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1 Introduction

The term “wormhole” was first introduced in a paper by Fuller and Wheeler [1], where

credit was given to Weyl for the idea of having a non-simply connected space-time. Indeed,

this is an essential feature of a wormhole has. It is the mathematical realization of the idea

that within the same universe it is possible to travel between two points using two different

paths. These ideas were thought to happen within a single universe with a single boundary.

In this paper we will explicitly construct such a non-simply connected space-time with a

single boundary by compactifying one non-compact coordinate of global AdS4.

We should add that the idea of a wormhole is also associated with the work by Ein-

stein and Rosen [2], where non-singular coordinate patches of the Schwarzschild and the

Reissner-Nordström black holes were studied. However, it is important to realize that

the latter wormholes are very different from the one of Fuller and Wheeler, because the

Einstein-Rosen bridge connects two disjoint universes that are causally disconnected. In

this paper, we show that when our single boundary wormhole is extended to the non-

constant-curvature case a parallel propagating singularity develops at the boundary.

Despite these interesting features, wormholes have been widely regarded as a science

fiction character. As discussed in [3, 4], this is due to the fact that the null-energy condition

has to be violated at the throat of a spherically symmetric, static wormhole.1 Hence, for

1It is interesting to note that there is a widespread belief in the literature against the existence of

traversable wormholes under physically sensible energy conditions. This is primarily based on the analysis

of [5], where it is claimed that a four-dimensional space-time cannot have a wormhole with a minimal

S2 when the null-energy condition holds. However, the wormhole studied in this paper has a minimal S1

and therefore the analysis of [5] does not apply. Indeed, the matter content that we use does satisfy the

null-energy condition.
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asymptotically flat space-times there is not much hope for wormholes to exist in a physically

sensible situation. The situation changes in asymptotically AdS space-times. When the

four-dimensional space-time is Einstein, and its conformal boundary has positive scalar

curvature with a space-time that is everywhere regular, then the boundary cannot have

more than one connected component. If the boundary has negative scalar curvature, it

is possible to construct a Euclidean wormhole by identifications in global AdS [6]. Some

of these identifications have been analyzed in Euclidean AdS and several arguments have

been given against the stability of these wormholes [7]. A standard one is that conformally

coupled scalar fields living on a conformal boundary of negative curvature will have an

action that is unbounded from below. This is indeed correct when the boundary is in the

conformal class of H2 × R. However, when the boundary is itself an AdS space-time this

argument no longer applies for conformally coupled scalar fields, as their masses are always

above the Breitenlohner-Freedman bound [8, 9].

This observation motivated the work in [10], where a class of geometrically non-trivial

solutions was constructed where the boundary is composed of two, possibly warped, AdS3

space-times. Here we show that when the boundary is not warped AdS3, but just a locally

AdS3 space-time, the proper time needed to go from one of the AdS3 components of the

boundary to the other is longer through the bulk than through the boundary. This is what

is called a long wormhole [11]. When the boundary has two warped AdS3 components, we

shall argue that they are actually disconnected due to the existence of a parallelly propa-

gated curvature singularity at what should be boundary of warped AdS3. However, a worm-

hole is not characterized exclusively by the number of boundaries it has. As discussed in [1],

the wormhole can only exist provided the manifold is non-simply connected. When the non-

contractible cycle has minimal length, one is dealing with a wormhole throat. As we shall

see, this can already be achievable at the level of a constant curvature manifold, namely a lo-

cally AdS4 space-time. In the coordinates that we use this is implemented by requiring that

one coordinate of global AdS4 to be compactified. After this identification the space-time is

no longer globally AdS4 but a Lorentzian wormhole of constant curvature. The same phe-

nomenon exists for the solutions discussed in [10], which contain non-trivial electromagnetic

fields. These solutions also describe wormholes upon introducing a non-contractible cycle.

In this paper we discuss a number of new results regarding the solutions proposed

in [10]. First of all we will consider these solutions in the context of N = 2 pure gauged

supergravity, which contains a non-trivial photon field. We will prove that they admit 1/2

BPS solutions that respect the non-simply connected topology. The reason for the latter

is that the Killing spinors do not depend on the compactified coordinate. In the constant-

curvature case, half of the supersymmetries are no longer globally defined, so that only

half of the Killing spinors will exist.

Finally, we discuss topological censorship, which is the claim disconnected compo-

nent of the boundary can not communicate in an asymptotically locally AdS space-time,

we show how our uncharged solutions do not satisfy the hypothesis of this quite general

theorem [12].2

2We thank Juan Maldacena to bring this reference to our notice and to Nava Gaddam and Krinio

Marouda for suggesting that a violation of the generic condition is the way out of the theorem.
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The plan of the paper is as follows. Gauged N = 2 supergravity is introduced in

section 2, followed by a discussion of the wormhole solutions in section 3. In section 4 we

then consider the possibility of supersymmetric wormholes by proving that the integrability

condition for the existence of Killing spinors is satisfied. Subsequently we present an explicit

construction of the Killing spinors in section 4 and show that they are globally defined and

fully compatible with the global features of the background. Some geometric aspects of

supersymmetric wormholes are discussed in section 5. When the boundary of the space-

time has two AdS3 components, we show how they can be compactified in a single S2×R,

which implies that these two boundaries are connected. We compute the time that a

massless particle needs to go through the bulk wormhole and verify that indeed is longer

than takes a shortcut through a geodesic lying completely on the boundary. Moreover,

we show that these two geodesics are not-homotopic. Hence, the wormhole agrees with

the expectations of [11]. When the boundary of the space-time has two warped AdS3

components, we argue that the existence of a parallelly propagated curvature singularity

imply that the boundaries are disconnected. Finally we discuss topological censorship for

the uncharged solutions and point out how these results generalize to the charged case.

Our conclusions are presented in section 7.

2 The supergravity model

In this section we present various features of pure N = 2 supergravity with electrically

charged gravitini. As is well known, supersymmetry will then imply the presence of a

cosmological term whose coefficient is proportional to the square of the gravitino charge.

This theory was originally constructed in terms of the physical fields [13, 14], whose su-

persymmetry transformations only close under commutation up to equations of motion.

