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Gravitational waves provide us with an extraordinary tool to study the matter inside neutron stars.
In particular, the postmerger signal probes an extreme temperature and density regime and will help reveal
information about the equation of state of supranuclear-dense matter. Although current detectors are most
sensitive to the signal emitted by binary neutron stars before themerger, the upgrades of existing detectors and
the construction of the next generation of detectors will make postmerger detections feasible. For this
purpose, we present a new analytical, frequency-domain model for the inspiral-merger-postmerger signal
emitted by binary neutron star systems. The inspiral and merger parts of the signals are modeled with
IMRPhenomD_NRTidalv2, and we describe the main emission peak of the postmerger with a three-
parameter Lorentzian, using two different approaches: one in which the Lorentzian parameters are kept free,
and one in which we model them via quasiuniversal relations. We test the performance of our new complete
waveform model in parameter estimation analyses, studying simulated signals obtained both from our
developed model and by injecting numerical relativity waveforms. We investigate the performance of
different detector networks to determine the improvement that future detectors will bring to our analysis. We
consider Advanced LIGOþ and Advanced Virgoþ, KAGRA, and LIGO-India. We also study the possible
impact of a detector with high sensitivity in the kilohertz band like NEMO, and finally we compare these
results to the oneswe obtainwith third-generation detectors, the Einstein Telescope and the Cosmic Explorer.

DOI: 10.1103/PhysRevD.107.124009

I. INTRODUCTION

Neutron stars (NSs) can reach extremely high densities,
creating conditions that cannot be reproduced by laboratory
experiments. Hence, they provide a perfect environment to
study supranuclear-dense matter and its equation of state
(EOS). Until a few years ago, the study of NSs was limited
to electromagnetic (EM) observations, but since the first
detection of a gravitational-wave (GW) signal from a
binary neutron star (BNS), GW170817 [1], GWs provide
new ways to study NSs and their mergers. Since the EOS
determines the NS’s macroscopic properties, such as its
mass, radius, and tidal deformability, it can be constrained
by measuring the imprint it leaves in the GW signal emitted
during the coalescence [2,3].

Up to now, Advanced LIGO [4] and Advanced Virgo [5]
detected two BNS systems, GW170817 [1,6] and
GW190425 [7]. These detections already allowed us to
put constraints on the supranuclear-dense matter EOS,
which was possible, since the GW signal emitted during
the inspiral phase provides information about the EOS
through tidal deformability measurements [2,8–16]. While
the uncertainty on current measurements is still large, the
higher sensitivities of future-generation detectors such as
the Einstein Telescope (ET) [17–23] or the Cosmic
Explorer (CE) [24,25] will significantly improve them.
In addition to a more detailed analysis of the inspiral

phase, third-generation (3G) GW detectors such as ET and
CE are also expected to detect GWs from the postmerger
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phase of the BNS coalescence [26–30]. This is of special
interest, since the postmerger phase probes an even higher
different density and temperature regime than the inspiral
phase. During the inspiral phase, only densities up to the
central density of the individual stars are probed, which
corresponds to about 3 to 4 times the nuclear saturation
density, while the postmerger phase probes densities even
beyond 5 times the nuclear saturation density; cf. Fig. 1 of
Ref. [31]. In addition, temperatures of about 50 MeV are
reached during the postmerger phase, which is large
enough that the effects of different transport coefficients
will start to impact the data [32–34].
Unfortunately, postmerger studies pose numerous chal-

lenges.First, the amplitudeof theGWstrainof thepostmerger
part of the observed GW signal is expected to beweaker than
that of the inspiral one [35–39]. Second, at higher frequencies,
the detectors’sensitivity drops due to quantum shot noise. For
these reasons, it is not surprising that the dedicated searches
forGWsemitted by apossible remnantofGW170817 [40,41]
found no evidence of such a signal and showed that with the
sensitivity of Advanced LIGO and Advanced Virgo, the
source distance should have been at least 1 order ofmagnitude
less for the postmerger signal to be detectable. Finally,
postmerger physics includes thermal effects, magnetohydro-
dynamical instabilities, neutrino emission, dissipative proc-
esses, and possible phase transitions [42–48], whichmake the
postmerger particularly difficult to model, but on the other
hand allow us to investigate a variety of interesting physical
processes. Because of the complexity of the evolution, the
study of the postmerger relies heavily on numerical relativity
(NR) simulations, which, however, are also limited due to
their high computational cost and the fact that it is currently
not possible to take into account all the physical processes that
influence the postmerger.
Nonetheless, previous studies based on NR simulations

showed some common key features of the postmerger GW
spectrum, finding in some cases universal relations with the
NS properties [36–39,49–57], and some efforts have also
been made to construct full inspiral, merger, and post-
merger models for BNS coalescences. Also, morphology-
independent analyses of the postmerger GW signal have
been proposed in Refs. [51,56,58], while in Ref. [59] a
hierarchical model to generate postmerger spectra was
developed. With a different approach, Refs. [60–62] con-
struct analytical models for the postmerger signal, based on
features found in NR simulated waveforms. Breschi et al.
in Ref. [63] propose a frequency-domain model for the
postmerger, built with a combination of complex Gaussian
wavelets, and show in Ref. [64] how this model performs
using a 3G detector network. Wijngaarden et al. [65] build
a hybrid model, using analytical templates for the pre-
merger phase and a morphology-independent analysis,
based on sine-Gaussian wavelets, for the postmerger phase.
Following similar ideas, in this paper we construct a

phenomenological frequency-domain model for the entire

BNS coalescence consisting of the inspiral, merger, and
postmerger phases. Our final aim is to employ the developed
model for parameter estimation analyses. To model the
coalescence during the inspiral up to the merger, we rely
onIMRPhenomD_NRTidalv2 [66]. The postmerger phase
is modeled with a three-parameter Lorentzian describing the
mainemissionpeakofitsspectrum,followingTsangetal. [67].
For the Lorentzian, we use two different approaches: in one
case, we compute the parameters from quasiuniversal rela-
tions, describing themas a function of theBNS’s properties; in
the other one, we treat them as free parameters. Both versions
can be directly employed by existing parameter estimation
pipelines; see, e.g., Refs. [68,69].
This paper is structured as follows: In Sec. II, we describe

how our model is built, the methods used for parameter
estimation, and the detectors we consider. Results are shown
in Sec. III, and conclusions are presented in Sec. IV.
Appendix A shows the results obtained specifically with
our postmerger model with free Lorentzian parameters; in
Appendix B we discuss general parameter estimation with
future detectors; and in Appendix C we provide more details
about the validity and settings of the methods employed for
our study.

II. METHODS AND SETUP

We construct a frequency-domain waveform model to
describe the full inspiral, merger, and postmerger phases of
a BNS coalescence. In this section, we describe how we
model the postmerger part of the signal, and how we
connect it to the inspiral-merger model to obtain the full
waveform. We then describe the framework used for data
analysis, explaining how we speed up parameter estimation
using relative binning, the analysis setup, the BNS sources
that we study, and the employed detector networks to
determine to what extent future detector networks will
enable postmerger studies.

