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A B S T R A C T   

This paper evaluates the impact of intracity routes and weather conditions on pick-up waiting time, trip duration, 
and ride fare with a focus on the ride-sourcing mode in the city of Philadelphia, in the U.S. For our analysis, ride 
estimate data has been collected from Uber and Lyft developers’ Application Program Interfaces (API), and 
weather information has been collected from Yahoo weather API during summer 2018. It should be noted that 
the generated trips for both ride-sourcing services are for solo and pool rides. Time fixed effect ordinary least 
squares model was adopted in this paper for analysis purposes. 

The results show that trips originated from the city center zone have higher fares compared to the trips head 
toward the city center. Further, it is observed that trips with origins and destinations close to the city center zone 
have longer trip durations. Our findings confirm that pick-up waiting time, trip duration, and fare increase in 
extreme weather conditions during weekdays; while they decrease during weekends. In the end, comparing Uber 
with its main competitor, Lyft, shows that Uber rides are faster than Lyft. However, Lyft rides are cheaper and 
more accessible compared to Uber in both pool and solo rides.   

1. Introduction and background 

Information and Communication Technologies (ICT) create new 
types of value for both companies and customers (Laurell & Sandstr€om, 
2016; Pihl, 2014; Pihl & Sandstr€om, 2013). Companies such as Uber, 
Airbnb, Lyft, e-Bay, Craigslist, and Amazon developed ICT based busi-
ness models that provide affordable services for customers. These busi-
ness models provide new levels of scalability that enable companies to 
serve thousands of customers. Simultaneously, they generate massive 
amounts of raw data regarding their business with their customers. This 
data reflects the day to day dynamics of the companies’ performance 
and their customers’ buying behavior (e.g. Liu et al., 2017; Weckstr€om 
et al., 2018). Companies may get benefits from this data to assess their 
financial and non-financial business operations by employing 
data-driven methods (e.g. Hensher, 1997; Liu et al., 2017). The output of 
such analytic methods enables managers to better track and interpret 
variations in companies’ performances and provide solutions to enhance 
the quality of services (Jiao, 2018; Terrien, Maniak, Chen, & Shaheen, 
2016). For instance, ride-sourcing companies use their customer data to 

better understand their travel behaviors in different situations (i.e. 
weather conditions), locations and different dates that provide valuable 
insights helping to enhance their services. 

Uber and Lyft are the examples of ride-sourcing companies that use 
ICT platforms. These companies are known as Transportation Network 
Companies (TNCs), which simply work through mobile applications that 
connect individuals (i.e. customers) willing to pay for a ride with in-
dependent drivers willing to provide a ride with their privately-owned 
vehicles. In the concept of ride-sourcing business, these privately- 
owned vehicles are non-dedicated to providing a transport service to 
the public. In the ride-sourcing business, riders open a TNC’s mobile 
application and search for the available rides for a specific route. Then, 
they can choose to request a ride. If a ride request is sent, then the TNC’s 
application calculates the fare according to the time and the distance 
that will be traveled and bills the rider automatically. In 2016, Uber has 
been operated in over 503 cities across 77 countries. In the United 
Kingdom, London alone, more than 1 million Londoners have shared 
their trips by using Uber services (Rodionova, 2016). These Uber ser-
vices motivated riders to not use their own vehicles for their daily 
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transportation. Therefore, more than 700,000 driving miles and conse-
quently 50,000 L of petrol have been saved that decreased the emission 
of carbon dioxide by 124 metric tons (Rodionova, 2016). Lyft also 
operates in 30 U.S. states (Harding, Kandlikar, & Gulati, 2016). In 2017, 
Uber and Lyft owned 54% and 37% of the United States ride-sourcing 
market, respectively (Certify, 2017). 

The popularity of these companies is mainly due to their conve-
nience, lower cost and faster services in comparison with traditional taxi 
systems. For instance, Rayle, Shaheen, Chan, Dai, and Cervero (2014) 
showed that waiting time for the ride-sourcing services in San Francisco 
is significantly lower than traditional taxi services. Another study 
claimed that the average price for an Uber trip in Los Angeles was $7.26 
compared to $17.09 for an equivalent traditional taxi trip (i.e. 42.48% 
cheaper) (Smart, Rowe, Hawken, & others, 2015). In terms of conve-
nience, TNCs provide automatic online payment through the mobile 
applications, which is much more convenient, safer and faster than other 
payment options (i.e. using cash or debit/credit card) used by traditional 
taxi systems (Hughes & MacKenzie, 2016). In comparison with other 
modes of public transportation (buses, subways), there have been a lot of 
debates regarding the confrontation between ride-sourcing and public 
transportation services in North America in terms of their convenience, 
cost fare, traffic and their impacts of environment (Hill, 2018). Riders in 
big cities often prefer Uber or Lyft services due to their convenience in 
terms of the availability in different locations and fast services even 
though their cost fares are higher. This preference has increased the 
annual rate of using ride-sourcing services (Hill, 2018). 

Demand in the ride-sourcing market has a large fluctuation (de Souza 
Silva, de Andrade, & Alves Maia, 2018; Schwieterman & Smith, 2018; 
Shokoohyar, 2019). Drivers also have flexibility in deciding whether, 
when and where to provide services to maximize their expected earn-
ings. This flexibility causes a variable supply of drivers. To improve the 
quality of ride-sourcing services, and better manage demand fluctua-
tions, TNCs employ fare adaption policies (Zhang, Wen, & Zeng, 2016). 
A fare adaption policy used by TNCs is a strong tool to equilibrate the 
demand (riding requests) with the supply (drivers). This policy results in 
developing dynamic pricing methods to mitigate the impact of temporal 
demand fluctuations on service and in turn increase the profit at given 
locations (Jiao, 2018; Ozkan & Ward, 2017). Furthermore, the policy 
affects non-financial performance of TNCs, such as average pick-up 
waiting times and average trip durations (Cohen & Zhang, 2017). This 
influences the preference of customers to use ride-sourcing services 
versus traditional taxi systems or public transit systems (Jiao, 2018). 