Subsequently two alternative constructions were presented based on the superconformal

multiplet calculus [15–17]. The physical degrees of freedom of this theory are described by

the vierbein field eµ
a, electrically charged gravitini ψµ, and a photon field Aµ. In addition

we employ a spin-connection field ωµ
ab associated with (local) Lorentz transformations,

which is not an independent field. The gravitational coupling constant has been absorbed

in the fields, and the gravitino charge is equal to q. The gravitino fields act as the gauge

fields associated with local supersymmetry.3

The N = 2 supersymmetry transformations are described by two Majorana spinor

parameters distinguished by an index i = 1, 2, and are decomposed in terms of their chiral

components. The reason is that N = 2 supersymmetry in four space-time dimensions has

a chiral R-symmetry group SU(2) × U(1). Therefore it makes sense to consider a doublet

of positive-chirality spinor parameters denoted by εi and a similar doublet of negative-

chirality parameters εi, which each transform according under R-symmetry. As it turns

out the electromagnetic gauge transformations correspond to an abelian subgroup of the

3World indices µ, ν, . . ., and tangent-space indices a, b, . . ., both run from 0 to 3. The gamma matrices

satisfy {γa, γb} = 2 ηab 1, where the tangent-space metric equals ηab = diag(−1, 1, 1, 1). Furthermore

γ5 = −iγ0γ1γ2γ3. In four space-time dimensions the charge-conjugation matrix C is anti-symmetric and

gamma matrices γa satisfy CγaC
−1 = −γaT.
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SU(2) R-symmetry group. We denote the generator of this subgroup by tij , which is thus

an anti-hermitian traceless matrix. The fact that we are dealing with Majorana spinors

implies that the Dirac conjugate of a chiral spinor is proportional to the anti-chiral spinor,

and vice versa. For instance, the Dirac conjugate of εi is denoted by ε̄i, where the conjugate

must carry a lower SU(2) index, and C ε̄i
T = εi, where C is the charge-conjugation matrix

and the superscripte T indicates that we have taken the transpose.

Obviously these spinorial properties are carried over to the gravitino fields, where we

again distinguish two chiral doublets satisfying

γ5 ψµ
i = +ψµ

i , γ5 ψµ i = −ψµ i . (2.1)

The results given below were taken from [17], where a large class of N = 2 theories was

presented. Here we consider the following supergravity Lagrangian (up to terms quartic in

the gravitini),

L = −1

2
eR(ω, e)− 1

8
e F (A)µν F (A)µν

− 1

2
e
[
ψ̄µ
i γµνρDνψρ i − ψ̄µ i γµνρDνψρi

]
+

1

8
F (A)ρσ

[
εijψ̄µ

iγ[µγρσγ
ν]ψν

j + εijψ̄µ iγ
[µγρσγ

ν]ψν j
]

+
1

2

√
2 qe

[
εik t

k
j ψ̄µ

i γµνψν
j + εik tk

j ψ̄µ i γ
µνψν j

]
+ 6 q2 e , (2.2)

where F (A)µν = ∂µAν−∂νAµ and e = det(eµ
a). The derivative of the gravitino fields is co-

variant with respect to local Lorentz and electromagnetic gauge transformations, and reads

Dµψνi =

(
∂µ −

1

4
ωµ
abγab

)
ψiν −

1

2

√
2 q Aµ t

i
j ψν

j ,

Dµψν i =

(
∂µ −

1

4
ωµ
abγab

)
ψν i −

1

2

√
2 q Aµ ti

j ψν j , (2.3)

where ωµ
ab is the spin connection whose definition will be discussed momentarily. The

matrices 1
2γab = 1

4 [γa, γb] are the Lorentz group generators in the spinor representation.

As mentioned already, tij is the anti-hermitian traceless generator of the electromagnetic

gauge transformations, which is an abelian subgroup of SU(2). It is normalized to tij ti
j = 2,

where ti
j denotes the complex conjugate of tij . This implies the convenient identities,

tij tk
j = δik = −tij tjk εik t

k
j = εjk t

k
i , ti

j ≡ (tij)
∗ = εik ε

jl tkl . (2.4)

These identities do not lead to a unique choice for tij ; this is consistent with the fact that the

matrix can be redefined by applying a uniform chiral SU(2) field redefinition on the spinors.

The spin connection ωµ
ab is derived from the supercovariant torsion constraint,

D(ω)µ eν
a −D(ω)ν eµ

a =
1

2

[
ψ̄µ iγ

aψν
i + ψ̄µ

iγaψν i
]
, (2.5)

where the Lorentz covariant derivative reads D(ω)µ eν
a = ∂µeν

a − ωab eν b. This constraint

can be solved algebraically and leads to,

ωµ
ab =

1

2
eµ
c
(
Ωab

c − Ωb
c
a − Ωc

ab
)
, (2.6)

– 4 –
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where the Ωab
c are the objects of anholonomity. The affine connection equals Γµν

ρ =

ea
ρDµ(ω) eν

a, and ensures the validity of the vielbein postulate. In the absence of torsion,

where the right-hand side of (2.5) vanishes, we have

Ωab
c = ea

µ eb
ν (∂µeν

c − ∂µeνc) . (2.7)

The corresponding expression for the affine connection is then equal to the Christoffel

connection.

The curvature associated with the spin connection equals

Rµν
ab(ω) = ∂µων

ab − ∂νωµab − ωµac ων cb + ων
ac ωµ c

b , (2.8)

which satisfies the Bianchi identity D(ω)[µRνρ]
ab(ω) = 0. After converting the tangent-

space indices in Rµν
ab(ω) to world indices, it will be equal to the Riemann tensor, up to

terms quadratic in the gravitino fields that originate from the right-hand side in (2.5). Its

contractions,

R a
µ (e, ω) = eb

ν Rµν
ab(ω) , R(e, ω) = ea

µ eb
ν Rµν

ab(ω) , (2.9)

yield the Ricci tensor and scalar, up to gravitino terms. Substituting the solution of (2.5)

into R(e, ω) yields the Ricci scalar up to terms quartic in the gravitino fields.

Let us now list the supersymmetry transformation rules,

δeµ
a = ε̄iγaψµi + ε̄iγ

aψµ
i ,

δψµ
i = 2Dµεi −

1

4
F (A)ρσγ

ρσγµ ε
ij εj +

√
2 q εij tj

k γµεk ,

δψµ i = 2Dµεi −
1

4
F (A)ρσγ

ρσγµ εij ε
j +
√

2 q εij t
j
k γµε

k ,

δAµ = 2
(
εij ε̄iψµj + εij ε̄

i ψµ
j
)
, (2.10)

where in the gravitino transformations we suppressed terms cubic in the gravitino fields.

