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Abstract
We study the effect of a common enemy on the connections-model of network for-
mation, where self-interested players can use links to build a network, knowing that 
they face a common enemy who can disrupt the links or nodes of the network. The 
goal of the common enemy is to minimize the sum of the benefits players obtain 
from the network. We find that for large linking costs, introducing such a common 
enemy can lead to the formation of pairwise stable and efficient networks which 
would not be pairwise stable without the threat of disruption. The reason is the 
large reduction in payoffs caused by disruption as soon as one player fails to main-
tain a link. However, we also find that for small linking costs, the empty network 
is pairwise stable under disruption, whereas it is not in the absence of disruption. 
The reason is that in the presence of disruption a link that is unilaterally formed is 
automatically targeted (or one of the players forming the link is automatically tar-
geted). While the common enemy can thus have a positive effect on the incentives of 
the players to form an efficient network, it can also lead to the disintegration of the 
network.
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1  Introduction

Networks are a key feature in many different parts of society. Companies depend 
crucially on transportation and distribution networks, whereas social relations 
often depend on communication or information networks. In these examples, 
being part of a network is beneficial for its members. The benefits of being part 
of the network depend on the structure of the network, where often it holds that 
players benefit more from their connections in the network the larger the number 
of players in it. However, before being able to benefit from a network, one first 
has to invest in building and maintaining costly connections within it to reach 
other players. Thus, from an economics standpoint one would like to know what 
network structures are efficient and whether individual players deciding on which 
links to form may actually achieve such efficient networks. A number of papers 
investigates networks from such an economics point of view (see, e.g., the semi-
nal papers by Bala and Goyal (2000a) and Jackson and Wolinsky (1996) and the 
literature building on these papers).

Yet, networks often face external threats and the benefits of a network therefore 
do not only depend on its current structure, but on what remains of this structure 
after such threats have materialized. Thus, investing into being part of a network 
seems less beneficial if the network can be disrupted. Such disruption can arise from 
within the network as well as from outside the network and can be random as well 
as strategic. Random disruption is often modeled in epidemiology, climatology, and 
physics (see, e.g., Cerdeiro et al. 2017; Albert et al. 2000, and Bollobás and Riordan 
2003). Strategic disruption is often modeled in the context of terrorist attacks (Arce 
et al. 2012) as well as in operations research (e.g., Lipsey 2006; Taylor et al. 2006), 
where the focus lies on survival analysis. Targets of such strategic disruption are 
often information, communication or financial networks (Haller 2016).

In general, disruption can be targeted at players within the network or at their 
connections and can, in both cases, have severe consequences on the functioning of 
the network as a whole. To ensure maximal functionality of networks after disrup-
tion, it is therefore important to analyze which network structures remain (largely) 
intact after disruption. For this, both types of network disruption - targeting the 
players within the network or the connections between them - need to be taken into 
account. In this paper, we are interested in the impact the threat of disruption has 
on a decentralized process of network formation. In such a decentralized process, 
which makes sense for instance in friendship or collaborative networks, the nodes 
in the network are players who decide themselves which connections to form. In 
particular, in this paper we develop a model in which a group of n players forms a 
network using costly connections (or: links) between them, knowing that afterwards 
the network will be attacked by a disruptor, who can either target the players (i.e., 
the nodes) or the links of the network. The players are assumed to be self-interested 
and therefore their aim is to maximize their own payoffs, whereas the disruptor’s 
aim is to cause as much damage as possible to the network.

Our model builds on the connections model of Jackson and Wolinsky (1996), 
where link formation is two-sided and where pairwise stability is employed as 
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an equilibrium concept. In such a model, a link can only be formed if the play-
ers between which it is formed both consent to forming it (in which case both 
players incur linking costs), which seems an appropriate assumption for friend-
ship or collaborative networks. Contrary to what is the case in the connections 
model, we abstract from information decay in order to isolate the effect of dis-
ruption (the effect of adding information decay is explored in the Conclusion, 
and in  Appendix C).1 We start off by analyzing the benchmark case without a 
disruptor and find that in this case the only pairwise stable networks are the mini-
mally connected networks for small linking costs and the empty network for large 
linking costs. However, minimally connected networks are efficient both for small 
and large linking costs, so that for large linking costs minimally connected net-
works are efficient, but not pairwise stable (as only the empty network is pairwise 
stable).

We introduce a disruptor into this model who can either only remove links or only 
remove nodes (where initially we limit our analysis to the case where one link or one 
node can be removed). We describe two effects of the presence of a disruptor. First, 
the presence of a disruptor changes the structure of the networks that players form. 
When players are able to coordinate on forming a connected network, the network 
tends to be more tightly connected. At the same time, the presence of a disruptor 
means that it is always possible that the network-forming players coordinate on net-
works that are not connected, including on the empty network. Second, we find that 
the presence of a disruptor broadens the range of costs for which players are able 
to coordinate on a connected network. In detail, we find that for both link and node 
disruption, pairwise stable connected networks exist not only for the case of small 
linking costs, but also for the case of large linking costs. It follows that the presence 
of a disruptor makes it possible that the players efficiently form a network, which 
in the absence of a disruptor they were not able to do. We thereby find what can be 
termed as a common-enemy effect: individuals who face a common enemy are more 
likely to cooperate than if they do not face a common enemy. The intuition for such 
an effect is that the presence of the disruptor makes each player’s contribution to the 
network more critical, so that the individual player is less inclined to defect from 
joint network formation. In particular, for large linking costs, the circle is pairwise 
stable in the presence of a disruptor, because the removal of any link means that the 
disruptor will cut the network in two.

At the same time, as a consequence of the possibility that players are not able 
to coordinate on a connected network, we find that for small linking costs, there is 
an effect that is diametrically opposed to the (positive) common-enemy effect and 
which we term the negative common-enemy effect, where the presence of a com-
mon enemy decreases the probability of players cooperating. The intuition for the 
negative common-enemy effect in our results is that in the presence of a disruptor, 
no pair of players forms a link when no other pairs form links, as this one link is 
automatically targeted (or as one of the players forming the link is automatically 
targeted).

1  Decay refers to any information loss in the information transmission between two players that is caused 
by the distance (length of the shortest path) between them.
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The paper is structured as follows. After a short literature review in Sects. 2, 3 
presents the model of network formation and disruption. Section  4 analyzes the 
benchmark case without a disruptor, and Sects. 5 and 6 respectively analyze the case 
with a disruptor for unit disruption budgets, and for larger disruption budgets. Sec-
tion 7 then concludes the paper.

2 � Literature review

With this paper we add to two streams of literature - the literature on network dis-
ruption and the literature on the common-enemy effect. In the following, we discuss 
both streams concisely.

2.1 � Literature on network disruption

Existing literature on strategic network disruption and defense mostly analyzes the 
defense by a centralized player against strategic disruption. In these models, disrup-
tion typically consists of the disruption of nodes in the networks and defense typi-
cally consists of investing in the protection of nodes, such as to reduce the effect of 
attacks on these nodes. Such defense is modeled as taking place on an existing net-
work (Acemoglu et al. 2016; Kovenock and Roberson 2018). Alternatively, the cen-
tralized player also designs the network itself (Dziubiński and Goyal 2013; Goyal 
and Vigier 2014; Landwehr 2015; see Endres et al. (2019) for an experimental anal-
ysis of such models). Dziubiński and Goyal (2017) additionally consider the case 
where defense of the nodes takes place in a decentralized manner, but the network is 
exogenously given. In Cerdeiro et al. (2017), defense of the nodes is also decentral-
ized, but the network is formed by a designer. Finally, Goyal et al. (2016) consider 
the case where both network formation and defense of the nodes takes place in a 
decentralized manner.

Bala and Goyal (2000b) analyze decentralized network formation when links 
independently fail with a positive probability, which can be seen as a model of 
non-strategic, random link disruption. Additionally, Jackson and Wolinsky (1995) 
shortly sketch an extension of their connections model to network reliability. In both 
papers, decentralized defense by network-forming players takes the form of these 
players adding extra links to minimally connected networks, as these create extra 
paths through which individual players can receive information. In Hoyer and De 
Jaegher (2016), defense also consists of adding links, but disruption is strategic, in 
that a strategic disruptor may either disrupt links or nodes. However, in this paper a 
centralized designer again designs the network.

Positioning our paper in the literature, contrary to Bala and Goyal (2000b), we 
focus on strategic disruption, and allow for node disruption (cf. literature reviewed in 
the first paragraph) as well as link disruption (cf. Hoyer and De Jaegher 2016). Con-
trary to the literature reviewed in the first paragraph, and in line with Bala and Goyal 
(2000b) and Hoyer and De Jaegher (2016), defense consists of adding extra links 
to the network. Also, we focus on decentralized defense. The paper most closely 
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related to the present work is Haller and Hoyer (2019). These authors also analyze 
decentralized network formation in the presence of a strategic disruptor (who can 
only disrupt links), but focus on one-sided link formation and employ the Nash equi-
librium as an equilibrium concept (cf. Bala and Goyal 2000a). In such a model, link 
formation decisions and costs are unilateral but benefits flow both ways. For a range 
of large linking costs, Haller and Hoyer find that the presence of a disruptor causes 
a negative common-enemy effect, which contrasts with our positive common-enemy 
effect for large linking costs. The reason is that with one-sided linking costs, in the 
absence of a disruptor, the periphery-sponsored star is a Nash network even for large 
linking costs. Yet, the presence of a disruptor decreases the benefit to a peripheral 
player to sponsor a link to the centre - hence the possibility of a negative common-
enemy effect. Furthermore, for small linking costs, Haller and Hoyer do not find a 
negative common-enemy effect in our sense. The reason is that with one-sided link 
formation, one player can form several links at the same time and with small link-
ing costs is inclined to do so whether or not a disruptor is present. In conclusion, 
the differences in results between the current paper and Haller and Hoyer (2019) 
are due to the different underlying network formation models. Whether link forma-
tion is one-sided or two-sided and which concept of stability is used determines the 
results. Different potential applications lead to these differences in modeling deci-
sions. Whereas the model in Haller and Hoyer is more apt to model the formation 
of e.g. citation networks or networks of weblinks, our model more closely fits the 
formation of friendship networks or collaborative networks.

2.2 � Literature on the common‑enemy effect

The common-enemy effect can broadly be defined as saying that interaction with 
a common enemy fosters cooperation among individuals, an effect which has been 
discussed in a wide range of disciplines (for an overview, see De Jaegher 2021).2 
Typical rationales for the common-enemy effect are that the presence of a common 
enemy changes the information of the players, or changes their individual psychol-
ogy or group psychology. Political scientists, for example, explain the effect that 
government repression against dissidents can backfire, by the fact that such repres-
sion informs dissidents about the violent character of the government (Pierskalla 
2010). Alternatively, repression is argued to change the individual psychology of 
dissidents by making them angry and more eager to cooperate against the gov-
ernment (e.g. Siegel 2011). Other political scientists argue that common enemies 
change group psychology by creating a collective identity and/or increasing group 
solidarity (e.g. Koopmans 1997; Chang 2008).

Game-based laboratory experiments that test for such a change in psychology 
are designed such that the presence of a (perceived) common enemy has no effect 
on the incentives of the participants, so that a purely psychological common-enemy 

2  Examples include by-product mutualism in biology (Mesterton-Gibbons and Dugatkin 1992), the in-
group out-group hypothesis in sociology (Simmel 1908; Coser 1956) and social psychology (Bornstein 
and Ben-Yossef 1994), balance theory in cognitive psychology (Heider 1982), and the backfiring effect 
of government repression in political science (Muller and Opp 1986).
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effect can be identified. For instance, Bornstein and Ben-Yossef (1994) find that par-
ticipants playing a Prisoner’s Dilemma are more likely to cooperate when they per-
ceive to be facing a competing group. Bornstein et al. (2002) and Riechmann and 
Weimann (2008) find a similar result for coordination in Stag-Hunt style games. In 
this paper, we instead model a purely rational common-enemy effect, where players 
cooperate more when facing a common enemy because the common enemy changes 
their incentives. This approach has also been taken in non-network models by De 
Jaegher and Hoyer (2016a, 2016b), where such a rational common-enemy effect 
arises in the context of public-good production. Yet, in these models, cooperation in 
the form of defense only has utility to the individual player when a common enemy 
is faced and the presence of a common enemy can never be beneficial to players 
(though a larger number of attacks can have a beneficial effect). By contrast, in the 
network model of the current paper, cooperating in the form of forming a link pro-
vides utility to the individual player even in the absence of a common enemy and the 
presence of a common enemy can make players better off.

