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Background: Surveillance of SARS-CoV-2 in waste-
water offers a near real-time tool to track circulation 
of SARS-CoV-2 at a local scale. However, individual 
measurements of SARS-CoV-2 in sewage are noisy, 
inherently variable and can be left-censored.
Aim: We aimed to infer latent virus loads in a compre-
hensive sewage surveillance programme that includes 
all sewage treatment plants (STPs) in the Netherlands 
and covers 99.6% of the Dutch population.
Methods: We applied a multilevel Bayesian penalised 
spline model to estimate time- and STP-specific virus 
loads based on water flow-adjusted SARS-CoV-2 qRT-
PCR data for one to four sewage samples per week for 
each of the more than 300 STPs.
Results: The model captured the epidemic upsurges 
and downturns in the Netherlands, despite substantial 
day-to-day variation in the measurements. Estimated 
STP virus loads varied by more than two orders of 
magnitude, from ca 1012 virus particles per 100,000 
persons per day in the epidemic trough in August 2020 
to almost 1015 per 100,000 in many STPs in January 
2022. The timing of epidemics at the local level was 
slightly shifted between STPs and municipalities, 
which resulted in less pronounced peaks and troughs 
at the national level.
Conclusion: Although substantial day-to-day variation 
is observed in virus load measurements, wastewater-
based surveillance of SARS-CoV-2 that is performed at 
high sampling frequency can track long-term progres-
sion of an epidemic at a local scale in near real time.

Introduction
The COVID-19 pandemic has posed one of the most 
severe threats to public health in recent history. 

Severity and progression of the disease are variable, 
depending on host risk factors and pathogen variants 
[1-3]. Transmission can also occur via asymptomatic or 
pre-symptomatic individuals [4]. These characteristics 
hamper effective epidemiological surveillance for the 
infection dynamics, as case notifications are biased, 
depending on strain-dependent severity of disease, 
willingness to get tested, testing capacity and public 
health policies. Epidemiological surveillance based on 
hospital admissions is less biased but does not pro-
vide an accurate picture in the early and late stages 
of an epidemic when hospitalisations are rare. This is 
especially true at a local scale (e.g. municipalities) and 
for variants causing relatively mild disease (such as 
the Omicron relative to the Delta variant). Serological 
surveillance for severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) can provide population-level 
estimates of the fraction of the population that has 
been infected [5]. Serological surveys, however, are 
costly and each survey only provides a cross-sectional 
snapshot of the population at a single time point.

In contrast with earlier applications of wastewater-
based surveillance such as the identification of emerg-
ing enteric viruses [6], monitoring of SARS-CoV-2 in 
sewage can supply quantitative information at a local 
scale [7]. In the COVID-19 pandemic, the detection of 
SARS-CoV-2 in faeces has accelerated the introduc-
tion of wastewater surveillance in a variety of settings, 
including airports, hospitals and cities. Wastewater-
based surveillance has now been implemented in many 
countries [8]. However, many of these activities are 
carried out by local governmental bodies or independ-
ent research groups and are often restricted to specific 
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locations. This makes it difficult to compare variations 
over time and geographically in a broader perspective.

Here we report data and statistical analyses from a 
national wastewater-based surveillance programme in 
the Netherlands. Since 7 September 2020, all sewage 
treatment plants (STPs) in the Netherlands have been 
providing between one and four samples per week to 
the Dutch National Institute for Public Health and the 
Environment (RIVM). Since almost every Dutch house-
hold is connected to a sewer, coverage of the pro-
gramme is close to 100%. Samples are subjected to a 
standardised extraction protocol and analysed by real-
time RT-PCR within 2–4 days after sampling. As meas-
urements of SARS-CoV-2 RNA in sewage are inherently 
variable and can be left-censored (i.e. not able to 
detect RNA at low virus loads), our aim was to integrate 
the available data to provide estimates of the latent 
true SARS-CoV-2 virus loads over time for all STPs. 
We analysed data from 1 August 2020 (when 60% of 
the population had already been included) up to and 
including 8 February 2022 (when coverage exceeded 
99%). Hence, the time series data cover the winter epi-
demic of 2020/21, the 2021 summer surge after many 
restrictions had been lifted, and the 2021/22 winter 
epidemic.

