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Summary Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp

buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the

development of human civilization. In this study, we review recent literature on the origin

and phylogeny, domestication and dispersal of the three major Bos species – taurine cattle,

zebu and yak – and their genetic interactions. The global dispersion of taurine and zebu

cattle was accompanied by population bottlenecks, which resulted in a marked phylogeo-

graphic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of

European breeds has been shaped through isolation-by-distance, different production

objectives, breed formation and the expansion of popular breeds. The overlapping and broad

ranges of taurine and zebu cattle led to hybridization with each other and with other bovine

species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian

zebu descend from zebu bull 9 banteng cow crossings; Tibetan cattle and yak have

exchanged gene variants; and about 5% of the American bison contain taurine mtDNA.

Analysis at the genomic level indicates that introgression may have played a role in

environmental adaptation.
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Introduction

The domestication of cattle and other species of the tribe

Bovini played a key role in the development of human

civilization. Largely fed on grass that is undigestible by

humans, they provide meat, milk, leather and other

products in addition to transportation and traction. Because

of their impact on agricultural production, their size and

powerful appearance, cattle have in most cultures a higher

status than other domestic animals, with horse being the

possible exception.

Like other livestock species, scientific investigations of the

bovine species are keeping pace with technological

advances. De novo WGSs for most of the bovine species

and several genome resequencing projects (Table 1) have

revealed numerous unpredicted findings on the evolution

and domestication of bovines (Taylor & Larson 2019). In

this review, we survey the domestic and wild Bovini species

and summarize the advancements based on the molecular

evidence on phylogeny and evolution (Section The bovine

species). For taurine cattle, zebu and yak, which are the

most numerous cattle species, we review recent literature

on the domestication, dispersal and differentiation of breeds

(Section Phylogeny and evolution). Finally, we discuss

hybridization between the interfertile bovine species as

related to adaptation (Section Domestication, dispersal and

differentiation of breeds).

The bovine species

The bovine species form the tribe Bovini, which depending

on the different classifications comprises four to seven

genera and 14–18 species (Hassanin & Douzery 1999;

Robinson & Ropiquet 2011): saola (Pseudoryx nghetinhensis,

discovered only in 1992), African buffalo (Syncerus caffer),

wild water buffalo (Bubalus arnee), the domestic river-type

(Bubalus bubalis bubalis) and swamp-type (Bubalus bubalis
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carabensis) water buffalo, lowland anoa (Bubalus depressi-

cornis), mountain anoa (Bubalus quarlesi), tamaraw (Bubalus

mindorensis), European bison or wisent (Bison bonasus),

American bison (Bison bison), yak (Bos grunniens), wild yak

(Bos mutus), banteng (Bos javanicus), gayal (Bos frontalis),

gaur (Bos gaurus), kouprey (Bos sauveli), taurine cattle (Bos

Table 1 WGSs of Bovini species.

Species Sex Size (Gb) Assembly level N50 (Mb) Reference

A. De novo assembled genomes

Taurine cattle Male, female1,2

Male, female1,3

Female4

2.49

2.54

2.7

Chromosome

Chromosome

Chromosome

6.09

6.49

110

Elsik et al. (2009)

Zimin et al. (2009, 2012)

Rosen et al. (2020)

Zebu Male (Nelore)5

Male (Gir)

2.49

2.55

Chromosome

Chromosome

106.3

104.3

Canavez et al. (2012)

Assembly ASM29337v1

Taurindicine Male

Male

2.50

2.40

Chromosome

Chromosome

99.63

98.00

Koren et al. (2018)

Koren et al. (2018)

Gayal Female

Female

2.61

2.85

3.00

2.74

28.7

Mei et al. (2017)

Wang et al. (2017b)

Mukherjee et al. (2019)

Yak Female

Female

Male

2.46

2.13

Scaffold

Chromosome

Chromosome

1.34

98.2

114.4

Qiu et al. (2012)

Unpublished

Assembly BosGru3.0

Wild yak Female 2.83 Scaffold 16.3 Liu et al. (2020)

American bison Male 2.63 Scaffold 6.86 Dobson (2015)

Wisent Male 2.58 Scaffold 4.70 Wang et al. (2017a)

River buffalo Female

Female

2.65

2.58

Chromosome

Chromosome

112.00

116.1

Mintoo et al. (2019)

Luo et al. (2020)

Swamp buffalo Female 2.57 Chromosome 117.3 Luo et al. (2020)

African buffalo Female 2.64 Scaffold 1.35 Glanzmann et al. (2016)

Species Sex Number of animals Reference

B. Major resequencing projects

Taurine Male 432 Chung et al. (2017)

Taurine, composite Male 379 Stothard et al. (2015)

Taurine, zebu Male 27036 Hayes & Daetwyler (2019)

European taurine 155 Mielczarek et al. (2018)

French taurine 274 Boussaha et al. (2016)

Iberian taurine 48 Da Fonseca et al. (2019)

German Fleckvieh 43 Jansen et al. (2013)

Southern Europe taurine 19 Upadhyay et al. (2019a, 2019b)

African taurindicine 48 Kim et al. (2017)

East Asian taurine, zebu 49 Chen et al. (2018)

Korean Hanwoo 126 Lee et al. (2016)

Chinese taurine, taurindicine 46 Mei et al. (2017)

Ancient taurine 67 Verdugo et al. (2019)

Aurochs Male 1 Park et al. (2015)

Aurochs 6 Verdugo et al. (2019)

Pakistani zebu Male 20 Iqbal et al. (2019)

Yak 69 Qiu et al. (2015)

Wild yak 15 Qiu et al. (2015)

Wisent 7 Wecek et al. (2017)

River buffalo 25 Whitacre et al. (2017)

River and swamp buffalo 98 Sun et al. (2020)

River buffalo 132 Luo et al. (2020)

Swamp buffalo 98 Luo et al. (2020)

Taurine, zebu and taurindicine (60), Bali cattle (8), gayal (23),

American bison (1), wisent (11)

103 Wu et al. (2018)

1Hereford Dominette female (major component) plus her father Domino.
2Assembly UMD 3.1 (updated).
3Assembly Btau 5.0 (updated).
4Assembly ARS-UCD 1.2; Hereford Dominette female.
5Assembly Bos_indicus_1.0.
6These may included from sources that are listed in this table.
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taurus) and zebu (Bos indicus; Wilson & Reeder 2005).

Although alternative taxonomic designations exist (e.g.

B. taurus indicus or Bos primigenius taurus), in this article we

follow the nomenclature more frequently used in the

literature, which relies less on cross-fertility and reproduc-

tive isolations, and more on aspects related to genome

divergence and domestication. All Bos and Bison species are

cross-fertile (Table 2) and fertility is maintained in all female

F1 hybrids and in male hybrid F1 offspring from matings of

wild with domestic yak, American with European bison and

taurine with zebu (Lenstra et al. 2012).

Five bovine species have been domesticated, are kept in

large domestic populations and have been subject to strong

human-directed selection. At present, around 0.75 billion

taurine cattle (www.fao.org/faostat/en/) are raised around

the world (Scherf & Pilling 2015). About the same number

of zebus lives in the tropical regions (Utsunomiya et al.

