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� Resting state EEG and MEG recordings are increasingly used for functional connectivity and functional
brain network analysis.

� We highlight advantages and disadvantages of methodological choices throughout the recording and
analysis pipeline and how this may affect construction of functional connectivity and networks.

� We give several recommendations for subject instructions and data acquisition for resting state
neurophysiological research.

a b s t r a c t

Electroencephalogram (EEG) and magnetoencephalogram (MEG) recordings during resting state are
increasingly used to study functional connectivity and network topology. Moreover, the number of differ-
ent analysis approaches is expanding along with the rising interest in this research area. The comparison
between studies can therefore be challenging and discussion is needed to underscore methodological
opportunities and pitfalls in functional connectivity and network studies. In this overview we discuss
methodological considerations throughout the analysis pipeline of recording and analyzing resting state
EEG and MEG data, with a focus on functional connectivity and network analysis. We summarize current
common practices with their advantages and disadvantages; provide practical tips, and suggestions for
future research. Finally, we discuss how methodological choices in resting state research can affect the
construction of functional networks. When taking advantage of current best practices and avoid the most
obvious pitfalls, functional connectivity and network studies can be improved and enable a more accurate
interpretation and comparison between studies.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
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Fig. 1. Number of articles per year from Pubmed search using keywords ‘‘(EEG OR
MEG) AND (connectivity OR brain networks OR functional networks OR graph
theory OR network analysis)’’ in the period 2003–2013.
1. Introduction and rationale

In recent years, there has been a growing interest in character-
izing the functional network of the brain ‘at rest’. This so-called
‘resting state’ paradigm is believed to reflect intrinsic activity of
the brain, which may reveal valuable information on how different
brain areas communicate (Greicius et al., 2003; Deco et al., 2011;
Birn, 2012). It has linked spontaneous – task independent – fluctu-
ations in neural activity to diseases, cognitive decline, and distur-
bances in consciousness (Greicius, 2008; Bassett and Bullmore,
2009; Bullmore and Sporns, 2009; Stam, 2014).

This interest in the ‘resting state’ is associated with several
breakthroughs in functional magnetic resonance imaging (fMRI)
research (Raichle, 2009). The claim, however, that valuable infor-
mation on communication between brain areas can be inferred
from intrinsic activity – obtained with neurophysiological tech-
niques – is much older (for a comprehensive overview see
(Pinneo, 1966; Snyder and Raichle, 2012)). The high spatial resolu-
tion might be a favourable feature of fMRI; still this technique only
provides an indirect measurement of brain activity and has a lim-
ited temporal resolution. Information processing in the brain, how-
ever, acts on multiple time-scales, depending on the specific
cognitive or behavioural function (Lopes da Silva, 2013). A consid-
erable part of the information processed in the brain at rest is
encoded on time scales from milliseconds to seconds (Koenig
et al., 2005), a time scale that better suits techniques such as elec-
troencephalography (EEG) and magnetoencephalography (MEG).

In the last decade, EEG and MEG connectivity and functional
brain network studies have gained considerable interest resulting
in a yearly growing number of published studies on this subject
(Fig. 1). These studies have provided valuable information on the
deviant organisation in the diseased brain, such as in Alzheimer’s
disease (Stam et al., 2007a; Dubovik et al., 2013), epilepsy
(Bartolomei et al., 2006; Ibrahim et al., 2013), schizophrenia
(Hinkley et al., 2010; Siebenhuhner et al., 2013), multiple sclerosis
(Schoonheim et al., 2013; Van Schependom et al., 2014), Parkin-
son’s disease (Fogelson et al., 2013), as well as in the healthy brain
on topics as aging (Smit, 2012; Vecchio et al., 2014), gender differ-
ences (Boersma et al., 2011) and a healthy lifestyle (Douw et al.,
2014). Furthermore, connectivity and functional brain network
studies can be used in the clinical setting. For example, in epilepsy
it has been shown to prompt early diagnosis (van Diessen et al.,
2013) and to improve accuracy of epilepsy surgery by removing
aberrant network nodes (Wilke et al., 2011). In Alzheimer’s disease,
EEG connectivity studies were used to monitor the success of novel
interventions (de Waal et al., 2014). Similarly, progression of cog-
nitive deficits in Parkinson’s disease was correlated with functional
brain network changes (Olde Dubbelink, 2014). Together these
examples clearly underline the importance and additional value
of connectivity and brain network analyses in EEG and MEG
research.

When performing these analyses, one makes several assump-
tions and choices that may influence the eventual results. More-
over, the literature on functional connectivity and functional
network studies is rapidly evolving, with an increasing number
of analysis methods becoming available. Discussion is needed to
obtain uniformity and comparability between different studies
(Duncan and Northoff, 2013; Gross, 2014). The present paper
therefore aims to highlight challenges, problems, and opportuni-
ties that are encountered when performing this type of research.
As there are only few methodological studies that address these
issues systematically, our review can be seen as a reflection of
the current state of the field. We provide an overview of the meth-
odological issues that should be considered when performing func-
tional connectivity and network studies with EEG or MEG, and
highlight the advantages and disadvantages of different
approaches. Although we specifically focus on resting state EEG
and MEG studies, most of the information provided is also applica-
ble to task-related studies and other imaging techniques such as
fMRI.
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We start with subject-related methodological issues that are of
interest when conducting a resting state study. What is resting
state, and how does the heterogeneous experience of subjects
affect resting state studies? Furthermore, we explain how the state
of vigilance and an eyes open versus eyes closed condition might
influence the resting state recording. We then summarize analy-
sis-related methodological choices that can strongly influence the
eventual results of a functional connectivity or network study,
namely: choice of EEG reference, source space analysis, artifact
handling and filtering, epoch selection, choice of frequency bands,
and test–retest reliability. For each methodological choice we
introduce current common practice, explain why these choices
are important for the eventual data analysis and summarize the
advantages and disadvantages of each choice. Furthermore, we
discuss issues that are still unresolved or subject of debate and
give some general recommendations. Subsequently, a concise
overview of currently used functional connectivity measures is
provided and how these connectivity measures relate to various
methodological choices and assumptions. Finally, we discuss
current challenges in functional network analysis based on EEG
and MEG recordings.

