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a  b  s  t  r  a  c  t

Artificial  grammar  learning  is  a popular  paradigm  to study  syntactic  ability  in nonhuman  animals.  Subjects
are  first  trained  to recognize  strings  of  tokens  that  are  sequenced  according  to  grammatical  rules.  Next,
to test  if recognition  depends  on  grammaticality,  subjects  are  presented  with  grammar-consistent  and
grammar-violating  test  strings,  which  they  should  discriminate  between.  However,  simpler  cues  may
underlie  discrimination  if they  are  available.  Here,  we  review  stimulus  design  in a  sample  of  studies  that
use particular  sounds  as tokens,  and  that  claim  or suggest  their  results  demonstrate  a  form  of  sequence
rule  learning.  To  assess  the  extent  of acoustic  similarity  between  training  and  test  strings,  we use  four
simple  measures  corresponding  to cues  that are likely  salient.  All stimulus  sets  contain  biases  in  similarity
rtificial grammar learning
uditory memory
iolinguistics
ird
ule learning
rimate

measures  such  that  grammatical  test  stimuli  resemble  training  stimuli  acoustically  more  than  do  non-
grammatical  test  stimuli.  These  biases  may  contribute  to  response  behaviour,  reducing  the  strength  of
grammatical  explanations.  We  conclude  that  acoustic  confounds  are  a blind  spot  in artificial  grammar
learning  studies  in  nonhuman  animals.

© 2016  The  Author(s).  Published  by  Elsevier  Ltd. This  is an open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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. Introduction

A key goal of the cognitive (neuro)sciences is to develop an
ccount of the human language capacity, presumed to be an
nternal computational system. Since the latter part of the 20th
entury, a traditional approach to this problem, following Chomsky
1975) and much other work, is to characterize this capacity via
enerative grammars. Since grammars are part of neural computa-
ional systems, their activity is typically not directly observable,
or example, in the sentences or language that comprise exter-
al behavior. The investigation of human, or “natural” generative
rammars has thus proceeded by drawing on many kinds of exper-
mental methods and data to indirectly infer the properties of
uman grammars–linguistic examples, sentence processing, lan-
uage acquisition, brain imaging, and the like. An additional barrier
s the lack of non-human model organisms, which impedes com-
arative work, since so far as it is known only humans possess
ull-fledged generative grammars (Berwick et al., 2013).

Artificial grammar learning (AGL) is one methodology that has
een advanced in an attempt to overcome hurdles like these.
oughly, the idea is that one can construct deliberately simplified,
ence artificial grammars (AGs) that focus on just a few syntactic
roperties, and then calculate what these simplified systems might
ield in the way of observable external forms, what are sometimes
alled the grammar’s language, the set of strings defined (‘gener-
ted’) by that grammar, as described in the following section. Note
hat for an artificial generative grammar, the grammar itself is inter-
al to the computational system, while some of the representations
he grammar generates are “externalized,” like the sequence of
ounds in speech. Since by design the experimenter knows both
he internal form (the AG) and the observable, external forms the
G yields, the AG can be used in experimental paradigms where
ither humans or other animals can be tested to see whether the
articular properties highlighted by the AG can be acquired, and so
epresented and used. This remains one of the few direct ways to
scertain whether nonhuman animals possess grammatical abili-
ies, and if so, which level of complexity they can master.

. Artificial grammar learning

.1. What is an artificial grammar?

An artificial grammar is a particular subset of the full class of
enerative grammars. For our analysis in the remainder of this arti-
le, it is useful to define such grammars more carefully. In general,

 generative grammar consists of a finite set of rules along with
ome computational (recursive) procedure to generate or derive
ossible sentences. Here for illustration we focus on one narrow
ype of generative grammar used most often in AGL studies, so-
alled context-free grammars. These consist of production or rewrite
ules built out of a finite set of nonterminal and terminal tokens or
ymbols. Terminal tokens are analogous to externally observable
ords or sounds in a human language, like the or apple; nontermi-
als correspond to phrases like Noun Phrase or Prepositional Phrase.
ach rewrite rule consists of two related parts, a lefthand side and a
ighthand side, where a specified symbol(s) on the lefthand side is
o be replaced with the symbols on the righthand side. Additionally,
iven a set of rules, there is a set procedure to generate or derive pos-
ible sequences of terminal symbols, beginning with a designated
onterminal starting symbol, and successively replacing left-hand
ide symbols in rules with their right-hand sides until no more rules

an apply. To illustrate, consider the following simplified gram-
ar  designed to reflect certain aspects of the syntactic structure

f English Noun Phrases, which consists of five rewrite rules, each
ith a left- and right-hand sides separated by an arrow→,  four
havioral Reviews 81 (2017) 238–246 239

nonterminal symbols, which are capitalized, and three terminals,
which are in lower case (the rules are numbered for convenience):

(1) Start → NounPhrase
(2) NounPhrase → Determiner Noun
(3) Noun → apple
(4) Noun → bird
(5) Determiner → the

Beginning with the nonterminal Start symbol, this miniature
grammar can generate, for example, the sequence the apple via the
successive replacement of symbols according to the grammar rules
as follows: Start; NounPhrase (via Rule 1); Determiner Noun (via Rule
2); the Noun (via Rule 5); the apple (via Rule 3). (At this point no more
rules apply since the last string has no symbols that appear on the
left-hand side of any rule, so the generation halts, have produced
the sequence noted.) This grammar will generate exactly one other
form consisting of just terminal symbols, the bird.

