
Science of Computer Programming 164 (2018) 37–48
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Embedding the refinement calculus in Coq

João Alpuim a, Wouter Swierstra b

a University of Hong Kong, Hong Kong
b Universiteit Utrecht, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 July 2016
Received in revised form 27 March 2017
Accepted 4 April 2017
Available online 3 May 2017

Keywords:
Refinement calculus
Coq
Predicate transformers
Free monad
Dependent types

The refinement calculus and type theory are both frameworks that support the specification
and verification of programs. This paper presents an embedding of the refinement calculus
in the interactive theorem prover Coq, clarifying the relation between the two. As a result,
refinement calculations can be performed in Coq, enabling the interactive calculation of
formally verified programs from their specification.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The idea of deriving a program from its specification can be traced back to [10,12,16]. The refinement calculus [5,17,3]
defines a formal methodology that can be used to construct a derivation of a program from its specification step by step.
Crucially, the refinement calculus presents single language for describing both programs and specifications.

Deriving complex programs using the refinement calculus is no easy task. The proofs and obligations can quickly become
too complex to manage by hand. Once you have completed a derivation, the derived program must still be transcribed to a
programming language in order to execute it – a process which can be rather error-prone [17, Chapter 19].

To address both these issues, we show how the refinement calculus can be embedded in Coq, an interactive proof
assistant based on dependent types. Although others have proposed similar formalizations of the refinement calculus [4,13],
this paper presents the following novel contributions:

• After giving a brief overview of the refinement calculus (Section 2), we begin by developing a library of predicate
transformers in Coq, based on indexed containers [1,13], making extensive use of dependent types (Section 3). We
define a refinement relation, corresponding to a morphism between indexed containers, enabling us to prove several
simple refinement laws in Coq.

• Next we show how to embed effects, such as mutable state and general recursion, in Coq using a free monad. We assign
semantics to programs in this monad using the predicate transformers and refinement relation we described previously
(Section 4).

• These definitions give us the basic building blocks for formalizing derivations in the refinement calculus. They do,
however, require that the derived program is known a priori. We address this and other usability issues (Section 5).

E-mail addresses: alpuim@cs.hku.hk (J. Alpuim), w.s.swierstra@uu.nl (W. Swierstra).
http://dx.doi.org/10.1016/j.scico.2017.04.003
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:alpuim@cs.hku.hk
mailto:w.s.swierstra@uu.nl
http://dx.doi.org/10.1016/j.scico.2017.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.04.003&domain=pdf

38 J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48
• Finally, we validate our results by performing a small case study.1 In particular, we show how we can use this library
to calculate interactively the key ingredients of a data structure for persistent arrays (Section 6).

2. Refinement calculus

The refinement calculus, as presented by Morgan [17], extends Dijkstra’s Guarded Command language with a new lan-
guage construct for specifications. The specification [pre, post] is satisfied by a program that, when supplied an initial state
satisfying the precondition pre, can be executed to produce a final state satisfying the postcondition post. Crucially, this
language construct may be mixed freely with (executable) code constructs.

Besides these specifications, the refinement calculus defines a refinement relation between programs, denoted by p1 � p2.
This relation holds when forall P, wp(p1, P) ⇒ wp(p2, P), where wp denotes the usual weakest precondition semantics of a
program and its desired postcondition. Intuitively, you may want to read p1 � p2 as stating that p2 is a ‘more precise
specification’ than p1.

A program is said to be executable when it is free of specifications and only consists of executable statements. Morgan
[17] refers to such executable programs as code. To calculate an executable program C from its specification S, you must
find a series of refinement steps, S � M0 � M1 � ... � C. Typically, the intermediate programs, such as M0 and M1, mix
executable code fragments and specifications.

To find such derivations, Morgan [17] presents a catalog of lemmas that can be used to refine a specification to an
executable program. Some of these lemmas define when it is possible to refine a specification to code constructs. These
lemmas effectively describe the semantics of such constructs. For example, the following law may be associated with the
skip command:

Lemma 1 (skip). If pre ⇒ post, then [pre, post] � skip.

Besides such primitive laws, there are many recurring patterns that pop up during refinement calculations. For example,
combining the rules for sequential composition and assignment, the following assignment lemma holds:

Lemma 2 (following assignment). For any term E,

[pre,post] � [pre,post [w\E]];w ::= E

We illustrate how these rules may be used to calculate the definition of a program from its specification. Suppose we
would like to swap the values of two variables, x and y. We may begin by formulating the specification of our problem as:

[x = X ∧ y = Y, x = Y ∧ y = X]
Using the two lemmas we saw above, we can refine this specification to an executable program. The corresponding

calculation is given in Fig. 1. Note that we have chosen to give a simple derivation that contains some redundancy, such as
the final skip statement, but uses a modest number of auxiliary lemmas and definitions.

For such small programs, these derivations are manageable by hand. For larger or more complex derivations, it can be
useful to employ a computer to verify the correctness of the derivation and even assist in its construction. In the coming
sections we will develop a Coq library for precisely that.

3. Predicate transformers

In this section, we will assume there is some type S, representing the state that our programs manipulate. In Section 4
we will show how this can be instantiated with a (model of a) heap. For now, however, the definitions of specifications,
refinement, and predicate transformers will be made independently of the choice of state.