2. Subject-related methodological issues

2.1. What is ‘resting state’ and how does it affect the recording?

Resting state is the state in which a subject is awake and not
performing an explicit mental or physical task. Traditionally, the
‘resting state’ condition was commonly used in EEG research –
besides event-related potential studies – to study patterns of brain
activity, whereas fMRI research was mainly focused on alterations
in activity during task performance. Early EEG studies, including
the first EEG recordings performed by Berger (Berger, 1929),
already provided evidence for patterns of brain activity when sub-
jects were not performing a task (Collura, 1993). Ironically, it was
not until Biswal and colleagues revealed a distinct fMRI pattern of
interacting brain regions when not performing a task that the rest-
ing state condition became a research paradigm for the study of
interconnectivity of brain regions (Biswal et al., 1995). Since then,
many studies have identified sets of brain regions that share a
common activation pattern during the resting state (Greicius
et al., 2003; Damoiseaux et al., 2006) including the ‘default mode
network’ (Shulman et al., 1997; Raichle et al., 2001) and other
so-called resting state networks (Rosazza and Minati, 2011). These
resting state networks have been replicated and validated both in
neuroimaging and neurophysiological studies (Miller et al., 2009;
Brookes et al., 2011; Hipp et al., 2012), suggesting that resting state
patterns of connectivity are the result of robust and specific intrin-
sic neural activity.

In contrast to task related activity, it is difficult to control the
behaviour of subjects during a resting state experiment. Differ-
ences in the specific instructions for the resting state period may
at least partly influence the activity of the default mode network
(Benjamin et al., 2010). Commonly, subjects are asked to close
the eyes and not to fall asleep. As a result, thoughts are drifting
and thereby creating stimulus independent thoughts (Andreasen
et al., 1995; Teasdale et al., 1995). A recent study investigated what
kind of thoughts patients experienced during a resting state
recording and found several phenotypes of resting state cognition
(Diaz et al., 2013). Even when similar instructions were given to
subjects, the subjective experience during a resting state recording
varied greatly, thereby potentially confounding the results. In addi-
tion, the cognitive state before the recording could also influence
resting state dynamics (Lopez Zunini et al., 2013). These findings
underline the heterogeneous experience of subjects during the
resting state condition. Instructing a resting state condition might
thus not be as straightforward as it seems. Controlling spontaneous
thoughts is difficult, however, it might not be necessary as the
experienced random episodic spontaneous thoughts seems to acti-
vate similar brain regions as resting state networks (Andreasen
et al., 1995). Furthermore, consistent activation patterns of resting
state networks in healthy controls among studies suggest only a
limited influence (Damoiseaux et al., 2006). To reduce the exter-
nally induced heterogeneity of the resting state condition, we rec-
ommend the use of a priori defined instructions throughout a
study, which should be reported in the method section of the even-
tual manuscript. Furthermore, subjects should have a similar pre-
experimental procedure, to avoid introducing variance in cognitive
state. Therefore, researchers should consider the order of neuro-
psychological testing and recording of resting state. We suggest
to first record a resting state condition after which an experimental
session can be performed to minimize disturbances of the resting
state condition. Finally, longer registration increases the stability
of resting state networks, as with time it becomes more likely that
the complete repertoire of resting state networks has been acti-
vated (Honey et al., 2012), but this also increases the risk of drows-
iness in subjects when no precautions are taken. The exact relation
between duration of recording and stability in EEG and MEG rest-
ing state functional connectivity remains complex and is discussed
further in Section 3.4.2.

2.2. State of vigilance

During the day, the brain is constantly shifting between differ-
ent levels of activation, also called ‘states of vigilance’. In EEG and
MEG research, we distinguish several vigilance states. These differ-
ent states can be identified by visual inspection or spectral analysis
of the EEG (Olbrich et al., 2009; Minkwitz et al., 2011). The three
most studied vigilance states are wake, sleep, and sleep deprived.
The state ‘drowsiness’ is often avoided in resting state research,
because alertness or wakefulness is reduced during a drowsiness
state and may vary and influence measurements greatly. However,
recognizing drowsiness in resting state recordings can be difficult
and requires a systematic approach (Koenis et al., 2013; van
Diessen et al., 2014). Each state of vigilance has specific character-
istics that contribute to differences in spectral power
(Niedermeyer, 1987; Cantero et al., 1999) and functional connec-
tivity (Kuhnert et al., 2010; Piantoni et al., 2013). Several factors
have been identified that influence state of vigilance: circadian
rhythm (Kuhnert et al., 2010), task performance before the record-
ing (Klimesch et al., 1999), including neuropsychological testing,
medication use, or even caffeine intake (Siepmann and Kirch,
2002; Barry et al., 2011; Tal et al., 2013). Body posture and record-
ing environment may also affect vigilance and, consequently, func-
tional connectivity measures. For example, drowsiness is more
likely to occur in a dimly lit and sound attenuated room with the
subject in supine position, compared to a noisy environment with
the subject sitting in daylight. Also, the amplitude of the EEG
recording changes as a result of different body postures due to
shifts in cerebrospinal fluid layer thickness (Rice et al., 2013).
The effect size of these possible confounders in resting state stud-
ies is unknown. It is therefore recommended to eliminate or record
and correct for these possible confounders as much as possible.

2.3. Eyes open versus eyes closed

Whether a recording is performed with eyes open or eyes closed
influences the resting state condition greatly. Evidence from fMRI,
MEG and EEG studies has revealed differences between eyes open
and eyes closed conditions for functional connectivity measures
and functional networks (Horstmann et al., 2010; Tan et al.,
2013; Jin et al., 2014; Xu et al., 2014). Irrespective of the condition,
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eye movements affect neurophysiological recordings, particularly
the frontal channels (Davidson, 1988; Allen et al., 2004) and are
thus a potential confounder in connectivity analyses. Both eyes
open and eyes closed are associated with specific eye movements.
For example, eye blinks are more prevalent during eyes open con-
dition, whereas rolling of the eyes might particularly influence the
eyes closed condition. Rolling of the eyes during eyes closed condi-
tion is often due to drowsiness, which is normally not a state of
vigilance where resting state studies are interested in and, as a
result, discarded from further analysis (Section 2.2). Furthermore,
the eyes closed condition, is more stable over sessions when
quantifying EEG parameters than the eyes open condition (Corsi-
Cabrera et al., 2007) and standardization of the procedure is
relatively straightforward even in subjects who are difficult to
instruct such as children, or patients with behavioral or cognitive
problems. Together with the robust topographic effect posteriorly
in the alpha frequency band when eyes are closed, thereby giving
good guidance for selecting resting state epochs, we advocate to
use the eyes closed condition during resting state recordings.
Methods to automatically remove eye movements from the EEG
and MEG recordings are discussed in Section 3.3.
3. Analysis-related methodological choices