Importantly, AGs are “artificial” and crucially different from nat-
ural grammars in at least two  ways: (1) AG rule tokens are unlike
those found in natural grammars, e.g.,  they use abstract symbols
such as “B” or “Z” rather than, say, part of speech or phrase tokens
like Noun Phrase or Noun; and (2) AG rules themselves are typically
deliberately schematized and simplified as compared to those of
natural human generative grammars. Note that despite the general
claim under the so-called contemporary “Minimalist Program” that
there is a single operation, Merge, that builds syntactic structure,
Merge interacts with the features of lexical items and other lin-
guistic principles to yield what amounts to a very large, complex
set of equivalent context-free rules in any particular human lan-
guage (Barton et al., 1987). However, AGs are often deliberately
designed to reflect only certain key abstract properties of natu-
ral grammars as part of their methodological role in experimental
manipulations. Even in this sense, however, the miniature exam-
ple grammar just presented is “artificial” in that it does not fully
reflect the properties of English Noun Phrases, for example, the
fact that Noun Phrases may  themselves be modified by sentence-
like phrases, as in the apple the bird ate.  One tenet of some current
accounts of human generative grammar holds that the chief prop-
erty of human language syntax is its arbitrarily deep hierarchical
structure, rather than sequential left-to-right order (Everaert et al.,
2015) but a glance at the miniature grammar above and most AGs
shows that they typically do not partition syntactic information in
this way, and embed sequential order directly into their rule sys-
tems along with hierarchical structure, which is nearly unavoidable
(the apple but not apple the), while finding it challenging to focus
on just hierarchical structure.

2.2. Learning tokens and sequence rules

An important consideration in the interpretation of AGL studies
is that the learning of rules is implicit. That is, the only information
available to the subjects is the auditory input itself, from which
regularities should be spontaneously recognized and memorized.
Subjects are not explicitly told what the grammar is, nor are they
explicitly trained in a way  that should promote the learning of
grammatical rules. Indeed, an important motivation behind many
studies is to test whether or not grammars can be acquired implic-
itly from exemplars of strings that are produced by them. Since
non-human animals cannot explain a posteriori what strategy they
apply to differentially respond to stimuli, and humans appear often
not to be aware of their strategies (e.g. Knowlton and Squire, 1996),

it is up to the researchers to provide a convincing case when they
claim that subjects learned and apply grammatical rules.

What information do perceptual systems require to learn artifi-
cial grammars? A grammar not only consists of sequence rules but
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lso of a lexicon of tokens, which are particular sounds, or classes
f sounds, from which the rules generate sequences called ‘strings’.
on-human subjects in particular cannot be expected to know a
riori that particular segments of auditory input streams should
e considered as tokens. As is the case for sequence rules, this is

nformation that perceptual systems should infer implicitly from
egularities in the auditory input itself.

To see how this can lead to ambiguities in the interpretation
f what is learned, consider a thought experiment where an aard-
ark is habituated to the string abcd by repeated passive playback,
here the tokens a, b, c, and d stand for the human speech sounds

klor’, ‘biff’, ‘cav’, ‘dupp’. How does it habituate to this stimulus?
he aardvark may  first learn to recognize the tokens {a, b, c, d}
s these are often-recurring sounds in its environment, and then
earn the sequence rules that describe their temporal order. In this
ase, the rules are simple because forward transition probabilities
etween terminal tokens are always 1. Such an account may  seem

ntuitive to the human reader, especially when string stimuli are
isually presented as a sequence of letter symbols. We  use such
epresentations all the time. However, the aardvark can only learn
rom auditory sensory input as such, without any prior knowledge
f tokens or sequences. And, given that it is unknown to the aard-
ark what the tokens are, one can question whether or not in this
ase it should be expected to learn them. The stimulus abcd may
ave been generated according to grammatical rules, but are these
ame rules needed to habituate to it?

How does the aardvark’s brain recognize that the abcd sound
as been experienced before and requires no attention? Although
he underlying mechanisms are not known, and we  do not pro-
ose a specific mechanistic model for this phenomenon here, it
ay  be useful to consider the type of information and the kind of

ntegration that would be required. At a minimum, current acous-
ic input, integrated over some time window, should sufficiently

atch (parts of) a memory trace of the temporal stream of sen-
ory features that the abcd sound corresponds to. As long as the
nput matches, no attention is required. For how long should the

atch last? This would depend on what other input the aardvark
ormally experiences, but in general, integration over longer dura-
ions enables the recognition of more specific temporo-spectral
atterns that enable source identification with more confidence.
or example, in humans, a 1-s window may  be sufficient to accu-
ately recognize the sound of a piano, but a 5-s window may  be
equired to recognize that the piano plays the Goldberg Variations by
ach. A match over longer durations thus provides more evidence
hat a current source is similar to a specific type of source that has
een experienced before and to which an appropriate response, or
he inhibition of a response, has been learned.

We  argue that in order to recognize the occurrence of abcd in
he current auditory scene, it would be sufficient to compare salient
coustic features of the input stream to those of a memory rep-
esentation of abcd based on these same acoustic features, and
ntegrate the results of such comparisons over sufficiently long time

indows. It would not be required to identify tokens and verify
hether or not their sequence structure conforms to grammatical

r other string-based rules, even simple ones. Moreover, note that
ven when one assumes tokenization and analysis of string struc-
ure, this cannot be seen as an alternative mechanism. The sound
f token a (‘klor’) is shorter than that of the abcd stimulus, but it is
till hundreds of milliseconds long. Cochlear neuron firing patterns
rack acoustic changes on a millisecond scale and recognition of this
oken therefore already requires neural circuits to perform exten-
ive temporal integration based on feature comparisons. Thus, a

rammatical explanation would depend on the same mechanisms
or temporo-spectral integration, memorization, and matching, and
ould additionally require mechanisms for lexical segmentation

nd for rule detection.
havioral Reviews 81 (2017) 238–246

Are auditory systems capable of recognizing longer specific
acoustic patterns without tokenization? We  think that this is very
likely the case. Indeed their performance in this regard is impres-
sive as nicely shown by Agus et al. (2010), who created a large set
of unique white noise fragments (i.e.  random waveform) and then
asked human subjects to discriminate between a normal 1-s noise
and a 1-s noise that consisted of a repetition of a half-second noise
fragment played twice contiguously. The subjects were indeed able
to do this. Importantly, performance was specific to the particular
white noise sounds to which they were exposed and not transferred
to novel white noise sounds. That is, discrimination appeared not
to depend on an abstract rule based on repetition, but on mem-
ory representations of the particular white noise sounds as such.
These memories could last for several weeks. It should therefore
be uncontroversial that auditory systems, in humans at least, are
very good at detecting short-term acoustic regularities in extremely
complex sounds, forming long-term memories of such sounds even
after limited exposure and without reinforcement, and using them
for discrimination.