Ride-sourcing platforms from supply side have usually been studied 
from two different perspectives. First perspective considers the de-
pendency of the supply of drivers to fare adaption policies. Hall, Ken-
drick, and Nosko (2015) investigated the effects of dynamic fare pricing 
on the average waiting times in high demand locations. They showed 
that fare adaption policies vary depending on areas of operations, times 
of the ride, length of the ride, and other factors that are not transparent 
to outside observers (Cohen & Zhang, 2017; Liu et al., 2017; Ozkan & 
Ward, 2017; Scheiber, 2017; Schwieterman & Smith, 2018; Shokoohyar, 
2018b; Zhang et al., 2016). Employing an adaption fare policy closes the 
gap between supply and demand. This in turn leads to improve out-
comes for both riders (i.e. a reduction in pick-up waiting times) and 
driver partners (higher earnings). Chen and Sheldon (2016, p. 455) 
studied the impact of dynamic pricing of trips on drivers’ behaviors in a 
ride-sourcing platform. They showed that drivers adjust their avail-
ability in order to drive more at high surge times. Guda and Sub-
ramanian (2019) studied how sharing market demand forecast with 
drivers and using surge pricing can be useful for ride-sourcing platforms 
to control the supply of drivers in different locations. Few studies also 
directly investigated the impact of fare adaption polices on drivers’ 
strategies. For instance, Malin and Chandler (2017) interviewed with 18 
Pittsburg-based Uber and Lyft drivers. Shokoohyar (2018a) studied the 
impact of fare adaption policies through analyzing drivers’ comments on 
social networks. These studies confirm the significant impact of fare 

adaption polices on drivers’ supply. 
The second perspective considers the relation between supply of 

drivers in different locations and the corresponding socio-economics 
factors and transportation infrastructures. Several studies showed that 
the supply of drivers is higher in denser areas and Uber and Lyft are more 
accessible in these areas (Hughes & MacKenzie, 2016; Shokoohyar, 
Sobhani, & Ramezanpour Nargesi, 2020; Sobhani & Wahab, 2017). 
Shokoohyar et al. (2020) observed that Uber is more accessible in areas 
with higher transit score in the city of Philadelphia. This result is in line 
with findings of Wang and Mu (2018). Jiang, Chen, Mislove, and Wilson 
(2018) investigated the accessibility of Uber services and minority rates 
in different urban locations. Their findings conclude that there is no 
significance relationship between them. However, the above perspec-
tives rarely consider the effects of weather conditions on the supply of 
drivers. 

Understanding the effects of weather conditions on human travel 
behavior is essential for policy makers and traffic managers to get in-
sights regarding changes of travel decisions (B€ocker, Dijst, & Prillwitz, 
2013; Cools & Creemers, 2013; Cools, Moons, & Wets, 2010; Cramer & 
Krueger, 2016; Shokoohyar, Qi, & Katok, 2019). Trip cancellation, 
changes in the destination of traveling, changes in the time of in-city 
travel, changes in the transport mode are all examples of the potential 
travel decision modifications that affect traffic and also the demand for 
different mode of transportations including ride-sourcing services 
(Cramer & Krueger, 2016; Koetse & Rietveld, 2009; Rayle, Dai, Chan, 
Cervero, & Shaheen, 2016; Singhal, Kamga, & Yazici, 2014; Sumalee, 
Uchida, & Lam, 2011). For instance, Rose, Ahmed, Figliozzi, and Jakob 
(2011) examined the relationship between weather and cycling travel 
behavior. Their studies revealed that warmer temperatures and less 
rainfall increase bicycle traffic in cities while heavy rain reduces the 
bicycle traffic as cyclists prefer to use other modes of transportation. A 
survey among transit users in Salt Lake City, Utah demonstrated that 
given 12% of transit riders avoided transit due to unfavorable weather 
conditions (Outwater et al., 2011). Stover and McCormack (2012) also 
examined the effects of weather conditions on daily bus ridership. Their 
findings revealed that adverse weather conditions like high winds, 
thunderstorms, and heavy rains have a negative impact on using transit 
ridership. People in these weather situations are usually prefer to use 
their own vehicles or ride-sourcing services (Cramer & Krueger, 2016). 
Therefore, the demand for rid-sourcing services increases. Brodeur and 
Nield study demonstrated a significant correlation between the number 
of Uber rides and rainy weather in New York City (Brodeur & Nield, 
2018). 

Similar to weather condition effects, both pick-up and drop-off lo-
cations are also factors that might significantly influence the demand in 
different locations, and consequently, the dynamics of ride fares. Spe-
cifically, the effects of all these factors on ride fares, average pick-up 
times, and/or trip durations are important for customers, and might 
have an effect on their preferences when requesting a ride-sourcing 
service from a given TNC company (i.e. using UberPool versus UberX, 
or using Lyft vs Uber). For instance, Brodeur and Nield (2017) demon-
strated that the number of Uber rides increased by around 25% in New 
York City when it was raining, while the number of taxi rides increased 
by only 4% during the same rainy hours. These findings suggested that 
the fare adoption policy used by Uber increases the supply of drivers to 
cover the high demand of rider requests during rainy weather condi-
tions. They also concluded that it is easier to catch a ride in rainy hours 
than in non-rainy hours in high demand locations as the fare adoption 
policy of Uber stimulates riders by increasing riding fares. That being 
said, to the best of authors’ knowledge, previous studies barely explored 
non-financial performances of TNCs and their fare adoption policies 
together in relation to weather conditions, origin-destination of trips, 
and different types of ride-sourcing services (i.e. pool versus solo rides). 
Additionally, there is no study comparing different ride-sourcing pro-
viders in this context. Hence, this is where our study stands. 
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1.1. Study context 

