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Abstract The assessment of return periods of extreme hydrological events often relies on statistical
analysis using generalized extreme value (GEV) distributions. Here we compare the traditional GEV
approach with a novel large ensemble approach to determine the added value of a direct, empirical
distribution-based estimate of extreme hydrological events. Using the global climate and hydrological
models EC-Earth and PCR-GLOBWB, we simulate 2,000 years of global hydrology for a present-day and
2 °C warmer climate. We show that the GEV method has inherent limitations in estimating changes in
hydrological extremes, especially for compound hydrological events. The large ensemble method does
not suffer from these limitations and quantifies the impacts of climate change with greater precision. The
explicit simulation of extreme events enables better hydrological process understanding. We conclude
that future studies focusing on the impact of climatic changes on hydrological extremes should use large
ensemble techniques to properly account for these rare hydrological events.

Plain Language Summary Extreme hydrological events such as droughts and floods can cause
severe harm to people and nature. It is therefore important to understand why and how often they occur
now and in the future. We compare two methods of studying these extreme events: a frequently used
statistical method and a new direct simulation method (called “large ensemble simulations”). We show
that this new method better represents the extreme events, that it reduces the uncertainties of the expected
effects of climate changes on extreme events, and that it allows us to study why extreme events occur. We
therefore are better capable to quantify the impact of climate change on hydrological extremes, and we
recommend the large ensemble method for future studies on extreme events.

1. Introduction

Global climate change affects the hydrological cycle around the world. Projected changes include changes
in climatological precipitation patterns, precipitation types, evaporation amounts, soil moisture availability,
and discharge levels (e.g., Berghuijs et al., 2014; Held & Soden, 2006; Intergovernmental Panel on Climate
Change, 2013; Milly et al., 2005; Wanders & Wada, 2015a). Besides changes in mean conditions, also extreme
hydrological events are projected to change, including more frequent extreme precipitation events, more
severe droughts, and changing flood occurrence (e.g., Min et al., 2011; Prudhomme et al., 2014; Van der Wiel
et al., 2017; Wanders & Van Lanen, 2015; Wanders & Wada, 2015b; Winsemius et al., 2015). These extreme
events can have severe negative impacts on societies and ecosystems. For instance, the recent drought
in South Africa (2015 to present, Baudoin et al., 2017) and the 2017 floods in Bangladesh (Philip et al.,
2018) had severe negative consequences on people’s livelihoods, agricultural production, and the national
economy. Scientific understanding of the probability of occurrence, severity, and characteristics of extreme
hydrological events is therefore of societal importance.

Extreme events can be studied in two ways: (i) based on long time series and sampling or (ii) by means of
a statistical model of the tail of the distribution. The limited length of observational hydrological records
means we frequently rely on the second approach using a statistical model for statements regarding extreme
hydrological events and also for simulation studies such an approach is frequently taken (e.g., Abaurrea &
Cebrian, 2002; Smith et al., 2014; Sousa et al., 2011). These statistical models are used to extrapolate sam-
ple statistics about the extreme values of limited-length observational records, to provide estimates of the
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probabilities of unobserved extreme values. It is assumed that extreme values follow a single given prob-
ability distribution. This is common practice when estimating defense levels against floods and designing
drought protection infrastructure (e.g., dams and reservoirs).

Recent advancements of computing power now allow for sufficiently long model simulations or large ensem-
bles to be created to study extreme events by means of sampling, therewith removing the need to rely on
statistical models, assumptions on distributions, and extrapolation of data. This is especially valuable when
looking at hydrological extremes, which are sensitive to minor changes in the parameters of statistical mod-
els and their extrapolations (Engeland et al., 2004), often leading to great uncertainties about extreme event
estimates. Of course, a modeling approach depends on the quality of modeled data. Model validation with
observations remains important.

Here we aim to contribute to this problem by showing that a large ensemble modeling approach can improve
estimates of the risk of extreme events in the present climate and reduce uncertainties in the future projec-
tions of the occurrence of these extreme events. We use output from a global climate model (GCM) to force
a global hydrological model (GHM) and create two large ensembles of 2,000 years each. Taking the perfect
model approach, we show the advantages of the large ensemble approach and the explicit simulation of
extreme events over the common statistical approach. We provide global estimates of changes in extreme
river discharge that may occur in a world with 2 °C global mean warming, both for extreme low discharge
(droughts) and extreme high discharge (floods). We mostly focus on extreme events with an average return
period of 100 years, which is representative of flood protection levels around the world (Ward et al., 2017)
and sampled relatively well in these simulations.

