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Because of its speed after training, machine learning is often envisaged as a solution to a manifold of the
issues faced in gravitational-wave astronomy. Demonstrations have been given for various applications in
gravitational-wave data analysis. In this Letter, we focus on a challenging problem faced by third-
generation detectors: parameter inference for overlapping signals. Because of the high detection rate and
increased duration of the signals, they will start to overlap, possibly making traditional parameter inference
techniques difficult to use. Here, we show a proof-of-concept application of normalizing flows to perform
parameter estimation on overlapped binary black hole systems.
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Introduction.—Over the last few years, the improved
sensitivity of the LIGO [1] and Virgo [2] detectors has
made the detection of gravitational waves (GWs) originat-
ing from compact binary coalescences (CBCs) more and
more common, with over 90 detections reported after the
third observation run [3]. Soon, the upgrade of the current
detectors and the addition of KAGRA [4–8] and LIGO
India [9] to the network of ground-based interferometers
will lead to even more detections. In addition, the passage
from second-generation (2G) to third-generation (3G)
detectors [Einstein Telescope (ET) [10,11] and Cosmic
Explorer (CE) [12–14] ] will lead to an important increase
in the number of observed CBCs. These detectors are also
projected to have a reduced lower frequency cutoff [15],
leading to longer signal durations. Therefore, CBC signals
will overlap in 3G detectors [16–20].
Analyzing one of the overlapping signals without

accounting for the presence of the other can lead to biases
in the recovered posteriors, especially when the merger
times of the two events are close [17–21]. These could
impact any direct science case for CBCs (e.g., tests of
general relativity [22]), but also indirectly related ones such
as the hunt for primordial black holes [23–28]. In Ref. [29],
the authors demonstrate on two overlapped binary black
holes (BBHs) how adapted Bayesian inference can help
reduce the biases. In particular, they perform joint param-
eter estimation, where the two signals are analyzed jointly.
While accounting for all the noise characteristics, their
analysis also suffers from some instabilities, and further
upgrades are needed for it to be entirely reliable. An issue
also mentioned in this Letter is the computational time.
With hundreds of thousands of CBC mergers expected in
the 3G era [17], analyses taking several weeks are not a
realistic alternative.

Even if traditional methods can be sped-up [30–33], or
quantum computing [34] could potentially be used in the
future, the development of frameworks capable of doing
complete analyses in short timescales is crucial for the
development of 3G detectors. Therefore, in this Letter, we
propose the first step in that direction, showing how
overlapping BBHs can be analyzed with a normalizing
flow (NF) approach [35–37].
Machine learning for overlapping gravitational

waves.—The use of machine learning (ML) in GW data
analysis has been growing over the last years, having a wide
range of applications [38]. A subset of these methods falls
under the umbrella of simulation-based inference [39], and
is being developed to perform parameter estimation for
CBCs [40–47]. References [43–45] use NFs to get pos-
terior distributions for BBH parameters, obtaining results
close to those from traditional Bayesian methods. Our
approach is somewhat similar to theirs, with some notable
differences explained below.
Our approach uses continuous conditional NFs [48,49]

(CCNFs), a variant of NFs suited for probabilistic modeling
and Bayesian inference. Because of the recursive and
continuous nature of these models, their memory footprint
can be quite small [50], allowing for extensive training on
home-grade GPUs while retaining the ability to capture
complex distributions.
NFs are a method in ML through which a neural network

can learn the mapping from some simple base distribution
puðuÞ to a more complex final distribution qðθÞ. This is
done through a series of invertible and differentiable trans-
formations, summarized by a function gðθÞ. However, in our
case, the final distribution we seek depends on the GW data
to analyze. Therefore, we use conditional NFs [51], where
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the transformation functions are dependent on the data d
(hence, g ¼ gðθ; dÞ). A major difference with [51] is that
our base distributions are kept static. Thus our model gðθ; dÞ
is a trainable conditional bijective function transforming a
simple 30-D Gaussian into a 30-D complex distribution.
The bijectivity allows us to express and sample qðθjdÞ in
terms of gðθ; dÞ and puðuÞ via

