a fraction of the computation time. The addition of a
DL-based motion quantification approach is believed to relax the requirements for
high-quality images, potentially allowing even greater image acceleration factors.
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Dynamic

Reference

DVF

NUFFT Optical ow

Figure 2.1 Schematic overview of the study design. Generation of undersampled
k-space (top) and the DVFs from fully-sampled k-space (ground-truth) and
undersampled k-space (bottom). Reconstruction can happen with a NUFFT
or a DL-based image reconstruction model. Motion estimation with the
reference image happens with optical flow or a DL-based motion estimation
approach.

In this work, we investigate a two-step process in which retrospectively
undersampled dynamic GA radial data are reconstructed by classical methods or
using DL models. With this approach, we assess the individual and the combined
performance of DL-based image reconstruction and processing on computation
time and motion estimation accuracy for acceleration factors of up to 50.

2.2 Materials & Methods

The study design is illustrated in Figure 2.1. Image reconstruction from
undersampled dynamic GA radial k-space was performed with either a classical
non-uniform fast Fourier transform (NUFFT)61 or with dAUTOMAP109, a
convolutional neural network designed for image reconstruction. Subsequently,
motion is estimated on the reconstructed images via a classical optical flow
(OF) based motion estimation algorithm, or a modified version of SPyNET, a
multi-resolution layered deep neural network that computes deformation vector
fields (DVFs) at multiple resolutions, similar to OF106. This allowed us to
compare four approaches using varying degrees of DL to estimate motion from
undersampled dynamic GA radial k-space.
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Parameter Sagittal Coronal
TE (ms) 1.4 1.4
TR (ms) 2.8 2.7
Flip angle 50° 50°
Resolution (mm2) 1.4× 1.4 2.0× 2.0
FOV (mm2) 320× 320 450× 450
Reconstruction resolution (px2) 224× 224 224× 224
Slice thickness (mm) 7 7
Readout direction FH FH
Bandwidth (Hz/px) 724 - 2034 1431 - 2034
Temporal resolution (ms) 500-570 500-570
Number of dynamics 50-300 100-300

Table 2.1 Scan parameters for sagittal and coronal 2D Cartesian balanced steady-state
free precession MRI used in this work.

2.2.1 Patient data collection

Patients diagnosed with cancer in the abdomen undergoing radiotherapy
simulation at our department between June 2015 and December 2019 were
included in this study when sagittal cine MRI were acquired. In total, 135 patients
were included, of whom 83 were male and 52 were female and were diagnosed with
tumors to the abdomen (7), liver (40), kidneys (62) and pancreas (26). The
patients were between 37 and 89 years old with a mean age of 67± 11 years old.
Two-dimensional (2D) Cartesian balanced steady-state free precession (bSSFP)
cine MRIs were acquired on a 1.5T MRI scanner (Ingenia MR-RT, Philips, Best,
the Netherlands). Table 2.1 lists the acquisition parameters. The total acquisition
time was between 25 s and 2.5 min, according to the number of dynamics acquired
per scan, which varied between 50 and 300. Patients were scanned on a flat
tabletop in the supine position using a 16-channel anterior and a 12-channel
posterior phased-array coil. Two in-house built coil bridges supported the anterior
coil to avoid skin contour deformation and not to affect natural motion. In total,
31750 magnitude-only dynamics were collected from 200 cine MRIs, as for some
patients the cine data were acquired multiple times. Of these 200 cine MRIs, 126
were scanned after contrast agent injection.

For 30 of the 135 patients, 42 coronal cine MRIs were also acquired. Coronal cine
MRIs were used for model validation. The scan parameters of these cine MRIs
are also detailed in Table 2.1.

2.2.2 Data preparation

The signal intensity over all dynamics was linearly rescaled to an output range
of [0, 1], clipping to the 99th percentile of intensity values of the dynamics
in a cine MRI. Complex k-space was obtained by adding simulated phase to
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the magnitude-only images and computing the non-uniform Fourier transform
(NUFFT)61 using PyNUFFT version 2019.1.1110 with an undersampled GA radial
readout trajectory. The simulated phase was generated per dynamic, as suggested
by [91], i.e. by generating two two-dimensional sinusoids with a randomly-chosen
spatial frequency between 0.05 Hz and 0.25 Hz and rotating these sinusoids
separately with a random angle around the origin. These sinusoids were added
together and the amplitude normalized to [−π, π] such that the intensity represents
phase values. K-space was density-compensated with a Ram-Lak filter and gridded
to a Cartesian grid.

To ensure that representative noise was present in the retrospectively
undersampled k-space, additional Gaussian noise X ∼ N (0, ε · |k0|) was added
separately to the real and imaginary channels, where ε was randomly chosen
between

[
3 · 10−3, 5 · 10−3

)
. The range for ε was determined from separate

noise scans as the magnitude of the noise divided by the magnitude of the DC
component.

The undersampling factor R was determined by dividing the number of spokes
required for a Nyquist-sampled radial acquisition at the reconstruction resolution
by the undersampling factor, i.e. d224·π/2e·R−1 = 352·R−1. The induced latency
of this acquisition scheme is half of the acquisition time, i.e. 352 · R−1 · TR/2101.
Data was prepared for the undersampling factors R = 1, 5, 10, 16, 20, 25, 30, 40,
and 50.

2.2.3 Image reconstruction

The generated k-space of each dynamic was reconstructed with a conventional
method and a DL-based approach.

2.2.3.1 Conventional

Non-Cartesian k-space was reconstructed with a NUFFT adjoint reconstruction,
obtaining a fast reconstruction at the cost of undersampling artifacts compared to
an iterative reconstruction algorithm.

2.2.3.2 Deep learning

For image reconstruction from undersampled k-space dAUTOMAP1109 was
trained on a GPU (Tesla P100, NVIDIA, Santa Clara, CA, USA). dAUTOMAP
is a model that performs non-iterative reconstruction with low parameter count,
which makes it suitable for real-time image reconstruction. As dAUTOMAP
assumes that the k-space points lie on a Cartesian grid, the k-space was
re-gridded and density-compensated, as illustrated in Figure 2.2 (top). The

1. Reference implementation as found on https://github.com/js3611/dAUTOMAP
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Figure 2.2 Schematic of the image reconstruction and motion estimation models.
The dAUTOMAP model (top) reconstructs the re-gridded and
density-compensated undersampled k-space to an image. SPyNET
(bottom) is a multi-resolution approach that estimates a DVF between
a reference image and dynamic using multiple CNNs. Blue and green
layers are two-dimensional convolution layers with and without non-linear
activation, respectively.

model was implemented in PyTorch 1.0.1 and had 913473 trainable parameters.
dAUTOMAP was initialized using Xavier initialization111 and trained using the
Adam optimizer76 using β1 = 0.9, β2 = 0.999 and a learning rate of 10−3 with
a batch size of 64 on an undersampled k-space with R = 10 to minimize the
mean-square-error (MSE) between reconstruction and target. After 50 epochs,
the high-frequency error norm (HFEN)112 was added to the loss function as it
was found to improve performance. dAUTOMAP was trained until validation
loss converged. R = 10 was chosen as the undersampling factor for training as
a balance between a fast acquisition and image quality, as training with higher
undersampling factors became unstable. The learning rate was halved if the
validation error plateaued, i.e. if the validation error has not improved with at
least 10−8 in the last ten epochs. dAUTOMAP was trained on 119 cine MRIs
from 81 patients comprising 60% of all sagittal dynamics. The hyper-parameters
were validated on 38 cine MRIs from 26 patients comprising 20% of all sagittal
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dynamics. The final model was tested on 43 cine MRIs from 28 patients comprising
20% of all sagittal dynamics.

2.2.4 Motion estimation

For every sagittal cine MRI, a reference image was chosen by randomly selecting
a dynamic after ensuring that the dynamic was acquired in the steady-state. This
was ensured by excluding the first 30 dynamics of the cine MRI from the selection
of reference images. Then, DVFs were computed between every dynamic and the
reference image.

Five reference images were randomly selected per cine MRI as data augmentation
strategy and to ensure that the reference images were not only on an “extreme”
point of the respiratory phase, e.g. inspiration or expiration.

This yielded a total of 130475 DVFs for training and validation and 28275 DVFs
for testing.

2.2.4.1 Conventional

DVFs were computed using optical flow39,40,113.

Optical flow is a registration algorithm that assumes the DVF to be smooth and
the brightness of the images is preserved over time. Optical flow estimates DVFs
by minimizing the energy function given in Equation 2.1:

E =

∫∫
Ω

|Ixu+ Iyv + It|+ β2
(
||∇u||22 + ||∇v||22

)
dxdy (2.1)

where Ω ⊆ R2 is the image domain, u and v are components of the DVF, Ix, Iy, It
are the spatial and temporal partial derivatives of the images, respectively, and β
is the regularization parameter enforcing smoothness.

Optical flow refines the motion estimate through iteration and estimating motion
at multiple resolution levels in a pyramid approach in order to resolve large
displacements.

In a preliminary study that is presented in 2.6, we compared an implementation
of optical flow and Elastix42 to assess the registration performance on our dataset.

As a result of this preliminary study, we opted to use optical flow as implemented
with RealTITracker40,113 in this work. In particular, ground-truth DVFs were
computed on the fully-sampled dynamics by computing optical flow between every
dynamic/reference image pair with RealTITracker with β = 0.6.
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2.2.4.2 Deep learning

For motion estimation, the convolutional neural network called SPyNET106 was
trained on a GPU (Tesla P100, NVIDIA, Santa Clara, CA, USA). SPyNET is a
multi-resolution pyramid approach. At every resolution level in the pyramid, a
small CNN of 233778 parameters is employed to estimate motion from the input
images together with an upsampled motion estimate from the previous pyramid
level. The motion estimation approach is illustrated in Figure 2.2 (bottom).
The model was implemented in PyTorch 1.0.1 and was serially trained with four
pyramid levels, for a total of 935112 trainable parameters. The image pyramid had
an image size of 224×224 pixels at the highest resolution level down to 28×28 pixels
at the lowest resolution level. SPyNET was trained separately on pairs of images
reconstructed with either a NUFFT or dAUTOMAP reconstruction with R = 10

to learn the ground-truth optical flow DVFs by minimizing the end-point-error(
EPE =

√
(uest − ugt)2 + (vest − vgt)2

)
. The model weights of all networks were

initialized using Kaiming uniform initialization114.

The effect of the warping operator as defined in the original implementation of
SPyNET, which registers the images at lower resolution levels to resolve larger
displacements, was evaluated and was found to be detrimental to the motion
estimation quality and therefore omitted.

Data augmentation was performed on the images consistent with the ground-truth
DVF by random horizontal and vertical flips and contrast jitter to prevent
overfitting115. The EPE was minimized using the Adam optimizer β1 = 0.9, β2 =

0.999 with a learning rate of 5 · 10−4 until convergence of the validation loss. The
batch size was limited by the available GPU memory and was 1024 for the lowest
resolution level, and 32 for the highest resolution level.

Every SPyNET level was trained, tested, and validated on the same data partition
as dAUTOMAP. That is, 119 cine MRIs from 81 patients comprising 60% of all
sagittal dynamics were used for training. The hyper-parameters were validated
on 38 cine MRIs from 26 patients comprising 20% of all sagittal dynamics. The
final model was tested on 43 cine MRIs from 28 patients comprising 20% of all
sagittal dynamics.

2.2.5 Experiment setup

As image reconstruction and motion estimation can be computed with
conventional or DL-based methods, we investigated four different combinations
to obtain DVFs from k-space:

• Using NUFFT reconstruction and optical flow motion estimation
(NUFFT/OF);
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• Using NUFFT reconstruction and SPyNET motion estimation
(NUFFT/SPyNET);

• Using dAUTOMAP reconstruction and optical flow motion estimation
(dAUTOMAP/OF);

• Using dAUTOMAP reconstruction and SPyNET motion estimation
(dAUTOMAP/SPyNET).

As the goal of these methods is to estimate motion from undersampled k-space,
quality is defined solely by the correctness of the DVF. The four approaches were
evaluated using the following criteria:

Registration performance The image similarity after registration of
fully-sampled dynamics using a DVF estimated on undersampled images
was evaluated over the whole image. This was quantified by the structural
similarity (SSIM)116 over the whole image. In particular, the mean (± std)
of the SSIM after registration was computed for 100 dynamic/reference
image pairs of each cine MRI for every approach. In total, a sample of 2975
dynamic/reference pairs were considered.

DVF quality The quality of the DVF was measured by the mean absolute
displacement error, as well as the root-mean-square error (RMSE) compared
to the ground truth in a region of interest (ROI) that was manually
generated to include relevant structures, e.g. liver veins, kidney structures
or tumors. The ROIs of all patients in the test set are presented in 2.6.
The root-mean-square error of displacement within the ROIs was considered
as well. Bland-Altman plots117 of the mean absolute displacement error
were calculated to compare the average DVF magnitude within an ROI
to the ground-truth optical flow. These plots reveal the bias of a model
for undersampled motion estimation in the generated DVFs, computing
statistical error bounds. The statistical significance was estimated using
the Wilcoxon signed-rank test.

Time The time necessary to estimate motion, including MR acquisition, was
reported. For a fair comparison of the different approaches, only GPU
timings were considered. Given that RealTITracker, the optical flow
implementation that we adopted, is available only for CPUs, we obtained
the timing of conventional motion estimation using a CUDA implementation
of optical flow that is part of the OpenCV library 2. Note that
such implementation uses a different algorithm118 than the optical flow
implementation used to generate ground-truth data.

All the metrics were computed on the test set, consisting of 28275 sagittal image
pairs as well as 27900 coronal image pairs, for undersampling factors R = 1, 5,

2. https://github.com/NeerajGulia/python-opencv-cuda
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10, 16, 20, 25, 30, 40, and 50 without retraining of the DL models, which were
trained on R = 10.

2.3 Results

dAUTOMAP was trained on R = 10 for 300 epochs in approximately six
hours. After training, inference of the model to reconstruct a dynamic from
gridded k-space was performed in 5 ms, making it as fast as NUFFT adjoint
reconstruction. Examples of NUFFT and dAUTOMAP reconstructions are
shown in Figure 2.3d and Figure 2.3g, respectively. It can be observed that
NUFFT reconstructions at R = 20 suffer from considerable streaking artifacts
and dAUTOMAP reconstructions are overly smoothed with intensity patches,
as highlighted by the red arrows. Every SPyNET level was trained R = 10

for 12 hours until the validation error converged which took between 200 and
1000 epochs, depending on the resolution level. After training, inference of
the four-level pyramid including resizing the input images and upsampling the
intermediate DVFs was performed in 15 ms, which is slower than a GPU optical
flow implementation that estimates motion in 5 ms. Example DVFs estimated by
SPyNET are shown in Figure 2.3f and Figure 2.3i, on NUFFT and dAUTOMAP
reconstructions, respectively. Example DVFs estimated by optical flow are shown
in Figure 2.3e and Figure 2.3h, on NUFFT and dAUTOMAP reconstructions,
respectively. In the supplementary material, an animation of Figure 2.3 is
reported. It can be observed that optical flow DVFs in the liver are comparable to
the ground-truth, but in this case SPyNET is able to improve the motion estimate
in the spine, which seems more physiologically plausible than for optical flow.

2.3.1 Registration performance

Using the DVFs as generated by the four proposed methods to register the
fully-sampled dynamics, the SSIM quantifies the registration performance across
the entire image. Figure 2.4 shows the SSIM as a function of the undersampling
factor. DVFs generated by SPyNET lead to a significantly higher SSIM after
registration compared to optical flow for R > 10 (Wilcoxon, p < 0.001), even
though the models were trained at R = 10. At R = 30 an average SSIM of 0.8 is
achieved using NUFFT/SPyNET, whereas using NUFFT/optical flow results in an
average SSIM of 0.72. Interestingly, Using SPyNET with NUFFT reconstruction
shows a similar performance when evaluated on coronal acquisitions even though
SPyNET was trained on sagittal dynamics, as presented in Figure 2.4. Using
dAUTOMAP for image reconstruction results in a 5-25% drop in performance
when registering coronal images compared to sagittal images depending on the
undersampling factor.
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Figure 2.3 Example of a dynamic with image reconstruction and motion estimation.
Figure 2.3a and Figure 2.3b show the fully-sampled sagittal reference image
with region-of-interest in the red box and dynamic, respectively. The
corresponding ground-truth DVF is shown in Figure 2.3c. Figure 2.3d
shows the NUFFT adjoint reconstruction of the 20-fold retrospectively
undersampled dynamic. The DVFs computed with the optical flow or
SPyNET with adjoint reconstructions are shown in Figure 2.3e and f,
respectively. Figure 2.3g, h, and i show the same as Figure 2.3d, e, and
f, respectively but using dAUTOMAP for image reconstruction instead
of a NUFFT adjoint. The arrows in Figure 2.3g indicate pseudo-random
intensity patches introduced by dAUTOMAP.

2.3.2 DVF quality

The root-mean-square displacement error of the DVF generated with conventional
methods compared to the ground-truth within an ROI on sagittal images
significantly increases for acceleration factors R ≥ 20, as presented in Figure 2.5.
For the NUFFT/SPyNET approach, the RMSE shows a slower rise as the
undersampling factor increases, indicating robustness to undersampling artifacts.
For NUFFT/SPyNET the root-mean-square displacement is lowest among all
approaches at high undersampling factors (R ≥ 20) and remains within 1 mm
with a narrower standard deviation, even for R = 30.

Figure 2.6 reports Bland-Altman plots of the mean absolute displacement error
within an ROI compared to the ground-truth on sagittal images. At R = 10, there
is no clear improvement of using DL rather than conventional methods. The mean

26



Deep learning image reconstruction and motion estimation for real-time MRIgRT

C
ha

pt
er

2

1 5 10 16 20 25 30 40 50
Undersampling factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

Sagittal registration performance

Ground Truth (R=1)
NUFFT/Optical Flow
NUFFT/SPyNET
dAUTOMAP/Optical Flow
dAUTOMAP/SPyNET

1 5 10 16 20 25 30 40 50
Undersampling factor

0.5

0.6

0.7

0.8

0.9

1.0 Coronal registration performance

Figure 2.4 Comparison of the SSIM after registration over the whole image for sagittal
images (left) and coronal images (right). Shaded regions indicate standard
deviation.

difference is zero for the fully conventional method and has standard deviations
within 0.95 mm, compared to a bias of -0.28 mm and a standard deviation up
to 1.6 mm for dAUTOMAP/SPyNET. However, at R = 25 the smallest error is
obtained when using NUFFT reconstruction with SPyNET motion estimation as
the bias is reduced to -0.1 mm and the standard deviation of the absolute error
remains within 2 mm, compared to a standard deviation up to 3.5 mm for NUFFT
in combination with optical flow.

2.3.3 Time

At R = 25, approximately 40 ms would be spent acquiring k-space of a single
dynamic with TR=2.8 ms. Combined with a NUFFT adjoint reconstruction which
takes 5 ms and a SPyNET forward evaluation of 15 ms, DVFs can be computed
with high quality in 60 ms, which is more than adequate for real-time MRIgRT of
respiratory induced moving targets.

Table 2.2 summarizes all quantitative results in the sagittal plane. It can be
observed that almost 94% of all vectors have a root-mean-square error of less than
2 mm when computed with a NUFFT adjoint reconstruction and SPyNET for
motion estimation.

27



Chapter 2

5 10 16 20 25 30
Undersampling factor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

RM
SE

 (m
m

)

Ground Truth (R=1)
NUFFT/Optical Flow
NUFFT/SPyNET
dAUTOMAP/Optical Flow
dAUTOMAP/SPyNET

Figure 2.5 Root-mean-square displacement error within an ROI on sagittal images.
Shaded regions indicate standard deviation.
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Figure 2.6 Bland-Altman plots of the average vector magnitude within an ROI on
sagittal images as generated by the various model configurations at R = 10
and R = 25 compared to the ground-truth. A positive value indicates an
overestimation compared to the ground-truth.
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Ground NUFFT NUFFT dAUTOMAP dAUTOMAP
Truth (R=1) Optical Flow SPyNET Optical Flow SPyNET

SSIM after registration
R = 1 0.91± 0.04 0.91± 0.04 0.89± 0.06 0.87± 0.06 0.89± 0.06
R = 5 0.91± 0.04 0.88± 0.05 0.88± 0.06 0.85± 0.07 0.87± 0.07
R = 10 0.91± 0.04 0.85± 0.06 0.85± 0.07 0.81± 0.07 0.85± 0.07
R = 16 0.91± 0.04 0.81± 0.07 0.84± 0.07 0.77± 0.08 0.83± 0.07
R = 20 0.91± 0.04 0.78± 0.07 0.83± 0.07 0.74± 0.08 0.82± 0.07
R = 25 0.91± 0.04 0.74± 0.08 0.82± 0.07 0.70± 0.09 0.80± 0.08
R = 30 0.91± 0.04 0.72± 0.10 0.80± 0.08 0.68± 0.09 0.78± 0.08
R = 40 0.91± 0.04 0.66± 0.11 0.76± 0.08 0.62± 0.10 0.74± 0.09
R = 50 0.91± 0.04 0.60± 0.13 0.72± 0.08 0.58± 0.11 0.71± 0.09

RMSE ≤ 1 mm (within ROI)
R = 5 100% 99.5% 95.5% 98.0% 95.5%
R = 10 100% 95.3% 92.3% 92.8% 92.9%
R = 16 100% 86.1% 86.1% 81.4% 88.5%
R = 20 100% 78.1% 83.4% 70.1% 80.6%
R = 25 100% 69.9% 76.6% 56.0% 71.1%
R = 30 100% 61.8% 70.3% 48.1% 64.6%

RMSE ≤ 2 mm (within ROI)
R = 5 100% 100.0% 99.2% 100.0% 99.1%
R = 10 100% 99.7% 98.8% 99.2% 98.8%
R = 16 100% 97.8% 97.7% 96.8% 98.1%
R = 20 100% 95.6% 96.8% 93.9% 96.0%
R = 25 100% 91.7% 94.8% 86.7% 91.8%
R = 30 100% 85.8% 93.9% 80.1% 90.1%

Time (acquisition/reconstruction/motion (ms))
R = 10 500/1/5 100/5/5 100/5/15 100/5/5 100/5/15
R = 20 500/1/5 50/5/5 50/5/15 50/5/5 50/5/15
R = 25 500/1/5 40/5/5 40/5/15 40/5/5 40/5/15

Table 2.2 Quantitative results for the four approaches in the sagittal plane, displaying
the structural similarity index (SSIM) after registration for various
undersampling factors, the root-mean-square error (RMSE) of the motion
magnitude within an ROI (ROIs displayed in 2.6), and the time it takes
for MRI acquisition, image reconstruction, and motion estimation. Best
results per metric per undersampling factor are marked in boldface, excluding
ground-truth.

2.4 Discussion

In this work, we have investigated the impact of conventional and DL-based
approaches to estimate 2D DVFs from highly undersampled k-space for real-time
MRIgRT applications. In particular, we have quantified how much specific deep
learning models can accelerate MRI acquisition and processing over conventional
techniques and in which step deep learning is beneficial to obtaining high-quality
motion estimates. We have shown that motion can be estimated from heavily
undersampled k-space with high temporal resolution and low error compared to
the ground-truth when images are reconstructed with a conventional NUFFT
and motion is estimated with deep learning. For example, the mean absolute
displacement error remained within 2 mm and the RMSE remained within 1 mm
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at R = 25 while the SSIM after registration remained above 0.8 when motion
is estimated with NUFFT adjoint image reconstruction and SPyNET is used.
Our method can compute DVFs with these errors within 60 ms and induces a
total latency of 40 ms of which 20 ms comes from MRI acquisition101 and 20 ms
comes from processing, but extra overhead may present itself in a prospective
setting. This demonstrated that reconstruction of DVFs is feasible at very
high undersampling factors despite severe artifacts in the reconstructed images,
indicating that accurate motion estimation is more resilient to undersampling than
high-quality image reconstruction.

Results show that using SPyNET for motion estimation rather than optical flow
significantly improves DVF quality at undersampling factors R ≥ 10. Also,
we observe that the best DL-based approach can achieve the same SSIM after
registration as the fully conventional approach with approximately two times more
undersampling.

Interestingly, applying SPyNET to NUFFT-reconstructed images also outperforms
applying SPyNET to dAUTOMAP-reconstructed images. This indicates
that general-purpose trained DL-based image reconstruction obtained with
dAUTOMAP does not have added value for motion estimation. We observed
that dAUTOMAP favored overly smoothed reconstructions at high undersampling
factors. We hypothesize that this may be detrimental to recover motion
information.

We believe we have designed a robust approach to motion estimation. Augmenting
the input images with flips and rotations makes dAUTOMAP and SPyNET
robust against slight angulations. Moreover, the NUFFT/SPyNET approach
shows near-equivalent registration performance on coronal images compared to
registration of sagittal images without retraining. When dAUTOMAP is used
for image reconstruction, the performance is significantly lower on coronal images
than on sagittal images as it fails to reconstruct high-quality coronal images when
trained on sagittal images. Even though the networks were trained at R = 10,
evaluation at higher undersampling factors seems to have a low impact on the
registration quality.