2019). Both taurine cattle and zebu descend from the

extinct aurochs. Approximately 135 million river-type buf-

faloes are kept at low altitudes in the tropical and

subtropical regions (www.fao.org/faostat/en/). Most of

these (94%) live in Asia (Luo et al. 2020). The swamp-

type buffaloes are used in China and south-east Asia

(35 million) as draft animals. A limited number of wild

individuals still exist in India and Thailand (Zhang et al.

2020a, 2020b). Most of the about 14 million yaks are

raised on the high-altitude Qinghai-Tibet Plateau (QTP).

Their wild ancestor, the wild yak, maintains a population of

around 15 000 in the north-western part of the QTP.

In contrast, Bali cattle and gayals have a restricted

distribution range in south-east Asia close to the original

range of their wild ancestor (Fig. 1). Although both are

adapted to the human environment, they have not been

subject to intense selective breeding. A population of more

than 2 million Bali cattle are kept as draft and meat cattle

on Bali, other islands in eastern Indonesia and elsewhere in

isolated herds (Wilson & Reeder 2005). They were intro-

duced for farming on the Cobourg peninsula in northern

Australia and after being abandoned established a large

feral population (Bradshaw et al. 2007). Bali cattle still

strongly resemble the endangered wild banteng, have a

high fertility and thrive on low-quality fodder. Wild banteng

may be still present in Java, possibly on Bali, and in

Kalimantan (Indonesian Borneo), Sabah (part of Malaysian

Borneo), Myanmar, Thailand, Cambodia and, probably,

Laos and Vietnam (Gardner et al. 2016). The semi-feral

gayals (about 300 000) are not kept in a farm environment

and are used for ritual slaughtering. Like their wild

ancestor, the gaur and gayal are both large animals but

they have clearly different horns.

The other bovine species only live in the wild: American

bison and European bison being kept in reservations in

North America and Europe respectively; African or Cape

buffalo in tropical Africa; and the three Bubaline lowland

anoa, mountain anoa and tamaraw, the kouprey (now

probably extinct) and the saola in south Asia (Fig. 1).

Phylogeny and evolution

Sequences of ribosomal and mitochondrial DNAs and

differences in karyotypes indicate three subtribes within

the tribe Bovini (Tanaka et al. 1996; Hassanin & Douzery

1999). The Pseudorygina subtribe contains only the genus

Pseudoryx with the only species saola; the Bubalina com-

prise the genera Syncerus and Bubalus containing the

African and Asian buffaloes respectively; whereas the

Bovina subtribe consists of the genera Bison and Bos

(Fig. 2). The Bovina and Bubalina diverged 10–15 million

years ago (Mya; MacEachern et al. 2009; Hassanin et al.

2013; Hassanin 2014). Molecular analyses suggested a

close relationship of saola and the Bovina (Hassanin &

Douzery 1999; Gatesy & Arctander 2000; Hassanin &

Ropiquet 2004), but cytogenetic analyses linked saolo to

the Bubalina (Nguyen et al. 2008; Robinson & Ropiquet

2011).

The number of the Bubalina species varies according to

the author (Wilson & Reeder 2005; Groves & Grubb 2011;

Rasmus et al. 2013). For the Asian buffaloes, we tentatively

acknowledge six species: river buffalo, swamp buffalo, wild

buffalo and three other wild species (see above, Fig. 1;

Wilson & Reeder 2005). The river buffalo (2n = 50) and

swamp buffalo (2n = 48) have different karyotypes (Fischer

& Ulbrich 1967), but are interfertile and have formed hybrid

populations in south China and Bangladesh (Luo et al.

2020; Zhang et al. 2016). MtDNA and Y-chromosomal

sequences indicate that the swamp and river buffalo are at

least as divergent as taurine and zebu cattle (Yindee et al.

2010) and have been domesticated separately (Sun et al.

2020). Selection targeting the dairy production of the river

buffalo and the draught power of the swamp buffalo is likely

Table 2 The fertility of hybrid offspring between bovine species.

Parental

combination

Female

offspring

Male

offspring Reference

Cattle 9 American

bison

Fertile Infertile Boyd (1915)

Cattle 9 European

bison

Fertile Infertile http://www.zubry.com/

zubron

Cattle 9 gaur Fertile Infertile Adbullah et al. (2009)

Cattle 9 gayal Fertile Infertile He et al. (2015)

Cattle 9 yak Fertile Infertile Wiener et al. (2006)

Cattle 9 zebu Fertile Fertile Lenstra et al. (2012)

Yak 9 American

bison

Fertile Infertile Deakin et al. (1935)

Yak 9 bison-cattle

hybrid

Fertile Infertile Deakin et al. (1935)

Zebu 9 banteng Fertile Infertile Vadhanakul et al. (2004)

Zebu 9 gaur Fertile Infertile Vadhanakul et al. (2004)

Zebu 9 gayal Fertile Infertile Winter et al. (1986)

Zebu 9 yak Fertile Infertile Wiener et al. (2006)
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to have led to divergent domestication traits (Luo et al.

2020). There are only few data on the similarities between

domestic and wild buffaloes (Zhang et al. 2020a; Luo et al.

2020) and there may have been domestic introgression into

the wild populations and vice versa.

Doubts on the separate species status of the gayal

(Payne 1970) were dispelled after analysis of the mtDNA

and Y-chromosomal DNA (Verkaar et al. 2004) and WGSs

(Wu et al. 2018). Gayal is often considered as the domestic

form of gaur. These two species indeed have similar

mtDNA (Verkaar et al. 2004) and Y-chromosomal

sequences (Nijman et al. 2008). However, gaur (2n = 56)

and gayal (2n = 58) have different karyotypes and also

different horn shapes. Wu et al. (2018) observed a large

difference between their WGSs and proposed that gayal

descended from a different (sub)species. On the other hand,

the divergence of the gaur and gayal may have been

increased by the recent zebu introgression into the gayal

from the Yunnan population, which is known to harbour

zebu mtDNA (Gou et al. 2010). In addition, gaur and

gayal share the t2/28 Robertsonian translocation (Chi

et al. 2005; Qu et al. 2012), whereas the t1/29 translo-

cation (Mamat-Hamidi et al. 2012) in gaur was not found

in Indian gaur and in at least part of the Thai gaurs

(Chaveerach et al. 1988; Gallagher & Womack 1992) and

is thus polymorphic. So gayal and gaur are closely related,

if clearly diverged, species and hybrid offspring must be

rare.