A. Inspiral-merger-postmerger model construction

Multiple studies have shown that the postmerger GW
spectrum includes various strong peaks [36–39,49,
52–55,70]. For simplicity, we limit ourselves to the main
emission peak at a frequency f2, which corresponds to the
dominant GW frequency; see, e.g., Ref. [49]. Following
this approach, the postmerger signal can be described in the
time domain by a simple damped sinusoidal waveform [67],
whose Fourier transform is a Lorentzian. Therefore, in the
frequency domain, we model the postmerger phase with a
three-parameter Lorentzian,

h22ðfÞ ¼
c0c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf − c1Þ2 þ c22
p e−i arctanð

f−c1
c2

Þ; ð1Þ

where c0 corresponds to the maximum value, c1 to the
dominant emission frequency f2, and c2 to the inverse of
the damping time, which sets the Lorentzian’s width.
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We determine the coefficients ci with two different
approaches: (I) we treat them as free parameters and try
to measure c0, c1, and c2 together with the BNS’s other
properties; and (II) we compute the ci coefficients from
quasiuniversal relations that describe them as functions of
the system’s parameters. Depending on its properties and
the EOS, a given BNS could undergo a prompt collapse to a
black hole (BH), and hence be without a postmerger
emission. In this scenario, while in case I we expect that
the values recovered for the free parameters will reflect the
absence of a postmerger signal, in case II the quasiuniversal
relations employed might lead to a bias in the estimation of
the binary’s intrinsic parameters. For this reason, we ideally
want to use the Lorentzian model with quasiuniversal
relations only when we know that a postmerger emission
is present. Since the threshold mass for a prompt collapse is
EOS dependent and still unknown, following Ref. [60], we
assume that a BNS system undergoes prompt collapse if the
tidal polarizability parameter κT2 is lower than a threshold
value κthr ¼ 40. The quantity κT2 is defined as

κT2 ¼ 3½ΛA
2 ðXAÞ4XB þ ΛB

2 ðXBÞ4XA�; ð2Þ

where Λj
2 ¼ 2

3
k2ðRj=MjÞ5 with j ∈ fA;Bg are the dimen-

sionless tidal deformabilities, and Xj ¼ Mj=M. Here, k2 is
the dimensionless l ¼ 2 Love number; Rj and Mj are the
radius and gravitational mass of the individual stars,
respectively; and M ¼ MA þMB is the BNS’s total mass.1

1. Quasiuniversal relations for the
Lorentzian parameters

For the approach introduced as method II, we use
quasiuniversal relations—i.e., phenomenological relations
that are independent of the EOS—to constrain the coeffi-
cientsci inEq. (1). This provides a direct connection between
the Lorentzian coefficients and the BNS’s properties.
Since the postmerger Lorentzian model extends the

waveform used for inspiral and merger beyond its
merger frequency fmerg, a straightforward way to find
the value of c0 is by rescaling the amplitude of the
IMRPhenomD_NRTidalv2 waveform at merger
ANRTidalv2ðfmergÞ. Specifically, we use

c0 ¼ σ ×A0 ×ANRTidalv2ðfmergÞ; ð3Þ

where A0 is the mass and distance scaling factor employed
in IMRPhenomD [72]. The prefactor σ is added to obtain
a better calibration to the NR waveforms, and we set
σ ¼ 10.0, which gives the lowest mismatch values (the
definition of mismatch and details about its computation
are provided in Sec. II B).

Since c1 represents the dominant postmerger oscillation
frequency f2, we resort to the fit in Eq. (8) of Ref. [67]:

Mc1ðζÞ ¼ β
1þ Aζ
1þ Bζ

; ð4Þ

with β ¼ 3.4285 × 10−2, A ¼ 2.0796 × 10−3, and B ¼
3.9588 × 10−3. The parameter ζ is

ζ ¼ κTeff − 131.7010
M

MTOV
: ð5Þ

In the last equation, κTeff ¼ 3=18Λ̃, with Λ̃ being the
binary’s mass-weighted tidal deformability

Λ̃¼ 16

3

ðMAþ12MBÞM4
AΛAþðMBþ12MAÞM4

BΛB

ðMAþMBÞ5
: ð6Þ

Although ζ, and therefore c1, in Eq. (5) is a function of the
maximum mass allowed for a nonrotating stable NSMTOV,
which depends on the specific EOS, we fix MTOV ¼ 2M⊙
for the model version with quasiuniversal relations in this
work.2 The median relative error introduced on ζ by this
approximation is 0.31, for the hybrid waveforms in the
SACRA and CoRe database. This error propagates to the c1
parameter, causing a median relative error of approxi-
mately 5%.
With this choice for c0 and c1, a model for c2 is built

from a set of 48 nonspinning NR waveforms from the CoRe
database [77,78]. For this, we first find the values of c2 that
minimize the mismatch of the Lorentzian waveform and
the NR waveform between 0.75 c1 and 8192 Hz using a
flat noise power spectral density (PSD); see Sec. II B for
details. The flat PSD ensures that no high-frequency
information is suppressed in the match computation. For
each waveform, c2 minimization is performed using the
“L-BFGS-B,” “SLSQP,” “TNC,” and “Powell” methods
available in SciPy [79], and the value of c2 with the smallest
mismatch value is used. It can be seen that c2 shows a
similar trend against κTeffq

2, with q ¼ MA=MB the mass
ratio, as c1 does against ζ. Hence, a analogous ansatz was
used to perform a fit. However, using the parameters
obtained from performing a simple curve fit showed
unphysical amplitude behavior for a few of the NR wave-
forms. For further tuning, the mismatch was minimized for

1See also Ref. [71] for more updated relations which were not
yet available when we started our work.

2In principle, we could treatMTOV as a free parameter, but this
would impair the main benefit of this version of the model—
namely, to avoid additional parameters to sample over. However,
in the future, given the increasing number of multimessenger
detections of binary neutron star mergers and the possibility to
observe high-mass pulsars [73–76], one can expect to have a
significantly smaller uncertainty in MTOV than today. The value
of the maximum supported mass estimated from this new
information will then provide the fixed value of MTOV to employ
in our model.
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all the NR waveforms by varying the fit parameters, and
the parameters that gave the lowest mismatch were then
recorded and added to the model. The functional form
of c2 and the values obtained for the fit parameters in this
manner are

c2 ¼ 2þ γ
1þ CκTeffq

2

1þDκTeffq
2
; ð7Þ

with γ ¼ 19.4579017, C ¼ −9.63390738 × 10−4, andD ¼
6.45926154 × 10−5. The median relative error for c2 during
minimization is 0.56.

2. The full waveform

To obtain a model describing the full coalescence, the
previously derived postmerger model is connected to the
waveform describing the inspiral and merger parts of
the signal, for which we use the phenomenological wave-
form IMRPhenomD_NRTidalv2 [66].
Amplitude: To ensure a smooth transition3 between the

two models, we apply a Planck-taper window αPl:

αPl ¼

8>><
>>:
0 for f <ftr;

exp½fend−ftrf−ftr
þ fend−ftr

f−fend
þ1�−1 for ftr <f<fend;

1 for f >fend:

ð8Þ

The window is applied just before the frequency of the main
postmerger peak f2, which corresponds to our model’s
parameter c1. The value of the window’s starting frequency
ftr is chosen to ensure a good match with NR waveforms. In
particular, in Ref. [67], one of the time-domain features
identified in the postmerger signal morphology is the first
postmerger minimum, which corresponds to a clear ampli-
tude minimum present shortly after the merger, before the
amplitude starts increasing again. By comparison with NR
waveforms in the CoRe database [77,78], we find that this
feature is best reproduced by our model when the Planck

window is applied between ftr ¼ 0.75c1 and fend ¼ 0.9c1.
Following Ref. [72], we add an exponential correction factor,
exp½− pðf−c1Þ

c2
�, to the Lorentzian amplitude, in order to

smoothen possible kinks arising when going to the time
domain. We set p ¼ 0.01, which is enough to reduce the
kink, but not so large that it significantly influences the
merger amplitude.
Phase: To ensure that the waveform phase is C1

continuous, we introduce two coefficients a and b, writing
the phase as

ϕIMðfÞ ¼ ϕLorðfÞ þ aþ bf; ð9Þ
withϕIM being the phase of theIMRPhenomD_NRTidalv2
waveform and ϕLor ¼ argðh22ðfÞÞ that of the Lorentzian
one.
The values of a and b are computed at the same transition

frequency, ftr ¼ 0.75c1, at which we start the Planck-taper
window for the amplitude, such that

dϕIM

df

����
ftr

¼ dϕLor

df

����
ftr

þ b; ð10Þ

ϕIMðftrÞ ¼ ϕLorðftrÞ þ bftr þ a: ð11Þ

Finally, to reduce the Lorentzian contribution to the
premerger and merger amplitude, we multiply the wave-
form by a factor exp½−i2πΔtf�, which will induce a time
shift ofΔt in the time-domain waveform;Δt is computed as
the time interval between the merger and the first post-
merger minimum described by Eq. (2) in Ref. [67].
The frequency-domain gravitational waveform can be

written as

h̃ðfÞ ¼ AðfÞeiϕðfÞ; ð12Þ
with AðfÞ being the amplitude and ϕðfÞ the phase.
Therefore, in our model, the full waveform is given by

h̃ðfÞ ¼
8<
:

AIMðfÞeiϕIM for f < ftr;�
AIMðfÞ þ αPlALorðfÞe−

pðf−c1Þ
c2

�
eiðϕLorþbfþaÞ−i2πΔtf for f > ftr;

ð13Þ

where AIMðfÞ and ϕIMðfÞ are the amplitude and
phase, respectively, of the IMRPhenomD_NRTidalv2
waveform, and ALor ¼ jh22ðfÞj is the amplitude of the
Lorentzian one.
In the following, we refer to the IMRPhenomD_

NRTidalv2_Lorentzian postmerger model with qua-
siuniversal relations as QU-PM, to the model with free

Lorentzian parameters as FREE-PM, and to the model
without a postmerger phase, IMRPhenomD_NRTidalv2,
as NO-PM.