We begin by defining a few basic constructions in Coq:

Definition Pred (A : Type) : Type := A → Type.

This defines the type Pred A of predicates over some type A. Using this definition we can define a subset relation between
predicates as follows:

Definition subset (A : Type) (P1 P2 : Pred A) := forall x, P1 x → P2 x.

1 All the code and examples presented in this paper can be found online at https :/ /github .com /jalpuim /dtp-refinement.

https://github.com/jalpuim/dtp-refinement

J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48 39
[x = X ∧ y = Y, x = Y ∧ y = X]
� { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ y = X]; x ::= t

� { by the following assignment law }

[x = X ∧ y = Y, t = Y ∧ x = X];y ::= x; x ::= t

� { by the following assignment law }

[x = X ∧ y = Y,y = Y ∧ x = X]; t ::= y;y ::= x; x ::= t

� { by the law for skip }

skip; t ::= y;y ::= x; x ::= t

Fig. 1. Derivation of the swap program.

A predicate P1 is a subset of the predicate P2, if any state satisfying P1 also satisfies P2. In the remainder of this paper, we
will write P1 ⊆ P2 when the property subset P1 P2 holds.

Next we can define the PT data type, consisting of a precondition and postcondition:

Record PT (A : Type) : Type :=
MkPT { pre : Pred S;

post : forall s : S,pre s → A → Pred S }.
The postcondition is a relation between the input state, a proof that this input state satisfies the precondition, the value of
type A returned by the computation, and the output state. To avoid the need for ‘ghost variables’, we allow this relation to
refer to both the input and output states [19–21]. As this data type will be used to represent specifications, we will use the
notation [P, Q] rather than the more verbose MkPT P Q .

As its name suggests, the PT type has an obvious interpretation as a predicate transformer, i.e., a function mapping
predicates to predicates:

Definition semantics {A : Type } (pt : PT A) : Pred (A ∗ S) → Pred S :=
fun P s ⇒ {p : pre pt s & forall s′ v,post pt s p v s′ → P (v, s′) }.

The semantics function computes the weakest precondition necessary to guarantee that the desired postcondition P holds
after executing a program satisfying the given specification pt. Intuitively, the precondition of the specification must hold
and the postcondition must imply P. We will sometimes write �pt� rather than semantics pt for the sake of brevity. In what
follows, we will sometimes leave out implicit argument, such as the argument { A : Type } in the semantics function, from
the typeset code presented here.

Next, we characterize the refinement relation between two values of type PT as follows:

Inductive Refines (pt1 pt2 : PT A) : Type :=
Refinement : forall (d : pre pt1 ⊆ pre pt2),

(forall s p v,post pt2 s (d s p) v ⊆ post pt1 s p v) →
Refines pt1 pt2.

We consider pt2 to be a refinement of pt1 when the precondition of pt1 implies the precondition of pt2 and the postcondi-
tion of pt2 implies the postcondition of pt1. As our postconditions are relations, we need to do some work to describe the
latter condition. In particular, we need to transform the assumption that the initial state holds for the precondition of pt1
to produce a proof that the precondition of pt2 also holds for the same initial state. To do so, we use the first condition,
d, that the precondition of pt1 implies the precondition of pt2. We will use the notation, pt1 � pt2, for the proposition
Refines pt1 pt2.

To validate the correctness of this definition, we will show that it satisfies the characterization of refinement in terms of
weakest precondition semantics given in Section 2. To do so, we have proven the following soundness result:

Theorem soundness : forall (pt1 pt2 : PT A),

pt1 � pt2 ↔ forall P, � pt1 � P ⊆ � pt2 � P.

In other words, the Refines relation adheres to the characterization of the refinement relation in terms of predicate trans-
former semantics. The proof is almost trivial after unfolding the various definitions involved.

Even if we have not yet fixed the state space S, we can already prove that the structural laws of the refinement calculus,
such as strengthening of postconditions, hold:

40 J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48
Lemma strengthen (P : Pred S) (Q 1 Q 2 : forall s,P s → A → Pred S)
(H : forall (s : S) (v : A) (p : P s), Q 1 s p v ⊆ Q 2 s p v) :
Refines ([P, Q 2]) ([P, Q 1]).

To prove this lemma, we need to show that P ⊆ P and that the postcondition Q 1 implies Q 2. The first proof is trivial;
the second follows immediately from our hypothesis. Similarly, we can show that the refinement relation is both transitive
and reflexive.

These definitions by themselves are not very useful. Before we can perform any program derivation, we first need to fix
our programming language.

4. Embedding in Coq

In our previous work [22], we showed how to define a deep embedding of small, imperative programming language. By
defining predicate transformers associated with the various syntactic constructs, we could then calculate a program from its
specification. Such a deep embedding of the language allows us to inspect the abstract syntax of our object language, en-
abling us to generate programs calculated from their specifications. This approach does have its drawbacks. In particular, the
imperative programming language was too restrictive to cover many, more interesting examples. Furthermore, the mutable
references were only allowed to store integers. In this extended paper, we address these issues.

To begin with, we fix our choice of state S to be a finite map from an abstract type Ptr to some type of values v. All
our developments are parametrized over the particular choice of type to store on the heap. Although we use the finite map
modules from Coq’s standard library to model the heap, several alternative representations exist [18,23,21].