In order to evaluate TNCs fare adaption policies and span the 
research gap in the literature, this study was twofold: 1) evaluating the 
effects of weather conditions, origin-destination locations, and types of 
ride-sourcing on non-financial performance of TNCs (i.e. average pick- 
up times, and trip durations), and 2) investigating the impact of 
weather conditions, origin-destination locations, and different types of 
ride-sourcing (i.e. Solo and Pool) on the ride fare of two major ride- 
sourcing service providers (i.e. Uber and Lyft). Moreover, findings 
from the Uber and Lyft data analysis are compared in the paper. The city 
of Philadelphia, U.S., was selected for a case study as both solo and pool 
rides are provided by both Uber and Lyft in most areas of the city. The 
Uber, Lyft and weather conditions data were collected from June 7th to 
June 20th, in summer 2018 in Philadelphia. This paper contributes to 
the literature by providing valuable insights into the TNCs by studying 
how demands react to different weather, and/or market conditions in 
different locations. For this reason, extensive descriptive and the Ordi-
nary Least Squares (OLS) modeling were employed in the paper. 

Findings are interpreted from both customers and ride-sourcing service 
providers’ sides. 

The reminder of this paper is organized as follows. Section 2 de-
scribes the methodologies used to collect and analyze data. Section 3 
presents the model results with a focus on trip pick-up waiting time, trip 
duration, and trip fare in details. Finally, policy implications of the 
findings, summary of the paper and future research are discussed in 
Section 4 and 5. 

2. Data collection and methodology 

In this section, data collection procedure and the employed time 
fixed effect Ordinary Least Squares model (OLS) for analysis purposes 
are presented in detail. 

2.1. Data collection 

Sample data was collected by accessing three Application Program 
Interfaces (API): Uber, Lyft, and Yahoo weather. Uber’s and Lyft’s APIs 

Fig. 1. Average Weekdays Pick-up Waiting Time (OVT) for Uber and Lyft 
Note: in Uber pool, Uber solo, Lyft Pool, and Lyft Solo, the radius of the circle shown in the city center corresponds to average waiting time of 164.64, 163.07, 130.95, 
and 125.83 s, respectively. 
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are developed to help third-party developers to incorporate their ser-
vices into their application. Through Uber and Lyft APIs, third-parties 
can estimate the ride fare range (i.e. low and high), the pick-up wait-
ing time, the trip duration, and the trip distance for a given origin and 
destination offered by Uber and Lyft at the origin. Yahoo weather API 
provides up-to-date weather information for the given location. 

This study covers an area of 8.5 by 14 miles around Philadelphia city 
center (Philadelphia city hall) (see Fig. 1). The study area is divided into 
5 zones resulted in a 5 � 5 grid with 25 locations (points) as potential 
origin-destination nodes. This study grid is selected such that customers 
are able to request both solo and pool ride-sourcing services offered by 
Uber and Lyft. For our study, we collected ride estimates for solo and 
pool rides. To be sure, the study area covers locations with different road 
types and population densities. Ride data (trip duration, trip distance 
and fare range) was collected for hypothetical travels between any two 
points of the grid. Additionally, we collected pick-up waiting time, and 
weather conditions for any origin of the hypothetical travel. Note that 
both Uber and Lyft provide pick-up waiting times based on the origin of 
the trip, and therefore the pick-up waiting times do not depend on the 
trip destination. 

Accessing Uber and Lyft APIs are free and therefore a very large 
dataset can be collected free of charge with an accurate pick-up and 
drop-off locations. Such collected data from Uber and Lyft are exten-
sively used and trusted in studying ride-sourcing platforms (L. Chen, 
Mislove, & Wilson, 2015; Jiao, 2018; Shokoohyar et al., 2020; Wang & 
Mu, 2018). Uber and Lyft pick-up waiting time, travel time and trip fare 
are estimations based on GPS data collected from their cabs. Estimates 
can vary based on demand patterns and real-world factors like traffic or 
road construction. Uber and Lyft claim that these estimates are very 
close to the actual data, but they are not guaranteed (Golson, 2016; 
Joseph, 2018; Uber, 2019). 

The data was collected in June 2018 which generated 1,004,344 
trips in total (505616 Uber rides and 498728 Lyft rides). Collected at-
tributes of the rid-sourcing trips are presented in Table 1. Pick-up 
waiting time refers to passengers’ waiting time for their ride (OVT, i.e. 
Out of Vehicle Time), and trip duration refers to the travel time in the 
vehicle (IVT, i.e. In-vehicle Time). 

2.2. Methodology 

This research estimates the impact of several factors on the ride- 
sourcing platforms: trip origin and destination, pool or solo ride, 
weather condition, and trip distance. 

In this section, first, the variables incorporated in the analysis are 
introduced. Table 2 summarizes descriptive statistics of these variables. 
Second, the contribution of these variables and the reason why they are 
incorporated in our analysis are discussed based on the literature. Third, 
three regression models are developed to study pick-up waiting time 
(model (1)), in-vehicle time (model ((2))) and trip fare changes (model 
((3))). Fourth, the estimated models are presented, and evaluated while 
their coefficients are interpreted. 

Since studies showed that ride-sourcing platform accessibility (pick- 

up waiting time) significantly depends on the origin related properties 
(Hughes & MacKenzie, 2016; Thebault-Spieker, Terveen, & Hecht, 
2017; Wang & Mu, 2018), distance of origin and destination of each ride 
from the city center using haversine distance were also generated and 
added to our dataset. Haversine distance measures the great-circle dis-
tance between two points on a sphere given their longitudes and lati-
tudes. We incorporate these variables to analyze the impact of location 
related properties such as road and population density on rides in the 
ride-sourcing network. 

