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TO THE EDITOR:
Genetic drivers in the natural history of chronic
lymphocytic leukemia development as early as 16
years before diagnosis
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Chronic lymphocytic leukemia (CLL) is preceded by a pro-
longed premalignant stage referred to as monoclonal B-cell
lymphocytosis (MBL).1-4 MBL can be detected in up to 17% of
the elderly population.4-6 High-count MBL, defined as a per-
sisting monoclonal B-cell count ≥0.5 × 109 cells/L, progresses to
CLL requiring treatment at a rate of around 1% per year.3 Pre-
viously, genetic driver mutations have been described in MBL
up to 6 years prior to progression to CLL.7-9 Whole-genome
sequencing has been performed in small cohorts of low- and
high-count MBL cases.10 However, pathobiological drivers
during the earliest stages of MBL development remain largely
elusive.11

Recurrently mutated genes in CLL include SF3B1, NOTCH1,
ATM, and TP53, whereas most other putative CLL driver
mutations are present at low frequency (<5% of cases).12-14

Genome-wide DNA methylation studies have identified pro-
files correlating with the cell of origin of CLL (pre- or post-
germinal center) and the proliferative history of the cell.15

Integration of genomic, transcriptomic, and epigenomic data
has enhanced our understanding of pathobiological diversity in
CLL.14 The most important factors contributing to risk stratifi-
cation of patients with CLL include the somatic hypermutation
(SHM) status of the immunoglobulin heavy variable (IGHV)
gene, TP53 aberration, and stereotypy of the B-cell receptor
immunoglobulins (BCR IGs).16

Recently, we described the BCR IG gene repertoire during the
early stages of CLL in peripheral blood samples drawn up to 22
years before CLL diagnosis.17 We observed significant BCR IG
repertoire skewing and clonotypic evolution regardless of IGHV
mutational status or stereotypy, representing the earliest
detection of a clonotypic CLL precursor cell.17 Here, we aim to
deepen our insight into driver mutations during the natural
history of early CLL development through in-depth study of
prediagnostic longitudinal blood samples.

Study subjects were part of the Northern Sweden Health and
Disease Study (NSHDS) and the European Prospective
Investigation into Cancer and Nutrition (EPIC) cohort. For the
current study, we selected all participants with longitudinal
samples and a prediagnostic clonotype above 2% of the IGH
gene repertoire (n = 16), the threshold for prediagnostic IGH
gene repertoire skewing we previously identified. The patients
had 2 to 6 (median 2) longitudinal samples available. CLL
diagnosis ranged from 5 months to 16 years after first blood
sampling. Genomic DNA was isolated from buffy coats obtained
at blood sampling. Hybrid-capture targeted sequencing was
conducted using the EuroClonality-NGS DNA Capture (Euro-
Clonality-NDC) protocol.18 Annotation was performed through
the EuroClonality-NGS–developed ARResT/Interrogate soft-
ware tool. We identified somatic variants present (variant allele
frequency [VAF] > 3%) at CLL diagnosis and traced these vari-
ants in earlier samples to study their evolution. Variants with a
VAF > 3% prior to CLL diagnosis that remained present at CLL
diagnosis were also included. For individuals without a diag-
nostic sample available (n = 4), the prediagnostic sample drawn
closest to diagnosis was used as a reference instead. We
screened for variants in 24 recurrently mutated genes in CLL
using COSMIC and gnomAD (VAF < 0.01). Low-frequency var-
iants (<3%) in genes of interest were validated using digital
droplet polymerase chain reaction (ddPCR). For details, see
supplemental Methods, available on the Blood website.

The study was approved by the local institutional medical
ethical committee at the Erasmus MC (protocol number MEC
2019-0484) and the Ethical Review Board at Ume University
(Dnr 2017/242-31). The EPIC steering committee approved the
use of the material for the purpose of this study. All patients
gave their written consent and the use of the material and data
in this study were approved by the IARC Ethics Committee. The
study was performed in compliance with the Declaration of
Helsinki.

In total, 27 prediagnostic and 12 diagnostic PBMC samples
from 16 individuals diagnosed with CLL were included in the
study (supplemental Table 1). Of the 16 patients with CLL, 8
(50%) presented with variants of interest including NOTCH1,
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Figure 1. Longitudinal overview of somatic variants observed in CLL-associated genes in 4 patients during the early stages of MBL/CLL development. Only patients
with samples likely to constitute a low-count MBL clone are shown (initial sample ranging from 16 to 8.4 years before CLL diagnosis). Each sample is depicted as an MBL/CLL
clone for which variants present are indicated alongside the VAF, with variants with a VAF below 1% depicted as <1%. Low-frequency variants (<3%) are only shown if validated
through ddPCR. Each sample is labeled with the dominant clonotype frequency (Freq.) as determined through NGS amplicon sequencing of the IGH gene repertoire. X-axis
denotes time at which each blood sample was drawn in years before diagnosis. *Notably, NOTCH1 and XPO1 variants observed in biclonal CLL patient 2 (indicated with an
asterisk) were annotated next to the expanding CLL clone corresponding with the expansion of these variants over time to diagnosis, although formally, we are not able to
exclude the possibility that these variants could be present in the other CLL clone in this patient. Stereotypic subsets are indicated for the relevant patients. Cytogenetic
aberrations observed at diagnosis are shown when available. The 8 other patients for whom no somatic variants were observed are not included in this graphic.
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ATM, and SF3B1. No TP53 variants were observed in our
cohort, in line with previous MBL cohort studies.7-9 Patients with
CLL with variants of interest included 4 IGHV-unmutated (U-
CLL) cases and 4 IGHV-mutated (M-CLL) cases and encom-
passed several stereotypic CLL subsets (IGLV3-21R110, #2, #7
and #8; supplemental Table 1). SHM status was stable over time
during CLL development in our cohort.