Methods

Sampling, RNA extraction, and qRT-PCR
In the Netherlands, sewage of 99.6% of the popu-
lation is treated at 317 STPs, of which four closed 
between start and end of the period of analysis (Figure 
1). Coverage of the programme was over 99% of the 
Dutch population (> 17 million) as only a small fraction 
of the population in the Netherlands is not connected 
to a sewage system. The catchment areas of STPs vary 
in size from covering ca 1,000 to more than 800,000 
inhabitants. At each STP, sewage samples were col-
lected 1–4 times per week, and the weekly number of 
samples generally increased over the study period. 
Samples contained a volume of 500–1,000 mL, taken 
from a larger 24 h flow-proportional sample, and were 
sent to RIVM for analysis.

At the central laboratory, RNA extraction was per-
formed on each sample using the Viral NA Large 
Volume kit on the MagNA Pure 96 instrument (Roche, 
Basel, Switzerland). Detection of SARS-CoV-2 RNA 
was based on an assay described by the Centers for 
Disease Control and Prevention (CDC) [9], and qRT-PCR 
was performed in duplicate for the N1 and N2 targets. 
In each analysis run we included both positive and neg-
ative controls, and added equine arteritis virus (EAV) to 
the samples to check for uncontrolled viral inhibition. 
Using an internal standard, quantification cycle (Cq) 
values were converted to RNA concentrations (RNA/
mL). The RNA concentrations of the four measurements 
were averaged to yield an average RNA concentration. 
When all four measurements yielded a non-detect 
result, we reported the sample as negative/left-cen-
sored. The RNA/mL values obtained from the RT-qPCR 
were subsequently divided by the number of perma-
nent residents in the catchment area of the STP and 
multiplied by 100,000 and by the 24 h water flow of the 
STP of origin to obtain the number of genome copies 
per 100,000 inhabitant equivalents. Throughout, we 
use ‘number of virus particles’ as shorthand for ‘num-
ber of genome copies’, and ‘virus load’ as shorthand 
for number of virus particles per 100,000 normalised 
by 24 h flow. Finally, municipalities often make use of 
multiple STPs. Therefore, to transform STP virus loads 
to virus loads per municipality, the virus loads per STP 
contributing to a given municipality were weighted by 
the number of inhabitants serviced by each STP in that 
municipality.

Statistical analysis
The basis for the analyses were log10-transformed 
virus concentration data, normalised by 24 h sewage 
water flow rates (unit: virus particles 100,000 per-
sons/day; henceforth called virus load). The analyses 
employed a Bayesian multilevel spline model with 
random effects at the level of the STPs [10,11]. In the 
model, the expected log10-transformed virus load at 
time t and STP i, ci(t), was given by
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = c(𝑡𝑡𝑡𝑡)  + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) 

 

Figure 1
Sewage treatment plants, the Netherlands, 2022 (n = 317)