Uber and Lyft both offer solo and pool rides. Their cheapest solo rides 
are called UberX and Lyft, respectively. In solo rides, each driver is 
matched and assigned to only one rider for the requested pick-up and 
drop-off location. On the other hand, in pool rides, riders can share the 
ride with others. On the other hand, pool rides are referred to as Uber-
Pool and Lyft-line, respectively. In the pool ride, riders can enjoy the 
benefit of sharing the cost of the ride with others. However, these riders 
may face a longer trip duration and pick-up waiting time. During pool 
rides, several drop-offs and pick-ups may occur, which can result in a 
longer trip duration. Additionally, a driver who already has a rider in the 
car may not be able to freely modify the route of its ride to pick up a 
newly added rider. In this case, the new rider may face a longer pick-up 
waiting time compared to a solo ride. To control for the impact of ride 
type on the ride-sourcing platforms, we created indicator variables of 
UberPool, UberX, Lyft-line, and Lyft. In addition, using these variables, 
we compared Uber and Lyft in terms of pick-up waiting time, trip 
duration and fare. 

Extreme weather conditions may significantly impact the ride- 
sourcing platform. Brodeur and Nield studied the impact of rainy 
weather conditions on the accessibility of Uber and taxi in the New York 
City (NYC) (Brodeur & Nield, 2017). They observe that Uber fare goes 
up when it’s raining, which encourages higher supply. In turn, this in-
creases the number of Uber rides compared to taxi rides. To study how 
the weather may impact ride-sourcing platforms. In the collected data, 
we observed 13 unique weather conditions during our data collection 
period: mostly cloudy, partly cloudy, cloudy, mostly clear, clear, 
showers, thunderstorms, scattered showers, rain, heavy rain, sunny, 
mostly sunny, and breezy. We categorize the weather conditions by 
creating an indicator variable called extreme weather condition. This 
indicator is equal to 1 when there is heavy rain, rain, showers, thun-
derstorms, or scattered showers and 0 otherwise. In our dataset only 8% 
of the data points are during the extreme weather and the occurrence of 
each extreme weather condition (heavy rain, rain, showers etc.) in our 
collected data is not enough to draw a conclusion regarding their 
exclusive impact on ride-sourcing platforms. Fig. 2 presents the fre-
quency of weather conditions at each day. Note that this figure should be 
read vertically. In this figure, each cell represents the percentage of time 
a weather condition has occurred at each day. For instance, in the first 
column, on Jun 7th only 12% of the data points (ride-sourcing trip 
requested) were collected (completed) during the mostly clear weather 
condition. 34% and 31% of data points were collected during partly and 

Table 1 
Ride-sourcing trips’ attributes.  

Attribute Description 

Time Time that the request is made 
Provider {Uber, Lyft} 
Service {Pool, Solo} 
Origin Origin latitude and longitude 
Destination Destination latitude and longitude 
Pick-up Waiting Time (OVT) In seconds 
Trip Duration (IVT) In seconds 
Trip Distance In Mile 
Fare Range (Low, High) In dollars 
Weather Condition Shower, Thunderstorms, Heavy Rain, etc.  

Table 2 
Summary of descriptive statistics.  

Attribute Provider Number of 
Observations 

Mean Standard 
Error 

Pick-up Waiting Time 
(OVT) 

Uber 505616 270.40 0.18 
Lyft 498728 236.52 0.21 

Trip Duration (IVT) Uber 505616 1044.91 0.49 
Lyft 498728 1091.44 0.54 

Fare Uber 505616 14.19 0.008 
Lyft 498728 13.40 0.008 

Trip Distance Uber 505616 6.30 0.003 
Lyft 498728 6.60 0.004 

Origin to City Center 
Distance 

Uber 505616 4.59 0.002 
Lyft 498728 4.57 0.008 

Destination to City 
Center Distance 

Uber 505616 4.63 0.002 
Lyft 498728 4.63 0.008  
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mostly cloudy weather conditions. According to this table, we did not 
have extreme weather condition in different hours of the day (Jun 7th) 
and therefore, there is no related data points. 

Hughes and MacKenzie observed that Uber’s accessibility is higher 
during day time and lower during night time (Hughes & MacKenzie, 
2016). To control the effect of time in our analysis, we incorporate time 
fixed effect. Several studies have shown that travel behavior differs 
during weekdays and weekends (Lockwood, Srinivasan, & Bhat, 2005; 
Soh et al., 2010). During weekend traveling and eating, followed by 
routines of daily life account for 60% of total weekend activities and 
work or school related activities are only about 4.5% of the total ac-
tivities. On the other hand, work or school related activities are the 
common activities during weekdays (Zhong & Hunt, 2010). To control 
for the weekdays and weekends effect, we therefore run two separate 
Ordinary Least Squares (OLS) regression models by including only 
weekday or weekend observations. Using OLS, we analyze three 
dependent ride-sourcing platforms attributes: 1) pick-up waiting time 
(OVT) (1), 2) trip In Vehicle Time (IVT) (2), and 3) ride fare (3). 