The covariant derivatives of the supersymmetry parameters are given by

Dµεi =

(
∂µ −

1

4
ωµ
abγab

)
εi − 1

2

√
2 q Aµ t

i
j ε
j ,

Dµεi =

(
∂µ −

1

4
ωµ
abγab

)
εi −

1

2

√
2 q Aµ ti

j εj . (2.11)

The Lagrangian (2.2) is invariant under space-time diffeomorphisms, supersymmetry,

local Lorentz transformations, and electromagnetic gauge transformations, whose infinitesi-

mal transformations will close under commutation. Of particular interest is the commutator

of two supersymmetry transformations, which closes into the diffeomorphism with param-

eter ξµ, the local Lorentz transformations and the electromagnetic gauge transformations,

but only modulo the gravitino field equations,

[δ(ε1), δ(ε2)] = ξµD̂µ + δL(ε) + δ(Λ) , (2.12)

– 5 –
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where the derivative is fully covariant with respect to all the symmetries. This implies that

there is a contribution from ξµ times each of the connections that contribute. The explicit

variations are simply additional and they do not involve the connections. The parameters

of the various infinitesimal transformations on the right-hand side are given by

ξµ = 2 ε̄2
iγµε1i + h.c. ,

εab = εij ε̄1
iε2

j F ab+ + h.c. ,

Λ = 4 εij ε̄2
i ε1

j + h.c. , (2.13)

where the first term proportional to ξµ denotes a supercovariant translation, i.e. a gen-

eral coordinate transformation with parameter ξµ, suitably combined with field-dependent

gauge transformations so that the result is supercovariant.

We will be interested in solutions that have full or partial supersymmetry. The fully

supersymmetric solution is well known and we will briefly refer to it at the end of this

section. There exist many solutions with partial supersymmetry. Well-known examples are,

for instance, the extremal Reissner-Nordström black holes solutions, which are invariant

under half the supersymmetries [18]. However, the main objective of this paper is to analyze

the possible supersymmetry of wormhole solutions belonging to the class constructed in [10].

When a bosonic field configuration is fully or partially supersymmetric, it implies

that all or some of the supersymmetry transformations of the fermions are vanishing.

The transformations that vanish are characterized by certain spinorial parameters that

are known as generalized Killing spinors. The only spinors that we are dealing with in

this particular case are the gravitini, so we have to simply analyse their supersymmetry

transformation, which amounts to deriving possible solutions for εi and εi of the equations,

2Dµεi −
1

4
F (A)ρσγ

ρσγµ ε
ij εj +

√
2 q εijtj

k γµεk = 0 ,

2Dµεi −
1

4
F (A)ρσγ

ρσγµ εij ε
j +
√

2 q εijt
j
k γµε

k = 0 . (2.14)

It is convenient to first consider an integrability condition for these differential equations,

which follows by applying a second derivative Dν and anti-symmetrizing over the indices

µ and ν. The resulting equations take the following form,

Ξµν
i ≡ Dµδψνi −Dνδψµi =

[
R(ω)µν

ab γab − 4 q2 γµν +
1

8
Fρσ Fλτ γ

ρσ γ[µ γ
λτγν]

]
εi

+
1

2

√
2 q
[
4Fµν − Fρσ γρσ γµν − γ[µ Fρσ γρσγν]

]
tij ε

j + (∇[µFρσ) γρσγν] ε
ijεj = 0 ,

Ξµνi ≡ Dµδψνi −Dνδψµi =

[
R(ω)µν

ab γab − 4 q2 γµν +
1

8
Fρσ Fλτ γ

ρσ γ[µ γ
λτγν]

]
εi

+
1

2

√
2 q
[
4Fµν − Fρσ γρσ γµν − γ[µ Fρσ γρσγν]

]
ti
j εj + (∇[µFρσ) γρσγν] εijε

j = 0 ,

(2.15)

where the covariant derivative ∇µ contains only the Christoffel connection.

– 6 –
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To analyze the above equations it is convenient to switch from two Majorana spinors

to a single Dirac spinor. To do so, one first chooses, without loss of generality, the charge

matrix tij to be equal to diag(i,−i). Subsequently one defines

χ ≡ ε1 + ε2 , Ξµνχ ≡ Ξµν
1 + Ξµν 2 . (2.16)

Now χ is no longer a Majorana spinor, because under charge conjugations it will lead to

another independent spinor ε1+ε2. Since the two spinors are related by charge conjugation,

it suffices to only consider the quantities Ξµν , which constitute six different 4× 4 matrices

acting on the 4-component Dirac spinor χ, defined by (2.16).

With these redefinitions the Killing spinor equations (2.14) and the integrability con-

dition (2.15) reads as follows,

2Dµχ+
1

4
F (A)ρσγ

ρσγµγ
5 χ−

√
2 iq γµγ

5χ = 0 , (2.17)

Ξµνχ =

[
R(ω)µν

ab γab − 4 q2 γµν +
1

8
Fρσ Fλτ γ

ρσ γ[µ γ
λτγν]

]
χ

+
1

2

√
2 iq

[
4Fµν − Fρσ γρσ γµν − γ[µ Fρσ γρσγν]

]
χ− (∇[µFρσ) γρσγν]γ

5 χ = 0 ,

The covariant derivative of χ follows from (2.11),

Dµχ =

(
∂µ −

1

4
ωµ
abγab −

1

2

√
2 iq Aµ

)
χ . (2.18)

We recall that all fermionic fields have been suppressed on the right-hand side of the

equations (2.14) and (2.18), because we will be dealing with purely bosonic backgrounds

when exploring the possible supersymmetry of wormhole solutions.

The maximally supersymmetric solution has vanishing Aµ, so that the integrability

relation then takes the form R(ω)µν
ab = 4 q2 eµ

[a eν
b]. This equation implies that the super-

symmetric field configuration is just an anti-de Sitter space-time with AdS radius ` given by

`−1 =
√

2 |q| . (2.19)

In the following sections we will consider a class of wormhole solutions that can be par-

tially supersymmetric. Their possible supersymmetry will be investigated by analyzing the

equations (2.17).

3 Maxwell-Einstein-AdS wormholes

Following [10], we consider a class of four-dimensional space-time metrics expressed into

two different functions, f(r) and h(r),

ds2 =
4 `4 dr2

σ2f(r)
+ h(r)

[
− cosh2 θ dt2 + dθ2

]
+ f(r)(du+ sinh θdt)2 , (3.1)

– 7 –
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where ` denotes the AdS radius. When considering supersymmetry we will also need a

corresponding set of vierbeine, for which we make the following choice,

e0 =
√
h(r) cosh θ dt ,

e1 =
1

σ q2
√
f(r)

dr ,

e2 =
√
h(r) dθ ,

e3 =
√
f(r)

(
du+ sinh θ dt

)
. (3.2)

For

σ = 4 , f(r) = h(r) =
1

4
`2(r2 + 1) , (3.3)

this defines a global AdS4 space-time. Its topology is trivial because the coordinates cover

the full R4.