The aardvark thought experiment above is based on only one
string stimulus, and is therefore simpler than real artificial gram-
mar  learning studies. However, it should illustrate that there can
be at least two  very different though not mutually exclusive views
of how string sounds like abcd are learned and processed. One is
based on memory of tokens and the sequence rules that describe
their order. The other one is based on memory of an integrated
stream of sensory features that is closely related to the acoustic
signal as such. The former appears often tacitly assumed in audi-
tory artificial grammar learning experiments, but we  will argue
below that the latter can provide alternative explanations that may
in part, or fully, explain response behavior. This may especially be
the case when the tokens used to generate experimental strings are
particular sounds rather than sound classes.

3. Syntax or surface?

In a previous paper (Beckers et al., 2012), we  have provided a
critical analysis of the string sets that were used in an artificial
grammar learning study that claims to demonstrate context-free
grammar learning in Bengalese finches, Lonchura striata var. domes-
tica (Abe and Watanabe, 2011). Our conclusion was that there
were biases in acoustic similarity between familiarization and test
strings that could alternatively explain the experimental results
without the use of grammatical rules. That is, large fragments of
the grammatical test and familiarization strings were acoustically
identical, while this was to a lesser extent the case for ungram-
matical test strings. For example, their grammar- conforming test
string stimulus A1A2C1F2F1 was  acoustically similar to three train-
ing stimuli, A1A2C2F2F1, A1A2C3F2F1, A1A2C4F2F1 (letter-subscript
symbols stand for particular Bengalese finch sounds), having only
a mismatch in one sound element. All their grammar-conforming
test stimuli had this level of similarity with training stimuli,
whereas this was  never the case for a grammar-violating stimu-
lus, which showed such a match (four elements shared at the same
positions) at best with only one training stimulus but more often
with none.

Since then, we  noticed that also in other auditory artificial gram-
mar  studies in non-human animals, including more recent ones,
acoustic biases may  be present and may  have played a role in
learning. These studies do not claim grammatical competence at
a context-free level, and some (e.g. van Heijningen et al., 2012)

report only very modest levels of abstract rule learning such as
the recognition of repeated syllables, in an attempt to critically
evaluate earlier farther reaching claims. Nevertheless, both from
evolutionary and mechanistic points of view we think it is impor-



 Biobe

t
t
b

l
t
s
p
p
a
t
t

i
t
c
i
w
n
c
r

w
p
l
S
o
n
t
e
d
b
t
t
r

w
t
w

4
l

4

p
d
c
i
m
s
t

l
d
N
c
s
i
t
s
t
m
u

G.J.L. Beckers et al. / Neuroscience and

ant to distinguish between the learning of grammatical rules, even
he simplest ones, and the recognition of familiar sounds on the
asis of the extent of similarity in acoustic features.

We  therefore set out to systematically analyze acoustic simi-
arity within string sets in a sample of 9 studies, and to compare
hese to the behavioral results obtained. Studies that claimed or
uggested the use of grammatical rules, potentially even very sim-
le ones, by a nonhuman animal were selected on an ad hoc basis,
rovided they were based on published string sets that we could
nalyze. It was decided a priori to include in this review every study
hat we analyzed, and hence not to exclude studies a posteriori if
hey did not contain any biases in acoustic similarity.

We  emphasize that we do not question the value of the exper-
mental studies that we discuss. It requires much effort to collect
his type of data, and even if the interpretation of the data is in part
hallenged, the results stand and constitute a valuable contribution
n an understanding of how perception of complex vocalizations

orks. We  hope that discussing acoustic similarity-based expla-
ations will lead to future studies ruling them out by design, or
onsidering them explicitly as a strategy for neural systems in their
ecognition of string stimuli.

It is important to note that all alternative interpretations that
e present in this paper are based on strings that are composed of
articular sounds, not sound classes. This is the case in many pub-

ished artificial grammar learning studies, but certainly not all (e.g.
pierings and Cate, 2016). Further, although we argue the concept
f ‘token’ is not required in our alternative interpretation, and hence
either is the concept ‘string’, we will still use the token/string nota-
ion for brevity and clarity in discussion. Thus, when we refer to,
.g., the abc string matching the abcd string at the trigram level, we
o not suggest that the subjects necessarily parse the strings into a,
, c, and d tokens and then analyze for trigram sequences. Instead,
his is to be read that the sound that the symbols abc together refer
o is completely contained within the sound that the symbols abcd
efer to, and is thus acoustically identical to a large extent.

In the following section, we discuss four types of confound that
e have identified in the extent of acoustic similarity between

raining and test strings. A schematic overview of these confounds
ith examples is shown in Fig. 1.

. Types of acoustic similarity biases in artificial grammar
earning studies

.1. Test string is fully contained within familiarization string

We  hypothesize that when a subject is habituated by passive
layback to the familiarization string abcde,  it may  also show a
iminished response to the test string bcd because it is acousti-
ally fully present in the familiarization string. The reason for this
s that there are no acoustically novel parts in the test string that

ay  trigger a dishabituation response. We  argue that this type of
imilarity may  have played a role in an experiment with cotton-top
amarin monkeys (Saguinus oedipus) by Saffran et al. (2008).

In this study, tamarin monkeys were shown to more easily
earn strings from a Predictive (P)-language, in which predictive
ependencies mark phrase units, as compared to strings from a
on-predictive (NP)-language, which lacks predictive dependen-
ies (their Experiment 3). The tokens consisted of particular speech
yllable sounds (“biff”, “cav”, “dupp, ‘klor’, and “jux”). After familiar-
zation with strings from either the P-language or the NP-language,
he monkeys were exposed to grammatical and ungrammatical

trings of the corresponding language, while orienting responses
o the test stimuli presented from a concealed loudspeaker were

easured. The subjects responded differently to grammatical and
ngrammatical test strings when they had been familiarized with
havioral Reviews 81 (2017) 238–246 241

the P-language, but not when they had been familiarized with
the NP-language (see their Fig. 3). The authors conclude that this
suggests “that tamarins are able to detect regularities in a simple
grammar, written over individual word tokens, when predictive
dependencies are present.” The authors have ruled out that famil-
iarization corpora differed in n-gram properties up to trigrams
relative to the test items.