Kouprey was discovered as a separate species only in

1937. Wild populations were recorded in Cambodia,

southern Laos, south-east Thailand, and western Vietnam

(Wilson & Reeder 2005). However, it has not been sighted

since 1970 (Timmins et al. 2016a). Again, molecular

analysis removed doubts on the species status (Galbreath

Bos taurus

a

Bos gaurus

e

Bos frontalis

d

Bos grunniens

f

Bison bonasus

g

Bos indicus

Syncerus caffer

k

Bubalus 
bubalus(swamp type)

Bison bison

h

Bubalus 
quarlesi

m

Bos javanicus

cb

Bubalus 
depressicornis

l

Bos sauveli

n

Bubalus 
mindorensis

oj

Bubalus 
bubalus(river type)

Pseudoryx 
nghetinhensis

pi

Figure 1 Bovine species are widespread throughout the world. The map shows the locations of 16 bovine species. The areas with alternating stripes

indicate the overlapping ranges of two or three species. In this map, we combined wild Asian buffalo with domesticated buffalo and wild yak with

domesticated yak. (a) Cattle are found everywhere except on in deserts and in the polar regions. Most cattle are raised at mid and low altitudes

(<1500 m) but the Peru Criollo lives at an altitude of more than 3000 m. (b) Zebu cattle are kept in tropical regions in India, Indochina, Indonesia,

south China (Yunnan, Guangxi, Hainan), east Africa, Brazil, USA and Australia (www.fao.org/faostat/en/, Felius et al. 2014). (c) Wild banteng live

on Java, probably in Laos and Vietnam and possibly in Bali, Kalimantan, Sabah, Myanmar, Thailand and Cambodia (Gardner et al. 2016). (d) Gayal is

a domestic relative of gaur living in east India and in Yunnan. (e) Gaur still occur in scattered areas in Bhutan, Cambodia, China, India, Laos,

peninsular Malaysia, Myanmar, Nepal, Thailand and Vietnam (Duckworth et al. 2016). (f) Yaks live on the Qinghai–Tibet Plateau, including Gansu,

Sichuan, Xinjiang, Tibet and Qinghai, in Outer Mongolia and in Ladak (north India and in Nepal (Buzzard & Berger 2016). (g) European bison now

live in free-ranging and semi-free herds in Poland, Lithuania, Belarus, Russian Federation, Ukraine, Slovakia and several reservations in western

Europe (Olech 2008). (h) The original North American range for Bison bison is situated between northern Mexico, Alaska and central Alberta in

Canada (Aune et al. 2017). (i) African buffaloes are distributed throughout sub-Saharan Africa (Group 2008). (j) Domestic river-type buffaloes are

found in India, Sri Lanka, Pakistan, south Iraq, several Balkan countries, Italy, Egypt and Brazil (Mason & Cockrill 1974; Luo et al. 2020). (k) The range

of domestic swamp-type water buffaloes includes the Yangtze river basin in China, south China, Indochina, Nepal, Indonesia, the Philippines and

Brazil, whereas small wild populations of the wild water buffaloes are found in India, Sri Lanka, Bhutan, Nepal, Myanmar and Thailand (Hedges et al.

; Felius et al. 2014; Luo et al. 2020; Kaul et al. 2019). (l, m) The lowland and mountain anoa are found only in Indonesia on Sulawesi and Buton

islands (Burton et al. 2016a,b. (n) The historical distribution of kouprey was Cambodia, southern Laos, south-east Thailand, and western Vietnam

(Timmins et al. 2016a). (o) The Tamaraw is endemic to Mindoro Island in Philippine, where it is limited to the mountainous interior of the Island

(Boyles et al. 2016). (p) Saola occur only in the Annamite Mountains region of Laos and Vietnam (Timmins et al. 2016b).
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2006; Hassanin & Ropiquet 2007a; Hassanin & Ropiquet

2007b). Ancient mtDNA analysis revealed its similarity to

the continental banteng (Banteng javanicus birmanensis;

Hassanin & Ropiquet 2007a; Hassanin & Ropiquet

2007b). Because this mtDNA deviates from the mtDNA of

the Indonesian banteng (Banteng javanicus javanicus) or its

domestic derivative Bali cattle, it was proposed that kouprey

mtDNA has been introgressed into the continental banteng

(Hassanin et al. 2006).

Continental (2n = 56) and Indonesian (2n = 60) banteng

are considered as the same species, although they have

different karyotypes as a consequence of the same t1/29

and t2/28 Robertsonian translocations (Robinson & Ropi-

quet 2011), which are also observed in gaur (see above). In

addition, Indonesian bulls do not have the same fawn color

as the females, but are dark brown.

Although wild yaks were suggested to comprise a

separate species, morphological and genetic evidence sug-

gest a close interaction of wild and domestic populations

(Guo et al. 2006). Only 209 genes of domestic yak were

found to be influenced by selection, whereas most genomic

regions do not show wild–domestic differentiation (Qiu et al.

2015). In addition, gene flow between domestic and wild

yaks is more frequent than between the domestic yak and

two domestic breeds with morphological features deviating

from both wild and domestic yak. Plausibly, domestic yaks

emerged by multiple domestications of the wild yak (Guo

et al. 2006), as has been proposed for taurine cattle

(Verdugo et al. 2019).

Because of their morphological distinctiveness, American

bison (B. bison) and European wisent (B. bonasus) have been

placed in a separate monophyletic genus within the Bovina

(Simpson 1945; Wilson & Reeder 2005). In phylogenetic

analyses of genome sequences (Fig. 2), these two Bison

species are linked to yak (Wang et al. 2018; Wu et al. 2018).

However, mitochondrial genomes link the European wisent

to the root of the taurine-indicine branch clearly separate

from American bison, the extinct steppe bison (Bison

priscus), yak and the other four Bos species (Hassanin &

Ropiquet 2004; Wang et al. 2018). This has been explained

by either a hybrid origin of the wisent (Verkaar et al. 2004;

Soubrier et al. 2016) or by incomplete lineage sorting

(Lenstra et al. 2016; Massilani et al. 2016). The latter

explanation is the most compatible with an appreciable

heterogeneity of the nuclear gene tree topologies of the

bovine species (Wang et al. 2018). Ancient DNA analysis

revealed that the wisent mtDNA is closely related to the

mtDNA of a taxon denoted as ‘Bb1’ (Massilani et al. 2016)

or ‘X-clade’ (Soubrier et al. 2016). Subsequently, this taxon

was identified as the extinct woodland bison (Bison

schoetensacki), which emerged about 1 Mya and is thus a

sister species of the wisent (Palacio et al. 2017).

Where and when did the tribe Bovini originate? Bovini

fossils dated at 8.9 Mya in the late Miocene have been found

saola (Pseudoryx nghetinhensis)

African buffalo (Syncerus caffer)

water buffalo (Bubalus bubalis)

tamaraw (Bubalus mindorensis)

lowland anoa (Bubalus depressicornis)

highland anoa (Bubalus quarlesi)

European bison (Bison bonasus)

American bison (Bison bison , Bison priscus  , Bison latifrons)

yak (Bos grunniens , Bos mutus)

banteng (Bos javanicus)

gayal (Bos frontalis)

gaur(Bos gaurus)

ox (Bos taurus , Bos primigenius)

zebu (Bos indicus)

kouprey (Bos sauveli)

Pseudorygina

Bubalina

Bovina

Pseudorygina

Bubalina

Bovina

Mitochondrial DNA Autosomal DNA

Figure 2 Phylogeny of the tribe Bovini. The suggested three subtribes (Wilson & Reeder 2005), taxonomical treatments and maximum-likelihood

phylogenetic relationships of the Bovine species based on the mitochondrial genomes (Robinson & Ropiquet 2011; left) and the nuclear genomes

(unpublished and Wang et al. 2018) (right). For mtDNA trees that differentiate swamp and river water buffalo, see Bibi (2013) and 2012 Hassanin

et al. (2012).
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in southern Asia in the lowlands south of the Himalayas,

where the Bovini emerged as a lineage of the Boselaphini

(Bibi 2007). This tribe within the subfamily Bovinae

comprises two extant species, the Indian nilgai and the

four-horned antelope in India and Nepal respectively, both

near the origin region of the Bovini. Still in the late Miocene,

the Bovini grew in size and acquired their typical robust

dentition as a response to an increase in seasonal aridity

(Bibi 2007). From the subtribe Pseudorygina only the saola

survived. Within the subtribe Bubalina, the ancestor of

African buffalos migrated through Europe to Africa (Has-

sanin 2014). Predecessors of the African buffalo are the

Pelorovis antiquus or giant buffalo, which lived from 2.5 Mya

to 4000 years ago (Mart�ınez-Navarro et al. 2007), and the

late Pleistocene Ugandax (Museum et al. 1978). The Asian

late Pleistocene Proamphibos (Abbas et al. 2018) is probably

ancestral to Asian buffalos, which subsequently evolved

into the current water buffalo (Gautier et al. 2016; Zhang

et al. 2020a, 2020b). The common ancestor of the subtribe

Bovina may have been related to the fossil genus Seleno-

portax living in Siwaliks around 9 Mya (Bibi 2007). A more

recent fossil Bovini species was Leptobos (Cherin et al. 2019),

which lived around 2 Mya .