The fare included in our analysis (model (3)) is the average of low 
and high estimated fare. To make the coefficient tractable, variables are 
uniformly normalized in a range of 0–1. We denote data collected for a 
ride request from pick-up location (origin) denoted by o to drop-off 
location (destination) denoted by d at time t by subscript ðo; dÞ; t. In 
these models, T is 1 � 24 matrix of time fixed effect dummy variables 
and α is 24 � 1 matrix of time fixed effect coefficient. Note that the value 
of the nth column of matrix T for observation ðo; dÞ; t is 1 if the hour of the 
day that the data is collected is in a range of ½n; nþ1Þ and 0 otherwise. In 
the following models, the error term is denoted by u. Uber and Lyft APIs 
provide pick-up waiting time (OVT) for any ride request based on the 
pick-up location, and the collected OVT is independent of the drop-off 
location. Therefore, in model (1), the subscript only depends on the 
pick-up location. The models’ specifications are as follows: 

OVTðoÞ;t ¼ β0þ β1½Origin to City Center Distance�ðoÞ;t
þ β2½Extreme Weather Condition�ðoÞ;t þ β3½UberPool�ðoÞ;t
þ β4½UberX�ðoÞ;t þ β5½Lyft�ðoÞ;t þTðoÞ;tαþ uðoÞ;t

(1)  

IVTðo;dÞ;t¼β0þβ1½Origin to City Center Distance�ðo;dÞ;t
þβ2 ½Destination to City Center Distance�ðo;dÞ;tþβ3 ½Distance�ðo;dÞ;t
þβ4½Extreme Weather Condition�ðo;dÞ;tþβ5½UberPool�ðo;dÞ;t
þβ6½UberX�ðo;dÞ;tþβ7½Lyft�ðo;dÞ;tþTðo;dÞ;t αþuðo;dÞ;t

(2)  

Fareðo;dÞ;t ¼ β0þ β1½Origin to City Center Distance�ðo;dÞ;t
þ β2 ½Destination to City Center Distance�ðo;dÞ;t
þ β3 ½Distance�ðo;dÞ;t þ β4½Extreme Weather Condition�

þ β5½UberPool�ðo;dÞ;t þ β6½UberX�ðo;dÞ;t þ β7½Lyft�ðo;dÞ;t þTðo;dÞ;t α
þ uðo;dÞ;t

(3) 

All models in our study performed well. They all passed the F test (p- 
Value< 0.001). Heteroskedasticity robust standard error was used in all 
models to avoid the concern of heteroskedasticity. The variance infla-
tion factor (VIF) tests were applied to quantify the severity of multi-
collinearity, and the result shows that multicollinearity is not a 
significant issue in our models as the VIFs are all bellow 5. 

Studying these three models can help TNC managers to better 
equilibrate demand with supply by implying that how demand changes 
may affect TNC performance (financial and non-financial). Generally 
speaking, demand in ride-sourcing platforms may decrease non- 
financial performance of TNCs such as pick-up waiting time and trip 
travel time as well as financial performance of TNCs, such as ride- 
sourcing trip fare. Furthermore, demand level may negatively depend 
on the availability of substitute services from competitors. Extreme 
weather conditions can also negatively impact both supply and demand 
affecting financial and non-financial performance of TNCs. All these 
relationships are numerically discussed in this study. 

3. Model results 

With respect to the OLS model estimation for the location grid, we 
analyze and compare Uber and Lyft platforms from three dependent 
attributes point of view: pick-up waiting time, trip in vehicle time, and 
fare. 

3.1. Trip pick-up waiting time (OVT) 

Fig. 1 represents average pick-up waiting time during weekdays in 
obtaining pool (left column) or solo (right column) rides from Uber 
(black circles in the top row) or Lyft (purple circles in the bottom row). 
The figure provides two main observations. First, the average waiting 
time is not uniformly distributed. In all figures, the average waiting time 
is lower in the city center, and it increases by getting further away from 
the city center. This observation indicates that more drivers are avail-
able in the city center compared to the areas around it. Second, 
comparing Uber and Lyft, we observe that Lyft is more accessible than 

Fig. 2. Frequency of Weather Conditions at each Day (Jun 7th to Jun 20th).  
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Uber. As there are no significant differences between average waiting 
pick-up time between weekdays and weekends, the figure shows that the 
average waiting pick-up times during weekends is omitted for space and 
is available upon request. 

To formally test our observations, we run OLS regression in two 
models by considering weekdays and weekends separately (i.e. OLS 
model (1)). The regression summary is presented in Table 3, with 
waiting pick-up time as a dependent variable, and the independent 
variables shown in the first column. The coefficient of determination 
(R2) shows that 15% of the variance in the pick-up waiting time is 
predictable from the independent variables. This model only includes 
origin to city center distance variable, weather condition and service 
type variables (i.e. UberPool, UberX, Lyft and Lyft line). Several studies 
have shown that pick-up waiting time significantly depend on the socio- 
demographic factors of the pick-up area like population density, mi-
nority rate, transportation infrastructure (Hughes & MacKenzie, 2016; 
Jiang et al., 2018; Shokoohyar et al., 2020; Wang & Mu, 2018). 
Including these factors may improve the prediction power of this model 
as well, however analyzing the impact of socio-demographic factors on 
the pick-up waiting time was not in the scope of this study. 

Table 3 demonstrates four findings. First, the coefficient of Origin to 
City Center distance is positive and significant in both models. This 
result confirms that the waiting pick-up time is lower in the city center 
compared to locations around it during both weekdays and weekends. 

Second, the coefficient of the Extreme Weather Condition is signifi-
cant in both models. The coefficient is positive in the weekdays model, 
while, negative in the weekends model which indicates that extreme 
weather condition has an opposite impact on pick-up waiting time on 
weekdays and weekends. This can be due to the fact that during week-
ends, people’s trips are mostly leisure-related and not mandatory. 
Therefore, an extreme weather condition may cancel leisure-related 
rides and decrease the ride demand. A decrease in the ride demand re-
sults in a lower pick-up waiting time. On the other hand, weekday rides 
are mostly work-related; therefore, are mandatory and cannot be 
canceled due to just extreme weather conditions. The extreme weather 
conditions during weekdays even increase the demand as people may try 
to avoid it by getting Uber or Lyft rides. An increment in the ride demand 
then increases the waiting time and decreases the accessibility of Uber 
and Lyft rides. 

Third, in both models, it is observed that the estimated coefficient of 
pool rides is larger than solo rides for both Uber and Lyft. In pool rides, a 
driver cannot freely modify the route to pick up a new rider when he 
already has a rider in the car. This factor results in a higher waiting time 
of pool rides compared to solo rides. 