Furthermore, a smaller number of papers formulates a hypothesis in line with 
a negative common-enemy effect (e.g. Carroll et  al. 2005; McLauchlin and Pearl-
man 2012). At an intuitive level it is also plausible that the presence of a common 
enemy can create inner divisions and stop individuals from cooperating rather than 
encouraging them to cooperate (Stein 1976, p. 144). An additional contribution of 
our paper is to identify circumstances in which a rational positive common-enemy 
effect and a rational negative common-enemy effect should apply.

3 � Model

Our model follows the connections model of Jackson and Wolinsky (1996) in a sim-
plified version without information decay. We add to Jackson and Wolinsky’s model 
a disruptor who aims at causing maximal damage to the network and in order to do 
so either disrupts the network by removing a set of links or by removing a set of 
nodes from the network.3 This leads to two variants of a two-stage (n + 1)-player 
game between a single disruptor and a set of network-forming players N with car-
dinality n, where n ≥ 4.4 In the description of the model, for expositional reasons, 
we first look at the Stage-1 game of the network-forming players, who anticipate the 
Stage-2 best response of the disruptor. We then continue to define the disruptor’s 
benefits, which determine his Stage-2 best response. Finally, we also introduce some 
graph-theoretic concepts that we will use throughout the paper.

3  Following the literature on social and economic networks the terms node, link and network are used as 
synonyms for the graph-theoretic concepts of vertex, edge and graph.
4  For n = 2 , one cannot properly speak about a network; the case n = 3 is atypical, as there is no differ-
ence between a line and a star (see Sect. 3.3 for these concepts).
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3.1 � Stage‑1 game of the network‑forming players

Generic network-forming players (who are at the same time the nodes in the net-
work) are referred to as i,  j. In both variants of the game, at Stage 1, each pair of 
players i, j ∈ N with i ≠ j either form a link to each other, denoted as g1

ij
= 1 (alterna-

tively, we also denote this as a link ij), or do not form a link to each other, in which 
case g1

ij
= 0 . Links are assumed to be undirected, so that it is always the case that 

g1
ij
= g1

ji
 (or put otherwise, there is no distinction between link ij and link ji). We 

assume that at most one link can be formed between two players i ≠ j . The pre-dis-
ruption network g1 formed by the players is the set of all links formed, i.e. the set of 
all pairs of players (i, j) such that g1

ij
= 1 . A subnetwork of a pre-disruption network 

g1 consists of a subset g1′ ⊆ g1.
The network-forming players anticipate that at Stage 2, the disruptor will observe 

g1 and will disrupt this network (motivated by his benefits, as defined in Sect. 3.2). 
In the link-disruption variant of the game the disruptor chooses to delete links and in 
the node-disruption variant of the game he chooses to delete nodes in g1 (where if 
node i is removed, any links of i with other players are also removed).5 An example 
of this are, e.g., authorities that ideally may be able to incarcerate a criminal who 
forms part of a criminal network (= node disruption), but when there is not enough 
evidence against this criminal may still be able to restrict the criminal’s communica-
tions or movements (= link disruption). In the variant of the game with link disrup-
tion, the disruptor chooses at Stage 2 a set �l of links to remove from g1 , where 
|�l| = Dl is the disruptor’s link-disruption budget and Dl ≥ 1 . In this case, the post-
disruption network g2 is a subnetwork of g1 consisting of the set of all links in g1 that 
were not removed by the disruptor; put otherwise, g2 = g1⧵𝔇l . In the variant of the 
game with node disruption, the disruptor chooses at Stage 2 a set �v of nodes to 
remove from g1 , where |�v| = Dv is now the disruptor’s node-disruption budget and 
Dv ≥ 1 . In this case, the post-disruption network g2 is a subnetwork of g1 consisting 
of the subset of players that were not removed by the disruptor and of all the links in 
g1 between these players; put otherwise, the post-disruption network g2 is now the 
set of all pairs of players (i, j) such that i, j ∉ �v and such that g1

ij
= 1 . Where appro-

priate, we use notation g2
ij
= 1 with i ≠ j to denote that there is a link between players 

i and j in g2 , and g2
ij
= 0 to denote that there is no such link.

In each variant, the disruptor at Stage 2 removes links or nodes according to a 
best-response correspondence �2(g1) , determining the post-disruption networks that 
the disruptor chooses as a function of the pre-disruption network g1 he observed. 
Given the disruptor payoffs as will be defined in Sect.  3.2, it is possible that the 
disruptor is indifferent between several post-disruption networks. It follows that 
for any pre-disruption network g1 , the set �2(g1) may contain more than one post-
disruption network g2 , where we denote the cardinality of this set by Γ . When for 
a pre-disruption network g1 , �2(g1) contains only one element ( Γ = 1 ), then we 
refer to g1 as a non-stochastic pre-disruption network. When �2(g1) contains more 

5  We do not model the disruptor’s choice between disrupting links or nodes, because it is trivial to show 
that, given his benefits defined in Sect. 3.2, he would always disrupt nodes.



124	 B. Hoyer, K. De Jaegher 

1 3

than one element ( Γ > 1 ), we refer to g1 as a stochastic pre-disruption network, 
where �2(g1) = g2

1
(g1), g2

2
(g1), ..., g2

Γ
(g1) . In this case, we assume that the network-

forming players form common beliefs �[g2
1
(g1)],�[g2

2
(g1)], ...,�[g2

Γ
(g1)] , with ∑Γ

x=1
�[g2

x
(g1)] = 1 , about the probability with which the disruptor chooses each 

post-disruption network in �2(g1) . While we state our results for generic beliefs 
where possible (referred to below as generic disruptor randomization),6 we assume 
in parts of our analysis that the network-forming players form uniform beliefs 
(referred to below as uniform disruptor randomization), where for every g2

x
(gx) in 

�2(g1) it is the case that �[g2
x
(gx)] =

1

Γ
 . This assumption is in line with the Principle 

of Insufficient Reason (e.g. Bardsley and Ule 2017): as the disruptor obtains exactly 
the same payoff from each post-disruption network in �2(g1) , one can argue that the 
network-forming players have no reason to believe that the disruptor is more likely 
to choose one network than another. For node disruption, in case of a stochastic pre-
disruption network, we further specify the set of post-disruption networks �2

i
(g1) in 

which player i is not removed from the network.
While each network-forming player forms his links at Stage 1 before the disruptor 

has disrupted links or nodes, he obtains his payoffs at the end of Stage 2, after the 
disruptor has disrupted links or nodes. As the individual network-forming player i 
anticipates the best response of the disruptor, when a pre-disruption network g1 is 
formed at Stage 1, the expected payoff of player i can be expressed as a function of 
g1 . It takes the form ui(g1) = bi(g

1) − ci(g
1) , where bi(g1) refers to player i’s expected 

benefit from network g1 given his beliefs, and ci(g1) denotes the costs that player i 
incurs in the network. The linking costs ci(g1) are determined by the number of links 
of player i in the pre-disruption network. We assume that when g1

ij
= 1 , both players 

i and j incur a cost c. Given that each link bears a fixed cost c, this means that 
ci(g

1) = c
∑n

j=1
g1
ij
 , where 

∑n

j=1
g1
ij
 is player i’s degree in g1 . The network benefits of a 

player i are determined by the number of players, including himself, to which he has 
access in g2 . A player i has access to the information of another player j if a path 
connects i and j in network g2 . We say that a path connects i1 and ik in g2 if 
g2
i1,i2

= g2
i2,i3

= ... = g2
ik−1,ik

= 1 , with i1, i2, i3, ..., ik−1, ik all distinct (note that any 
direct link i1ik between i1 and ik is also a path). We denote by Ni(g

2) the set of all 
nodes j ≠ i for which there is a path in the post-disruption network g2 between i and 
j. We can now write the expected benefits of a network-forming player i as:

with � = �2(g1) for link disruption, and � = �2
i
(g1) for node disruption. Note that 

with node disruption, the set �2
i
(g1) contains only the post-disruption networks in 

which player i is not disrupted, as player i’s payoff when being disrupted under node 
disruption is zero. Note as well that if under node disruption player i is always dis-
rupted, the set over which summation is taken in (1) is empty, so that bi(g1) = 0.

(1)bi(g
1) =

∑
x∈��x[g

2

x
(g1)][|Ni(g

2

x
(g1))| + 1].

6  One can then additionally extend the pairwise stability concept defined below such that the network-
forming players not only form common beliefs about the probability with which the disruptor chooses 
each post-disruption network in �2(g1) , but where these beliefs are also confirmed by the disruptor’s 
mixed strategy.
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Finally, following Myerson (1977) and Jackson and Wolinsky (1996), we assume 
that the value of a network is the sum of all the individual expected payoffs of the 
players; since what we model is essentially a communications network and since 
information is non-rival, this assumption is reasonable. We therefore assume that the 
value of the network after disruption is given by v(g1) =

∑
i∈N ui(g

1) . We say that a 
network g1 is efficient when for all g1′ other than g1 , it is the case that v(g1) ≥ v(g1�) . 
We call a network g1 more efficient than a network g1′ when v(g1) > v(g1�).7 To fur-
ther characterize the value of the network, define a subnetwork as being connected if 
there is at least one path between all the nodes in the subnetwork. Define the order 
of a subnetwork as the cardinality of its set of nodes.8 A component of a network is a 
connected subnetwork with maximal order. Note that a post-disruption network may 
consist of several components. As there is a path between all players in a component, 
it follows that all the players in a post-disruption component with order n1 obtain ben-
efit n1 . When a post-disruption network now consists of components C1,C2, ...,Cm , 
then the benefit part of the value of this network equals 

∑m

i=1
�Ci�2 . This follows Met-

calfe’s law (Shapiro et al. 1998, p. 184), stating that the value of a communications 
network is proportional to the square of the number of nodes it connects.

Given that the network-forming players’ payoffs can be expressed solely as a func-
tion of the pre-disruption network (which in turn follows from the fact that the network-
forming players anticipate the disruptor’s best response), the equilibrium achieved by 
these players can also be defined only in terms of the pre-disruption network. In par-
ticular, we assume that the network-forming players form a pairwise stable pre-disrup-
tion network. When gij = 0 in g, g + ij denotes that a link ij is added to g; when gij = 1 
in g, g − ij denotes that a link ij in g is no longer maintained. We then define:

Given the disruptor’s best-response correspondence �2(g1) , and given com-
mon beliefs of the network-forming players �[g2

1
(g1)],�[g2

2
(g1)], ...,�[g2

Γ
(g1)] , with ∑Γ

x=1
�[g2

x
(g1)] = 1 corresponding to every stochastic predisruption network g1 , a 

pre-disruption network g1∗ is pairwise stable iff 

1.	 for all g1∗
ij

= 1 in g1∗ , ui(g1∗) ≥ ui(g
1∗ − ij) and uj(g1∗) ≥ uj(g

1∗ − ij) , and

2.	 for all g1∗
ij

= 0 in g1∗ , if ui(g1∗ + ij) > ui(g
1∗) then uj

(
g1∗ + ij) < uj(g

1∗

)
.

With pairwise stability, while the decision to not maintain a link is unilateral, for link 
formation both players between whom the link is formed need to consent. Thus, a pre-
disruption network is pairwise stable if and only if no player unilaterally wants to stop 
maintaining a link and no pair of players wants to add a link, always taking into account 
that the network will be disrupted and that this will influence the players’ respective 
expected payoffs. We limit our analysis to pairwise-stable pre-disruption networks that 
are either connected or are empty, and to the comparative efficiency of such networks. 

7  Note that this concept of efficiency does not take into account the disruptor’s payoff. This is due to the 
fact that the disruptor is seen as an external force, and that we analyze his influence on the network the 
nodes may form.
8  This term is used rather than the size of the network so as to avoid confusion, as it is a commonly used 
term in graph theory.
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This is because our focus is on showing that for small linking costs, the presence of a 
disruptor can cause a decrease in efficiency (in that players may coordinate on an empty 
network), whereas for large linking costs, the presence of a disruptor can lead to an 
increase in efficiency (in that players may coordinate on a connected network).