The subtribe Bovina comprises three subclades contain-

ing respectively: (i) yak, American bison and wisent; (ii)

gaur, gayal and banteng; and (iii) taurine and zebu (Fig. 2).

Divergence of these subclades is supposed to have taken

place between 3 and 5 Mya, but estimates on the basis of

recent genomic data range from 0.5 to 1.7 Mya (Gautier

et al. 2016; Wang et al. 2018; Wu et al. 2018). The yak

diverged from the bison–wisent lineage around 1.8–
2.5 Mya and became adapted to the high altitude of the

QTP (Flerow 1980). Most bison-like fossils from the

Pliocene–Pleistocene dated at 1.7–2 Mya were found in

Europe (Mart�ınez-Navarro et al. 2007). Therefore, bison and

wisent probably diverged within the early Pleistocene in

Europe or northern Asia. Bison arrived in North America

via the Bering Strait during the late Pleistocene: 135 000–
195 000 years ago and again 45 000–21 000 years ago as

testified by numerous fossils near the Strait and adjacent

regions (Froese et al. 2017).

The Bos subclade most likely split into the taurine–zebu
and kouprey–banteng–gayal–gaur lineages during the late

Pliocene (Bibi 2007). After the divergence of taurine and

zebu cattle within the Pleistocene, the wild cattle or aurochs

(B. primigenius) from the taurine lineage became widespread

in Europe between the Middle Pleistocene to Holocene.

Domestication, dispersal and differentiation
of breeds

General aspects of domestication

For a better understanding the domestication of the Bovini

species, it is relevant to summarize a few new and general

insights into the domestication process. Domestication of

both animals and plants has been highly important during

the history of our civilization and has been beneficial in

several ways. First, domesticated animals provide a stable

source of food and other animal products such as hides and

wool. Second, before the mechanization of agriculture, large

livestock such as cattle and horses supplied the labor force

for transport, plowing and riding. In addition, dogs guard

human settlements as well as livestock and assist during

hunting; cats protect grain stores from rodents; domestic

pets provide company; and several species, but especially

the bovines, are used in a variety of games and rituals.

Domestication implies breeding in captivity for several

generations and adaptation to human management (Larson

& Burger 2013; Loftus et al. 2014). It provides to the animal

shelter, food and protection against predators (Mignon-

Grasteau et al. 2005). Domestication has been successful for

those mammalian and avian species that were able: (i) to

attenuate aggression and fear while retaining strong social

instincts; (ii) to breed in captivity; and (iii) to grow fast

growth on food not suitable for human consumption, e.g.

grass, acorns, rodents and wastes (Diamond 2002). It has

been proposed that domestication via a slight reduction in

neural crest cells affects animal behavior and alters mor-

phological and physiological traits associated with domes-

tication, such as a smaller brain and a marked docility

(Wilkins et al. 2014).

Three plausible modes of domestication have been

proposed (Larson & Burger 2013): (i) the commensal

approach for species that were attracted to human settle-

ments and were captured and bred; (ii) the prey route for

most domestic artiodactyls, which initially were used as

source of food; and (iii) a directed pathway for species able

to accomplish specific tasks, such as horses for riding.

All bovines most likely were domesticated via the prey

pathway. The volume of scientific literature on the different

bovine species in fact mirrors their respective population

sizes. In the following sections, we focus on the domestica-

tion and subsequent dispersal of the three Bos species that

have established the largest populations, taurine cattle, zebu

and yak. For the domestication of two other highly

successful bovines, the river and the swamp buffalo, we

refer to Zhang et al. (2020a), Sun et al. (2020) and Luo et al.

(2020). A more detailed account of the domestication of

zebu has been presented by Utsunomiya et al. (2019).

Taurine and zebu cattle

The wild auroch ancestors of the taurine cattle became

extinct in 1627, well after domestication. The Indian

aurochs ancestral to zebu disappeared from Uttar Pradesh

of India around 1800 years ago (Chen et al. 2009).

Paleontological studies have indicated that domestic forms

of the aurochs were kept in the Middle Euphrates Valley

10 800–10 300 years ago (Helmer et al. 2005; Conolly
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et al. 2011; Bollongino et al. 2012; Koren et al. 2018), in the

High Tigris Valley around 10 200 years ago (Bollongino

et al. 2005) and in western Anatolia and south-eastern

Europe around 8800 years ago. A taurine cattle fossil found

in eastern Sahara near the Nubian Nile originated from

6500–5500 years BC (Chenal-V�elard�e 1998). Archaeolog-

ical evidence for zebu domestication was found in India in

the middle or late Holocene (Naik 1978).

Remarkably, a bovine mandible fossil (belonging to the

taurine species lineage) with obvious signs of artificial

breeding from north-east China was dated to between

10 756 and 10 565 years ago (Zhang et al. 2013), but

there is no other evidence for the establishment of a

domestic population. Furthermore, molecular markers link

the present cattle in this region to the domesticates from the

Fertile Crescent. Therefore, if domestication took place in

north-east China, it did not persist.

Molecular evidence for domestication and the subsequent

dispersal over the Old World has been derived from the

uniparental mitochondrial (Lenstra et al. 2012) and Y-

chromosomal markers (Edwards et al. 2011) and from

autosomal variation (Decker et al. 2014; Verdugo et al.

2019). In general, mtDNA sequence variations may link

domestic animals to their wild ancestors. In addition, they

often differentiate livestock animals from different conti-

nents or subcontinents as the result of major migrations.

MtDNA divides most of the current cattle into six major

haplogroups: taurine T1, T2, T3 and T4 and indicine I1 and

I2 (Troy et al. 2001; Magee et al. 2007; Chen et al. 2009;

Bollongino et al. 2012; Lenstra et al. 2012). All T

haplogroups diverged 11 000–16 000 years ago (Achilli

et al. 2009; Di Lorenzo et al. 2016). Analysis of ancient DNA

indicated that T1, T2 and T3 originated from the first

domestic cattle in south-west Asia and led to an estimate of

80 female founders (Bollongino et al. 2008). T1 is predom-

inant in Africa (Troy et al. 2001; Bonfiglio et al. 2012). Its

occurrence in Spain and southern Italy probably indicates

admixture of African cattle (Decker et al. 2014; Da Fonseca

et al. 2019). An African sub-haplogroup T1c1 is well

represented in Brazil and Paraguay, providing evidence for

direct migration from Africa to South America (Ginja et al.