Shown are locations of all 317 sewage treatment plants in 2022. 
Sizes of the dots represent the number of persons serviced by the 
plant. Background colours represent the 25 safety regions of the 
Netherlands. Safety regions represent the public bodies whose 
task is to facilitate regional cooperation in dealing with crises, 
disasters and disruptions of public order.
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where c(t) represents the national trend and the di(t) 
represent the STP-specific deviations. The central goal 
was to infer the unknown latent virus loads ci(t) in the 
presence of measurement error and left-censoring. 
The national trend c(t) was modelled with a penalised 
spline (p-spline) with cubic b-spline basis functions 
and 15 equidistant knots (yielding 17 regression coeffi-
cients). The results presented here were obtained with 
a first-order random walk prior for the regression coef-
ficients [11], using an N(12,1) prior distribution for the 
first regression coefficient and an inverse gamma(1, 
0.0005) prior distribution for the variance parameter 
[11]. In this manner, the national log10-transformed 
virus load at the first time point was normally distrib-
uted a priori, with a mean of 12 per 100,000 persons 
per day and approximate 95% prior range of 10–14 per 
100,000 persons per day. This provided good coverage 
for virus loads at the first time points (August 2020). 
In a similar manner, STP-specific deviations from the 
trend were modelled with cubic b-splines with 15 equi-
distant knots (yielding 17 coefficients per STP), and 
with zero-mean normal prior distributions (N(0,1)). 
Hence, plant-specific deviations were a priori expected 
to be no more than ca 100-fold (i.e. 2 standard devia-
tions) lower or higher than the trend. Of note, this 
choice covered almost all (> 99.9%) individual measure-
ments for all STPs over time.

We also explored a suite of alternatives, e.g. estimating 
the variance of the deviations, or replacing the p-spline 
for the national virus load with a b-spline using N(13,1) 
prior distributions for the regression coefficient, and 
evaluated competing models using the leave-one-out 
information criterion [12]. Here we report results from 
the best-fitting model. Throughout, we assume that the 
log10-transformed virus load measurements Yit at plant 
i and time t were normally distributed, Yit~N(ci(t),  σ), 
and we used an uninformative (improper uniform) prior 
distribution for σ>0.

The probability of virus detection in a sample is deter-
mined by the detection limit of the qRT-PCR, the daily 
flow rates of water through the sewerage, and possibly 
also by the composition of the sewage. Hence, there 
is no fixed predefined cut-off for RNA detection that 
can be applied to all STPs at all time points, and we 
included in the analyses a two-parameter logistic func-
tion that determined the probability of detection. The 
parameters c0 (load at which detection occurs with a 
probability of 0.5) and k (steepness of the detection 
curve) were estimated. Hence, denoting the probability 
of detection by
𝑝𝑝𝑝𝑝�detec�on | 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)� = 1/�1 + 𝑒𝑒𝑒𝑒−𝑘𝑘𝑘𝑘(𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)−𝑐𝑐𝑐𝑐0)� 

a non-detect result added a contribution 
1-p(detection|ci(t)) to the likelihood. In this manner, 
samples in which no RNA is detected tended to pull the 
estimated load ci(t) to lower values. The parameter c0 
was given a weakly informative N(12, 0.5) prior distri-
bution (a priori of 50% probability of detection ranges 
from log virus load of ca 11–13), and k was provided 
with an uninformative (improper) uniform prior distri-
bution (k>2). The event of a detection was Bernoulli-
distributed, D~Bernoulli(p(detection|ci(t))). Putting it 
together, the log-likelihood contributions were given by

ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷�1;𝑝𝑝𝑝𝑝(detection)� + 𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡),𝜎𝜎𝜎𝜎) if RNA was detected at STP i and time t 

𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷�0;𝑝𝑝𝑝𝑝(detection)� if RNA was not detected, 
 

 

ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷�1;𝑝𝑝𝑝𝑝(detection)� + 𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡),𝜎𝜎𝜎𝜎) if RNA was detected at STP i and time t 

𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷�0;𝑝𝑝𝑝𝑝(detection)� if RNA was not detected, 
 

 
ℒ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �

𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷�1;𝑝𝑝𝑝𝑝(detection)� + 𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡),𝜎𝜎𝜎𝜎) if RNA was detected at STP i and time t 
𝑓𝑓𝑓𝑓𝐷𝐷𝐷𝐷�0;𝑝𝑝𝑝𝑝(detection)� if RNA was not detected, 

 

 
where fD and fY denote the log Bernoulli and log nor-
mal probability densities, respectively.