Finally, based on the OLS results, it is indicated that Uber has a 
higher waiting time in both pool and solo rides compared to Lyft. 

3.2. Trip in vehicle time (IVT) 

In this section, we analyze the impact of the origin, destination, 
distance, and weather on the trip duration in separate models consid-
ering weekdays and weekends. The summary of the regression analysis 

(i.e. OLS model (2)) is presented in Table 4 with Trip duration as 
dependent variable and independent variables as shown in the first 
column. 

The OLS model results on IVT reveals five main points. First, the 
negative and significant coefficients of Origin to City Center Distance 
and Destination to City Center Distance show that the trip duration of a 
ride is on average higher when entering the city center compared to 
leaving the city center. This can be due to the occurrence of more traffic 
congestion events in the downtown area. Second, the positive coefficient 
of distance shows that trip duration increases in the distance between 
the origin and the destination. Third, extreme weather conditions have a 
positive impact on the trip durations in weekdays; while it has a negative 
impact in weekends. This result follows the same logic explained in the 
impact of weather conditions on pick-up waiting time. The extreme 
weather condition increases demand in weekdays and results in more 
trips. More trips then lead to a higher road congestion and, conse-
quently, increase trip durations. On the other hand, extreme weather 
condition decreases the demand during weekends, leading to a lower 
road congestion and reducing trip durations. Fourth, on average, Uber 
pool rides have longer trip durations compared to the Uber solo rides. 
This can be due to the several pick up and drop off riders that share a 
same trip together. However, there is no significant difference between 
Lyft line and solo rides in terms of trip duration. Fifth, Uber’s service is 
faster compared to Lyft in both pool and solo rides. 

3.3. Trip fare 

The impact of trip origin, destination, and weather on fares offered 
by Uber and Lyft is discussed in this section. The result of the OLS model 
(3) is presented in Table 5 with the independent variables shown in the 
first column. 

Comparing weather condition coefficients across models, the coef-
ficient of the Extreme Weather Condition is positive in the weekdays 
model; while, it is negative for the weekends model. Following the logic 
in the above discussions of the impact of weather condition on pick-up 

Table 3 
OLS model result for pick-up waiting time (OVT).  

Variables Coefficient (p-Value) 

Weekday Weekend 

Origin to City Center Distance 0.135 (0.00) 0.140 (0.00) 
Extreme Weather Condition 0.015 (0.00) � 0.014 (0.00) 
UberPool 0.026 (0.00) 0.021 (0.00) 
UberX 0.015 (0.00) 0.009 (0.00) 
Lyft � 0.007 (0.00) � 0.009 (0.00) 
Intercept 0.035 (0.00) 0.038 (0.00) 
Number of Observations 732345 271999 
R-Squared 0.151 0.152 

Note: Lyft line (pool) is considered as reference variable in regression models. 

Table 4 
OLS model result for in vehicle trip time (IVT).  

Variables Coefficient (p-Value) 

Weekday Weekend 

Origin to City Center Distance � 0.056 (0.00) � 0.044 (0.00) 
Destination to City Center Distance � 0.048 (0.00) � 0.044 (0.00) 
Trip Distance 0.866 (0.00) 0.771 (0.00) 
Extreme Weather Condition 0.002 (0.00) � 0.001 (0.00) 
UberPool � 0.004 (0.00) � 0.005 (0.00) 
UberX � 0.004 (0.00) � 0.005 (0.00) 
Intercept 0.179 (0.00) 0.169 (0.00) 
Number of Observations 732345 271999 
R-Squared 0.675 0.689 

Note: Lyft line (pool) is considered as reference variable in regression models. 

Table 5 
OLS model result for trip fare.  

Variables Coefficient (p-Value) 

Weekday Weekend 

Origin to City Center Distance � 0.012 (0.00) � 0.012 (0.00) 
Destination to City Center Distance 0.003 (0.00) 0.002 (0.00) 
Trip Distance 0.376 (0.00) 0.365 (0.00) 
Extreme Weather Condition 0.006 (0.00) � 0.008 (0.00) 
UberPool 0.019 (0.00) 0.016 (0.00) 
UberX 0.055 (0.00) 0.049 (0.00) 
Lyft 0.050 (0.00) 0.046 (0.00) 
Intercept 0.006 (0.00) 0.016 (0.00) 
Number of Observations 732345 271999 
R-Squared 0.691 0.657 

Note: Lyft line (pool) is considered as reference variable in regression models. 
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waiting time, demand increases in the extreme weather condition during 
weekdays and decreases during weekends. During weekdays, the higher 
demand during extreme weather conditions results in higher fares 
compared to the normal weather conditions. On the other hand, during 
the weekends, the extreme weather conditions result in lower demand 
and, in turn, leads to lower fares compared to the normal weather 
condition. This observation shows that Uber and Lyft fare adaption 
policies are demand sensitive, and they adjust fares to match supply with 
demand. 

Looking at each model separately, the analysis reveals four main 
observations. First, the model results indicate that trips leaving the city 
center have a higher fare compared to the same trip heading toward the 
city center in both weekday and weekend. Higher fares in the city center 
attract more drivers and, in turn, result in a quicker pick-up waiting 
time. Note that this result provides a logical reason for our finding 
regarding the waiting time in the pick-up waiting time (OVT) model. In 
other words, model results for OVT denote that pick-up waiting time is 
not uniformly distributed around the city, and waiting time decreases by 
getting closer to the city center. Second, the positive and significant 
coefficients of distance show that fare increases in the trip distance. To 
compensate drivers for the trip driving distance, ride-sourcing platforms 
charge fares based on trip distance. Third, we observe that pool rides are 
cheaper than solo rides in both Uber and Lyft. This observation is 
because in the pool rides, the riders are sharing the cost of the ride 
among themselves. Fourth, Lyft offers a lower fare compared to Uber. 