However, there is a bias in how often test strings are fully con-
tained within familiarization strings: ungrammatical test strings
never fully occur in any familiarization string, but the grammatical
test strings do, and not in a balanced way (see our Supplementary
Analysis 1; Table S1). For example, their grammatical test string
bcd occurs only once fully in a grammatical test string of the NP-
language (bcd, the same string), but thrice in different grammatical
test strings of the P-language (bcd, bcdc, and bcdcj). The same goes
for a second grammatical test string (bkcd), while the two  other
grammatical test strings (bkcjd and bcjd) occur equally often in
each language. Thus, assuming that different familiarization strings
were all played equally often, the subjects had overall been famil-
iarized more extensively with full test sounds of the P-language
than with full test sounds of the NP-language. This could have
resulted in corresponding differences in the strength of sensory
feature-based memory representations. Such an alternative non-
grammatical explanation, however, depends on the assumption
that the tamarins do not contribute much weight to the long silence
after the final syllable of the test strings, as the corresponding syl-
lables in the familiarization strings were followed by additional
syllables.

A similar bias can be found in Wilson et al., 2015a (see our Sup-
plementary Analysis 1, Table S2), a study that we will discuss below
in the context of a different type of similarity.

4.2. Test string shares long substrings with familiarization string

If a subject is habituated to an abcde string and then tested
with ebcda and ebcad strings, it may  respond less to the ebcda test
string than to the ebcad test string because the former shares a
longer uninterrupted sound fragment that is identical to the famil-
iarization string. The longer the match between current input and a
memory representation of a familiarization sound, the more likely
their source is the same, and requires no attention. For this to work
in this case, temporal integration windows over the current input
stream that are used for memory matching should be longer than
the silent intervals (if any) between the lexical items but shorter
than the duration of the sound of three consecutive items.

We found that such a bias in the duration of continuous sound
fragments that are shared between familiarization or training
strings is common in animal artificial grammar studies. For exam-
ple, Wilson et al. (2013) habituated macaque (Macaca mulatta) and
marmoset (Callithrix jacchus) monkeys to strings conforming to the
grammatical rules of a Reber grammar, and then presented them
with test strings that were either consistent with these rules or
that contained illegal violations. The strings were in part similar to
the ones used by Saffran et al. (2008), although the experimen-
tal design was  different. Because looking behavior in macaques
was more extensive during grammar violating strings than during
grammar consistent strings, and occurred at multiple places in the
strings, the authors conclude that the results “. . . provide evidence
for a previously unknown level of AGL complexity in Old World
monkeys . . .”.

However, test strings in this experiment are biased with respect
to the maximum length of the substrings they share with the

training sounds. We  highlighted all matching substrings in our
Supplementary Analysis 2, Table S3, and show the maximum
length and duration of shared substrings between training and test
strings in Fig. S1. Grammar consistent test strings share between
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Fig. 1. Schematic overview of the four different measures that have been used in this review to assess forms of acoustic similarity between familiarization (training) and
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or  particular sounds and it is important to note that similarity is directly based on
.2,  4.3, and 4.3 is thus considered a function of the duration in which pressure wav

 and 6 length-substrings with at least one of exposure strings,
hereas grammar violating test strings do not share more than

–2 length-substrings with any of the exposure strings. This bias
n the corresponding duration of matching sound fragments pro-
ides a nongrammatical cue that could alternatively explain the
ifferential looking behavior.

We have analyzed the string sets of two later studies from
he same laboratory, based on similar but not identical experi-

ental designs, the results of which led the authors to claim that
hesus macaques are sensitive to grammatical features of habitu-
tion strings. In Wilson et al. (2015b) it is concluded that the “. . .
esults suggest that humans and macaques are largely comparably
ensitive to the adjacent AG relationships and their statistical prop-
rties”, and in Wilson et al. (2015a) it is concluded that “. . . the form
f statistical learning that the behavioral results in both species sup-
ort is the implicit learning of the relationships between elements

n a sequence as a function of the probabilities with which they
ccur in the exposure corpus”. Here too, however, we find that the
ame alternative strategy, based on the maximum length of shared
ubstrings between familiarization and test strings, can alterna-
ively explain the behavioral results (Supplementary Analyses 3
nd 4, respectively; Tables S4 and S5, and Figs. S2 and S3). Further-
ore, all grammar conforming test strings in Wilson et al. (2015b)

re also fully contained within a familiarization string (Table S2),
hereas this is not the case for any of the grammar violating strings,

 type a resemblance that has been discussed above, and that could
lso contribute to or explain the behavioral results in this study.

In addition to these habituation studies in rhesus monkeys, we
ound this type of bias in an operant Go-NoGo study, investigat-
ng whether zebra finches (Taeniopygia guttatta) use positional or
ransitional cues in recognizing strings of zebra finch natural vocal
yllables (Chen and ten Cate, 2015). These authors carried out two
xperiments, the second of which consisted of three separate tests,
nd conclude on the basis of the results that zebra finches “. . .
an attend to both transitional and positional cues and that their
equential coding strategies can be biased toward transitional cues
epending on the learning context.”

In their Experiment 1, birds are conditioned to respond differ-
ntially to the Go stimulus abcdefabefcdab and the NoGo stimulus
bdfcedfabceab.  The shared ab bigrams at the beginning and end of
oth strings should prevent the birds from using the start or final

art of the strings as a basis of discrimination. On average, the birds
orrectly respond with a key peck in 87% of the cases to the Go stim-
lus, and only in 10% of the cases to the NoGo stimulus, showing a
igh level of discrimination. To one of the test strings, A1: abefcd-
e discussed. Although the example stimuli are represented as strings, letters stand
d fragments in which pressure waveforms are identical. The extent of similarity in
s overlap, and its assessment does not necessarily require tokenization.

abcdefab, they respond in 70% of the cases, while to a different test
string, B2: abcedfabdfceab, they respond in only 49% of the cases.
We notice that this difference in response behavior corresponds
to a difference in shared substring length: A1 shares maximally 8
consecutive syllables (e.g. abefcdab) with the Go string and only
maximally three (e.g. fab) with the NoGo string. The overlapping
sound fragment between A1 and Go is thus 5 syllables longer than
that between A1 and NoGo, which could explain the relatively high
response percentage to A1 of 70%. B2, by contrast, shares a sound
fragment of maximally three syllables with the Go string (e.g. abc),
and sound fragments of maximally six syllables with the NoGo
string (e.g. abdfce), corresponding to a lower response percentage
of 49%. Our analyses of all of the strings in this study reveal similar
biases in shared substring length (and corresponding shared sound
fragment duration) in all of the tests, in a way  that corresponds to
the behavioral responses (SupplementaryAnalysis 5; Tables S6–S9;
Figs. S5–S7).