qðθjdÞ ¼ j det½Jg−1ðθ; dÞ�jpu½g−1ðθ; dÞ�; ð1Þ

where det½Jg−1ðθ; dÞ� is the determinant of the Jacobian
Jg−1ðθ; dÞ of the transformation. We train the model by
minimizing the forward KL divergence, which is equivalent
to maximum likelihood estimation [37,52]. As noted by
[45], qðθjdÞ should cover the actual (Bayesian) posterior
pðθjdÞ, and asymptotically approach it as training pro-
gresses due to the mode-covering nature of the forward KL
divergence.
A distinctive choice of our method is the continuous

nature of the flow, which is linked to the transformation
function itself. Neural ordinary differential equations (neu-
ral ODEs) [50] are the foundation of continuous NFs; they
are not represented by a stack of discrete layers but by a
hypernetwork [53]. Hypernetworks can be understood as
regular networks where “external” inputs such as a time or
depth variable smoothly change the output of the network
for identical inputs. They can thus represent multiple
transformations. In [50], hypernetworks are used to re-
present ODEs and are trained by using ODE solvers and
clever use of the adjoint sensitivity method. A continuous
NF uses neural ODEs as its transformations.
We will now explain the training of a continuous flow.

For clarity, we will use h to refer to a continuous trans-
formation and g for a discrete one. If θðtÞ represents the
samples from the distribution at a given time t, when going
from t1 to t2, the continuous NF obeys

dθðtÞ
dt

¼ hðt; θðtÞÞ: ð2Þ

The change in likelihood associated with this “step” differs
slightly from Eq. (1) due to the continuous nature of the
flow:

log½pðθðt1ÞÞ� ¼ log½pðθðt0ÞÞ� −
Z

t1

t0

Tr½JgðθðtÞÞ�: ð3Þ

Assuming a nonstiff ODE the integration can be performed
rapidly with state-of-the-art ODE solvers, MALI [54] in our
case. In addition, we have to calculate a trace instead of a
determinant, speeding up the computation which reduces
the complexity, going from OðD3Þ to at most OðD2Þ with
D being the dimensionality of posterior space, speeding-up
the computation [55,56]. Moreover, using continuous
NFs removes the need to use coupling layers between

transformations, instead, all parameter dimensions can be
dependent on each other throughout the flow. Combining
the continuous and conditional flows leads to CCNFs,
where the conditional consists of the GW d and the time t.
We also need a better data representation than the raw

strain to train and analyze the data. Therefore, we follow a
similar approach as in [41–45], using a single value
decomposition (SVD) [57] as summary statistics, reducing
the dimension and the noise content of the data while
retaining at least 99% of the original signal. Each of the 256
generated basis vectors is used as a kernel in 1D con-
volutions used as an initial layer in a ten-layer residual
convolutional neural network (CNN), enabling one to
capture the time variance of the signal. Therefore, we do
not need to use a Gibbs sampler to estimate the time of the
signal as done in [43–45], and can sample over time like
any other variable. The CCNF itself is represented by
two multilayer perceptrons with three hidden layers of
512 units. Furthermore, we use a different representation for
the angles. Instead of directly using their values, we project
them onto a sphere for the sky location and onto a circle for
the other angles. This makes for a better-posed domain for
these angles, and plays on the strong interpolation capacities
of the network, making the training step easier.
In the end, our framework combines data representation

as a hybrid between SVD and CNN, followed by the CCNF
network. A representation of our analysis framework is
given in Fig. 1. Our entire framework is relatively small
compared to the ones presented in [43], both the residual
network and CNF network. Therefore, it can run on lower-
end GPUs, but could also be limited in its capacity to model
the problem.
Data and setup.—To test our framework, we start with a

simplified setup, considering a network made of the two
LIGO detectors and the Virgo detector, at design sensi-
tivity [2,58], and with a lower sensitive frequency of
20 Hz. We generate stationary Gaussian noise from their
power spectral density (PSD) and inject two precessing
BBH mergers using the IMRPhenomPv2 waveform [59].
Our data frames have an 8 s duration and are whitened after