3.1. Choice of reference

In contrast to MEG, the electric potentials measured by EEG
electrodes are defined with respect to a reference. Besides bipolar
recordings, in which EEG activity is defined by the electric poten-
tial difference between two electrodes, EEG recordings often use
a single common reference such as auricular, mastoid or central
electrode as reference. These conventional reference montages
are confounded by brain activity that will eventually affect further
analysis. As a result, recordings are often re-referenced offline to
compute reference montages that are electrophysiologically more
silent (Pivik et al., 1993; Nunez et al., 1997; Hu et al., 2010;
Kayser et al., 2010). The common average reference has previously
been suggested as a practical compromise to reduce the confound-
ing effect of brain activity that is picked up by the reference (Nunez
et al., 1997). The advantage of the common average reference of
approximating a zero sum reference is, however, increasingly lost
in low-density EEG recordings (Schiff, 2005; Nunez and
Srinivasan, 2006). To this end, several other methods have been
proposed. These include the infinity reference, which tries to esti-
mate a time-varying constant that is removed from the recorded
data (Yao, 2001), and the surface Laplacian, which represents a
truly reference-free transformation (Hjorth, 1975; Tenke and
Kayser, 2012). Similar to the conventional and average common
reference, the infinity reference is reversible to the original refer-
ence scheme, whereas the surface Laplacian involves the estima-
tion of radial current flow at the scalp, which cannot be undone
(Tenke and Kayser, 2012). Both methods, in particular surface
Laplacian, have been used empirically in various basic and applied
contexts (Nunez and Srinivasan, 2006). Recently, a statistically
robust method has been proposed to adequately mitigate the influ-
ence of neural activity in the common average reference (Lepage
et al., 2014). More investigations are needed to further explore
the performance of this theoretically appealing method.

A related question is to what extent reference choice will affect
the computation of connectivity measures. For example, Qin and
colleagues demonstrated that infinity reference has a superior per-
formance compared to other reference montages when estimating
functional connectivity by means of coherence (Qin et al., 2010).
Correlation measures such as coherence, however, are increasingly
abandoned in connectivity studies, as they fail to include
information on the intrinsic nonlinearity of brain activity (Sec-
tion 4) and it is currently unclear whether the superior effect of
the infinity reference is maintained when using nonlinear connec-
tivity measures. We await future studies that critically evaluate
possible biases due to reference as was illustrated for effective con-
nectivity measures (van Straaten et al., 2015).

In the light of the ongoing discussion on reference choice
(Kayser et al., 2010; Nunez, 2010) and its effect on connectivity
measures (Qin et al., 2010; van Straaten et al., 2015) we encourage
researchers to explore the effects of different types of references
when computing connectivity measures.

3.2. Signal versus source space

Many resting state EEG and MEG studies use the activity at the
electrode level to infer how brain regions are (functionally) inter-
connected. This analysis is performed in so-called ‘signal space’
as neural activity is directly inferred from signals measured at
the EEG electrode or MEG sensor. When performing connectivity
analysis in signal space, several factors should be considered.
Firstly, multiple electrodes pick up activity from a single source
due to the nature of the signal, also called ‘field spread’ (Sarvas,
1987). A second problem is related to volume conduction: the
‘blurring’ effect due to the electrical conduction properties of the
human head (van den Broek et al., 1998). Together, these factors
can result in an erroneous estimate of the actual connectivity
between brain areas. To obtain more reliable information on the
communication between brain areas, studies project the activity
measured at the electrode or sensor (signal space) back to the
underlying sources, the so-called ‘source space’. The mapping from
signal space to source space is known as the inverse problem
(Niedermeyer, 1987). Unfortunately, no unique solution exists to
this problem (Helmholtz, 1853), unless constraints and assump-
tions are made. These assumptions concern, for example, the num-
ber of possible sources or the non-linearity between sources
(Hillebrand and Barnes, 2005; Michel and Murray, 2012). Further-
more, analyzing neurophysiological signals in source space does
not completely overcome the problems of field spread and volume
conduction, and it has therefore been suggested to combine source
space analysis with a robust connectivity measure (Hillebrand
et al., 2012). These robust measures include, for example, imagi-
nary coherence, phase slope index or phase lag index (Section 4).
Secondly, the mixture of signals arising from spatially separated
sources at a single electrode also hampers the interpretation of
connectivity estimate in signal space (Nunez and Srinivasan,
2006; Schoffelen and Gross, 2009). Source space analysis could
be helpful in demixing signals (Michel and Murray, 2012). Various
approaches for source space analysis have been offered (Baillet
et al., 2001), including low resolution brain electromagnetic
tomography (LORETA) in EEG research (Pascual-Marqui et al.,
1994) and the beam forming approach for EEG and MEG recordings
(van Drongelen et al., 1996; Hillebrand and Barnes, 2005). In gen-
eral, the accuracy of source localization increases with the number
of recording sites (Lantz et al., 2003) if the signal quality remains
constant, although a noiseless recording condition may also allow
source localization with a standard 10–20 system (Laarne et al.,
2000). A high channel density recording might even become a dis-
advantage for source reconstruction approaches that rely on an
accurate description of the lead fields. Lead field is defined as the
electrode or sensor signal that is produced by a source of unitary
strength. Incorrect source and head models lead to deviations from
the ‘true’ lead fields, and subsequently to source reconstruction
errors (Hillebrand and Barnes, 2003, 2011). These errors in the lead
fields are more discernible when using good quality data. Counter
intuitively, recordings with higher signal-to-noise ratio and higher
density may therefore degrade source reconstructions in the
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presence of these modeling errors. Finally, increased channel den-
sity can result in bridging, the incidental spread of electrolyte gel
between adjacent electrodes, thereby negatively influencing the
recording and subsequent inverse solutions and/or connectivity
estimates (Alschuler et al., 2014).