3.2 � Payoffs of the network disruptor and implied stage‑2 best response

We finally look at the payoffs of the disruptor, which determine his best-response 
correspondence. We assume that the goal of the disruptor is to minimize total ben-
efits from the post-disruption network. Given the quadratic structure of the total ben-
efits from the network, this means that when comparing networks consisting of two 
components, the larger the largest of the two components is, the worse off the disrup-
tor is. In part of our analysis of node disruption, to keep the analysis tractable, follow-
ing Hoyer and De Jaegher (2016), we approximate a disruptor that minimizes total 
benefits from the network, by assuming that the disruptor has lexicographic prefer-
ences in the following sense.9 Comparing two post-disruption networks, the disruptor 
always prefers the network where the component with the largest order is smaller. If 
two networks have largest components of equal order, the disruptor always prefers 
the network of which the component with the second-largest order is smaller. If the 
second-largest components also have the same order, he prefers the network of which 
the component with the third-largest component is smaller, and so on. Formally, 
consider a post-disruption network g2 . This network can be characterized by rank-
ing its components by their order. So the network is characterized by its components 
C1,C2, ...,Ck, ...,Cm , where it holds that |C1| ≥ |C2| ≥ ... ≥ |Ck| ≥ ... ≥ |Cm| and 
|C1| + |C2| + ... + |Ck| + ... + |Cm| = n . Given a pre-disruption network g1 including 
n players, we can then compare two possible post-disruption networks g2

a
 and g2

b
 . We 

assume that the disruptor has lexicographic preferences in the following way. Letting 
≻ denote the preference relation, for the disruptor it holds that g2

a
≻ g2

b
 iff |Ca

1
| < |Cb

1
| 

or |Ca
k
| = |Cb

k
| and |Ca

k∗
| < |Cb

k∗
| , where k∗ is the smallest rank for which a component 

in g2
a
 and a component in g2

b
 with identical rank have a different order.10 ,11 Under 

node disruption, with lexicographic preferences of the disruptor, any stochastic net-
work can only be pairwise stable if the subnetworks that the disruptor can disconnect 
from the network all have the same order, which simplifies the analysis.

10  Rank refers here to the ranking of the components by their order. Thus Rank 1 is the largest compo-
nent, Rank 2 the second largest and so on.
11  Minimizing total benefits from the network and holding lexicographic preferences does not lead to the 
same outcomes in extreme cases. Consider the example of a network consisting of 15 players which are 
either split up in a component with 10 players and 5 singleton players, or in a component with 9 players 
and a component with 6 players. According to the disruptor’s lexicographic preferences, he will prefer 
the second option. However, total benefits from the network in case 1 are 105 while they are 117 in case 
2. Lexicographic preferences therefore do not coincide with minimizing total benefits in this example. In 
practice, the disruptor will not face such extreme choices, because ensuring that the post-disruption net-
work has 5 singleton players will typically require a much higher disruption budget than ensuring that the 
post-disruption network has two components of order 9 and 6.

9  While other papers (see, e.g., Dziubiński and Goyal 2013) focus solely on the connectivity of the 
remaining network, we thus allow also for non-connected network structures after disruption.
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3.3 � Graph‑theoretic concepts

Before starting with the main analysis, we introduce some further graph-theoretic 
concepts and definitions that will be needed to describe our results. In the empty net-
work, every node in N has zero links. A connected network is minimally connected 
if removal of any link means that it is no longer connected (note that every mini-
mally connected network has exactly (n − 1) links). An end node (or end player) is a 
node that has only a single link; an end link is a link to an end node. An example of a 
minimally connected network is the star, where one central node has (n − 1) links to 
the (n − 1) end nodes. Another example is the line, where two nodes are end nodes, 
and all other nodes have two links.

For link disruption, we say that removing a set of links from a connected network 
disconnects this network if removing these links results in a network consisting of 
more than one component. Borrowing definitions from graph theory (e.g. Harary 
1962; Halin 1969; Diestel 2010), we now define:

Definition 1  For k ≥ 2 , a connected network is k-link connected if it is impossible 
to disconnect the network by removing k − 1 or fewer links. A network is minimally 
k-link connected if non-maintenance of any link in the network means that the net-
work is no longer k-link connected.

When a network is k-link connected with k ≥ (Dl + 1) , we say that this network is 
robust against disruption with a disruption budget of Dl . Otherwise, we say that the 
network is non-robust.

For node disruption, we say that removing a set of nodes from a network discon-
nects this network if removing these nodes results in a post-disruption network of 
which the largest component has order strictly smaller than n − Dv . We now again 
borrow definitions from graph theory (e.g. Harary 1962; Halin 1969):

Definition 2  For k ≥ 2 , a connected network is k-node connected if it is impossible 
to disconnect the network by removing k − 1 or fewer nodes. An network is mini-
mally k-node connected if non-maintenance of any link in the network means that 
the network is no longer k-node connected.

When a network is k-node connected with k ≥ (Dv + 1) , we say that this network 
is robust against disruption with a disruption budget of Dv . Otherwise, we say that 
the network is non-robust.

Define a cycle as a path between nodes i and j in the network such that i = j and 
which consists of at least three links. A circle network is a network consisting of a 
cycle containing of all players, and in which each node has exactly two links. Note 
now that the circle is an example of a minimally 2-link connected network and is 
robust against a link disruption budget of 1: disruption of any one link turns the net-
work into a connected network in the form of a line. The circle at the same time is an 
example of a minimally 2-node connected network: disruption of any node results in 
a connected subnetwork linking n − 1 nodes in a line.
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4 � Benchmark case

We begin our analysis by looking at the benchmark case in which there is no dis-
ruptor. This is the case analyzed by Jackson and Wolinsky (1996) in the symmetric 
connections model, with the difference that we abstract from decay.12 While Jackson 
and Wolinsky do not treat the case without decay explicitly, it is straightforward to 
adjust their results to such a case. As without decay the distance between players in 
the network does not matter, for small linking costs (i.e. linking costs such that it 
is worth to be linked to one node for the benefit of that node alone) all minimally 
connected networks are pairwise stable. At the same time, minimally connected net-
works are efficient. This is because they link nodes with a minimal number of links 
and because of the increasing added benefits of connecting extra players: each extra 
player connected to the network creates benefits for all players that were already 
connected. For the case of large linking costs, the only pairwise stable network is the 
empty network. This is because no player is willing to link to an end player, so that 
minimally connected networks are not pairwise stable. At the same time, non-mini-
mally connected network are not pairwise stable either, as they have redundant links. 
Yet, once redundant links are no longer formed, the network contains end players 
and because of the large linking costs the network will unravel. While the empty 
network is thus the only pairwise stable network, it is not efficient as long as linking 
costs are not too large (specifically, as long as c < n

2
 ). For large linking costs, in the 

benchmark case there is thus a tension between stability and efficiency.13

Proposition 1  In the symmetric connections model without decay and without a 
threat of disruption, the following applies:

•	 for c < 1 , all minimally connected networks are pairwise stable and are also effi-
cient;

•	 for c > 1 , only the empty network is pairwise stable, even though all minimally 
connected networks are efficient as long as c < n

2
.

We thus obtain benchmark cases without disruption both for large linking costs 
and for small linking costs. For both these cases, Proposition 1 provides benchmark 
stability and efficiency results, which we will use throughout the paper as a point of 
comparison for the results with a disruptor.

12  In Appendix C, we separately compare the effect of decay to the effect of the presence of a disruptor.
13  For better readability, all proofs are relegated to Appendix A.
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5 � Unit disruption budgets: pairwise stability and comparative 
efficiency of empty and connected networks

In this section, we provide our results for link disruption and node disruption when 
the disruption budget is 1. Our aim is two-fold. First, we want to know how the 
presence of a disruptor changes the structure of pairwise stable networks in com-
parison to the benchmark case. Our focus is on the empty network and on connected 
networks and we do not treat pairwise stable networks consisting of multiple com-
ponents. This is because the fact that the empty network is pairwise stable already 
drives home the point that players can coordinate on inefficient networks; moreover, 
the structural characteristics of pairwise stable networks consisting of multiple com-
ponents are similar to those of connected networks (for instance, when the circle 
networks are pairwise stable, then so are unconnected networks consisting of multi-
ple circle components). Our analysis of pairwise stable connected networks consid-
ers both non-stochastic and stochastic networks.

Second, we want to know for what cost ranges the presence of a disruptor can 
improve network-forming players’ welfare by making it possible that they coordinate 
on a connected network (positive common-enemy effect) and for what cost ranges 
the presence of a disruptor can worsen the welfare of the network-forming players 
by making it possible that they coordinate on the empty network (negative common-
enemy effect).

5.1 � Link disruption with a unit disruption budget

For the case of link disruption, Proposition 2 provides general results for generic 
disruptor randomization and more detailed results for the case of uniform disrup-
tor randomization. The empty network is always pairwise stable and non-robust 
networks (i.e. networks in which the disruptor can disconnect at least one player 
from the rest) can only be pairwise stable if they are stochastic (i.e., if the dis-
ruptor is indifferent between disrupting several links). Under uniform disruptor 
randomization, the only non-robust network that is pairwise stable is the star, and 
this for a small range of linking costs; for generic disruptor randomization, the 
star is part of a wider set of non-robust stochastic networks that can be pairwise 
stable, where each time the disruptor randomizes between disconnecting several 
end nodes from the rest of the network. Robust networks (i.e. networks for which 
the disruptor cannot disconnect any players from the rest) can only be pairwise 
stable if they are minimally 2-link connected (see Definition 1), and as the case 
of uniform disruptor randomization shows, such networks are pairwise stable for 
a wider range of parameters, with the circle the most efficient minimally 2-link 
connected network (i.e., the sum of network-forming players’ payoffs is highest). 
With uniform disruptor randomization, for a small range of intermediate linking 
costs, pairwise stable minimally 2-link connected networks exist, even though the 
empty network is more efficient. Finally, for sufficiently large linking costs, only 
the empty network is pairwise stable.
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Proposition 2  In the symmetric connections model without decay and with link dis-
ruption ( Dl = 1 ), the following applies:

•	 With generic disruptor randomization:

–	 the empty network is always pairwise stable;
–	 any robust connected network that is pairwise stable is a minimally 2-link 

connected network;
–	 the only non-robust connected networks that can be pairwise stable are sto-

chastic networks where the subnetworks that the disruptor can disconnect 
from the network have order 1.

•	 With uniform disruptor randomization, the only non-robust connected net-
works that can be pairwise stable are the stars. In detail:

–	 for c < n−1

2
 , the set of pairwise stable robust connected networks is non-

empty and consists of a set of minimally 2-link connected networks, where 
additionally for 1 − 1

n−1
< c < 1 , the star is pairwise stable; among these 

networks, the circle is the most efficient;
–	 for n−1

2
< c <

n

2
 , the set of pairwise stable robust connected networks is 

non-empty and contains the circle, but the empty network is more efficient 
than every network in this set;

–	 for c > n

2
 , only the empty network is pairwise stable.

Intuitively, the empty network is always pairwise stable because if starting 
from the empty network, two players unilaterally form a link, then this link is 
automatically targeted by the disruptor, resulting in only extra costs for the two 
players and no extra benefits.

Looking at non-robust networks, it could be imagined that players coordinate 
on a non-stochastic network where the disruptor strictly prefers to disrupt one 
specific link connecting two subnetworks. To see why such a network cannot 
be pairwise stable, note first that the subnetwork with the weakly smallest order 
must be minimally connected, as the disruptor does not have any incentive to dis-
rupt a link within this subnetwork. A player in such a smaller subnetwork with an 
end link only loses at most one unit of information when failing to maintain this 
end link, as this will still not lead the disruptor to disrupt a link in the mentioned 
subnetwork. At the same time, two players across the two subnetworks can gain 
several units of information by adding a link to each other. It follows that if link-
ing costs are smalle enough for the mentioned end link to be maintained, then 
pairwise stability is not obtained because the two mentioned players want to form 
an extra link; if linking costs are large enough for the two mentioned players not 
to want to form an extra link, then pairwise stability is not obtained because the 
mentioned end link will not be maintained.

Other candidates for pairwise stable non-robust networks are stochastic networks 
where the disruptor is indifferent between disconnecting several subnetworks from 
the rest of the network. Such networks cannot be pairwise stable if the subnetworks 
have order larger than 1, because a player within such a subnetwork can then divert 
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disruption towards another subnetwork by not maintaining a link. For stochastic net-
works with potentially disconnected subnetworks of order 1 to be pairwise stable, 
none of the end players in such subnetworks should prefer to form links to each 
other. With uniform disruptor randomization, end players are least inclined to do 
so in the star. In fact, with uniform disruptor randomization, the star is the only 
non-robust network that can be pairwise stable and even this network is only pair-
wise stable for a narrow range of linking costs. This is because linking costs must 
at the same time be low enough for the central player to want to form a link, and 
not so low that two end players want to form an extra link. As shown in Appendix 
A, allowing for generic disruptor randomization only slightly modifies the range of 
linking costs for which stars are pairwise stable. Moreover, with generic disruptor 
randomization, as illustrated in Appendix B core-periphery networks consisting of a 
central cycle with end nodes directly connected to the nodes in the cycle, are addi-
tionally pairwise stable for specific cost ranges and specific randomization strategies 
of the disruptor.