B. Mismatch

The mismatch between two waveforms h1 and h2 is
defined as

MM ¼ 1 −maxϕc;tc

hh1ðϕc; tcÞjh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð14Þ

3We note that the employed approach neglects any contribu-
tion of the postmerger signal toward frequencies below the
merger frequency.
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where tc and ϕc are an arbitrary time and phase shift, and
the noise-weighted inner product is defined as

hajbi≡ 4Re
Z

fhigh

flow

ã�ðfÞb̃ðfÞ
SnðfÞ

df; ð15Þ

where SnðfÞ is the noise spectral density, ãðfÞ is the Fourier
transform of aðtÞ, and � denotes the complex conjugate. To
validate the IMRPhenomD_NRTidalv2_Lorentzian
model, we compute mismatches with the hybrid waveforms
in the CoRe [77,78] and SACRA [80] databases. The
mismatch is computed with PyCBC [81] functions and zero
noise—i.e., with a flat PSD. For the FREE-PMmodel, to get
the Lorentzian parameters that better describe each hybrid’s
postmerger, we optimize themismatch over c1, c2; we do not
include the Lorentzian maximum value c0 in the minimiza-
tion, because, giving just an amplitude scaling factor,
the mismatch is insensitive to it. The initial values for the
optimization are found with a least-squares fit on the
postmerger part of the hybrid waveform, for f ≥ 1.3fmerg.
Fixing c1 and c2 to the optimal values, we then compute the
optimal value for c0 with a least-square fit on the hybrid’s
postmerger signal. We use the optimal values for the ci
coefficients to generate the FREE-PM waveform, for which
we compute the mismatch with the hybrid in different
frequency ranges. For the QU-PM model, instead, the
Lorentzian parameters are computed from the quasiuniversal
relations described in Sec. II A 1, using the values of the
hybrids’ binary parameters. The top panel of Fig. 1 shows the
mismatches in the frequency band ½1.1fmerg; 4096� Hz:
despite our simple description of the postmerger, when using

the FREE-PM model for almost all hybrids, mismatches lie
below 0.3. Mismatch values increase systematically by
roughly a factor of 3 when computing them with respect
to theQU-PMmodel,which is expected, since in this case the
Lorentzian parameters are not optimized to the hybrid
waveform. When considering the whole waveform, in the
frequency range ½30; 4096� Hz, the mismatch is always
below 0.005, as shown in the bottom panel of Fig. 1. Also
in this case, for most hybrids, the FREE-PM model gives
better matches compared to the QU-PM one. The fact that
mismatches computed over the whole waveform do not
follow the trend of the ones computed only in the high-
frequency region is due to the fact that different values of the
Lorentzian parameters translate also into different tapering
and continuity conditions, influencing the late inspiral-
merger phase too. For comparison, we show also the
mismatches computed in the same frequency range with
the NO-PM waveform. The plot does not highlight a
systematic improvement in the mismatches when using
one of the models; the difference between the mismatches
obtainedwith theNO-PMandFREE-PMmodels varies from
0.0019 to 8 × 10−6, with an average variation of 0.0005. In
some cases, the NO-PMmodel gives lower mismatches than
one of the models with postmerger: this occurs because the
NO-PM waveform includes no signal after the merger.
Therefore, computing the mismatch for frequencies higher
than the merger one, in a region where the waveform is zero,
does not contribute to the overall mismatch; hence, the lack
of the postmerger signal does not reduce thematch computed
up to the merger frequency. However, in more than 60% of
cases, the mismatch is reduced when using the FREE-PM
model, showing that our postmerger description with opti-
mized parameters improves the signal characterization.

C. Parameter estimation

In the following, we focus on how to recover the source’s
parameters given the detector data d and under the
hypothesis of a specific model H used to describe the
waveform. In a Bayesian framework, this corresponds to
evaluating the posterior pðθ⃗jH; dÞ, which, according to
Bayes’ theorem, is

pðθ⃗jH; dÞ ¼ pðdjH; θ⃗Þpðθ⃗jHÞ
pðdjHÞ : ð16Þ

In Eq. (16), the prior probability density pðθ⃗jHÞ encodes
our prior knowledge about the source or the model: the
evidence pðdjHÞ describes the probability of observing the
data d given the model H, independently of the specific
choice of parameters θ⃗; and the likelihood pðdjH; θ⃗Þ
represents the probability of observing d with the specific
set of parameters θ⃗.
The priors chosen for this work are described later in

this section, while the evidence pðdjHÞ serves as the

FIG. 1. Mismatches between hybrid waveforms from the CoRe
(in the gray background band) and SACRA databases, and our
postmerger model, for both the versions FREE-PM and QU-PM.
The top panel showsmismatches in the postmerger frequency band
(i.e., within ½1.1fmerg; 4096� Hz), while the bottom panel shows
mismatches for thewholewaveform (within ½30; 4096� Hz). In the
latter case, for comparison we also show mismatches computed
between the hybrids and the NO-PM model.
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normalization constant of the posterior distribution, and is
given by

pðdjHÞ ¼
Z

dθ⃗pðdjH; θ⃗Þpðθ⃗jHÞ: ð17Þ

Assuming the data d consist of Gaussian noise and a GW
signal hðθ⃗Þ, the likelihood can be expressed as [82]

pðdjH; θ⃗Þ ∝ exp

�
−
1

2
hd − hðθ⃗Þjd − hðθ⃗Þi

�
; ð18Þ

with the noise-weighted inner product defined as
in Eq. (15).
To sample the likelihood function, we use the nested

sampling [82,83] package DYNESTY [84,85], which is
included in the bilby library [68,69], with 2048 live
points.

1. Relative binning

The likelihood evaluations required at each sampling
step are very expensive, since, in order to compute the inner
product, we need to evaluate the waveform on a dense and
uniform frequency grid. The size of the grid increases both
with the duration of the signal and with the maximum
frequency used in the analysis. In our case, we set
fmax ¼ 4096 Hz, since the postmerger GW signal is
expected to lie within the few-kilohertz regime.
Moreover, we study BNS systems, whose low masses
imply a long signal duration. Although we set the starting
frequency to flow ¼ 30 Hz, the typical duration of the
signal in band is still roughly 200 s. To overcome the issue
of the computational cost of the analysis needed for this
work, we employ the technique of relative binning [86,87],
which reduces the number of waveform evaluations from
all the points on the grid to a limited number of fre-
quency bins.
The underlying assumption in relative binning is that the

set of parameters yielding a non-negligible contribution to
the posterior probability produce similar waveforms, such
that their ratio varies smoothly in the frequency domain. In
each frequency bin b ¼ ½fminðbÞ; fmaxðbÞ�, if we choose a
reference waveform h0ðfÞ that describes sufficiently well
the data, the ratio with the sampled waveforms can be
approximated with a linear interpolation

r ¼ hðfÞ
h0ðfÞ

¼ r0ðh; bÞ þ r1ðh; bÞðf − fmðbÞÞ
þO½ðf − fmðbÞÞ2�; ð19Þ

with fmðbÞ being the central frequency of the bin b.