3.3.1. The per mile trip fare (pool vs. solo) 
To study the impact of services types on per mile trip fares, the 

regression model in Section 3.3 has been modified by incorporating the 
interaction variables of the service type and the trip distance. The results 
of this new regression model are presented in Table 6 and the inde-
pendent variables are shown in the first column. 

Note that the estimated coefficients of Origin to City Center Distance, 
Destination to City Center Distance, and Extreme Weather Condition are 
approximately the same in both Tables 5 and 6. This observation shows 
that incorporating the interaction variables does not impact these vari-
ables and therefore the coefficient interpretations are the same as what 
is explained in Section 3.3. The results presented in Table 6 reveal two 
main points. First, the fixed fare for UberX and Lyft riding services are, 
respectively higher compared with the UberPool and Lyft line. Second, 
in comparison with the UberX and Lyft, the per mile fare of UberPool 
and Lyft line (pool services for both Uber and Lyft) are respectively 
lower. These two findings can be used together in order to determine the 
optimal strategy based on the trip distance. Fig. 3 shows estimated trip 
fare based the model presented in Table 6 for a hypothetical trip with the 
city center as its destination. These figures show that during weekdays 
UberX is cheaper than Lyft when the trip distance is less than 2.2 miles, 

and otherwise Lyft is cheaper. During weekends UberX is cheaper than 
Lyft when trip distance is less than 4.1 miles and Lyft is cheaper other-
wise. The results also show that Lyft line always dominates all other type 
of services. These findings can be used to help riders to make a wiser 
travel decision for short and long trips. 

4. Concluding remarks 

This study investigates the effects of weather conditions and types of 
ride-sourcing services on the financial and non-financial performances 
of Uber and Lyft as two popular TNCs in the city of Philadelphia, in the 
U.S. Three data driven models were constructed to predict trip fare (ride 
fare), trip in vehicle time (IVT) and pick up waiting time (OVT) with 
respect to given input variables during both weekdays and weekends. 
Summary of the results is presented in Table 7. 

In this table, pick-up waiting time, and in vehicle time are in seconds 
and ride fare is in US dollars. Origin to City Center Distance, Destination 
to City Center Distance and Trip Distance are in miles, and the other 
independent variables are indicator variables (i.e. takes the value of 0 or 
1). Each cell in Table 7 presents the coefficients of variables based on the 
result presented in Tables 3–5 Note that Tables 3–5 present estimated 
coefficients based on uniformly transformed data, but in Table 7, co-
efficients are converted back to the actual ones with the units as 
explained above. For instance, 27.75 in the first column of the first row 
shows that during weekdays the pick-up waiting time increases by 
27.75 s when the distance of origin to city center increases by 1 mile. 

In terms of non-financial performance indexes, our study shows that 
extreme weather conditions (i.e. shower, heavy rain) significantly 
impact riders demand. Demand increases due to the extreme weather 
during weekdays, while it reduces during weekends. These opposite 
findings may relate to the purpose of the trips. During weekdays, trips 
are more work-related and therefore mandatory. Due to the extreme 
weather conditions, more customers may request rides to avoid getting 
affected by the extreme weather condition. However, trips are more 
leisure-related during weekends which makes customers be more flex-
ible. Leisure-related trip may get canceled due to the extreme weather 
condition which in turn decreases the demand. Our study shows that 
demand positively impacts pick-up waiting time and the duration of 
trips. In particular, according to Table 7, during weekdays the pick-up 
waiting time and trip duration are on average 21.6 and 6.66 s longer 
during the extreme weather conditions, respectively. On the other hand, 
pickup waiting time and trip duration are on average 20.16 and 3.33 s 
shorter during the extreme weather conditions, respectively. 

As discussed above, this study confirms the significant effect of the 
extreme weather conditions on the ride-sourcing platforms, in partic-
ular, its impact on average pick-up times, and trip durations. TNC 
managers may integrate weather conditions and their consequences on 
riders’ behaviors in adjusting the dynamics of ride-sourcing services. For 
instance, they may focus on offering more cost-wised services, such as 
pool rides, depending on the demand volume. In high demand time, 
offering more affordable pool services compared to the solo rides helps 
TNCs to satisfy more demand. Therefore, such an increase in supply 
would improve riders experience in terms of pick-up waiting time. On 
the other hand, offering more pool services may increase TNCs profit by 
increasing their revenue. Finally, by forecasting weather and providing 
in-advanced incentives and promotions, TNCs may increase the supply 
of drivers during the high demand times. 

The results of this study show that Lyft riders wait less than Uber 
ones in receiving ride-sourcing services. According to Table 7, during 
weekdays, Lyft (Lyft line) riders on average wait 31.68 (37.44) seconds 
less than UberX (UberPool) riders. Furthermore, during weekends, Lyft 
(Lyft line) riders on average wait 25.92 (30.24) seconds less than UberX 
(UberPool) riders. On the other hand, Uber provides faster ride-sourcing 
services compared to Lyft. Uber’s services are on average 13.32 and 
16.64 s faster than Lyft during weekdays and weekends, respectively. 
Both Uber and Lyft are more accessible in the city center compared to 

Table 6 
OLS model result for trip fare with interaction variables.  