4.3. Test string and familiarization string share the same
beginning

Some parts of a memorized stimulus may  be more important
than others, and the beginning may  receive particularly much
weight in experimental paradigms. For example, we  expect that
in an habituation-dishabituation experiment where subjects are
familiarized with a sound stimulus abcde, exposure to the novel
stimulus abcfg will lead to fewer dishabituation responses than
exposure to the novel stimulus fgcde, even though substrings
shared with the familiarization stimulus are equally long. This is
because from a perceptual point of view, evidence that fgcde is novel
is available, and increasing, immediately after the start of the stim-
ulus. A decision that the source of this stimulus is novel and requires
an involuntary attention switch can thus be made right away. While
it is true that the last part of the fgcde contains familiar sound and
provides evidence that attention may  not be required, an atten-
tional switch may  already have taken place or be well underway
before this is taken into account. By contrast, in the case of abcfg,
evidence has been accumulation during the first three token sounds
that the source is known and does not require attention. Of course,
here too the last part of that stimulus contains information that
contradicts that evidence, but a decision to respond is now based

all information available, which is mixed on whether or not there is
an event that requires attention. This may  overall lead to a reduced
dishabituation response. For the same reason, we  hypothesize that
in a Go-NoGo experiment where the subjects are trained with abcde
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s a Go stimulus and fghij as a NoGo stimulus, subjects may  respond
o the test string abckl more often than to a test string klabc, even
hough the shared substrings with the Go-stimulus are the same.
he decision to respond or not may  predominantly depend on dif-
erences between the start of the training strings because these
re first available and sufficient for an appropriate response. This
easoning is consistent with findings of Chen et al. (2015a) who
how that the zebra finches in a Go-NoGo experiment involving
rtificial sequences consisting of four syllables base their response
ehaviour predominantly on the first part.

More generally, time is an inherently crucial parameter in
uditory-behavioural tests, as neural systems start to perform
omputations to reconstruct potentially important events in the
nvironment before the input is ‘finished’. For this reason, we think
hat a systematic bias in similarity between the beginning of train-
ng and test stimuli should be avoided.

One study where such a bias may  have played a role, and we
hink provides the basis for a non-grammatical explanation of the
esults, is that of van Heijningen et al. (2012).

In their Experiment 1, these authors trained zebra finches to
iscriminate the Go-sounds ABA and BAB from the NoGo sounds
BA, AAB, BAA, and ABB. The idea behind this experiment was to
est if the zebra finches spontaneously use a rule like “if the first
nd the last element is the same then respond, and when they are
ifferent, do not respond”. When the birds achieved sufficiently
igh discrimination levels, test strings ACA, CAC, ABBA, and BAAB
test string set 1) were used to test this hypothesis. The hypothesis
as rejected because response levels to all of the test strings were

imilar to that of the NoGo training stimuli instead of the Go training
timuli (their Fig. 2a).

The same birds were subsequently tested with four new test
trings based on the same tokens: ABAB, BABA, AABB, and BBAA (test
tring set 2). The birds responded to the ABAB and BABA stimuli as
o-stimuli, and while responses to the AABB and BBAA stimuli were
ore similar to, and even lower than, the NoGo-stimuli (their Fig.

b). This led the authors to conclude that the zebra finches attended
o the presence or absence of adjacent AA or BB repeats. That is,
hey apply a repetition rule, which appears to be the basis for the
uthors’ conclusion that the birds have a limited degree of abstract
ule learning.

Is there an alternative explanation of these results that is con-
istent across test string sets and that does not require abstract rule
earning? If we assume that the birds rote memorized (parts of) the
raining stimuli on the basis of their acoustic content alone, then
hey should at least wait for sound of the third element to occur
efore deciding on the appropriate response. The first two  elements
f the training stimuli are not sufficient to distinguish the Go and
oGo training stimuli: strings starting with AB and BA are present

n both groups. Only when (part of) the third element has been
erceived, sufficient information has accumulated to perform the
orrect response to every training string. Comparing the number
f elements from the start of the string that are identical between
raining stimuli and test stimuli, we find that test strings ABAB and
ABA share the first three elements with a Go training stimulus,
nd only the first two with a NoGo training stimulus. These test
timuli are exactly the ones that the birds responded to. By con-
rast, the other test string stimuli, ABBA, BAAB, AABB, and BBAA, the
nes the birds did overall not respond to, all share the first three
lements with a NoGo training stimulus, and only the first one or
wo elements with a Go training stimulus. Thus, the birds’ response
ehavior can also be explained by the extent of acoustic similarity
etween the beginning of the strings: if the sound over the dura-

ion of the first three elements (or at least a sound fragment longer
han the first two element), which is the fastest cue to distinguish
ll Go from all NoGo training stimuli, is the same as a Go stimulus,
hen go, and if it is the same as a NoGo stimulus, do not go.
havioral Reviews 81 (2017) 238–246 243

van Heijningen et al. (2012) did consider a similar, though not
identical, alternative explanation of their results that does not
require abstract rule learning, as they pointed out the possibility
that “. . . the birds [. . .]  responded to the [test strings] according to
whether these contained the exact three-element sequences from
the training instead of using an abstract rule”. However, they dis-
miss this alternative explanation because the response levels to test
strings AABB and BBAA are even lower than the response levels to
the training NoGo stimuli, whereas the response levels to the test
strings ABBA and BAAB is similar to the training NoGo stimuli (their
Fig. 2b). This is not predicted by their alternative nongrammatical
explanation. The authors therefore prefer a rule learning explana-
tion, although based on a limited level of abstraction, and explain
the very low response levels to the AABB and BBAA test strings by
the birds treating them as ‘super negative’ stimuli: they contain
two AA or BB repeats instead of the single one that is present in
the NoGo stimuli and that they interpret (in test string set 2) as the
characteristic, abstract feature that the birds use for discrimina-
tion. However, the lower-than-NoGo response levels to test strings
AABB and BBAA is also consistent with our non-gramatical expla-
nation above, because both these test stringss share only the first
element with a Go stimulus, whereas two of the four NoGo stimuli
share the first two elements with a Go stimulus, and the other two
only the first. Half of the NoGo stimuli are thus more similar to the
Go stimuli than the AABB and BBAA test stringss are, explaining the
overall differences between these groups.