However, it is possible to impose identifications on surfaces that are orthogonal to

∂r so that one obtains a constant curvature wormhole. In this case the space-time is

only locally AdS4 and has two conformal boundaries located at r = ±∞. The relevant

identification in the Lorentzian case is u ∼ u + a, which for constant r yields the three-

dimensional Cousaert-Henneaux space-time [19]. This identification obviously introduces

a non-contractible cycle in space-time. In the case at hand, the location of the throat is at

r = 0, when the non-contractible circle has minimal (geodesic) length. The perimeter of

the throat given by a is an extra parameter of the metric that is encoded in the range of

the compact coordinate u ∈ [0, a]. This is not sufficient to prove that this geometry defines

a traversable wormhole. For that one needs to send information from one side of the throat

to the other, and one has to check that there are no closed time-like curves. The later was

addressed in [10] for the uncharged case and the same argument applies here; the former

will be studied in section 5 below.

Since this field configuration is a solution of the Einstein-Maxwell system with a cos-

mological term, it can also be a solution of pure N = 2 supergravity, which means that

it is a solution of its bosonic field equations that follow from the Lagrangian (2.2). These

combined field equations that it satisfies will therefore take the form

∂µ
(
e Fµν

)
= 0 ,

Rµν −
1

2
gµνR+

1

2

[
Fµρ Fν

ρ − 1

4
gµνFρσF

ρσ

]
+ 6 q2 gµν = 0 , (3.4)

where `−1 =
√

2 |q| and Fµν = 0.

Let us now move to a more complicated metric where the functions f(r) and h(r) are

equal to

f(r) =
2

q2σ2
r4+(6−σ)r2+mr+σ−3

r2+1
−Q

2+P 2

r2+1
, h(r) =

1

2q2σ

(
r2+1

)
, (3.5)

and construct a corresponding solution of the above equations. Here Q and P are electric

and magnetic charge parameters that will determine the physical charges (whose defini-

tion requires to properly account for wormhole topology) and the corresponding electric

– 8 –
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and magnetic fields of the solution. These charges are induced because the second field

equation (3.4) requires the presence of electric and magnetic fields, which will be given

momentarily. Note, however, that we still retain the homogeneous Maxwell equations,

because the only charged sources are the gravitini, which are not included in the bosonic

background solution. In addition the metric depends on two integration constants denoted

by m and σ. The parameter m is proportional to the mass of the space-time, while σ is

related to the warping of the asymptotic region. More details can be found in [10].

The solution of (3.4) for the vector potential is given by

A = Φ (r)
(
du+ sinh θ dt

)
, (3.6)

with Φ(r) equal to

Φ (r) =
2Qr + P (1− r2)

r2 + 1
. (3.7)

It turns out that (3.6) is invariant under the isometries given below in (3.11). Obviously

the vector potential Aµ describes an electric and a magnetic field component. Its field

strength in the adopted coordinate system is equal to

Fru =
2(1− r2)Q− 4 r P

(r2 + 1)2
,

Frt =
2(1− r2)Q− 4 r P

(r2 + 1)2
sinh θ ,

Fθt =
2Qr + P (1− r2)

r2 + 1
cosh θ . (3.8)

The possible existence of a non-contractible cycle requires that f(r) must be positive ev-

erywhere.4 Asymptotically, for r = ±∞ the space-time is locally AdS4 with the following

fall-off for the curvature tensor,

R(ω)µν
ab =

[
2 `−2 +O(r−2)

]
eµ

[a eν
b] . (3.10)

The bosonic field configuration associated with global AdS4 is invariant under the

isometry group SO(3, 2). This group is broken for the deformed functions f(r) and h(r)

specified in (3.5) and the electromagnetic fields (3.8) to a subgroup generated by the fol-

4A straightforward analysis shows that f(r) never vanishes provided

X = 3(Q2 + P 2)`−2 ≤ 1 ,
12 + 12

√
1−X

1 +X +
√

1−X
> σ >

12− 6
√

1−X
1 +X +

√
1−X

, (3.9)

|m| <
√

2

3
√

3

σ (6− σ)
√

1−X + 24σ − σ2 (1 +X)− 72√
σ
(
1 +
√

1−X
)
− 6

.

For these ranges of the parameters, the metric functions are everywhere positive and regular and a non-

trivial wormhole space-time will exist.
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lowing four Killing vectors,

ξ[1] = ∂t ,

ξ[2] = sin t ∂θ + tanh θ cos t ∂t +
cos t

cosh θ
∂u ,

ξ[3] = cos t ∂θ − tanh θ sin t ∂t −
sin t

cosh θ
∂u ,

ξ[4] = ∂u . (3.11)

We note that when u is compact the SO(3, 2) isometries of global AdS4 are also broken

to these four Killing vectors. The first three Killing vectors generate the group SO(2, 1),

while the fourth isometry is abelian and commutes with the first three. Not surprisingly,

the two functions given in (3.5) depend only on r and are therefore invariant under the

four isometries. Our solution can be seen as a deformation of AdS3 embedded in a four-

dimensional space. The deformation by the function f(r) breaks the SO(2, 2) ∼= SO(2, 1)×
SO(2, 1) isometries to its subgroup SO(2, 1)× SO(1, 1).

We also calculate Lξ eµa = ξν∂ν eµ
a + ∂µξ

ν eν
a for each of the Killing vectors. As it

turns out Lξ eaµ vanishes on all the vierbeine for the ξ[1] and ξ[4], while the non-trivial action

of the other Killing vectors on the vierbeine yields

Lξ[2] e
0= cos t

cosh θ
e2 ,

Lξ[2] e
2= cos t

cosh θ
e0 ,

Lξ[3] e
0=− sin t

cosh θ
e2 ,

Lξ[3] e
2=− sin t

cosh θ
e0 .

(3.12)

Hence the vierbeine are not invariant under the diffeomorphisms generated by the Killing

vectors, but they are invariant under these diffeomorphisms when accompanied by tangent-

space transformations that are opposite to the ones indicated above. On spinors these

tangent transformations will take the form

δ[2]ψ = − cos t

2 cosh θ
γ0γ2 ψ , δ[3]ψ =

sin t

2 cosh θ
γ0γ2 ψ . (3.13)

We will return to these compensating tangent-space transformation at the end of sec-

tions 4, where we will discuss the corresponding invariances of the Killing spinors. Note

that the transformations ξ[1] and ξ[4] do not involve any compensating tangent-space

transformations.

4 Supersymmetric wormholes

To investigate whether the wormhole solutions can be supersymmetric, one may first con-

sider the integrability for the complex Killing spinors χ, which was presented in (2.17). In

the actual calculations we use the following representation for the gamma matrices,

γ0 = −i

(
0 σ2
σ2 0

)
γ1 = −

(
σ3 0

0 σ3

)
, γ2 = i

(
0 −σ2
σ2 0

)
, γ3 =

(
σ1 0

0 σ1

)
, (4.1)

where we remind the reader of the definition γ5 = −iγ0γ1γ2γ3 = diag(σ2,−σ2).5

5With these gamma matrices we can choose the charge conjugation matrix as S = S−1 = −ST, so that

the charge conjugate of a spinor ψ is equal to S ψ̄ T = ψ∗.