Signal

SVD Convolutions

 Residual Network

Continuous
Normalizing Flow PosteriorNormal

FIG. 1. Representation of our analysis framework. It is made of
a preprocessing part where we build a SVD basis to filter the data,
followed by a normalizing-flow-based neural network.
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the signals are injected. The chirp mass [Mc ¼
ðM1 þM2Þ3=5=ðM1M2Þ1=5] and mass ratio (q ¼ M1=M2)
are sampled from uniform distributions, between 10M⊙ and
100M⊙ and 0.125 and 1, respectively. The individual
component masses are constrained between 5M⊙ and
100M⊙. During the data generation, the luminosity distance
is kept fixed. It is then rescaled to result in a network signal-
to-noise ratio value taken randomly between 10 and 50 from
a beta distribution with a central value of 20. The coa-
lescence time for the two events is set randomly around a
time of reference, with tc ∈ ½tref − 0.05; tref þ 0.05� s, ensur-
ing that the two BBHs merge in the high bias regime [18].
The other parameters are drawn from their usual domain.
Table I gives an overview of the parameters and the function
from which they are sampled.
During the training, we continuously generate data by

sampling the prior distributions for the events and making a
new noise realization for each frame. The training is
stopped when convergence is reached and before over-
fitting occurs. Our model was trained for about 12 days on a
single Nvidia GeForce GTX 1080.
Results.—To demonstrate the method’s reliability, a P-P

plot for the recovered parameters is shown in Fig. 2. It is
constructed by sampling the posteriors of 1000 overlapped
events with parameters drawn from the distributions detailed
in Table I [60]. Since the cumulative density aligns along the
diagonal, our network is reliable. Comparing this to the
results given in [43] for single signals, there is a broadening
of the shell around the diagonal, showing more variability in
signal recovery, meaning our inference is less accurate than
for single signals. Possible origins are the degenerate
posteriors, increased complexity of the problem, and the
reduced size of our network. This increased variability when
going from single to joint parameter estimation has also
been noted in Bayesian approaches [29].

While Bayesian methods have been developed in [29],
they are not yet fully stable and take a long time to analyze a
BBH system. Therefore, making a statistically significant
study comparing the two approaches seems a bit premature
at this stage. However, to have some sense of the perfor-
mances of our network compared to traditional methods, we
make 15 injections complying with our network’s setup and
analyze them with the framework presented in [29]. Using
these analyses, we can already identify some trends between
the two pipelines. The first is that our ML pipeline typically
has broader posteriors than the Bayesian approach. As
mentioned in Ref. [29], the classical joint parameter
estimation approach can sometimes get overconfident—
see Ref. [29] for a discussion on the Bayesian algorithm—
where the recovered injected value lies outside of the 90%
confidence interval. Our method is not confronted with this
bottleneck as the broader posterior encapsulates the injected
value. Figure 3 illustrates the two representative situations:
one where the Bayesian approach finds the event correctly,
and one where we see that our ML approach covers the
injected values while it does not for the classical approach.
Bias in the posterior, similar to the one noted in Ref. [29],
can exist in our method and would not be seen because of
the broad posteriors. However, because we are using the
forward KL divergence, we expect the posteriors to have
some support for the injected values. The origin of the larger
posterior, which is not observed in the single parameter
estimation machine learning-based methods, is probably
due to the increased complexity of the problem combined
with the small residual and CNF network sizes. One

TABLE I. Summary of the parameters considered and the
function used to generate the BBHs.

Parameter Function

Chirp mass (M) Uð10; 100ÞM⊙
Mass ratio (q) Uð0.125; 1Þ
Component masses (m1;2) Constrained in ½5; 100�M⊙
Luminosity distance (DL) Rescaled to follow SNR
SNR Bð10; 50Þ
Coalescence time (tc) Uðtref − 0.05; tref þ 0.05Þ
Spin Amplitudes (a1;2) Uð0; 1Þ
Spin tilt angles (θ1;2) Uniform in sine
Spin vector azimuthal angle (ϕjl) Uð0; 2πÞ
Spin precession angle (ϕ12) Uð0; 2πÞ
Inclination angle (θjn) Uniform in sine
Wave polarization (ψ) Uð0; πÞ
Phase of coalescence (ϕ) Uð0; 2πÞ
Right ascension (RA) Uð0; 2πÞ
Declination (DEC) Uniform in cosine