NUFFT/SPyNET is thus able to resolve incoherent streaking artifacts introduced
by radial sampling. An interesting exploration would be to investigate whether
other sampling strategies (e.g., variable-density spirals) achieve similar results,
but this was considered out of the scope of this paper. This robustness of
NUFFT/SPyNET could suggest that the model is well generalizable and might
transfer to other body sites and contrasts without retraining, which is currently
under investigation.

This method of a radial readout with NUFFT image reconstruction and SPyNET
motion estimation could find its application in real-time MRI-guided radiotherapy
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applications. Keall et al.49 suggest that acquisition, motion estimation and dose
delivery needs to happen within 200 milliseconds to maintain accuracy. By using
NUFFT/SPyNET, accurate DVFs can be obtained at R = 25 in 60 ms with a
latency of 40 ms, including MR acquisition. This leaves ample time for adaptation
of the radiation beam to counteract the motion. This could enable real-time tumor
tracking to account for intra-fraction motion.

One of the limitations of our approach is that it requires a ground-truth motion
estimate to learn. While computing a ground-truth is feasible for retrospectively
undersampled data, obtaining a high-quality ground-truth motion estimate for
prospectively undersampled in-vivo MR data is challenging. Prospective data will
also be acquired with multiple receiver coils while this work is focused on single-coil
images. Considering multi-coil images might be beneficial for motion estimation
quality but also introduces new challenges. It requires more data needs to be
evaluated, which might result in more parameters to train and higher inference
times. Future work may investigate unsupervised approaches to learning motion or
find another way to obtain motion estimates from k-space acquired with multiple
receiver coils. Another limitation is that our networks were only trained atR = 10.
Performance might be improved at high undersampling factors if they are retrained
at R > 10.

When compared to other works, our method is significantly faster while achieving
similar accuracy at R = 25, even when compared to other deep learning-based
methods119–121. Seegoolam et al.119 investigated motion estimation on 2D cardiac
cine MRI for R = 9 and R = 50 achieving an average SSIM after registration of
0.93 atR = 9 versus 0.86 in this work and an SSIM of 0.776 atR = 51.2 versus 0.72
in this work. Also, they indicate that the motion estimation network shows better
generalization than the reconstruction network for various undersampling factors,
which is in accordance with what we observed. However, their reconstruction
method takes approximately 1.8 seconds per frame, excluding MR acquisition
which is a significant performance penalty.

Stemkens et al.120 obtained a 3D motion estimation with an RMSE of 1 mm using
a 360 ms 2D acquisition and a few seconds of motion calculation. This error is
comparable with we observed, even though their work estimates motion in three
dimensions. This is, however, not a “full” 3D method but uses multi-2D cine
scans in conjunction with a 4D MRI to obtain 3D motion estimates, limiting the
accuracy of the method.

The approach by Haskell et al.121 significantly reduces motion artifacts in image
space by combining a CNN with a physics-based model. This approach of
combining DL to remove artifacts with conventional SENSE reconstruction67

produces the best results, which is in line with what we found. However,
their approach requires fully-sampled data, and the full motion correction
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model requires several minutes to evaluate, making it unsuitable for real-time
applications.

In this work, we showed that acquisition, reconstruction and motion estimation
can be performed in approximately 60 ms forR = 25 achieving a root-mean-square
displacement error of less than 1 millimeter compared to a ground-truth motion
estimate. This is of particular interest for applications with crucial time
constraints, such as MRIgRT122. We believe that deep learning models play
an important role in facilitating real-time motion management on MR-Linacs,
but should be carefully assessed, taking into account the entire feedback chain.
Replacing an individual “classic” step in the processing pipeline by a DL alternative
does not necessarily result in improved performance. We did show that using
a DL-based motion estimation network in conjunction with a NUFFT yields
a robust and generic method for motion estimation. The combination of
highly undersampled k-space with DL-based methods yields high-quality motion
estimation for a real-time MRIgRT with low latency, which makes it a worthwhile
area of ongoing research.

In Chapter 3, we will investigate a “full” three-dimensional extension of
this method for real-time motion estimation. We hypothesize this will have
a higher accuracy and performance than a multi-2D approach. Motion has
been successfully estimated from fully-sampled 3D MR cardiac images123, but
the method has not been demonstrated for real-time applications. We will
investigate whether the use of multi-channel MRI may further improve the current
performances.

2.5 Conclusions

The performance of DL-based image reconstruction and motion estimation was
assessed on retrospectively undersampled GA radial MRI to allow real-time motion
estimation with minimal latency. It was found that DL-based motion estimation
(SPyNET) allowed far greater acceleration factors than traditional optical flow
based motion estimation. DL-based image reconstruction of undersampled radial
data, however, did not result in better performance compared to standard
NUFFT reconstructions in combination with SPyNET motion estimation. The
NUFFT/SPyNET approach produced an acceptable performance for 25-fold
accelerated data, thereby achieving an imaging frame rate of 25 Hz while the
root-mean-square error remained within 1 millimeter.
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Appendix A: Choice of ground-truth motion estimation
algorithm

High-quality ground-truth motion estimates are required for training SPyNET.
To determine which motion estimation is best suited for the dataset used in this
work, a preliminary study was conducted comparing the motion estimation quality
of optical flow40 and Elastix42. Both methods were compared and evaluated
based on registration performance. This was measured by the structural similarity
(SSIM) metric116, the mean-squared-error (MSE) between the reference image and
the registered image, and evaluation of the error spectrum plot (ESP)124 of the
registered images compared to the reference image were calculated over the entire
image.

Optical flow and Elastix DVFs were computed for all fully-sampled cine MRIs in
the training dataset used in this work. Optical flow was computed as described
in section 2.2.4.1 with β = 0.6. Elastix DVFs3 were computed on four resolution
levels using rigid, affine, and deformable motion estimation using B-splines. For
rigid and affine motion was estimated using the mutual information metric.
For deformable motion estimation, mutual information was used with weight 1,
and a transform bending energy penalty was added with weight 2. For every
cine MRI, 100 dynamic/reference image pairs were randomly sampled to ensure
representative measurements. The average SSIM, MSE, and ESP were computed
over 8100 dynamic/reference image pairs.

It was found that optical flow yielded an average SSIM of 0.920±0.045, which was
significantly higher than the average SSIM of Elastix registrations 0.899 ± 0.053

(Wilcoxon, p < 0.001). The average MSE was 3.63 ± 1.86 for optical flow, which
was significantly lower than the MSE of Elastix (Wilcoxon, p < 0.001), which was
5.08± 2.45. The averaged ESP is shown in Figure 2.7. It can be observed that for
nearly all frequencies, the error of optical flow is lower than for Elastix, except for
the very highest frequencies.

Based on these results have selected optical flow as ground-truth for evaluation
and learning target for deep learning models.

Appendix B: ROIs of the validation set

3. The exact parameter files can be found here: http://elastix.bigr.nl/wiki/index.php/
Par0060
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Figure 2.7 The average error spectrum plot of optical flow and Elastix registrations.

Figure 2.8 Manually generated regions-of-interest (ROIs) of the 30 patients used in the
test set. These ROIs were used for the RMSE computation in Table 2.2 and
the Bland-Altman plots in Figure 2.6. The ROIs were generated to include
relevant structures and have an average size of 1010±442 mm2 or 4.1±1.8%
of the image.
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Abstract
Purpose: To enable real-time adaptive MRI-guided radiotherapy (MRIgRT)
by obtaining time-resolved 3D deformation vector fields (DVFs) with high
spatio-temporal resolution and low latency (< 500 ms).
Theory & Methods: Respiratory-resolved T1-weighted 4D-MRI of 27 patients
with lung cancer were acquired using a golden-angle radial stack-of-stars readout.
A multi-resolution convolutional neural network called TEMPEST was trained on
up to 32x retrospectively undersampled MRI of 17 patients, reconstructed with a
non-uniform fast Fourier transform, to learn optical flow DVFs. TEMPEST was
validated using 4D respiratory-resolved MRI, a digital phantom, and a physical
motion phantom. The time-resolved motion estimation was evaluated in-vivo
using two volunteer scans, acquired on a hybrid MR-scanner with integrated linear
accelerator. Finally, we evaluated the model robustness on a publicly-available
4D-CT dataset.
Results: TEMPEST produced accurate DVFs on respiratory-resolved MRI at
twenty-fold acceleration, with the average end-point-error < 2 mm, both on
respiratory-sorted MRI and on a digital phantom. TEMPEST estimated accurate
time-resolved DVFs on MRI of a motion phantom, with an error < 2 mm at
28x undersampling. On two volunteer scans, TEMPEST accurately estimated
motion compared to the self-navigation signal using 50 spokes per dynamic (366x
undersampling). At this undersampling factor, DVFs were estimated within 200
ms, including MRI acquisition. On fully-sampled CT data, we achieved a target
registration error of 1.87± 1.65 mm without retraining the model.
Conclusion: A CNN trained on undersampled MRI produced accurate 3D DVFs
with high spatio-temporal resolution for MRIgRT.
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3.1 Introduction

Real-time adaptive radiotherapy aims to increase the accuracy with which
radiation is delivered, leading to increased sparing of healthy tissue and
organs-at-risk (OARs)45. By rapidly acquiring images and estimating tumor
motion during dose delivery, the radiation beam can be adapted to follow
the current anatomy. To facilitate treatment adaptation, magnetic resonance
imaging-guided radiotherapy (MRIgRT) is increasingly adopted in clinical
practice, e.g. with the introduction of hybrid MR-Linac devices25,30,33,99,125. With
its superior soft-tissue contrast, MRI facilitates direct visualization of tumors and
OARs17,126.

For real-time treatment adaptation, image acquisition and motion estimation
must occur with low latency and a high spatio-temporal resolution49, i.e. the
maximum time between a (respiratory) motion event and dose delivery should
be ≤ 400 ms50,127. However, real-time acquisition of 3D MRI and computation
of a non-rigid deformation vector field (DVF) is challenging due to the long
acquisition times of fully-sampled MRI (seconds to minutes) and the ill-posed
and under-determined nature of motion estimation, hindering real-time motion
estimation39,128.

Several methods have been presented to accelerate MR acquisition and
motion estimation, such as parallel imaging67,68,102, simultaneous multi-slice
acquisitions129, advanced image reconstruction algorithms allowing for greater
undersampling factors, such as compressed sensing71, or novel motion estimation
methods model from 2D MRI120. Recent works proposed using low-rank models to
reconstruct highly undersampled MRI with sub-second temporal resolution130, but
these methods currently have long reconstruction times. Currently, none of these
methods can achieve the required acceleration factor combined with low-latency
reconstruction to estimate motion within 500 ms127.

Recently, deep learning (DL) has been proposed to speed up MRI reconstruction
and motion estimation, achieving performances on par, if not higher, than
its non-DL counterparts89,90,123,131–133. Specifically, DL models allow for fast
inference, leaving the time-consuming step to the training phase, which can take
hours or days.

In a previous work, we introduced a supervised DL-based framework for real-time
2D motion estimation134. By reconstructing highly undersampled golden-angle
radial acquisitions with a non-uniform fast Fourier transform (NUFFT), motion
was estimated by a multi-resolution convolutional neural network (CNN), allowing
for fast and accurate motion estimation.

Ideally, we could extend this approach to real-time three-dimensional motion
estimation by training a 3D network on 3D cine-MRI acquired with high
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spatio-temporal resolution. However, it is challenging to obtain high-quality
ground-truth DVFs from in-vivo MRI acquired at a high spatio-temporal
resolution as the images will suffer from severe artifacts due to undersampling
and respiratory motion. One way to circumvent this problem is by
performing respiratory-sorted image reconstruction instead of time-resolved image
reconstruction. Respiratory-sorted MRI displays physiological motion similar to
time-resolved MRI, maintaining higher image quality as fewer motion artifacts due
to less severe undersampling.

In this work, we extend the previously-introduced 2D approach to 3D by
training a DL model named TEMPEST (real-time 3D motion estimation from
undersampled MRI using multi-resolution neural networks) to estimate DVFs
from highly accelerated 3D-MRI. We train TEMPEST on respiratory-sorted
4D-MRI to learn ground-truth DVFs computed using conventional registration
methods. The trained network is subsequently used to estimate motion
from highly accelerated time-resolved MRI. We investigate the optimal model
hyperparameters, and evaluate the model performance on digital and physical
phantoms and 4D respiratory-resolved CT data. Moreover, we estimate the
performance of TEMPEST on time-resolved MRI of two healthy volunteers
acquired on an MR-Linac.

3.2 Methods

We trained a supervised multi-resolution deep learning model (TEMPEST)
to estimate a DVF (DVFTEMPEST) between two undersampled MRI volumes
acquired with a golden-angle radial stack-of-stars readout. The model requires
MRI for training, together with ground-truth DVFs (DVFGT) describing the
motion between a dynamic and static volume.1

3.2.1 Patient data collection and preparation

Twenty-seven patients undergoing radiotherapy for lung cancer between February
2019 and February 2020 at the RT department were retrospectively included
under the approval of the local medical ethical committee with protocol number
20-519/C.

Free-breathing 3D golden-angle radial stack-of-stars (GA-SOS) T1-weighted
spoiled gradient echo MRI of the thorax were acquired for 7 min on a 1.5T
MRI (MR-RT Philips Healthcare, Best, the Netherlands) during gadolinium
injection (Gadovist, 0.1 ml/kg). The acquisition was fat-suppressed using Spectral
Attenuated Inversion Recovery (SPAIR). The relevant scan parameters are listed
in Table 3.1 (4D MRI).

1. Code for training and inference will be made available at https://gitlab.com/
computational-imaging-lab/tempest after acceptance.
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Phantom experiments Time-resolved
MR-Linac experiments

Parameter 4D MRI Stationary
phantom

Moving
phantom Volunteer 1 Volunteer 2

Readout GA-SOS GA-SOS GA-SOS GA-SOS Kooshball
Number of coils 28 8 8 8 8
TR/TE (ms) 3.2/1.3 4.3/1.8 3.4/1.5 3.4/1.5 3.5/1.4
Flip angle (◦) 8 10 10 10 10
Bandwidth (Hz/px) 866 866 868 865 868
FOV (mm3) 440× 440× 270 440× 440× 270 440× 440× 270 525× 525× 270 525× 525× 525
Resolution (mm3) 2.13× 2.13× 3.50 2.0× 2.0× 3.5 4.9× 4.9× 3.5 5.0× 5.0× 3.5 4.9× 4.9× 4.9
Matrix size 206× 206× 77 220× 220× 77 90× 90× 77 106× 106× 77 108× 108× 108
Slice direction FH FH FH FH -
Scan time (s) 438 60 28 163 40

Table 3.1 Relevant scan parameters for three experiments. The “4D MRI” column
describes the MR parameters for the respiratory-resolved 4D-MRI used for
training, validation and testing. The “Phantom experiments” columns refer
to the two experiments acquiring a stationary and moving motion phantom
on an MR-linac. The “Time-resolved MRI experiments” columns refer to
MRI data acquired on an MR-linac of two healthy volunteers for evaluation
of real-time motion estimation performance.

Patients were scanned in supine position using a 16-channel anterior and
12-channel posterior phased-array coil. In total, 1312 radial spokes per slice were
acquired, corresponding to approximately four times oversampling compared to
a fully-sampled volume, which requires 206 · π/2 ≈ 324 spokes. To train and
evaluate the motion estimation model, patients were divided in a train set (17
patients), validation set (5 patients) to find optimal hyperparameters and prevent
overfitting, and a test set (5 patients) to evaluate the final model performance.

3.2.2 Image reconstruction

To train TEMPEST with physiological motion, we reconstructed
respiratory-resolved MRI based on the self-navigation signal present in the
4D-MRI135, as illustrated in Figure 3.1A. An example of respiratory-resolved
reconstruction versus free-breathing image reconstruction is shown in
Figure 3.1B,C,E,F. The self-navigation signal was obtained by sampling
radial spokes and performing a 1D Fourier transform of center of k-space, i.e.
k0, along the slice direction. The respiratory motion surrogate was obtained by
performing principal component analysis on the concatenated navigators136,137.

As contrast was injected, the relative magnitude of the self-navigation signal
changed over time. To account for the contrast wash-in phase, we discarded the
first 200 spokes of every scan to prevent contrast mixing. The remaining spokes
were sorted based on the respiratory phase and relative amplitude using a hybrid
binning algorithm138.

After sorting, k-space was density-compensated using a Ram-Lak filter,
interpolated onto a twice-oversampled Cartesian grid using a 3 × 3
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Figure 3.1 Examples of the self-navigation signal and the data. A typical example
of the self-navigation signal during the first 30 seconds of the acquisition
(A). In a free-breathing reconstruction (B,E), blurring due to motion can
be observed near the red arrows. With a respiratory-resolved NUFFT
reconstruction (C,F), the blurring is resolved at the cost of undersampling
artifacts. Compressed-sense reconstructions (D,G), show improved image
quality at the cost of longer reconstruction times.

Kaiser-Bessel kernel, and transformed to image-space with a NUFFT-adjoint
reconstruction61,139 with a weighted coil combination. Four-dimensional
respiratory-resolved magnitude reconstructions were made for 1, 3, 5, 10, 20, 30,
40, 50, 75, and 100 respiratory phases. As 1312 spokes were sampled in total, and
324 sampled spokes are required to fulfill the Nyquist criterion, the undersampling
factor of the respiratory-resolved MRI is computed as R = (324 · nphases)/1312,
corresponding to approximately 0.25, 0.75, 1, 3, 5, 10, 13, 15, 18, and 27-fold
undersampling, respectively. As we aimed to train a multi-resolution motion
estimation model, we also reconstructed images at a lower spatial resolution, i.e. 2x
and 4x spatial downsampling, by radially cropping the k-space around k0, reducing
the spatial resolution in the left-right and anterior-posterior direction. Along the
feet-head (Cartesian) direction, resolution was maintained. The reconstructed
images were normalized by scaling the image intensity to an output range of [0,
1] by clipping to the 99th percentile of the image intensity. The percentiles were
computed on a patient basis over all respiratory phases.

To validate TEMPEST at high undersampling factors, i.e. R = 10, 13, 15,
18, 27, we required ground-truth DVFs for comparison. However, traditional
methods were unable to provide accurate DVFs based on the adjoint-reconstructed
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images due to the undersampling artifacts. Therefore, MRI was also reconstructed
using compressed sense with temporal total variation (TV) regularization, λ =

0.0371,137. An example of these reconstructions is shown in Figure 3.1D,G.

3.2.3 Ground-truth motion

Ground-truth DVFs were computed using optical flow40,113, as it provided a
good balance between computation time, registration performance and number of
hyperparameters. Optical flow computes motion by assuming spatial smoothness
of the DVF, regularized by the β hyperparameter. A preliminary study, which is
presented in Supporting Information Figure 4, was performed to select the optimal
value for β = 0.4 for our training data.

We calculated optical flow DVFs (DVFOF) for each respiratory-resolved dynamic
to three static volumes: full inhale, full exhale, and halfway inhale and exhale. This
increased the training data and to ensure that the network learned to compute
motion in multiple principal directions.

Optical flow was computed up to 20 respiratory phases (i.e. R ≈ 7) at full
resolution. For R > 10 optical flow DVFs (DVFCS,OF) were computed on the
compressed sense reconstructions as the motion estimate became unreliable due
to the artifacts present in the undersampled NUFFT-adjoint reconstructed MRI.

3.2.4 Network architecture

TEMPEST was designed as a multi-resolution 3D convolutional neural network
(CNN) operating on the entire volume to learn the DVF between a static and
dynamic image. The complete motion model consisted of K multi-resolution
motion networks, operating on different spatial resolution levels. Each motion
network had a fixed architecture and consisted of five 3D convolution layers with
32, 64, 32, 16, and 3 filters of size ck × ck × ck, respectively. The motion network
that operated at the lowest resolution directly attempted to learn a DVF from
a static and dynamic volume. The motion network that operated at higher
resolution levels received a static volume, dynamic volume, and upsampled DVF
from the previous motion network as input, and attempted to learn a residual
DVF to refine the upsampled DVF from the previous motion network. Several
works perform intermediate warping of the dynamic images according to the
estimated DVF106,140,141. In a previous work134, we identified that warping
undersampled images using the estimated DVF was detrimental to the motion
estimation performance. As performing three-dimensional image interpolation is
a costly operation, we opted to omit this operation. Each convolution layer in
a motion network, except for the final layer, was followed by a ReLU non-linear
activation function142. Figure 3.2 depicts the model architecture.
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Figure 3.2 Model overview. TEMPEST computes the DVF between a static and
dynamic volume, where the green line indicates the motion magnitude.
TEMPEST starts at 4x spatially downsampled resolution. A motion
network, consisting of a 3D CNN of five layers (32, 64, 32, 16, and 3
learned filters respectively) which operates on the whole volume, estimates
the DVF between a static and a dynamic volume. This first motion estimate
is upsampled through U and serves as additional input for the motion
network operating at the next resolution level. The subsequent layers learn
the residual DVF which improves the previous estimate. The size of all
convolution kernels is ck × ck × ck, depending on the resolution level. All
layers but the last are followed by a ReLU non-linear activation.
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TEMPEST was trained to minimize the end-point-error
(EPE = ||DVFGT −DVFTEMPEST||2) by considering the magnitude error
and angle error as separated terms and penalizing non-smooth DVFs. The full
loss function that was minimized during training was

L = α · (Lmag + Lφ) + (1− α) · LEPE + λ · ∇DVF

where Lmag is the `2-norm of the magnitude difference between the target and
output DVF, Lφ is the `2-norm of the difference in angle between the target and
output DVF, LEPE is the EPE i.e., the `2-norm of the difference of the output
DVF and target DVF, and ∇DVF enforces smoothness of the DVF by penalizing
the mean Laplacian of the DVF. For our experiments, we used λ = 10−5.

The motion networks were trained sequentially, starting at the lowest resolution
level. When the validation loss of this network converged, the motion network
operating at the next-higher resolution level was trained. At that point,
two training strategies were considered for training the next motion networks:
conventional “serial” training and “end-to-end” training. During serial training,
no backpropagation was performed over the low-resolution motion networks
when training the higher-resolution motion networks. With end-to-end-training,
however, backpropagation was performed over the lower resolution levels. We
investigated this scheme based on the idea that it allows the low-resolution network
to learn features which are more expressive for high-resolution motion estimation
than the DVF at that level.

The final performance depended partially on the model hyperparameters. Good
hyperparameters were found through a representative grid-search, searching
among the following values:

• α: The weight factor between the EPE and variable-split terms, α ∈
[0.0, 0.1, 0.2, . . . , 1.0]

• K: The number of resolution levels to use, K ∈ [3, 4]

• ck: The sizes of the convolution kernels in the convolution kernels for every
resolution level k ∈ K, ck ∈ [3, 5, 7]

This resulted in a total of 1188 different model configurations, which were trained
on 5 patients and evaluated on 3 patients. For each of the 1188 combination
of hyperparameters, a model was trained for 50 epochs on 5 patients with
a fixed random seed. We selected the hyperparameters corresponding to the
model that achieved the lowest average EPE on three unseen patients. With
these hyperparameters we trained TEMPEST with serial and end-to-end training
strategies on the training set of 17 patients. Both models were identically
initialized and trained deterministically to prevent unintended advantages on the
train set of 17 patients. Respiratory-resolved MRI was made for every patient in
the train set with multiple undersampling factors. In total, the train set consisted
of 2108 static/dynamic/DVFs samples with undersampling factors R ∈ [1, 3, 5, 7].
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To prevent overfitting, the model performance on the validation set was evaluated
after every epoch. The models were trained using the Adam optimizer with a base
learning rate of lr = 10−4 and with 10−3 `2 weight decay on a GPU (Tesla V100,
NVIDIA, Santa Clara, CA, USA) with 32GB VRAM. We also used a learning
rate schedule that halved the learning rate if the average validation loss did not
decrease with at least ∆L = 10−8 during 10 epochs.

Both models were trained until convergence of the validation loss was observed,
i.e. the average validation loss did not decrease more than ∆L = 10−8 during 10
epochs and the learning rate was smaller than 10−8. During training we performed
augmentation on the static and dynamic MRI and the DVFs using TorchIO143 by
performing random flips along an axis (p = 0.5), applying a random bias field
(p = 0.25, order ∈ [0, 1, 3, 5]), and adding random Gaussian noise to the volumes
(p = 0.25, µ = 0, σ ∼ U(0, 0.05)). After initial training, the full model was
fine-tuned for 100 epochs on a dataset consisting for 25% of image pairs from the
training set up to R = 7 with motion (i.e. non-zero ground-truth DVF), and for
75% of image pairs of the training set between 7 and 32-fold undersampling without
motion (i.e. the ground-truth DVF is zero everywhere) to decrease sensitivity to
undersampling artifacts.