This allows us to approximate the likelihood inner
product as

hdðfÞjhðfÞi ≈
X
b

ðA0ðbÞr�0ðh; bÞ þ A1ðbÞr�1ðh; bÞÞ; ð20Þ

where the summary data

A0ðbÞ ¼ 4
X
f∈b

dðfÞh�0ðfÞ
SnðfÞ=T

; ð21Þ

A1ðbÞ ¼ 4
X
f∈b

dðfÞh�0ðfÞ
SnðfÞ=T

ðf − fmðbÞÞ ð22Þ

are computed on the whole frequency grid, but only for the
reference waveform. Also, hhðfÞjhðfÞi is calculated with a
similar approach. In this method, the evaluation of sampled
waveforms is required only to compute the bin coefficients
r0ðh; bÞ and r1ðh; bÞ in Eq. (19). In this paper, we follow
the description and implementation of Refs. [86,88]. To use
relative binning with bilby inference, we employ the
code in Ref. [89]. More details about the relative
binning method applied to our analysis are given in
Appendix C.

2. Simulations

We test the performance of our model in parameter
estimation analysis with simulated signals. We consider
three different sources, and analyze them through bilby
injections—i.e., using our own GW models—and through
injecting NR hybrids with the same parameters; cf. Table I.
The employed hybrids have a postmerger signal dura-
tion of roughly 10 ms, and the postmerger contribution
to their SNR for each detector network is shown in
Table II.
All simulated signals are injected with zero inclination ι

and polarization angle ψ , and with sky location ðα; δÞ ¼
ð0.76;−1.23Þ. The sky location has been chosen such that
none of the employed detector networks is particularly
preferred. Depending on the analysis, we perform injec-
tions at three different distances: 225 Mpc, 135 Mpc, and
68 Mpc, which, in a network with Advanced LIGOþ and
Advanced Virgoþ, correspond approximately to signal-to-
noise ratios (SNRs) of 30, 50, and 100, respectively.
Table III reports the SNRs for Source2QU-PM injections
in the different detector networks and at different distances.
We take priors uniform in [0.5, 1.0] for mass ratio q, and
uniform in ½Mc;s − 0.05;Mc;s þ 0.05�M⊙ for chirp mass,
where Mc;s is the chirp mass of the source, and the prior
width is given by the precision on chirp-mass measure-
ments that we anticipate for future detectors. Regarding
tidal deformability parameters, we sample over Λ̃ and ΔΛ̃,
with priors uniform in [0, 5000] and ½−5000; 5000�,

ANNA PUECHER et al. PHYS. REV. D 107, 124009 (2023)

124009-6



respectively, where ΔΛ̃ is defined in Ref. [93] as

ΔΛ̃¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p �
1−

13272
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ηþ8944
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þ
�
1−

15910

1319
ηþ32850

1319
η2þ3380

1319
η3
	
ðΛ1−Λ2Þ

�
:

ð23Þ

Luminosity distance priors are uniform in comoving
volume, with DL ∈ ½1; 450� Mpc. Although all the
sources considered are nonspinning, our baseline model
IMRPhenomD_NRTidalv2 allows for aligned spins;
we choose a uniform prior on the spin magnitudes
ja1j; ja2j ∈ ½0.0; 0.20�. Finally, when using the postmerger
model with free parameters for recovery, we choose uni-
form priors c1 ∈ ½2000; 4096� Hz and c2 ∈ ½10; 200� Hz,
while for c0 we employ a logarithmic uniform prior
in ½5 × 10−27; 1 × 10−22� s.

D. Detector networks

Earth-based GW detectors have the best sensitivity
around a few tens to hundreds of Hz, which makes the
inspiral and merger signal of coalescing compact objects
the perfect candidate for detections. In this work, however,
we are interested in the postmerger part of the signal, which
is usually weaker and involves higher frequencies. Current
detectors are strongly limited at these high frequencies,
but the improvements planned for the future detectors’
upgrades and the next-generation detectors are expected
to make postmerger measurements feasible. Therefore, one
of the goals of this work is to assess how future detectors
can improve the studies we present. We include in our
analysis the upgraded versions of existing detectors,
Advanced LIGOþ, Advanced Virgoþ, and KAGRA, as
well as new detectors whose construction has been planned

TABLE I. Properties of the sources used for injections. The NR hybrids are taken from the SACRA database [80],
where the employed EOSs of the NR data are simple two-piece polytropes as outlined in Ref. [80]. For the
hybridization, we follow the procedure outlined in Sec. III C of Ref. [13]. The inspiral waveform model with which
we hybridize is SEOBNRv4T [90]. For bilby injections, we use our IMRPhenomD_NRTidalv2_Lorent-
zian model, both with quasiuniversal relations and with free Lorentzian parameters. In the case of injections with
the free parameters model, the injected c0, c1, c2 values are obtained from the best fit of the correspondent NR
hybrid.

Name Mc q Λ̃ Injection

Source1½NR-inj� 1.17524 0.8 604 NR: H_121_151_00155 [91]
Source1½QU-PM� 1.17524 0.8 604 Bilby: quasiuniversal
Source1½FREE-PM� 1.17524 0.8 604 Bilby: free parameters
Source2½NR-inj� 1.08819 1.0 966 NR: H_125_125_0015 [92]
Source2½QU-PM� 1.08819 1.0 966 Bilby: quasiuniversal
Source2½FREE-PM� 1.08819 1.0 966 Bilby: free parameters
Source3½NR-inj� 1.17524 1.0 607 NR: H_135_135_00155 [91]
Source3½QU-PM� 1.17524 1.0 607 Bilby: quasiuniversal
Source3½FREE-PM� 1.17524 1.0 607 Bilby: free parameters

TABLE III. SNR values for zero-noise Source2QU-PM injections
in the different networks (with acronyms as shown in Fig. 2) and
for different distances.

Network Distance [Mpc] SNR

ETCE 68 1239
135 624
225 355

LHVKIN 68 121
135 61
225 36

LHVKI 68 105
135 53
225 31

LHV 68 98
135 49
225 30

TABLE II. SNR of the NR waveforms employed in our analysis
for the different detector networks (with acronyms as shown in
Fig. 2), considering the source at a distance of 68 Mpc; we show
both the SNR for the whole waveform (in the “Total” column),
computed starting at 30 Hz, and the SNR of the postmerger part
of the signal (in the “PM” column), computed starting from the
merger frequency.

Source1½NR-inj� Source2½NR-inj� Source3½NR-inj�
Total PM Total PM Total PM

LHV 100 2.0 94 2.5 100 2.7
LHVKI 107 2.1 101 2.6 108 2.9
LHVKIN 126 6.8 119 8.8 126 9.9
ETCE 1267 10.2 1190 12.3 1268 13.3
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for the next few years, LIGO-India and NEMO, and the
next detector generation, the Einstein Telescope and
Cosmic Explorer. Advanced LIGOþ design [94] will
improve the current 4 km arm-length detectors at the
Hanford (H) and Livingston (L) sites, including a
frequency-dependent light squeezing and new test masses
with improved coating. Advanced Virgoþ (V), similarly, is
the planned upgrade for the current Advanced Virgo
detector in Cascina [5]. This transition will happen in
two separate phases and include upgrades like the intro-
duction of signal recycling and a higher laser power.
Advanced LIGOþ and Advanced Virgoþ are the planned
designs for the O5 observing run, which is scheduled to
start roughly in 2025, and during which their BNS
detection ranges will reach approximately 330 Mpc and
150–260 Mpc, respectively [95]. KAGRA (K) [96–98] is a
3 km arm-length interferometer built underground in the
Kamioka mine in Japan, which already employs innovative
technologies like cryogenic mirrors. For O5, its sensitivity
at the end of the observing run is predicted to allow a BNS
range of at least 130 Mpc [95]. The LIGO network involves
a third detector in India (I) [99], which is currently under
construction and is expected to become operative approx-
imately in 2025. Finally, the Neutron Star Extreme Matter
Observatory, or NEMO (N), is an Australian proposal for a
gravitational-wave detector with 4 km arm length, specifi-
cally designed to have a high sensitivity in the kilohertz
band [100]. The possible location of NEMO has not been
decided yet; therefore, for this work we arbitrarily place it

at the location shown in Fig. 2. Although not officially
approved yet, we include it in our analysis, since its high-
frequency sensitivity is particularly interesting for post-
merger studies.
3G detectors are expected to increase the sensitivity by a

factor between 10 and 30 [95] with respect to current LIGO
detectors, but they require the construction of new facilities
and are expected to start observing in the mid 2030s. At the
moment, the planned 3G detector network includes plans for
Cosmic Explorer (CE) in the US and the Einstein Telescope
(ET) in Europe. CE [24,25] is planned as an L-shaped
interferometer with 40 km arm length.4 For the purpose of
this paper, we assume it will be placed at the current Hanford
site. The ET design [17,18] includes a so-called “xylophone”
configuration, which guarantees an improved sensitivity at
high and low frequencies at the same time [102]. The two
candidates for the ET site are Sardinia, in Italy, and Limburg,
at the border between the Netherlands, Germany, and
Belgium.5 For this work, we assume ET is placed at the
current Virgo site. Although the final design of ET is still