2. Models and Methods

2.1. Global Climate Model: EC-Earth v2.3

The EC-Earth GCM (Hazeleger et al., 2012) was used to create two large ensembles of meteorological data.
We used the model in the same configuration (v2.3, 1.1° resolution) as in the Coupled Model Intercompari-
son Project phase 5 (CMIP5, Taylor et al., 2012). EC-Earth combines an atmospheric model, an ocean model,
aland surface model, and a sea ice model. Full details on EC-Earth, its configuration, parametrizations, and
individual components are provided in Hazeleger et al. (2012).

The two large ensembles represent two periods which differ in global mean surface temperature (GMST,
supporting information Figure S1; James et al., 2017). The first “present-day” large ensemble was created to
have a modeled absolute GMST equal to observed GMST in the years 2011-2015 (based on HadCRUT4 data;
Morice et al., 2012). The second “2 °C warming” large ensemble was created to have a modeled absolute
GMST equal to observed preindustrial temperature +2 °C warming, motivated by the Paris climate agree-
ments (United Nations Framework Convention on Climate Change, 2015). Each large ensemble consists
of 2,000 years of global, daily meteorological data. More details on the design of the large ensembles are
provided in the supporting information (Buizza et al., 1999).

2.2. Global Hydrological Model : PCR-GLOBWB 2

Terrestrial hydrology was simulated using the GHM PCR-GLOBWB 2 (Sutanudjaja et al., 2018).
PCR-GLOBWB computes a water balance at a 0.5° grid scale, forced by daily precipitation, 2-m air tem-
perature, and potential evapotranspiration from EC-Earth. Potential evapotranspiration was calculated
from EC-Earth variables following the Penman-Monteith procedure (Zotarelli et al., 2010). PCR-GLOBWB
includes modules to simulate land surface processes, groundwater, irrigation, domestic and industrial water
use, and river routing including lakes and man-made reservoirs. Full details are provided in Sutanudjaja
et al. (2018). We compare simulated extreme discharge events to those in the Global Runoff Data Centre
data set.

A bias correction was applied to the EC-Earth variables before they were used as meteorological drivers for
PCR-GLOBWB. Regridding from the coarser EC-Earth grid to the PCR-GLOBWB grid was done by means
of a bilinear interpolation. Near-surface temperatures and potential evapotranspiration were corrected to
have a seasonal cycle and interannual variability as observed by a shift of the mean and a multiplicative cor-
rection. Precipitation was corrected to have the same number of monthly wet days and monthly totals as
observed. This is essential because excessive drizzle in EC-Earth (a common problem in GCMs; Dai, 2006)
otherwise prevents realistic droughts developing in the simulations. Correction parameters were derived by
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Figure 1. Changes in extreme floods in different rivers, assessed using three methods. (left column) GEV fit to 100 years of data, (middle column) GEV fit to
2,000 years of data, and (right column) empirical distribution estimate based on 2,000 years of data. (a-c) Lena, (d-f) Mekong, (g-i) Columbia, and (j-1)
Amazon. Black lines show the present-day climate, red lines show the 2 °C warming projection, shading shows a 95% confidence interval, and green crosses
show observed data. GEV = generalized extreme value.
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Figure 2. Maps for four (a) 20-year and (b) 500-year flood events in the Amazon River. Shown is normalized river
discharge (%), normalization based on the discharge level of the typical 20/500-year event at the river mouth.

comparison of the simulated present-day climate and an observational-based baseline (ERA-Interim reanal-
ysis product, 1979-2016; Dee et al., 2011). The obtained correction factors are applied to both the present-day
and 2 °C warming ensembles assuming that biases in EC-Earth are equal for the two climate states.