3.3. Artifact handling and filtering

To minimize the influence of artifacts on the results, visual
inspection and automatic detection of artifacts are often used to
remove artifacts or to select artifact-free data segments. Many
attempts have been made to reject or mitigate eye movement arti-
facts, to reduce interobserver variability, and to improve efficiency
in visible inspection of the data (Croft and Barry, 2000; Cassani
et al., 2014). Blind source separation, such as independent compo-
nent analysis, is increasingly used for the detection and removal of
ocular artifacts (LeVan et al., 2006; Gao et al., 2010), although it is
unknown to what extent these artifact reduction methods influ-
ence functional connectivity and network metrics. Furthermore, a
number of techniques is available for automatic removal of muscle
artifacts; however, none of them guarantees muscle artifact free
data (Muthukumaraswamy, 2013). Improvement of software-
based muscle artifact recognition is therefore needed (Delorme
et al., 2007; Whitham et al., 2007). Currently, most studies use
visual inspection to eliminate epochs with myogenic or eye-move-
ment artifacts, although the precise procedure is often not
described. Some studies mention the removal of frontopolar and
auricular channels to reduce the influence of artifacts (de Haan
et al., 2009; van Dellen et al., 2014b). Although these artifacts will
also affect other channels due to volume conduction, this influence
is reduced when excluding frontopolar and auricular channels
prior to offline re-referencing. It is, however, preferable to select
artifact free epochs. In addition, visual recognition of any EEG arti-
fact depends on the chosen reference montage. This means that a
possible artifact on the reference channel could influence all other
recording sites and could lead to the undesirable rejection of an
epoch. Although this problem is relatively easy resolved by replac-
ing (e.g. interpolating) the original reference, it underlines the
importance that visual inspection should be done by a well-trained
researcher.

In EEG and MEG recordings analogue filtering is needed to pre-
vent from aliasing and eliminate the direct current (DC) compo-
nent. Besides the analogue filtering, software programs have
digital filtering options that can be useful to improve inspection
and selection of epochs. It is important to realize, however, that
this digital filtering may affect amplitude and phase of EEG and
MEG recordings. It is essential to know how the data is exported
from the recording device and whether a digital filter is contami-
nating the signal. To avoid any possible influences of the digital fil-
ters on the recorded signal, it is therefore important to consider
elimination of software based filtering or to use zero-phase filter-
ing, for example by a forward and reversed filtering approach.

3.4. Epoch selection

3.4.1. Standardization and interobserver variability in epoch selection
Selection of epochs based on visual inspection is a subjective

approach, which may result in inter-observer variability. The effect
of epoch selection on functional connectivity has never been inves-
tigated systematically. A few studies, however, assessed the stabil-
ity of their outcome measures by repeating the analysis with a
different number and selection of epochs, showing minimal
changes between conditions (Douw et al., 2013; Olde Dubbelink,
2014; van Dellen et al., 2014b). This may indicate a modest subjec-
tive influence on epoch selection when sufficient epochs are
selected. Still, automated analysis could be helpful for researchers
and clinicians in evaluating and improving epoch selection in EEG
and MEG recordings (Lodder et al., 2014). The current complexity
and limited transparency of automated detection systems demoti-
vate researchers to use it on a larger scale (Anderson and Doolittle,
2010) although recent advances are promising (Shibasaki et al.,
2014). Also, it is recommended to define the selection criteria prior
to the epoch selection. Selection by two or more experienced
researchers or clinicians could improve the reliability of the epoch
selection. For example, when a researcher selects epochs according
to predefined criteria, a second researcher can be asked to indepen-
dently evaluate the selected epochs. When both researchers agree
on the quality, the epoch can be included. Epochs without consen-
sus can be replaced by new epochs. Another option is the use of an
automatic software-based rejection procedure (Section 3.3) or a
random selection among all selected artifact-free epochs
(Shibasaki et al., 2014). Beside the elimination of artifacts in the
included data, it is important to define the time segments in the
recording from which epochs are selected. As the variance of vigi-
lance increases with the length of the EEG recording (Maltez et al.,
2004), we recommend selecting the first artifact free epochs of suf-
ficient quality after the start of the resting state recording. In this
way, selection bias of EEG epochs will be minimalized.

3.4.2. Number and length of epochs and sample frequency
Different epoch lengths and number of epochs are currently

used in resting state functional connectivity studies, ranging from
one second (Knyazeva et al., 2010; Chu et al., 2012) to a few min-
utes (Tahaei et al., 2012) or even a day (Kuhnert et al., 2010) for
epoch length; and from one epoch (Ahmadlou and Adeli, 2011)
to over 100 epochs containing the entire EEG recording
(Knyazeva et al., 2010). Previous studies have investigated epoch
length in relation to connectivity stability (David et al., 2004;
Honey et al., 2007; Chu et al., 2012) and showed that the length
of epochs to obtain stable connectivity measures is highly depen-
dent on the type of connectivity measure. Recent studies have used
a more pragmatic approach and extended the original analysis to
investigate connectivity stability for the included subjects, for
example, by determining the minimum number of epochs that
are needed using a leave-one-out analysis (Douw et al., 2013). Sim-
ilarly, varying the epoch length revealed that a longer epoch length
does not automatically imply a more stable connectivity value. For
phase synchronization measures, longer epochs could result in
lower connectivity values based on the asymmetrical distribution
of the phase difference (van Dellen et al., 2014b). From this per-
spective, we recommend to use epochs of an identical length
within a study, as epoch length can influence the connectivity
measure (van Dellen et al., 2014b), and to choose an epoch length
in accordance with the connectivity measure of choice. Further-
more, we recommend computing connectivity values per epoch
and consequently an average value (over epochs) per subject to
increase the stability of connectivity values. In some studies, it
might be particularly interesting to investigate temporal dynamics
of functional connectivity and networks. The use of sequential
short epochs might be useful to study these dynamical properties
(Singer, 2013).

An often neglected issue when choosing epoch length and num-
ber is the sample frequency. Increasing sample frequency will
result in a higher temporal resolution and, consequently, a higher
number of samples in one epoch. It is unclear how sample fre-
quency influences connectivity measures exactly, although it is
reasonable to assume that a lower sample frequency leads to a
reduced sensitivity and a larger variability over epochs for detec-
tion of coupling between signals. Sample frequencies commonly
used in functional connectivity EEG and MEG studies range
between 250 and 512 Hz. Analysis of connectivity measures in
higher frequency bands requires higher sample frequencies to ful-
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fill the Nyquist-Shannon sampling theorem (Candès, 2006). Other-
wise, the spectral resolution is only dependent on the length of the
epochs. We recommend comparing epochs with a similar sample
rate even if this would mean down sampling for some epochs.