To tie the results at the STP level to other organisa-
tional levels (municipality, safety region, national) 

What did you want to address in this study?
The primary aim of this study was to estimate SARS-CoV-2 virus loads in sewage in the Netherlands, using 
data from a comprehensive national surveillance programme. The secondary aim was to compare estimated 
virus loads in sewage with hospital admission data in order to use the sewage signal as a main indicator of 
morbidity.

What have we learnt from this study?
Virus loads in sewage water can vary by more than two orders of magnitude. The dynamics of the COVID-19 
epidemic in wastewater were largely synchronised between municipalities. Estimated virus loads in sewage 
closely followed the daily number of hospitalisations and case notifications.

What are the implications of your findings for public health?
Surveillance of SARS-CoV-2 in wastewater can track in near real-time how the COVID-19 epidemic develops 
within a defined local area, even in the presence of substantial background signals and day-to-day variation.

KEY PUBLIC HEALTH MESSAGE
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we applied posterior weighting of the estimated virus 
loads (i.e. the exponentiated estimated log loads), 
where weighting was proportional to the numbers of 
persons contributing to the various organisational 
units. Demographic data were obtained from Statistics 
the Netherlands using the census of 1 January 2020 
[13], with the exception of the municipal mergers of 
January 2021 and 2022 which we added manually to 
the demographic data. Specifically, the expected log10-
transformed virus load at time t in municipality i, bi(t), 
was given by

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)  =  log10 �
∑ 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  × 10𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡)
𝑗𝑗𝑗𝑗

∑ 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
� � 

where we summed over all STPs j, and Ii,j were the num-
ber of inhabitants in municipality i serviced by STP j. 
Log-transformed virus loads at other organizational 
levels (safety region, province) were calculated simi-
larly. Of note, the analyses reported here included all 
but the three overseas extraordinary municipalities 
(Bonaire, St Eustatius and Saba).

We analysed sewage data of more than 47,000 meas-
urements spanning the period from 1 August 2020 
(when the majority of STPs had been included in the 
national programme) up to and including 8 February 
2022. For comparison of the results with other epi-
demic indicators, we also made use of the daily inci-
dence of hospital admissions (cases per 100,000 
persons) and the daily number of positive tests, both 
stratified by municipality. All analyses were performed 
with Stan (version 2.21.0) and R (version 4.1.3), using 
RStan (version 2.21.2) as interface to Stan [14]. We ran 
10 Markov chain Monte Carlo chains in parallel and 
based the analyses on 1,000 samples from well-mixed 
chains, where we applied 1/4 thinning to minimise cor-
relations between samples. Data, scripts and figures 
are available in the online repository at https://github.
com/rivm-syso/SARS-CoV-2_sewage.
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Figure 2
SARS-CoV-2 loads in sewage and fit of the model for the largest sewage treatment plants, the Netherlands, August 2020–
February 2022 (n = 1,319 data points)

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
The total number of persons connected to these plants was 3,641,251 [13], representing 21.0% of the population covered by all 317 STPs in the 
Netherlands. Dots represent virus load measurements; lines show the posterior medians of the fitted virus loads with 95% credible intervals 
(grey bands). Dates on the x-axis are given in numeric format, i.e. month/year. Figures and underlying data for all STPs are available at 
https://github.com/rivm-syso/SARS-CoV-2_sewage. STPs are sorted by size (top left to bottom right).
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Results

Descriptive statistics
The Dutch sewage surveillance programme for SARS-
CoV-2 was initiated in the first months of 2020. 
Since its inception, the number of included STPs has 
increased over time such that 80 STPs provided sam-
ples in August 2020, and all 313–317 STPs provided 
samples from September 2020 onwards. An overview 
of the location and size of STPs in the Netherlands 
is provided in Figure 1 and shows that STPs in the 
densely populated western parts of the Netherlands 
are generally substantially larger than those in other 
regions. Approximately 3% of all measurements (1,479 
of 46,448) yielded a non-detection, and those were 
concentrated in the early stages of the epidemic when 
virus loads were still low (< 1012.5). It is noteworthy 
that STPs often process sewage from multiple munici-
palities, and it is not uncommon that a municipality is 
served by multiple STPs. Hence, STPs do not follow 
the hierarchical organisational structure of the Dutch 
administrative divisions, which makes averaging from 
STP-level analyses to municipalities, provinces and 
safety regions not straightforward.