Instead of a deep embedding of the imperative language, we will provide a deep embedding only of the effects of our
object language, namely mutable state and unbounded recursion by defining a suitable free monad. We will then piggyback
on Coq’s programming language, Gallina, to define programs using these effects. We can then customize Coq’s extraction to
OCaml to map these syntactic constructs to their native OCaml counterparts.

We model the effects as an inductive data type in Coq:

Inductive WhileL (a : Type) : Type :=
| New : v → (Ptr → WhileL a) → WhileL a
| Read : Ptr → (v → WhileL a) → WhileL a
| Write : Ptr → v → WhileL a → WhileL a
| While : (S → Prop) → (S → bool) → (WhileL unit) →

WhileL a → WhileL a
| Spec : PT a → WhileL a
| Return : a → WhileL a.

This data type has constructors for the creation of (New), access of (Read), and assignment to (Write) mutable refer-
ences. Each of these constructors takes a continuation as argument, representing the remaining computation to perform.
Loops may be introduced using the While constructor that takes four arguments: the loop invariant of type S → Prop; the
condition of type S → bool; the loop body of type WhileL unit; and the remaining computation. The constructor Spec con-
tains the specification of an unfinished program fragment. The refinement laws we will define shortly determine how such
specifications may be refined to executable code. Finally, the Return constructor simply returns a ‘pure’ Coq value.

4.1. Semantics

Before discussing the refinement calculation further, we need to fix the semantics of our language. We shall do so by
associating a predicate transformer, i.e., a value of type PT, with every constructor of the WhileL data type.

Each rule in Fig. 2 associates pre- and postconditions, i.e., a value of type PT, with the constructors of the WhileL data
type. We use the somewhat suggestive notation, { P } c { Q } to associate with the statement c the conditions [P, Q]. We also
use the notation p s
→ v to denote that s maps the pointer p to value v, and p s
→ to denote that p has some associated
value in s. Finally, the notation P (s [p
→ v]) denotes that the condition P should hold after updating the state s, mapping
the pointer p to value v.

These rules are not added as axioms to Coq; nor are they the constructors of an inductive data type. Rather, we can
assign semantics to our WhileL data type directly, as a recursive function:

Fixpoint semantics (c : WhileL a) : PT a

In addition to the rules from Fig. 2, this function simply maps specifications, represented by the Spec constructor, to their
associated predicate transformer.

Let us examine the rules in Fig. 2 a bit more closely. Each precondition may refer to an initial state s; each postcondition
is formulated as a relation between an initial state s, satisfying the precondition, the result returned x, and the final state s′ .

J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48 41
Return{True } Return y { s = s′ ∧ x = y }

p
s
→ v {P } k v {Q }

Read{P } Read p k {Q }

p
s
→ {P } k {Q }

Write{P (s [p
→ v]) } Write p v k {Q (s [p
→ v]) x s′ }

p �∈ dom (s) {P } k p {Q }
New{P (s [p
→ v]) } New v k {Q (s [p
→ v]) x s′ }

{ P1 } b { Q 1 } forall s,¬ c(s) ∧ I s → P2 s { P2 } k { Q 2 }
While{ I s ∧ (∀ t, c(t) ∧ I t → P1 t)∧ }

While c do b od k
{

Q 2

}
∀ t t′, c(t) ∧ I t ∧ Q 1 t t′ → I t′

Fig. 2. Semantics of While.

For example, the postcondition of the Return rule states that the initial state s is equal to the final state s′ and the result of
the computation is indeed the argument of the Return constructor.

The other rules are defined by induction on the program. For example, the rule for Read states that, provided the
current state maps the pointer p to the value v, and the remainder of the program has an associated precondition P and
postcondition Q , the composite program has the same pre- and postcondition. When the state changes, such as in the rules
for Write and New, this style of definition can be a bit confusing. The Write rule, for instance, computes the precondition
and postcondition associated with the remaining program k. The composite program Write p v k then requires that the
precondition P associated with k holds after updating the state. Similarly, the postcondition Q should relate the state after
being updated with the result x and final state s′ . The New rule follows exactly the same pattern.

Finally, the While rule is the most complex. Besides the precondition, P1, and postcondition, Q 1, associated with the
body of the loop b, the While rule requires the programmer to specify the loop invariant, I, and continuation k. The
precondition of the While rule consists of three conjuncts:

• the invariant I must hold initially;
• the boolean guard c and the invariant must together imply the precondition of the loop body;
• the loop body must preserve the invariant.

Furthermore, when the loops is finished and c no longer holds, this must imply the precondition of the continuation
k. Finally, the entire expression has the postcondition Q 2 associated with the continuation k. Note that this formulation
captures partial correctness; there is no variant ensuring that the loop must terminate eventually.

Using these semantics, we now define a refinement relation between statements programs in the WhileL language:

Definition WhileRefines (c1 c2 : WhileL a)

:= Refines (semantics c1) (semantics c2).

Once again, we will use the notation c1 � c2 when WhileRefines c1 c2 holds.