3.5. Choice of frequency bands

Factor analysis revealed that the classification of EEG recordings
into distinct frequency bands, namely delta (0.5–4 Hz), theta (4–
8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–90 Hz),
is statistically sound (Lopes da Silva, 1998). Furthermore, each fre-
quency band is associated with distinct cognitive functions (Basar
et al., 2001). Nevertheless, considerable disagreement exists
whether traditional frequency bands are indeed fixed entities.
For example, spectral band limits seems to depend on factors such
as age (Aurlien et al., 2004; Boersma et al., 2011). In addition, it has
been argued that the lower (8–10 Hz) and higher (10–13 Hz) alpha
frequency band are involved in different cognitive processes
(Klimesch, 1999). The reliability of the gamma frequency band is
under debate as it remains questionable whether gamma oscilla-
tions can be reliably inferred from surface recordings (Lopes da
Silva, 2013). Although various research fields have consistently
identified gamma activity being related to tasks (e.g., visual atten-
tion, perception and memory (Lopes da Silva, 2013)) or diseases
(e.g., epilepsy, autism, ADHD and schizophrenia (Herrmann and
Demiralp, 2005)), studies have suggested that EEG oscillations
>20 Hz from surface recordings reflect myogenic artifact
(Whitham et al., 2007; Pope et al., 2009). These artifacts can, how-
ever, be removed using surface transformations of the EEG
(Fitzgibbon et al., 2013). Besides myogenic artifacts, saccadic spike
potentials are also known to affect the gamma frequency band
(Yuval-Greenberg et al., 2008; Yuval-Greenberg and Deouell,
2009). Finally, various diseases of the brain have been associated
with abnormal slowing in specific frequency bands and thereby
acting as disease specific modifiers, for review see (Kaplan and
Rossetti, 2011). These disease specific spectral changes might
become a problem when evaluating connectivity measures in these
patients, particularly when connectivity measures are strongly
dependent on amplitude. Connectivity measures based on phase
differences are therefore recommended, as they are not or less sen-
sitive to amplitude differences (Section 4). In addition, we suggest
performing a power spectral analysis along with connectivity and
functional network analyses to disentangle disease specific spec-
tral changes from disease related connectivity and network
changes in the frequency bands (de Haan et al., 2009; van
Diessen et al., 2013). To overcome previously described frequency
band-related problems, some studies have used a broadband
approach. This could be an option when exploring an undirected
hypothesis and to avoid inflated type I error rates due to multiple
comparisons across frequency bands, but it will probably fail to
disentangle simultaneous (opposing) changes in different fre-
quency bands.

3.6. Test re-test reliability

To evaluate changes in resting state EEG recordings over time or
the effects of an intervention, it is important to understand the
effects of multiple recordings over time on the outcome measures.
Previous literature showed a moderate to high intra-individual
correlation in EEG spectral analysis, with correlation coefficients
ranging between 0.4 and 0.9 (Gasser et al., 1985; Kondacs and
Szabo, 1999; Fingelkurts et al., 2006; Gudmundsson et al., 2007;
Napflin et al., 2007). These correlations do not seem to depend
on the time interval between the recordings (Salinsky et al.,
1991; Olde Dubbelink, 2014). When the interval between two tests
are separated by a few months or years, one should also be aware
of the effects of aging, especially in pediatric studies (Boersma
et al., 2011; Smit, 2012).
4. Connectivity measures

To investigate functional interactions between brain regions,
EEG and MEG studies have used different connectivity measures,
for an overview see (Pereda et al., 2005; Stam, 2005; Bonita
et al., 2014). The quantification of interacting brain regions can
be subdivided into functional and effective connectivity measures
(Friston, 1994, 2011). Connectivity measures are based on statisti-
cal interdependencies between signals (Aertsen et al., 1989). The
extent to which brain regions are connected is defined by the
strength or consistency of this statistical interdependency (Varela
et al., 2001), also called synchronization. In dynamical systems
the term synchronization generally refers to (phase) coupling of
two or more harmonic oscillators (Boccaletti, 2002), but it is cur-
rently used in a more liberal way in brain connectivity analyses
(Daffertshofer and van Wijk, 2011). Thus, a stronger synchroniza-
tion, often reflected by a high coupling or consistency of oscillating
systems, leads to a stronger connection. In contrast to functional
connectivity measures, which only give information about the
temporal correlation, effective connectivity measures also provide
information on causal and therefore directed information flow
between brain regions (Friston, 2011). Increasing evidence sug-
gests that information processing in the brain follows a complex,
directional pattern between brain regions (Stephan and
Roebroeck, 2012). Besides effective connectivity, directed func-
tional connectivity measures can reveal disturbances in the normal
directionality of information flow in the diseased brain, for exam-
ple, in dementia (van Straaten et al., 2015), epilepsy (Korzeniewska
et al., 2014), or when consciousness is disturbed (Lee et al., 2013).
These directed functional measures do not provide information
about the causal relation between brain areas.

Deciding on the most appropriate connectivity measure can be
arduous, as several issues should be considered. This includes the
consideration of linear or nonlinear relations, analysis in time or
frequency domain, using an amplitude or phase-based measure,
obtaining directed or undirected information, and whether to
include indirect relations or not (i.e., multivariate or bivariate). Lin-
ear correlations to investigate connectivity of the brain have been
used for several decades and are relatively straightforward in
terms of computation and interpretation, for a review see (Shaw,
1984). Since these linear methods are not able to take into account
the intrinsic nonlinearity of neuronal activity, various nonlinear
connectivity measures have been introduced (Pereda et al., 2005;
Wendling et al., 2009; van Mierlo et al., 2014; Vindiola et al.,
2014), including several phase-based connectivity measures, such
as the phase locking value (Lachaux et al., 1999) and phase lag
index (Stam et al., 2007b). Besides considering nonlinearity, novel
multivariate connectivity measures are aiming to differentiate
between direct and indirect interrelations (Friston, 2011). Whereas
bivariate measures disregard the influence of other signals when
computing the interaction between two signals of interest, multi-
variate measures try to disentangle this information in a meaning-
ful manner. Obviously, all these different connectivity measures
have their unique advantages and disadvantages. In Table 1 we
provided an overview of the currently most often used measures,
including their main advantages and disadvantages.

In addition to computational differences between connectivity
measures, it is important to consider related methodological issues
that could be encountered when choosing, and interpreting the
results of, a connectivity measure. This includes, for example, the
problem of field spread, volume conduction (Section 3.2) and spe-
cific reference montages (Section 3.1), which for many measures



Table 1
Overview of different connectivity measures used in EEG and MEG research, with their advantages and disadvantages.