To increase inference speed, the fully-trained models were quantized from
full-precision (fp32) to half-precision (fp16) after fine-tuning by rounding the
weights and biases to the nearest 16-bit floating-point number without retraining.

3.2.5 Evaluation

After training, fine-tuning and quantization of the model, we evaluated the
model performance on several motion estimation tasks. The accuracy of the
DVFTEMPEST was assessed using two metrics: the voxel-wise EPE compared to a
ground-truth DVF, and the mean and standard deviation of the target registration
error (TRE). The mean and standard deviation of the EPE was computed over
the entire field-of-view, within the body contour, and within the lungs. The body
mask was obtained by thresholding the normalized MR image > 0.1, selecting
the largest connected component, and performing a morphological closing. The
lung mask was obtained by thresholding the normalized MR image within the
body < 0.03, selecting the largest connected component, and performing a
morphological closing.

The impact of end-to-end training versus serial training was measured by
comparing the mean EPE of the two models on the test set over the entire FOV,
within the body contour, and within the lungs. Statistical significance (p < 0.01)of
the difference in mean EPE was established by the Wilcoxon signed-rank test.

The registration performance was evaluated by applying the DVF to the moving,
CS-reconstructed volume and estimating the similarity between this warped
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volume Iwarped and the static, CS-reconstructed volume Istatic. This similarity
was computed using the SSIM metric116 and the normalized root-mean-squared

error NRMSE =

√
MSE(Istatic,Iwarped)

ρwarped
where ρwarped is the mean image intensity of

Iwarped.

Respiratory-resolved volumes TEMPEST was evaluated on the
four-dimensional respiratory-resolved test set consisting of 5 patients.
Model output was compared using the EPE metric (µ ± σ) against
the DVF computed with optical flow computed on CS reconstructions
(DVFOF,CS). Moreover, we measure registration performance by registering
the CS-reconstructed dynamic volume to the static volume using the
DVFTEMPEST. The registration performance was quantified using the SSIM
metric and the NRMSE (µ ± σ) over the entire FOV, within the body
contour and within the lungs.

Digital phantom TEMPEST was evaluated without retraining on a digital
phantom, as this allows for comparison to a ground-truth DVF. The XCAT
digital phantom144,145 was simulated with MR contrast with equal voxel size
and field-of-view size as our training data, as described in Table 3.1, column
“4D MRI”. The phantom was simulated for 5 frames with respiratory motion
up to 50mm in the anterior-posterior direction and 100 mm in the feet-head
direction. Motion with a magnitude this large is unlikely to occur in patients,
but allows us to evaluate TEMPEST in situations with large deformations.
We compared DVFTEMPEST to ground-truth DVFs (DVFGT) provided by
the digital phantom, which were post-processed using the framework by
Eiben et al.146 for improved accuracy. Retrospective undersampling was
performed using a GA-SOS readout for undersampling factors 1, 4, 8, 10,
20, 30, 40, 50. For every undersampling factor, the quality of DVFTEMPEST

was evaluated using the EPE (µ ± σ) compared to DVFGT over the entire
FOV, within the body contour and within the lungs.

Physical phantom Time-resolved 3D cine-MRI of a physical phantom
(QUASAR MRI 4D Motion Phantom, Modus QA, Ontario, Canada) was
acquired on a 1.5 T hybrid MRI-Linac (Unity, Elekta AB, Sweden). The
phantom consisted of an insert in a water tank and was acquired with
and without motion applied to the insert. During the “moving phantom”
acquisition, the insert moved according to a sinusoidal trajectory with 1/7Hz
frequency and 20 mm amplitude. The relevant scan parameters are listed
in Table 3.1, column “Moving phantom”. During the “stationary phantom”
acquisition, for which the relevant scan parameters are listed in Table 3.1,
column “Stationary phantom”, we tested the sensitivity of the streaking
artifacts on the motion estimation performance. The performance of
TEMPEST and optical flow were assessed by computing the mean absolute
error and Pearson correlation between the ground-truth phantom motion
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and the z-magnitude of DVFTEMPEST and DVFOF, without retraining
TEMPEST.

Fully-sampled CT data To test the generalizability, we evaluated TEMPEST
on a publicly accessible 4D respiratory-resolved CT dataset147 without
retraining the model. The quality of DVFTEMPEST was assessed using the
EPE metric (µ ± σ) within the body contour compared to DVFGT, which
was provided by the dataset. Moreover, the registration performance was
evaluated using the TRE (µ±σ) using 41 landmarks within the lungs, which
were provided by the dataset for every frame147.

Real-time motion estimation To evaluate the time-resolved motion
estimation performance, we acquired undersampled MRI from two healthy
volunteers on an MR-Linac using a GA-SOS readout and a golden-mean
radial “kooshball” readout. Both scans were acquired without contrast agent
injection and were reconstructed using the NUFFT-adjoint operator after
performing radial view-sharing between a dynamic and the two adjacent
dynamics148. During the kooshball acquisition, a feed-head spoke was
acquired every 25 spokes, which provided a self-navigation signal in the
feed-head direction.

The relevant scan parameters are listed in Table 3.1, columns “Volunteer 1”
and “Volunteer 2”, respectively.

For volunteer 1, we evaluated TEMPEST performance by comparing
magnitude of DVFTEMPEST in the feet-head direction (i.e., motion trace)
to the self-navigation signal present in GA-SOS acquisitions.

For volunteer 2, we evaluated TEMPEST performance by computing the
Pearson correlation between the magnitude of DVFTEMPEST in the feet-head
direction to the self-navigation signal obtained from navigation spokes,
as no reliable quantification of the true motion is available at this high
undersampling factor. The undersampling factor for kooshball MRI was
given by R = (Mx ·My · π/2) /Nsp, where Nsp is the number of spokes per
dynamic and Mx = My = 108 is the matrix size in the x and y direction.

Time We measured whether TEMPEST is fast enough for real-time applications
by reporting the time for MR acquisition, image reconstruction, and motion
estimation. We measured the model inference time (µ±σ) at fp32 and fp16
resolution over 50 evaluations for static/dynamic volume pairs from the test
set with a matrix size of 206×206×77 at full resolution. We considered our
approach fast enough for real-time MRIgRT if the total time ≤ 400 ms, as
suggested by Keall et al.50,127.
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3.3 Results

Based on the hyperparameter evaluation we found that α = 0.8 and K = 3 to
be optimal among those that we evaluated. The full results are presented in
Supporting Information Figures 1-3. For the sizes of the convolution kernels we
found that c0 = 3, c1 = 5, and c2 = 3 to be best performing, where k = 0 is the
lowest spatial resolution, and k = 2 is full spatial resolution, resulting in a model
with 859660 trainable parameters.

We trained two variants of TEMPEST with these hyperparameters: with serial
training and with end-to-end training. The network operating at the lowest
resolution level was trained for 250 epochs in approximately 4 hours with a batch
size of 8. The network operating at the second resolution level was trained for 150
epochs in approximately 8 hours with a batch size of 4, while also performing
backpropagation over the lowest resolution level. The network operating the
highest resolution level was trained for 125 epochs in approximately 12 hours
with a batch size of 4, while also performing backpropagation over both models
operating at lower resolution levels.

An example of a DVF produced by TEMPEST from undersampled MRI (R = 23)
is shown in Figure 3.3A-C. DVFTEMPEST shows good agreement with DVFCS,OF

(D-F). In this particular case, the mean EPE was 2.78 mm. Animated figures of
TEMPEST DVFs computed on 4D MRI are provided in Supporting Information
Videos S1-3.

The quality of TEMPEST DVFs significantly increased when using end-to-end
training compared to serial training on our test set, as shown in Figure 3.4. For
example, the average EPE at R = 15 reduced from 3.47 ± 0.76 mm using serial
training to 2.25 ± 0.70 mm using end-to-end training within the body contour
(Wilcoxon, p� 0.001). At the same time, the average SSIM increased with ≥ 6%

at R ≥ 15 (Wilcoxon, p � 0.001) when using end-to-end training, indicating
better registration performance.

We quantized the weights and biases of TEMPEST from full-precision (fp32) to
half-precision (fp16). Our analysis revealed that weight quantization step has
negligible impact on the model performance, increasing the mean EPE with only
3.7 · 10−4 mm. However, weight quantization reduced the inference time of a
static/dynamic volume-pair of matrix size 206 × 206 × 77 from 81 ± 7.4 ms to
31± 2.9 ms on a NVIDIA V100 GPU, reducing the total latency.

Based on these results, the quantized, end-to-end-trained TEMPEST model has
been adopted for further performance evaluation.
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Figure 3.3 Example of motion estimation. An example of motion estimation in 3D
by TEMPEST (A-C) on 23-fold undersampled MRI. Good correspondence
can be observed between the motion estimated by TEMPEST and motion
estimated by optical flow computed on compressed sense reconstructions
(D-F). In the quasi-static region, TEMPEST estimates slightly larger
residual motion. In the Supporting Information Videos S1-3, animated
figures are provided.

3.3.1 4D respiratory-resolved motion estimation

The performance of TEMPEST on respiratory-resolved MRI is shown in
Figure 3.5. We found that the EPE remained within 1.9±0.6 mm within the lungs
at R = 18 compared to DVFCS,OF. The mean NRMSE and mean SSIM plateau at
R > 15 at approximately 0.51 and 0.63 within the lungs, respectively. Surprisingly,
even though TEMPEST has been trained on MRI with an undersampling factor
up to R ≈ 7, the mean EPE only moderately increases from 1.5 mm to 1.9 mm
at R = 18 within the lungs.

3.3.2 Digital phantom

Evaluation of TEMPEST on a digital phantom showed results similar to the
respiratory-resolved test set, as shown in Figure 3.6. At low undersampling factors,
e.g. R = 4, the mean EPE of DVFTEMPEST compared to DVFGT was 0.8 ± 0.12

mm within the body contour. At higher undersampling factors beyond those seen
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Figure 3.4 Comparison of serial vs. end-to-end training on 4D MRI. Two variants of
TEMPEST were trained: with end-to-end backpropagation (blue) and serial
training (orange). EPE (top row) and the SSIM of registered compressed
sense reconstructions (bottom row) as a function of the undersampling
factor. Evaluation was done within the body contour (left column) and
within the lungs (right column).
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Figure 3.5 4D Evaluation. The EPE (left), NRMSE of compressed sense
reconstructions after registration (middle), and SSIM of compressed sense
reconstructions after registration (right) as a function of the undersampling
factor. These metrics were evaluated over the whole FOV (blue), within
the body contour (orange), and within the lungs (green). Secondary x-axis
show the approximate acquisition time in seconds using GA-SOS for that
undersampling factor.

during training, the mean and standard deviation of the EPE increases, yielding
a mean EPE of 2.0± 0.76 within the body contour at R = 30.

3.3.3 Physical phantom

In Figure 3.7 we show the results of the phantom experiments. In the moving
phantom experiment (top row), TEMPEST (red) produces motion traces similar
to the ground-truth self-navigation motion signal (yellow), indicated by the
Pearson correlation factor of 0.911 at R = 20.2. At R = 28.3, TEMPEST
estimates motion with an absolute error of 1.75±1.3 mm versus 2.66±1.7 mm for
optical flow. For the stationary phantom (middle), optical flow shows significantly
more residual motion than TEMPEST at high undersampling factors while there
should be no motion. At R = 20.3, TEMPEST produces motion traces with an
error of 1.03±0.6 mm, whereas optical flow produces an error of 3.65± 2.4 mm.

3.3.4 Generalization to CT data

Surprisingly, when applied to 4D CT, TEMPEST estimates motion with low EPE
compared to the ground-truth DVF without retraining the model for this modality.
For example, Figure 3.8 shows that TEMPEST produces DVFs with a mean EPE
of 1.23 mm over all respiratory phases, and is able to register CT with little
residual motion. When registering images with no motion (e.g. estimating motion
from exhale to exhale) the mean EPE was 0.29 mm. The largest mean EPE was
observed when registering the inhale CT to exhale, resulting in a mean EPE of
2.01 mm. Registration of the landmarks yielded an average TRE of 1.87 ± 1.65

mm.
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Figure 3.6 Digital phantom results. An XCAT digital phantom was simulated with up
to 50mm AP motion and 100mm FH motion. An example of a fully-sampled
dynamic in exhale is shown in the top row. Volumes were retrospectively
undersampled using a GA-SOS trajectory, e.g. R = 20, as shown in the
middle row. The bottom row shows the magnitude error (µ ± σ) between
the model output and the post-processed ground-truth XCAT DVF over 100
reconstructions per undersampling factor, using different azimuthal angles
and noise.
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Figure 3.7 Phantom results. In the background is the progression of a single location
along the slice direction over time. In yellow is the ground-truth motion
trace produced by the phantom. In red, the motion trace produced by
TEMPEST. In cyan, the motion trace produced by optical flow. This was
computed for the phantom in motion (top row) and the stationary phantom
(bottom row) for several undersampling factors. The Pearson correlation
between the ground-truth motion and the TEMPEST motion is displayed
above the plot as ρ. In the bottom row, the absolute error (µ± σ) is shown
for both experiments as a function of the undersampling factor.

3.3.5 Real-time motion estimation

Evaluation of TEMPEST on time-resolved MRI is shown in Figure 3.9. On
GA-SOS k-space acquired on an MR-Linac, TEMPEST produces motion similar to
the self-navigation signal, indicated by the Pearson correlation of 0.93 atR = 18.5.
Animated figures of TEMPEST DVFs computed on time-resolved GA-SOS MRI
are provided in Supporting Information Video S4-6.

With the golden-means kooshball readout we achieve good correlation between
the 40 and 75 spokes per dynamic, achieving a Pearson correlation of ∼0.80.
Animated figures of TEMPEST DVFs computed on time-resolved golden-means
kooshball MRI are provided in Supporting Information Video S7-10.
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Figure 3.8 CT results. TEMPEST was evaluated on a fully-sampled
respiratory-resolved 4D-CT dataset. Non-registered CT shows large
differences in image space, especially in the liver dome (top row). In the
middle row, it can be seen that TEMPEST is able to register the images
with little residual error. On the bottom row, the EPE of TEMPEST
compared to the ground-truth DVF is shown as a function of the respiratory
phase. End exhale was the reference phase. The mean EPE was 1.23 mm,
shown in the red horizontal line.

55



Chapter 3

Figure 3.9 Real-time results. TEMPEST was evaluated on time-resolved GA-SOS
volunteer data (top, red line) and compared to the self-navigation signal
(yellow) for multiple undersampling factors. The Pearson correlation
between these lines is shown in the same figure. This was also done for
another volunteer using a golden-mean radial kooshball acquisition (middle,
bottom). The self-navigation in a surrogate for the motion in the feet-head
direction in both scans.

Acquiring one spoke per slice using a GA-SOS readout takes ∼270 ms for 77 slices.
Reconstruction of GA-SOS k-space at three resolution levels, where full-resolution
is 206× 206× 77 takes about 50 ms per slice using a simple GPU-based NUFFT
algorithm. As TEMPEST takes 30 ms to estimate motion, DVFs can be computed
using our methods well within 400 ms, which is the maximum affordable latency
for radiotherapy, as suggested by Keall et al.50,127.

3.4 Discussion

In this work, we have proposed a deep learning model called TEMPEST to
estimate 3D DVFs from highly undersampled acquisitions to facilitate real-time
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MRIgRT applications. In particular, we have presented a multi-resolution model
that has been trained on respiratory-resolved MRI that can be used to estimate
motion with low latency and high spatio-temporal resolution in time-resolved MRI.
This model is an extension from 2D to 3D of our previously-presented approach
that estimates motion from undersampled 2D golden-angle radial acquisitions
using NUFFT reconstruction and deep learning-based motion estimation134. To
the best of our knowledge, this is the first deep learning model that enables
real-time 3D motion estimation from highly undersampled MRI, with a total
latency of less than 400 ms.

We have shown that at R = 18 motion was estimated in respiratory-resolved
imaging with less than 2 mm error. The model was validated with various
experiments, such as a digital phantom, a physical motion phantom and 4D
respiratory-resolved CT data. In all these experiments motion could be accurately
estimated with undersampling factors up to R = 20. Inference of the model took
only ∼30 ms, which is acceptable for MRIgRT49,127. We found that “end-to-end”
training improved DVF quality compared to “serial” training, decreasing the mean
EPE with over 1 mm compared to serial training.

Our experiments with the physical phantom show that TEMPEST is able to
accurately estimate motion from data acquired on an MR-linac compared to the
ground-truth, even though the model was trained on patient data. Compared to
optical flow, TEMPEST DVFs seem to display a greater robustness against the
incoherent streaking artifacts present in radially undersampled images. Especially
in the stationary phantom experiment optical flow produces a response to aliasing,
most notably at higher undersampling factors. Presumably, this is due to the
introduced image artifacts present in highly undersampled images.

Even though TEMPEST has been trained on T1-weighted spoiled gradient echo
lung MRI we have demonstrated that our model also performs surprisingly well
on different imaging modalities, such as CT, without retraining and yields a TRE
of 1.87 ± 1.65 mm. While these results are promising, state-of-the-art image
registration methods or specialized neural networks trained solely on CT images
report lower TREs. For example, Marstal et al.149 showed that Elastix is able
to obtain a TRE of 1.58 ± 0.59 mm and Eppenhof et al.150 obtained a TRE of
1.38± 1.24 mm using CNNs. However, these results indicate that the model may
generalize well and demonstrates that model has not over-fit to a specific imaging
contrast. Further experiments are needed to investigate whether TEMPEST
also generalizes beyond T1-weighted MRI contrasts, radial MRI, or to different
body sites. For example, TEMPEST could be applied to MRI acquired with
other non-Cartesian acquisitions like a stack-of-spirals151, golden-mean cones152,
or even Cartesian readouts such as variable-density Cartesian spirals153. However,
this may require retraining as the aliasing changes depending on the sampled
trajectory.
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For time-resolved imaging, TEMPEST is able to produce motion traces with
high correlation to the self-navigation signal, as demonstrated in the phantom
experiments and the time-resolved MRI experiments. For GA-SOS MRI acquired
using volunteer 1 at R = 18.5, TEMPEST produces DVFs with a motion
trace correlating 93% to the self-navigation signal. For the golden-mean radial
kooshball data, good motion traces can be produces between 40 and 75 spokes
per dynamic, corresponding to extreme undersampling factors between R = 458

and R = 244. We hypothesize for this dataset, this number of spokes provides
a good trade-off between image quality and acquisition latency. With fewer
spokes, the undersampling artifacts presumably dominates the motion. With
more spokes, longer acquisitions introduce temporal aliasing, as shown in the
Supporting Information Videos S7-10. However, radial view-sharing reduces the
effective undersampling factor such that this approach becomes feasible. Moreover,
the spatial resolution of 5 mm was significantly larger than the training data.
Using larger voxels significantly accelerates the MR acquisition, but reduces
image quality as fine details are lost. However, it has been demonstrated that
larger voxels have little impact on the estimated optical flow97. With 50 spokes
per dynamic, acquisition took ∼175 ms, while motion estimation took 30 ms.
Our approach thus took 205 ms plus time for image reconstruction, which was
within the time budget of 400 ms for real-time MRIgRT applications, possibly
enabling real-time adaptive MRI-guided radiotherapy by resolving motion during
radiotherapy. For these experiments, we used GPU-NUFFT implementations that
were not fully optimized and assume serial reconstruction of slices. We reckon that
highly-optimized, parallel NUFFTs can significantly reduce image reconstruction
time.

Compared to other works, our method is significantly faster while achieving similar
accuracy. For example, Stemkens et al.120 obtained a 3D motion estimation with
a RMSE of 1 mm using a 360 ms 2D acquisition and a few seconds of motion
calculation, which is comparable with what we observed. However, this method
is not a ’full’ 3D method but uses multi-2D cine scans in conjunction with a
4D MRI to obtain 3D motion estimates, possibly limiting the accuracy of the
method. Moreover, the computation time of multiple seconds is not fast enough
for MRIgRT. Morales et al.123 proposed an unsupervised deep learning method to
learn 3D DVFs in cardiac imaging with a mean EPE of 2.25 mm. However, their
method operated on fully-sampled images and needs 9 seconds of computation
for a single DVF, which is not fast enough for MRIgRT. At ten-fold radial
undersampling, we achieve a lower error with an approximately 300 times shorter
computation time. Navest et al.154 used another method to detect motion in MRI.
They detected motion from the variance in the noise present in MRI acquisition,
achieving fast computation and accurate detection of bulk movement, respiratory
motion, cardiac motion and swallowing. However, while this method may be useful
for gated dose delivery, it did not provide absolute motion information per voxel
and can therefore currently not be used for real-time adaptive radiotherapy.
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The method we propose is a supervised method and requires ground-truth DVFs
for learning, which could be considered as a limitation given that obtaining
high-quality ground-truth DVFs for time-resolved 3D MRI is challenging. We
have opted to use optical flow to generate ground-truth DVFs. While this is a
simple and well-known motion estimation method, the assumptions optical flow
uses to compute DVFs has limitations in, for example, regions with piecewise
constant image intensities41. Using other motion estimation methods, such as
Elastix42 or demons155, might improve results. Another way to overcome this
challenge is by training on synthetic DVFs132. However, the model may learn
non-physiologically plausible DVFs. Also, the training data is then limited to
retrospectively undersampled k-space, which does not suffer from imperfect MRI
acquisitions observed in practice. A different way to overcome this challenge
is by using an unsupervised method123. However, these approaches often use
the registration performance as loss metrics156, which may be hindered by for
undersampled acquisitions due image artifacts.

Due to the highly undersampled nature of the time-resolved MRI experiments
and the lack of ground-truth DVFs, high-quality validation of TEMPEST is
challenging. As severe image artifacts preclude the computation of accurate
ground-truth DVFs, the self-navigation signal is the most reliable surrogate for
ground-truth motion. However, this is a one-dimensional motion which only
provides relative motion information along one direction, rather than an absolute
displacement per voxel along the three axes. Moreover, comparison of global
motion information does not allow for motion quality evaluation of specific sites,
such as tumors or OARs. In the future, realistic deformable motion phantoms
might provide more insight in the motion estimation quality and evaluation on
a large patient population could give a better characterization of tumor or OAR
motion by using metrics based on anatomical information, such as the Dice score
or Hausdorff distance between estimated and ground-truth segmentations.

Even though TEMPEST was fine-tuned on highly undersampled images, there is
still a response to undersampling artifacts at very high undersampling factors.
This could be mitigated by using more sophisticated image reconstruction
algorithms, e.g. compressed sense or DL-based image reconstruction. However,
as no additional latency is permitted for MRIgRT, these methods are currently
not suitable. While the presented multi-resolution approach has proven to produce
good results, different deep learning model architectures incorporating concepts
from 2D optical flow, such as cascaded flow inference141 and optical flow cost
volumes140, have the potential to improve DVF quality at the cost of increased
inference times. Another possible cause of the residual undersampling response
could be the relatively small training set of 17 patients. Moreover, the estimated
hyperparameters might not be optimal as they were optimized for 3 patients, which
might allow for selection of hyperparameters for those three patients instead of all
patients. Increasing the number of training samples for hyperparameter estimation
and model training might yield improved results at high undersampling factors.
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An alternative approach may foresee omitting image reconstruction and aim at
obtaining DVFs directly from k-space, as proposed with model-based methods
by Huttinga et al.157. However, reconstructing DVFs from k-space with deep
learning might prove challenging as convolutional operators have strong local
priors, whereas k-space contains global information.

We believe that deep learning models are a promising way to facilitate real-time
adaptive MRIgRT, where latency in spatio-temporal resolution have paramount
importance. Also, we foresee that TEMPEST could be used for applications
that require fast motion estimation or registration of images with artifacts,
e.g. dose accumulation158, image registration42 or motion-compensated image
reconstruction159,160. In the future, we aim to investigate possibilities to
further increase the DVF accuracy at extreme undersampling factors and the
spatio-temporal resolution of TEMPEST. TEMPEST could be extended to include
temporal information, based on the fact that motion can be represented with
spatially and temporally low-rank models130.

3.5 Conclusion

We have presented TEMPEST, a deep learning model that estimates time-resolved
3D DVFs from undersampled 3D MRI with high spatio-temporal resolution for
real-time adaptive MRI-guided radiotherapy. To the best of our knowledge,
this is the first method to perform real-time 3D motion estimation from highly
undersampled MRI. We have shown that this model can estimate DVFs with
high accuracy (< 2 mm), low latency, and high spatio-temporal resolution from
undersampled radial MRI. TEMPEST estimated DVFs within 200 ms, including
MRI acquisition, complying with the requirements for online adaptive MRIgRT.
We have evaluated the model performance in-silico using digital and physical
motion phantoms and applied the model to 4D CT without retraining. Also,
we have shown that TEMPEST can estimate accurate DVFs and achieves good
performance in two healthy volunteers.
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3Figure 3.10 Fine-tuning results. Two TEMPEST models were fine-tuned: one using
the regular data schedule (blue) and one using our proposed data schedule,
featuring highly undersampled images with no motion (orange).