Looking at robust networks, by Definition  1, 2-link connected networks are 
robust, but cannot be pairwise stable unless they are minimally 2-link connected, as 
otherwise at least one link would not be maintained by the network-forming play-
ers. The circle (see Fig. 1a) was already given as an example of a minimally 2-link 
connected network, but is not the only such network. Figure 1b and c, referred to 
respectively as the spanning circle and the nested circle, represent two minimally 
2-link connected networks that have more links than the circle. Each such minimally 
2-link connected network is pairwise stable for an appropriate range of linking cost 
levels. With uniform disruptor randomization, the circle is the network that is pair-
wise stable for the largest range of cost levels (in the sense that if any non-circle 
2-link connected network is pairwise stable, then so is the circle). This is because 
a player who fails to maintain a link in the circle has most to lose, as the disruptor 
is able to cut the network in two, disconnecting half of the other players from the 
player. For instance, the circle in Fig. 1a is pairwise stable for c < 4.5 , the spanning 
circle (Fig. 1(b)) is pairwise stable for c < 3 , and the nested circle (Fig. 1(c)) is pair-
wise stable for c < 1 . These conditions are only slightly changed with generic dis-
ruptor randomization. For instance, if n is odd, as in Fig. 1(a), the benefit of a player 
who fails to maintain a link in the circle with generic randomization can at most be 

Fig. 1   Minimally 2-link connected networks for n = 9
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reduced from 4.5 to 4, obtained when in the line the disruptor disrupts with proba-
bility 1 the link that is least favorable to this player. Also, as the driving force behind 
the pairwise stability of minimally 2-link connected networks is the disruption that 
takes place when a player removes a link, the results are also maintained in a variant 
of the model where the disruptor has a cost function over the number of disrupted 
links, instead of a disruption budget; if costs are sufficiently large, the disruptor then 
does not disrupt minimally 2-link connected networks.

Proposition 2 also considers efficiency by comparing the network value achieved 
for the pairwise stable networks (focusing on uniform disruptor randomization). 
Notably, for a narrow range of costs just below the largest cost levels (a range which 
vanishes as n becomes large), the circle and the empty network are both pairwise 
stable, even though the empty network is more efficient than the circle network. The 
presence of such an additional range of costs is a consequence of the assumption 
in the pairwise-stability concept that each player only considers removing a single 
link at a time. The individual player prefers to have no links rather than two links in 
the circle when c > n−1

2
 . The concept of a pairwise strong Nash equilibrium (Belle-

flamme and Bloch 2004), which is a variant of pairwise stability where the individ-
ual players can decide to stop maintaining any number of links, eliminates circles in 
the cost range n−1

2
< c <

n

2
 . Yet, except for this narrow range of costs, this alternative 

equilibrium concept does not change our results.14

We are now ready to compare the benchmark case without disruption (Proposi-
tion 1), to the case of a unit linking budget (Proposition 2), where we focus on uni-
form disruptor randomization. This comparison is graphically represented in Fig.  2. 
We first look at the case of small linking costs ( 0 < c < 1 ). In this case, players are 
always able to coordinate on forming a connected network in the absence of a disrup-
tor. When a disruptor is present who can disrupt links, players can still coordinate on 
forming a connected network. However, they can also coordinate on forming an empty 
network. As soon as the latter happens with positive probability, the presence of a com-
mon enemy in the form of a strategic disruptor thus has a negative effect on the wel-
fare of the network-forming players, as they may no longer coordinate on forming a 
network. The reason for this negative common-enemy effect is the following. Starting 
from the empty network two players are always better off forming a link in the absence 
of disruption. In the presence of a strategic disruptor, however, this is not the case as a 
link formed by these two players is automatically disrupted. The presence of a strategic 
disruptor thus means that players may no longer be able to escape a situation where no 
player cooperates.

We next compare the benchmark case to the case of link disruption for large linking 
costs (i.e. the range 1 < c <

n−1

2
 ) (but not for the largest linking costs, where only the 

empty network is pairwise stable with or without a disruptor). As illustrated in Fig. 2, 
for n that is not small, this is a relatively large range compared to the range of small 
linking costs, 0 < c < 1 . In the absence of disruption, with large linking costs play-
ers are never able to coordinate on forming a connected network. This is because a 

14  In the benchmark case, employing the pairwise strong Nash equilibrium concept does not change the 
results at all. Because of the linearity of the costs, a player in a minimally connected network who prefers 
to maintain one specific link, automatically prefers to maintain all of his links.
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necessary condition for networks to be pairwise stable is that they contain end players. 
For large costs, the cost of maintaining a link to an end player is larger than the ben-
efit. For this reason, the only pairwise stable network is the empty network. Yet, with 
link disruption, while the empty network continues to be pairwise stable, connected 
networks are additionally pairwise stable. This is because deviating from joint coopera-
tion by not maintaining a link can now lead to large losses for a player, if, for example, 
this leads to the network being cut in half by the disruptor. It follows that the benefits 
of forming links can still outweigh the large linking costs. For large linking costs, we 
therefore observe a positive common-enemy effect.

5.2 � Node disruption with a unit disruption budget

Proposition  3 summarizes the results for node disruption, again looking first at 
generic disruptor randomization, and then at the more specific case of uniform 
disruptor randomization. Just as is the case for link disruption, with generic dis-
ruptor maximization, it is the case that the empty network is always pairwise sta-
ble, and that non-robust connected non-stochastic networks (i.e. networks where 
by disrupting a node the disruptor can disconnect at least one extra node from the 
rest of the network, and where the disruptor prefers to disrupt one specific node) 
are never pairwise stable. Specifically for lexicographic preferences of the dis-
ruptor (see Sect. 3.2), non-robust connected networks are never pairwise stable. 
With uniform disruptor randomization, for a range of small linking costs, robust 
networks (i.e. networks where by disrupting a node the disruptor cannot discon-
nect extra nodes from the rest of the network) that are pairwise stable exist in the 

Fig. 2   For uniform disruptor randomization, overview of pairwise stability and relative efficiency of net-
works depending on disruption budget and linking costs c for n ≥ 5
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form of minimally 2-node connected networks (see Definition 2). Among these 
networks, the circle is the most efficient (i.e., the sum of the network-forming 
players’ payoffs is largest). For larger linking costs, only the empty network is 
pairwise stable.

Proposition 3  In the symmetric connections model without decay and with node dis-
ruption ( Dv = 1 ), the following applies:

•	 With generic disruptor randomization:

–	 the empty network is always pairwise stable;
–	 non-robust connected non-stochastic networks are never pairwise stable;
–	 specifically with lexicographic preferences of the disruptor, non-robust 

connected stochastic networks are never pairwise stable either.

•	 With uniform disruptor randomization:

–	 for c < (n−1)(n−2)

2n
 , both empty and minimally 2-node connected networks are 

pairwise stable; among these networks, the circle network is the most effi-
cient;

–	 for c > (n−1)(n−2)

2n
 , only the empty network is pairwise stable.

Intuitively, under node disruption with uniform disruptor randomization, the 
empty network continues to be pairwise stable because when a pair of players 
deviates from the empty network and forms a link, they incur a cost but are dis-
rupted with probability 0.5 rather than with probability 1/n. Considering generic 
disruptor randomization does not change this result, as a mixed disruption strat-
egy that makes it more attractive for one player to deviate from the empty net-
work and form a link, makes it less attractive for the other player. Also, non-
robust connected non-stochastic networks are again never pairwise stable because 
a node that is always disrupted obtains payoff zero and can therefore only become 
better off by not maintaining the links that it has.

The analysis of non-robust connected stochastic networks is complicated by the 
fact that with node disruption, disrupting a single node may mean that the post-dis-
ruption consists of more than two components (e.g. by disrupting the central node 
in Fig. 3(b), the network is separated into three parts). In this case a disruptor who 
minimizes total benefits from the network can be indifferent between disrupting two 
nodes even if the order of the subnetworks that the disruptor can disconnect from 
the rest of the network is unequal.15 To avoid this complication, we focus this part of 
our analysis on a disruptor with lexicographic preferences, where the subnetworks 

15  Consider for instance a network with n = 11 containing a circle subnetwork of four players. One node 
i in the circle is directly connected to three end nodes. One other node j in the circle is directly connected 
to a single node k, which is itself connected to three end nodes. Then it can be checked that a disruptor 
who minimizes total benefits from the network is indifferent between disconnecting nodes i, j or k, even 
though disrupting nodes i or k results in a post-disruption network with three singleton components and 
one component with order 7, while disrupting node j results in a post-disruption network consisting of a 
component with 4 nodes and a component with 6 nodes.
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that the disruptor can disconnect from the rest of the network necessarily have the 
same order (as the disruptor can otherwise not be indifferent). Non-robust connected 
stochastic networks with this characteristic are not pairwise stable because either a 
player that can be disconnected from the rest of the network prefers to remove a link 
to divert the disruptor’s attack to another part of the network, or prefers to add a link 
to another potentially disconnected player with the same purpose.

Considering pairwise stable robust networks, following Definition 2, analogously 
to what is the case for link disruption, 2-node connected networks are robust, but 
are only pairwise stable when they are minimally 2-node connected, as otherwise at 
least one link would not be maintained by the players. The circle (Fig. 1a) is again 
an example of a 2-node connected network, as is the nested circle (Fig.  1c). Yet, 
the spanning circle (Fig. 1b) is not 2-node connected, as can be seen by the effect 
of disrupting the node with four links. The set of minimally 2-node connected net-
works is therefore smaller than the set of minimally 2-link connected networks. 
Minimally 2-node connected networks are again pairwise stable for an appropriate 
range of linking costs, where with uniform disruptor randomization, as linking costs 
are raised, the circle network is the last to remain pairwise stable. For instance, it 
can be checked that the nested circle is pairwise stable for c < 1

9
 , while the circle is 

pairwise stable for c < 3.11 . Proposition 3 does not consider the pairwise stability of 
robust networks for non-uniform disruptor randomization, which can considerably 
affect the results. For instance, if players believe that in the circle one specific player 
is disrupted with sufficiently high probability, then the circle is not pairwise stable, 
as this player will prefer not to maintain his links. However, when deviating from 
our simplifying assumption of a disruption budget and assuming instead that the 
disruptor faces disruption costs, the disruptor may find it too costly to disrupt a node 
in the circle, and may only disrupt in case several nodes can be disconnected such as 
in the line, in which case the circle continues to be pairwise stable even for generic 
disruptor randomization.

As far as efficiency is concerned, under uniform disruptor randomization, contrary 
to what is the case with link disruption, when robust networks exist that are pairwise 
stable, these networks always include a network that is more efficient than the empty 
network.

Fig. 3   3-Regular networks for n = 16
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We finally compare the benchmark case to the case with node disruption for a 
unit disruption budget, focusing on uniform disruptor randomization. This compari-
son is again graphically represented in Fig. 2, which focuses on the case n ≥ 5 (for 
n = 4 , it is the case that 1 − 1

n
=

(n−1)(n−2)

2n
< 1 ). The results are similar to those for 

link disruption: the presence of a disruptor again means that there is a range of large 
linking costs for which connected pairwise stable networks exist, whereas no such 
networks existed in the absence of a disruptor (positive common-enemy effect). At 
the same time, for small linking costs, only connected networks are pairwise stable 
in the absence of a disruptor, but in the presence of a disruptor the empty network 
additionally becomes pairwise stable (negative common-enemy effect).16

6 � Larger disruption budgets

Having analyzed the case of link disruption with disruption budget Dl = 1 and of 
node disruption with disruption budget Dv = 1 , we now look at larger disruption 
budgets for both types of disruption, where we limit ourselves to uniform disrup-
tor randomization. Our focus is on a particular class of robust networks and on the 
empty network. We start by defining some additional graph-theoretical concepts 
required for the description of the results. A k-regular network is a network where 
each node has precisely k links (i.e., has degree k). A particular class of regular net-
works are circulant networks, which are defined as follows.17

Definition 3  Label the nodes of a network as 0, 1, 2, ..., n − 1 . A circulant net-
work Cn(a1, a2, ..., ak) , where 0 < a1 < a2... < ak <

n+1

2
 , has node i linked to node 

i ± a1, i ± a2, ..., i ± ak (mod n). The sequence (a1, a2, ..., ak) is called the jump 
sequence and ai (with i = 1, ..., k ) is called a jump. For ak ≠

n

2
 , the network is 2k-reg-

ular, and for n even and ak =
n

2
 , it is 2k − 1-regular.