Another argument that the authors put forward against rote
memorization of the training stimuli is that in a second experiment
(Experiment 2, not discussed here because the results were over-
all negative) the same birds responded initially less to the original
ABA and BAB Go stimuli when additional strings were added to the
training string sets. However, the strings that were added to the
NoGo set were ABAB and BABA, which fully contain these sounds
from the start, and a response to which was  suddenly punished. A
reduction in response levels to ABA and BAB is thus also expected
on the basis of a acoustic memory-based explanation.

Taken together, we  suggest our acoustic memory-based expla-
nation is the more parsimonious one because i) it does not depend
on abstraction, but only on matching sensory features with mem-
ory, and ii) it is consistent with previous operant work with similar
stimuli in the same species that shows that the start of string sounds
carry particular weight in the discrimination. Both in the authors’
and our interpretations of what is learned, it remains unexplained
why the overall response levels to the CAC and ACA test strings are
similar to that of the NoGo stimuli (their Fig. 2a). It may  be the new
element C causes the birds to perceive this as a novel sound. They
are forced to make a ‘choice’ and most birds may  prefer to avoid
punishment over the opportunity of immediate access to food most
of the time.

Another study that we identified in which a bias in the duration
of shared sound fragments from the beginning of the string may
have played a role investigated positional learning in chimpanzees
(Endress et al., 2010). The subjects were exposed to the habituation
strings XABXXX, XAXBXX, XAXXBX and XXXABX. The lexicon con-
sisted of three different particular chimpanzee vocalizations. All
habituation strings start and end with an X, but differ in the posi-
tions of A, B, and the X items in between. The idea behind the design
is that the apes can either use positional or transitional (“chaining”)
cues to memorize the sequence of the items. Test strings, which
could violate positional or transitional regularities, or both, or none,
were used to measure the level of dishabituation, which in turn was
used to determine the cues that had been used. The test strings

were AXXXXB (p), BXXXXA (p,c), XXABXX, XXBAXX (c), XXAXBX,
XXBXAX (c), with letters between the parenthesis indicating when
a test string violates a positional (p) or chaining (c) regularity. Over-
all, the subjects dishabituated more strongly to positional violating
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trings than to chaining violation strings (their Fig. 2), and the
uthors suggest “that when given the opportunity to learn either a
haining regularity, positional regularity or both, chimpanzees ini-
ially and spontaneously extracted the positional regularity under
he test conditions presented.” They rule out other explanations,
mong which the idea that the chimpanzees may  have restricted
heir attention to the first or last element of the strings.

However, notice that all strings that do not contain position
iolations (i.e. XXABXX, XXBAXX, XXAXBX, XXBXAX, which are
he ones that they dishabituated less to) all share a two-item
ength beginning with one of the habituation strings (XXXABX),

hereas the position-violation test strings are different from the
tart. Hence, even if one agrees with the authors’ arguments why  it
s unlikely that the subject just considered the first or the last ele-

ent of the sequence, there is still a bias in a two-element length
ime frame at the beginning of the test strings that may  partly or
ompletely explain the differential responses.

Further, the behavioral results of the studies of Wilson et al.
2015a,b, 2013), discussed above in relation to biases in shared
ubstring durations, and Saffran et al. (2008), discussed above in
elation to biases in test strings that are fully contained in training
trings, can also be alternatively explained on the basis of a bias in
he duration of shared substrings from the beginning of the stimuli
Supplementary Analysis 6, Figs. S8 and S9).

.4. Test string has high cross-correlation with familiarization
tring

So far we discussed three ways in which we assessed the extent
f acoustic overlap between strings, all of which are based on iden-
ifying a shared sound fragment that is continuous. I.e.,  there is no
iscontinuity in similarity within the substring as the acoustic wave
orm is identical from the beginning to the end. Discontinuities in
imilarity, however, may  not completely nullify the accumulation
f evidence that current input is caused by a sound source that has
een experienced earlier. Consider the string abcdef. A subject that
as habituated to the corresponding sound may  show less dishabit-
ation to a test string abcgef,  than to a test string abcgfe,  even though
he maximum shared substring length in both cases is three, and
hey both share an equally long sound fragment at the beginning of
he stimulus. This could be caused by neurons that integrate over
onger timescales and whose firing rates are not strongly affected
y relatively brief mismatches. If so, abchefg is largely similar to
bcdefg, but abchgfe less so.

Tolerance by perceptual systems to some degree of mismatch
s likely because in natural auditory scenes repeated vocalizations
re rarely identical and parts of them may  also be intermittently
asked by other sounds. Auditory systems should still recognize

uch sounds as originating from the same source.
One straightforward way to identify multiple longer substrings

hat are shared at matching positions between strings is to calculate
heir cross-correlation, which is a similarity measure of two sig-
als as a function of the lag of one relative to the other. The input
o cross-correlation algorithms could be sound waveforms, spec-
rograms, or cochleagrams. But since these are rarely available in
ublished work, and since we focus on studies in which token sym-
ols stand for particular sounds, we use as input the string symbols
hemselves, as they correspond to a particular sound waveform,
nd thus spectrogram and cochleagram. Fig. 1 illustrates the cross-
orrelation between two strings. For our purposes, the maximum
ross-correlation is the most informative value, which essentially

ounts how many string items are identical at corresponding posi-
ions if one is allowed to freely shift one string over the other and
hoose the optimal lag. The fact that some corresponding items may
e adjacent, and others not, has no effect on this measure.
havioral Reviews 81 (2017) 238–246

We  previously provided a critical analysis (Beckers et al., 2012)
of the strings used in Abe and Watanabe (2011), who claimed that
Bengalese finches (Lonchura striata var. domestica)  spontaneously
learn a context-free grammar from the string examples they were
presented with. These strings consisted of natural Bengalese finch
syllables. Our conclusion was  that the behavioral results could be
alternatively explained in terms of acoustic similarity matching, if
the birds allowed for a short mismatch of one syllable. However, we
did not provide cross-correlation analyses in that critique, which
for completeness are provided here in Supplementary Analysis 7,
Fig. S10, in the form of image plots, and which illustrate the biases
in the string sets in an alternative way.