– 10 –



J
H
E
P
0
9
(
2
0
2
0
)
1
0
9

A necessary condition for the existence of non-trivial Killing spinors is that the deter-

minant of each of the six 4 × 4 matrices Ξµν defined in (2.16) must vanish. As it turns

out all six determinants take the form of a constant times (r2 + 1)−6 times a function

Z(r). This function also depends on the charges and the integration constants σ and m

in the metric based on (3.5) so the condition for supersymmetry is that Z(r) must vanish.

Explicit calculation shows that the function Z(r) has the following form,

Z(r) = Z2 r
2 + Z1 r + Z0 , (4.2)

where Z2, Z1 and Z0 are fairly complicated expressions that contain the charges and

integration constants. However, the integrability condition should hold for any value of

the radial coordinate r. Therefore one concludes that Z2, Z1 and Z0 should separately

vanish. For Z2 this leads to the equation,

Z2 =
σ2

q4
(mP + 8Q− 2Qσ) = 0 . (4.3)

Since the metric is singular when σ vanishes, we conclude that

m =
2Q

P
(σ − 4) . (4.4)

When this equation is satisfied then Z1 turns out to vanish identically. Hence the only

remaining condition follows from requiring that Z0 must vanish,

Z0 =

(
P 2 +Q2

)2
2P 4 q6

(
2q2σ2P 2 + (σ − 4)2

) (
− 2(σ − 4) + P 2σ2q2

)2
= 0 , (4.5)

where we made again use of equation (4.4). Combining the above results one obtains the

conditions

P =
1

|q|σ
√

2 (σ − 4) , m = |q|σQ
√

2 (σ − 4) . (4.6)

Supersymmetry thus implies σ > 4 which is the same result that was found in [10] by

requiring holographic stability.6

Now that we have solved the integrability condition for the existence of Killing spinors,

let us proceed to an explicit determination of these spinors. To appreciate the possible

relevance of the identification u ∼ u + a for supersymmetry, we determine the possible

Killing spinors explicitly. To solve the Killing spinor we use the Dirac spinor χ defined

in (2.16). The Killing spinor equations for χ was already given in (2.14). Substituting the

expression for the bosonic covariant derivative, it reads[
∂µ −

1

4
ωµ
abγab −

1

2

√
2 iqAµ +

1

8
Fρσγ

ρσγµγ
5 − 1

2

√
2iqγµγ

5

]
χ = 0 . (4.7)

6It is possible to define σ in terms of the charge parameters Q and P , but there are two solutions:

σ± =
1

q2 P 2

(
1±

√
1− 8 q2P 2

)
.
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It is useful to first study the Killing spinors of global AdS4 in terms of the coordinates

used throughout this paper and to observe the effect of having a compact u-coordinate on

supersymmetry. We suppress for the moment the presence of Aµ and Fµν in (4.7). In this

way we obtain the following four real Killing spinors,

χ1
AdS =



√
1 +
√
r2 + 1

[
cosh θ/2 cos t/2− sinh θ/2 sin t/2

]
−
√
−1 +

√
r2 + 1

[
cosh θ/2 cos t/2− sinh θ/2 sin t/2

]√
1 +
√
r2 + 1

[
cosh θ/2 sin t/2− sinh θ/2 cos t/2

]√
−1 +

√
r2 + 1

[
cosh θ/2 sin t/2− sinh θ/2 cos t/2

]

 ,

χ2
AdS =


−
√

1 +
√
r2 + 1

[
sinh θ/2 cos t/2 + cosh θ/2 sin t/2

]√
−1 +

√
r2 + 1

[
sinh θ/2 cos t/2 + cosh θ/2 sin t/2

]√
1 +
√
r2 + 1

[
sinh θ/2 sin t/2 + cosh θ/2 cos t/2

]√
−1 +

√
1 + r2

[
sinh θ/2 sin t/2 + cosh θ/2 cos t/2

]

 ,

χ3
AdS = eu/2



√
−1 +

√
r2 + 1

−
√

1 +
√
r2 + 1

0

0

 , χ4
AdS = e−u/2


0

0√
−1 +

√
r2 + 1√

1 +
√
r2 + 1

 . (4.8)

However, we have to remember that we are constructing representations for complex

Killing spinors, so that the above spinors can be multiplied by arbitrary complex normal-

ization factors. Hence we are dealing with eight independent Killing spinors, which will

indeed provide a basis for full N = 2 supersymmetry, as is expected for a global AdS4

space-time.

A noteworthy feature in the context of the present paper is that the last two Dirac

spinors, χAdS
3 and χAdS

4 , are incompatible with a periodic coordinate u. Therefore, when

dealing with a non-contractible cycle u ∼ u+a, half of the Killing spinors will no longer be

globally defined, so that this particular field configuration must be regarded as a 1/2-BPS

solution. At the same time, the equations of motion will still be locally satisfied.

At this point one can invoke the supersymmetry algebra given by (2.12), which relates

the commutator of two supersymmetry transformations to the bosonic symmetries of the

model. When choosing supersymmetry parameters expressed in terms of linear combina-

tions of the Killing spinors εi, one obtains all the bosonic transformations that should be

compatible with the supersymmetric background, and in particular one would obtain the

Killing vectors of AdS4. However, when the Killing spinors are not all globally defined,

then some of the Killing vectors of the space-time will not be globally defined either.

Let us now continue and derive the Killing spinors for the non-constant curvature

wormhole with non-trivial electromagnetic fields. A lengthy analysis shows that there

exist only two Dirac, Killing spinors, so that the number of Killing spinors is reduced to

one half. Furthermore, these spinors do no longer depend on the coordinate u, so that

they are globally defined. We will give the explicit expressions momentarily. It turns out

– 12 –
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that the first and the second component of these spinors differ by an overall function G(r),

whereas the third and the fourth component differ by an overall function Ḡ(r) that equals

the complex conjugate of G(r). This function G(r) is quite complicated and takes the

following form,

G(r) =
−1

q2 σ h(r)

[√
f(r)− 2

√
2 q h(r)

] [√
f(r)− iΦ(r)

]
f ′(r) + i

√
f(r) Φ′(r)

. (4.9)

The two Dirac Killing spinors now take the form,

χ1
WH = α(r)


eiβ(r)

[
cosh θ/2 cos t/2− sinh θ/2 sin t/2

]
−eiβ(r)G(r)

[
cosh θ/2 cos t/2− sinh θ/2 sin t/2

]
e−iβ(r)

[
cosh θ/2 sin t/2− sinh θ/2 cos t/2

]
e−iβ(r) Ḡ(r)