4.2. Composing programs

It is rather straightforward to show that WhileL supports a monadic bind operation:

Fixpoint bind {a b : Type } (w : WhileL a) (k : a → WhileL b) : WhileL b
:=match w with
| New v c ⇒ New v (fun p ⇒ bind (c p) k)
| Read p c ⇒ Read p (fun v ⇒ bind (c v) k)
| Write p v c ⇒ Write p v (bind c k)
| While Inv cond body c ⇒ While Inv cond body (bind c k)
| Spec pt ⇒ Spec (bindPT pt (fun x ⇒ semantics (k x)))
| Return x ⇒ k x
end.

42 J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48
The function is inductively defined on the first program w. The first four cases simply propagate the bind operation to
their respective continuations. The only interesting case is that for specifications. The Spec case creates a new PT, by using
its associated predicate transformer composition operator bindPT , corresponding to taking the relational composition of the
specification and the semantics associated with the continuation. Finally, the Return case applies k to the value x.

Using this definition of bind, we can assemble larger, composite programs that use different effectful operations.

4.3. Example: square root

With these definitions in place, we can now formalize a refinement derivation such as the one in Fig. 1. However, we do
so with a program which calculates the square root of a number using binary search, taken from our previous work. This
program is not particularly interesting algorithmically, but illustrates how to use all of the refinement rules we have seen
so far.

We begin by defining the specification:

Definition sqrtSpec (P : Ptr) : PT nat :=
[(exists t, find s P = Some t), (v2 � t < (v + 1)2)]

The precondition requires that P is a valid pointer in our heap, pointing to some value t. The postcondition guarantees that
after execution, the result v will be the square root of the original value t.

Next we can sketch a candidate sqrt program:

t ← read P
Q ← new Q (t + 1)

R ← new R 0
while(read R + 1 �≡ read Q)

q ← read Q
r ← read R
let mid := (q + r) / 2

if (t < mid2)

then write Q mid
else write R mid

r ← read R
return r

The program starts by creating two auxiliary variables R and Q , which will serve as the search bounds. The lower bound R
is initially set to 0, while the upper bound Q is set to (t + 1). The while loop then halves (using integer division) the interval
between these bounds on every iteration until the bounds are consecutive numbers. The loop also needs an invariant, which
should imply the post-condition. We define this in Coq as:

Definition sqrtInv (Q R : nat) (t : nat) (s : heap nat) :=
exists q, r.find s Q = Some q ∧ find s R = Some r ∧ R �= Q ∧

r2 � n < q2.

This invariant can be read as follows: for any value q and r referenced by pointers Q and R, respectively, the original value
t must be in between the square of q and r. Upon completion, the program returns the value referenced by R.

Proving this program satisfies its specification, amounts to proving the following sqrtCorrect lemma.

Lemma sqrtCorrect (P : Ptr) :
sqrtSpec P � sqrt P.

To do so, we can unfold the definitions of sqrt, sqrtSpec, and the semantics we defined above, yielding a complex verification
condition.

This form of post-hoc verification is very different from the interactive program calculation that we would like to per-
form. We need to write the final program before we start our proof. After unfolding definitions and β-reduction, the proof
goal that we are left with is often large and unwieldy.

In the next section we will develop machinery to enable the interactive discovery of programs, rather than the mere
transcription of an existing proof.

5. Interactive refinement

Although we can now take any pen-and-paper proof of refinement and verify this in Coq, we are not yet playing to the
strengths of the interactive theorem prover that we have at hand. In this section, we will show how to develop lemmas and
definitions on top of those we have seen so far that facilitate the interactive calculation of a program from its specification.

J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48 43
We start by defining a function that determines when a statement is executable, i.e., when there are no occurrences of
the Spec constructor:

Fixpoint isExecutable (c : WhileL a) : Prop

Rather than fixing the exact program upfront, we can now reformulate the correctness lemma of swap as follows:

Definition deriveSqrt (P : Ptr) :
{ c : WhileL nat

& (sqrtSpec P) � c
& isExecutable c }.

The notation { x : A & P x & Q x } in Coq is used to denote a dependent triple consisting of a witness x : A, a proof that x
satisfies the property P and a proof that x satisfies the property Q .

To prove this lemma we need to provide an executable c : WhileL nat and a proof that sqrtSpec � c. This is a superficial
change – we could now complete the proof by providing our sqrt program as the witness c and reuse our previous cor-
rectness lemma. Instead of doing this, however, we wish to explore how to reformulate typical refinement calculus laws to
enable the interactive construction of a suitable program.

We begin by observing that the semantics of our WhileL language proceeds structurally over the various language con-
structs. As a result, we can define a lemma for every language construct, describing precisely when a refinement step
introducing that construct is valid. This corresponds to unfolding the definition of our semantics, for every construct of the
WhileL language. For example, the rule for the Write statement is formulated below.

Lemma writeRefines (w w′ : WhileL a) (ptr : Ptr) (y : v)
(d : pre (semantics w) ⊆ pre (semantics (Write ptr y w′)))
(h : forall (s : S) (p : pre (semantics w) s) (x : a),

post (semantics w′) (update s ptr y) (snd (d s p)) x
⊆ post (semantics w) s p x)

: w � Write ptr y w′.