3.7 Appendix: Impact of fine-tuning

We performed an ablation study to evaluate the impact of fine-tuning a
fully-trained TEMPEST on a dataset consisting for 25% of image pairs from the
training set up to R = 7 with motion (i.e. non-zero ground-truth DVF), and
for 75% of image pairs of the training set between 7 and 32-fold undersampling
without motion (i.e. the ground-truth DVF is zero everywhere), as described in
Section 3.2.4.

We hypothesized that this training schedule improves robustness against severe
undersampling artifacts. We tested this hypothesis by fine-tuning TEMPEST two
times:

• Continue training TEMPEST for 100 epochs on the training set, making no
changes to the dataset and only presenting MRI undersampled up to R = 7.

• Continue training TEMPEST for 100 epochs on the training set using the
proposed data schedule.

We evaluated both models after fine-tuning on the test set using the EPE metric
(µ ± σ). The EPE was evaluated over the entire FOV, within the body contour,
and within the lungs. The results are presented in Figure 3.10.

Here, we see that the model fine-tuned using our data schedule outperforms the
default data schedule for every undersampling factor. At low undersampling
factors, the impact is small (0.06 mm EPE reduction within the body contour
at R = 1), but at high undersampling factors the impact increases (0.25 mm EPE
reduction within the body contour at R = 27).

We conclude that fine-tuning TEMPEST by exposing the model to extremely
undersampled MRI with no motion increases image artifact robustness compared
to fine-tuning using the unmodified data schedule.
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Abstract
Convolutional neural networks (CNNs) are increasingly adopted in medical
imaging, e.g., to reconstruct high-quality images from undersampled magnetic
resonance imaging (MRI) acquisitions or estimate subject motion during an
examination. MRI is naturally acquired in the complex domain C, obtaining
magnitude and phase information in k-space. However, CNNs in complex
regression tasks are almost exclusively trained to minimize the L2 loss or
maximizing the magnitude structural similarity (SSIM), which are possibly not
optimal as they do not take full advantage of the magnitude and phase information
present in the complex domain. This work identifies that minimizing the L2 loss in
the complex field has an asymmetry in the magnitude/phase loss landscape and is
biased, underestimating the reconstructed magnitude. To resolve this, we propose
a new loss function for regression in the complex domain called ⊥-loss, which adds
a novel phase term to established magnitude loss functions, e.g., L2 or SSIM. We
show ⊥-loss is symmetric in the magnitude/phase domain and has favourable
properties when applied to regression in the complex domain. Specifically, we
evaluate the ⊥+`2-loss and ⊥+SSIM-loss for complex undersampled MR image
reconstruction tasks and MR image registration tasks. We show that training a
model to minimize the ⊥+`2-loss outperforms models trained to minimize the L2
loss and results in similar performance compared to models trained to maximize
the magnitude SSIM while offering high-quality phase reconstruction. Moreover,
⊥-loss is defined in Rn, and we apply the loss function to the R2 domain by
learning 2D deformation vector fields for image registration. We show that a
model trained to minimize the ⊥+`2-loss outperforms models trained to minimize
the end-point error loss.
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4.1 Introduction

Magnetic resonance imaging (MRI) is a noninvasive imaging technique to obtain
an anatomical image with high resolution and excellent soft-tissue contrast. These
properties have made MRI an indispensable diagnostic tool and is increasingly used
for interventional guidance, such as high-intensity focused ultrasound161, catheter
guidance during surgery162, and radiotherapy25,30.

MRI must be acquired, reconstructed, and processed with high accuracy in
real-time for interventional guidance applications. However, MRI acquisition
can be time-consuming due to hardware limitations that ensure patient safety,
e.g., low gradient slew rate to avoid peripheral nerve stimulation163 or limited
radio-frequency power to prevent patient heating164. However, the limited
shot-encoding power of MR acquisitions is the most time-consuming part of image
formation165, resulting in repeated sampling of the frequency domain (k-space) to
fulfil the Nyquist sampling criterion53. These constraints limit patient throughput
and prohibit MRI applications that require high spatio-temporal resolution, e.g.,
cardiac imaging166, speech imaging167, or tracking abdominal motion168. One
way to accelerate MRI is to acquire fewer data, i.e., undersampling the frequency
domain as the number of k-space samples determines acquisition time. However,
undersampling violates the Nyquist criterion, introducing image artifacts. Several
methods have been proposed to remove these undersampling artifacts. For
example, parallel imaging67,68 exploits information redundancy using multiple
receiver elements. Also, iterative reconstruction algorithms as compressed sensing
have been proposed71, which resolve image artifacts by casting MR reconstruction
as a sparse denoising problem. However, the resulting acceleration factor of
parallel imaging remains limited70, e.g., up to four-fold undersampling, and
compressed sensing reconstructions cause a significant reconstruction latency,
precluding real-time applications.

Recently, machine learning has been proposed as an alternative to traditional
methods to solve inverse problems169. Specifically, several methods have been
proposed to use convolutional neural networks (CNNs) to accelerate undersampled
MRI reconstruction89,90, perform organ segmentation170, or estimate motion from
undersampled MRI171. These methods have attractive properties compared to
traditional methods, such as the ability to obtain high-quality MRI reconstructions
with high undersampling factors (eight-fold or higher), reducing acquisition time.
Moreover, CNNs exhibit low inference times by taking advantage of parallel GPU
architectures, even though training of CNNs can take hours or days. Using
CNNs to accelerate the acquisition, reconstruction, and processing of MRI could
enable new applications such as real-time interventional guidance using MRI172

or real-time adaptive MRI-guided radiotherapy45.

In this work, we consider complex regression with CNNs for MRI applications.
These CNNs are trained by finding parameters that minimize a loss function
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over a training set. The quality of the estimated solution largely depends on
the loss function, as these loss functions determine the impact of residual artifacts
and the importance of specific (image) features, such as texture, contrast, or the
effects of noise propagation. It has been shown that loss functions with desirable
properties, such as monotonicity, smoothness173, or symmetry174,175, can lead to
better generalization, noise robustness, and faster convergence176, depending on
the task at hand. As MRI is an inherently complex signal, loss functions for
reconstructing or processing MRI are naturally defined in the complex domain.

For example, for image reconstruction, popular choices of loss functions between
a complex target image Y ∈ Cm×n and a complex estimated image Ŷ ∈ Cm×n
include minimizing the complex difference using the `pC-norm, e.g., `2C(Y, Ŷ) =

||<(Y−Ŷ)||2 + ||=(Y−Ŷ)||2 or `1C(Y, Ŷ) = ||<(Y−Ŷ)||1 + ||=(Y−Ŷ)||1, where
|| · ||2 is the squared Frobenius norm, || · ||1 is the `1 norm, <(x) is the real part
of x, and =(x) is the imaginary part of x, or `SSIM = 1 − SSIM(|Y|, |Ŷ|), where
SSIM is the structural similarity index measure116. For image registration, the
most common loss function between two deformation vector fields (DVFs) is the
end-point error (EPE), which is equivalent to `2C in the R2 domain107,177. The
geometric interpretation of minimizing the `2C-norm is illustrated in fig. 4.1.

These loss functions do not take full advantage of the phase structure of the data;
for example, `SSIM discards phase information, while it has been shown that using
this information could improve image reconstruction performance178. On the other
hand, the `pC is separately defined on the real and imaginary components of the
complex-valued signal, possibly precluding the `pC from taking full advantage of the
magnitude and phase properties. Moreover, these loss functions do not necessarily
produce a symmetrically-distributed error, while it has been demonstrated that
using symmetric loss functions can improve task performance174. Specifically, a
symmetrically-distributed error when estimating motion for image registration is a
desirable property as the registration error is equally distributed in all directions.

We hypothesize that a new loss function based on a complex signal’s magnitude
and phase components could lead to improved regression in the complex domain
using deep learning models, thus improving image quality when reconstructing
undersampled MRI and leading to better image registration. Therefore, we
propose ⊥-loss (pronounced p3:p" l6s), a symmetric loss function defined in the
magnitude and phase domain. In this work, we will:

1. Analyze the behavior of `pC in the complex plane and investigate the
symmetry of the loss landscape.

2. Introduce the ⊥-loss function, which operates on the polar representation of
complex numbers and adds a novel phase term to magnitude loss functions.
We examine the loss landscape produced by this loss function, comparing it
to `pC.
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Figure 4.1 Geometric illustration of regression in the R2 domain. An estimated vector
Ŷ compared to a target vector Y , with magnitude ratio λ = |Ŷ |/|Y | and
phase difference ϕ̂. The `2C loss is the magnitude of the red vector. Our
proposed loss function ⊥-loss determines the phase error ϕ̂ as the scalar
rejection `⊥, i.e., the length of the perpendicular line from Ŷ to Y .

3. Study the performance of the `2C loss, `SSIM, ⊥+`2-loss, and ⊥+SSIM-loss
functions for undersampled MRI reconstruction tasks using deep neural
networks.

4. Explore the application of the⊥-loss to other domains, considering regression
in the R2 domain for 2D image registration.

4.2 Theory

This section examines the topology of the `pC loss landscape and proposes a new
loss function. We consider a complex image Y ∈ Cm×n, representing the signal of
each voxel as Yjk = a+ bi where a, b ∈ R are the real and imaginary components
(Cartesian representation), or Yjk = |Yjk|eiϕjk where |Yjk| is the magnitude and
ϕjk as the phase (polar representation).

4.2.1 Proof of asymmetry of `2C

It has been shown that least-squares regression in the R2-space in the presence of
noise results is biased. In particular, performing least-squares regression on noisy
data results in parameters that underestimate the recovered magnitude179–183.
We make the case that this bias is also present for regression tasks in the complex
domain.

Suppose we wish to estimate a complex value, e.g., estimating a voxel Ŷ against
the ground-truth voxel Y in the target image Y. The reconstructed voxel Ŷ is
typically estimated by regression, minimizing a loss function such as the complex
extension of the `2-norm, i.e., `2C(Y, Ŷ ) = ||<(Y − Ŷ )||2 + ||=(Y − Ŷ )||2 . The
reconstructed magnitude bias is expressed as |Ŷ | = λ|Y | with λ > 0, and the
remaining phase error is denoted as ϕ̂.

67



Chapter 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.95

0.71

0.5

0

Figure 4.2 The loss of `2C. The parabola of the loss for a given value of ϕ̂ is shown
as a function of λ. The minimal value is indicated in every line plot, and
the analytical curve of minimal loss is shown in green. It is clear that as ϕ̂
increases, the minimum of the loss function goes to λ→ 0.

In fig. 4.1, this estimation is illustrated using vectors in the complex plane, where
the `2C error, Ŷ , and Y form a triangle. Therefore `2C can be expressed using the
law of cosines as

`2C = |Ŷ |2 + |Y |2 − 2|Ŷ ||Y | cos ϕ̂→ `2C ∝ λ2 − 2λ cos ϕ̂+ 1.

This expression is zero if and only if Y and Ŷ are identical, i.e., λ = 1 and ϕ̂ = 0.
We can observe that the `2C follows a parabola, depending on the value of λ and
cos ϕ̂. For ϕ̂ = 0, this function is minimal when λ = 1. However, the minimum
of the curve when ϕ̂ 6= 0 is at λ < 1 and tends toward λ → 0 as |ϕ̂| increases, as
shown in fig. 4.2. This shift depending on ϕ̂ implies that `2C underestimates the
reconstructed magnitude, assigning a lower loss to estimates with λ < 1 than to
estimates with λ > 1.

We can show that `2C is biased towards reconstructions with λ ≤ 1 by examining
the gradient of `2C. The loss of `2C is minimal when `2C

∂λ = 0. Taking the derivative
of `2C for λ yields

∂`2C
∂λ

= 0→ 2λ− 2 cos ϕ̂ = 0

2λ = 2 cos ϕ̂

λ = cos ϕ̂.
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As cos ϕ̂ ≤ 1 for every value of ϕ̂, the loss function is minimal when λ ≤ 1, and
λ = 1 if and only if ϕ̂ = 0 (mod 2π).

This analysis proves that using the `2C loss function to reconstruct Ŷ typically
favors reconstructions where |Ŷ | ≤ |Y |.

4.2.2 Proposed solution

We hypothesize that this bias occurs because the angle and magnitude errors are
minimized simultaneously by manipulating the real and imaginary components.
We introduce a possible solution by proposing a new loss function that separates
the loss in angle and magnitude losses.

We propose representing the phase error between Ŷ and Y as `⊥, the length
of the line segment which is perpendicular to Ŷ , ending at Y , as visualized in
fig. 4.1 as the green line `⊥(Ŷ , Y ). More specifically, `⊥ is the scalar rejection
`⊥ = ||Y − projŶ Y ||. This segment is independent of the magnitude error λ and
computed as

`⊥(Y, Ŷ ) =
Y · Ŷ T

|Ŷ |
. (4.1)

In the complex plane, this function is efficiently computed184 as

`⊥(Y, Ŷ ) =
|<(Ŷ ) · =(Y )−=(Ŷ ) · <(Y )|

|Ŷ |
. (4.2)

The magnitude error can then be independently represented from `⊥ in the full
loss function.

The definition of `⊥ assumes ϕ̂ ≤ π/2 and `⊥ decreases when ϕ̂ increases beyond
π/2. To ensure `⊥ smoothly increases when ϕ̂ > π/2, a smooth continuation of
`⊥ when ϕ̂ ≥ π/2 has been defined in eq. (4.4). Moreover, it was assumed that
Ŷ and Y have nonzero magnitude, which is not always the case. Therefore, we
add ε = 10−8 to the denominator of eq. (4.2) during implementation as defined in
eq. (4.3).

The complete loss function for complex images Y, Ŷ ∈ Cm×n is then defined as

`⊥(Ŷ,Y) =
1

mn

m∑
j

n∑
k

|<(Ŷjk)=(Yjk)−=(Ŷjk)<(Yjk)|
|Ŷjk|+ ε

(4.3)

L⊥(Ŷ,Y) =

{
`⊥(Ŷ,Y) |ϕ̂| < π

2

2|Y| − `⊥(Ŷ,Y) |ϕ̂| ≥ π
2

(4.4)

⊥ (Ŷ,Y) = L⊥(Ŷ,Y) + f(|Y|, |Ŷ|) (4.5)

In eq. (4.5), f is the loss function operating on the magnitude part of Ŷ and Y.
For example, we can define ⊥+`2-loss where f is the Frobenius norm of |Ŷ|− |Y|,
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or ⊥+SSIM-loss where f = 1−SSIM(|Ŷ|, |Y|). As `⊥ is independent of λ and the
magnitude term is independent of ϕ̂, ⊥-loss is symmetric and assigns equal loss
to vectors with magnitude bias λ and λ−1 for the same ϕ̂.

⊥-loss as defined in eq. (4.5) is currently only defined in the complex domain but
can also be applied to different domains. In particular, as C is isomorphic to R2,
⊥-loss may find application in many regression tasks, e.g., image registration134,183

or fluid flow analysis185. Moreover, the concept of the scalar rejection that
forms the basis of `⊥ in eq. (4.1) allows for direct extension to Rn, enabling the
application of ⊥-loss to higher-dimensional problems.

4.3 Methods

First, we examine the symmetry of the loss landscapes of the `1C, `
2
C and ⊥+`2-loss

functions. Subsequently, to study the image reconstruction quality and dataset
or model dependence, we apply ⊥+`2-loss and ⊥+SSIM-loss to complex image
reconstruction using two different networks and two different datasets. Finally,
we study how ⊥+`2-loss generalizes to problems defined in the R2 vector space,
focusing on image registration1.

4.3.1 Loss landscape examination

To verify the symmetry of the loss functions, we have performed a simulation to
visualize the loss landscape of `1C, `

2
C, and ⊥+`2-loss loss functions. We generated

a vector of n = 5000 complex numbers x ∈ Cn , xj = a + bi with a and b

independently drawn from a uniform distribution between -5 and 5. Next, we
perturbed every xj with every (λ, ϕ̂)-pair generated by the Cartesian product
between Λ = {0, 0.02, 0.04, . . . , 2} and Φ = {0, π

100 ,
2π
100 ,

3π
100 , . . . , π}. That is, x̂k =

λkxje
iϕ̂k , (λk, ϕ̂k) ∈ Λ × Φ. This resulted in a vector x̂ with 10,000 perturbed

complex numbers for every xj . Finally, we computed the `1C, `
2
C and ⊥+`2-loss

loss between xj and x̂ to obtain a loss value per (λ, ϕ̂)-pair. Calculating this loss
for every xj and taking the mean resulted in the loss landscape of λ and ϕ̂. These
landscapes were compared for the `1C, `

2
C and the ⊥+`2-loss loss.

4.3.2 MRI reconstruction

We have trained two deep CNNs on two different datasets to examine the
performance of ⊥-loss when optimizing deep neural networks for undersampled
MRI reconstruction. An “end-to-end variational network” (E2E-VarNet)186 was
trained to reconstruct complex MRI from the fastMRI challenge187 (Experiment
A). Also, a recurrent inference machine188,189 (RIM) was trained to reconstruct

1. Code will be made publicly available on https://gitlab.com/computational-imaging-lab/
perp_loss
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complex MRI from the Calgary-Campinas MRI reconstruction challenge190

(Experiment B).

4.3.2.1 Datasets

The fastMRI dataset187 is a large, open dataset of knee MRI, providing 34742
MRI slices of 973 volumes for training and 7135 slices of 199 volumes for
validation. The MRI was acquired using 15 receiver channels at 1.5T and
3T systems, providing various contrasts at 0.5 mm2 resolution. The MRI
was acquired using an Cartesian 2D turbo spin echo sequence (TE=27-34 ms,
TR=2200-3000 ms). Approximately half of the scans were acquired with fat
suppression, while the other half did not employ fat suppression. The dataset
provided unprocessed, fully-sampled, complex multi-coil k-space for every slice,
along with fully-sampled ground-truth images. However, these ground-truth
images only contained the magnitude component as they were computed using a
root-sum-of-squares coil combination, which precluded using a complex-valued loss
function. We computed coil-sensitivity maps (CSMs) and generated fully-sampled
complex coil-weighted reconstructions as target images191. Finally, the multi-coil
k-space was retrospectively undersampled by multiplying it with an equispaced
Cartesian undersampling mask (R=4), preserving 8% of the center lines.

The Calgary-Campinas multi-channel MR dataset190 is an open, 2D brain
MRI dataset providing 12-channel k-space of 167 volunteers, acquired using a
T1-weighted gradient-recalled echo sequence (TE=2.6-3.1 ms, TR=6.3-7.4 ms,
TI=400-650 ms). The MRI was acquired using a 3T system at 1 mm3 isotropic
resolution. The dataset provided unprocessed, fully-sampled, complex multi-coil
k-space for every slice, along with fully-sampled ground-truth images. As with
the FastMRI dataset, the ground-truth images only contained the magnitude
component as they were computed using a root-sum-of-squares coil combination,
which precluded using a complex-valued loss function. Compuation of CSMs
allowed generation of fully-sampled complex coil-weighted reconstructions as
target images191. Data were undersampled using provided random Poisson disc
undersampling masks, yielding an acceleration factor R=5. In total, the dataset
provided 12,032 slices for training, 5,120 slices for validation, and 7,800 slices as
the test set.

4.3.2.2 Architectures

The E2E-VarNet186 is an unrolled network for undersampled MRI reconstruction
consisting of multiple cascades. Each cascade computes

kt+1 = kt − ηtM(kt − k̂) +G(kt)

where kt is the k-space per coil from the previous cascade, M is the sampling
mask, k̂ is the k-space sampled by the MRI, η is a learnable parameter, and G is a
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convolutional neural network operating on the coil-combined, Fourier-transformed
kt. Its output was then again coil-weighted and Fourier-transformed. The CSMs
were estimated from the central lines of k-space using a U-Net of depth 4 and
8-channel input. In our case, G is a U-Net of depth 4 with 18 input channels192.
The entire model consisted of 8 cascades. The reconstructed image was obtained by
transforming the coil-combined k-space of the final cascade to image-space. Sriram
et al. showed that end-to-end estimation of the CSMs allows higher reconstruction
quality than using than using traditional methods to estimate CSMs from the
undersampled MRI, as the ground-truth CSMs are not available as these were
derived from fully-sampled k-space.

The RIM is a recurrent neural network proposed for inverse problems, such as
undersampled MRI reconstruction188,189. The network starts with an initial
estimate of the of the image x0, which is the Fourier transform of the
undersampled, coil-combined k-space. Then, this estimate is updated such that

xt+1, st+1 = xt + hθ
(
∇y|xt

, xt, st
)
.

Here, ∇y|xt
is the data fidelity term, hθ is the recurrent neural network

parameterized by θ, and s is the internal state of the recurrent neural network.
The final reconstruction is given by xT for some predefined number of steps T .

A RIM was used for complex image reconstruction with T = 8 and hθ is a 2-layer
convolutional gated recurrent unit (GRU) with 64 hidden features. Additionally,
a U-Net of depth 4 was used to estimate CSMs from the undersampled k-space,
as the ground-truth CSMs were not available during training and CSM estimation
using deep CNNs showed improved performance compared to traditional methods
to estimate CSMs.

4.3.2.3 Experiments

Two experiments were performed: The E2E-VarNet model was used to reconstruct
complex undersampled MRI of the fastMRI dataset to examine the performance
of ⊥-loss compared to `2C and `SSIM (Experiment A), and the RIM was
used to reconstruct complex undersampled MRI with added noise of the
Calgary-Campinas dataset to examine the noise robustness of ⊥-loss compared
to `2C and `SSIM (Experiment B).

For every experiment, four separate models were trained:

1. A model trained to minimize the `2C loss function between the ground truth
and the estimated image.

2. A model trained to minimize the ⊥+`2-loss between the ground truth and
the estimated image.
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3. A model trained to minimize the function `SSIM loss function between the
magnitude ground-truth and the magnitude estimated image, discarding
phase information.

4. A model trained to minimize the function ⊥+SSIM = `⊥ ·ψ+ (1−ψ) · `SSIM

between the ground-truth and the estimated image. Here, ψ is a learnable
parameter between 0 and 1.

Each model was trained on an NVIDIA V100 GPU with 32GB VRAM. The
models were trained deterministically with a fixed random seed and identical
hyperparameters for a fair comparison. The models from experiment A were
trained for 50 epochs using a batch size of 1. At each epoch, 25% of the volumes
were randomly sampled from all training data to manage training time, using the
Adam optimizer76 with a learning rate of 10−3. After 40 epochs, the learning
rate was reduced to 10−4. The models in experiment B were trained for 200,000
steps with a batch size of 4 using the Adam optimizer. The base learning rate
was 10−4 and was halved after every 50,000 steps. During training of the models
for Experiment B, Gaussian noise ε ∼ N (0, ξ) was added to the sampled k-space
points, where ξ ≥ 0 was drawn from a uniform distribution ξ ∼ U(0, 0.2 · |k0|),
with |k0| as the magnitude of the central point in k-space.

4.3.2.4 Evaluation

The reconstruction quality of the models was evaluated over the entire field of view
using the mean and standard deviation of the peak signal-to-noise ratio (PSNR),
SSIM, and visual information fidelity (VIF)193 metrics of the magnitude estimate
to the magnitude target. VIF is a multi-resolution image quality metric based
on the mutual information between two images and has been shown to strongly
correlate with MRI quality as assessed by radiologists194. The VIF between a
target image Itarget and estimated image Iest is computed as

VIF(Itarget, Iest) =
∑
j

log10

(
Cj (Itarget) · gj (Itarget, Iest)

2
)

log10 (Cj (Itarget))

Here, j = 0, 1 . . . , J is the resolution level, Cj (I) = 1 +
(Ij)2−(I2)

j

σ2
N

is the

information in an image I at resolution level j, and gj(Itarget, Iest) =
Cj(Iest)
Cj(Itarget)

is
the mutual information between Itarget and Iest. The jth sub-band of an image I is
approximated by blurring I using a zero-meaned Gaussian kernel with σ2 ∝ 2J−j

and downsampling the image by factor 2j . σ2
N is a parameter of the vision model

and was chosen as 0.4 for MRI images190. The VIF is bounded by 0, but can reach
values greater than one if the reconstructed image shows less noise or improved
contrast compared to the target image.

Besides magnitude quality, we evaluated the mean and standard deviation of the
mean-squared error between the estimated phase map and the target phase map.
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Wilcoxon signed-rank tests with α < 0.01 were performed when comparing the
results. During the evaluation of experiment B, Gaussian noise was added to the
input data using ξ ∼ U(0, 0.5 · |k0|), allowing comparison of the loss functions
based on image quality depending on the noise level.