[
cosh θ/2 sin t/2− sinh θ/2 cos t/2

]

 ,

χ2
WH = α(r)


−eiβ(r)

[
sinh θ/2 cos t/2 + cosh θ/2 sin t/2

]
eiβ(r)G(r)

[
sinh θ/2 cos t/2 + cosh θ/2 sin t/2

]
e−iβ(r)

[
sinh θ/2 sin t/2 + cosh θ/2 cos t/2

]
e−iβ(r) Ḡ(r)

[
sinh θ/2 sin t/2 + cosh θ/2 cos t/2

]

 , (4.10)

where

α(r) =
h1/4(r)√

1 + |G(r)|2
, (4.11)

e2iβ(r) =

(
1 +

1

2
i
√
σ − 4

)√
f(r)

h(r)

1 + |G(r)|2

1 +G(r)2
. (4.12)

Therefore we find that there are two independent Dirac Killing spinors (which in this case

are actually complex). This solution is therefore 1/2-BPS. As before we can invoke the

supersymmetry algebra, and verify that one reproduces the Killing vectors (3.11), which

will be globally defined. All this provides a non-trivial check of the correctness of our results.

We can also determine how these Killing spinors transform under the symmetries of

the bosonic field configuration. As explained at the end of section 4, these symmetries

take the form of a linear combination of the isometries (3.11) and certain tangent-space

transformations that act on spinors according to (3.13). The Killing spinors thus transform

under both transformations. As it turns out, the tangent space transformation will cancel

in this linear combination, and we are left with the following transformations,

δ[1]χ
WH =

1

2

(
0 1

−1 0

)
χWH ,

δ[2]χ
WH =

1

2

(
−1 0

0 1

)
χWH ,

δ[3]χ
WH = −1

2

(
0 1

1 0

)
χWH ,

δ[4]χ
WH = 0 , (4.13)
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Figure 1. Crossing time ∆t for a photon as a function of the charge Q and the parameter σ. The

region where the metric is regular and the wormhole is BPS corresponds to the shaded area in the

lower plane. This restriction originates from the bounds given in (3.9) and the BPS conditions (4.6).

The crossing time remains finite, and starts growing as one approaches the upper bound on Q.

where

χWH =

(
χ1

WH

χ2
WH

)
. (4.14)

Obviously the Killing spinors thus transform according the two-dimensional representation

of SO(2, 1).

5 Geometric aspects of supersymmetric wormholes

In the previous section we proved the existence of 1/2-BPS wormhole solutions in N = 2

supergravity. Now we turn to a discussion of the geometric properties of these space-times.

The throat of the supersymmetric wormhole is located at the minimum of the volume

of the t, r = constant surfaces. This is at the minimum of the function f(r) · h(r). A plot

with the time it takes for a photon to cross the whole space-time, as seen by a geodesic

observer located at r = t = θ = 0 and constant u, is shown in figure 1.

An important remark is now in order. The vector ∂t, which is asymptotically time-

like for σ ≥ 4 may become space-like in the interior of the wormhole when the following

inequality holds,

f (r) sinh2 θ − h (r) cosh2 θ > 0 . (5.1)

This would lead to an ergoregion, as happens in [20], and tends to be in contradiction with

supersymmetry [21]. However, from the supersymmetry conditions (4.6) one can show

in a straight-forwarded manner that the inequality (5.1) cannot be fulfilled, so that the

asymptotically timelike Killing vector ∂t is actually timelike everywhere in the interior of

the BPS wormhole geometry.
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Figure 2. Embedding of the charged supersymmetric wormhole with Q = 10−1 and σ = 5 (left

panel) and σ = 6 (right panel).

The induced metric on the surfaces at constant t and θ is equal to

ds2 =
dr2

q4σ2f (r)
+ f (r) du2 = dρ2 +R2 (ρ) du2 , (5.2)

where the second equation is obtained by going to the proper radial coordinate. The

function R(ρ) defines the radius of the circles parameterized by the compact coordinate

u. As r → ±∞ one has ρ → ±∞ and R (ρ) ∼ e±ρ, as expected due to the locally AdS

asymptotics. The coordinate ρ is such that r = 0 implies ρ = 0. Figure 2 shows the plot

of the radial function R(ρ) as a function of ρ. The latter runs radially on the wormhole

geometry and measures the proper radial distance from the throat.

5.1 The geometry of the conformal boundary

Let us pass to study the asymptotic region of the space-time. To this end, it is enlightening

to understand first pure AdS4 space-time. We would like to clarify the relation between the

global coordinate system we use in this article and the standard global coordinate system

where the space-time is foliated by spheres. AdS is the Lorentzian hyperboloid, where the

AdS radius is set to one, ` = 1,

−X0
2 −X2

1 +X2
2 +X3

2 +X4
2 = −1 . (5.3)

This constraint is solved by the global parametrization,

XS2

0 =
√
ρ2 + 1 sin τ , XS2

1 =
√
ρ2 + 1 cos τ ,

XS2

2 = ρ
√

1− y2 cosφ , XS2

3 = ρ
√

1− y2 sinφ ,

XS2

4 = ρ y , (5.4)

we shall call this the sphere foliation. It has the (universal covering) metric

ds2S2 = −
(
1 + ρ2

)
dτ2 +

dρ2

1 + ρ2
+ ρ2

(
dy2

1− y2
+
(
1− y2

)
dφ2
)
, (5.5)
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where y ∈ [−1, 1], φ ∈ [0, 2π], τ ∈ [−∞,∞] and ρ ∈ [0,∞]. Elsewhere in this paper we

have used another global parametrization,

XAdS3
0 =

[
sin t/2 sinhu/2 sinh θ/2 + cos t/2 coshu/2 cosh θ/2

]√
r2 + 1

XAdS3
1 =

[
sin t/2 coshu/2 cosh θ/2− cos t/2 sinhu/2 sinh θ/2

]√
r2 + 1 ,

XAdS3
2 =

[
sin t/2 sinhu/2 cosh θ/2− cos t/2 coshu/2 sinh θ/2

]√
r2 + 1 ,

XAdS3
3 =

[
sin t/2 coshu/2 sinh θ/2 + cos t/2 sinhu/2 cosh θ/2

]√
r2 + 1 ,

XAdS3
4 = r . (5.6)

The metric is now foliated by AdS3 space-times,

ds2AdS3 =
dr2

r2 + 1
+

(
r2 + 1

)
4

(
− cosh (θ)2 dt2 + dθ2 + (du+ sinh θdt)2

)
(5.7)

where r ∈ [−∞,∞], θ ∈ [−∞,∞], t ∈ [−∞,∞] and global AdS has u ∈ [−∞,∞]. The

space-time is non-simply connected when u is periodic, u ∈ [0, a].