We  find that a bias in this type of similarity can also provide
an alternative interpretation of the results in Chen et al. (2015b).
These authors asked if zebra finches and human adults can detect
the difference between a XYX and a XXY structure, where X and Y
denote arbitrary tokens. The tokens consisted of six zebra finch song
elements: {A,B,C,D,E,F}. In a series of Go-NoGo tests (their Exper-
iment 1a), the birds overall failed to learn the abstract rule, but
the authors conclude from additional results (their Experiment 1b,
shown in their Fig. 5), that some of the birds may have learned to
recognize the abstract XYX structure when the test strings are gen-
erated with acoustically familiar elements rather than novel ones.
E.g., when trained to respond to Go training stimuli like CDC, birds
respond similarly often to test stimuli like CBC, but they respond
significantly less often to test strings like CCB, although not as rarely
as to NoGo training stimuli, like CCD. On the basis of this finding,
the authors suggest that the birds learned to attend to a ‘repeti-
tion rule’: “if it starts with AA,  BB,  CC or DD, treat the stimulus as
a NoGo stimulus; if these specific bigrams are not present, treat
stimuli as a Go stimulus.” Overall they conclude on the basis of
the response patterns that “zebra finches show evidence of simple
rule abstraction related to positional learning, suggesting stimulus-
bound generalization”.

However, in this example the maximum cross-correlation
between test string CBC and Go training string CDC is 2, whereas
that between test string CCB and Go training string CDC is only
1. Cross-correlation analyses of all the strings in their Experiment
1b show that there is an overall bias in this type of resemblance
between test and training strings, which provides an alternative,
non-grammatical explanation for the difference in response behav-
ior (Supplementary Analysis 8, Fig. S11). All XYX test strings show
2–3 times more often a high maximum cross-correlation with XYX
Go training strings than with XXY NoGo training strings. Two of
the four XXY test strings, in contrast, are balanced in this regard,
while the other two  show 2 times more often a high maximum
cross-correlation with XXY NoGo training strings.

If the birds used this bias in level of acoustic similarity, then
there is no need to suggest the use of XYX rule abstraction or that the
birds learned a repetition rule. Such an acoustic similarity expla-
nation has the added advantage that it is also consistent with the
results in their Experiment 1a (Supplementary Analysis 8, Fig. S12).
The authors suggest for these results that “The most likely expla-
nation is that the birds learned to use the final elements of the XYX
strings to discriminate ‘good’ and ‘bad’ sounds, demonstrating a
stimulus-bound generalization”. However this explanation is dif-
ferent from the one the authors suggest for Experiment 1b, even
though these are the same type of stimuli.

A bias between test strings in the level of cross-correlation with
training strings can further also provide an alternative explana-
tion in some of the other studies that we already discussed above,
namely Chen and ten Cate (2015), Experiments 2 (all tests) and 3,

but not Experiment 1, and Wilson et al. (2015a,b, 2013). The corre-
sponding quantifications are shown in Supplementary Analysis 9,
Fig. S12.



 Biobe

s
l
a
v
o
a

5

g
t
F
t
c
m
s
c
r
l
o
c
t
(

e
n
t
i
h
l
t
d
t
e
t
i
o

s
l
c
e
c
a
o
d
n
p
a
d
l
s
u
s
f
o
s
B
a
c
a

i

G.J.L. Beckers et al. / Neuroscience and

Note that one caveat of calculating cross-correlation between
trings is that the sounds that the tokens refer to may  not be equally
ong in duration. Thus, the maximum cross-correlation between abc
nd adc is 2, which is considerable given that the highest possible
alue is 3. However, if a and c stand for very short sounds and b
r d for a very long sound, then this measure does not reflect the
coustic similarity very well.

. General discussion and conclusions

Our analyses revealed that in a number of published artificial
rammar learning (AGL) studies in nonhuman animals there appear
o be biases in acoustic similarity between training and test stimuli.
ollowing on from a previous re-analysis (Beckers et al., 2012), in
he present review we assessed the extent of such confounds, and
onsidered a sample of 8 additional studies that based their experi-
ents on strings of tokens that represent particular sounds. In these

tudies, we identified 11 experiments that led authors to suggest or
laim the learning and use of grammatical or at least string-based
ules, which ranged from simple repetition or positional rules to
anguage-like recursion. After quantification, we found that none
f these 11 experiments appears to be free from acoustic similarity
onfounds that we argue can contribute to or alternatively explain
he observed behaviors in terms of acoustic recognition memory
Table 1).

We  do not suggest that our acoustic similarity measures are nec-
ssarily closely analogous to the computations that the subjects’
eural systems used for learning and recognition of the stimuli, or
hat subjects cannot have used other or additional cues, includ-
ng grammatical ones. However, despite such uncertainties about
ow precisely neural systems assess surface feature-based simi-

arity we believe that it is a significant finding that all the studies
hat we have analyzed contain biases in acoustic similarity in their
esign. This renders interpretations in terms of rule learning in all
he studies we looked at as debatable, if one agrees that it may  be
asier for neural systems to assess similarity in acoustic features
han to assess conformity to grammatical rules. We argue that this
s the case, because the latter depends on the former, but not the
ther way around.

A number of the studies contained biases in multiple acoustic
imilarity measures. This is unsurprising because the measures we
ooked at are not independent. For example, if strings share long
ontinuous substrings they are also highly cross-correlated. Nev-
rtheless, there are differences between the measures that may
orrespond to the involvement of different neural mechanisms,
nd it would be interesting to test which measure explains the
bserved results best. We  did not do so here because response
ata to individual strings are usually not published, and these are
ecessary for a meaningful comparison. Even better would be to
erform direct experimental tests of the measures discussed here,
nd perhaps additional ones, in order to assess which ones pre-
ict response behaviour more strongly than other ones in different

earning paradigms. We  should emphasize that the role of acoustic
imilarity in perceived similarity and response behaviour remains
ntested in the context of animal AGL studies, and is only hypothe-
ized by us, and at this point presented as an alternative explanation
or grammatical rule-based accounts. However, from a rich history
f psychoacoustic studies in animals, sometimes carried out in the
ame laboratory that now investigate sequence rule learning (e.g.
eckers and ten Cate, 2001; Beckers et al., 2003), it is clear that
coustic feature-based perception can be used in learning and dis-

riminating between stimuli, and hence should be taken fully into
ccount.