Dl + 1-regular networks and Dv + 1-regular networks seem good candidates for 
pairwise stability, as each individual node has precisely enough links not to be dis-
connected. Yet, as Fig. 3 illustrates for the case n = 16 and Dl = 2 or Dv = 2 , not 
all regular networks are pairwise stable. Figure 3a can be cut in half by removing 
two links or nodes. The network in Fig. 3b is also vulnerable, especially when it 
comes to node disruption. Figure 3c, however, represents the circulant C16(1, 8) , 
which can be checked to be pairwise stable for both link and node disruption.

In Hoyer and De Jaegher (2016), applying graph-theoretic literature, it is shown that 
connected circulants that are regular of degree Dl + 1 are minimally Dl + 1 link-con-
nected, and are therefore robust networks for link disruption with a disruption budget 
Dl . Moreover, it is shown that a specific class of circulants that are regular of degree 

16  Employing the pairwise strong Nash equilibrium of Belleflamme and Bloch (2004) does not quali-
tatively change these results. The only change is that in the cost range (n−1)

2−n

2n
< c <

(n−1)(n−2)

2n
 , where 

(n−1)2−n

2n
> 1 for n ≥ 5 , the empty network is a pairwise strong Nash equilibrium instead of the circle net-

work. This cost range vanishes as n becomes large.
17  The definition and notation follows the one given by Boesch and Tindell (1984).
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Dv + 1 are minimally Dv + 1-node connected, and are therefore robust networks for 
node disruption with a disruption budget Dv . In detail, following the notation in Defi-
nition 3, this specific class of circulants has a1 = 1 and has a convex jump sequence, 
meaning that ai+1 − ai ≤ ai+2 − ai+1 for 1 < i < Dv + 1 . In Propositions 4 and 5, we 
now derive the cost ranges for which the empty network on the one hand and specific 
classes of circulants on the other hand, are pairwise stable. When both circulants and 
the empty network are pairwise stable, we also determine which are more efficient.

Proposition 4  In the symmetric connections model without decay and with link dis-
ruption (where 1 < Dl < n − 2 ), under uninform disruptor randomization, the fol-
lowing applies for the empty network and for the class of Dl + 1-regular connected 
circulants (see Definition 3):

•	 for c < n−1

Dl+1
 , both the empty and the circulant networks are pairwise stable and 

the circulant networks are more efficient;
•	 for n−1

Dl+1
< c <

n

2
 , both the empty and the circulant networks are pairwise stable, 

but the empty network is more efficient;
•	 for c > n

2
 , only the empty network is pairwise stable.

It follows that with link disruption, the results for small disruption budgets (Proposi-
tion 2) and larger disruption budgets have a similar structure. We note that as the linking 
disruption budget is increased, the range of large linking costs decreases for which the 
presence of a disruptor can induce players to form a pairwise stable robust network that 
is more efficient than the empty network. We next look at the results for node disruption.

Proposition 5  In the symmetric connections model without decay and with node 
disruption ( 1 < Dv <

n

2
− 1 ), under uniform disruptor randomization, the following 

applies for the empty network and for the class of Dv + 1-regular circulants (see 
Definition 3) with a1 = 1 and with convex jump sequences:

•	 for c < (n−Dv)(n−Dv−1)

(Dv+1)n
 , both the empty and the circulant networks are pairwise sta-

ble and the circulant networks are more efficient;
•	 for (n−Dv)(n−Dv−1)

(Dv+1)n
< c <

(n−Dv)(n−2Dv)

2n
 , both the empty and the circulant networks 

are pairwise stable, but the empty network is more efficient;
•	 for c > (n−Dv)(n−2Dv)

2n
 , only the empty network is pairwise stable.

We note that with node disruption, we put additional restrictions on how large Dv 
can be for the following reason. For the largest node disruption budgets, the presence 
of a disruptor makes network formation no longer pairwise stable, simply because of 
the fact that the individual player is so likely to be targeted that it makes forming links 
no longer worthwhile. Given the imposed restrictions, we can see that contrary to what 
is the case with a unit disruption budget, we now also obtain a case where the presence 
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of a disruptor makes pairwise stable connected networks possible, even though these 
are less efficient than the empty network (just as is the case for link disruption). Again, 
larger disruption budgets reduce the range of large linking costs for which pairwise 
stable robust networks can be formed that are more efficient than the empty network.

We are now ready to compare the results for disruption in Propositions 4 and 5 to 
the benchmark results in Proposition 1. We note that, within the given restrictions on 
the size of the disruption budgets, all the critical cost levels in Propositions 4 and 5 
are larger than 1. It follows that for both link and node disruption, there is a range of 
cost levels just above 1 such that forming a network is not pairwise stable but efficient 
without disruption. However, for the same cost range, with larger disruption budgets it 
is both pairwise stable and efficient to form a network. Therefore, a positive common-
enemy effect is again obtained (just as is the case with a unit disruption budget). Yet, 
as the disruption budget is increased, this common-enemy effect applies for an increas-
ingly narrow range of large linking costs. We conclude that the common-enemy effect 
has the most impact when the ability of the disruptor to disrupt is not too large; this 
make sense, as with a large ability to disrupt, it simply is not worthwhile to form a 
network. Furthermore, we obtain a range of cost levels (see second bullets in Proposi-
tions 4 and 5) such that disruption makes it pairwise stable to form a network, even 
though the empty network is more efficient. Again, when the concept of the pairwise 
strong Nash equilibrium (Belleflamme and Bloch 2004) is applied instead, only the 
empty network is obtained in equilibrium for this range of cost levels.18 Finally, just as 
was the case for a unit disruption budget, for small linking costs c < 1 it is the case that 
the empty network is not pairwise stable without disruption, but is pairwise stable in the 
case of larger disruption budgets, leading to a negative common-enemy effect. It should 
be noted that with larger disruption budgets, such a negative common-enemy effect is 
not dependent on only pairs being able to form mutually beneficial links: even if larger 
sets of players are able to form mutually beneficial links (as is the case in the concept 
of ’strong’ stability (see Jackson and Van den Nouweland 2005)), for larger disruption 
budgets players will still not be able to escape the empty network.

We do not characterize all pairwise stable networks for larger disruption budg-
ets, and in particular do not investigate the stability of non-robust networks except 
the empty network. Yet, as shown in  Appendix D, with larger disruption budgets 
and link disruption, the star is never pairwise stable. Since, as argued in Sect. 5.1, 
the star network is the best candidate for a pairwise stable non-robust network, we 
conjecture that the empty network is the only non-robust pairwise stable network for 
larger disruption budgets.

18  With link disruption, only the empty network is a pairwise strong Nash equilibrium when c < n−1

Dl+1
 . 

With node disruption, the same is true when c < (n−Dv)
2−n

(Dv+1)n
 , in which case c < (n−Dv)

2−n

(Dv+1)n
<

(n−Dv)(n−Dv−1)

(Dv+1)n
 . 

For sufficiently large n and small Dv , it is the case that (n−Dv)
2−n

(Dv+1)n
> 1 , so even with the pairwise strong 

Nash equilibrium concept, a range of linking costs above 1 continues to exist where with node disrup-
tion, connected networks can be formed in equilibrium, and where it is efficient to do so.
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7 � Conclusion

Two conclusions can be drawn from our paper. The first conclusion concerns the 
network structures that players may form in a decentralized manner when fac-
ing strategic link or node disruption. These network structures always include the 
empty network, as two players who unilaterally deviate from the empty network by 
forming a link are automatically targeted. When players are able to coordinate on a 
non-empty network, two mechanisms may underlie network formation. First, players 
may form core-periphery networks, where peripheral players face the threat of dis-
ruption, but do not form extra links to protect themselves because the threat of dis-
ruption is spread across a large number of peripheral players. Second, players may 
form circular networks, in which a sufficient number of alternative paths connect 
the players, so that players remain connected even after disruption. We find only 
few instances of the former mechanism and this for a limited range of linking costs 
in the case of link disruption. The latter mechanism, however, operates across both 
link and node disruption, for both small and large disruption budgets. At the same 
time, the set of pairwise stable network networks under node disruption is smaller: 
intuitively, it is easier for the disruptor to do damage by disrupting nodes than by 
disrupting links.

The second conclusion concerns the impact of the presence of a strategic dis-
ruptor on the probability of network formation. Our analysis shows that when fac-
ing an outside force that aims to minimize total benefits from the network by either 
attacking the players’ links or the players themselves, a group of self-interested play-
ers may be able to efficiently build a network, whereas in the absence of this out-
side force they were not able to do this. This shows that a common-enemy effect 
may occur purely because of the effect of the presence of the common enemy on 
the players’ incentives; this contrasts with literature where the common enemy is 
assumed to change the psychology of the players, or the information they obtain (see 
Sect. 2.2). At the same time, our analysis shows that in particular for small linking 
costs, the common enemy can on the contrary have a negative effect on cooperation, 
where players fail to form a network even though they would have formed one in the 
absence of a common enemy. This is because in the presence of a common enemy, 
players can lock each other into not forming any network.

We end by exploring how robust these conclusions are to our modeling assump-
tions. First, we have focused on strategic network disruption, rather than on random 
network disruption where each link ((Bala and Goyal 2000b; Jackson and Wolinsky 
1995) or node independently fails with a specific probability. One may then wonder 
whether such random network disruption leads to similar results as strategic network 
disruption. Adding the assumption that each link independently fails with probabil-
ity � to the benchmark connections model in Sect. 4, clearly the empty network is 
not pairwise stable as long as it is true for linking cost c that c < (1 − 𝜖) . This shows 
that the pairwise stability of the empty network in our analysis is due to the strate-
gic disruptor targeting any link added to the empty network. In connected networks, 
with the specified form of random network disruption, players equally have incen-
tives to form additional paths between them, as this increases the probability that 
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information is accessed. However, analyzing the pairwise stability of such networks 
requires comparing higher-degree polynomials, and is challenging beyond simple 
examples. An example in Appendix C for n = 4 suggests that the positive common-
enemy effect, where for high linking costs connected networks would become pair-
wise stable, is not maintained for random network disruption.

Second, our model abstracts from information decay (Jackson and Wolinsky 
1996) and the question therefore additionally arises whether information decay 
can have similar results. Denoting the rate at which information decays as � , the 
empty network is not pairwise stable as long as it is the case for linking cost c that 
c < (1 − 𝛿) . Contrary to what is the case in our results, information decay therefore 
does not result in the empty network always being pairwise stable. In connected net-
works, with information decay, intuitively players have an incentive to add links to 
minimally connected networks, not to create extra paths between nodes, but to bring 
nodes closer to one another. As is clear from the analysis of Jackson and Wolinsky 
(1996), a full characterization of pairwise stable networks cannot be provided, as 
this again requires comparing higher-degree polynomials. Still, as shown in Appen-
dix C by reference to an example of Jackson and Wolinky, the introduction of infor-
mation decay can cause networks to become pairwise stable, whereas in the absence 
of information decay they are not. Yet, such a result is obtained for only a small 
range of linking costs larger than 1, suggesting that the scope for an effect of infor-
mation decay similar to our positive common-enemy effect is limited.

Third, as we employ pairwise stability as an equilibrium concept, the focus of our 
analysis lies purely on which networks are stable but not on how players can actu-
ally reach such networks. In the presence of a disruptor, the empty network is always 
pairwise stable in our results. The positive common-enemy effect we obtain for large 
linking costs thus relies on the assumption that the players are at least sometimes 
able to escape playing the empty network, and achieve one of the pairwise stable 
connected networks. Theoretical work on networks assuming farsightedness of play-
ers (see, e.g., the work by Morbitzer et al. (2011), Morbitzer et al. (2012) or Herings 
et al. (2009)) establishes the concept of (perfect) farsighted stability, which would 
allow our players to escape the empty network. Laboratory experiments (see, e.g., 
the work by Mantovani et al. (2011)) on the same topic show that players do tend to 
behave more farsightedly than myopically. At the same time, our negative common-
enemy effect for small linking costs, where connected networks are pairwise stable 
with or without a disruptor, relies on the assumption that players are not always able 
to escape the empty network. In an experiment that builds on the theory of link dis-
ruption presented in this paper, Hoyer and Rosenkranz (2018) test whether a positive 
or a negative common enemy effect is observed more frequently, when players actu-
ally have to build a network. Using different starting networks, they show that when 
a disruptor is present, players are more often locked in the empty network than they 
manage to reach the circle network, even though the circle network is more efficient. 
A main factor influencing this result seems to be the risk aversion of players. Future 
research is still needed to look into this aspect of the common-enemy effect, as well 
as into an experimental analysis of node disruption, which so far is still missing.
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Appendix A. Lemmata and Proofs

Proof for Proposition 1  Any pairwise stable network must consist of minimally con-
nected components, as otherwise at least one pair of players could save costs by 
deleting a link and would not lose any benefits. As any minimally connected compo-
nent necessarily has end nodes, a player who forms a link to an end node rather than 
not forming it, gains 1 in benefits and loses c in costs. It follows that with c > 1 , no 
connected network is pairwise stable. For c < 1 , players who form a link to an end 
node are better off maintaining such a link. Furthermore, consider any network that 
consists of several components. Then two players in separate components incur an 
added cost c of adding a link and an added benefit of at least 1. It follows that for 
c < 1 any pairwise stable network is connected. Looking at efficiency, note that the 
sum of the players’ benefits in a component increases convexly in the number of 
players in the component, whereas linking costs increase linearly. For this reason, 
if a minimally connected network has a higher value than the empty network, then 
any minimally connected network is also efficient. In particular, any minimally con-
nected network is better than the empty network iff n2 − 2(n − 1)c > n iff c < n

2
 . 	� ◻

The following lemmata are needed to prove Proposition 2.