4.3.3 Image registration

To investigate whether the proposed ⊥-loss generalizes beyond MR image
reconstruction, we trained a model to learn deformation vector fields (DVFs) from
a pair of 2D MR images. A DVF is a vector field V ∈ R2×m×n, where the first
dimension is the displacement in the x-direction, while the second dimension is
the displacement in the y-direction. A transformation f : R2×m×n → Cm×n
mapped x-displacements of the DVF to the real part of the complex field and
y-displacements of the DVF to the imaginary part of the complex field.

4.3.3.1 Data acquisition and processing

We have used magnitude-only sagittal cine-MRI of 135 patients with abdominal
cancer undergoing radiotherapy simulation at our department134 to train the
image registration model on simulated ground-truth deformations. The data were
acquired using a two-dimensional Cartesian balanced steady-state free precession
(bSSFP) sequence on a 1.5 T MRI scanner (Ingenia MR-RT, Philips, Best,
the Netherlands) using 28 receiver channels, TE/TR=1.3/2.8 ms, a flip angle
of 50 degrees, a resolution of 1.4mm2 and a field of view of 320mm2, yielding
an acquisition matrix size of 224 × 224 pixels. In total, 31750 magnitude-only
dynamics were collected. The signal intensity over all dynamics was linearly
rescaled to [0, 1], clipping the top 99th intensity percentile of the dynamics in a
cine-MRI. Images were augmented using random affine transformations (rotation
between [−20, 20] degrees, translations between [−10, 10]% of the image size,
scaling between [75, 125]%, and shearing between [−10, 10]%), random horizontal
and vertical flips, and cropping to a random region of 224× 224 pixels.

The ground-truth deformation was generated using Gryds87, which generates
random, smooth DVFs D ∈ R2×m×n using a B-spline basis from R2×3×3 ∼
N (0,U(0.001, 0.025)). The motion parameters were selected such that the
determinant of the Jacobian was higher than 0 everywhere to avoid folding
by the DVF, which would have resulted in implausible motion195. Warping
randomly-chosen cine frames using the ground-truth DVF D yielded a magnitude
reference image, magnitude warped image. The ground-truth DVF was mapped
to the complex domain by applying the transformation f : R2×m×n → Cm×n to
D.
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4.3.3.2 Model architecture, training, and evaluation

We trained a residual U-Net196 of depth 5 with two input channels and two output
channels, with two residual units per level. Every residual unit consisted of a
3 × 3 convolution, a two-dimensional instance norm197, and PReLU non-linear
activation114. The first convolution used stride 2, while the latter convolution
used stride 1. Two variants of this image registration model were trained:

1. One model was trained to minimize the end-point error (EPE), which is
equivalent to the `2C loss function in the R2-domain. This is the de-facto loss
function for training image registration models107,177.

2. One model was trained to minimize the ⊥+`2-loss.

The models used the reference and warped image as input to reconstruct the DVF.
The models were trained using the AdamW optimizer198 for 150 epochs with a base
learning rate of 1 · 10−4 and a weight decay of 5 · 10−4 using a batch size of 16 on
an NVIDIA V100 GPU with 32GB VRAM. After this training, the models were
fine-tuned for 50 epochs using a learning rate of 10−6.

The models were evaluated on the residual EPE and SSIM after image registration
with the estimated DVF. Moreover, the models were evaluated on λ, i.e., the ratio
between magnitude overestimation and magnitude underestimation. Wilcoxon
signed-rank tests with α < 0.01 were performed when comparing the results.

4.4 Results

4.4.1 Loss landscape

The loss landscapes of the `1C, `
2
C and ⊥+`2-loss functions are shown in fig. 4.3.

The `1C and `2C loss functions both display an asymmetry, assigning a higher loss
to vectors with λ > 1 and a lower loss to vectors with λ < 1 with the same phase
error. For ⊥+`2-loss, this loss landscape is symmetric with steep gradients far
from λ = 1 and a large region where the loss is low, as can be observed from the
size of the area within the first isocontour around λ = 1 and ϕ̂ = 0.

4.4.2 Image reconstruction

4.4.2.1 Experiment A: E2E-VarNet

Each E2E-VarNet model was trained in approximately 48 hours. As shown in
table 4.1, the proposed ⊥+`2-loss yields reconstructions with significantly higher
SSIM and VIF than `2C (Wilcoxon, p � 0.01) – with an SSIM of 0.90 ± 0.07

versus 0.86± 0.10 – while the phase error is equally low. Example reconstructions
are shown in Figure 4.4, where it can be seen that the `2C reconstruction shows
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Figure 4.3 The loss landscapes for the `1C loss function (left), `2C loss function (center)
and ⊥+`2-loss (right). Lines through the loss landscape are isolines of the
losses. The `1C and `2C loss functions show an asymmetry, resulting in a higher
loss value for λ > 1, while ⊥+`2-loss is symmetric.

an apparent magnitude underestimation in the reconstructed knee tissue and
a more significant error in the background region. The reconstruction from
the ⊥+`2-loss model shows no clear preference for magnitude overestimation or
underestimation. However, less signal is present in the background in this specific
instance, indicating better denoising properties.

The model trained to maximize the magnitude SSIM results in even higher
magnitude quality but does not reconstruct usable phase information, as the
network received no loss for the phase term. Combining the SSIM loss with
⊥-loss using the ⊥+SSIM-loss results in reconstructions of equal quality as the
SSIM model but has a similar phase reconstruction performance as the `2C loss
and ⊥+`2-loss. However, there seems to be an increased residual magnitude error
compared to the SSIM reconstruction, indicating a trade-off between denoised and
dealiased magnitude reconstructions and high-quality phase maps.

4.4.2.2 Experiment B: RIM

Each RIM was trained in approximately 8 hours. Similar to the results of the
E2E-VarNet model, using ⊥+`2-loss yields significantly higher reconstruction
quality in the noise-free case than `2C (Wilcoxon, p � 0.01) – with SSIM values
of 0.89± 0.04 versus 0.93± 0.03. Additional quantitative results are presented in
table 4.1. The model trained to maximize the magnitude SSIM outperforms both
the ⊥+`2-loss and `2C models, but these reconstructions have high phase error.
Based on the VIF metric, the ⊥+SSIM-loss model outperforms the SSIM model
(with a mean VIF of 1.0± 0.011 versus 0.99± 0.11) while having low phase error.

An example reconstruction without added noise is shown in fig. 4.5. It can be
observed that both SSIM and ⊥+SSIM-loss models yield high-quality magnitude
reconstructions. However, the SSIM model reconstructs poor phase images, while
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Loss

Model E2E-VarNet/FastMRI RIM/Calgary-Campinas

SSIM (↑) PSNR (↑) Phase MSE (↓) VIF (↑) SSIM (↑) PSNR (↑) Phase MSE (↓) VIF (↑)

`2C 0.86± 0.10 31.2± 3.1 0.04± 0.03 0.80± 0.17 0.89± 0.04 31.2± 2.5 0.03± 0.01 0.98± 0.09

⊥+`2-loss 0.90± 0.07 33.0± 3.0 0.04± 0.03 0.83± 0.16 0.93± 0.03 31.4± 2.6 0.03± 0.01 0.99± 0.09

SSIM 0.91± 0.07 33.9± 3.5 0.12± 0.03 0.86± 0.15 0.93± 0.03 31.0± 2.6 0.15± 0.01 0.99± 0.11

⊥+SSIM-loss 0.91± 0.07 33.1± 3.0 0.04± 0.03 0.86± 0.16 0.93± 0.03 30.9± 2.5 0.03± 0.01 1.0± 0.11

Table 4.1 Evaluation of E2E-VarNet and RIM models trained to minimize `2C,
⊥+`2-loss, SSIM or ⊥+SSIM-loss functions using the structural similarity,
peak-signal-to-noise ratio, phase mean-squared error, and VIF metrics. Best
results per model and metric are marked in boldface.

the phase images of the ⊥+SSIM-loss model are similar to the ground-truth phase
maps.

When evaluated with added noise, i.e., ξ > 0, the quality of the magnitude
reconstructions degrade for all models. In fig. 4.6, the performance of the four
RIM models with added noise is evaluated based on the magnitude PSNR metric.
Here, in the noise-free case, ⊥+`2-loss achieves the highest median PSNR of 32.8.
However, the models were trained up to a noise level of 0.2. Up to this noise level,
⊥+`2-loss achieves the highest median PSNR. Beyond this noise level, the image
quality of ⊥+`2-loss degrades faster than the competing models, yielding a median
PSNR of 22.8 at noise level 0.5 versus 23.1 for the `2C model. The ⊥+SSIM-loss
model performs similarly to the SSIM model, which both yield an median PSNR
of 32.1 in the noise-free case and 23.3 at noise-level 0.5.

The model trained to maximize the magnitude SSIM shows high phase error for
every noise level and produced unusable phase maps. For the `2C models, the
phase error slowly increased as the added noise increases. For the ⊥+`2-loss and
⊥+`2-loss, the phase error remained near-constant as the noise level was increased,
showing superior phase reconstruction for all noise levels.

4.4.3 Image registration

Each image registration model was trained in approximately 6 hours. An example
comparing the DVFs of the ⊥+`2-loss and EPE models to the ground-truth is
shown in fig. 4.7, where the model trained to minimize ⊥+`2-loss produces a
lower residual error and a lower registration error, with a registration SSIM of
0.931 for the ⊥+`2-loss model versus 0.768 for the EPE model. Moreover, it can
be seen from the difference DVF that the EPE model yields a relative magnitude
underestimation of up to 25% compared to the target DVF in regions with
significant deformation. Quantitative evaluation of both models demonstrates that
minimizing the ⊥+`2-loss produces significantly better DVFs, reducing the mean
EPE from 1.39 mm to 0.89 mm (Wilcoxon, p � 0.01), as presented in table 4.2
Moreover, the mean registered SSIM increased by approximately 0.03 (Wilcoxon,
p � 0.01), and the mean value λ is significantly closer to 1. This indicates
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Figure 4.4 Example reconstructions using an E2E-VarNet (R=4). Examples of
reconstructions of the same slice with normalized magnitude using
four networks, trained to minimize the `2C, ⊥+`2-loss, SSIM-Loss, and
⊥+SSIM-loss loss, respectively. The bottom-left number in magnitude
reconstructions shows the foreground VIF (magnitude) while showing the
foreground mean squared error for phase images. Using the ⊥+`2-loss
instead of the `2C loss significantly improves image quality. In the zoomed
region of the `2C model, a hallucinated lesion is visible and is much less
severe using the ⊥+`2-loss model. Using the SSIM as a loss function yields
even higher magnitude image quality and higher phase error than the `2C
and ⊥+`2-loss models. Using the ⊥+SSIM-loss function obtains the highest
magnitude image quality with low phase error. In the zoomed region, higher
image quality and more contrast for the ⊥+SSIM-loss model can be observed
compared to the SSIM model.
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Figure 4.5 Example reconstructions of the RIM (R=5). Examples of reconstructions
with the normalized magnitude of the same slice, using a RIM trained
to minimize the ⊥+SSIM-loss and SSIM-Loss, respectively. Using
⊥+SSIM-loss as a loss function produces significantly higher-quality phase
information (Indicated by the phase MSE, shown in the top-left corner of
the phase images) and similar magnitude reconstructions (Indicated by the
VIF on the magnitude images). The zoomed region indicates an artifact in
the SSIM reconstruction.
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Figure 4.6 Quantitative RIM results. The PSNR of the magnitude reconstructions
(top) and the root-mean square error of the reconstructed phase (bottom)
were evaluated for the four RIM models trained with different loss functions.
On the horizontal axis is the magnitude of the added noise. In the low-noise
regime, ⊥+`2-loss achieves a median PSNR of 32.8 versus 32.6 for `2C.
The PSNR of ⊥+`2-loss decreases faster at higher noise levels, while the
⊥+SSIM-loss model achieves a similar PSNR as the SSIM RIM. The SSIM
model show very high phase error, while the ⊥-loss models show superior
phase reconstruction compared to the `2C and SSIM models.
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SSIM (↑) EPE (mm, ↓) λ (≈ 1)
⊥+`2-loss 0.927± 0.053 0.898± 0.598 0.960± 0.304

EPE 0.895± 0.071 1.391± 0.704 0.720± 0.632

Table 4.2 Evaluation of image registration models trained to minimize ⊥+`2-loss or
the EPE loss functions using the registered SSIM, remaining EPE, and λ,
the ratio between magnitude overestimation and magnitude underestimation.
Best results per metric are marked in boldface.

that the magnitude error is more symmetrically-distributed, i.e., magnitude
underestimation is about as likely as magnitude overestimation for the ⊥+`2-loss
model. The error is significantly more biased towards magnitude underestimations
for the EPE model than the ⊥+`2-loss model (Wilcoxon, p < 0.01).

4.5 Discussion

In this work, we have identified that the `2C loss function exhibits a magnitude
bias when applied to regression in the C and R2 domains, which may impact
the performance of deep neural networks. Specifically, for the reconstruction
and processing of complex MRI, we have shown this bias is detrimental to the
performance of CNNs for complex MRI reconstruction and MRI registration. To
address this issue, we have proposed a new loss function called ⊥-loss, which
produces a symmetric loss space when applied to regression in the C and R2

domains.

We have shown that⊥+`2-loss reconstructs undersampled MRI with higher quality
than models trained to minimize the `2C loss. A hybrid ⊥+SSIM-loss function
allowed image reconstruction with similar image quality as networks trained to
maximize the magnitude SSIM while generating high-quality phase maps. The
E2E-VarNet model trained to minimize ⊥+`2-loss as loss function increased the
magnitude SSIM by approximately 0.04 and the PSNR by approximately 1.8 dB
compared to the `2C loss. Using ⊥+`2-loss as the loss function for the RIM
model increased the magnitude SSIM by approximately 0.04 and the VIF by
approximately 0.01 compared to the `2C loss.

These models trained to optimize for ⊥+`2-loss display competing performance
to state-of-the-art image reconstruction models while achieving high-quality phase
reconstruction. However, some literature currently reports higher scores than the
values we reported here. For example, an SSIM of 0.930 and PSNR of 40 when
reconstructing the fastMRI "challenge" dataset using an E2E-VarNet model has
been reported186. On the validation dataset, they reported an SSIM of 0.923
whereas we found an SSIM of 0.91 ± 0.07. This difference in performance could
be caused by multiple reasons, such as a better training regime with larger batch
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Figure 4.7 Image registration results. The reference image (A), warped image (B)
were input to the models. The ground-truth DVF is also shown in (B),
but was not presented to the model. Figures C and F show the estimates
produced by the ⊥+`2-loss and EPE models, respectively. Figures D and
G show the relative magnitude error between the produced DVF and target
DVF for the ⊥+`2-loss and EPE models, respectively. Finally, figures E
and H show the normalized intensity difference (a.u.) between the images
registered by the ⊥+`2-loss and EPE DVF and the ground-truth image,
respectively. In the bottom-left of C and H, the SSIM between the estimated
registration and the ground-truth registration is shown. The EPE model
shows a larger registration error (H), as visible by larger intensities in the
difference image and the lower registration SSIM. Also, the estimated DVF
by the EPE model shows a larger negative error (G), which indicates a
magnitude underestimation, while the ⊥+`2-loss shows errors closer to zero.

sizes, longer training times, larger models, or our training with complex target
images instead of standard magnitude-only training.
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These results indicate that deep learning models can use phase information from
the complex signal to improve magnitude reconstructions. This observation
aligns with other works, which found that including phase information or
designing a network that uses complex-valued model weights – thus taking full
advantage of the complex information present in the data – improves both
magnitude and phase reconstruction performance199,200. Moreover, improved
phase reconstruction might enable deep learning applications, such as quantitative
susceptibility mapping (QSM)201 or four-dimensional flow MRI202. We speculate
that reconstructing phase information makes the inversion problem less ill-posed
as `⊥ acts as a phase regularizer.

Finally, we demonstrated that ⊥-loss is not limited to complex image
reconstruction but can be applied to problems in other domains. In particular, we
have shown that using ⊥+`2-loss as the loss function outperforms the EPE when
applied to an image registration task. The DVFs are estimated with lower residual
error, reducing from approximately 1.4 mm to 0.9 mm, better image registration,
and a more symmetrically distributed error.

In past literature179,183, it has been established that applying least squares
regression to the R2 domain in the presence of noise yields a magnitude
underestimation. Our findings align with these previous results, and we have
shown that these issues also apply to the complex domain in general and occur
during non-linear regression.

Currently, we have only used real-valued networks for comparison. Recently,
networks with complex-valued weights have been proposed, and it has been shown
that these models achieve superior performance200. Future work might investigate
whether these complex-valued networks could enable even better performance with
⊥-loss, as every part from input to output is defined in the complex plane.

We have identified that it is beneficial to have a smooth and symmetric loss
function for MR image reconstruction and image registration. However, it
is crucial to consider the domain of the problem, and these qualities do not
necessarily transfer to other tasks. For example, it has been identified that
non-convex loss functions achieve better performance for image classification
tasks203 while convex loss functions are generally preferred, and for anomaly
detection, where it is beneficial to use an asymmetric loss function that penalizes
outliers harder than inliers204.

A symmetrically-distributed error in image registration is an attractive property
for many applications. For example, in radiotherapy, accurate tracking of tumor
motion enables real-time adaptive treatments, where the position and shape of the
radiation beam are adapted to the current anatomy45. A biased image registration
algorithm might underdose a tumor while risking increased toxicity to increased
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dose delivery to healthy tissue205. With a symmetric loss function like ⊥-loss, a
more conformal dose delivery could be obtained.

For future work, it would be helpful to further study the properties of ⊥-loss. For
example, it would be interesting to analyze further the noise robustness of ⊥-loss
to conventional loss functions. Currently, ⊥+`2-loss does not outperform `2C in
the magnitude domain when subjected to more noise than seen during training.
In the phase domain, however, the performance of ⊥+`2-loss and ⊥+SSIM-loss
is minimally perturbed by the added noise. The cause of this phenomenon is
unknown, but we speculate this might be caused by a low gradient in the phase
direction in high-noise environments when λ ≈ 1 (fig. 4.3). Moreover, the loss
function consists of weighing between the magnitude term and phase term. This
parameter is currently optimized as part of the network, while more manual tuning
could change the emphasis of the loss between the domains. Further experiments
could investigate the performance of ⊥-loss in a low SNR regime or at higher
undersampling factors.

For image registration, it would be interesting to extend the definition of ⊥-loss
to three dimensions. It is simple to express the scalar rejection as defined in
eq. (4.1) in Rn, thus facilitating extension to R3 and beyond. Further analysis
could establish whether the attractive properties of the ⊥-loss function in the
complex plane, e.g., symmetric output or higher image registration performance,
translates to higher dimensions.

Finally, it would be interesting to apply ⊥-loss to non-deep learning image
reconstruction. For example, ⊥-loss could be used as a cost function in an iterative
compressed sense algorithm. Future research could investigate whether using
⊥+`2-loss or ⊥+SSIM-loss could improve image reconstruction or result in faster
iteration convergence.

As using ⊥+SSIM-loss allows for better image reconstruction model training,
further undersampling of k-space with equal image quality could be achieved by
such models. This would increase MRI efficiency, increasing patient throughput.
Moreover, reconstructing images with higher quality could lead to better diagnosis
by radiologists.

4.6 Conclusion

We have identified that the conventional `2C loss function gives rise to an
asymmetric loss landscape in the complex field, resulting in an underestimation
bias of the reconstructed magnitude.

To resolve this problem, we have presented ⊥-loss, a loss function defined in
a complex vector space for MRI reconstruction and image registration with
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a symmetric magnitude/phase loss landscape. We have applied ⊥+`2-loss
to undersampled complex MR image reconstruction, obtaining higher-quality
reconstructions than when minimizing the `2C loss. Compared to state-of-the-art
models that maximize the SSIM, we achieved competitive performance in the
magnitude domain and superior performance for phase reconstruction using
⊥+SSIM-loss.

Finally, we showed that ⊥+`2-loss generalized beyond complex image
reconstruction and could be applied for image registration. We achieved higher
performance than models minimizing the end-point error, with lower residual error,
better image registration performance, and a symmetric output error.
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Abstract
Background: Respiratory-resolved four-dimensional magnetic resonance
imaging (4D-MRI) provides essential motion information for accurate radiation
treatments of mobile tumors. However, obtaining high-quality 4D-MRI suffers
from long acquisition and reconstruction times.
Purpose: To develop a deep learning architecture to quickly acquire and
reconstruct high-quality 4D-MRI, enabling accurate motion quantification for
MRI-guided radiotherapy.
Methods: A small convolutional neural network called MODEST is proposed
to reconstruct 4D-MRI by performing a spatial and temporal decomposition,
omitting the need for 4D convolutions to use all the spatio-temporal information
present in 4D-MRI. This network is trained on undersampled 4D-MRI after
respiratory binning to reconstruct high-quality 4D-MRI obtained by compressed
sensing reconstruction. The network is trained, validated, and tested on 4D-MRI
of 28 lung cancer patients acquired with a T1-weighted golden-angle radial
stack-of-stars sequence. The 4D-MRI of 18, 5, and 5 patients were used
for training, validation, and testing. Network performances are evaluated on
image quality measured by the structural similarity index (SSIM) and motion
consistency by comparing the position of the lung-liver interface on undersampled
4D-MRI before and after respiratory binning. The network is compared to
conventional architectures such as a U-Net, which has 30 times more trainable
parameters.
Results: MODEST can reconstruct high-quality 4D-MRI with higher image
quality than a U-Net, despite a thirty-fold reduction in trainable parameters.
High-quality 4D-MRI can be obtained using MODEST in approximately 2.5
minutes, including acquisition, processing, and reconstruction.
Conclusion: High-quality accelerated 4D-MRI can be obtained using MODEST,
which is particularly interesting for MRI-guided radiotherapy.
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5.1 Introduction

Respiratory motion poses a significant challenge in abdominal and thoracic
imaging, causing large displacements in the liver206, lung207, kidney208, and
pancreas209, introducing disruptive image artifacts that may preclude an accurate
diagnosis210,211. In radiation therapy, respiratory-induced motion can lead
to sub-optimal treatment because it may influence the shape and position of
tumors49,212. Consequently, the target may receive a different dose than planned
while delivering hazardous radiation to nearby healthy tissue and organs-at-risk213.
In the past, respiratory-resolved imaging has been proposed to improve
treatments, using imaging with high spatial resolution and accurate motion
information to enable the definition of treatment margins that encompass the
tumor displacement214,215. In particular, four-dimensional respiratory-resolved
computed tomography (4D-CT) is the standard imaging modality in current
clinical practice and is part of radiation treatment planning216. However, 4D-CT
can be affected by artifacts that negatively influence the treatment outcome and
local control217,218.

Recently, magnetic resonance imaging (MRI) has been proposed as an alternative
to CT for radiotherapy guidance, leveraging the superior soft-tissue contrast that
facilitates accurate target identification and dose deposition. With the clinical
introduction of MRI-guided radiotherapy (MRIgRT)25,30, MRI acquired prior to
treatment can be used to adapt the treatment plan to the daily anatomy, while fast
MRI during treatment can be used to track the tumor position45,97,125,157,171,219.

In MRIgRT, respiratory-resolved four-dimensional MRI (4D-MRI) is used in the
treatment planning phase to adapt the radiation treatment based on the quantified
tumor motion16. The 4D-MRI must be high-quality and quickly available to ensure
treatment efficiency and patient comfort, i.e., acquired and reconstructed within
five minutes220. However, obtaining high-quality 4D-MRI remains challenging due
to the limited acquisition speed of MRI.

A straightforward way to accelerate MRI is by undersampling the acquisition,
violating the Shannon-Nyquist data sufficiency criterion53, and introducing
image artifacts that may preclude accurate motion quantification220. Several
techniques have been proposed to reconstruct high-quality MRI from
undersampled acquisitions, such as parallel imaging67,68, simultaneous multi-slice
acquisitions221–223, or compressed sensing71. Some algorithms have been
specifically developed to reconstruct high-quality respiratory-resolved 4D-MRI
by taking advantage of all spatio-temporal information in the images, such as
XD-GRASP137 or HDTV-MoCo160. However, these reconstruction algorithms
have a large computational cost and can take from 15 minutes up to 8 hours16,160,
which is insufficient in clinical practice as long treatment times are detrimental to
patient comfort and treatment efficiency.
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Recently, convolutional neural networks (CNNs) have been proposed as a
data-driven alternative to classic iterative algorithms to reconstruct undersampled
MRI quickly89,90,94,186,224. With CNNs, the time-consuming model training can be
performed offline before treatment. Then, the trained model can be used for fast,
online inference, achieving reconstruction quality on par or better than compressed
sensing within tens of milliseconds for 2D imaging225.

Training such models requires large amounts of GPU memory to optimize
the model parameters. As GPU memory is limited, training CNN-based
reconstruction models is feasible for 2D and 3D MRI but challenging for 4D-MRI
as these models require prohibitively costly four-dimensional convolutions to take
advantage of the spatio-temporal information and obtain high image and motion
quality. Several approaches have been proposed to avoid using 4D convolutions,
e.g., by performing slice-by-slice reconstruction or carefully using multiple views
of the spatio-temporal data133,226–228. However, training such models to obtain
high-quality 4D-MRI remains challenging due to the computational cost or
requirement for large datasets.