More generally, we think that it is difficult to avoid biases
n acoustic similarity completely, at least when tokens are
havioral Reviews 81 (2017) 238–246 245

particular sounds, and it may  be wise to consider explicitly
multiple explanations about what subjects learn, including acous-
tic similarity-driven learning strategies, in addition to one or
more grammatical hypotheses of interest (e.g. van Heijningen
et al., 2009). By creating a priori predictions about the behav-
ioral response to specific strings for each explanation, one can test
which is the best one. Such an approach would combine well with
recent developments in applied Baysian statistics and informative
hypotheses testing, because a positive outcome of an experiment
is not just the rejection of one null-hypothesis but rather a value
for how much more likely one explanation is over another, given
the data (Van De Schoot et al., 2011).

In addition, we  believe that there are other considerations for
future work that would improve the interpretability of AGL exper-
iments. We noticed that in studies that are based on an operant
conditioning paradigm, it often remains unclear what associa-
tion(s) have been learned during the training phase. E.g.,  is a test
stimulus not responded to because it resembles the NoGo training
stimulus or because it does not resemble the Go training stimu-
lus, or both? Interpretation would be easier if it were known what
the response level is to a stimulus that resembles neither the Go
nor the NoGo stimulus (set). If the level is intermediate, then the
subject must have learned specific aspects of both categories, but
if the level is similar to the NoGo stimulus (set), then the subject
may  have learned predominantly or exclusively specific aspects of
the Go stimulus (set). Including a neutral test stimulus like a white
noise will likely help in understanding which training stimuli are
specifically recognized, and which ones are simply seen as part of
an excluded set.

Overall, we conclude that interpretation in the studies that we
looked at is overwhelmingly ‘string-focused’ and often ignores
strategies based on lower-level sensory features. We  think that
acoustic similarity matching per se can provide a parsimonious
explanation for observed response behaviors that does not involve
tokenization or sequence rules. Nevertheless, what if subjects do
tokenize string stimuli and learn their sequence or positional rules?
First, even though some neural circuits may process stimuli on the
basis of tokens and sequence or positional rules, these may  not
be involved in the particular response behaviour that is measured
in habituation or operant conditioning experiments, which may
depend on sensory feature-based representations instead. Anal-
ogously, it is well-known, for example, that speech sound input
is processed in parallel by different neural circuits that analyze
prosodic and semantic content. Indeed, there may exist many
parallel auditory processing streams, each of which may  in prin-
ciple determine or influence the outcome of a behavioral response.
Second, even when response behavior is based on string repre-
sentations, then in many cases the subjects may process training
stimuli as ‘chunks’, i.e.  particular sequences of tokens that are fixed,
without using the grammatical rules that have produced them.
If so, similarity judgments may  be based on the length of over-
lap between token chunks (Perruchet and Pacteau, 1990), and our
analyses show that there is often a bias in this respect.

What are the consequences of our findings for our understand-
ing of artificial grammar learning in nonhuman animals in general?
We cannot extend our interpretations to studies we  have not inves-
tigated here, but we believe that if studies are based on tokens
that represent particular sounds, rather than classes of sound, then
these should be critically examined as to whether or not acoustic
similarity explanations can be ruled out. However, not all stud-
ies on grammaticality in animals are based on this design. For
example, in a recent study Spierings and ten Cate (2016) found

that budgerigars (Melopsittacus undulatus)  can generalize the dis-
crimination between three-element sound stimuli with an XYX or
an XXY structure to stimuli with the same structure but acousti-
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Table  1
Biases in acoustic similarity between test and training strings in the reviewed studies that can alternatively explain results. The nature of these biases is discussed in different
sections in the text. Contains: test string occurring fully in training strings (Section 4.1); Shared start: test and training strings sharing same start (Section 4.2); Shared Substring:
test  and training strings share substrings (Section 4.3); Cross-correlation: test and training strings share tokens at corresponding positions (Section 4.4).

Experiment Contains Shared Start Shared Substring Cross-correlation

Abe and Watanabe (2011) Fig. 3 •
Chen et al. (2015b) Exp. 1b •
Chen and ten Cate (2015) Exp. 1 •
Chen and ten Cate (2015) Exp. 2 • •
Chen and ten Cate (2015) Exp. 3 • • •
Endress et al. (2010) Exp. 1 •
van Heijningen et al. (2012) Exp. 1 •
Saffran et al. (2008) Exp. 3 • •
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reveals evolutionarily conserved regions of frontal cortex in macaques and
humans. Nat. Commun. 6, 8901, http://dx.doi.org/10.1038/ncomms9901.
Wilson et al. (2013) 

Wilson et al. (2015a) 

Wilson et al. (2015b) • 

ally novel elements. The present review here did not address such
ndings and has no direct consequences for their interpretation.

From our analyses of string design in AGL studies in nonhuman
nimals we conclude that acoustic confounds are a blind spot. Such
onfounds should be excluded or carefully addressed if the aim is
o obtain meaningful results pertaining to possible grammatical
bilities in non-human animals. It may  well be that this problem
s not specific to animal studies, and that similar confounds may
ccur in human studies. Indeed, non-grammatical explanations for
esponse behaviour in human AGL experiments have been pro-
osed (for a review see, e.g., Pothos, 2007). The grammars used

n animal experiments are modeled after, or sometimes identi-
al to, the ones used in human studies, and many animal studies
ollow the general design of human studies quite closely for com-
arative reasons. We  therefore suggest to critically evaluate string
ets in human AGL experiments for the types of acoustic similarity
e discussed here. To facilitate this, we make the software library
e wrote for quantification and visualization in the supplementary

nformation of this paper freely available (aglcheck, https://github.
om/gjlbeckers-uu/aglcheck). This may  help avoiding unintended
ues in future studies, and a posteriori estimating their extent in
xisting studies so that their potential involvement in response
ehavior can be evaluated.
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