Despite the apparent complexity, this lemma is trivial to prove: the two hypotheses are exactly what is needed to show
that w is refined by Write ptr v w′ . The first proof obligation states that the precondition of w should imply the precondition
of Write ptr v w′; the second states that when the postcondition of w′ holds on the updated state, i.e. after assigning v to the
pointer ptr, the postcondition of w must also hold.

During the interactive refinement of a specification, however, we typically are not interested in refining two arbitrary
WhileL programs, but rather calculating an executable WhileL program from its specification. Therefore, we can specialize
the writeRefines lemma above to the case when the first program is a specification. Unfolding the definition of semantics
and massaging the required hypotheses slightly yields the following lemma:

Lemma writeSpec (ptr : Ptr) (y : v) (spec : PT a) (w : WhileL a)

(H : forall s,pre spec s → { x : v & find s ptr = Some x })
(Step : Spec

([fun s ⇒ { t : S & prod (pre spec t) (s = (update t ptr y)) },
fun s pres x s′ ⇒

(post spec (projT1 pres) (fst (projT2 pres)) x s′)]) � w) :
Spec spec � Write b ptr y w.

Essentially, this lemma states that to refine a specification with a Write statement, we need to prove that the pointer is
already allocated on the heap (the argument H). Furthermore, we need to show after performing this update, we can refine
the specification on the updated heap to some program w. Here the usage of relations to represent our postconditions
introduce a bit of clutter, having to take deconstruct various parts of the precondition using the projections projT1, fst, and
projT2 to formulate the desired postcondition.

We can define similar lemmas describing the verification conditions associated with introducing other constructors of
the WhileL language, such as reading from memory, allocating a fresh pointer, introducing an if clause, or introducing a loop.

Note that in some cases, the continuation argument requires a more complex, higher-order hypothesis. For example, the
readSpec lemma has the following general shape:

Lemma readSpec (ptr : Ptr) (spec : PT a) (w : b → WhileL a)

(H : ...)
(Step : forall v,Spec [...]) � w v) :
Spec spec � Read b ptr w.

44 J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48
Here the Step argument quantifies over the result of the read, v; the specification makes precise that v is stored on the heap
at address ptr. This complexity arises as we are interested in the result produced by Read, whereas Write does not produce
and interesting result for the remainder of the computation. This is a natural generalization of the case for Write to handle
those cases where some command produces a result used by the remaining computation.

We can now introduce custom tactics for each of these lemmas. These tactics apply the lemma and call some rudimen-
tary proof automation:

Ltac WRITE ptr v := eapply (writeSpec ptr v); simpl_goal.

Here the simpl_goal tactic unfolds various definitions, triggers β-reduction, and generally cleans up the proof context and
goal. The tactic for While follows a similar structure:

Ltac WHILE I c := eapply (whileSpec I c); simpl_goal.

The constructors that have a non-trivial continuation may introduce new variables, hence we adapt our tactics accordingly.

Ltac READ ptr v := eapply (readSpec ptr); [| intros v]; simpl_goal.

We can also provide custom machinery for constructs defined in Coq itself, such as conditionals:

Lemma ifSpec (cond : bool) (spec : PT v a) (wt we : WhileL v a) :
(if cond then Spec spec � wt else Spec spec � we) →
(Spec spec � (if cond then wt else we)).

The associated tactic applies this lemma, remembers the condition, and splits the goal into two sub-goals accounting for
the condition’s value:

Ltac IFF c := eapply (ifSpec c); remember c as b;destruct b; simpl_goal.

Finally, we can conclude any refinement calculation provided we have a suitable value and can show that the precondi-
tion implies the postcondition for any state s:

Lemma returnStep (v : a) (w : WhileL a)

(H : forall (s : S) (P : pre (semantics w) s),post (semantics w) s pre v s) :
w � Return v.

We also define a corresponding tactic, RETURN v.
We now have the ingredients to tackle our problem: interactively proving deriveSqrt. That is, we must produce some code

c, together with a proof that it refines our specification. The proof proceeds by introducing a new existential variable for c,
which will be constructed while we perform the refinement calculation. We proceed by finding a refinement derivation by
applying tactics one by one, that each modify the remaining specification. We have sketched the proof in Fig. 3. Although
it leaves out several proof obligations, it is hopefully clear that the proof structure closely follows the code. Once we have
shown our derivation correct, we still need to prove that the resulting program is executable—but this is trivial for any
complete program.

The missing proof steps are not too long, but they detract from the overall structure of the proof that we wish to
illustrate here. We refer the interested reader to our Coq development. Upon completing this proof, we can project out the
c : WhileL unit value to obtain the verified program.

In this style, it is possible to start from a specification and incrementally write a program that satisfies it. Every step of
the way, you can inspect how the specification evolves after applying a specific command. For larger developments, however,
it may sometimes be desirable to intersperse verification and program development. In the calculation of sqrt above, the
only real verification is done after each RETURN statement. One way to remedy this is by explicitly reformulating the
specification:

Lemma changeSpec (pt1 pt2 : PT a) (w : WhileL a)

(d : pre pt2 ⊆ pre pt1)

(h : forall (s : S) (x : pre pt2 s) v,post pt1 s (d s x) v ⊆ post pt2 s x v)
(H : Spec pt1 � w) :
Spec pt2 � w.