FIG. 2. Left: location of the detectors used in this study. The top panel shows second-generation (2G) detectors, and the bottom panel
shows third-generation (3G) ones. Right: PSDs for the different detectors. The Advanced LIGOþ PSD [101] is used for the H, L, and I
detectors. Since the official sensitivity curve for Advanced Virgoþ is not available yet, we used the same one as for the LIGO detectors,
scaled by a factor 4=3 to account for the different arm length. ET sensitivity is the PSD referred to as “ET-D” and given in Ref. [102],
while CE sensitivity is given in Ref. [103]; for KAGRA, we use the PSD labeled as “Combined” in Ref. [104].

4Recently, a configuration consisting of one 40 km and an
additional 20 km detector has also received attention and was
considered as the reference concept for the recent Horizon study
of Ref. [25]. In Ref. [105], a tunable design for the CE detector
was also proposed, which would enhance sensitivity in the
kilohertz band.

5In addition, recent interest arose for a third possible site
located in the eastern part of Germany.
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under development, here we consider it as a triangular
detector—i.e., composed of three V-shaped interferometers
with a 60° opening angle and 10 km arms.
In this work, we study four different detector networks:

HLV, HLVKI, HLVKIN, and ETCE. The detectors’ loca-
tions and sensitivities are shown in Fig. 2.

III. RESULTS

In the following, we present the results of our simu-
lations, for what concerns both the performance of our
model and the improvement we obtain with future detec-
tors. When using the postmerger model with quasiuniversal
relations, we are mainly interested in studying how well we
can recover the tidal deformability parameter Λ̃. Since the
quasiuniversal relations that we derived depend on Λ̃, we
expect that the postmerger part of the signal, when detected,
will bring additional information about this parameter. This
will likely lead to a narrower posterior with respect to what
we can obtain using a model without postmerger. In the
case of the postmerger model with free Lorentzian param-
eters, we study how well the Lorentzian parameters c0, c1,
c2 can be recovered, and especially c1, since it represents
the frequency of the main postmerger emission peak.

A. Best-case scenario

We start by testing both versions of our model, FREE-
PM and QU-PM, in the best-case scenario—i.e., for
bilby injections in zero noise, for sources as described
in Table I, at a distance of 68 Mpc and with the ETCE
network. Figure 3 shows the posterior probability density
of Λ̃ for signals obtained with QU-PM injections and
recovered with both our postmerger models, QU-PM
and FREE-PM, and with the model without postmerger
NO-PM. As expected, the Λ̃ posterior becomes tighter
when going from the NO-PM to the QU-PM model, with
the width of the 90% confidence interval reducing by about
30%, from 23.11 to 15.84 in the case of Source2QU-PM, and
from 15.42 to 11.07 for Source3QU-PM. In the FREE-PM

recovery case, the posteriors become wider, with the
width of the 90% confidence interval reaching 27.66 for
Source2QU-PM. We also note that when recovering with this
model, the median of Λ̃ is slightly underestimated with
respect to the injected values. Both these features are
predictable due to the higher number of parameters we
have to sample over. For Source1QU-PM, the injected value
lies outside the NO-PM Λ̃ posterior distribution, but it is
well recovered with both the QU-PM and FREE-PM
models. Given that the sampler converged to the maxi-
mum-likelihood values for the parameters, this shift is not
caused by sampling issues, but is probably due to the
fact that injections are performed with a signal with
postmerger, and when we recover with a model without
the postmerger description, the waveform tries to latch on
to the signal after the merger, causing a bias in the
parameter estimation. This is confirmed by the comparison,
shown in Fig. 4, between the injected Source2QU-PM

FIG. 3. Posterior probability density for Λ̃ in the case of bilby injections with the QU-PMmodel, for sources at 68 Mpc and with the
ETCE network, and recovery with the three different models NO-PM, QU-PM, and FREE-PM, in blue, orange, and green, respectively.
The black dashed lines correspond to the injected values.

FIG. 4. Injected signal for Source1QU-PM (gray solid line),
compared to the NO-PM waveform generated with the injected
parameters (dashed blue line) and with the maximum-likelihood
parameters recovered with the NO-PM model (dash-dotted
cyan line).
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waveform, the NO-PM waveform generated with the
maximum-likelihood parameters recovered with the NO-
PM model, and the one generated with the injected
parameters. The maximum-likelihood NO-PM waveform
tries to recover part of the injected postmerger signal,
resulting in a deviation with respect to the NO-PM wave-
form obtained from the injection parameters, which
explains the bias in the Λ̃ posterior.
Figure 5 shows the posteriors for the c1 Lorentzian

parameter in the case of injection and recovery with the
FREE-PM model, for the three different sources. The
injected values of c0, c1, c2 are the ones that give the best
fit on the NR hybrid with the same binary parameters of the
source considered. The c1 parameter, which corresponds to
the frequency of the main postmerger emission peak, is
well recovered in all cases. Although we are mainly
interested in the recovery of c1, the FREE-PM model
provides posteriors also for the c0 and c2 parameters, which
are related to the maximum amplitude and width of the
Lorentzian, respectively. Note that the c0 and c2 parame-
ters, which are not shown in the figure, are not recovered as
well as the c1 parameter, but their injected values lie in the
90% confidence interval of the posteriors in all cases, as
reported in Table IV. While our model works for our main
purpose of measuring the frequency of the dominant
postmerger peak, the shifts that we see in the other
parameters suggest that we can further improve the
FREE-PM model; see, e.g., Refs. [63,65] for recent

developments, including postmerger features beyond the
main emission frequency.

B. Detector network performances in zero noise

We want to investigate how future detector networks
will improve our postmerger analysis. For this purpose, we
inject signals obtained from the QU-PM model in zero
noise, and we recover using both the QU-PM and the
NO-PM models. We analyze signals injected at three
different distances (68 Mpc, 135 Mpc, and 225 Mpc),
and we compare results for the four detector networks LHV,
LHVKI, LHVKIN, and ETCE (as described in Sec. II D).
Due to limited computational resources, we look only at
two different sources, Source2QU-PM and Source3QU-PM.
Figure 6 shows the Source2QU-PM injected signal and the

correspondent NR waveform: the signal injected with our

FIG. 5. Posteriors of c1 parameters for the three different sources, obtained when using the FREE-PM model both for injection and
recovery. The black dashed lines show the injected values.