2.3. Analysis of Extreme Events

For each land point with an annual mean discharge exceeding 10 m3/s in the present-day climate, we com-
puted the annual minimum and maximum discharge value. This data set was then used to analyze return
levels of extreme events using three methods:

1. Generalized extreme value (GEV) fit to 100 years of data
2. GEV fit to 2,000 years of data
3. Empirical distribution estimate based on 2,000 years of data

The first two methods follow a commonly used statistical approach: GEV estimation. We fit GEVs and esti-
mate confidence intervals to a randomly selected subsample of 100 years and to the full ensemble of 2,000
years (Gilleland & Katz, 2016). The first approach somewhat mimics the reality in operational water man-
agement with limited observational records or short model experiments. Comparing the two GEV methods
shows the benefits of having long modeled time series.

The third method does not rely on an a priori assumption of the statistical distribution of the data. GEV fits
are made under the assumption that the full distribution of extreme events can be described by a GEV func-
tion. This assumption is not always valid, especially for rivers where different runoff generating processes
can cause extreme events. In that case, extreme events may not be part of a single statistical distribution, and
a GEV analysis will be unreliable. We used the full empirical distribution of events as simulated in the large
ensembles and used it to directly determine discharge levels for different return periods. Confidence inter-
vals are estimated by means of bootstrap resampling (N = 10, 000). Comparing the GEV fit based on 2,000
years of data to this empirical distribution approach shows the benefits of direct sampling over a statisti-
cal approach. A comparison of the empirical distribution approach to fits based on a log-normal or Gumbel
distributions is included in supporting information Figures S2 and S3). The GEV-based fits provide better
statistical descriptions of the modeled data than the fits based on the other distributions, we therefore only
show the GEV-based analysis here.

3. Results

3.1. Changes in Extreme Floods

We compare the three methods of analyzing extreme flood events for some of the major rivers around the
world (Figure 1). These rivers were selected to be highlighted because they display different behavior in
response to global climate change and for the different methods. The model reproduces floods in these
rivers quite well (Figures 1c, 1f, 1i, and 11). However, the limited length of observational records prevents
the verification of the most extreme simulated floods.
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(a) Change in 100-year flood, empirical distribution based on 2000 years
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Figure 3. Maps showing statistically significant discharge changes in 100-year flood events (%). (a) Empirical distribution estimate based on 2,000 years of data,
(b) GEV fit to 100 years of data, and (c) GEV fit to 2,000 years of data. In the boxes the total land fraction with significant/nonsignificant negative/positive
change are noted. GEV = generalized extreme value.

Uncertainties in the GEV fit to 100 years of data are so large that we find no significant change in the flood
occurrence for the Lena River (Figure 1a). The GEV fit to 2,000 years shows a statistically significant increase
in flood magnitudes (Figure 1b). Based on the empirical distribution approach, we confirm this increase in
flood magnitude for all return periods (Figure 1c). The GEV-fitted estimates of the 100-year flood magnitude
are 4% and 1% lower for the GEV fits based on 100 and 2,000 years, respectively, than those based on the
empirical distribution (supporting information Figure S4).

For the Mekong River, the GEV fit to 100 years of data again does not show significant change (Figure 1d),
when using 2,000 years of data to fit the GEV (Figure 1e) a statistically significant increase of floods of all
return periods is found. The GEV estimates of the 100-year flood are 8% and 1% lower than the empirical
estimates (supporting information Figure S4). The empirical distribution approach here indicates that only
floods with return periods of up to 200 years are projected to increase; changes of more extreme floods are
uncertain (Figure 1f).

In contrast to the Lena and Mekong Rivers, no changes in flood occurrence are projected in the Columbia
River based on all three methods (Figures 1g-1i). The Columbia River shows a shift in the distribution for
the most extreme floods, caused by cooccurrence of severe precipitation, high snowmelt volumes, and high
groundwater levels. This behavior is not observed in the 2 °C warming climate, likely due to a reduction
of the contribution of snowmelt (Vano et al., 2015) or due to the fact that a temporal shift of the snowmelt
season reduces cooccurrence of these processes.

The GEV fit to 2,000 years of data fails to capture the most extreme events in the Amazon River (Figure 1k).
The GEV-based estimates of the 100-year flood are 8% lower than the empirical distribution for both GEV
fits (supporting information Figure S4), indicating that the use of longer time series in the GEV approach
does not help here. Larger differences are found for greater return periods. In this region we see that the
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Figure 4. As in Figure 1 but here for changes in extreme droughts.

cooccurrence of severe precipitation in different contributing regions of the Amazon causes the most severe
floods in the downstream regions of the river (as in 2014; Espinoza et al., 2014). These very extreme floods are
part of a different distribution than the distribution of less extreme floods. Any statements on discharge levels
of extreme floods or projected changes based on these GEV fits are unreliable. The empirical distribution
approach, which is capable of capturing the double distribution in extreme floods and indeed shows multiple
branches in the southeast catchment with very high discharge for very extreme floods (Figure 2), shows no
projected change in extreme floods in the Amazon River (Figure 11).