Connectivity
measure

Property measured Advantage(s) Disadvantage(s) Key reference(s)

Correlation The linear relation between the amplitude of two
signals in the time domain

Commonly used and
straightforward
method

Nonlinearity not considered
Not possible to make a distinction between
direct and indirect relations
Sensitive to volume conduction

Brazier and
Barlow (1956)

Coherence The linear relation between the amplitude of two
signals in the frequency domain

Commonly used and
straightforward
method

Nonlinearity not considered
Not possible to make a distinction between
direct and indirect relations
Sensitive to volume conduction

Adey et al.
(1967)

Granger
causality

The future of signal X can be predicted more
precisely when the past of signal Y is included and
vice versa

Estimates causal
interaction, and
therefore
directionality is
assessed
Well established and
widely used in many
fields of research

Nonlinearity not considered
Methodological choices (e.g., choice of reference
in EEG), as well as other confounders (e.g.,
volume conduction) could interfere with the
actual causality

Granger (1969),
Hesse et al.
(2003), Bressler
and Seth (2011)

Directed
coherence

The directed linear relation between two signal in
the frequency domain based on the Granger
causality principle

Directionality of
information flow

Nonlinearity not considered
Not possible to make a distinction between
direct and indirect relations
Sensitive to volume conduction

Wang and
Takigawa (1992)

Directed transfer
function

Gives the causal relation between the outflow of
node X towards node Y in the frequency domain
based on Granger causality principle, normalized
by all inflows towards node Y

Directionality of
information flow
Distinction between
common source and
interconnectedness
Insensitive to volume
conduction

Nonlinearity not considered
Not possible to make a distinction between
direct and indirect relations
Noisy channels affect the directionality
Difficult to estimate an optimal order for the
multivariate model

Kaminski and
Blinowska
(1991)

Partial directed
coherence

Gives the causal relation between the outflow of
node X towards node Y in the frequency domain
based on Granger causality principle, normalized
by all outflows from node X

Directionality of
information flow
Insensitive to volume
conduction

Nonlinearity not considered
Not possible to make a distinction between
direct and indirect relations
No conclusion about the strength of coupling,
due to normalization
Difficult to estimate an optimal order for the
multivariate model

Baccala and
Sameshima
(2001)

Imaginary part
of coherency

Based on coherency*, but excluded the influence of
volume conduction by including only the
imaginary part of the coherency

Less sensitive to
volume conduction

Nonlinearity not considered
Imaginary part is mostly small, thereby risking
to miss meaningful interactions
Not possible to make a distinction between
direct and indirect relations

Nolte et al.
(2004)

Mutual
information

Gives the amount of information in signal X that
can be explained by signal Y and vice versa, based
on the probability distribution of X and Y, and the
joint probability distribution of X and Y

Mutual information is
sensitive in narrow-
frequency band
analysis

No directionality of the interaction
Weak coupling could be missed
Complicated computational measure to obtain
from experimental time series
Not possible to make a distinction between
direct and indirect relations

Fraser and
Swinney (1986)

Synchronization
likelihood

Describes the normalized strength of the mutual
information between signal X with signal Y in
state space

Adequately deals
with complexity
caused by interacting
systems
Sensitive to nonlinear
relations

Sensitive to volume conduction
Not possible to make a distinction between
direct and indirect relations

Stam and Van
Dijk (2002)

Phase locking
value

Gives the modulus of the averaged instantaneous
phase differences between two time series

Nonlinearity is taken
into account

No directionality of interaction
Sensitive to volume conduction
The size of the instantaneous phase difference is
included, however, there is no evidence that the
size of the phase difference is important for the
coupling strength
Not possible to make a distinction between
direct and indirect relations

Lachaux et al.
(1999)

Phase slope
index

Estimates the direction of information flow, based
on the slope of the phase difference of the cross
spectral density between signal X and Y

Directionality of
information flow
Weighs the
contribution of
different time series
Not affected by
mixture of
independent sources
(e.g., background
activity)

Not possible to make a distinction between
direct and indirect relations
Complicated computational method
Not possible to make a distinction between
direct and indirect relations

Nolte et al.
(2008)
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Table 1 (continued)

Connectivity
measure

Property measured Advantage(s) Disadvantage(s) Key reference(s)

Phase lag index The asymmetry of the distribution of phase
differences between two signals

Less sensitive to
volume conduction,
common sources, and
montage

The risk to miss linear but functionally
meaningful interactions
The instantaneous phase differences are
binarized, therefore, small phase differences may
also be missed under noisy conditions
Not possible to make a distinction between
direct and indirect relations

Stam et al.
(2007b)

Weighted phase
lag index

The contribution of the observed phase leads and
lags is weighted by the magnitude of the
imaginary part of the coherency

Reduced sensitivity to
noise (cf. PLI)
Improved detection of
phase
synchronization
changes (cf. PLI)

The size of the instantaneous phase difference is
included, however, there is no evidence that the
size of the phase difference is important for the
coupling strength
Relative insensitive to phase differences around
0 and 180 degrees
Mixes information about consistency and
magnitude of phase differences, hampering
interpretation
Not possible to make a distinction between
direct and indirect relations

Vinck et al.
(2011)

Directed phase
lag index

The probability that the instantaneous phase of
signal X was smaller than the phase of signal Y
(modulo p) over time

Directionality of
information flow
Less sensitive to
volume conduction
and common sources
(cf. PLI)

Directionality can be ambiguous as leading with
a small differences is similar to lagging with a
large phase difference
Not possible to make a distinction between
direct and indirect relations

Stam and van
Straaten (2012a)

* Coherency between two time signals is the linear relation at a specific frequency, an imaginary-valued measure containing information about the magnitude and phase
between the signals. Coherence is the absolute value of coherency, containing only information about the magnitude.
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leads to an erroneously high estimate of connectivity between two
recording sites (Nunez et al., 1997; Stam et al., 2007b; Schoffelen
and Gross, 2009). It is possible, however, to remove these biases
prior to computing connectivity measures (Brookes et al., 2012;
Hipp et al., 2012) or to estimate the influence of the bias on
the connectivity measure through simulations (Brookes et al.,
2011). A more straightforward approach is to use phase-based
connectivity measures that are less sensitive to these spurious
interactions. Typically, these phase-based measures, such as the
imaginary part of coherence (Nolte et al., 2004), phase-slope index
(Nolte et al., 2008) and phase lag index (Stam et al., 2007b) ignore
the zero phase interaction that are the result of volume
conduction/field spread (at the expense of ignoring true zero phase
interactions). The phase lag index has the additional advantage
that it does not depend directly on the amplitude of the signal
(Muthukumaraswamy and Singh, 2011).