2019). The T3 haplogroup occupies around half of the

populations in south-west Asia (Lenstra et al. 2012; Di

Lorenzo et al. 2016). Most cattle from the Neolithic age in

Europe carry T3 haplogroup (Lari et al. 2011; Lenstra et al.

2012). An Italian aurochs sequence has also been reported

(Lari et al. 2011), but this T3 sequence is remarkably close

to modern sequences. Therefore, contamination via the

presence of bovine serum albumin in the reagents may not

have been rigorously excluded (Champlot et al. 2010). The

T4 haplogroup derived from T3 has only been found in

China, Korea (Achilli et al. 2009) and Japan (Mannen et al.

2004) and in Yakutian cattle from Siberia (Kantanen et al.

2009). A bovine fossil dating back to 4500 years ago in

eastern China was found to carry T4 (Cai et al. 2014).

The zebu haplogroups I1 and I2 most likely originated in

India (Chen et al. 2009). Haplogroup I1 became predom-

inant in zebus from China and Indochina (Magee et al.

2007; Jia et al. 2010; Gao et al. 2017). Several Chinese

cattle carry Y1A, a derivative of Y1 (Chen et al. 2018; Xia

et al. 2019).

In addition to the major T haplogroups, eight rare

haplogroups have been found in current or ancient cattle:

T5, T6 (for two different haplogroups), E, P, Q, R and C

(Achilli et al. 2009). In the phylogenetic tree of hap-

logroups, T5 resulted from an early split-off in the T

haplogroups and has been found in Italian Valdostana

cattle (Bonfiglio et al. 2010). T6 first designated a hap-

logroup in Balkan cattle (Hristov et al. 2017), but its

phylogenetic position separate from the other T hap-

logroups has not been supported by a complete mitogenome

sequence, and its occurrence in Balkan ancient cattle and

aurochs has not been confirmed (Scheu et al. 2015). T6 has

also been used to designate a haplogroup in Chinese

Yunling cattle, which appeared to split independently from

the root of T1, T2 and T3 (Xia et al. 2019).

In a haplotype trees, the haplogroups diverge in the order

I (zebu) - R - E - P before the most recent split of Q and T

(Achilli et al. 2009). Haplogroup E has so far only been

observed in one German Neolithic sample. The P hap-

logroup has been found in most aurochs samples. It has

been reported for a few taurine mtDNA entries in the

nucleotide sequence database (Achilli et al. 2008; Achilli

et al. 2009), for a taurine fossil in Switzerland (Schlumbaum

et al. 2006) and, remarkably, in the Korean Hanwoo (Noda

et al. 2018). This suggests that auroch introgression into

domestic cattle did occur, but rarely. WGSs of ancient

auroch DNA have indeed indicated low level of auroch

introgression (Park et al. 2015; Upadhyay et al. 2017,

Verdugo et al. 2019).

Haplogroup Q, similar to haplogroup T, has been found in

both ancient and modern taurine cattle from different

locations in Europe and North Africa (Bonfiglio et al. 2010;

Olivieri et al. 2015; Scheu et al. 2015; Niemi et al. 2015),

suggesting that it was also present in the earliest domes-

ticates (Edwards et al. 2007b). Haplogroup R has only been

found in a few Italian cattle (Bonfiglio et al. 2010). The

deviating haplogroup C was present in Late Pleistocene

cattle with the domestication signal in north-east China

mentioned above (Zhang et al. 2013).

In contrast to the maternally inherited mtDNA, Y-

chromosomal DNA is informative for the paternal origin

and male introgression. Y-chromosomal SNP loci identified

two taurine chromosome haplogroups, Y1 and Y2, and one

zebu haplogroup, Y3 (Svensson & G€otherstr€om 2008).

Haplogroup Y1 is mainly found in northern European and

northern Spanish cattle (Edwards et al. 2011) and Y2 is

predominant in cattle from central and southern Europe,

western Asia and Africa (Edwards et al. 2011; Lancioni et al.

2016). The initial finding of Y1 in ancient auroch DNA
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(G€otherstr€om et al. 2005) appeared not to be reproducible

and all wild aurochs in Europe and Africa analyzed so far

carry haplogroup Y2 (Bollongino et al. 2008; P�erez-Pardal

et al. 2010).

On the basis of WGSs, Chen et al. (2018) differentiated

Y2a was present in European and north- and central-

Chinese bulls and Y2b was mainly found in Chinese bulls.

However, �Alvarez et al. (2017) used Y2a to indicate an

African haplogroup identified on the basis of Y-chromoso-

mal microsatellites. There is a similar conflicting nomen-

clature for a subdivision of Y3. On the basis of WGS results,

Y3a has been defined as the major Chinese Y3 haplotype

and Y3b as the haplotype of Indian zebu bulls (Chen et al.

2009). On the basis of microsatellites, an African–south
Asian Y3A, an African Y3B and a south Asian Y3C were

futher suggested (P�erez-Pardal et al. 2018).

The large difference between taurine and zebu mitogen-

omes and their Y-chromosome haplogroups is also reflected

by their autosomal DNAs (Porto-Neto et al. 2014; Decker

et al. 2014; Upadhyay et al. 2017; Chen et al. 2018;

Utsunomiya et al. 2019). On the basis of molecular

evidence, additional domestication sites have been proposed

in Africa for taurine cattle and in south-east China for

zebus. Cattle from both regions have distinctly different

autosomal DNA (Decker et al. 2014; Flori et al. 2014; Gao

et al. 2017; Chen et al. 2018; Zhang et al. 2018a, 2018b;

Pitt et al. 2019b). However, Pitt et al. (2019a) conclude on

the basis of 50K SNP profiles and approximate Bayesian

calculations that there was no separate domestication in

Africa and that gene flow from African aurochs explains the

additional genetic variation of African taurine cattle. With

the currently available evidence, the separate position of

south-east Chinese cattle with an estimated divergence

since 36.6–49.6 kya (Chen et al. 2018) may be the result of

either a separate domestication or a complete turnover of

immigrated domestic cattle by introgressive capture of local

aurochs. The latter scenario would be similar to the history

of European domestic pigs (Frantz et al. 2019).

Domestication has been followed by a number of major

migrations of cattle, which have reached all inhabited

continents (Felius et al. 2014). This created a huge diversity

of breeds and adaptations to various, often extreme envi-

ronments. The most consequential migrations were the

following:

1 The Neolithic colonization of Europe from 6000 to

4000 BC introduced cattle as well as other livestock

and crop species. WGS studies of ancient taurine and

auroch DNA samples between the fertile crescent and

the Balkan regions showed influence of local aurochs

on the domestic samples (Verdugo et al. 2019). This is

in line with a detectable affinity of a British auroch

sample with modern British and Irish breeds (Park et al.

2015). Although there is only scarce documentation

on the diversity of European cattle until the eighteenth

century, it is plausible that local developments led to a

number of distinct types that existed as early as the

Middle Ages: the primitive Balkan Busha cattle, the

Podolian steppe cattle, the Alpine spotted cattle (Fleck-

vieh) such as the Simmental, the Alpine brown cattle,

the German Red dairy cattle and since the eighteenth

century the Dutch black- and red-pied dairy cattle.