Variables Coefficient (p-Value) 

Weekday Weekend 

Origin to City Center Distance � 0.012 (0.00) � 0.013 (0.00) 
Destination to City Center Distance 0.003 (0.00) 0.002 (0.00) 
Trip Distance 0.345 (0.00) 0.307 (0.00) 
Extreme Weather Condition 0.006 (0.00) � 0.008 (0.00) 
UberPool 0.019 (0.00) 0.009 (0.00) 
UberX 0.040 (0.00) 0.026 (0.00) 
Lyft 0.041 (0.00) 0.030 (0.00) 
UberPool � Trip Distance � 0.004 (0.00) 0.037 (0.00) 
UberX � Trip Distance 0.082 (0.00) 0.119 (0.00) 
Lyft � Trip Distance 0.047 (0.00) 0.079 (0.00) 
Intercept 0.006 (0.00) 0.027 (0.000) 
Number of Observations 732345 271999 
R-Squared 0.696 0.665 

Note: Lyft line (pool) and Lyft line � Trip Distance is considered as reference 
variable in regression models. 
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the suburb areas. Pick-up waiting time increases in Origin to City Center 
Distance by 27.75 and 28.77 s per mile during weekdays and weekends, 
respectively. This result shows that drivers are more attracted to the city 
center as demand is more stable in this highly populated area. To bal-
ance the service network, TNC managers may provide incentives for 
their drivers to be more accessible in different city areas. 

Trip duration (In Vehicle Time) decreases in Origin to City Center 
Distance and (Destination to City Center Distance) by 26.61 (22.81) and 
20.91 (20.91) seconds per mile during weekdays and weekends, 
respectively. This observation shows that trips that are closer to the 
center city are taking longer. Additionally, trip duration increases in trip 
distance by 108.91 and 96.96 s per mile during weekdays and weekends, 
respectively. Drivers on average drive with speed of 33.05 and 37.12 

mile per hour during weekdays and weekends, respectively. This shows 
that drivers drive 4.07 miles per hour faster during weekends compared 
to weekdays. This observation shows that traffic is slightly lighter during 
weekends when compared to weekdays and therefore drivers are able to 
drive faster. 

In terms of financial performance, riding fare increases in the 
extreme weather conditions by 65 cents during the weekdays and 
decrease by 86 cents during the weekends. Trip fare decreases (in-
creases) in Origin to City Center Distance (Destination to City Center 
Distance) by 18 and 18 (5 and 3) cents per mile during weekdays and 
weekends, respectively. For a same trip, getting a ride from the city 
center is pricier for both Uber and Lyft services compared with the 
suburb areas. The higher fare in the city center attracts more drivers and 

Fig. 3. Trip fare based on the estimated model (A hypothetical trip with city center as its destination).  

Table 7 
The effects of weather conditions, origin-destination locations, distance, and types of ride-sourcing services on financial and non-financial performances of Uber and 
Lyft.  

Variables Pick-up waiting time (in seconds) In Vehicle Time (in seconds) Ride fare (in US dollars) 

Weekdays Weekends Weekdays Weekends Weekdays Weekends 

Location Origin to City Center Distance 27.75 28.77 � 26.61 � 20.91 � 0.18 � 0.18 
Destination to City Center Distance NA NA � 22.81 � 20.91 0.05 0.03 
Trip Distance NA NA 108.91 96.96 1.53 1.48 

Weather Extreme Weather Conditions 21.6 � 20.16 6.66 � 3.33 0.65 � 0.86 
Ride-sourcing UberPool (Pool) 37.44 30.24 � 13.32 � 16.64 2.05 1.72 

UberX (Solo) 21.6 12.96 � 13.32 � 16.64 5.92 5.28 
Lyft (Solo) � 10.08 � 12.96 No difference No difference 5.38 4.95 

Note: Lyft line (pool) is considered as reference variable in regression models. 
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in turn leads to a higher ride sharing availability in the city center. 
Additionally, Uber and Lyft riders on average pay 153 and 148 cents per 
mile during weekdays and weekends, respectively. Furthermore, Lyft 
Pool and Solo fares are on average less expensive than similar types of 
service offered by Uber. 

An unbalanced ride-sourcing network may reduce the satisfaction of 
riders in using TNC services and in turn reduce TNC’s market share. TNC 
riders may look for more accessible types of transportation (e.g., tradi-
tional taxi services or buses) in areas and times that TNCs are less 
accessible. Employing incentives (other than increasing riding fare) such 
as reward programs for drivers may improve the balance of the service 
network. These reward programs may be set up differently for solo or 
pool services to cover uniformly all city areas. These reward programs 
may also be used for riders to keep them as loyal customers. For 
instance, a reward program for TNC riders may include giving extra 
points or coupons when their trip durations significantly increase due to 
traffic jams in high demand locations, or long pick-up waiting times in 
low/medium demand locations. 

The results of such a study completed in this paper let TNC com-
panies collaborate with city transportation planners to use ride-sourcing 
as a completing transportation system, along with public transit systems 
in cities. This cooperation provides a win-win situation by providing 
better transportation services. City planners may provide incentives for 
Uber and Lyft to supply more frequent services for city areas around the 
city center rather than developing costly public transits for those loca-
tions. Uber and Lyft may include these incentives to have a more 
accessible service for those locations. 

5. Future research 

This study assessed the effects of weather conditions, demand loca-
tions, and types of ride-sourcing services on both non-financial and 
financial performances of Uber and Lyft as two popular TNCs in the city 
of Philadelphia, U.S. Findings of this research provide valuable insights 
into understanding riders’ and drivers’ behavior and in turn in balancing 
supply and demand in the ride-sourcing service networks. This study 
was limited to some locations in Philadelphia during the month of June 
2018. For future research, more data can be collected in different lo-
cations while including other factors affecting traffic of roads, pick-up 
waiting times, trip durations, and riding fares, such as rush hours. 
Additionally, in the current study the data is collected from June 7th to 
June 20th, in summer 2018, and as a result the number of unique 
weather conditions occurred during this time frame are limited. It is 
worth to expand the time frame in order to collect more data and 
directly study the impact of each weather condition. It will also be 
interesting to incorporate seasonality and explore its impact on the ride- 
sourcing platforms. As another promising future research question, by 
collecting data from public transit systems and traditional taxi systems, 
city transportation planners, TNCs managers, and traditional taxi man-
agers may have better ideas about riding performances in Philadelphia. 
This eventually may improve collaborations among them in providing 
better riding services throughout the city. 
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