5. Functional networks

Resting state EEG and MEG data can be used to construct con-
nectivity matrices and, consequently, functional networks by using
network analysis (Sporns et al., 2004; Bullmore and Sporns, 2009;
Stam, 2010). In contrast to connectivity measures, which only pro-
vide information on how pairs of different brain regions are (func-
tionally) connected, network analysis characterizes the
organization of networks (Stam and van Straaten, 2012b). Complex
network analysis, a branch of graph theory, reduces the brain into a
collection of ‘nodes’ and ‘edges’ and allows quantitative character-
ization of these networks. In EEG and MEG research, nodes corre-
spond to the recording sites (electrodes or sensors), or specific
brain regions when using a source space analysis. Edges are con-
nections between nodes and represent (functional) connectivity
values. Together, nodes and edges form the basic elements of a net-
work, and from these elements various global and local network
measures can be inferred, for an overview see (Rubinov and
Sporns, 2010) and Section 5.4. Providing an overview on the vast
literature on functional networks and its statistical challenges
(Zalesky et al., 2010) is beyond the scope of this paper; rather,
we discuss relevant issues that need to be considered when pre-
paring and analyzing a resting state EEG or MEG study.

5.1. Network construction

Functional networks are based on the strength or consistency of
functional interactions between the network nodes. In a weighted
network, the strength of this interaction is taken into account,
whereas in an unweighted network only the existence or absence
of an interaction is taken into account. Such a binary network is
obtained by setting a threshold for the functional connectivity,
above which a functional connection is considered to be present.
A motivation to use a binary network could be to discard spurious
connections that are potentially influenced by, for example, noise
(Bullmore and Sporns, 2009). Selecting the value for the threshold
is, however, arbitrary and may vary between individuals and
groups (van Wijk et al., 2010). Although a weighted network over-
comes the problem of this subjective factor and provides a more
realistic representation of functional networks, spurious weak con-
nections are also taken into account, potentially influencing net-
work metrics. Besides weighted or unweighted, a network can be
directed or undirected. In order to construct a directed network,
one should use an effective connectivity measure to infer informa-
tion on the directionality of communication. Although this could
potentially provide useful additional information on network func-
tioning, most studies use undirected networks (van Wijk et al.,
2010).

5.2. Network density

Network density refers to the number of connections in a net-
work and is influenced by the size of the network. When compar-
ing networks between subjects, the number of nodes should
therefore be equal, as it will directly influence network density
and various network metrics (van Wijk et al., 2010). A straightfor-
ward approach to correct for network density is by using a binary
network. This, however, will lead to a data reduction wherein valu-
able information of the network is not taken into account (van
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Wijk et al., 2010). Other ways to reduce the effect of network den-
sity on network metrics is by using weighted networks in combi-
nation with normalization procedures that use network metrics
based on surrogate data for comparison (Rubinov and Sporns,
2010; Stam and van Straaten, 2012b). Although these steps reduce
the influence of network density on the eventual network metrics,
it is still difficult to make an unbiased comparison between net-
works (van Wijk et al., 2010; Stam et al., 2014). Furthermore, each
of these steps can potentially influence the computation of net-
work metrics and should therefore be included in the methodolog-
ical section of the study.

5.3. Minimum spanning tree

We have briefly mentioned several strategies to improve com-
parison between networks. Some of these strategies involve spe-
cific methodological choices, such as epoch selection, artifact
handling, specific frequency bands, and connectivity measures
(Section 3). Other solutions include normalization procedures
and the use of weighted networks (van Wijk et al., 2010). Despite
these efforts, traditional network metrics will remain sensitive to
the effect of network density. A new approach to overcome the
problem of network density in network analytical studies involves
computation of the minimum spanning tree (MST). The MST is a
unique acyclic sub graph that contains most of the strongest con-
nections of the original undirected, weighted graph, for review
see (Stam et al., 2014). As the communication in the original graph
follows the most efficient paths (Van Mieghem and van Langen,
2005), the MST can be considered the backbone of the functional
brain network (Van Mieghem and Magdalena, 2005; Wang et al.,
2008). During the process of constructing the MST graph, connec-
tions that will lead to loops in the network will be excluded from
the eventual network. By doing so, the number of connections in
an MST graph will always correspond to the number of nodes
minus one. As a result, MST networks with the same number of
nodes will automatically have the same number of connections,
Fig. 2. Schematic illustration how various methodological choices will influence restin
choice of connectivity measures is highly depended on methodological choices. Furtherm
in Section 5.
thereby facilitating the comparison of networks. Moreover, nor-
malization procedures with surrogate networks are not necessary
anymore. A possible disadvantage of the MST approach is that it
may miss information about the network topology that is con-
tained in the weaker connections of the network. An increasing
number of studies have evaluated the practical utility of the MST
approach for network analysis in resting state EEG (Ortega et al.,
2008; Lee et al., 2010; Schoen et al., 2011; Boersma et al., 2013;
van Diessen et al., 2014) and MEG (Olde Dubbelink, 2014;
Tewarie et al., 2014; van Dellen et al., 2014a) recordings.

5.4. Global and local network metrics

Several metrics exist to characterize the organization of net-
works (Rubinov and Sporns, 2010). The two most commonly used
network metrics are the average path length, a measure of global
integration of the network, and the average clustering coefficient
that defines local segregation of a network. Both average path
length and average clustering coefficient are considered to be glo-
bal network metrics as they provide global information of the net-
work and are commonly used to describe the network topology. An
optimal network organization is characterized by a short average
shortest path length and a high average clustering coefficient, also
called a ‘small-world’ configuration (Watts and Strogatz, 1998).
Although these global network metrics are appealing to use, as
they have been widely used in network analytical studies, they fail
to explain the diversity found at node level (Bullmore and Sporns,
2009; Stam and van Straaten, 2012b).

To explain this diversity at node level, local network metrics are
used. Network metrics like degree, betweenness centrality, and
eigenvector centrality are used to specify the level of importance
of a specific node in a network (Rubinov and Sporns, 2010). Nodes
with many connections and a central position within the network
are considered ‘hubs’. Removal of a hub-node will have a consider-
able impact on the network (Bullmore and Sporns, 2009; Stam and
van Straaten, 2012b). Often, a network is built out of smaller
g state data and, consequently, the construction of functional networks. Note that
ore, several methodological options exist during step 3. These options are discussed



Table 2
General recommendations for methodology of functional connectivity resting state EEG and MEG research.