TABLE IV. Median with 5% and 95% quantile values of the
posterior probability density for the c0 and c2 parameters,
together with their injected values, for each of the three sources
analyzed, in the case of injection and recovery with the FREE-PM
model.

log c0 log c0;inj c2 c2;inj

Source1½FREE-PM� −56.79þ0.29
−0.34 −56.65 96.40þ52.55

−36.90 74.0
Source2½FREE-PM� −56.18þ0.21

−0.24 −56.15 52.01þ19.13
−14.19 48.0

Source3½FREE-PM� −55.89þ0.19
−0.211 −55.90 41.26þ14.06

−9.52 39.0

FIG. 6. Frequency domain waveform for Source2QU-PM, in-
jected at a distance of 68 Mpc and using the QU-PM model (gray
solid line), and the corresponding NR waveform (black dotted
line). The dashed orange line and the cyan solid line show the
maximum-likelihood waveforms recovered for a zero-noise
injection in the ETCE network with the QU-PM and NO-PM
models, respectively. The orange and cyan shaded regions show
the 90% confidence interval on the recovered waveforms for the
two models.
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QU-PMmodel describes well the main postmerger emission
peak, but the NR waveform morphology also includes
different subdominant emission peaks which our single
Lorentzian cannot describe, and more structure in the
frequency region right after the merger. Both these features
should be addressed in future improvements of the model. In
the same figure, we show the maximum-likelihood wave-
forms recovered both with the QU-PM and with the NO-PM
model, for a zero-noise injection with the ETCE network.
The recoveredmaximum-likelihood QU-PM signal overlaps
with the injected one, showing howwell 3G detectors will be
able to recover this kind of signal. In the inspiral region, this
applies also to the NO-PM maximum-likelihood waveform.
The inspiral signal, which we see is well recovered also with
the NO-PMmodel, already contains information about the Λ̃
parameter; therefore, for the ETCE network with such a high
SNR,we expect that little contribution to the Λ̃measurement
comes from the postmerger part of the signal, given that this
parameter is already very well constrained from the inspiral.
Figure 7 shows the uncertainty Λ̃90conf, computed as the

width of the 90% confidence interval of the Λ̃ posterior
probability density, as a function of the detector network
employed for the analysis, comparing the different distances

and recoverymodels.As expected,Fig. 7 shows that for all the
detector networks considered, and for both models, the width
of the 90% confidence interval decreases with decreasing
distance. In particular, for the LHV network, we find an
improvement of ∼50% when going from 225 Mpc to
135 Mpc, and of ∼25% (for Source2QU-PM, even 56%) when
going from 135 Mpc to 68 Mpc, for both models; for the
ETCE network, we find an improvement of ∼45% when
going from 225 Mpc to 135 Mpc, and of ∼55% when going
from 135 Mpc to 68 Mpc. Using the QU-PM model yields
systematically tighter constraints on Λ̃, thanks to the addi-
tional information arising from the quasiuniversal relations
that describe the postmerger part of the signal. For both the
sources, in the caseof injections at 225Mpc andwith theLHV
or LHVKI network, we see no significant differences in
Λ̃90conf in the case of recovery with the QU-PM or NO-PM
model. Considering that such injections generate a SNR ≃ 30
in the case of the LHVnetwork, this is consistent with the fact
that in these situations,wedonot detect thepostmerger signal.
Interestingly, the best improvement when using the

QU-PM model comes in the case of the LHVKIN network.
Going from the LHVKIN to the ETCE network, the
constraint on Λ̃ improves by about ∼70% for both models,
while adding NEMO to the LHVKI network leads to an
improvement in Λ̃90conf of ∼60% for the QU-PM model,
against just ∼40% for the NO-PMmodel. For both sources,
we also see that for the LHVKIN network, the constraint on
Λ̃ obtained with the QU-PM model for injections at
135 Mpc is better than the one we retrieve with the
NO-PM model for injections at 68 Mpc. 3G detectors
are expected to have the best sensitivity over the whole
frequency band, and indeed we see that for the ETCE
network we get the smallest Λ̃90conf for both models.
However, the high sensitivity at lower frequencies allows
us to obtain precise measurements of Λ̃ from the inspiral
part of the signal alone, therefore reducing the impact of the
possible information gained from the postmerger phase. In
the case of the LHVKIN network, instead, the constraint on
Λ̃ from the inspiral is that of second-generation detectors,
but the high sensitivity of NEMO in the kilohertz band
leads to a better detection of the postmerger, and therefore
to significantly tighter constraints when using the QU-PM
model. If its realization is approved, adding NEMO to the
network of second-generation detectors will significantly
help the detection of postmerger signals and related studies.
We note that for this work, we analyze signals with a lower-
frequency cutoff of flow ¼ 30 Hz, missing many inspiral
cycles; in reality, an additional improvement on Λ̃ mea-
surements will be provided by the use of a lower flow.

C. Detector network performances in nonzero noise

In the previous sections, we focused on model and
network performances, using injections in zero noise.
Now, we want to look at the influence of noise on our

FIG. 7. Widths of the 90% confidence interval of Λ̃ posterior
for Source2QU-PM (top panel) and Source3QU-PM (bottom panel),
as functions of the different detector networks. Orange shades
represent recovery with the QU-PM model; green shades re-
present recovery with the NO-PM one.
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study. For this reason, we repeat the analysis using Gaussian
noise. Due to limited computational resources, we restrict
our focus to only two sources, Source2QU-PM and
Source3QU-PM, and to one distance, 68 Mpc. We inject
signals using the QU-PM model, and we recover them with
both the QU-PM andNO-PMmodels, comparing results for
the different detector networks LHV, LHVKI, LHVKIN,
and ETCE. Figure 8 shows Λ̃90conf for the different detector
networks. In order to assess the impact of noise fluctuations,
we show results for two different noise realizations, which
we call noiseA and noiseB. Due to the noise impact on the
analysis, we do not see the clear trends that we found in the
zero-noise runs, as described in Sec. III B. In the case of
Source3QU-PM (bottom panels in Fig. 8), with the noiseA
realization, the constraints obtained with the QU-PM
model are even wider than the ones recovered with the
NO-PM model. The most extreme fluctuation is found for
Source3QU-PM, in the case of LHVKI network and QU-PM
model, for which Λ̃90conf ¼ 88.26 in the case of noiseA and
Λ̃90conf ¼ 4.84 for noiseB. However, we see that in general,
Λ̃90conf decreases with more advanced detectors, with an
improvement between 80% and 90% when going from the
LHV to the ETCE network. Inmost cases, the QU-PMmodel
allows us to better determine Λ̃, although the quantitative
improvement strongly depends on the source and especially
on the noise realization. Moreover, noise fluctuations also
impact the median of the Λ̃ posterior probability density,
causing different shifts with respect to the injected values (see
Table V). Although such shifts appear to be small, they can
cause theposterior’smedian to lie outside the90%confidence

interval, especially in the case of the ETCE network, where
the Λ̃90conf is indeed very small.

D. Numerical relativity injections

Finally, we analyze simulated signals obtained by inject-
ingNRwaveforms on top of Gaussian noise. Figure 9 shows
the posterior probability density of Λ̃ for injections at
68 Mpc in the ETCE network. For Source2½NR-inj�, the
recovered posteriors of Λ̃ peak at the injected value, but
for the other sources, the posterior is shifted with respect to
it. For Source1QU-PM, the Λ̃ injected value lies in the tail of
the posteriors recovered with the QU-PM and FREE-PM
models, and completely outside the posterior obtained with
the NO-PM model; for Source3QU-PM, the posteriors recov-
eredwith all themodels peak at values between 575 and 578,

FIG. 8. Width of the 90% confidence interval of the Λ̃ posterior for Source2QU-PM (top row) and Source3QU-PM (bottom row), as a
function of the different detector networks, obtained with two different noise realizations: noiseA for the left panels, and noiseB for the
right ones.

TABLE V. Median values with 90% confidence interval for the
posterior probability density of Λ̃ in the case of two different
noise realizations, labeled as noiseA and noiseB, for injections at
68 Mpc in the ETCE network and for recovery with the two
different models QU-PM and NO-PM; the last column reports the
injected value of Λ̃.