These two foliations are obviously related by a change of coordinates:

u =
1

2
ln

(
1 + 2ρ2 − ρ2y2 − 2ρ cos (τ − φ)

√
(1 + ρ2) (1− y2)

1 + 2ρ2 − ρ2y2 + 2ρ cos (τ − φ)
√

(1 + ρ2) (1− y2)

)
, (5.8)

sinh θ =
2ρ sin (φ− τ)

√
(1 + ρ2) (1− y2)

1 + ρ2y2
, (5.9)

sin t =
sin(2τ)

(
1 + ρ2

)
− sin(2φ)ρ2

(
1− y2

)√
(1 + 2ρ2 − ρ2y2)2 − 4ρ2 (1− y2) (1 + ρ2) cos (τ − φ)2

, (5.10)

r = ρy . (5.11)

It follows that positive r corresponds to the northern hemisphere of the S2 and negative

r to the southern hemisphere in the sphere foliation. Therefore the boundary at r > 0

(y > 0) should be in some form connected with the boundary at r < 0 (y < 0) through

the S1 equator (y = 0) of the two hemispheres of the S2. Let us now study the ρ = ∞
asymptotic region in the AdS3 foliation. To this end, we shall consider the boundary change

of coordinates

u =
1

2
ln

(
2− y2 + 2 cos (τ − φ)

√
1− y2

2− y2 − 2 cos (τ − φ)
√

1− y2

)
, (5.12)

sinh θ =
2 sin (φ− τ)

√
1− y2

y2
, (5.13)

sin t =
sin(2τ)− sin(2φ)

(
1− y2

)√
(2− y2)2 − 4 (1− y2) cos (τ − φ)2

. (5.14)

We pick the natural representative of the conformal boundary of AdS4 in the foliation by

AdS3 space-times (5.7) as given by the metric

ds23D =
1

4

[
− cosh2 θ dt2 + dθ2

]
+

1

4
(du+ sinh θdt)2 , (5.15)
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which is globally AdS3 space-time if all the coordinates cover the real line. If u ∼ u + a

and the other coordinates cover the whole real line this three dimensional background is

the Coussaert-Henneaux space-time. If we plug the change of coordinates (5.12)–(5.14)

in (5.15) we get

ds23D = y−2
(
−dτ2 +

dy2

1− y2
+
(
1− y2

)
dφ2
)

. (5.16)

Indeed, it can be seen from the boundary point of view that the region of θ = ±∞ of (5.15)

corresponds to y = 0. This is a surface with the topology of S1 × R, which is the usual

conformal boundary of AdS3 and also the border between the two hemispheres of the usual

conformal boundary of AdS4, S2 × R.

Here we want to remark a very interesting subtlety. As is well known, AdS does

not have a boundary but a conformal boundary. The representative of the conformal

boundary given by (5.15) is in a different equivalence class than S2 × R. This can be seen

directly from (5.16) as the conformal factor that relate these two metrics is singular at

y = 0. Therefore, we conclude that the slicing of AdS4 by AdS3 has two connected AdS3

boundaries if we pick the boundary representative in the equivalence class of (5.15) and

one boundary if we pick the representative

ds̄23D = ω(u, θ)2ds23D =
ω(u, θ)2

4

[
− cosh2 θ dt2 + dθ2

]
+
ω(u, θ)2

4
(du+ sinh θdt)2 , (5.17)

where

ω(u, θ)2 =
1

1−
(
cosh θ

2 − cosh u
2

)2 . (5.18)

Let us now pass to study a representative of the conformal boundary of the wormhole

space-time (3.1), given by the metric

ds2∂M =
1

4

[
− cosh2 θ dt2 + dθ2

]
+

1

σ
(du+ sinh θdt)2 , (5.19)

which is a quotient of space like warped AdS3 when σ 6= 4 . The quotient is product of the

identification u ∼ u+a. If we plug the change of coordinates (5.12)–(5.14) in (5.19) we get

ds2∂M = y−2
(
−dτ2 +

dy2

1− y2
+
(
1− y2

)
dφ2
)

(5.20)

+ y−2
(

4

σ
− 1

)(
1− y2

) [
cos(τ − φ)

dy

1− y2
− y−1 sin (τ − φ) (dτ + dφ)

]2
.

For σ = 4, this is exactly the same boundary than the locally AdS4 we just discussed, so

we shall consider from now on only the σ 6= 4 case. The first important aspect of this

metric is that y2ds2∂M is not locally S2 × R. Moreover, an straightforward calculation of

the Riemann tensor of (5.19) yields

Rtθtθ = 4
(
1− 3σ−1

)
, Rtutu = Rθuθu = 4σ−1 , Rθutθ = 4 sinh θ

(
1− 4σ−1

)
. (5.21)

Hence, from (5.21) we observe that warped AdS3 develops a parallelly propagated curva-

ture singularity (PPS) at θ = ±∞, we discuss this in more detail in the section on geodesics
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below. One could insist in try to construct a space-time with a single boundary by pick-

ing a metric representative in the class of y2ds2∂M . However this metric has a curvature

singularity. An straightforward computation of the Ricci scalar yields

R(y2ds2∂M )θ=±∞ = 2(1− 4σ−1)e|θ| +O(e|θ|/2) (5.22)

Therefore, the two warped AdS boundaries cannot be joined in a single compact boundary

by a conformal transformation.

5.2 Geodesics and a parallel propagating singularity

Our wormhole avoids the use of matter violating the null energy condition because the

throat has a minimal S1 instead of a minimal S2 as required in [5]. We would like to

discuss here the different families of null geodesics and use them to clarify the structure of

the conformal boundary just described. A representative of the conformal boundary of the

wormhole space-time (3.1) is given by the metric

ds2∂M =
`2

4

[
− cosh2 θ dt2 + dθ2

]
+
`2

σ
(du+ sinh θdt)2 , (5.23)

and we set again ` = 1. Let us pass to study its geodesics. This space-time has four Killing

vectors (3.11), which yield four conserved charges along geodesic motion

Q[i] = 4ẋµξµ[i] (5.24)

where ẋµ =
(
ṫ, θ̇, u̇

)
. These charges allow to find the velocities

ṫ = −Q1 + L tanh θ sin (t− t0) (5.25)

θ̇ = L cos (t− t0) (5.26)

u̇ = −L sin t

cosh θ
+

(
λ2 − 1

λ2

)
(Q1 sinh θ + L cosh θ sin (t− t0)) (5.27)

where λ2 = 4
σ , Q2 = L sin t0 and Q3 = L cos t0 and consistency of (3.1) requires Q1 = Q4.