Estimation of viral loads
Figure 2 shows the latent virus loads for the nine larg-
est STPs. Results for all 317 STPs are available in the 
online repository at https://github.com/rivm-syso/
SARS-CoV-2_sewage. In general, the model described 
the data well, and indicators suggested that the estima-
tion procedure yielded satisfying results. Specifically, 
the scale reduction factor was close to 1, there were 
no divergent transitions, components of the posterior 
distribution were located well within the support of the 
prior distributions yielding strong posterior contrac-
tion, there were no systematic deviations of residuals 
from posterior medians. Further, in Supplementary 

Figure S1 we show that approximately 95% of obser-
vations were within the 95% posterior prediction 
intervals.

Estimated virus loads were generally low in August and 
September 2020 and were estimated between 1012–
1013 virus particles per 100,000 inhabitants per day. 
At these virus loads, a sizeable fraction of samples can 
yield a non-detection, especially at the lower end of 
this range. This is illustrated in Figure 3, which shows 
the probability of detection as a function of virus load, 
estimated from the joint data of all STPs. The esti-
mated probability of detection was close to 0 at a virus 
load of 1011, close to 50% at a virus load of 1012, and 
almost 1 at a virus load of 1013. Estimated parameters 
of the detection function were c0  = 12.1 (95% credible 
interval (CrI): 12.1–12.2) for the posterior median of the 
logistic midpoint, and k = 4.2 (95% CrI: 4.0–4.4) for 
the posterior median of the logistic growth rate.

Between August 2020 and November 2020, virus loads 
increased by more than one order of magnitude to a 
peak value close to ca 1014 particles per 100,000 per 
day in many STPs. Thereafter, virus loads started to 
decline gradually in all STPs. From May 2021 onwards, 
when the vaccination coverage was strongly increas-
ing, virus loads started to decrease at a faster pace 
until the early summer. Subsequently, virus loads 
increased and reached a peak in early August 2021 by 
the temporary lifting of restrictions for vaccinated per-
sons. Finally, from October 2021, virus loads started 
increasing again, first to just under 1014 particles per 
100,000 per day in most STPs in December 2021, and 
subsequently to well over 1014 and even up to 1015 parti-
cles per 100,000 per day in February 2022.

Overall, we observed that trends in virus loads cor-
responded to main epidemiological events. This was 
true even though we estimate that measurement vari-
ation was substantial. In fact, the posterior median 
of the standard deviation of the observation model 
was σ=0.353 (95% CrI: 0.351–0.355), such that indi-
vidual measurements could be 102σ ≈ 5-fold lower or 
higher than the estimated virus load. This, however, is 
still substantially smaller than the 100- to 1,000-fold 
increases and decreases in virus loads from epidemic 
troughs to peaks and vice versa.

Relation to hospital admissions
The estimated virus loads in the nine largest munici-
palities in the Netherlands are presented in Figure 4. 
We obtained these municipal estimates from the STP 
estimates by weighting the relevant posterior virus 
loads by the number of inhabitants in the focal munici-
pality. The patterns were similar to those in Figure 2 
for the STPs. The peaks and troughs at the municipal-
ity levels matched the estimated peaks and troughs at 
the STP level. Estimated virus loads for all 345 munici-
palities are available in the online repository and were 
broadly similar to the results presented in Figures 2 
and 4. For comparison with other epidemic indicators, 
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Figure 3
Estimated probability of SARS-CoV-2 RNA detection in 
sewage samples as a function of the log10-transformed 
sewage load, the Netherlands, August 2020–February 2022 
(n = 1,000 samples from the posterior distribution)

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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Figure 4 also shows the log-transformed daily inci-
dence of hospital admissions. In addition, we provide 
in Supplementary Figure S2 the estimated virus loads 
in the nine largest municipalities with the daily num-
ber of positive tests, showing a similar correspond-
ence between virus loads and case notifications as we 
observed between virus loads and hospitalisations.