Model Λ̃m noiseA Λ̃m noiseB Λ̃inj

Source2QU-PM QU-PM 956.68þ7.08
−8.37 959.93þ6.87

−8.71 966
NO-PM 966.35þ9.35

−11.82 953.10þ13.11
−19.11 966

Source3QU-PM QU-PM 608.04þ11.65
−6.27 602.36þ7.86

−12.49 607
NO-PM 611.76þ6.68

−7.51 604.35þ6.84
−7.70 607
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with the injected value Λ̃ ¼ 607 lying completely outside
their distributions. These shifts are due to noise fluctuations,
as we showed in Sec. III C, and possible limitations of our
waveform models. The case analyzed here, using the ETCE
network, generates a signal with a high SNR, and therefore a
narrow posterior density for Λ̃; hence, the shifts induced by
noise fluctuations can result in the injected value being
situated outside the 90% confidence interval. Using one of
the postmerger models to analyze signals obtained with NR
waveforms does not lead to a meaningful improvement in
the Λ̃ constraints like the ones shown in Sec. III A. This is
consistent with the fact that mismatches computed over the
whole waveform (cf. lower panel of Fig. 1) do not show
significant improvements when using one of the postmerger
models, considering that the noise and the complicated
morphology of the NR injection make it more difficult for
our models to recover the postmerger part of the signal, and
therefore almost all the Λ̃ information comes from the
inspiral phase. Nonetheless, when using the postmerger
models, we see a modest improvement in the recovery of Λ̃
for Source2½NR-inj� with respect to the NO-PM one, and a
clear improvement for Source1½NR-inj�. The latter is consistent
with the results found in Sec. III A for Source1QU-PM, where
we concluded that, when using the NO-PM model, the
presence of a postmerger signal, to which the NO-PM
waveform tries to latch on, causes a bias in the Λ̃ parameter
recovery. In Sec. III C, we saw that noise fluctuations alone
can impact the performance of our model, but in this case an
additional issue is that the NR simulations contain a more
complexGW structure in the postmerger phase, which is not
fully recovered with our simple Lorentzian model. This
appears clearly in Fig. 10, which shows the injected NR
waveform together with the maximum-likelihood ones
recovered with the different models and their 90% confi-
dence interval. The postmerger peak obtained with the
QU-PM model is slightly shifted with respect to the main
postmerger peak of the NR waveform; however, the same
shift was present also in the Source2QU-PM injected wave-
form in Fig. 6, and hence we conclude that it is due to the

imperfection of the model, not to issues in the parameter
estimation process. When optimizing the mismatches to
compute the best values of the fit parameters for our
quasiuniversal relations, it is likely that the model tries to
adapt to thewholemorphology of the postmerger NR signal,
thus shiftingwith respect towhatwould be the description of
the main emission peak only. For the FREE-PM model
maximum-likelihood waveform, the postmerger peak lies at
a higher frequency than the true one, is much wider, and has
a nonphysical amplitude, though this does not affect the Λ̃
recovery (cf. Fig. 9). Given the large bias in c0, and the fact
that the injected values vary in a small range, an improve-
ment would probably be obtained already by restricting the
prior range for this parameter. For comparison, in Fig. 10,we
show also thewaveform obtained from the FREE-PMmodel
with the optimized parameters computed as explained in

FIG. 9. Posterior probability density for Λ̃ as recovered with different models (NO-PM, QU-PM, and FREE-PM) in the case of signals
simulated by injecting NR waveforms into Gaussian noise at a distance of 68 Mpc, for the ETCE detector networks. The black dashed
lines show the injected values.

FIG. 10. Frequency-domain waveform of the injected NR
(black dotted line) waveform, compared to the waveforms
generated from the maximum-likelihood parameters recovered
for each model. The dashed gray line shows the FREE-PM
waveform obtained by optimizing the Lorentzian parameters as
explained in Sec. II B. The shaded regions represent the 90% con-
fidence interval of the posterior of the recovered waveform with
the different models.

UNRAVELING INFORMATION ABOUT SUPRANUCLEAR-DENSE … PHYS. REV. D 107, 124009 (2023)

124009-13



Sec. II B: the postmerger peak of the optimized FREE-PM
waveform overlaps to that of the NR waveform. Hence, the
FREE-PMmodel can in principle describe the data well, but
the additional information contained in the complex and
more structuredmorphology of the postmerger in the hybrid
signal makes it challenging for our simple model to recover
all the parameters correctly. The fact that the postmerger
Lorentzian parameters cannot be recovered with good
precision causes the 90% confidence interval of the recov-
ered waveform to be very broad. The spectra recovered with
the QU-PM model, instead, lie in a narrower interval
because their values are determined by the binary’s param-
eters,whichwith 3Gdetectors are recoveredwith a very high
precision (see Appendix B). We also note that the optimized
FREE-PM model peak does not present the same shift as
the QU-PM one, which is consistent with the fact that the
mismatches in the high-frequency region shown in Fig. 1 are
systematically lower for the FREE-PM model. For this
purpose, both our QU-PM and FREE-PMmodels need to be
improved toward more structured signals. Moreover,
hybridization of NR waveforms starts from the last few
cycles of the inspiral, so that the late-inspiral and merger
waveform is also based on NR simulations, and is thus
different from themodelwe employ. The difference between
the hybrids and the waveform models in the late-inspiral
region is visible also in Fig. 10 and can lead to biases,
affecting the results obtained not only with our FREE-PMor
QU-PM models, but also with the model without
postmerger.

IV. CONCLUSIONS

We have developed an analytical, frequency-domain
model to describe the GW emission during the inspiral,
merger, and postmerger phases of a BNS coalescence.
For the inspiral and merger phases, we employed the
IMRPhenomD_NRTidalv2 waveform. We incorporate
the postmerger part through modeling the main emission
peak with a Lorentzian, whose parameters, in the two
versions of our model, are either free or determined by
quasiuniversal relations. Due to the computational cost of
the analysis, our study was limited to a restricted number of
BNS systems. We have shown that in the best-case scenario
of simulations with zero noise and high SNR—i.e., at a
distance of 68 Mpc and with the ETCE network—the
QU-PM model leads to better constraints on the Λ̃
posteriors compared to the ones obtained with the
NO-PM model, and the FREE-PM model grants an
accurate measurement of the frequency of the main
postmerger emission peak. Within our study, we find that
noise fluctuations can significantly impact the results; as
shown in Sec. III C, they produce both large differences in
the accuracy of Λ̃measurements (quantified by the width of
the 90% confidence interval of the recovered Λ̃ posterior;
e.g., Fig. 8), and shifts in the median value of that posterior,
cf. Table V. In some cases, this overcomes the improvement

on Λ̃measurements yielded by the use of the QU-PMmodel
and calls for caution in the interpretation of the results, to
distinguish the effects of a different model from the effects
of noise. It is important to note that the shifts in Λ̃ recovery
caused by noise fluctuations, which are evident especi-
ally in high-SNR injections, given the narrowing of
the posterior, also affect the results obtained using the
model without postmerger. In general, including the
postmerger during the analysis provides tighter constra-
ints on the Λ̃ posterior than the original inspiral-only
IMRPhenomD_NRTidalv2 model. Finally, we used
our model to recover signals obtained by injecting NR
waveforms. Although we still see improvements in some
cases when using the postmerger models, they are not as
significant as those we found for the simulated signals. This
is due to noise effects and the fact that NR waveforms
include postmerger signals with a complex structure, which
a simple Lorentzian model struggles to recover. Despite the
promising results, we conclude that our model, in both its
versions, still needs improvements in order to be employed
in the analysis of real signals.
Another central point of our study was to assess the

performance of different detector networks, and to under-
stand how future detectors will improve the postmerger
analysis. In particular, we considered four different net-
works: (i) advanced LIGOþ in Hanford and Livingston
together with Advanced Virgoþ; (ii) the same network as
(i) extended by KAGRA and LIGO-India; (iii) the same
network as (ii) extended with NEMO; and (iv) a network
consisting of a 40 km Cosmic Explorer and a 10 km,
triangular Einstein Telescope. Although 3G detectors, as
expected, will give the best constrains on Λ̃, we found that
NEMO, thanks to its very high sensitivity in the kilohertz
band, yields the biggest improvement when using the
QU-PM model.
Our study showed how, with future detector networks,

GW observations from the postmerger phase of a BNS
coalescence will allow us to unravel information about the
fundamental physics describing supranuclear-dense matter.
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APPENDIX A: RESULTS FOR THE
FREE-PARAMETER MODEL

In the following, we show some results obtained with the
postmerger model using free Lorentzian parameters.
Performing parameter estimation analysis with the
FREE-PM waveform requires sampling over three addi-
tional parameters, which implies even higher computa-
tional costs. For this reason, we could not run the same
analyses with the FREE-PM model as we did for the QU-
PM one. As shown in Sec. III A, with high-SNR and zero-
noise injections, we can recover c1 accurately. In Fig. 11,
we show how different detector networks can recover the
c1 parameter in the case of Gaussian noise injections, for
simulated signals corresponding to Source3FREE-PM at
68 Mpc. In the case of second-generation detectors, we
basically recover the prior, although with a peak within
[2500,3000] Hz, where the injected value also lies. Adding
NEMO to the network leads to a strong improvement,
resulting in a very sharp peak for the c1 posterior. The
recovered value of c1 with the LHVKIN network is slightly
overestimated with respect to the injected value. However,
this happens also for the ETCE network, where again the
posterior is a sharp peak, and the injected value lies in its
lower tail, outside of the 90% confidence interval. In
Sec. III A, we saw that, for the ETCE network, for the
same simulated signal injected in zero noise, the value of c1
is recovered very well. Therefore, we conclude that the

shifts in the posterior peaks for the ETCE and LHVKIN
networks for the injections in Gaussian noise are most
likely due to noise fluctuations, which, as reported in
Sec. III C, for this source affect also the Λ̃ measurements.
Finally, analyses of signals obtained by NR waveform
injections do not recover either of the Lorentzian param-
eters, mainly because of the complex structure of the
postmerger signal in the NR waveforms, as already shown
in Sec. III D. Although the FREE-PM model still needs
improvement for the analysis of real signals, the results in
Fig. 11 are promising, and especially show that adding
NEMO to a network of second-generation detectors will
certainly make a difference for the study of BNS post-
merger signals.