We propose an unrolled model to reconstruct 4D-MRI using low-dimensional
subnetworks (MODEST), which exploits the spatio-temporal nature of 4D-MRI
by separating the reconstruction problem into spatial and temporal components.
Two independent subnetworks with few trainable parameters have been designed
to learn these components without using 4D convolutional kernels. This allows
the model to access the complete spatio-temporal information in 4D-MRI while
maintaining low computational cost.

This work investigates the application of the proposed spatio-temporal
decomposed network to accelerate the acquisition and reconstruction of
undersampled 4D respiratory-resolved lung MRI, which is of particular interest for
MRI-guided radiation treatments. The model is evaluated on reconstructed image
quality and consistency of the respiratory motion compared to compressed sensing
reconstructions. Moreover, MODEST is compared to standard deep learning
architectures such as a U-Net. Finally, we estimate the minimum acquisition
length for high-quality 4D-MRI with MODEST.

5.2 Methods

We considered two networks to reconstruct 4D-MRI: a baseline residual U-Net,
and our newly proposed architecture. After patient data was collected and
pre-processed, the model hyperparameters were optimized. Then, the U-Net and
MODEST were trained. To investigate the impact of the model architecture
rather than the number of trainable parameters, the optimized parameters of
the U-Net were pruned to match MODEST. The three models (MODEST, the
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baseline U-Net, and pruned U-Net) were evaluated using undersampled 4D-MRI
before and after respiratory binning.

5.2.1 Patient data collection and preparation

Twenty-eight patients undergoing radiotherapy for lung cancer between February
2019 and February 2020 at the radiotherapy department were retrospectively
included under the approval of the local medical ethical committee with protocol
number 20-519/C. The male/female ratio was 16/12, and the mean age was
66± 13 years (range = 20-81). Patients affected by squamous cell carcinoma (11),
adenoma & adenocarcinoma (7), small cell/large cell carcinoma (4), neoplasm (1),
thymoma (1), and a mix of other rare tumors (4) were included.

Free-breathing 3D golden-angle radial stack-of-stars (GA-SOS) T1-weighted
spoiled gradient echo MRI (TR/TE=3.2/1.3 ms, FA=8◦, bandwidth=866Hz/px,
resolution=2.13 × 2.13 × 3.5 mm3, FOV=440 × 440 × 270 mm3, feet-head
slices) of the thorax were acquired for 7 min on a 1.5T MRI (MR-RT Philips
Healthcare, Best, the Netherlands) during gadolinium injection (Gadovist, 0.1
ml/kg). The acquisition was fat-suppressed using spectral attenuated inversion
recovery (SPAIR).

Patients were scanned in the supine position using a 16-channel anterior and
12-channel posterior phased-array coil. In total, 1312 radial spokes per slice were
acquired, corresponding to approximately four times oversampling compared to
a fully-sampled volume, which requires 206 · π/2 ≈ 324 spokes. However, as the
contrast agent was injected, the relative magnitude of the self-navigation signal
changed over time. To account for the contrast pickup phase, we discarded the
first 200 spokes of every scan to prevent contrast mixing.

For every patient, 4D-MRI was created based on a self-navigation signal by
sorting k-space into ten respiratory-correlated bins for a final matrix size of
Vx, Vy, nslice, nphase = 206 × 206 × 77 × 10. The self-navigation signal was
obtained by performing a 1D Fourier transform of the center of k-space (i.e., k0)
along the slice direction and principal component analysis on the concatenated
navigators136,137. Then, radial spokes were sorted into respiratory bins using
a hybrid binning algorithm138 based on the phase and relative amplitude
of the motion surrogate. For training purposes, undersampled 4D-MRI was
obtained by undersampling the respiratory bins, i.e., "phase undersampling",
ensuring motion consistency between the target reconstruction and undersampled
MRI. The fully-sampled 4D-MRI contained n spokes per bin for every patient.
Phase-undersampled 4D-MRI was created by retaining the first n/k spokes per
bin, where k ∈ N is the acceleration factor, for undersampling factors R4D

= 1, 2, and 4. This corresponded to a true undersampling factor RNyquist

of approximately 3.7, 7.4, and 14.8 per respiratory phase, respectively. After
sorting, k-space was density-compensated using a Ram-Lak filter, interpolated
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onto a twice-oversampled Cartesian grid using a 3 × 3 Kaiser-Bessel kernel,
and transformed to image-space using a non-uniform fast Fourier transform
(NUFFT)61,139 with a weighted coil combination. Coil sensitivity maps were
estimated using ESPiRIT69. The patients were randomly split into a train (18),
validation (5), and test (5). The training target was generated by performing
an XD-GRASP reconstruction of the fully-sampled 4D-MRI using temporal total
variation, using a regularization weight λ = 0.0371,137.

To match the effect of a shorter acquisition time, we have also created
undersampled 4D-MRI by removing spokes prior to respiratory binning and
discarding the final j sampled spokes, with j ∈ {100, 200, . . . , 1000}, i.e.,
"free-breathing undersampling". These reconstructions were used to estimate
the maximum achievable undersampling factor in a clinical setting, comparing
the motion consistency of the free-breathing undersampled 4D-MRI to the
fully-sampled reconstruction. We selected the maximum value of j where the
zero-filled reconstruction has a mean EPE < 1 mm and the mean SSIM of
MODEST was > 0.85.

5.2.2 Model architectures

We propose MODEST, which uses two subnetworks to learn the spatial and
temporal features1. We trained a network to reconstruct 4D-MRI on a per slice
basis rather than per volume to reduce memory usage, which allowed using 2D
convolutions. The model input consisted of the zero-filled undersampled 4D-MRI
and deformation vector fields (DVFs) computed on zero-filled, undersampled
4D-MRI, registering the exhale phase to every other respiratory phase. The DVFs
were obtained using a deep learning model134. They were added as additional input
as we hypothesize that adding DVFs improves the reconstruction performance as
they provide additional spatial information when considering the respiratory phase
dimension. To reconstruct a Vx×Vy×nphase volume, the subnetwork learning the
spatial component Ξ̂ was implemented using k×k×1 convolution kernels, while the
network learning the temporal component Ψ̂ was implemented using 1×1×nphase
convolutions. Both subnetworks used five convolutional layers and a cardioid
non-linear activation function229. The model hyperparameters and architecture
were optimized using Bayesian optimization. Details for this optimization are
provided in Supplementary Document 1. An estimate of the 4D-MRI is then
obtained as f(Ξ̂, Ψ̂), using some combination function f , which was chosen as
the point-wise multiplication operator. We implemented the model to perform
an unrolled optimization using three iterations. Data consistency was enforced
between the reconstructed image and the sampled k-space after every iteration
except the final iteration by computing

xt+1 = xt − ηF−1
(
F
(
xt
)
− y

)
+ Mt

(
xt
)
, (5.1)

1. Code available at https://gitlab.com/computational-imaging-lab/modest
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where t is the iteration, xt is the image at iteration t, y is the measured,
undersampled radial k-space, F is the multi-coil non-uniform Fourier transform
operator, η is a learned parameter, and Mt is the deep learning model for iteration
t of the unrolled model. The model architecture is illustrated in Figure 5.1 and
had 312,782 trainable parameters. To investigate the impact of data consistency
and adding DVFs as model input, we have trained four variants of MODEST: a
variant that only uses the zero-filled 4D-MRI, a variant that uses 4D-MRI and
DVFs, a variant that uses 4D-MRI and data consistency, and a variant that uses
4D-MRI, DVFs, and data consistency.

MODEST was compared to a baseline residual U-Net196,230 that reconstructs
4D-MRI from the undersampled images, where every residual unit consisted of
a 3D convolution layer, followed by a PReLU non-linear activation, instance
normalization, and a residual connection. The residual U-Net consisted of four
resolution levels and five residual units per resolution level. Depending on the
resolution level, the residual unit’s convolution layers learned 32, 64, 128, and
256 filters. The residual U-Net had 11,793,289 trainable parameters. The model
architecture and hyperparameters were found after a Bayesian hyperparameter
search. Details for this optimization are provided in Supplementary Document 1.

5.2.2.1 Training and evaluation

Both the residual U-Net and MODEST were implemented using PyTorch 1.10.
The data consistency operator was implemented using TorchKbNUFFT 1.3.0231.
The U-Net and MODEST with optimized hyperparameters and architectures
were trained on phase-undersampled MRI to reconstruct XD-GRASP 4D-MRI
from zero-filled undersampled 4D-MRI. Both models were trained using 20,000
randomly-sampled batches of zero-filled 4D-MRI with undersampling factors R4D

= 1, 2, and 4 to minimize the ⊥ +SSIM-loss232. In total, 18 patients · 77 slices ·
3 undersampling factors = 4185 samples were used for training, and 1155 samples
were used for testing and validation, respectively. MODEST was trained using a
batch size of 7 with the AdamW optimizer using a learning rate of 10−3 and 10−4

weight decay. The baseline residual U-Net was trained using a batch size of 3
using the AdamW optimizer using a learning rate of 10−3 and 10−4 weight decay.
To investigate the impact of the model architecture rather than the number of
trainable parameters, we performed iterative pruning of the trained U-Net model
(Pruned U-Net), matching the number of parameters of MODEST233.

The model reconstructions were evaluated on image quality, sharpness, motion
quality, and processing time. The image quality was measured by the
average SSIM and the normalized root-mean-square error (NRMSE) over the
respiratory phases between the model reconstruction and the XD-GRASP
reconstruction. The NRMSE was computed as NRMSE (Iest, Itarget) =√

1/M
∑

(Iest − Itarget)2
/|Itarget|, whereM is the number of voxels and |Itarget| is

93



Chapter 5

Figure 5.1 Illustration of the proposed MODEST model. The unrolled
model reconstructs undersampled 4D-MRI into high-quality 4D-MRI. The
undersampled, zero-filled 4D-MRI and deformation vector fields derived
from the undersampled 4D-MRI are concatenated and enter a decomposed
spatio-temporal convolution block with 104,260 parameters. The
spatio-temporal convolution block performs low-dimensional convolution
over the spatial domain (blue) and the temporal domain (orange),
recombining into a 4D-MRI using a combination function f . After
every iteration of the unrolled model, data consistency is enforced on
the reconstructed radial k-space using the sampled radial k-space using
Equation 5.1.

the mean absolute value of Itarget within the anatomy234. The motion estimation
quality was quantified in two ways:

1. DVFs based on XD-GRASP reconstructions and the deep learning
reconstructions were estimated using a neural network trained on
undersampled MRI134, registering the first respiratory phase (exhale) to
every other respiratory phase. The motion error was then quantified as
the mean end-point error (EPE).

2. The position of the hepatic dome in the reconstruction was compared to the
hepatic dome position in the ground-truth XD-GRASP reconstruction. The
hepatic dome position was manually extracted by computing the median
intensity along the AP direction and thresholding the gradient image235.
Then, the liver position was estimated for every dynamic as the mean of
the binary thresholded image along the LR direction within a manually
delineated region, ensuring a similar delineation volume among the patients
in the test set. The hepatic dome position was normalized by subtracting
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Figure 5.2 Impact of data consistency and DVFs. Four models were compared
on the SSIM, registration error, and NRMSE in the foreground for the
reconstructed 4D-MRI. The models used only the 4D-MRI, 4D-MRI and
data consistency, 4D-MRI and DVFs, or all information to reconstruct the
data. A star indicates a statistically significant result p < 0.05.

the position of the hepatic dome in the free-breathing zero-filled acquisition.
Finally, the error was determined as the absolute error between the hepatic
dome of XD-GRASP reconstructions and MODEST.

The image sharpness was evaluated over all the 4D-MRI phases by computing
the variance of one 3D respiratory phase after convolution with a 3D Laplacian
kernel236. The final sharpness was estimated as the mean variance over all
respiratory phases. Sharper images have a higher variance.

The metrics’ statistical significance (p < 0.05) was established using a paired
t-test, comparing MODEST to the U-Net and parameter-pruned U-Net.

5.3 Results

Based on the model architecture and hyperparameter search, we found that
adding non-Cartesian data consistency and motion information increased the
reconstruction quality, as shown in Figure 5.2. Using data consistency increased
the validation SSIM from 0.88±0.04 to 0.90±0.04 (p = 10−6), while adding DVFs
did not significantly improve the SSIM compared to image-only reconstruction or
in addition to using data consistency. However, using DVFs decreased the mean
EPE from 1.23± 0.28 mm to 1.18± 0.27 mm (p = 0.0008) and the NRMSE from
0.086± 0.02 to 0.084± 0.18 (p = 0.0009), indicating increased motion consistency.
Therefore, we opted to use data consistency and DVFs for MODEST.

5.3.1 4D-MRI reconstruction

Phase-undersampled zero-filled reconstructions were created using a NUFFT in
approximately 5 seconds, while the XD-GRASP reconstruction took about one
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hour. MODEST took 15 seconds to process the zero-filled reconstructions on
an NVIDIA V100 GPU, while the U-Net took approximately 30 seconds to
reconstruct the 4D-MRI. The parameter-pruned U-Net took about 25 seconds
to perform a reconstruction.

In the example of phase-undersampled 4D-MRI at R4D = 1 in the test
set (Figure 5.3), MODEST produced reconstructions with an SSIM of 0.92
over the entire 4D volume, considering XD-GRASP as reference. This has
significantly higher quality than the zero-filled reconstruction, which already shows
undersampling artifacts and an SSIM of 0.82 (p = 0.0017). Despite having over
thirty times fewer trainable parameters, MODEST also produces higher image
quality for the considered subject than the U-Net. Compensating for the increase
in parameters of the U-Net, the pruned U-Net reconstructs 4D-MRI with low
image and low motion consistency, as identified by the hepatic dome position.
At R4D = 4, MODEST and U-Net showed comparable performance. However,
the reconstructions by the U-Net seemed to suffer more from temporal blurring,
as observable in the error maps of Figure 5.3. Videos of phase-undersampled
reconstructions are provided for R4D = 1, 2, and 4 in Supplementary Videos V1,
V2, and V3, respectively. In these videos, it can be observed that MODEST
and U-Net display similar image quality. However, in Supplementary Video V3,
it can be seen that the U-Net reconstruction suffers from significantly reduced
respiratory amplitude at the anterior chest wall, while MODEST shows better
motion consistency.

The U-Net and MODEST outperformed the zero-filled reconstruction based on
the SSIM and EPE metrics (p = 10−9), as visible in the quantitative evaluation
in Figure 5.4. However, no statistically significant difference was found between
the U-Net and proposed architecture, except for the SSIM at R4D = 1. Both
models outperformed the parameter pruned U-Net for the SSIM metric (p = 10−8).
For the NRMSE metric, MODEST outperformed the U-Net, parameter pruned
U-Net, and zero-filled reconstruction (p = 10−7). MODEST showed sharper
reconstructions for all under-sampling factors than the U-Net (p = 10−7).

Using MODEST led to reconstructions with increased motion consistency, as found
by the increased correspondence of the hepatic dome position, as presented in
Figure 5.5. At R4D = 4, the proposed architecture accurately tracked the hepatic
dome position within 1.56±1.98 mm compared to the XD-GRASP reconstruction
versus 4.73± 2.48 for the U-Net. We observed that MODEST performed worse at
exhale than inhale. However, the mean hepatic dome error was approximately 1.2
mm, significantly smaller than the voxel size of 3.5 mm in the feet-head direction.

Retaining fewer spokes for the free-breathing undersampled 4D-MRI decreased
model performance due to an increased undersampling factor and increased
intra-bin variability of the motion, as presented in Figure 5.6. The sharpness of
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Figure 5.3 Example reconstructions. 4D-MRI was acquired of a female,
81 years old, affected by adenoma (T2N3M1). Reconstructions of
phase-undersampled 4D-MRI inhaling by zero-filling, MODEST, the U-Net,
and the parameter-pruned U-Net are shown for several undersampling
factors and are compared to the XD-GRASP reconstruction. The top
row shows the magnitude reconstructions and the SSIM, while the bottom
row shows the NRMSE map and the mean NRMSE value for the 4D
reconstruction. In Figure 5.4, a quantitative evaluation for the entire test
set is shown.

the U-Net reconstruction decreased due to temporal blurring as the undersampling
factor increased. In contrast, the sharpness of MODEST reconstruction is more
stable. Based on the criterion that the shortest acquisition needed to have an EPE
< 1 mm for the zero-filled reconstruction and an SSIM > 0.85 for the MODEST
reconstruction, using the first 500 spokes is the shortest free-breathing acquisition
that allowed reconstructing high-quality 4D-MRI using MODEST, corresponding
to an acquisition time of approximately two minutes.

An example reconstruction for this acquisition is shown in Figure 5.7. Here, it
can be seen that MODEST can reconstruct 4D-MRI with high quality with a
mean SSIM of 0.92 and a mean NRMSE of 0.137 for this patient, which is of
higher quality than the U-Net and pruned U-Net reconstruction. This model also
shows good motion correspondence, as indicated by the alignment of the hepatic
dome position. The quantitative results for the test set are presented in Table 5.1,
showing that MODEST can achieve superior reconstructions compared to the
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Figure 5.4 Quantitative comparison. All reconstruction methods are evaluated on
the test set compared to the XD-GRASP reconstruction based on image
similarity, measured by the SSIM and NRMSE, and motion similarity,
measured by the EPE. All deep learning models perform significantly better
than the zero-filled reconstruction, but MODEST outperforms the U-Net
models based on image sharpness and NRMSE. A star indicates the t-test
resulted in statistically significant differences with p < 0.05.

Figure 5.5 Hepatic dome analysis. MODEST closely follows the XD-GRASP
reconstruction, especially at inhale. At high undersampling factors,
MODEST is able to reconstruct motion-consistent 4D-MRI as measured by
the hepatic dome, while the other reconstruction methods show significant
errors.
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Figure 5.6 Impact of free-breathing undersampling. The impact of free-breathing
undersampling was evaluated by continually removing n spokes from the
acquisition and compared to the fully-sampled XD-GRASP reconstruction
using the SSIM, EPE, and NRMSE metrics. As the increased significantly
beyond removing 600 spokes, the minimum acquisition length was
determined as 500 spokes. The approximate acquisition time is shown on
top.

SSIM (↑) NRMSE (↓) Sharpness (↑) EPE (↓)
Zero-filled 0.689± 0.019 0.673± 0.07 0.104± 0.006 0.813± 0.39
U-Net 0.871± 0.032 0.824± 0.16 0.030± 0.005 0.326± 0.20
MODEST 0.877± 0.025 0.383± 0.11∗ 0.043± 0.007∗ 0.313± 0.20
Pruned U-Net 0.801± 0.036 0.920± 0.11 0.036± 0.006 0.512± 0.24

Table 5.1 Quantitative evaluation of the test set for free-breathing
undersampled 4D-MRI using 500 spokes. Best result per metric marked
in boldface, results with a star for MODEST indicate a statistically significant
improvement compared U-Net (p < 0.05).

U-Net and pruned U-Net, with an NRMSE of 0.383±0.11 versus 0.824±0.16 and
0.920±0.11, respectively. A video of free-breathing undersampled reconstructions
is provided in Supplementary Videos V4.

5.4 Discussion

In this work, we have proposed an architecture called MODEST for efficient
4D-MRI reconstruction by splitting the model into spatial and temporal
components. We designed a model that exploits all spatio-temporal information
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Figure 5.7 Example free-breathing undersampled reconstructions. 4D-MRI
was acquired of a female, 71 years old, affected by squamous cell
carcinoma (T2N1M0). Reconstructed 4D-MRI by MODEST, a U-Net,
and the parameter-pruned U-Net are shown using an acquisition of 500
spokes (approx. 2 minutes) and are compared to the target XD-GRASP
reconstruction. The top row shows the magnitude reconstructions and the
SSIM, while the bottom row shows the NRMSE map and the mean NRMSE
value for the 4D reconstruction.

of 4D-MRI using only low-dimensional convolution layers. High-quality 4D-MRI
was obtained using this model from highly undersampled acquisitions in only 25
seconds and outperforms an optimized residual U-Net, despite having 3% of its
trainable parameters. We have shown that the model can accurately reconstruct
4D-MRI from shortened acquisitions for up to two minutes while maintaining
high image quality (SSIM of 0.877 ± 0.025) and motion-consistency with the
fully-sampled 4D-MRI. These properties have some advantages over other models:
models with few trainable parameters are less likely to overfit than larger models
and have the potential to generalize better on unseen data due to less parameter
variance237. Moreover, small models typically require fewer training samples
converge238, which is particularly interesting for MRI, as large datasets are difficult
to acquire.

Our hyper-parameter optimization and model architecture search found that
performing data consistency improved image quality, and adding motion
information increased the reconstructed image quality. These findings are in line
with previously published literature239. However, only adding the DVFs without
adding data consistency can be detrimental to the image reconstruction quality.
At R4D < 4, adding DVFs to the images resulted in a lower SSIM, as indicated
in Figure 5.2. However, at R4D = 4 and in combination with data consistency,
increased SSIM, lower EPE, and lower NRMSE was observed by adding DVFs.
This could indicate that adding motion information at higher undersampling helps
image reconstruction but provides less benefit at lower undersampling factors.
This latter aspect could be due to the better conditioning of the inverse problem
at higher sampling factors and due to imperfections in the motion estimation
model. Currently, we only present the DVFs to the model as generated by a
pre-trained network134, which could limit the model performance. Based on
previous literature, we foresee that performance may be improved by jointly
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learning the image reconstruction and DVFs during training160,240, improving
image registration and image reconstruction performance.

Also, it would be interesting to investigate whether combining the spatial and
temporal features by a learnable operator, e.g., convolution or self-attention241,
would impact, possibly improving the model performance and leading to even
shorter MRI acquisitions. Alternatively, one could optimize the imaging protocol
whenever possible by refining the image contrast and reducing scan time by
decreasing the number of slices while maintaining the large field of view by slice
interpolation.

This work used XD-GRASP reconstructed 4D-MRI as a ground truth since it
demonstrated sufficient accuracy for radiotherapy applications16,220,242. However,
this algorithm’s regularization over the respiratory phases can introduce errors
by overly smoothing the respiratory motion. This could introduce differences in
motion amplitude compared to the measured data, and this uncertainty might
limit the reconstructed motion quality by deep learning models. Using iterative
joint image and motion reconstruction as ground truth could be a viable way to
improve image quality160 and remove residual artifacts in the ground truth. When
comparing to XD-GRASP we considered a GPU implementation using commodity
hardware, which might not be optimal. Technological developments have
accelerate the XD-GRASP algorithm with specialized "Processing-in-memory"
hardware243, curtailing the computational bottleneck for XD-GRASP which
enables a speed-up factor of 11, or 90 seconds of processing time. However, while
this is a promising approach, these speed-ups have only been achieved in simulation
and such hardware has not been clinically demonstrated.

The models presented in this manuscript have been trained on data obtained
from eighteen patients, which is a limited training set size and could limit
the performance of the presented models. Large training sets can offer several
advantages, such as better performance and improved generalization capabilities.
Several steps can be taken to increase the size of our training set. First, more
patient data could be acquired, but this process is slow and costly, resulting in
limited extra data. Second, digital phantoms could be used to generate 4D-MRI
from numerical anatomy144. However, these samples might not be accurate
compared to 4D-MRI acquired in-vivo. Future work will investigate the impact of
different data augmentation approaches and dataset size.

MODEST is not the only architecture able to reconstruct 3D+t MRI. Freedman
et al. proposed the so-called Dracula framework226, consisting of a U-Net
reconstructing zero-filled radial 4D-MRI to a high-quality 4D-MRI dataset and
a mid-position image. Dracula produced 4D-MRI similar to HDTV-MoCo-based
4D-MRI in 28 seconds. However, this model was only investigated with a
five-minute acquisition. Moreover, the network consisted of approximately
90,000,000 trainable parameters and took 11 days of training. Given the number of
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trainable parameters and their related GPU memory consumption, extending the
model from a slice-by-slice reconstruction to a four-dimensional reconstruction
is challenging. Küstner et al. proposed CINENet: a complex-valued unrolled
U-Net that performs 4D spatio-temporal convolutions to reconstruct cardiac
phase-resolved 4D-MRI133. They achieve the 4D convolutions by interspersing 3D
convolutions with 1D convolutions. CINENet used an approach somewhat similar
to ours by decomposing the 4D convolution into lower-dimensional convolution
kernels, but we separated the spatial and temporal domains, whereas in CINENet
they are interspersed. It is currently unclear whether interspersing or separating
the spatial and temporal features would result in better performance, and it may
be the object of future investigations.