Lemma 1  With a disruption budget of Dl = 1 , for a star network, denote by pI 
the weakly highest probability with which a link is targeted and by pII the weakly 
second-highest probability, with pI ≥ pII . Then the star is pairwise stable for 
pII(n − 2) < c < min (1, (1 − pI)(n − 2)) ; specifically with uniform disruptor rand-
omization, the star is pairwise stable when 1 − 1

n−1
< c < 1.

Proof  For the star network g∗ to be pairwise stable, no pair of end players should 
each be better off when forming a link to each other and no individual end player 
should want to stop maintaining a link (point 1). Also, the central player should not 
be better off when stopping to maintain a link (point 2; note that a central player 
and a peripheral player cannot consider forming an extra link, as double links are 
assumed to be impossible). 

1.	 The expected payoff to any end player i in a star network is 
ui(g

∗) = p ∗ 1 + (1 − p)(n − 1) − c , where p denotes the probability that the link 
of the end player to the central player is disrupted, where the first part of the 
function denotes the payoff should node i be disconnected and the second part 
denotes the payoff should node i not be disconnected. Any end player i who fails 
to maintain his link to the central player k obtains payoff ui(g∗ − gik) = 1 . The 
end player most inclined to stop maintaining his link is the one whose link to the 
central player is disrupted with the weakly highest probability, denoted pI . This 
end player strictly prefers to maintain his link when c < (1 − pI)(n − 2) . When 
two end players i and j add a link to each other, this ensures that they are not 
disconnected. The payoff of both i and j when adding a link to each other is thus 
ui(g

∗ + gij) = uj(g
∗ + gij) = n − 1 − 2c (note that as n ≥ 4 , the disruptor can still 
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disconnect a node). For these players not to want to add a link, it suffices that the 
end player in the pair whose link to the central player is weakly less likely to be 
disrupted, strictly prefers not to add a link. In order for no pair of end players to 
want to add a link to each other, it follows that the end player whose link to the 
central player has the weakly second largest probability of being disrupted overall, 
denoted pII , should not prefer to add a link. This is the case when pII(n − 2) < c.

2.	 The payoff of the central player k is uk(g∗) = (n − 1) − (n − 1)c . Should he stop 
maintaining a link to an end player i, his payoff is uk(g∗ − gki) = (n − 2) − (n − 2)c . 
The central player k has no incentive to stop maintaining a link when c < 1.

Merging the inequalities above, we find that the star is pairwise stable when 
pII(n − 2) < c < min (1, (1 − pI)(n − 2)) . Two cases can be distinguished. First, 
for 1

n−1
≤ pI ≤

n−3

n−2
 , 1−pI

n−2
≤ pII <

1

n−2
 and pII ≤ pI , the star is pairwise stable when 

pII(n − 2) < c < 1 . This includes the case where the links of all end players 
are disrupted with equal probability 1

n−1
 (uniform disruptor randomization), in 

which case the condition becomes 1 − 1

n−1
< c < 1 . Second, for n−3

n−2
< pI < 1 and 

1−pI

n−2
≤ pII <

1

n−2
 , the star is pairwise stable when pII(n − 2) < c < (1 − pI)(n − 2) . 	

� ◻

Lemma 2  For a disruption budget of Dl = 1 , with generic disruptor randomization, 
the only non-robust connected networks that can be pairwise stable are stochastic 
networks where the subnetworks that the disruptor can disconnect from the network 
have order 1. With uniform disruptor randomization, the only non-robust connected 
networks that can be pairwise stable are the stars.

Proof  The proof first considers non-robust connected stochastic networks and then 
non-robust connected non-stochastic networks. In part 1 of the proof we show that 
with generic disruptor randomization, a necessary condition for non-robust con-
nected stochastic networks to be pairwise stable is that the subnetworks that the dis-
ruptor can disconnect from the network have order one; also, we show that with 
a uniform randomization strategy of the disruptor, non-robust connected stochastic 
networks can only be pairwise stable when they are stars. We then show in part 2 of 
the proof that non-robust connected non-stochastic networks can never be pairwise 
stable. 

1.	 In non-robust connected stochastic networks there are m ≥ 2 links that connect 
subnetworks with equal order y, where y ∈ [1,

n−1

m
] , to the rest of the network, 

such that disrupting any of these m links leaves the disruptor equally well off. 
(Note that if the m subnetworks would not have the same order, the disruptor 
would always prefer to disconnect the one with the largest order from the rest of 
the network, given that (n − x)2 + x2 decreases in x for x < n

2
 .) Denote by v the 

number of links of any node k in any of the subnetworks. 

(a)	 Suppose that contrary to our claim, pairwise stable non-robust connected 
networks exist with subnetworks of order larger than 1. We first show that 
a necessary condition for such networks to be pairwise stable, is that the 
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subnetworks are minimally connected. When the disruptor disrupts one 
of the m links, total benefits from the network equal (n − y)2 + y2 . When a 
subnetwork is minimally connected, the disruptor is able to instead disrupt 
a link within this subnetwork and total benefits from the network become 
(n − y�)2 + y�2 , with y′ < y . Yet, given that y < n

2
 , disrupting in the subnet-

work means higher total benefits from the network. It follows that the fact 
that the subnetworks are minimally connected, will not lead the disruptor 
to change his disruption strategy, meaning that players in subnetworks that 
are minimally connected do not have any incentive to add further links to 
each other.

(b)	 We next show that, whatever the mixed disruption strategy of the disruptor 
in response to a non-robust connected stochastic network, such networks 
cannot be pairwise stable when y ≥ 2 . Given that by (a) the potentially 
disconnected subnetworks of such a network must be minimally con-
nected, each subnetwork contains at least one player i with an end link. 
When player i fails to maintain his end link, the disruptor will no longer 
disrupt the link that connects the subnetwork of i to the rest of the net-
work, but any of the other m − 1 potentially disrupted links. This follows 
from the fact that 1 + (y − 1)2 + (n − y)2 > 1 + y2 + (n − y − 1)2 given 
that y ≤ n−1

2
 . The player in a subnetwork with an end link who is most 

inclined to remove this link, is the one whose subnetwork is weakly most 
likely to be disconnected from the rest of the network by the disruptor, 
which occurs with probability denoted pI . Let this player form v links. 
Then this player does not prefer to remove a link to an end player when 
pIy + (1 − pI)(n − y) − vc > n − y − 1 − (v − 1)c iff c < 1 − pI(n − 2y) . This 
condition is less tight the smaller pI and the smaller n. pI equals at least 1

m
 , n 

equals at least 1 + my (which occurs when all potentially disrupted links are 
connected to a single central player). It follows that a necessary condition 
for no player i in a subnetwork wanting to stop maintaining an end link is 
that c < 1 −

1+my−2y

m
=

m−1−my+2y

m
 . Now m − 1 − my + 2y > 0 when y < m−1

m−2
 . 

But m−1
m−2

≤ 2 for m ≥ 3 . It follows that a necessary condition for non-robust 
stochastic connected networks with y ≥ 2 to be pairwise stable is that m = 2

.
	   For non-robust connected stochastic networks with y ≥ 2 and m = 2 to 

be pairwise stable, it must additionally be the case that no two players 
across the two subnetworks that the disruptor can disconnect, prefer to 
form a link to each other. For pairwise stability, it suffices for this that 
a player k in the subnetwork that is weakly the least likely to be discon-
nected by the disruptor, does not prefer to form such a link. Denote by 
w the number of links of player k, and denote by z the order of the sub-
network that the disruptor can disconnect from the rest of the network 
after player k has formed an extra link, where z < y . Player k prefers not 
to add such a link when (1 − pI)y + pI(n − y) − wc ≥ n − z − (w + 1)c iff 
c > y − z + (1 − pI)(n − 2y) . Overall, pairwise stability thus requires that 
y − z + (1 − pI)(n − 2y) ≤ c ≤ 1 − pI(n − 2y) . But given that y > z and 
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n > 2y , this is not possible, so that we conclude that non-robust connected 
stochastic networks with y ≥ 2 are not pairwise stable.

(c)	 We have so far shown that non-robust connected stochastic networks must 
have y = 1 to be pairwise stable, so that each subnetwork that the disruptor 
can disconnect must consist of a single end player. We end the treatment 
of non-robust connected stochastic networks by showing that with uniform 
disruptor randomization, such networks can only be pairwise stable if they 
are stars. Considering all non-robust connected stochastic networks with 
y = 1 , we distinguish between those with m ≥ 3 , and those with m = 2.

	   When m ≥ 3 , the central player prefers to maintain each end link when 
(n − 1) − mc > (n − 2) − (m − 1)c iff c < 1 . No end player prefers to add a 
link to another player when 1

m
+

m−1

m
(n − 1) − c > (n − 1) − 2c iff c > n−2

m
 . 

Finally, no end player prefers to delete a link when 1
m
+

m−1

m
(n − 1) − c > 1 

iff c < m−1

m
(n − 2) ; the right-hand side is larger than 1 for m >

n−2

n−3
 , which is 

always valid for m > 2 . Thus, pairwise stability of a non-robust connected 
stochastic network with y = 1 and m > 2 requires n−2

m
< c < 1 , which is 

only possible when m > (n − 2) . Yet, in any non-star non-robust connected 
stochastic network with y = 1 , it is the case that m ≤ (n − 3) , as m is larg-
est when the network consists of circle subnetwork of order 3, where the 
rest of the players are end players directly connected to this circle. As this 
is incompatible with m > (n − 2) , it follows that non-star non-robust con-
nected stochastic networks with y = 1 and m ≥ 3 cannot be pairwise stable.

	   For m = 2 , no end player prefers to add a link to another player when 
0.5 + 0.5(n − 1) − c > n − 2c iff c > n

2
 ; yet, the condition for links to end 

players to be maintained continues to be c < 1 , which is incompatible with 
the condition c > n

2
.

	   Finally, the fact that cost levels exist such that the stars are pairwise stable 
follows from Lemma 1.

2.	 Consider a non-robust connected non-stochastic network such that the disruptor’s 
unique best response is to remove link ij. Given that the network is non-robust 
and connected, this means that the disruption of ij results in a post-disruption 
network consisting of two components Ci and Cj , so that the predisruption network 
consists of two subnetworks Ci and Cj connected by link ij, where we denote by 
yi and yj = n − yi the respective orders of these subnetworks.