Patient 3 (IGLV3-21R110), with stable MBL for over 10 years,
acquired a subclonal SF3B1 variant less than 2 years before CLL
diagnosis, followed by a rapid expansion of this subclone (VAF
35%) at diagnosis (Figures 1 and 2A; supplemental Table 3),
and the IGLV3-21R110 was present in all prediagnostic samples.
This observation does not support speculations that SF3B1
mutations may predispose a CLL clone to acquiring the IGLV3-
21R110 mutation.19 The VAF of the SF3B1 subclone in patient 1,
who does not carry the IGLV3-21R110 mutation, increased over
time to CLL diagnosis from 15% to 31%. SF3B1 variants were
previously observed more frequently in progressive late-stage
CLL (17%) vs CLL diagnosis (5%), suggesting SF3B1 mutations
are acquired during clonal evolution.20

Furthermore, we observed a rapid expansion of a NOTCH1-
mutated subclone in biclonal CLL patient 2, within 3 years prior
to diagnosis, and the NOTCH1-mutated subclones observed in
patients 1 and 5 diminished or remained present at low VAF
(Figures 1 and 2A; supplemental Table 3). Interestingly, patients
with prediagnostic NOTCH1, SF3B1, or XPO1 variants (n = 4)
all progressed to CLL-requiring treatment (supplemental
Table 4). The characteristic somatic NOTCH1 variant
(c.7541_7542delCT) was previously detected in 11% of MBL
1400 19 OCTOBER 2023 | VOLUME 142, NUMBER 16
and 13.4% of patients with CLL.21 NOTCH1 variants previously
reported in MBL cases were often subclonal.21

In our cohort, patients 4 and 6 presented with somatic ATM
variants at high VAF (19%-37%) increasing in both patients over
time to diagnosis (Figures 1 and 2A; supplemental Table 3). In
patient 4, we observed the somatic ATM variant up to 16 years
prior to CLL diagnosis, suggesting a role as a driver during the
earliest stages of CLL development. In support of this hypoth-
esis, an ATM mutation was previously reported in a low-count
MBL case at a VAF of 20%, and the prevalence of ATM muta-
tions in MBL was previously shown to be comparable to CLL up
to 6 years before diagnosis.7,10

Patients 6 and 7 had FAT1 or PLCG2 variants detectable up to
10 years before CLL diagnosis, suggesting a potential role of
these genes in early CLL development. However, PLCG2
mutations in CLL are primarily described in the context of
acquired resistance to BTK inhibitors (ibrutinib).22 Similarly, 10%
of fludarabine-refractory patients presented with FAT1 variants
compared with 1% at CLL diagnosis.23 Hence, it remains
unclear if PLCG2 and FAT1 variants truly contribute to CLL
development or if they are merely passengers.

Although 50% (n = 8) of the patients with CLL in our cohort
presented with a mutation in a recurrently mutated gene in CLL,
no driver event was found for the remaining patients. One
important driver may be the BCR itself, as recent evidence
supports ubiquitous autonomous BCR signaling in CLL and
MBL.24 Additionally, epigenetic or small noncoding RNAs
drivers have been described to contribute to molecular diversity
LETTER TO BLOOD
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Figure 2. Landscape and presumed role of somatic variants in CLL-associated genes during early MBL development and progression from MBL to CLL. (A) Oncoplot
indicating the impact of each of the variants identified. Variants below 3% VAF are indicated with a striped pattern and are only shown if validated through ddPCR. IGHV
mutational status and cytogenetic aberrations are indicated for each patient. Cytogenetic aberrations are only available for diagnostic samples. TP53 and BIRC3 are shown to
highlight the absence of somatic variants in these genes in the (pre)MBL stage. For further information on the identified variants, see supplemental Table 3. (B) Overview of the
putative role of variants in the indicated genes. Variants with a putative role during the earliest stages of MBL development (left) are contrasted to variants with a putative role
during progression from MBL to CLL (right), based on data from our cohort and literature. Variants with uncertainty (limited support from literature and/or our cohort) are
indicated in parentheses.
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in CLL during development and progression.15 Altogether, our
findings support the proposed stepwise model for CLL patho-
genesis, in which autonomous BCR signaling in genetically
LETTER TO BLOOD
predisposed individuals results in a monoclonal expansion of B
cells, followed by accumulation of pathogenic somatic variants
and progression to CLL.24
19 OCTOBER 2023 | VOLUME 142, NUMBER 16 1401



In conclusion, we provide insights in the occurrence of somatic
variants in NOTCH1, ATM, and SF3B1 during the pathogenesis of
M-CLL, U-CLL, and stereotyped subsets #2 (IGLV3-21R110), #7, and
#8. We observed a lack of mutations in TP53 and a low frequency
of mutations in NOTCH1 and XPO1 during the earliest stages of
CLL development (Figure 2A-B) in keeping with cohort studies in
MBL.7-9,25 Notably, ATM variants and the IGLV3-21R110 mutation
were detected at a high frequency as early as 16 years before CLL
diagnosis, indicating a role as early drivers of (pre)MBL.
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