We apply the same three methods to investigate changes in the value of the 1-in-100-year flood globally
(Figure 3). In these maps, we only show statistically significant changes to highlight differences in statis-
tical significance between methods. Based on the empirical distribution method, we find that 25% of land
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(a) Change in 100-year drought, empirical distribution based on 2000 years
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Figure 5. As in Figure 3 but here for changes in 100-year droughts.

shows a significant increase of 1-in-100-year floods (Figure 3a). Just 5% of global land shows a significant
decrease in 1-in-100-year floods. The remaining land surface area mostly shows nonsignificant increases in
1-in-100-year floods. This global shift toward more extreme flooding conditions may be related to projected
increases in extreme precipitation (e.g., Min et al., 2011; Van der Wiel et al., 2017), while at high latitudes
changing precipitation types may contribute (Bintanja & Andry, 2017).

The 100-year-based GEV fit does not provide any statistically significant estimates of changes in extreme
floods (Figure 3b). The large-scale pattern of changes estimated by means of the GEV fit to 2,000 years is
comparable to that based on the empirical distribution approach (23% of land with significant worsening
floods). Regionally differences exist; for example, in West Africa, India, and along the Nile the empirical
distribution method provides more statistical significance.

3.2. Changes in Extreme Droughts

We repeat the above analysis for extreme drought events. The GEV fits for extreme droughts have smaller
confidence intervals (Figure 4) than those for extreme floods (Figure 1). Based on the comparison of the GEV
fits to 2,000 years and the large ensemble bootstrap resampling method based on 2,000 years, we suspect
the GEV fits are overconfident. Droughts in the Lena and Columbia Rivers are simulated quite well, though
again very extreme droughts can not be constrained based on observational data (Figures 4c and 4i). For the
Amazon River, the observed record suggests drought events are best described by a double GEV distribution,
which is, however, not found for the simulated values (Figure 41). The observational record for the Mekong
River is relatively short (34 years), with one event well outside the simulated range. This one event can either
be a very extreme event, more extreme than 34 years, or it is the first event of a second distribution. The
limited length of the record does not allow such conclusions, nor can we say much about the quality of the
model chain for very extreme events here.

The Lena River is the only river shown here, which shows a decreasing trend in extreme drought magni-
tude (Figures 4a-4c). The GEV fits (Figures 4a and 4b) have difficulties capturing the higher return levels,
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which are caused by prolonged periods of below 0 °C temperature, below normal precipitation, and low
groundwater levels. These are typically multiyear droughts, where two consecutive drought events cause
a strong reduction in river discharge. These multiyear events violate the GEV assumption that events are
independent, which could be the reason for the failing fits here.

The benefits of having 2,000 years of data over 100 years of data are most obvious for the Amazon River,
which shows a significant increase of droughts only when the full large ensemble is taken into account
(Figures 4j and 4k), and for the Mekong River, where the GEV fit to 100 years of data leads to a different
conclusion than the GEV fit to 2,000 years of data (Figures 4d and 4e). In general, the difference between
the GEV fits and the empirical distribution is smaller for the 2,000-year-based fits (supporting information
Figure S5).

The benefits of the empirical distribution method over the GEV method are largest for the Mekong River.
The GEV fit to 2,000 years does not provide a good description of the most extreme drought events (Figure 4e
and supporting information Figure S5). As a result, the extreme discharge droughts are underestimated in
the GEV fit compared to the values from the empirical distribution approach (Figure 4f).