The changeSpec lemma follows immediately from transitivity of our refinement relation. Essentially, it allows us to replace
the current specification with any other specification that refines it. We can also introduce a corresponding tactic:

Ltac ASSERT P := unshelve eapply (changeSpec P).

J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48 45
econstructor.split.
− READ P t.

NEW (s + 1) Q .

NEW 0 R.

WHILE (sqrtInv Q R s) (Cond Q R).

+ ... (* A proof of pre sqrtSpec → sqrtInv *)
+ READ Q vInQ .

READ R vInR.

IF (s <? ((vInQ + vInR) / 2)2)

∗ WRITE Q ((vInQ + vInR) / 2)

RETURN tt.
... (* heap manipulation *)

∗ WRITE P ((vInQ + vInR) / 2)

RETURN tt.
... (* heap manipulation *)

+ READ R vInR.

RETURN tt.
... (* heap manipulation *)

− ... (* proving c to be executable *)

Fig. 3. Proof sketch of deriveSqrt.

This tactic applies the changeSpec lemma, thereby replacing the current specification with P. The unshelve tactic requires
the user to complete the proof obligations associated with this application of changeSpec, before continuing the rest of the
program calculation. Using these tactics, we are free to mix verification and calculational steps.

6. Case study: persistent arrays

As a final case study, we describe the derivation of a library for persistent arrays. A persistent array is a data-structure
that stores a regular array and maintain the state of previous versions of the same array. Persistent arrays can be used as
efficient building blocks of other data-structures, as in the union-find data-structure. In our development, we will follow the
formalization by Conchon and Filliâtre [9] done previously in Coq.

The formalization by Conchon and Filliâtre uses two different modules. The first provides an implementation and inter-
face for persistent arrays; whereas the second implements the union-find algorithm using this module. Any side effects are
encapsulated in the persistent array module, providing a pure interface for the union-find structure. We will sketch how to
calculate the persistent array module on which the union-find data structure relies using our library.

The module for persistent arrays has the following signature in OCaml:

module type PersistentArray = sig
type a t
val init : int → (int → a) → a t
val get : a t → int → a
val set : a t → int → a → a t

end

This module provides quite standard operations for persistent arrays. The function init takes an integer corresponding to
the size of the array and functional representation of the array and returns a new persistent array t holding values of type
a. The function get should takes such a value of type a t, an index of the array and returns the value stored there. Finally
the function set accepts an array, an index and a value, and returns a new container with the old value on the given index
replaced by the value passed as argument.

The derivation of each of these function will consist of three parts: a specification and an interactive proof demonstrating
that we can find an implementation that meets the specification. For the sake of presentation, however, we will begin
discussing the functions to familiarize readers with the algorithms we intend to derive. The code for these functions is
given in Fig. 4.

The inductive data-type PAData represents the data to be stored in the heap. The Arr constructor holds an array, again
represented as a function from indexes to values – for simplicity, we restrict arrays to only store natural numbers and we
let this function be total. Just as in the work by Conchon and Filliâtre, the regular array lookup is represented as function
application; whereas updating an array at some position with some value, can be done using the update operation.

The Diff constructor holds a position, a value, and a pointer to another array. It represents a single change in the refer-
enced array at the given position with the given value. The Diff constructor is what makes the arrays persistent.

46 J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48
Inductive PAData : Type :=
Arr (nat → nat)
| Diff nat nat Ptr

init n f = new (Arr f) (fun ptr ⇒ Return ptr)

get t i =
read t >>= fun tval ⇒
match tval with

| Arr a ⇒ lookup a i
| Diff (j,v, t′) ⇒
if i ≡ j then v else get t′ i

set t i v =
read t >>= fun tval ⇒
match tval with

| Arr a ⇒
let old = lookup a i in
new (Arr (update a i v)) >>= fun res ⇒
write t (Diff i old res) >>

return res
| Diff ⇒ new (Diff i v t)

Fig. 4. Functions manipulating persistent arrays.

The implementation of init simply creates a new array and returns the pointer associated to it. The get function recur-
sively looks up a value in the chain of Diffs until it finds an Arr constructor. The set function behaves differently depending
on the value referenced by t. In the Arr case, the array is modified, and t is set as a new indirection step and the (modified)
array is returned. On the other hand, if the value in t is already a Diff, then a new indirection step is created an returned.

Note that Conchon and Filliâtre show a slightly different and more efficient way to implement get and set. However, this
requires a new reroot function, which would introduce more complexity to our formalization.

We can now formalize specifications of the persistent array functions. When doing so, we notice that the important
property to be verified is that each function should ensure that all pointers it uses should refer to a well-formed structure
of a persistent array. In order to express that property, we define the following predicate, taken from [9]:

Inductive pa_model (s : heap) : Ptr → (nat → nat) → Type :=
| pa_model_array :
forall p f , find s p = Some (Arr f) → pa_model s p f

| pa_mode_diff :
forall p i v p′, find s p = Some (Diff i v p′) →
forall f ,pa_model s p′ f →
pa_model s p (update f i v).

This predicate allows us to relate a heap, a pointer and a function that represents the referenced array. One may infor-
mally explain this predicate as: pa_model s p f holds when a pointer p present in heap s, points to a valid persistant array
represented by f . The constructor pa_model_array states that any pointer that references an array is a valid pointer and the
function it represents is the f to which it is dereferenced. The constructor pa_mode_diff says that any pointer p referencing
a Diff i v p′ is also a valid pointer, as long as one can prove this property inductively for p′. The function representing the
array will be an update of the resulting f in position i of v.