Cattle from Spain, south France, Great Britain and the

Nordic countries are phenotypically diverse, but breeds

originating from the same country or region are

relatively closely related (Felius et al. 2011). Since the

eighteenth century the differences between local types

of cattle have increased by the formation of breeds with

explicit breeding objectives (Felius et al. 2014, 2015).

Relationships between these breeds can be studied at

the genomic level using SNP bead arrays (Decker et al.

2014) or whole-genome sequencing (Chung et al.

2017; Hayes & Daetwyler 2019). Analysis of genetic

diversity typically uses three complementary analysis

tools: coordination analysis, genetic distances and

model-based clustering. The several studies published

so far target either worldwide panels of breeds (Decker

et al. 2014; Orozco-terWengel et al. 2015; Chung et al.

2017) or breeds from the same region or country:

central Europe (Kuku�ckov�a et al. 2018), northern

Europe (Stronen et al. 2019), north-west Europe

(Kelleher et al. 2017), north-west and southern Europe

(Upadhyay et al. 2017), southern Europe (Upadhyay

et al. 2019a, 2019b), the Mediterranean area (Flori

et al. 2019), the Balkans (Sim�ci�c et al. 2015; Ramljak

et al. 2018), Belgium and the Netherlands (Franc�ois
et al. 2017), France (Gautier et al. 2010), Ireland

(Browett et al. 2018), Italy (Mastrangelo et al. 2018;

Barbato et al. 2020), the Netherlands (Van Breukelen

et al. 2019), Russia (Yurchenko et al. 2017; Sermyagin

et al. 2018), Sardinia (Cesarani et al. 2018), Sicily

(Mastrangelo et al. 2014), northern Spain (Ca~nas-�A

lvarez et al. 2015), Spain and Portugal (Da Fonseca

et al. 2019), Sweden (Upadhyay et al. 2019a, 2019b)

and Switzerland (Signer-Hasler et al. 2017). The

European diversity pattern reflects the geographic

origin of the breeds, but also a number of breed

expansions (Felius et al. 2014). During the first half of

the nineteenth century, the English Shorthorn was a

popular breeding sire in Belgium and northern France.

The French beef breed Rouge de Pr�es (or Maine-Anjou)

is closely related to the Shorthorn, which also has

influenced the dairy breeds Belgian Blue and Normande

and the beef breed Charolais. Later in the same century,

black-pied, red-pied and red dairy breeds spread over

northern Europe. The export of Dutch black-pied cattle

to the USA eventually led to the development of the

Holstein, now the most productive breed of dairy cattle.

Another dairy breed, the hardy Scottish Ayrshire, had a

major influence on several Norwegian, Swedish and

Finnish breeds (Li & Kantanen 2010), whereas modern

© 2020 Stichting International Foundation for Animal Genetics, 51, 637–657

Zhang et al.644

 13652052, 2020, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/age.12974 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



dairy breeds have been crossed into Danish Red (Zhang

et al. 2018a, 2018b). The dispersal of these dairy breeds

largely accounts for the north-west European range of

the Y-chromosomal haplogroup Y1. In central Europe,

the dual-purpose Swiss Simmental and related Fleckvieh

breeds as well as the Swiss Alpine brown cattle

influenced several breeds, the brown cattle mainly in

mountainous areas. A consistent finding based on

genome-wide SNP studies (Gautier et al. 2010; Decker

et al. 2014; Ramljak et al. 2018) suggests a major

cluster of central European breeds that consists of

distinct subclusters of Alpine spotted (Simmental-like),

Alpine brown and southern-French beef breeds respec-

tively. This cluster is separate from both the northern

(British, northern-continental, Scandinavian) and

Mediterranean (Iberian, Podolian) breeds. A few breeds

(Jersey, Guernsey, Charolais, Piedmontese, Mal-

lorquina) appear to have been developed separately

from other cattle breeds, which might be the combined

effect of a mixed origin and genetic isolation. Simmen-

tal are now more and more influenced by Holstein–
Friesian cattle (Frkonja et al. 2012). Admixture anal-

ysis shows the influence of zebu breeds on Mediter-

ranean cattle (Decker et al. 2014; Barbato et al. 2020).

The Italian Podolian breeds emerged from documented

massive imports from the fifteenth to eighteenth

centuries of east-European steppe cattle (oxen as well

as fertile animals) via the Adriatic ports of Zadar and

Venice (Felius et al. 2014). Several studies were focused

on two potential sources of phenotypic variation: the

ROHs (Purfield et al. 2012; Feren�cakovi�c et al. 2013a,

2013b; Kim et al. 2013; �Sidlov�a et al. 2015; Zhang et al.

2015) and the CNVs (Bickhart et al. 2016; Boussaha

et al. 2016; Letaief et al. 2017; Upadhyay et al. 2017;

Mielczarek et al. 2018). Different algorithms have been

used to localize in the genome those regions that have

been targeted by selection, as indicated by a relatively

low diversity and/or more pronounced differences in

allele frequencies between breeds (Utsunomiya et al.

2015). Selection signatures have been reported for

several European breeds (Utsunomiya et al. 2013;

Mancini et al. 2014; Zhao et al. 2015; Boitard et al.

2016; Cesarani et al. 2018; Eusebi et al. 2018;

Yurchenko et al. 2018). For the POLLED (hornless)

trait, four genetic variants have been identified in an

intergenic region of BTA1 (Aldersey et al. 2020).

Another widespread and consequential gene variant is

the PLAG1 Q allele, which led to the recovery of stature

of cattle in the sixteenth to eighteenth centuries

(Utsunomiya et al. 2017).

2 Taurine cattle immigrated into Africa after 4800 BC

(Hanotte et al. 2002; Stock & Gifford-Gonzalez 2013),

where they have probably been influenced by local

aurochs (see above). Although many taurine cattle

have been influenced by zebu, several taurine breeds

still persist (Gautier et al. 2009; Flori et al. 2012, 2014;

Jemaa et al. 2015; Boushaba et al. 2019). The

trypanotolerant taurine cattle near the West African

coast have remained relatively free from zebu intro-

gression because of the local occurrence of tse-tse flies

causing trypanosomiosis (Bradley et al. 1996). Gautier

et al. (2009) report selection signatures in west African

cattle. Flori et al. (2012) linked the slick hair coat locus

to thermotolerance.

3 An eastward migration of taurine cattle reached east

Asia between 3000 and 2000 BC (Flad et al. 2009; Cai

et al. 2014; Choi et al. 2014; Lee et al. 2014, 2016;

Sharma et al. 2016; Gao et al. 2017; Mei et al. 2017;

Chen et al. 2018; Zhang et al. 2018a, 2018b),

including Siberia, with its extremes of temperature

(Iso-Touru et al. 2016).

4 After 3200 BC climate change caused a westward

migration of zebu from the Indus Valley to the Fertile

Crescent and resulted in a turnover of the cattle in the

Fertile Crescent. This was partially male-mediated as

revealed by the taurine/indicine ratios for mtDNA, Y-

chromosomes and autosomes (Edwards et al. 2007a;

Karimi et al. 2016; Verdugo et al. 2019). In India and

Pakistan, several specialized zebu breeds have emerged

(Liao et al. 2013; Gajjar et al. 2018; Iqbal et al. 2019;

Dixit et al. 2020). Crossbreeding with taurine dairy

breeds enhances dairy production (Wakchaure et al.