The condition that the geodesic is null yields

0 = gµν ẋ
µẋν

=

(
1− λ2

)
4λ2

[(
L2 sin2 (t− t0) +Q2

1

)
cosh2 θ + LQ1 sinh 2θ sin (t− t0)

]
+
L2λ2 −Q2

1

4λ2
(5.28)

plugging (5.26) in (5.28) we obtain an equation in terms of θ̇ and functions of θ only. It

has two solutions for θ̇2

θ̇2± =
L2 −Q2

1

L2
+
λ2L2 +Q2

1 − 2λ2Q2
1

L2 (1− λ2) cosh2 θ
± sin θ

cosh2 θ

λQ1

L2

√
Q2

1 − L2

1− λ2
. (5.29)
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Supersymmetric wormholes have λ ≤ 1. The case with λ = 1 is special as it corresponds to

locally AdS3 space-time and we will discuss it below. When λ < 1 the integrals of motion

must satisfy Q2
1 − L2 ≥ 0 for the square root to be a real number in (5.29). This in turn

implies that the motion is confined. Indeed, when Q2
1−L2 ≥ 0 we see that θ̇2± < 0 for large

enough |θ|, which implies that existence of a turning point at some point when θ̇2± = 0 .

Hence, generic null geodesics are confined to live at bounded θ.

There is an exception. Namely, whenever L2−Q2
1 = 0. When we replace the condition

Q1 = ±L in (5.28) yields

θ = ±1

2
ln

(
1− sin(t− t0)
1 + sin(t− t0)

)
, (5.30)

which allows to integrate the remaining geodesic equation

u = u0 ± ln (cos(t− t0)) . (5.31)

We conclude that this geodesic reaches θ = ±∞ at t − t0 = π
2 . Note that the condition

λ = 1 also enforces L2 −Q2
1 = 0 in (5.28). Now, we shall use this geodesic to construct a

parallelly propagated orthonormal frame (PPO). If the geodesic that reaches null infinity

has tangent vector Xµ, a set of vierbeine where one is aligned along Xµ will define such a

basis. So we pick ê0µ = Xµ. In this way we construct the Riemann tensor in this basis

RPPabcd = Rµνδαêaµêbν êcδ êdα . (5.32)

If the Ricci tensor is singular in the PPO then it implies that the Riemann is singular

which is the definition of a PPS. We will only need to compute one component of the Ricci

tensor in the PPO to check that this is the case:

RµνX
µXν = ηacRPPa0c0 = 2L2 sinh2 (θ)

(
λ2 − 1

)
. (5.33)

Hence, we see that unless λ = 1, tidal forces diverge when θ −→ ±∞. Note however that

all curvature components are constant in a static frame

E0 = cosh θdt , E1 = dθ , E2 = du+ sinh θdt , (5.34)

since the Riemann tensor for warped AdS is

R0202 = 3λ2 − 4 , R0303 = −1 , R2323 = 1 , (5.35)

where we recall that we are using a convention where the Riemann tensor of AdS is constant

and positive.

Hence, we conclude that when σ = 4, the boundaries can be connected by null

geodesics. These geodesics can go from one boundary to the other without problem. More-

over, the time it takes a geodesic to connect the boundary through the bulk (which has a

minimum at t = 2π) is at least the double it takes through the boundary. Furthermore,

it follows from (5.31) that this null geodesic winds around the u coordinate infinite many

times. The curves that winds around u are non contractible. Hence, the geodesic along the
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boundary is not-homotopic to the geodesic along the bulk. As expected in a non-simply

connected wormhole space-time.

When σ 6= 4, it is impossible to connect the different boundaries with geodesics due to

the presence of a PPS. This singularity is a property of the warped AdS space-time that

seems to have passed unnoticed so far in the literature, see for instance [22].

6 Topological censorship

There is a set of results that seem to indicate that wormholes can not exist. In particular

in [12] it is stated the following theorem: let M be a globally hyperbolic space-time-with-

boundary with timelike boundary I that satisfies averaged null energy condition. Let I0 be

a connected component of I ofM. Furthermore assume that either (i) I0 admits a compact

spacelike cut or (ii) M satisfies the generic condition. Then I0 cannot communicate with

any other component of I.

This is particularly relevant to us, as the wormhole seems to have a boundary with

two disconnected components when σ 6= 4. The boundary, given by warped AdS3, has

non-compact spacelike surfaces. So we need to verify that the generic condition is not

satisfied. The generic condition is the statement that for every timelike or null geodesic

Zµ there is a point where Z[σRµ]νλ[αZβ]Z
νZλ 6= 0.

It is possible to verify that, when the gauge field vanishes, our wormhole spacetime

ds2 =
4 `4 dr2

σ2f(r)
+ h(r)

[
− cosh2 θ dt2 + dθ2

]
+ f(r)(du+ sinh θdt)2 , (6.1)

with metric functions

f(r) =
2

q2 σ2
r4 + (6− σ)r2 +mr + σ − 3

r2 + 1
, h(r) =

1

2 q2 σ

(
r2 + 1

)
, (6.2)

satisfies

Z[σRµ]νλ[αZβ]Z
νZλ = 0 ,

for the following null geodesic

Z =
1

h(r) cosh2 θ
∂t −

1

h(r) cosh θ
∂θ −

sinh θ

h(r) cosh2 θ
∂u .

Note that the causal structure of the space-time is the same whether there is an electro-

magnetic field or not. Hence, our wormhole avoids topological censorship by not being

within the hypothesis of the theorem.

7 Conclusion

In this paper we considered supersymmetric transversable wormholes that are everywhere

regular with and without electromagnetic fields. In this respect these wormholes are cru-

cially different from black holes, which have a curvature singularity in the interior of the

event horizon. The supersymmetric wormholes preserve half of the supersymmetries. An
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interesting fact is that this situation also exists in an AdS space upon the introduction of

a non-contractible cycle. In that case there exist potentially eight Killing spinors, but only

half of them are globally defined, as was shown in equation (4.8). The supersymmetry

algebra then implies that the Killing vectors of this space-time exhibit the same feature,

namely that some of them will not be globally defined. Note, however, that the latter

scenario does not involve electromagnetic fields.

It is worth mentioning that wormhole geometries in asymptotically AdS space-times

have received attention in connection with holography (see e.g. [23]) The presence of mul-

tiple boundaries would then create the possibility of couplings between different CFTs. It

had already been noted earlier that the interaction between two CFTs opens a throat in

the bulk that causally connects the two boundaries [24]. However, most of these settings

require non-local interactions between the boundaries for the wormhole throat to open, a

feature that is not present in the construction of this paper.

The supersymmetric, charged, transversable wormholes provide a concrete physical re-

alization of the Weyl’s idea referred to in the introduction. Non-trivial electromagnetic field

lines can be supported by a geometry that is consistent with the Einstein-Maxwell system.
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