After having defined this predicate, we are now ready to formulate our specifications and derive their implementation.

6.1. The derivation of init

The init function is not only straightforward in its definition but also in its specification:

Definition initSpec (n : nat) (f : nat → nat) : PT Ptr :=
[fun s ⇒ True
, fun s pres v s′ ⇒

(forall p′ x : find s p′ = Some x → p′ �= v) ∧ pa_model s′ v f].

J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48 47
The precondition is trivial: init may be called regardless of the current state of the heap. The postcondition is slightly
more interesting. It states that the returned pointer v should be fresh and that it points to a valid array, represented by f .
Deriving a suitable implementation for such the init function is straightforward.

6.2. The derivation of set

The specification for the set function is slightly more elaborate:

Definition setSpec (ptr : Ptr) (i : nat) (v : nat) : PT Ptr :=
[fun s ⇒ exists f ,pa_model s ptr f
, fun s pres newPtr s′ ⇒

pa_model s′ newPtr (update f i v) ∧ pa_model s′ ptr f].
The precondition requires a function f to exist, such that ptr points to a valid persistent array modeled by f . The post-

condition ensures that, both the returned pointer and the original pointer will point to valid persistent arrays, and that the
former is a suitably modified version the latter.

The derivation of the implementation of setSpec requires more manual proofs and requires several auxiliary properties
relating the heap and pa_model. However, the application of these properties was quite systematic. Notably, this shows
that there may be further room for customizable automation. When dealing with custom predicates such as pa_model, our
rudimentary automation to simplify terms containing heaps does not have much effect. We believe that further effort,
such as constructing suitable hint databases or tactic customization opportunities, the proof-to-program ratio can be much
improved.

6.3. The derivation of get

The specification for the get function is straightforward:

Definition getSpec (ptr : Ptr) (i : nat) : PT nat :=
[fun s ⇒ exists f : pa_model s ptr f
, fun s pres v s′ ⇒ v = f i].

Somewhat surprisingly, this turned out to be the hardest of the three functions to derive. Despite the simplicity of the
specification, the implementation is quite complex. Notably, it follows pointers in the heap and is not (obviously) structurally
recursive. We chose to derive a variant of the original definition, introducing a While loop. The proof obligations can grow
quite unwieldy – once again highlighting the need for further automation to keep their complexity in check.

We have sketched how to derive a library for persistent arrays. We expect that this development can be further combined
with the development of other libraries that use persistent arrays as its key components, such as the existing Coq verification
of the union-find data structure.

7. Discussion

The choice of our PT types and definition of refinement relation are not novel. Similar definitions of indexed containers [1]
and interaction structures [14,15] can already be found in the literature. Indeed, part of this work was triggered by Peter
Hancock’s remark that these structures are closely related to predicate transformers and the refinement relation between
them, as we have made explicit in this paper.

We are certainly not the first to explore the possibility of embedding a refinement calculus in a proof assistant. One of
the first attempts to do so, to the best of our knowledge, was by Back and Von Wright [2]. They describe a formalization
of several notions, such as weakest precondition semantics and the refinement relation, in the interactive theorem prover
HOL. This was later extended to the Refinement Calculator [7], that built a new GUI on top of HOL using Tcl/Tk. More
recently, Dongol et al. have extended these ideas even further in HOL, adding a separation logic and its associated algebraic
structure [11]. There are far fewer such implementations in Coq, Boulmé [6] being one of the few exceptions. In contrast
to the approach taken here, Boulmé explores the possibility of a monadic, shallow embedding, by defining the Dijkstra
Specification Monad. Where Boulmé’s work explores the lattice theoretic structure and fixpoint theory of refinement relation
in Coq, it lacks custom refinement such as those presented here.

There is a great deal of work marrying effects and dependent types. Swierstra’s thesis explores one potential avenue:
defining a functional semantics for effects [21,23]. For some effects, such as non-termination, defining such a functional
semantics in a total language is highly non-trivial. Therefore, systems such as Ynot take a different approach [19]. Ynot
extends Coq with several axioms, corresponding to the different operations various effects support, such as reading from
and writing to mutable state. The type of these axioms captures all the information that a programmer may use to reason
about such effects. These types are similar to those presented here in Fig. 2. Contrary to the approach taken here, however,
Ynot lets users write their programs without considering their specification. Users only need to write proofs after specifying

48 J. Alpuim, W. Swierstra / Science of Computer Programming 164 (2018) 37–48
the pre- and postconditions for a certain function. The refinement calculus, on the other hand, starts from a specification,
which is gradually refined to an executable program.

In the future, we hope to investigate how these various approaches to verification may be combined. One obvious next
step would be to re-use the separation logic and associated proof automation defined by later installments of Ynot [8] as the
model of the heap in our refinement calculus. Furthermore, we have (for now) chosen to ignore the variants associated with
loops. As a result, the programs calculated may diverge. Embellishing our definitions with loop variants is straightforward,
but will make our definitions even more cumbersome to use.