2015).

5 The import of zebu bulls into Africa started as early as

4000 years ago and after AD 700 was stimulated by

the Islamic conquest (Hanotte et al. 2002; Murray et al.

2013; Mbole-Kariuki et al. 2014; Taye et al. 2018;

Utsunomiya et al. 2019). Crossbreeding with local

taurine populations generated so-called ‘taurindicine’

hybrids with a variable taurine/zebu genomic compo-

sition (McTavish & Hills 2014), which were better

adapted to the tropical conditions than the original

taurine cattle. Sanga cattle (Makina et al. 2014, 2016)

remained mostly of taurine origin and around 1500

AD were the dominant cattle in east and south Africa.

However, at the end of the nineteenth century Sanga

was, together with several taurine breeds, largely

replaced by indicine cattle, which suffered less than

taurine cattle from the rinderpest epidemic (Felius et al.

2014). All African zebu cattle have retained the taurine

mtDNA from their ancestor along the maternal lineage.

Admixture of modern dairy breeds into African zebu

breeds has been reported by Kim & Rothschild (2014).

Selection signatures have been identified by Bahbahani

et al. (2015), Kim et al. (2017) and Taye et al. (2018).

6 After 1000 BC zebu migrated to Indochina and China

(Naik 1978). Contacts with earlier imports of taurine

cattle in China resulted in a taurus–indicine cline from

north to south. The intermediate taurindicine breeds

exhibit different combinations of taurine and zebu
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Bovini Evolution and domestication 645

 13652052, 2020, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/age.12974 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [11/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



mtDNA and Y-chromosomes (Gao et al. 2017; Mei et al.

2017; Chen et al. 2018; Lwin et al. 2018; Zhang et al.

2018a, 2018b; Li et al. 2019; Utsunomiya et al. 2019;

Xu et al. 2019). Yang et al. (2017) and Xu et al. (2019)

studied CNVs and selection signatures in Chinese zebu

as well taurine cattle. CNVs in Chinese cattle have been

proposed to be involved in high-altitude adaptation

(Zhang et al. 2020a, 2020b).

7 Import of zebu to Indonesia probably started 1500

years ago. Several Indonesian zebu breeds have

retained traces or even mtDNA of banteng origin

(Mohamad et al. 2009; Decker et al. 2014; Wangkum-

hang et al. 2015; Hartati et al. 2015).

8 Cattle were imported into North and South America

from Europea and Africa from 1492 (Gautier & Naves

2011; McTavish et al. 2013; Felius et al. 2014; Pitt

et al. 2019a). A large variety of well-adapted Criollo

breeds (Ginja et al. 2019) are mainly of Iberian and

African origin. In contrast, most cattle imported into

the USA and Canada and later to Australia and New

Zealand originated from north-west Europe (Felius et al.

2014; Stothard et al. 2015). The Chirikof island cattle

in Alaska combined Siberian Yakut with north-west

European ancestry (Decker et al. 2016). The Mexican

Lidia (fighting cattle) with a high level of inbreeding

(total ROH coverage 68%) is a genetically distinct

population largely separate from the Spanish Lidia

(which has an even higher genomic ROH coverage of

74%) and from the Criollo breeds (Eusebi et al. 2017).

9 The import of large numbers of Indian zebus to Brazil

included mostly bulls but also cows (Ajmone-Marsan

et al. 2010; Perez-O’Brien et al. 2015; Campos et al.

2017; Utsunomiya et al. 2019). From Brazil zebus were

exported to other American countries, including the

USA (Villalobos-Cort�es et al. 2015). As with the African

taurine cattle, several Criollo breeds are partially of

indicine origin (Ginja et al. 2019). In the USA, the

import of zebu led to the development of the popular

transboundary Brahman zebu breed, which has taurine

mtDNA as well as an autosomal taurine ancestry of 9%

(Koufariotis et al. 2018). Zavarez et al. (2015) and

Peripolli et al. (2018) reported an average genomic

coverage of ROHs (>1 Mb) in Nellore (5%) and Gyr

(7%) respectively. These values are clearly lower than

those found for taurine breeds (for instance, 16% for

Criollo cattle, Eusebi et al. 2017).

10 In the nineteenth and twentieth centuries, the produc-

tive ‘cosmopolitan’ breeds, most of which originated

from Europe, started to spread worldwide (Felius et al.

2015). Nowadays, the most important and highly

productive transboundary breeds include the dairy

black-pied Holstein–Friesian and Jersey, the beef breeds

Angus, Hereford, Charolais and Limousin and the

Brahman zebu. In America and Australia, this has led

to the formation of several synthetic breeds by

combining taurine and/or indicine cattle from different

origins (Felius et al. 2014). Artificial selection has been

most intense for Holstein cattle (Kim et al. 2013; Ma

et al. 2019) and is now being accelerated by genomic

selection.

Yak

The domestication of yaks is considered to have been

essential for the human habitation of the QTP. The

existence of domestic yaks 4500 years ago has been

documented (Wiener et al. 2006; Meyer et al. 2009), but

so far there is no fossil evidence for an earlier domestication.

Sequence variations in the mtDNA D-loop region from

domestic yaks identified two lineages, which diverged more

than 100 000 years ago (Guo et al. 2006). Both lineages

and one additional lineage are present in wild yaks (Wang

et al. 2010). These lineages may have resulted from

allopatric differentiation of subpopulations separated by

the Pleistocene glaciation, which became reunited during

post-glacial migrations. After the glacial period, the distri-

butional range of wild yaks shrank owing to the expansion

of the human population (Wang et al. 2010). These events

may also explain the presence of three well-diverged Y-

chromosomal haplotypes YH1, YH2 and YH3 (Li et al.

2014).

On the basis of sequence variation, domestic mtDNA

clades are estimated to have expanded since 6000 and

12 000 years BP (Guo et al. 2006; Wang et al. 2010). This

roughly agrees with a domestication of yaks 7300 years

ago on the basis of WGSs (Qiu et al. 2015). Furthermore,

these WGS data indicated a sixfold expansion of the

domestic yak population around 3600 years ago. These

two expansion datings are consistent with two large-scale

human population expansions in the QTP, 10 000–
7000 years ago during the early Neolithic and 4000–
3000 years ago during the late Holocene (Qiu et al. 2015).

The first expansion was explained by the domestication of

yaks, which in the absence of agricultural settlements was

accomplished by nomadic herders (Qiu et al. 2015). The

second expansion of the yak population coincided with the

introduction of the cultivation of barley on the QTP between

4000 and 3000 years, which may well have allowed the

human population expansion (Chen et al. 2015). However,

this expanded human population also increased the

requirement for protein-rich food, hides, fuel and trans-

portations, which could all be provided by the expanding

domestic yak population.

Genomic comparisons between yak and cattle identified

an expansion in yaks of gene families related to sensory

perception and energy metabolism, as well as an enrich-

ment of protein domains involved in sensing the extracel-

lular environment and hypoxic stress (Qiu et al. 2012).