MODEST has been specifically constructed to take advantage of the
spatio-temporal information in 4D-MRI to obtain high-quality reconstructions.
Interestingly, spatial and temporal information from MRI is relevant in other
applications, such as cardiac imaging133,225 or dynamic contrast-enhanced
MRI244,245. Future work could investigate the application of MODEST, retraining
the currently used model for these applications.

The availability of fast, accurate, and high-quality 4D-MRI is of particular interest
for MRI-guided radiotherapy, where 4D-MRI is used for treatment adaptation of
mobile tumors. With fast acquisition and reconstruction of 4D-MRI, treatment
efficiency and patient comfort can be improved, eliminating the acquisition of
a 4D-CT for motion quantification. By treating such patients on a hybrid
MRI-Linac, motion can quickly be quantified without repositioning the patient.
Moreover, high-quality 4D-MRI can also be used for high-quality time-resolved
imaging242,246 and could be helpful for real-time intra-fraction radiation treatment
adaptation45.

5.5 Conclusion

We proposed a deep learning architecture called MODEST that efficiently
reconstructs high-quality 4D-MRI by decomposing the reconstruction into spatial
and temporal components. This approach yielded superior performance than
conventional models such as U-Nets, despite having only 3% of the trainable
parameters. We found that high-quality 4D-MRI can be obtained with an MR
acquisition of two minutes and 15 seconds of model inference, shortening the
time for MRI-guided radiation treatments while improving treatment quality and
incorporating accurate motion quantification.
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Chapter 6

This thesis has explored methods for real-time abdominothoracic motion
estimation to enable online adaptive MRI-guided radiotherapy. Specifically, we
have focused on deep learning, given its potential to speed up image reconstruction
and registration. This chapter summarizes the main findings of the work presented
in this thesis. In Section 6.1, we discuss this thesis’s findings on real-time motion
estimation with deep learning and discuss the implications, clinical impact, and
possible limitations of these techniques. Section 6.2 considers the training of deep
learning models with the radiotherapy application in mind, while in Section 6.3,
we apply these lessons to accelerate the MRIgRT workflow.

Finally, in Section 6.4, we reflect on the findings of this thesis and how they could
translate into clinical practice. We discuss the limitations of deep learning and
give directions for future work to enable deep learning-based real-time adaptive
MRIgRT fully.

6.1 Real-time motion estimation

Intra-fraction motion has remained a challenging problem for the accurate
irradiation of mobile tumors. To mitigate the effects of intra-fraction motion,
the three-dimensional location of the tumor and its surrounding tissue must
be (non-invasively) estimated with high accuracy in real-time. Chapter 2
focused on real-time 2D motion quantification for irradiating abdominal tumors
with the primary objective of examining the feasibility of deep learning-based
motion estimation. While 2D imaging is generally fast to acquire and reconstruct
(e.g., within 250 ms), resolving abdominothoracic motion from these images
remains challenging within the allowable timeframe, depending on the registration
algorithm49,50,247. Moreover, estimating motion in real-time, i.e., a latency
≤ 400 ms and a temporal resolution ≥ 5 Hz, requires significant acceleration
of the acquisition, potentially introducing motion field artifacts due to signal
aliasing248. Deep learning provided an advantage over traditional image
registration algorithms in this setting. End-to-end image reconstruction and
motion estimation allowed for high-quality deformation vector fields from aliased
images. Moreover, we established where in this pipeline it is most effective to apply
deep learning and found that replacing the motion estimation algorithm benefits
the DVF quality while replacing regular Fourier-based image reconstruction is
detrimental to the motion quality. With this approach, we could significantly
accelerate the image acquisition and reconstruction and estimate motion with 25
Hz (R=25) while maintaining an average RMSE below 1 mm.

In Chapter 3, we have extended the findings of the 2D motion estimation
approach to a volumetric real-time motion estimation method called TEMPEST.
Here, we demonstrated that TEMPEST could estimate motion within 2 mm
(i.e., smaller than the voxel size) despite an acceleration factor of 30 using a
golden-angle radial stack-of-stars (GA-SOS) acquisition in digital and physical
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phantoms. Moreover, TEMPEST could provide accurate volumetric motion
estimates using a 3D golden-mean kooshball acquisition with an acceleration factor
of 244. The total latency of TEMPEST was estimated to be approximately 200 ms
with a temporal resolution of approximately 175 ms, which is sufficient to resolve
respiratory motion and enable online adaptive MRIgRT in the abdominothoracic
region. However, the latency is insufficient for resolving faster types of motion in
real time, such as cardiac motion or speech imaging.

Deep learning models can estimate motion from highly undersampled images with
high spatiotemporal resolution. This seems surprising as one intuitively expects
that high-quality MRI is required for motion estimation. However, the experiments
in Chapter 2 reveal that using a de-aliasing network before estimating the DVF is
detrimental to directly estimating the DVF from the aliased images. One possible
explanation for this phenomenon could be that conventional (NU)FFT-based
reconstruction preserves the critical information necessary for motion estimation.
In contrast, DL-based image reconstruction algorithms that maximize the image
quality might retain detrimental residual image artifacts. For example, minimizing
the mean-squared error for image reconstruction leads to blurring249, while motion
estimation algorithms often rely on sharp edges250. Therefore, when performing
end-to-end training from the aliased images to the DVFs, the network may learn
to perform improved de-aliasing while preserving salient information for image
registration. This provides unique benefits to these DL-based image algorithms as
traditional image registration methods minimize a manually-defined cost function,
whose effectiveness depends on the image quality. Moreover, as traditional image
registration often requires online iterated gradient descent, which can take seconds
or minutes, DL models have a significant speed advantage as the training happens
offline.

The presented motion estimation models are supervised deep neural networks
requiring ground-truth motion. However, in practice, in-vivo ground-truth motion
is difficult to obtain. Instead, surrogate ground-truth motion is obtained through
conventional image registration. This approach introduces the risk of transferring
the imperfections of the surrogate ground truth to the CNNs. It is, therefore,
worthwhile to generate high-quality ground truth DVFs, as it is unlikely that a
neural network will perform better than its training target. In this thesis, we have
used optical flow40 as the surrogate ground truth, which assumes smoothness in its
deformation vector field to register images. This assumption fails when registering
sliding interfaces, such as abdominal organs sliding along the spine251. However,
in Section 2.6, we compared optical flow to a medical image registration toolbox42

and found that optical flow showed better image registration performance. This
could suggest that the impact of failing to register sliding motion is relatively
benign or that the image similarity metrics do not sufficiently reflect the impact.
Another way to quantify motion estimation failures could be by evaluating the
dosimetric impact252.
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Alternatively, unsupervised image registration has been proposed as a suitable
image registration technique, mitigating the need for ground-truth DVFs and
the corresponding parameter tuning of the registration algorithm247,253. These
approaches attempt to learn a DVF that maximizes the image similarity (e.g., the
SSIM116 or mutual information156) between a reference image and the dynamic
image warped by the DVF. While these approaches are promising, they perform
similarly to traditional, non-DL-based image registration techniques and have yet
to outperform the traditional methods247,253,254. However, they are significantly
faster than traditional motion estimation techniques, which can take seconds in
2D and seconds or minutes for volumetric image registration. On the other hand,
DL-based image registration takes milliseconds or seconds. The quality of the
DVFs estimated by unsupervised models depends on the fixed and moving image
quality, the image similarity metric, and the model architecture. Unsupervised
real-time image registration is challenging when considering undersampled MRI
due to severe aliasing artifacts that hinder image-based similarity metrics.
Unsupervised image registration could be feasible for real-time motion estimation
if a suitable image similarity metric that is only sensitive to motion and insensitive
to aliasing artifacts is developed.

The advantages and disadvantages of traditional, deep learning-based supervised
and unsupervised image registration are summarized in Table 6.1. Based on the
needs of real-time adaptive MRIgRT, which requires accurate DVFs from highly
undersampled MRI, supervised deep learning networks seem most suited for this
task.

One of the essential ingredients to the success of the presented motion estimation
models is the use of a multi-resolution approach, a well-known technique in
motion estimation algorithms to promote convergence when resolving large
deformations255. However, when registering MRI, there are two additional
advantages: first, due to the variable-density nature of a radial k-space acquisition,
the effective undersampling factor and subsequent aliasing are reduced as spatial
downsampling is equivalent to cropping in k-space, increasing the effective
sampling rate of low resolution images. This provides the network tasked with
registering high-resolution, highly aliased images with good initial estimates of
the motion, making the problem less underdetermined. Second, reducing the
image resolution facilitates resolving large displacements as the motion is captured
within the receptive field of the convolutional operators of the network. Despite
the reduction in resolution, image registration algorithms can still accurately
estimate motion97. However, the presented motion models do not consider
the temporal information while exploiting prior knowledge on the temporal
variation of MRI could result in improved motion estimation quality and faster
MRI acquisition157,256. Recurrent neural network (RNN) architectures257 and
self-attention networks like Transformers241,258 have been proposed to learn
spatiotemporal representations. However, they could be challenging to apply to
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Traditional image registration Supervised deep learning Unsupervised deep learning
+ Can produce high-quality DVF + Fast + Fast
+ Well understood + Easily validated + Does not need ground-truth
+ Extensively validated + Works well with aliased/non-perfect images + No parameter tuning after training
- Slow, iterative computation (seconds to minutes) + No parameter tuning after training - Needs image-based similarity metric
- Needs high-quality images - Needs ground-truth DVF - Needs high-quality images
- Needs manually-defined cost functions
- Manual parameter tuning

Table 6.1 Comparison of image registration techniques. Deep learning-based image
registration is a fast, high-quality alternative to traditional image registration
that is parameter-free after training the model. DL-based image registration
can be supervised or unsupervised, which have their respective trade-offs:
Supervised image registration can work with imperfect images, but
unsupervised image registration does not need a ground-truth DVF, which
can be difficult to obtain.

Figure 6.1 The point-spread function (PSF) of the trajectories that are shown in
Figure 1.4. The top row shows the full PSFs, while the bottom row shows
line profiles along kx = 0. The PSF visualizes the incoherence of a sampling
trajectory. The value of PSF at location i, j represents how much the signal
at the ith position contributes to the jth location. When fully sampled, the
PSF is δ(0,0), where δ is the Dirac delta function. If the Nyquist criterion is
violated, non-zero off-center values appear. The spiral and radial samplings
show incoherency as they have little off-center structure and low off-center
energy. In contrast, the Cartesian undersampling shows high coherency in
the phase-encode direction ky and no undersampling in the frequency-encode
direction kx.

2D+t or 3D+t problems due to the computational cost of long sequences259,260.
Further investigation is needed to exploit the temporal information efficiently.

We have solely focused on non-Cartesian methods to perform real-time motion
estimation. Using these trajectories is motivated by the motion-robust nature of
radial acquisitions; repeated sampling and averaging of k0 makes motion artifacts
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appear as blurring rather than ghosting artifacts using sequential Cartesian
acquisitions261. The streaking artifacts of radial acquisitions are easily resolved
due to the unstructured spreading of the aliasing energy. This spread of the
aliasing energy is measured by the trajectory’s point spread function (PSF) of
the trajectory, as shown in Figure 6.1. The low off-center energy of the PSFs
of radial or spiral trajectories reveals that undersampling results in relatively
benign aliasing artifacts. However, the non-Cartesian acquisition also comes at
a cost. These readouts are more sensitive to gradient system imperfections,
e.g., gradient delays, eddy currents, and gradient nonlinearities, which can
introduce geometric uncertainties. Previous studies have shown that gradient
nonlinearities can significantly impact the radiation treatment plan262. While
errors in the gradient system could be compensated60 and are generally minor for
commercially-available MRI-Linac devices263, this downside makes them seem less
suited for radiotherapeutic applications where geometric accuracy is paramount.

Moreover, reconstruction of the k-space to image space cannot be performed by
a conventional fast Fourier transform (FFT) as frequency locations ~k are not
sampled on a rectilinear grid. Instead, image reconstruction is typically performed
using a non-uniform fast Fourier transform (NUFFT), which is one order of
magnitude slower in 2D and three orders of magnitude slower in 3D compared
to a regular FFT. While tractable in 2D, computing a multi-coil 3D-NUFFT for
a golden-mean kooshball acquisition is intractable for high-resolution acquisitions.
It is worthwhile to revisit whether the established non-Cartesian acquisitions are
optimal for real-time adaptive MRIgRT.

One option is using hybrid Cartesian/non-Cartesian acquisitions to get the best
of both worlds. For example, the recently-proposed (r)CASPR63 trajectory
proposes to acquire 3D k-space points at Cartesian grid locations following a
discretized spiral arm, retaining the motion robustness of non-Cartesian MRI
while allowing MRI acquisition with high temporal resolution and FFT-based
reconstruction153,264. The other option is to embrace the non-Cartesian nature
and increase the complexity of the sampling trajectory265. With this approach,
the k-space sampling trajectory is optimized along the parameters of a DL
reconstruction network to maximize sampling efficiency per shot, given the
constraints of the gradient system. The synergy between optimal encoding and
regularized regression with DL could increase the maximum acceleration factor
and motion estimation accuracy. The most radical approach would be to disband
the linear gradient system design and embrace the non-linear gradients266. It
has been shown that non-linear gradients have the potential to achieve greater
SNR and noise robustness than conventional parallel imaging reconstructions in
predetermined regions of the image and could be used to maximize the signal and
resolution in the GTV. Combined with learned regularization by deep learning,
the physiological motion could be resolved with optimal spatial encoding, resulting
in a minimal motion estimation latency.
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6.2 Deep learning model training

The performance of deep neural networks is dependent on a few high-level
parameters: the training data distribution, the model architecture, parameter
initialization, the model hyperparameters, and the learning objective. The role
of the learning objective on the performance of deep learning models to estimate
motion for MRIgRT was evaluated in Chapter 4. The main finding is that
traditional minimization of the `2-norm (or mean-squared-error minimization) in
the C or R2 domain in the presence of noise results in a systematic bias of the
error term, promoting estimates with lower magnitude, as observed by previous
literature179,183. We proposed ⊥-loss (pronounced p3:p" l6s), a symmetric loss
function in the complex domain, to resolve this problem.

While the systematic underestimation of magnitude is present for every regression
task in the C or R2 space, it is particularly concerning for MRI-guided
radiotherapy. Ideally, the DVFs used to perform MLC tracking have a magnitude
and directional error distribution with a mean of zero and are distributed equally
around the true value, resulting in a uniform distribution of spurious dose delivery
to nearby OARs. A non-uniform error distribution, such as an underestimation in
reconstructed magnitude, could result in increased dose delivery to a nearby OAR
while delivering insufficient radiation to the tumor, decreasing treatment efficacy
and local control. This effect is illustrated in Figure 6.2. Using a symmetric loss
function could lead to more accurate motion estimation models (both DL-based
and non-DL-based) that estimate DVFs with a uniformly-distributed magnitude
and direction error, leading to improved dose delivery. Moreover, the identified
bias when minimizing the `2 norm highlights a need to validate motion estimation
models. These methods should validate the accuracy of such models and the
systematic bias in the output of these models18,267.

Curiously, we have found that using ⊥-loss reduces the systematic bias of
the reconstructions while improving the reconstruction quality. However, we
found that the loss function underperforms at extreme noise levels. With
realistic noise levels, ⊥-loss-based regression outperforms `2-based regression while
exhibiting reduced systematic bias. We can speculate about the origin of reduced
performance at high noise levels by considering Figure 4.3. Here, it can be observed
that⊥-loss shows a strong gradient in the λ or magnitude error direction. However,
the gradient in the phase error direction is relatively flat, even for high phase errors.
The lack of gradient magnitude could stymie the reconstruction of noisy data.
However, in the noise-free case, a strong gradient coupled with momentum-based
optimizers could explain the increased convergence speed compared to MSE-based
optimization.

The ⊥ +`2-loss function was only evaluated for regression in the C or R2 domain
using deep learning models. Non-DL-based regression techniques such as least
squares regression or compressed sensing MRI reconstruction could benefit from
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Figure 6.2 Illustration of the effect of biased motion estimation. On the left, a
tumor (white) moves along the red arrow. In the middle, the relative dose
deposited when an image registration algorithm is biased towards magnitude
underestimations. Here, white means the dose is delivered as planned, blue
indicates under-dosage, and red indicates over-dosage. A dose increase is
visible next to the tumor, where the OARs typically reside, while the tumor
is under-dosed. On the right is the effect of an image registration algorithm
with a random error of equal magnitude, which results in a more uniform
dose distribution.

Figure 6.3 Comparison between the MSE and ⊥ +`2-loss in 2D and 3D. Fifty thousand
random vectors were generated and perturbed by a random magnitude
scaling λ and random angle. On the horizontal axis is the λ value, and
on the vertical axis is the loss value (µ ± σ) when averaged over all vector
pairs with a specific λ value. In 2D and 3D, the minimum value of the MSE
is at λ < 1, while it is precisely at λ = 1 for the ⊥ +`2-loss.
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⊥-loss. This loss function seems especially suited for phase-based applications such
as chemical shift MRI techniques such as Dixon MRI268, quantitative susceptibility
mapping201, and phase-contrast MRI techniques such as 2D velocity encoding269

or 4D flow MRI202. Outside medical imaging, ⊥-loss could find applications
for audio processing270 or crystallography271, which both involve the analysis of
complex-valued signals. Even though the ⊥ +`2-loss was only evaluated in the
complex domain, Equation 4.1 suggests that it can be extended to higher domains
such as R3 and applied to volumetric or spatiotemporal regression. It is currently
unclear whether ⊥-loss outperforms MSE-based regression in higher dimensions.
However, repeating the loss landscape investigation described in Section 4.3.1
in 3D shows that the asymmetry of the `2-norm also manifests itself in R3, as
illustrated in Figure 6.3. The ⊥ +`2-loss remains symmetric, indicating that its
beneficial properties extend to volumetric or spatiotemporal regression problems.
Incorporating the time domain might be especially interesting as it could lead to
a symmetric dose distribution error over time, which has yet to be considered part
of a single loss function.

6.3 Accelerating the MRL workflow

The online adaptive MRIgRT workflow for mobile tumors will consist of multiple
time-consuming steps: patient set-up, a (4D-MRI) pre-treatment scan, treatment
planning, radiation delivery, and post-treatment evaluation. In this chain,
obtaining 4D-MRI takes too long, limiting the efficiency of the treatment and
reducing patient comfort. DL can be used to obtain high-quality 4D-MRI
from undersampled acquisitions by taking advantage of the spatio-temporal
correlations present in the data. In Chapter 5, we proposed a new
deep learning-based approach called MODEST that uses the spatio-temporal
information by decomposing the reconstruction into separate spatial and temporal
components. The motion estimates are then used to generate a personalized
motion model and to define the necessary treatment margins. However, these
acquisitions can take up to five minutes, and reconstructing high-quality 4D-MRI
can take prohibitively long. With MODEST, high-quality 4D-MRI can be acquired
and reconstructed in 150 seconds.

The proposed model can efficiently reconstruct 4D-MRI by decomposing the
reconstruction problem into spatial and temporal subnetworks. This has resulted
in a small model with few trainable parameters as the decomposition allowed
using (n − 1)-dimensional convolution kernels for reconstructing n-dimensional
MRI. Unlike a baseline model, MODEST achieved a 97% reduction in the
trainable parameters and a 99.6% reduction in trainable parameters compared
to a previously-published technique226. A model with few trainable parameters
has theoretical benefits. A small model has less variance than more extensive
neural networks and is less likely to overfit272. Second, smaller models should
require less data to converge than large models as they contain few unknowns.
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However, other factors, such as data quality and diversity have to be considered
for the final performance.

The decomposition into spatial and temporal subnetworks is assumed to be allowed
as the model can leverage the prior knowledge on the data that every temporal
volume utilizes a mutual spatial 3D basis. At the same time, the motion deforming
the subject for every respiratory phase is low-rank, allowing separate processing
of the spatial and dynamic domains. This separability property and the low-rank
assumption have often been used in dynamic MRI reconstruction137,273–275.
Recently, attempts have been made to formalize these properties mathematically.
Kofler et al.228 compared the complexity of the manifold as learned by
auto-encoders when trained on only spatial data and spatio-temporal cine slices.
The spatio-temporal manifold was significantly less complex and easier to learn.
Moreover, Mardani et al.276 performed tensor analysis on four-dimensional
multi-coil cardiac MRI data and found that the temporal domain can be captured
using a rank-one tensor. These results indicate that it is mathematically
sound to decompose the spatiotemporal problem into its constituent parts, as
low-dimensional approximations can capture the dynamics. However, we assume
a lower limit to the data required for successful decomposition, and the 4D-MRI
should contain sufficient spatiotemporal correlation. The 4D-MRI considered in
this work contains sufficient spatiotemporal correlation. However, we found a lower
limit on the acquisition time, and violating this limit precludes the generation of
reliable 4D-MRI when decomposed. However, it results in a “motion snapshot”
instead of a valid respiratory motion model with sufficient motion quality for
radiotherapy planning277.

Fast, DL-based 4D-MRI could be used for high-quality mid-position imaging.
The mid-position image is the time-weighted average image during respiration.
It is beneficial for MRIgRT as it can be used as the treatment planning image,
resulting in minimal PTV margins278. 4D-MRI can also be used as a generic
approach to personalize motion models120,279. These personalized priors could
be combined with generic 3D motion models, improving DVF quality or enabling
further MRI acquisition during real-time tracking. Moreover, the 4D-MRI could be
used for time-resolved imaging. Recently, MR-SIGMA246 has been proposed as a
real-time time-resolved volumetric imaging method by performing online matching
of the acquired k-space to the 4D-MRI. However, the work presented in this thesis
has found that high-quality motion estimates can be obtained in real-time from
highly-undersampled 3D MRI. This way, high-quality time-resolved 3D MRI could
be obtained by deforming the mid-position MRI image with the estimated DVF.
While the MR-SIGMA method depends on the motion patterns in the 4D-MRI,
generating time-resolved MRI using the presented motion model does not rely on
this assumption.
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6.4 Clinical applicability and recommendations

We are at the dawn of deep learning for image-guided interventions. The central
research question was to develop methods to enable real-time adaptive MRI-guided
radiotherapy. The works presented in this thesis have shown that this is a feasible
and promising way forward toward real-time time-resolved motion estimation for
online adaptive MRIgRT on MRI-Linac devices. However, several necessary steps
must be taken before deep learning-guided interventions make their way to clinical
practice. Here, we address some critical issues that must be solved to ensure the
safe and effective use of high-quality deep learning models for motion tracking.

Validation and clinical acceptance

In this thesis, we have presented deep learning models that can quickly estimate
DVFs from highly-undersampled MRI. We have demonstrated that these models
can resolve large, non-rigid deformations with high accuracy (e.g., error ≤
voxel-size, or ≤ 1 mm), depending on the undersampling factor. While these
results are promising, the acceptance criteria for clinical implementation still need
to be determined.

Speed
First, the method has to be fast enough with a low enough latency. While
staying within 200-400 ms of latency for accurate respiratory motion tracking
is generally recommended49,50, it is still being determined what the maximum
accepted latency is for MLC tracking. In either case, the tracking latency
could be partially mitigated by predicting rather than estimating the respiratory
motion280, exploiting the temporal smoothness of respiratory motion. Moreover,
the requirements for the sensitivity of the motion estimation method for MLC
tracking have yet to be determined, i.e., the minimum motion magnitude that
needs to be resolved by the motion estimation method. The sensitivity is limited
by a few factors, such as the voxel size and the image contrast, thus limiting the
MRI acquisition parameter set.

Robustness
Another factor to consider is the robustness of the motion estimation method.
Deep learning methods carry the intrinsic risk of unexpected failure when applied
to unseen data or data that diverges sufficiently far from the training data
distribution. This fear is partially corroborated by the black-box nature of
deep learning models that might learn non-robust features281 and the potential
that the training data does not reflect the heterogeneity of clinically-acquired
MRI282. There are, however, some potential solutions to preemptively mitigate
these problems. One solution is uncertainty estimation283. Here, the deep learning
method attempts to perform the classification or regression task it is trained for
while simultaneously attempting to estimate the aleatoric uncertainty (or data
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uncertainty) and epistemic uncertainty (or model uncertainty)284. The epistemic
uncertainty can be reduced by increasing the dataset used for training the model.
In contrast, the aleatoric uncertainty cannot be reduced due to measurement noise
or partially observed features. However, the model input during deployment could
be compared to the data distribution of the training set and halting irradiation if
the likelihood that the sample follows the training distribution decreases below a
threshold.