	   We first show that pairwise stability of such a network is only possible when 
at least one of the subnetworks Ci and Cj contains an end link. If subnetwork Ci 
does not contain any end links, then Ci must contain a link kl such that when this 
link is disrupted, Ci is still connected. The only reason that players k and l can 
have to maintain link kl is that non-maintenance of this link leads the disruptor to 
disrupt a link in Ci , instead of disrupting ij, such that the payoff of players k and 
l is reduced. The disruptor in turn will only disrupt a link in Ci instead of link ij 
when yi > yj . By the same reasoning, it is only possible that Cj does not include 
any end links when yj > yi . As it is not possible that both yi > yj and yj > yi , it 
follows that at least one of the subnetworks Ci and Cj must contain an end link.
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	   Having shown that pairwise stability of non-robust connected non-stochastic 
networks requires that at least one subnetwork contains an end link, we show that 
a necessary condition for such an end link to be maintained is that c < 1 . Consider 
a player k in subnetwork Ci maintaining a link to an end player l. We show that 
when k fails to maintain this end link, the disruptor will either continue to disrupt 
link ij, or will disrupt a link in subnetwork Cj . Suppose that this is not the case, 
and that the disruptor is able to disrupt a link rs in Ci , and when link kl is not 
maintained prefers disconnecting the network by disrupting link rs to disrupting 
link ij. This requires that 1 + (y2

i
− 1)2 + y2

j
> 1 + (yi − 1 − x)2 + (yj + x)2 iff 

(yj + x)2 − y2
j
< (yi − 1)2 + (yi − x − 1)2 , where x ≥ 1 . But if the disruptor is able 

to disconnect the network by disrupting link rs when players k and l do not main-
tain link kl, then the disruptor is also able to disconnect the network by disrupting 
link rs when players k and l do maintain link kl. In order for the specified non-
robust connected non-stochastic network to be pairwise stable, the disruptor 
should then prefer to disrupt link ij rather than disrupt link rs. This requires 
y2
i
+ y2

j
< (yi − x)2 + (yj + x)2 iff (yi + x)2 − y2

j
> y2

i
− (yi − x)2 . We conclude that 

a necessary condition for the disruptor to prefer to disrupt link ij when link kl is 
maintained, and prefers to disrupt a link rs when kl is not maintained, is that 
(yi − 1)2 − (yi − 1 − x)2 > y2

i
− (yi − x)2 , which is not possible. It follows that 

when k no longer maintains link kl, the disruptor will either continue to disrupt 
ij, or will disrupt in Cj . But if the disruptor responds to non-maintenance of kl by 
disrupting in Cj , player k does not lose information when failing to maintain link 
kl, and therefore does not have any incentive to maintain it. It follows that when 
player k removes link kl, it must be that the disruptor continues to disrupt link ij, 
and that player k loses exactly one unit of information. Therefore, c < 1 is a nec-
essary condition for pairwise stability of a non-robust connected non-stochastic 
network.

	   A further necessary condition for pairwise stability of the specified non-robust 
connected non-stochastic network is that a player k in Ci with k ≠ i , and a player 
l in Cj with l ≠ j , do not both prefer to add a link to each other. In the non-robust 
connected non-stochastic network, let k obtain yi − vkc and let l obtain yj − vlc . 
When the two players add a link to each other, k obtains payoff n − z − (vk + 1)c , 
and l obtains n − z − (vl + 1)c , where z is the number of nodes the disruptor is 
able to disconnect from the rest of the network after player k and l have formed 
an extra link (where z < yi, yj ). In order for the non-robust connected non-sto-
chastic network to be pairwise stable, it should be the case that at least one of 
the players k and l does not prefer to add a link, for which it suffices that either 
yi − vkc > yi + yj − z − (vk + 1)c iff c > yj − z , or yj − vlc > yi + yj − z − (vk + 1)c 
iff c > yi − z . It follows that in order for player k and l not to want to add a link, 
it must be the case that c > 1 . But this is incompatible with the condition c < 1 
for a player to want to maintain an end link. It follows that non-robust connected 
non-stochastic networks cannot be pairwise stable.

	�  ◻
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Lemma 3  For a disruption budget of Dl = 1 , with generic disruptor randomization, 
the empty network is pairwise stable for c > 0.

Proof  In order for the empty network to be pairwise stable, no pair of players should 
want to form a link. In the empty network, each player obtains payoff 1. If two play-
ers deviate from the empty network by forming a link, the disruptor will disrupt this 
link. The expected payoff of each of these deviating players is therefore 1 − c . It fol-
lows that the empty network is pairwise stable when 1 > 1 − c iff c > 0 . 	�  ◻

Lemma 4  With Dl = 1 , given uniform disruptor randomization, any robust pairwise 
stable network is minimally 2-link connected and at least one robust pairwise stable 
network exists when c < n

2
.

Proof  Any 2-link connected network is robust by Definition 1, as no nodes can be 
disconnected from the network. If two players i and j who do not have a direct link 
in a 2-link connected network add a link to each other, this does not change the 
benefits obtained from the network, but increases both players’ costs. It follows that 
no two players want to add a link in a 2-link connected network. At the same time, 
in any 2-link connected network that is not minimal, if the network continues to 
be 2-link connected after player i fails to maintain the link to player j, player i will 
prefer not to maintain this link, as he will obtain the same benefit from the net-
work, but at lower linking costs. It follows that any pairwise stable robust network 
for Dl = 1 must be minimally 2-link connected. Finally, in any minimally 2-link 
connected network, any player i obtains payoff n − vc , where v denotes the num-
ber of links of player i. When player i fails to maintain a link, the disruptor will be 
able to disconnect a number of players y from player i, who will now obtain pay-
off n − y − (v − 1)c . Note now that the circle network is the minimally 2-link con-
nected network that is pairwise stable for the highest linking cost ranges, as y is then 
equal to n

2
 (where the latter is an expected value when n is odd; an example is found 

in Fig. 1a). It follows that at least one robust pairwise stable network exists when 
c <

n

2
 . 	�  ◻

Lemma 5  With Dl = 1,

•	 for c < n−1

2
 , the circle is more efficient than either any other minimally 2-link 

connected network, the star or the empty network;
•	 for c > n−1

2
 , the empty network is more efficient than either any minimally 

2-link connected network, or the star.

Proof  Among the minimally 2-link connected networks, the circle is the most effi-
cient, as it achieves the same total benefits but has the least links. If any network that 
is not a minimally 2-link connected network is more efficient than the circle, then 
this network is also more efficient than any minimally 2-link connected network. 
The circle is more efficient than the star when n2 − 2nc > (n − 1)2 + 1 − 2(n − 1)c 
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iff c < (n − 1) . The circle network is more efficient than the empty network when 
n2 − 2nc > n iff c < n−1

2
 . The star network is more efficient than the empty network 

when (n − 1)2 + 1 − 2(n − 1)c > n iff c < n−2

2
 . 	�  ◻

Proof for Proposition 2  The proof follows directly from Lemmata 1, 2, 3, 4 and 5. 	
� ◻

We next treat the lemmata that are needed for the proof of Proposition 3.

Lemma 6  In the connections model with node disruption ( Dv = 1 ), with generic ran-
domization, the following applies: (i) non-robust connected non-stochastic networks 
are never pairwise stable; (ii) specifically with lexicographic preferences of the dis-
ruptor, non-robust connected stochastic networks are never pairwise stable either.

Proof  The proof first considers non-robust connected non-stochastic networks (first 
bullet), and then non-robust connected stochastic networks specifically for a disrup-
tor with lexicographic preferences (second bullet).

•	 In any non-robust connected non-stochastic network, there is a single node i that 
will definitely be disrupted. The expected payoff to node i is then ui(g) = 0 − vc , 
where v stands for the number of links of node i. By deleting a link, player i will 
decrease his costs, and potentially will no longer be the target of disruption. There-
fore, the payoff will at least be ui(g − gij) = 0 − (v − 1)c , which is always better.

•	 With lexicographic preferences of the disruptor, for any non-robust connected 
stochastic network to be pairwise stable, we show that it must be that each of 
m potentially disrupted nodes connects to the rest of the network a minimally 
connected subnetwork (including the node itself) with the same order.

	   These subnetworks must have the same order because if one subnetwork 
would have a strictly larger order than another, a disruptor with lexicographic 
preferences will always prefer to disconnect the larger subnetwork. To show that 
the subnetworks must be minimally connected, denote the order of the subnet-
works that the potentially disrupted nodes connect to the rest of the network as y, 
where y ≥ 2 . Then n is at least 2y. As a disruptor with lexicographic preferences 
is always better off the smaller the largest component in the post-disruption net-
work, the disruptor will never prefer to disrupt in one of the subnetworks, even 
if these are minimally connected.19 It follows that, with lexicographic disrup-
tor preferences, a necessary condition for pairwise stability of a non-robust con-
nected stochastic network, is that the mentioned subnetworks are minimally con-
nected, and therefore include end nodes.

	   Points 1 to 3 below now show further facts about non-robust connected sto-
chastic networks when the disruptor has lexicographic preferences. We first 

19  Subnetworks in non-robust connected stochastic networks are connected because we have defined sub-
networks as including the disrupted node itself. Note still that with node disruption, in the post-disrup-
tion network resulting after a node has been disrupted, such a subnetwork may consist of more than one 
component.
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show that non-robust connected stochastic networks cannot be pairwise stable 
if a potentially disrupted player has an end link (point 1). We next show that 
non-robust connected stochastic networks cannot be pairwise stable when m > 2 
(point 2). We finally show that non-robust connected stochastic networks with 
m = 2 cannot be pairwise stable either (point 3). 

1.	 Let at least one potentially disrupted player k have an end link to l, and let k 
have v links. When player k fails to maintain the end link, given that the m 
subnetworks have the same order, the disruptor with lexicographic prefer-
ences prefers to disrupt one of the (m − 1) potentially disrupted nodes other 
than k. It follows that k does not want to remove link kl when 
p ⋅ 0 + (1 − p)(n − y) − vc > n − y − 1 − (v − 1)c iff c < 1 − p(n − y) , with p 
the probability that k is disrupted, where we consider the player k who is 
weakly most likely to be disrupted. As p equals at least 1

m
 and n equals at least 

my, this condition can only be valid if c < m−my+y

m
 . The right-hand side is 

larger than zero when m <
y

y−1
 . Given that y is at least 2, this is never valid. 

It follows that a non-robust connected stochastic network can never be pair-
wise stable if a potentially disrupted player has an end link.

2.	 Given that the m subnetworks are minimally connected and that the m poten-
tially disrupted nodes do not have end links (see 1.), it follows that in any 
pairwise stable non-robust connected stochastic network, each potentially 
disconnected subnetwork must contain a non-disrupted player i who has an 
end link; this in turn means that y ≥ 3 (where we repeat that this includes the 
potentially disrupted player himself). Let player i’s subnetwork be discon-
nected with probability p, and let i form v links. Then i does not prefer to 
remove the end link when p ⋅ x + (1 − p)(n − y) − vc > n − y − 1 − (v − 1)c 
iff c < 1 − p(n − y − x) . x is the order of the component of which i is part 
when the player’s subnetwork is the one that is disconnected. Note that with 
lexicographic preferences of the disruptor, when player i fails to maintain the 
end link the disruptor necessarily prefers to remove one of the (m − 1) other 
potentially disrupted nodes, as this necessarily means that the order of the 
largest component in the post-disruption network will be smaller.

	   Among all players of the same type as i, the player most inclined to stop 
maintaining an end link is the one facing the highest p, where the (weakly) 
highest p is at least 1

m
 . n is at least my, and x is at most (y − 1) . It follows that 

a necessary condition for the existence of a pairwise stable non-robust con-
nected stochastic network is that c < 1 −

1

m
[my − y − (y − 1)] =

−m(y−1)+2y−1

m
 . 

Therefore, non-robust connected stochastic networks can only be pairwise 
stable when m <

2y−1

y−1
 . For y = 3 (which is the minimal y) the right-hand side 

equals 5/2, and furthermore the right-hand side decreases in y. It follows that 
a necessary condition for pairwise stability of a non-robust connected sto-
chastic network is that m = 2.

3.	 For a non-robust connected stochastic network with m = 2 to be pairwise 
stable, on top of the condition c < 1 − p(n − y − x) , we need that a pair of 
players (i, j) each in a different subnetwork which the disruptor can dis-
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connect from the rest of the network, do not want to add a link ij to each 
other. This is the case when (1 − p)x + p(n − y) − vc > n − z − (v + 1)c iff 
c > n − z − x + p(n − y − x) . It suffices to consider this condition for the 
player in the subnetwork that is least likely to be disconnected, as it suffices 
that this player does not want to add a link (given that p is the probability with 
which the disruptor disrupts the weakly most likely disrupted node, and given 
that m = 2 , the weakly least likely disrupted node is necessarily disrupted 
with probability 1 − p ). z is the expected number of nodes that the disruptor 
can still disconnect after the mentioned pair of players have formed an extra 
link ij (note that n − z can be an expected value, as is the case when players 
i and j are the end nodes in a line). Overall, taking into account point 2., for 
pairwise stability of a non-robust connected stochastic network with m = 2 , 
a necessary condition is that n − z − x + p(n − y − x) < 1 − p(n − y − x) . But 
n is at least 2y, and z < y , x < y , so that n − z − x > 1 , n − y − x > 0 , meaning 
that the condition cannot be valid.

	�  ◻

Lemma 7  For a disruption budget of Dv = 1 , with generic disruptor randomization, 
the empty network is pairwise stable for c > 0.