Furthermore, positively selected and rapidly evolving genes

in the yak are significantly related to hypoxia and nutrition
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metabolism. Domestication of yaks probably relaxed selec-

tive constraints and allowed an accumulation of deleterious

mutations (Wang et al. 2010; Hu 2012; Qiu et al. 2015; Xie

et al. 2018). Several of these genes are related to smell

perception and chemical stimuli (Hu 2012). Although this

may well be explained by the environmental requirement to

be able to find scarce food, olfactory receptor genes often

give false positives in GWAS studies as a consequence of

their abundance and dynamic evolution (Lawrence et al.

2013).

Breed-level differentiation is weak, but the white Tianzhu

yaks have a clearly distinct appearance with several

selection signatures (Qiu et al. 2015; Xin et al. 2019).

Genomic approaches to adaptation have been comple-

mented by microRNA (Guan et al. 2017) or transcriptome

studies (Wang et al. 2017a; Lan et al. 2018; Qi et al. 2018;

Xin et al. 2019), which identified for several genes a higher

or lower expression than in taurine cattle. However, the

inferred involvement of genes in adaptation needs to be

tested further by functional studies.

Interspecific hybridization

Species hybridization is often revealed by a discordance of

the mtDNA-derived phylogeny with the phylogeny based on

morphology, autosomal DNA and/or Y-chromosomal DNA.

A more refined analysis may localize in the genome those

parts that have been introduced by hybridization. We can

discern three categories of interspecific hybridization.

1 incidental hybridization of wild or semi-feral species with

domestic cattle;

2 hybridization of domestic species for breed improvement;

3 terminal crossing exploiting the unique performance of

the hybrid offspring.

Incidental hybridization

As discussed in the Introduction, the mtDNA of the

mainland banteng differs from the mtDNA from Indonesian

banteng and has descended since about 10 000 years from

the mtDNA of the extinct kouprey (Hassanin & Ropiquet

2007a; Hassanin & Ropiquet 2007b). Likewise, the south-

Chinese population of semi-feral gayals carries zebu mtDNA,

which most likely resulted from spontaneous female intro-

gression (Gou et al. 2010). A genomic scan of the

differentiation of gayal and zebu across the gayal genome

indicated a number of zebu autosomal sequences in the

Chinese gayal sequence, which are proposed to play a role

in adaptation (Wu et al. 2018).

Traces of taurine introgression have been found in wisent

(Massilani et al. 2016; Wecek et al. 2017; Wang et al.

2018). This appears to be of recent origin, but occurred

before the extinction of wisent in the wild. However, as

discussed in the section ‘The bovine species’, the bovine-

like mtDNA in wisent and the extinct woodland wisent

probably resulted from incomplete lineage sorting (Wang

et al. 2018).

The maternal introgression of taurine cattle into Amer-

ican bison has resulted in an overall 5% frequency of

taurine mtDNA (Ward et al. 1999) and a taurine origin of

up to 1.8% of the autosomal genome (Halbert et al. 2005;

Halbert & Derr 2006; Wang et al. 2018; Wu et al. 2018).

This is thought to have occurred at the beginning of the

nineteenth century during captive breeding of the bison

prior to their release into the wild (Hedrick 2009). On the

other hand, it has not been excluded that spontaneous

contacts occurred between the still large bison population of

the nineteenth century and cattle escaped from the large

herds that were transported across the prairies. So far, there

is no clear evidence that mtDNA from a related species

affects an animal’s appearance, viability and adaptation,

and its relevance for conservation is arguable.

Hybridization and breed improvement

Hybridization of cross-fertile species may serve the purpose

of improving the adaptation or performance of breeds

(Fig. 3). During their dispersal over the tropical zones of

Asia, Africa and America (see above), zebu came into

contact with south-west Asian, African, Chinese and

American taurine populations respectively, which led to

the emergence of several taurindicine breeds (Utsunomiya

et al. 2019). Both south-west Asia (Edwards et al. 2007a;

Verdugo et al. 2019) and central China (Lai et al. 2006; Lei

et al. 2010; Gao et al. 2017; Chen et al. 2018) are now

taurine–zebu transition zones. Remarkably, the level of zebu

ancestry in China does not vary continuously, but has at

increasing range values of 0–0.1, 0.25–0.35 or 0.6–1.0
from north to south China (Gao et al. 2017). Chinese zebu

acquired taurine alleles associated with production traits,

whereas zebu heat-acclimatization-related alleles were

introgressed into taurine cattle (Chen et al. 2018).

In addition, zebu cattle in south China as well as

Indonesia were found to contain traces of banteng

(Mohamad et al. 2009; Decker et al. 2014; Gao et al.

2017; Chen et al. 2018). For the southern Chinese cattle,

the banteng component amounts to 3% and contains genes

related to sensory perception, immunity, heat-acclimatiza-

tion and color pattern (Chen et al. 2018). Conversely, Wu

et al. (2018) reported introgression of zebu into both

banteng and gayal, which in both cases introduced genes

involved in the nervous and immune systems.

The link between introgression and adaptation is most

obvious in Tibetan cattle, which received 1.2% yak ances-

try. This contains genes involved in smell perception,

immunity and adaptation to hypoxia and high altitude

(Chen et al. 2018; Wu et al. 2018). Conversely, introgres-

sion of taurine or zebu cattle into yak (Qi et al. 2010)

introduced variants of genes involved in nervous system

development (Medugorac et al. 2017) and coat color (Wu
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et al. 2018). However, as mentioned in the section ‘Yak’,

associations of olfactory receptor genes may be artifactual

(Lawrence et al. 2013).

Beefalo is a recognized American breed that is claimed to

maintain a domestic cattle/bison composition of 5:3

(www.ctq2.org/beefalo/a-short-history-of-beefalo/). Here-

ford and Charolais are often used as domestic ancestors,

but beefalo bulls are fertile and can be bred within their

population. Beefalo is advertised to give tender beef with

more protein, one-fifth less fat and one-third less cholesterol

than beef from normal cattle. However, the ancestry of the

beefalo has not been verified by molecular analysis. The

founder of the beefalo, ‘Basolo’, was said to be a bison 9 F1

backcross, but it has been reported to have a taurine Y-

chromosome (Lenoir & Lichtenberger 1978).

Zubron (en.wikipedia.org/wiki/zubron) is a wisent–tau-
rine hybrid, which was intended to be a hardy and

productive alternative to cattle. So far it has remained an

experimental breed.

Terminal crossing

Terminal crossing offers a fast alternative to selective

breeding and combines favorable alleles from different

species. A well-known parallel in the Equini tribe is the

case of the mule and hinny reciprocal crosses, which are

obtained by hybridization between horses and donkeys.

Thus, dzo, khainag or yakow denotes an F1 hybrid of yak

and taurine or zebu cattle. They are reared in Tibet and

Mongolia (Wiener et al. 2006). By hybrid vigor, these

hybrids grow fast, reach a large sizes, have good disease

resistance and are productive.

Another productive terminal crossbred is the selembu,

kept since 1980 in Malaysia and generated by mating gaur

bulls and taurindicine cows (Ismail et al. 2018). Selembu

are used for both dairy and beef production.

Conclusion

We have surveyed recent literature on evolution, domes-

tication and hybridization of the Bovini, several of which

are domestic and thus relevant for agricultural production.

The tribe of the Bovini is remarkably versatile with respect

to environmental range. Whole-genome sequencing iden-

tifies exchange of genes between the species. This is a

source of information on the adaptation of cattle to specific

environments, which remains to be tested on the func-

tional level.
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