Subject-related methodological issues
Heterogeneity of resting state condition

- Use a priori defined instructions throughout a study to reduce the external induced heterogeneity
- Eliminate or control for possible confounders such as time of the day, intake of caffeine or medication, task or physical performance prior to recording and state of

vigilance

Measurement-related methodological issues
Choice of reference

- Conventional reference montages will influence EEG measures, both a reference-free and (robust) common average reference are reasonable choices
- Various reference montages will influence the estimated strength and directionality of information flow and thereby the outcome of functional and effective

connectivity
Epoch selection

- Select the first artifact free epochs after the start of the resting state recording to minimize any potential selection bias
- Re-inspect selected epochs by an independent researcher to avoid any selection or systematic bias
- Include extra epochs to perform a leave-one-out analysis to investigate stability of connectivity and network measures
- Length and sample frequency of epochs should be equal and appropriate for the connectivity measure that is used

Filtering and artifact handling
- Select epochs without eye-movement or muscle artifacts. If not possible, use an automatic artifact reduction approach and describe these procedures or exclude

affected channels (but maintain an equal number of channels per subject)
- Use zero-phase filtering to eliminate the phase shift of digital filters on the signal

Frequency bands
- Differentiate neurophysiological signals in separate frequency bands when an effect is expected in specific bands. Broadband analysis could be used when testing an

undirected hypothesis
- Avoid gamma band when impossible to control for myogenic influences
- Perform a spectral power analysis along with your connectivity analysis

Connectivity measures
Volume conduction

- Avoid connectivity measures that are susceptible for volume conduction
- Compute connectivity values per epoch and consequently an average value per subject to increase the stability of connectivity values

Functional networks
Network construction

- Use weighted networks to avoid subjectivity in unweighted network analysis or approaches not influenced by network density (e.g., minimum spanning tree)
- Use directed networks in combination with effective connectivity measures when information is needed on the directionality within the network

Network density
- When using traditional network metrics use a combination of weighted networks and normalization procedures with surrogate data to correct for the influence of

density or use the minimum spanning tree approach
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subnetworks, also called ‘modules’. These modules are formed by
groups of nodes that are highly connected to each other
(Newman, 2006), but much less so to other nodes in the network.
Provincial hubs are the most highly connected nodes within a
module. Connector hubs are the important nodes connecting one
module with other modules in the network (van den Heuvel and
Sporns, 2013). Each local network metric captures specific infor-
mation about the network topology, making it appropriate for cer-
tain analysis, depending on the specific research question. For
example, the eigenvector centrality gives a more accurate estima-
tion of the centrality of a specific node in the network than degree
(Batool and Niazi, 2014), and has lower computational costs than
betweenness centrality (Lohmann et al., 2010), it is less sensitive
for the detection of hubs in modules (Joyce et al., 2010) and has
specific normalization problems (Ruhnau, 2000).

When making choices for specific network metrics, it is recom-
mendable to take into account the chosen connectivity measure.
Connectivity measures that depend on linear correlations or the
level of synchronization are more susceptible to volume conduc-
tion (Table 1). As a result, particularly the interaction between
two nearby network nodes will be overestimated (Stam et al.,
2007b), which might result in an overestimation of (local) cluster-
ing. Another important issue to consider when choosing network
metrics, is the influence of network density (van Wijk et al.,
2010). Although it is possible to reduce the effect of network den-
sity, the MST approach offers an elegant manner to control for dif-
ferences in network density. Like in conventional networks, MST
metrics are inferred from MST graphs. For example, MST diameter
and leaf number are global metrics that provide information on
network integration and segregation, similarly to average path
length and average clustering coefficient. Furthermore, various
other local MST metrics can be computed (Boersma et al., 2013;
Stam et al., 2014; Tewarie et al., 2014). Finally, it is important to
realize that some network metrics are highly correlated (Li et al.,
2011; van Diessen et al., 2013), which means that some combina-
tions of network metrics are redundant. It is difficult to recom-
mend specific network metrics, as this will eventually depend on
the specific research question.
6. Conclusions and suggestions for future research

We have summarized several problems and challenges by
reviewing current practice in resting state functional connectivity
EEG and MEG research. First, performing a resting state recording
might not be as straightforward as it seems; behavior during,
and perception of, a stimulus independent condition may vary
greatly between subjects despite similar instructions (Diaz et al.,
2013). In our overview, we differentiated subject-related from
measurement-related methodological issues. For future research
we suggest to explicitly mention the instructions given to the sub-
ject and to control for factors that might influence the state of vig-
ilance of subjects. Second, we mentioned technical issues that are
important to consider when collecting data from resting state
EEG and MEG recordings (Fig. 2 for summary). Since the current lit-
erature is too diverse to provide a uniform methodological guide-
line, we suggest including different methodological approaches in
resting state studies to better understand the influence of these
approaches on study results. Some recommendations are, however,
useful irrespective of the chosen approach (Gross et al., 2013). We
summarized these recommendations in Table 2.

Since resting state EEG and MEG recordings are increasingly
used for a network analytical approach (Bullmore and Sporns,
2009; Stam and van Straaten, 2012b), we briefly introduced some
relevant topics. It is recommendable to decide on the connectivity
measure and network metrics simultaneously as they are mutually
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dependent. We provided suggestions to overcome some limita-
tions that are inherent to conventional network analysis (van
Wijk et al., 2010) and offered a new approach to overcome the
influence of network density on network metrics: the minimum
spanning tree (Stam et al., 2014).

Finally, methodological studies are needed to systematically
investigate the influence of various choices that researchers have
to make when conducting a functional connectivity resting state
experiment. Particularly the process of selecting data and artifact
handling needs a more evidence-based approach. Regarding the
choice of an appropriate connectivity measure, more information
on the advantages and disadvantage is available (Pereda et al.,
2005; Wendling et al., 2009; van Mierlo et al., 2014; Vindiola
et al., 2014). Increasing evidence exist that some connectivity mea-
sures are more vulnerable to volume conduction (see Table 1),
leading to unreliable connectivity values, and consequently, unre-
liable network estimations. Future studies should use this knowl-
edge to make appropriate decisions. We await methodological
studies wherein different methodological issues are investigated
systematically. This would be invaluable to the field of functional
connectivity and network studies.
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