Proof  In order for the empty network not to be pairwise stable, it should be that at 
least two players prefer to form a link to each other when the empty network is the 
starting point. Consider the two players i and j most inclined to form such a link. 
Let i be disrupted with probability pI in the empty network, and with probability pII 
when forming a link to player j. Then necessarily player j is disrupted with probabil-
ity (1 − pII) when forming a link to player i. Denote by p′

I
 the probability that player 

j is disrupted in the empty network. Then both players i and j prefer to form a link 
to each other when c < p1 − pII and c < p�

I
− (1 − pII) . This is only possible when 

pI > pII and p�
I
> (1 − pII) . But p′

I
 is at most equal to 1 − pI , and pI > pII is incom-

patible with 1 − pI > 1 − pII . 	�  ◻

Lemma 8  When Dv = 1 , with uniform disruptor randomization, any pairwise sta-
ble robust network is minimally 2-node connected, and at least one pairwise stable 
robust network exists when c < (n−1)(n−2)

2n
.

Proof  Any 2-node connected network is robust by Definition  2, as no additional 
node to the one disrupted can be disconnected. If two players i and j who do not have 
a direct link in a 2-node connected network add a link to each other, this does not 
change the benefits from the network, but increases both players’ costs. It follows 
that no two players want to add a link in a 2-node connected network. At the same 
time, in any 2-node connected network that is not minimal, if the network continues 
to be 2-node connected after player i fails to maintain his link to player j, player i 
will prefer not to maintain this link, as he will obtain the same benefit from the net-
work, but at lower linking costs. It follows that any pairwise stable robust network 
for Dv = 1 must be minimally 2-node connected. Finally, in any minimally 2-node 
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connected network, as no additional node to the one targeted by the disruptor can be 
disconnected, with uniform disruptor randomization the disruptor targets each node 
with probability 1

n
 . Any player i therefore obtains payoff ui(g) =

(n−1)2

n
− vc , where 

v denotes the number of links node i possesses. When player i fails to maintain a 
link, the disruptor will be able to disconnect a number of players y from player i, 
who will now obtain payoff n − 1 − y − (v − 1)c . Note now that the circle network is 
the minimally 2-node connected network that is pairwise stable for the highest link-
ing cost ranges, as y is then equal to n−1

2
 (where the latter is an expected value when 

n is even). It follows that at least one robust pairwise stable network exists when 
c <

(n−1)(n−2)

2n
 . 	�  ◻

Lemma 9  When Dv = 1,

•	 for c < (n−1)(n−2)

2n
 , the circle is more efficient than either any other minimally 

2-node connected network, or the empty network;
•	 for (n−1)(n−2)

2n
< c , the empty network is more efficient than any minimally 2-node 

connected network.

Proof  The circle leads to lower total costs than any other minimally 2-node con-
nected network, but to the same total benefits, because it continues to be the case 
that the disrupted node does not disconnect extra nodes from the rest of the network. 
The circle is more efficient than the empty network when (n − 1)2 − 2nc > (n − 1) 
iff c < (n−1)(n−2)

2n
 	�  ◻

Proof for Proposition 3  The proof follows directly from Lemmata 6, 7, 8 and 9. 	�  ◻

Proof for Proposition 4  As the mentioned circulants are robust against link disruption 
with disruption budget Dl (see Hoyer and De Jaegher (2016),  Proposition 1), no 
player wants to add a link. Furthermore, as any considered circulant consists of a 
circle that includes all players, with additional links added according to the jump 
sequence procedure, to disconnect any subset of nodes from the rest of the network 
larger than 1, the disruptor would need to disrupt more than Dl + 1 links. For this 
reason, when a link ij in the circulant is no longer maintained, the disruptor can only 
disconnect either i or j from the network. It follows that when link ij is not main-
tained, with uniform disruptor randomization, i and j are each disconnected from the 
rest of the network with probability 1

2
 . The payoff a player i who fails to maintain a 

single link in a circulant equals 1
2
+

1

2
(n − 1) − Dlc . Therefore, player i prefers to 

maintain the link when n − (Dl + 1)c >
1

2
+

1

2
(n − 1) − Dlc iff c < n

2
 . A circulant 

where each player has exactly D1 + 1 links is more efficient than the empty network 
when n2 − n(Dl + 1)c > n iff c < n−1

Dl+1
 . 	�  ◻

Proof for Proposition 5  As the mentioned circulants are robust against node disruption 
with disruption budget Dv (see Hoyer and De Jaegher (2016), Proposition 1), no player 
wants to add a link. Also, any considered circulant consists of a circle that includes all 
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players, with additional links added according to a specific jump sequence procedure. 
Because of this fact, in order to disconnect a subset of nodes larger than 1 from the rest 
of the network, the disruptor would need to disrupt more than Dv + 1 nodes. For this 
reason, when a link ij is not maintained, the disruptor can only disconnect i or j from 
the network (by disrupting Dv nodes with links to i of j). With uniform disruptor rand-
omization, the payoff of a player i who fails to maintain a single link ij in a circulant 
therefore equals 1

2
+

1

2
(n − Dv − 1) − Dvc . When maintaining link ij, player i obtains 

payoff (1 − Dv

n
)(n − Dv) − (Dv + 1)c . It follows that i wants to maintain link ij when 

c <
(n−Dv)(n−2Dv)

2n
 . A circulant of the described form is more efficient than the empty 

network when (n − Dv)
2 − (Dv + 1)nc > n − Dv iff c < (n−Dv)(n−Dv−1)

(Dv+1)n
 . It can be 

checked that (n−Dv)(n−Dv−1)

(Dv+1)n
<

(n−Dv)(n−2Dv)

2n
 iff 1 < Dv <

n

2
− 1 . 	�  ◻

Appendix B. Pairwise stability of core‑periphery networks for a unit 
link disruption budget and non‑uniform disruptor randomization

Consider a core-periphery network consisting of a minimally 2-link connected cen-
tral subnetwork, with a number x of end nodes directly connected to it, where x ≥ 3 . 
Just as for the proof of Lemma 1, denote by pI the weakly highest probability with 
which an end link is targeted and by pII the second-highest probability, with pI ≥ pII . 
Then the star is pairwise stable for pII(n − 2) < c < min (1, (1 − pI)(n − 2)) . Two 
cases can now be distinguished:

•	 In Case 1, pI ≤
n−3

n−2
 , in which case the condition on the linking costs becomes 

pII(n − 2) < c < 1 . This is only possible when pII <
1

n−2
 . At the same time, as pII 

is the second-highest probability, it must be the case that pII ≥
1−pI

n−x−1
 , so that 

additionally it must be that 1−pI

n−x−1
≤ pII <

1

n−2
 . This in turn is only possible when 

pI >
x−1

n−2
 . We therefore obtain overall the conditions 1

(n−2)(n−x−1)
≤ pII <

1

n−2
 , and 

x−1

n−2
< pI ≤

n−3

n−2
.

•	 In Case 2, pI >
n−3

n−2
 , in which case the condition on the linking costs becomes 

pII(n − 2) < c < (1 − pI)(n − 2) , which is only possible when pII < (1 − pI) , 
meaning that at least a third end link must be targeted with positive prob-
ability. This conditions for this case are therefore pII < (1 − pI) , 0 < pII <

1

n−2
 , 

n−3

n−2
< pI < 1.

Appendix C. Comparison to link and node reliability, and information 
decay

In a related model to our model of link disruption, no disruptor is present but 
each link independently fails with probability � . As pointed out by Jackson 
and Wolinsky (1995), such a case is complex to analyze as establishing pair-
wise stability and efficiency requires the comparison of higher-degree poly-
nomials. For n = 4 , the benefit of an individual player in the circle equals 
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�2 ⋅ 1 + 2�(1 − �)[� ⋅ 2 + (1 − �)(� ⋅ 3 + (1 − � ⋅ 4)] + (1 − �)2[�2 ⋅ 3 + 2�(1 − �) ⋅ 4 + (1 − �)2 ⋅ 4]   . 
When this individual player does not maintain one of his links, his benefit equals 
� ⋅ 1 + (1 − �)[� ⋅ 2 + (1 − �)(� ⋅ 3 + (1 − �) ⋅ 4)] . It can be checked that the differ-
ence between these two payoffs is never larger than 1, so that a necessary condition 
for the circle to be pairwise stable is that c < 1 . At the same time, networks that 
include end nodes can only be pairwise stable when c < (1 − 𝜖) . This suggests that 
introducing link failure into the benchmark case does not mean that non-empty net-
works become pairwise stable, contrary to what is the case when introducing link 
disruption.

Similarly, in a related model to our model of node disruption, consider a model 
of node failure where each node independently fails with probability � . Again, we 
look at the example n = 4 . In the circle, the individual player now obtains benefit 
� ⋅ 0 + (1 − �)[�2 ⋅ 1 + 2�(1 − �)(� ⋅ 2 + (1 − �) ⋅ 3) + (1 − �)2(� ⋅ 3 + (1 − �) ⋅ 4)]   . 
When this individual player does not maintain one of his links, his benefit becomes 
� ⋅ 0 + (1 − �)[� ⋅ 1 + (1 − �)(� ⋅ 2 + (1 − �)(� ⋅ 3 + (1 − �) ⋅ 4))] . It can again be 
checked that the difference between these two benefits is smaller than one, so that 
a necessary condition for the circle to be pairwise stable is again that c < 1 . It con-
tinues to be the case that a network that involves end nodes can only be pairwise 
stable when c < (1 − 𝜖) . Again, this suggests that, whereas introducing node disrup-
tion into the benchmark case makes non-empty pairwise stable networks possible 
for c > 1 , this is not the case when introducing node failure.

With information decay, the information obtained from nodes at distance of 1 in 
the network from oneself is discounted by a factor � (with 0 < 𝛿 < 1 ), the information 
obtained from nodes at distance 2 by a factor �2 , and so on. We compare the connec-
tions model of network formation without decay (see Sect. 4), to the connections model 
of network formation with decay (Jackson and Wolinsky 1996), as a function of criti-
cal levels of the linking costs. For linking cost levels such that 1 < c < 𝛿 +

n−2

2
𝛿2 , the 

effect of introducing decay in the network rather than not having decay, can be that non-
empty networks become pairwise stable. This is the case for Example 1 (tetrahedron 
network) in Jackson and Wolinsky (1996), when in their example c is slightly increased 
above 1. For this range of linking costs, both with and without decay, networks with 
end players are not pairwise stable, because end players want to stop maintaining end 
links then. Without decay, at the same time, non-minimally connected networks are 
not pairwise stable because players will never want to maintain redundant links. With 
information decay, however, there still is an incentive to maintain links that are redun-
dant in the absence of decay. In this sense, for the specified cost levels, the introduction 
of decay into the model has a similar effect to the introduction of a common enemy. In 
the presence of a disruptor, failure to maintain link can lead to a large loss in benefits 
because the network can then be disconnected in separate components. In the presence 
of decay, failure to maintain a link can lead to a large loss in benefits because nodes 
that are relatively close become relatively remote from the individual player. As Jack-
son and Wolinsky (1996) do not provide a full characterization of pairwise stable net-
works for c > 𝛿 , we cannot provide precise results for the similar effect of decay. Yet, 
the example of Jackson and Wolinsky suggests that this effect is only obtained for a 
limited range of costs. On the contrary, the common-enemy effect of the presence of a 
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disruptor applies for a wide range of cost parameters, as e.g. with a linking budget of 1, 
in the circle the impact of failing to maintain one link is large.

Appendix D. Star not pairwise stable for larger linking disruption 
budget

We show that the star cannot be pairwise stable for a linking disruption budget Dl > 1 . 
For a general disruption budget Dl , in the star a peripheral player obtains payoff 
n−Dl−1

n−1
(n − Dl) +

Dl

n−1
− c . A peripheral player who adds a link in a star obtains payoff 

n − Dl − 2c ; he therefore does not want to add a link when c > (n−Dl−1)Dl

n−1
 . A peripheral 

player who fails to maintain a link in a star obtains payoff 1; he therefore wants to keep 
his link when c <

(n−Dl−1)
2

n−1
 . The central player in the star obtains payoff 

n − Dl − (n − 1)c . When failing to maintain a single link, the central player instead 
obtains payoff n − Dl − 1 − (n − 2)c ; the central player therefore wants to keep all 
links when c < 1 . A peripheral player not wanting to add a link and the central player 
wanting to keep all links is compatible when (n−Dl−1)Dl

n−1
< 1 iff n <

D2

l
+Dl−1

Dl−1
 . A periph-

eral player wanting to keep his link and not wanting to add a link is compatible when 
(n−Dl−1)

2

n−1
>

(n−Dl−1)Dl

n−1
 iff n > 2Dl + 1 . Thus, compatibility of all conditions for pairwise 

stability requires that 2Dl + 1 <
D2

l
+Dl−1

Dl−1
 iff Dl < 2 . Yet, for larger disruption budgets 

Dl equals instead at least 2.
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