Finally, Figure 5 shows the inferred log-transformed 
virus loads in the Netherlands, using the population-
weighted STP estimates, together with the log-trans-
formed daily total number of hospitalisations. Again, 
overall patterns of estimated virus loads were similar 
to those shown in Figures 2 and 4. Interestingly, epi-
demic troughs and peaks in the national estimate were 
less pronounced than those observed in most STPs. 
For instance, virus load estimates were as low as 1012 
particles per 100,000 per day in many STPs in August 
2020 but almost 1013 at the national level, and almost 

1015 in the February 2022 peak but only just over 1014 at 
the national level. The fact that local epidemics were 
not fully synchronised is the reason that the national 
trend was less pronounced than those in the individual 
STPs (Figure 2). In fact, there was up to 10-fold varia-
tion from one STP to the next in peak height and trough 
depth, and up to 4 week shifts in the timing of the 
peaks and troughs.

Discussion
More than 99% of the Dutch population is connected to 
the sewerage and thus to an STP. This makes it possible 
to perform high resolution and near real-time surveil-
lance of pathogens that are shed in faeces, urine and 
other excreta and secreta [15,16]. However, sewage is a 
complex matrix to analyse [17], and proper controls are 
necessary to accurately quantify SARS-CoV-2 RNA. It is 
known that the amount of precipitation and the com-
position of industrial wastewater that is mixed in with 

Figure 4
Estimated log-transformed SARS-CoV-2 loads for the nine largest municipalities in the Netherlands with log-transformed 
number of hospitalisations, the Netherlands, August 2020–February 2022 (n = 19,146 hospital admissions)

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Yellow dots: virus load measurements; lines: posterior median of the STP-weighted national virus load with associated 95% credible band 
(shaded). Hospitalisations are retrieved from the Dutch open data [31]. Hospitalisations are shown as a 7-day centred moving average to 
smooth out day-of-week effects, and zero incidences are plotted in red. Notable events in the period October 2020 to February 2022 include a 
vaccination campaign starting in January 2021 and a campaign for booster vaccination starting in November 2021. Furthermore, the SARS-
CoV-2 Alpha, Delta and Omicron variants were successively dominant in the Netherlands and responsible for most infections from February 
2021, June 2021 and December 2021, respectively. Hospitalisations in Amsterdam include those from Weesp as those municipalities were 
merged in March 2022 and the open data we used had been retroactively modified as a result. The total number of persons in these nine 
municipalities was 3,508,948, representing 20.2% of the population [13]. Dates on the x-axis are given in numeric format, i.e. month/year.
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the sewage of the general population will affect SARS-
CoV-2 RNA concentrations determined by RT-PCR [18]. 
Still other factors that can affect measurements include 
the length of sewer lines and ambient temperature [19]. 
Here we have shown that even when there is substan-
tial noise or day-to-day variation in RNA concentrations 
detected in sewage, it is possible to reliably estimate 
variations in underlying latent SARS-CoV-2 virus loads 
over time. This is possible because virus loads in sew-
age increase and decline exponentially during epidem-
ics, often by more than two orders of magnitude. These 
very strong variations over time dwarf the noise in the 
signal, which is determined by the standard deviation 
of the log10-transformed virus load measurements (σ). 
In the analyses, the standard deviation is estimated at 
0.353, such that the estimated latent virus load can be 
approximately fivefold lower or higher than the indi-
vidual measurements.