APPENDIX B: PARAMETER ESTIMATION
WITH FUTURE DETECTORS

Our discussion focused on the recovery of the Λ̃
parameter, or of the c1 parameter in the case of the
FREE-PM model, because these are the quantities that
encode most of the information about the EOS. However, it
is also interesting to look at the recovery of all the other
binary parameters, to see how future detectors will help in
improving our knowledge of these systems. Figure 12
shows the comparison between the normalized posterior
probability density forMc, q, Λ̃, χ1, χ2, α, δ and luminosity
distance dL, obtained using different detector networks,
for Source2QU-PM injections at 68 Mpc and in zero noise.
We find that 3G detectors will yield a strong improvement
not only for what concerns Λ̃ recovery, but also in the
estimation of Mc, q, and dL; in particular, with the ETCE
network we can estimate Mc with a precision roughly 10
times better than the LHV one. We find only a slight
improvement in the recovery of the spin magnitude values
χ1 and χ2. The best estimation of the sky location
parameters ðα; δÞ comes from the LHVKIN network, which
is expected, considering the larger number of detectors and
their geographical distribution, as shown in Fig. 2. We also
note that the improvement obtained by adding NEMO to
the network is roughly a factor of 1.9 and 1.6 forMc and q,
respectively, when computed in comparison with the
LHVKI network, but it reaches a factor of 4.4 for Λ̃
estimation. As discussed in Sec. III B, this is achieved
thanks to the postmerger contribution to the signal, which
for NEMO is significant as a result of its very high
sensitivity in the kilohertz band. Overall, future detectors
will grant very precise constraints on the BNS parameters,
allowing us to better understand the properties and pop-
ulations of these objects. We also point out that, for
computational reasons, our analyses were performed start-
ing from a frequency flow ¼ 30 Hz, and hence, in reality,
additional information will be available by analyzing
signals starting from lower frequencies. This will lead to
a large improvement, especially for the 3G detectors,

FIG. 11. Posterior probability density for the c1 Lorentzian
parameter for the different detector networks, in the case of
Gaussian noise injections at 68 Mpc. The dashed vertical line
indicates the injected value.
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because, for example, the xylophone configuration of ET,
with the low-frequency inteferometer possibly operating
at cryogenic temperatures, will ensure a good sensitivity
down to flow ¼ 5 Hz. The additional information carried in
the many inspiral cycles at low frequencies will further
improve the constraints on the BNS parameters, being
particularly beneficial for the spin parameters, considering
that at low frequencies, spin-induced quadrupole moment
effects also become significant.

APPENDIX C: RELATIVE BINNING
SETTINGS AND VALIDITY

The relative binning method allows us to greatly reduce
the computational cost of our analysis. As explained in
Sec. II C 1, a fundamental requirement to employ this
technique is having a reference waveform that describes
the data sufficiently well. Although with real data we do not
know the exact parameters of the source a priori, we can
use information from low-latency analyses and quasiuni-
versal relations to find the values to use as the fiducial
parameters. Since there might still be biases in the
parameters determined in such a way, we checked the
influence of the choice of fiducial parameters, performing
some tests with different fiducial values for Λ1,Λ2, and we
found consistency between results.

In Ref. [86], the authors show results obtained with this
method for GW170817, which, despite being a loud event,
has a SNR much lower than the ones we study in this work
(cf. Table III). The approximations used in relative binning
are not expected to retain validity only in a given SNR
range, but we tested the efficacy of this method applied to
very loud signals by checking the consistency against
results obtained with the nested sampling package
LALINFERENCE [107] of the LIGO Algorithms Library
(LAL) software suite [108].
Finally, when using the relative binning method, the

choice of frequency bins in which thewaveform is evaluated
plays a crucial role. Following Ref. [86], this choice is
dictated by the requirement that the differential phase
change in each bin be smaller than some threshold δϕ. In
Ref. [86], the phase change is computed assuming a post-
Newtonian (PN) description of the signal, in which the
effects of the different binary parameters enter the phase
with different powers of frequency. In the merger and
postmerger part of the signal, the PN approximation is
not valid anymore. It is not easy to find a similar way to
properly describe the phase in the postmerger without
having to evaluate the waveform and incurring computa-
tionally expensive processes that would undermine the
speedup advantage of this method. On the other hand,
the phase computed with the PN approximation is then
interpolated with frequency, and the frequency bins are

FIG. 12. Normalized posterior probability density for the binary parameters recovered with the QU-PM model with the different
detector networks, for Source2QU-PM at 68 Mpc; the dashed vertical lines show the injected values.
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determined by evaluating this interpolant over a grid of
phases determined by the required precision δϕ. Therefore,
if such a threshold is chosen to be small enough (for our
analysis, we set δϕ ¼ 0.01), we expect that the way in which
the phase change is computed will play little role, and the
dense frequency binning produced ensures that the bins’
widths will be small enough to allow a linear interpolation
of the ratio between the generated waveform and the fiducial
one anyway, as in Eq. (19). If this were not true, we would
expect that changing the threshold δϕ, and consequently the
frequency bins, over which the waveform is evaluated

would give different results also if δϕ were kept small.
Table VI reports the number of frequency bins employed by
the relative binning technique for different values of δϕ, both
in the whole frequency range considered for the analysis,
and for the postmerger region only. Choosing small values
of δϕ means increasing the number of bins over which we
evaluate the waveform, and therefore the computational cost
of the analysis; nevertheless, performing the analysis using
relative binning with these settings is still much faster than
running “standard” parameter estimation analyses, which,
for these kinds of signals, are not computationally feasible.
For standard parameter estimation, the waveform needs to
be evaluated on a uniform grid that, with signals of a
duration of roughly 200 s such as the ones analyzed here,
includes approximately 8 × 104 points. Hence, considering
that relative binning needs the evaluation of each sampled
waveform only at the edges of the bins, this technique
greatly reduces the number of required waveform evalua-
tions. Figure 13 shows the posteriors recovered with the
QU-PM model for the binary parameters of a Source2QU-PM
injection at 135 Mpc, with the LHVKIN network. We
repeated the analysis multiple times, keeping the same
settings but changing the frequency binning by using
different values of δϕ. We keep δϕ small, but we look at

FIG. 13. Comparison between the normalized posteriors for the binary parameters recovered with the QU-PM model for
Source2QU-PM injections at 135 Mpc with the LHVKIN network, using the relative binning technique with different precision
requirements. The different colors show the posteriors for the analysis with different values of δϕ, while the black dashed lines represent
the injected values.

TABLE VI. Number of frequency bins employed in the relative
binning method for different values of δϕ, both for the frequency
range [30, 4096] Hz and in the postmerger region, starting at the
merger frequency.

δϕ Total bins PM bins

0.005 6285 2767
0.007 4489 1976
0.01 3143 1384
0.03 1049 462
0.05 630 277
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both larger and smaller values with respect to the δϕ ¼ 0.01
used throughout this work. As the plot shows, we find great
consistency between the results obtained with all the
different values of δϕ. Consequently, despite the fact that

the PN approximation does not hold in the postmerger
phase, using it to determine the frequency bins for the
relative binning method does not spoil the results, provided
that the chosen δϕ results in small bin widths.
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