Another solution to verify the robustness of DL models is by employing explainable
machine learning285,286. This approach attempts to open the metaphorical black
box by, for example, offering a post-hoc explanation of what input features caused
a particular output. The explanation allows operators to (mis)trust the machine
learning algorithms by verifying that the algorithm reached a solution based on
sound information. While this seems like an attractive method to gain confidence
in the model output, I believe this holds deep learning models to an unreasonably
high standard where operators expect functionality from these models that we do
not expect from non-DL-based methods or humans. Moreover, given the real-time
nature of the problem, there is no time for humans to inspect or correct the output,
limiting the efficacy of explainable machine learning for this application. Instead,
it is my opinion that the successful implementation of deep learning models needs
strict requirements: the output of a deep learning model is only clinically used
within a specific set of operating parameters (e.g., for specific anatomy and image
contrast). Within this parameter space, deep learning methods must maintain
a clinically-acceptable performance. For example, a tracking algorithm could be
required to maintain a specific performance relevant to radiotherapy, such as the
gamma index287. These algorithms could be required to, for example, consistently
achieve a gamma pass rate of 1%/1 mm > 95% during validation. While restricting
DL models to a parameter set is not as generic as traditional models (e.g., the
Fourier transform), it removes the need for careful parameter tuning as required
for methods relying on traditional mathematical modeling72,288–290 while quickly
producing high-quality output.

While serious concerns were raised on the robustness and uncertain nature of DL,
we have observed a surprising ability of the presented motion models to generalize
beyond the training data. Applying deep learning to MRI with significantly
higher undersampling factors showed a gradual degradation of motion estimation
performance, as shown in Chapters 2 and 3. For example, applying a model
trained on undersampled MRI achieved a target registration error of 1.87 ± 1.65

mm on CT. While dedicated CT registration methods and networks perform
better than the presented model291, the observed cross-modality image registration
performance is remarkable despite being solely trained on MRI. Moreover,
increasing the undersampling factor from 5 to 18 increased the registration error
by merely 0.5 mm despite being trained only up to R=7. These results suggest
that the models generalize very well, even beyond the MRI contrast it was
trained on or even the imaging modality. However, this thesis only demonstrated
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the technical feasibility of real-time motion estimation with deep learning and
performed preliminary validation of the models. Further validation is needed to
verify that the DVF quality is maintained as the MRI is acquired using different
pulse sequences, image contrasts, coil arrays, or MRI acquired using the same
subject on MRI constructed by different vendors.

In-vivo validation
Even if the models can robustly obtain specific results with certainty, the validation
is one of the main issues with real-time MRI-based motion estimation. The models
are tasked to estimate motion from highly-undersampled MRI. As the exact forces
and physiological models that deform and displace tissue due to these forces are
unknown in-vivo, it is near-impossible to come to the correct solution to this
highly ill-posed inverse problem. This problem implies that it is near-impossible to
validate the correctness of the model estimates as there is no correct ground-truth
motion field to estimate the quality of the model’ DVFs. However, the estimated
DVF must represent the true physiological motion during irradiation to enable
accurate tumor tracking and dose accumulation. The correctness of the global
motion could be independently validated by interleaving navigators with the
acquisition292, but these can only be used to validate the bulk density changes
rather than the local deformations. The lack of in-vivo validation methods is a
grave concern for verifying volumetric tracking algorithms, including those based
on deep learning. Future work should investigate a reliable, standard method
for verifying the quality of in-vivo motion estimation293. The only methods
to validate motion estimation algorithms are physical294–296 and digital motion
phantoms144,297. However, no physical phantom currently generates ground-truth
DVFs of non-rigid motion. While digital phantoms provide a ground-truth
DVF, they often lack the intricate hardware imperfections acquired during MRI
acquisition, possibly resulting in overly optimistic model performance. Moreover,
machine learning models are typically fitted to a specific data distribution, such
as contrast, anatomy, or motion pattern. Then, the phantom measurements are
considered out-of-distribution samples and could induce failure in the DL models.
However, it could be argued that a DL model that cannot be validated using
phantoms is not trustworthy enough to use in clinical practice.

Datasets

One of the ingredients that helped the interest and success of deep learning is
the availability of high-quality datasets. These large, humanly-curated datasets
have been the standard for many domains, such as image classification298, object
detection299, natural language processing300, and image generation301. Even
in the medical domain, open datasets have become more common, despite
the challenges of acquiring and releasing the data in compliance with privacy
regulations. This has resulted in a surge of deep learning datasets to train models
to perform, for example, disease detection from chest X-rays302, brain tumor
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segmentation and classification303,304, abdominal MRI segmentation305, or MRI
image reconstruction187,190,306.

However, specifically for MRIgRT, the availability of large, high-quality datasets
for real-time motion estimation or image reconstruction has remained largely
absent. Datasets that could be used for these problems are either too
small (e.g., few patients from a single treatment center), are for different
anatomies than the intended application, lack realistic ground-truth data (e.g.,
a description of the true motion), or lack ground-truth measurements (e.g.,
prospectively-undersampled k-space). As a result, most publications now use
private datasets, which hinders reproducing the results of proposed deep learning
methods and comparing different approaches. This lack of publicly-available
datasets of this data stymies new research.

Creating large, open datasets is essential to advance the field of MRI-guided
radiotherapy and produce deep learning models with clinical impact.
Such datasets must include many patients and consist of longitudinal
real-time volumetric MRI acquired in multiple treatment facilities using all
commercially-available MR-Linac devices. Moreover, the corresponding motion
fields and segmentations of organs-at-risk, GTV, and CTV must be accurate
and available for all timesteps. Finally, methods for accurate treatment planning
with MLC tracking based on the real-time estimated DVFs must be provided to
evaluate these models. The MOMENTUM study is one example of the efforts to
create an MRIgRT-first dataset307. This multi-institutional, international registry
of technical and clinical data of cancer patients treated on MRI-linacs aims to
include 6000 subjects. While the registry does include the pre-treatment MRI and
treatment margins, it does not include intrafraction MRI. However, it can still
provide valuable data for training and validating DL models.

Creating a dataset with intrafraction MRI, ground-truth DVFs, segmentations,
and treatment margins will be a daunting effort but is a prerequisite to advancing
the field of model-based MRI-guided radiotherapy. The lack of publicly available,
large, realistic datasets to evaluate methods stymies the field and makes it difficult
to gauge the impact of allegedly improved tumor-tracking algorithms.

Radiotherapy-first methods

Medical imaging has particular needs and requirements that differ strongly from
computer vision or the general DL community, and radiotherapy is no different.
The imaging is necessary to obtain accurate geometric information about the
tumor and OARs with a sufficient spatial and temporal resolution to deliver
radiation as accurately as possible in the tumor while sparing OARs.

However, most deep learning methods applied to MRI-guided radiotherapy use
approaches originating in radiology or computer vision. While these methods
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show adequate performance in practice, the trade-offs that these models present
are not necessarily beneficial for the needs of radiotherapy. For example, the
geometric accuracy of the tumor and OARs positions is paramount, whereas
models trained for radiology favor blurred reconstructions in the presence of
undersampling artifacts249. Moreover, motion estimation algorithms are optimized
for global motion estimates rather than local ones in the tumor and OARs. It is
conceivable that a model that estimates the motion of a liver tumor reduces the
motion quality in this region to improve the motion estimate in a less critical
region.

Deep learning models must use all the domain knowledge available to make optimal
trade-offs for the radiotherapy domain. For image reconstruction, this would mean
favoring geometric accuracy over blurring when reconstructing undersampled
acquisitions. This could be enabled by presenting additional information to the
model, such as a segmentation of the patient in a pre-treatment image, a map of
the main magnetic field (B0-map) to characterize local field inhomogeneity due
to magnetic susceptibility308, or a characterization of the local gradient system to
correct for geometric inaccuracies due to gradient delays59. For motion estimation
algorithms, it is essential to consider the patient’s segmentation to assign local
importance where the DVFs must be correct.

Finally, current DL models are optimized for surrogate metrics for radiotherapy
applications. For example, image reconstruction models are optimized for global
image quality metrics such as the mean-squared error or structural similarity.
Motion estimation models optimize for a supervised DVF loss or the image
similarity after registration to a fixed image. However, in the end, the only relevant
metric is the dose delivered to the tumor and the OARs. Future work could focus
on the holistic training of these models to optimize tracking performance and dose
delivery accuracy.

6.5 Real-time adaptive MRIgRT

MRI-guided radiotherapy brings radiation treatments to a new level and
significantly improves the quality of care. However, the real potential of MRIgRT
is yet to come when real-time adaptive radiotherapy enters routine clinical care
worldwide. If widely available, the door is open for exciting new treatment
paradigms, such as extreme hypofractionation for mobile tumors47 and reduced
side effects due to minimal treatment margins309, improving patient comfort,
treatment cost, and treatment outcome. However, this will require accurate
tracking and significant workflow improvements310. This thesis shows that deep
learning is a feasible technique to estimate motion accurately, removing one of
the technological roadblocks standing in the way of real-time adaptive MRIgRT.
However, to truly enable this vision, we must go much further. Given that
the previously mentioned challenges are solved, and deep learning-based tracking
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Figure 6.4 Overview of the MRIgRT workflow. After patient set-up, a pre-treatment
(4D-)MRI is acquired to propagate the contours. The treatment plan is then
optimized and delivered on an MRI-Linac. In dark green are the parts of the
workflow that have been addressed in this thesis. We have also highlighted
the parts of the workflow that are already clinically addressed in our clinic
by deep learning and areas of active research. We have also identified parts
of the workflow that are not under active research for deep learning solutions
but could benefit from DL or where deep learning is unlikely to be beneficial.
Finally, speeding up the workflow (e.g., within 15 minutes) also enables new
opportunities that were too time-consuming, such as acquiring quantitative
MRI before treatment to aid outcome prediction.

enters the clinical workflow of MRIgRT, the MRI-Linac workflow of the future
should be significantly accelerated such that patients are treated in fifteen minutes.
The envisioned workflow is graphically depicted in Figure 6.4. However, several
technical innovations must occur to achieve this acceleration.

First, the patient setup-up and pre-treatment phase should be significantly
accelerated, and acquire motion-resolved MRI to build a motion model of the
patient. Based on this information, deep learning models can fully re-segment
the patient, propagate the GTV, CTV, and PTV from the initial treatment
plan, and fully re-plan the treatment based on the pre-treatment MRI, taking
the accumulated dose and treatment response into account. The pre-treatment
phase should be completed within 10 minutes, reducing the burden of labor of
technical staff and improving treatment efficiency. The prescribed dose and linear
accelerator’s properties limit the speed of irradiation. Treatment can commence
with the consent of radiation oncologists, medical physicists, and RTTs (and
possible manual plan adaptations). During irradiation, fast acquisitions use the
pre-treatment motion model to perform accurate, real-time MLC tracking to
deliver a high radiation dose to the tumor with (near)-zero treatment margin.
During treatment, visual monitoring and feedback enables the operators to verify
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the progress on the treatment and acting upon potentially impactful or unexpected
events, such as bulk motion.

Despite this real-time nature, visual monitoring and feedback is still useful for
operators to make decisions during the treatment, such as pausing the treatment
during unexpected or potentially impactful events, such as bulk motion.

Deep learning can help facilitate an online adaptive MRIgRT workflow.
For example, DL-based automatic segmentation is currently used clinically86.
However, deep learning is unlikely to replace every step in the treatment workflow.
For example, before treatment can commence, quality assurance should remain
a manual task. Implementing a DL-enabled online adaptive MRIgRT workflow
is a daunting task, but if proven successful will increase the quality of the
treatment, increase the efficiency of radiation facilities, and reduce the workload
on radiotherapy staff.

6.6 Concluding remarks

In the past decade, MRI-guided radiotherapy has made its clinical introduction.
By performing inter-fraction treatment adaptation, the accuracy of radiation
treatments is greatly improved when faced with sizable day-to-day anatomy
variations. Resolving intra-fraction motion requires, depending on the motion
source, accurate motion estimation with high spatio-temporal frequency. Deep
learning is a good candidate for this problem due to its high inference speed.

In this thesis, we have presented techniques for managing intra-fraction motion
with deep learning, demonstrating that deep learning can accurately and reliably
guide radiation treatments. The technological developments of deep learning can
enable real-time adaptive MRI-guided radiotherapy on MR-Linac devices. While
intra-fraction motion tracking is one technical challenge for real-time adaptive
MRIgRT, there are still challenges, such as the quality assurance of deep learning
or real-time treatment planning. Real-time adaptive MRIgRT will unlock the
true potential of MRI-Linac devices and redefine radiotherapy’s impact as a pillar
of cancer treatment. Even though deep learning needs significant efforts for
validation and quality assurance, the technological advancements presented in this
thesis show that real-time adaptive MRI-guided radiotherapy has the potential to
have a clinical impact.
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Radiotherapie is een veelgebruikte methode voor de behandeling van kanker
waarbij ioniserende straling wordt gebruikt om het DNA van kankercellen te
vernietigen. Hierbij is het belangrijk om zoveel mogelijk dosis af te geven in
de tumor, terwijl het gezonde weefsel zo min mogelijk geraakt wordt. Omdat
gezond weefsel een groter herstellend vermogen heeft dan tumorweefsel, wordt
een behandeling opgedeeld in fracties waardoor het gezonde weefsel kan herstellen
tussen de behandelfracties. Als een tumor met zeer grote precisie kan worden
bestraald, komt er minder dosis in gezond weefsel en zal dit resulteren in minder
bijwerkingen. Bovendien zouden er minder behandelfracties nodig zijn om dezelfde
dosis te bereiken.

Een complicerende factor in de behandeling is de beweging van de anatomie.
Dit kan gebeuren tussen de fracties (interfractie beweging) door bijvoorbeeld
verandering in de anatomie zoals blaasvulling, of verandering in de positionering
van de patiënt op het behandelapparaat. Daarnaast vindt ook beweging van de
anatomie plaats gedurende de fractie (intrafractie beweging) door bijvoorbeeld
ademhaling, hartslag, of abdominale peristalsis.

Voor de optimale bestraling van bewegende tumoren is een belangrijke rol
weggelegd voor beeldvormende technieken, zoals computed tomography (CT),
positron emission imaging (PET), of magnetic resonance imaging (MRI). Binnen
radiotherapie is MRI de laatste jaren een steeds grotere rol gaan spelen vanwege
het uitmuntende zachte-weefsel contrast, veelzijdigheid in beeldvorming, en
mogelijkheid tot beeldvorming tijdens de behandeling. Deze voordelen hebben
geleid tot de ontwikkeling van een hybride MRI/bestraler (MRI-Linac), die de
mogelijkheid biedt tot gelijktijdige beeldvorming en bestraling.

Met real-time adaptieve MRI-gestuurde radiotherapie (MRIgRT) is het mogelijk
om de positie van de bestralingsstraal te synchroniseren met de positie en vorm
van de tumor (tracking) door continu MRI te acquireren en de beweging ten
opzichte van het behandelplan te bepalen. In deze behandelmodus, kan er zeer
efficiënt bestraald worden met minimale foutmarges, wat leidt tot betere en snellere
behandelingen.

Een grote uitdaging is dat deze synchronisatie in real-time moet gebeuren om de
tumor accuraat te kunnen volgen. Hiertoe moet de MRI met minimale vertraging
geacquireerd en gereconstrueerd worden, waarna een bewegingsveld uitgerekend
moet worden die de grootte en richting van de beweging van de anatomie ten
opzichte van een referentiepunt representeert, waarna de straal wordt bijgesteld.
Voor het volgen van ademhalingsbeweging mag dit hele proces niet langer 400
milliseconden duren, wat ons dwingt tot een sterke onderbemonstering van het
MRI signaal omdat de opname van hoge-kwaliteit MRI enkele minuten kan duren.
Hoewel er veel onderzoek gedaan is naar de versnelling van de MRI acquisitie
en reconstructie, is er momenteel geen methode die bewegingsvelden van hoge
kwaliteit kan bepalen van MRI data binnen het beschikbare tijdsbudget.
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Neurale netwerken lijken een veelbelovende oplossing voor dit probleem. Dit
zijn non-lineaire modellen die grote hoeveelheden data gebruiken om te leren
hoe een probleem opgelost moet worden. Hiertoe wordt de gemiddelde fout
tussen de oplossing van het netwerk en de echte oplossing geminimaliseerd
tijdens de trainingsfase. Na de training is het model direct bruikbaar, wat
resulteert in zeer snelle oplossing. Zo kunnen deze modellen bijvoorbeeld worden
ingezet voor tekstgeneratie of beeldherkenning, maar ook voor de verwerking van
onderbemonsterde MRI beelden.

In dit proefschrift is onderzocht hoe neurale netwerken gebruikt kunnen worden
om real-time MRI-gestuurde radiotherapie mogelijk te maken. In Hoofdstuk 2
hebben we gekeken tijdens welke fase neurale netwerken het best ingezet kunnen
worden: voor de beeldreconstructie, voor het berekenen van de beweging, voor
allebei de fases, of helemaal niet. Hiertoe hebben wij gevonden dat neurale
netwerken het effectiefst zijn als zij gebruikt worden voor de beeldregistratie
in combinatie met traditionele beeldreconstructie. Dit leidt tot een model dat
beweging kan bepalen met een fout van minder dan 1 millimeter terwijl er 25x
minder data wordt gebruikt dan bij een traditionele MRI scan. Al met al kan
er door inzet van neurale netwerken accurate bewegingsinformatie beschikbaar
zijn binnen ongeveer 60 milliseconden, wat toereikend is voor real-time adaptieve
MRI-gestuurde radiotherapie van organen die bewegen door ademhaling.

Dit gepresenteerde model rekent echter de beweging in twee dimensies, terwijl
een tumor beweegt in drie dimensies. Daarom hebben we de resultaten uit
Hoofdstuk 2 gebruikt om het model uit te breiden naar een 3D bewegingsmodel
in Hoofdstuk 3. Ook voor dit model laten we zien dat neurale netwerken in staat
zijn om op een accurate manier beweging uit te rekenen: de fout van het model
blijft binnen een pixel ten opzichte van minutenlange MRI scans terwijl dit model
de beweging binnen 200 milliseconden kan uitrekenen. De accuraatheid van het
model is gevalideerd met fantoomscans: MRI scans van niet-anatomische objecten
waarvan we exact de beweging weten. Met deze fantoomscans hebben we laten
zien dat zelfs bij een extreem snelle MRI scan de fout beperkt blijft binnen een
pixel. Daarnaast krijgen neurale netwerken vaak de kritiek dat de training van zo’n
model ervoor zorgt dat deze alleen maar werkt op een specifiek type scan. Hier
hebben we het model getraind op MRI beelden toegepast op CT beelden, waarbij
we zeer goede resultaten waarnemen. Dit geeft aan dat zulke modellen vaak goed
blijven werken, zelfs in onvoorziene omstandigheden, wat klinische implementatie
mogelijk maakt.

Neurale netwerken worden getraind om de parameters te vinden die een minimale
fout opleveren gemeten over een gehele dataset. Een veelgekozen manier om
de fout te bepalen is het kwadratische verschil tussen de goede waarde en
modelwaarde ε = (fΘ(x)− y)

2. In Hoofdstuk 4 hebben we gekeken hoe deze
fout zich gedraagt wanneer deze wordt toegepast op bewegingsvelden. Hiertoe
hebben wij opzettelijk fouten in de richting en grootte van bewegingsvelden
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geïntroduceerd. De analyse van deze foutbepalingsfunctie laat zien dat er
een lagere fout aan bewegingsvelden wordt toegekend die de grootte van
de beweging onderschatten ten opzichte van bewegingsvelden die de grootte
overschatten, oftewel deze is asymmetrisch. Dit kan grote gevolgen hebben
voor de toepassing van neurale netwerken voor MRI-gestuurde radiotherapie,
aangezien een structurele fout in de geschatte beweging een structurele fout
in de bestraling zal veroorzaken. Om dit op te lossen hebben we een
nieuwe functie ontwikkeld om de fout in bewegingsvelden te bepalen, genaamd
⊥-Loss. Deze foutbepalingsfunctie is symmetrisch en resulteert in modellen die
betere bewegingsvelden produceren dan wanneer het kwadratisch verschil wordt
geminimaliseerd.

Ten behoeve van de behandeling van mobiele tumoren wordt vaak een zogenaamde
vierdimensionale MRI gemaakt. Dit wil zeggen, een 3D-MRI voor verschillende
fases van de ademhaling. De acquisitie en reconstructie van dit soort scans met
hoge kwaliteit duurt echter zeer lang, wat 4D-MRI lastig toe te passen maakt
in de kliniek. De acquisitie en reconstructie van 4D-MRI zou versneld kunnen
worden met neurale netwerken, maar dit soort modellen zijn computationeel erg
lastig te trainen vanwege de grootte van de MRI scan. Daardoor kan er geen
gebruik worden gemaakt van alle spatiële en temporele informatie beschikbaar in
4D-MRI. In Hoofdstuk 5 presenteren we een zeer efficiënte architectuur voor
de reconstructie van 4D-MRI, genaamd MODEST, die ruim dertig maal kleiner
is (d.w.z., 30x minder trainbare parameters) dan vergelijkbare technieken, terwijl
nog steeds alle spatio-temporele informatie gebruikt wordt. Hiermee laten we
zien dat deze 4D-MRI veel sneller opgenomen kunnen worden en in slechts twee
minuten al beschikbaar kunnen zijn met dezelfde kwaliteit als de langzame scans.

De gepresenteerde werken in dit proefschrift laten zien dat neurale netwerken een
veelbelovende techniek zijn voor alle stappen van MRI-gestuurde radiotherapie.
De toepassing van neurale netwerken belooft een versnelling van de MRI scans die
nodig zijn om een behandeling te starten, automatisering van bepaalde tijdrovende
taken zoals de detectie van tumoren en segmentatie van tumoren en gezond weefsel,
en het mogelijk maken van nieuwe toepassingen zoals tijdsgetrouwe adaptieve
MRI-gestuurde radiotherapie. Indien succesvol toegepast in de kliniek zal dit
resulteren in efficiëntere, betere, goedkopere en minder behandelingen, wat een
verbetering is voor de patiënt (betere behandeling en minder vaak naar de kliniek),
het personeel (lagere werkdruk), en de samenleving (goedkopere behandelingen en
hogere kwaliteit van leven). Dit proefschrift heeft laten zien dat neurale netwerken
toepassen voor het oplossen van deze problemen technisch mogelijk is, maar er zal
nog een lange weg te gaan zijn voordat deze in de praktijk gebruikt kunnen worden.
Een heikel punt blijft de in-vivo validatie van de real-time bewegingsmodellen,
een tot op heden onopgelost probleem. Niettegenstaande deze uitdagingen staat
het buiten kijf dat neurale netwerken een geschikte techniek zijn om real-time
adaptieve MRI-gestuurde radiotherapie mogelijk te maken.
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dan ook graag mijn mede-RESOLVErs bedanken: Tom, Stefan, Luca, Bjorn,
Matteo, Gabrio, Alessandro, Federico. In het bijzonder wil ik Tom en Stefan
bedanken. Tom, bedankt voor al jouw hulp voor alles wat met reconstructie te
maken heeft. Ik heb enorme bewondering voor jouw doorzettingsvermogen en
diepgaande kennis over MRI acquisitie en reconstructie. Stefan, zonder jou was
ik niet in het UMC terecht gekomen. Ik zal altijd dankbaar zijn dat je me hier
hebt voorgedragen. Just like the people of the RESOLVE project, I’d also like
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Bovendien kijk ik altijd uit naar de Computational Imaging Meeting. De kennis
die hier zit is ongekend en daar heb ik veel van geleerd, bedankt: Alessandro,
Alexander, Bart, Bas, Beau, Carel, David, Edwin, Fei, Flavio, Gabrio,
Hannah, Jordi, Mark, Mathijs, Matteo, Max, Miha, Mike, Nico, Niek,
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my roommates over the years: Stefan, Federico, Robin, Georgios, Szabolcs,
Jordi, David, Stefano, Niek and Hannah. Stefan en Robin, ik kijk uit naar
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het kantoor aan de ene overkant (Maureen, Ellis, Filipa) wil ik bedanken voor
de koffiemomenten. Daarnaast wil ik ook het andere kantoor aan de overkant
bedanken voor de gezelligheid en gedeelde liefde voor de muziek van Natasha
Bedingfield: Max, Mike, David en Thierry. Mike, mijn vaste partner in crime
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jullie wel voor de discussies, inspiratie en hulp.
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kwamen en fysieke activiteit brachten naar het werk: Anna, Bart, Bjorn, David,
Edwin, Ellis, Federico, Federique, Filipa, Flavio, Gabrio, Georgios, Guus,
Jorine, Katrinus, Mark, Matteo, Maureen, Max, Mike (ik weet eindelijk
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Daarnaast wil ik iedereen van Q2 bedanken die de conferenties nòg zoveel leuker
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ISMRM), Seb, Stanley, Thierry, Thomas Olausson en Thomas Roos.

I’d also like to thank Kerstin Hammernik and Thomas Küstner, who always
showed a kind interest in my work, even resulting in a collaboration on an ISMRM
abstract. I look forward to many more collaborations and conferences together.

I’d like to express my gratitude to the editors and peer-reviewers of the manuscripts
presented in this thesis, who selflessly dedicated their free time to improve our work
with their helpful suggestions.

Finally, I’d like to thank the bachelor and master students that I had the pleasure
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en Everhard. Dank jullie wel voor de campinggezelligheid, pasjes in de Negende
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