Our analyses using multilevel splines provide a conven-
ient research tool to analyse sewage data, as it enables 
a natural borrowing of information from the national 
virus load and samples taken around the same time. 
This has not hitherto been included in other smooth-
ing approaches of sewage data [20]. In this manner, we 
have been able to infer trends over time in the latent 
true virus loads for all 317 STPs in the Netherlands, as 
well as for a variety of other organisational levels (e.g. 
municipality, safety region, province and national). 
Specifically, we provided estimates of the latent virus 
loads at all time points and in particular for STPs on 
days when no measurements are available. In princi-
ple, our method of analysis can be extended further 
to any level of organisation. In addition, subsampling 

from sewer lines in STPs with an unusually high virus 
load is also possible [21]. Especially in large STPs (such 
as Amsterdam-West and other STPs in Figure 2) there 
may be substantial differences between city districts 
with respect to SARS-CoV-2 prevalence, possibly asso-
ciated with risk factors such as vaccination coverage 
and socioeconomic status [22].

Although our analyses provide an adequate fit to the 
data, we do not claim that the results are optimal 
for all SPTs at all time points. Rather, they provide a 
parameter-sparse description of the data, linking the 
317 STP time series through the national virus load. 
This seemed to work well in general, but it should be 
noted that the model has difficulty following very sud-
den changes in virus load data. A prominent exam-
ple were the sudden and strong drops in virus loads 
around October 2021. This is only partially resolved by 
adding more knots to the splines, at the cost of greatly 
increasing computation times (data not shown). Future 
extensions could also focus on adding STP-specific 
measurement noise or perhaps even directly modelling 
the PCR data and water flow rates jointly.

Our statistical modelling has provided a description 
of trends in virus loads at a local level by weighing all 
available wastewater measurements. In contrast, other 
modelling studies have focused on relating national 
or subnational virus loads to case notification data 
or hospitalisations using mechanistic modelling, with 
the aim to estimate the incidence and prevalence of 
the number of infections over time ([23-25] and refer-
ences therein). The two approaches serve different 
purposes, and each has its strengths and limitations. 
A main strength of the mechanistic modelling is that all 
parameters have a biological interpretation, and that 
these analyses can be used for scenario studies. The 
results from such analyses, however, depend critically 
on model assumptions and are surrounded with large 
uncertainties. Our analyses do not yield a mechanistic 
interpretation but give precise estimates of latent virus 
loads that arguably are less dependent on specific 
model assumptions.

Our analyses provide steps to integrate noisy individual 
virus load measurements in sewage into more smooth 
estimates of the underlying latent virus load. This is 
valuable in itself, but we believe that the future value 
of the analyses will be mostly in combining the sewage 
data with other epidemic indicators such as hospitali-
sations or positive tests [26,27]. In addition, since the 
infrastructure of receiving sewage samples is in place, 
the detection of other viruses can and will be added 
to the Dutch sewage surveillance programme. These 
include rotavirus and enteroviruses but also respira-
tory syncytial virus and influenza viruses [28,29], thus 
providing a comprehensive and general surveillance 
tool to support pandemic preparedness. Moreover, 
sewage surveillance has also shown potential as a 
means to track antimicrobial resistance in the popu-
lation [30]. In principle, our methods of analysis can 

Figure 5
Estimated national log-transformed SARS-CoV-2 loads 
in sewage with national log-transformed daily number of 
hospitalisations, the Netherlands, August 2020–February 
2022 (n = 82,103 hospital admissions)

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
The blue line shows the posterior median of the STP-weighted 
national virus load with associated 95% credible band (shaded), 
and the yellow dots represent the daily number of hospital 
admissions [31]. Dates on the x-axis are given in numeric format, 
i.e. month/year.
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be directly applied to other targets and can deal with 
noise and unbalanced data in a systematic manner.

Conclusion
Wastewater-based surveillance of SARS-CoV-2 can 
track long-term epidemic progression at a local scale 
in near real time, even in the presence of substan-
tial noise and day-to-day variation. This can support 
public health authorities by early notification of local 
increases in virus circulation in a semi-endemic situa-
tion with decreasing numbers of case notifications and 
hospital admissions.
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