Figure 5a shows the projected change for 100-year droughts following the large ensemble approach. The
large-scale pattern reflects changes in large-scale precipitation patterns. For example, in Europe, a north-
ward shift of summer precipitation (Intergovernmental Panel on Climate Change, 2013) leads to more severe
100-year droughts in the Mediterranean region and central Europe (Rhone, —20%, Danube —12%, and Rhine
—14%), though less severe droughts in Scandinavia. Rivers located in the Boreal North show a strong reduc-
tion in drought severity, here global warming causes a shortening of the low flow season, reducing drought
magnitudes. In equatorial Africa the widening of the Hadley circulation (Hu & Fu, 2007; Lu et al., 2007)
results in worsening of droughts magnitude in the subtropical dry zone (e.g., Nile, —8%).

The 2,000-year GEV-based estimates of 100-year drought events (Figure 5c) shows comparable large-scale
patterns though with less statistical significance. At smaller scales there are differences, for example, in New
Guinea island where the large ensemble method indicates more severe droughts and the GEV methods show
no significant change. Comparing the two 2,000-year-based methods (Figures 5a and 5c), we find that more
rivers show statistically significant changes for the empirical distribution method (41% versus 28% of land
surface, respectively), despite the suspected overconfidence of GEV drought estimates (Figure 4).

4. Discussion

The large ensembles as simulated here represent a chosen climate state. This is fundamentally different
from observational records (which are subject to changing management conditions and transient climate)
and transient model simulations. Analysis of transient time series requires assumptions to be made on driv-
ing covariates, for example, GMST. The design of the large ensembles used here, in combination with the
empirical distribution approach, limits the need for (statistical) assumptions, descriptions, and corrections.
However, for analysis of events of very high return periods sampling uncertainties remain large.

Although the hydrological model has been extensively validated and shows good agreement with observa-
tional records (Sutanudjaja et al., 2018), there is insufficient observational data to evaluate the performance
of PCR-GLOBWRB for extreme floods and droughts. Repeating the analysis with different GCMs and differ-
ent GHMs will provide insight into the model sensitivity of the results. This is important as both EC-Earth
and PCR-GLOBWB are imperfect models: coarse model resolution, model parameterizations, and missing
physical processes give rise to biases in modeled fields. The present analysis was done under the perfect
model assumption. This assumption can be relaxed in a multimodel framework, because the results would
no longer depend on a single imperfect model formulation and biases tend to reduce (Tebaldi & Knutti,
2007). When looking at relative changes, as done here, model biases also partly cancel. Finally, by combining
multiple GCMs with multiple GHMs, the dominant sources of uncertainty in projections (meteorolog-
ical variability, hydrological response, or model formulation) can be isolated (e.g., Marx et al., 2018;
Thober et al., 2017).

Though having an off-line GHM provides us with the opportunity to apply a bias correction to the meteo-
rological forcing variables, there is no closure of the water budget in the complete land-atmosphere system
(water budget closure is ensured in the GCM and GHM separately). The lack of full water system closure may
introduce biases in future projections of drought, most notably due to the off-line computation of potential
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evapotranspiration (Kay et al., 2018; Milly & Dunne, 2017). Hydrological variables from GCMs do not suffer
from this bias. Direct analysis of GCM hydrology is therefore a possible solution (e.g., Van der Wiel et al.,
2018). However, representation of hydrological processes in GCMs is not as sophisticated as in GHMs, often
neglecting the groundwater system, human-water interaction, and river routing (Bierkens, 2015). This cre-
ates a need for the GCM-GHM modeling sequence. Here we have assumed that the uncertainties introduced
by the coupling are compensated by a more realistic hydrologic representation of the system.

5. Conclusions

The aim of this analysis was to show the added value of large ensemble GCM-GHM simulations for the study
of extreme hydrological events. This novel method complements existing methods based on observational
data, statistical extrapolation, and short (multi)model simulations. By means of a technical comparison we
have identified limitations of GEV approximations and shown that these are resolved when extreme events
are sampled directly from the empirical distribution of river discharge. The three main advantages are (i)
improved estimates of discharge levels of extreme events, (ii) better constraints on projections of changes in
extreme events due to global climate change, and (iii) information on the physics of extreme events.

Increasing computing power now allows us to simulate sufficiently long time series or large ensembles to
sample extreme events directly from their empirical distribution. We have shown that the described limita-
tions of GEV estimates do not apply to the large ensemble approach, assuming the model simulates extreme
events and change therein with some accuracy. We therefore strongly recommend the use of large ensemble
techniques for future studies of extreme hydrological events and note that similar advances can be made in
studies of climate-induced extreme events in other fields.
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