FIG. 2. P-P plots for a subset of the recovered parameters for
the two events in the data. The parameters shown are represen-
tative of all the BBH parameters for the two events. In both cases,
the lines align along the diagonal, showing that our method can
be trusted. The legend indicates which line corresponds to which
parameters. The parameters for event 1 (resp. 2) are noted P1
(resp. P2), where P are the usual parameter symbols as presented
in Table I. The values between the brackets are the KS test
statistic.
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possible avenue is applying importance sampling after the
normalizing flow [45,61]. However, such methods can be
tricky, and additional modifications to our network could
be needed.
Finally, an important advantage of our method is its

speed. After being trained, it can analyze two overlapping
BBH signals in about a second, to compare with
Oð20 daysÞ reported in [29]. While it is difficult to estimate
the time gain for other CBC signals, we can expect the
inference time after training not to be significantly larger
than for BBHs. Since computational time is a crucial aspect
of studies in the 3G era, ML approaches seem to be more
suited to study realistic scenarios for these detectors.
Conclusions and perspectives.—In this Letter, we have

presented a proof-of-concept machine learning-based
method to analyze overlapping BBH signals. We focused
on a 2G detector scenario with the two LIGO detectors, and
the Virgo detector at design sensitivity, with a lower
frequency cutoff of 20 Hz. Our approach is based on
continuous normalizing flows.
While also using normalizing flows, as in [41–45], we

bring extra modifications that seem to help in the inference
task. We represent the data through a mixture of SVD and
convolutions, enabling us to sample directly over the
events’ arrival time, retaining the ability to access the
likelihood of a sample. We also move to continuous
conditional normalizing flows, reducing the computational
cost of the method as we need to solve a trace instead of a
determinant when going from one step to the other in the

transformation. Finally, we also use a particular represen-
tation of the angles, projecting them onto circles (for the
phase, the polarization, …) and spheres (for the sky
location). We believe that these modifications make our
network more flexible, enabling it to deal with overlapping
signals even in a reduced form.
With this simplified setup, we have shown that our

approach is reliable, with posteriors consistent with the
injected values. Our method takes about one week to train
on a single GPU. After that, it only takes about a second to
analyze two overlapped BBHs. While, in reality, other types
of CBC mergers can happen, their inference after training
should not be significantly longer than for BBHs. We also
compared our machine learning method with classical
Bayesianmethods for overlapping signals.While our scheme
leads towider posteriors, it can correctly recover the injected
values, even when the Bayesian approach gets overconfident
and misses the injection. A possibility to correct for the
widened posteriors is to use importance sampling.
Our method’s combined reliability and speed show that

machine learning is a viable approach to analyzing CBC
mergers in the 3G era. More interestingly, it would even be
possible without needing to account for the development
of more powerful computational means and could enable
some science-case studies for ET and CE soon. For
example, once trained for all possible BBH systems, it
could help study the BBH mass function in the 3G era.
Still, one should note that extra improvements are

needed before using our method in realistic 3G scenarios.

FIG. 3. Comparison between our approach and the one from [29] for two separate events and for the chirp mass, mass ratio, right
ascension, and declination. The injected values are given by the black lines. For the left event the true value is encapsulated by the
posteriors of both methods, for the right event this is only the case for our method. Our posteriors are generally broader but include the
injected value within the 90% confidence interval. This could be corrected by applying importance sampling on the output samples.
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One would first need to change our setup to the 3G
detectors, where a lower frequency cutoff and extreme
SNRs could be encountered. In addition, a wider range of
objects should be accounted for. One should include
higher-order modes and eccentricity as they could play a
crucial role in the 3G era. Other modifications could also be
implemented. Additionally, we need to account for the
change in noise realization from one event to the other.
Some of these steps, like changing the detector configu-
ration, should be relatively easy. Others are more complex,
as it is hard to perform parameter inference for long-lasting
mergers due to the computational burden. So, extra devel-
opments in parameter estimation using machine learning
would be required to get to the realistic 3G scenario. For
overlapping signals, one would also benefit from develop-
ments in the classical study of the 3G scenario, such as how
to deal with the noise characterization or the types of other
events that could come into the data.
In the end, there is still work to be done before machine

learning can be used in realistic 3G scenarios. However, we
believe that this Letter shows it is an interesting avenue and
could be practical on a relatively short timescale.
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