Type theory and the refinement calculus are both frameworks that combine specification and calculation. By embedding
the refinement calculus in type theory, we study their relation further. The interactive structure of many proof assistants
seems to fit well with the idea of calculating a program from its specification step-by-step. How well this approach scales,
however, remains to be seen. For now, the embedding presented in this paper identifies an alternative point in the spectrum
of available proof techniques for the construction of verified programs.

Acknowledgements

The second author would like to thank Peter Hancock for his patience in explaining the relation between interaction
structures and the refinement calculus. The second author’s visit to Scotland was funded by the London Mathematical Society’s
Scheme 7 grant (SC7-10/11-04).

References

[1] Thorsten Altenkirch, Peter Morris, Indexed containers, in: 24th Annual IEEE Symposium on Logic In Computer Science, 2009, LICS’09, 2009.
[2] R.J.R. Back, J. von Wright, Refinement concepts formalized in higher order logic, Form. Asp. Comput. 2 (1989).
[3] Ralph-Johan Back, J. Von Wright, Refinement Calculus: A Systematic Introduction, Springer-Verlag Inc., New York, 1998.
[4] Ralph-Johan R. Back, Joakim von Wright, Refinement concepts formalised in higher order logic, Form. Asp. Comput. 2 (1) (1990) 247–272.
[5] R.J.R. Back, On the Correctness of Refinement in Program Development, Ph.D. thesis, University of Helsinki, 1978.
[6] Sylvain Boulmé, Intuitionistic refinement calculus, in: Typed Lambda Calculi and Applications, Springer, 2007, pp. 54–69.
[7] M.J. Butler, J. Grundy, T. Långbacka, R. Ruksenas, J. von Wright, The refinement calculator, in: Formal Methods Pacific, 1997.
[8] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, Ryan Wisnesky, Effective interactive proofs for higher-order imperative programs,

in: International Conference on Functional Programming, ICFP’09, 2009.
[9] Sylvain Conchon, Jean-Christophe Filliâtre, A persistent union-find data structure, in: Proceedings of the 2007 Workshop on ML, ACM, 2007, pp. 37–46.

[10] Edsger W. Dijkstra, A Discipline of Programming, Prentice–Hall, 1976.
[11] Brijesh Dongol, Victor B.F. Gomes, Georg Struth, A program construction and verification tool for separation logic, in: Mathematics of Program Con-

struction, in: Lect. Notes Comput. Sci., vol. 9129, 2015.
[12] Robert W. Floyd, Assigning meanings to programs, Math. Asp. Comput. Sci. 19 (1967) 19–32.
[13] Peter Hancock, Pierre Hyvernat, Programming interfaces and basic topology, Ann. Pure Appl. Log. 137 (1) (2006) 189–239.
[14] Peter Hancock, Anton Setzer, Interactive programs in dependent type theory, in: Computer Science Logic, 2000, pp. 317–331.
[15] Peter Hancock, Anton Setzer, Specifying interactions with dependent types, in: Workshop on Subtyping and Dependent Types in Programming, 2000.
[16] Charles Antony Richard Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (1969) 576–580.
[17] Carroll Morgan, Programming from Specifications, Prentice–Hall, Inc., 1990.
[18] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, Lars Birkedal, Ynot: reasoning with the awkward squad, in: Proceedings of the Twelfth

ACM SIGPLAN International Conference on Functional Programming, ICFP’08, 2008.
[19] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, Lars Birkedal, Ynot: dependent types for imperative programs, in: International

Conference on Functional Programming, ICFP’08, 2008.
[20] Wouter Swierstra, A Hoare logic for the state monad, in: Theorem Proving in Higher Order Logics, Springer, 2009, pp. 440–451.
[21] Wouter Swierstra, A Functional Specification of Effects, Ph.D. thesis, University of Nottingham, 2009.
[22] Wouter Swierstra, Joao Alpuim, From proposition to program: embedding the refinement calculus in Coq, in: International Symposium on Functional

and Logic Programming, Springer, 2016, pp. 29–44.
[23] Wouter Swierstra, Thorsten Altenkirch, Beauty in the beast: a functional semantics for the awkward squad, in: Haskell Workshop, 2007, pp. 25–36.

http://refhub.elsevier.com/S0167-6423(17)30071-0/bib6F6C642D686F6Cs1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib6261636B577269676874s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib726566696E656D656E74484F4Cs1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib6261636Bs1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib626F756C6D65s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib752D66s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib64696A6B73747261s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib646F6E676F6Cs1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib646F6E676F6Cs1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib666C6F7964s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib68797665726E6174s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib68616E6B31s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib686F617265s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib6D6F7267616Es1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib686F6172652D7374617465s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib7377696572737472612D706864s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib666C6F7073s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib666C6F7073s1
http://refhub.elsevier.com/S0167-6423(17)30071-0/bib6265617374s1

	Embedding the reﬁnement calculus in Coq
	1 Introduction
	2 Reﬁnement calculus
	3 Predicate transformers
	4 Embedding in Coq
	4.1 Semantics
	4.2 Composing programs
	4.3 Example: square root

	5 Interactive reﬁnement
	6 Case study: persistent arrays
	6.1 The derivation of init
	6.2 The derivation of set
	6.3 The derivation of get

	7 Discussion
	Acknowledgements
	References

