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Chapter 1 • General introduction

Necessity to expand current risk assessment from single to multiple chemicals exposure
We humans are exposed to a plethora of manufactured chemical compounds every day 
throughout our entire lifetime. These exposures may come from various routes such as 
ambient environments, indoor and occupational environments, diet, consumer products, or 
medication. All these combined exposures potentially lead to an almost infinite number of 
combinations of compounds (Huhn et al., 2021; Vermeulen et al., 2020; Wild, 2012). Current 
exposure and risk assessment strategies often focus on single compounds, and when multiple 
compounds are considered, they are mostly originating from the same chemical family, such as 
phthalates, PCBs or dioxins (Bopp et al., 2018; Drakvik et al., 2020). With an increasing number 
of chemicals on the market, a mixture exposure and risk assessment approach is becoming 
more and more important (Bopp et al., 2019; Kienzler et al., 2016). Besides, new chemicals and 
new applications of existing chemicals are continuously introduced to the market, resulting in 
an exponential growth of the number of chemicals and potential combinations. This together 
makes a strong need to address the risks of chemical mixtures in relation to human health 
within the current policy and regulatory fields (Bopp et al., 2019; European Commission, 2020; 
Louro et al., 2019). Concurrently, developments in high-resolution analytical technologies 
(such as suspect screening, see Box 1) allow us to detect an increasing amount of chemicals. 

The most prominent challenges in the risk assessment of chemical mixtures are i) how to 
measure combined exposures to chemical mixtures, ii) how to accurately assess the health 
risks from the chemical mixtures someone is exposed to, and iii) how to translate these risks 
to the policy and regulatory fields. This thesis focusses on the first point, how to measure and 
describe exposure patterns of chemical mixtures, focusing on co-occurrence of chemicals.

What is a chemical mixture
When discussing the term ‘chemical mixtures’, researchers from different fields of expertise 
may interpret it differently. Also, in literature different terms are used when referring to chemi-
cal mixtures, some call it ‘multiple exposures’ (Bopp et al., 2018), others ‘cumulative exposures’ 
(US EPA, 2003), and by definition chemical mixtures are covered in the exposome concept 
(Vineis et al., 2020; Wild, 2005, 2012). Common rationales to group chemicals include their 
chemical family, exposure route, use category, or supposed working mechanism. This thesis 
focusses on the combination of manufactured chemicals co-occurring within the same indi-
vidual, or sample taken at the individual level, reflecting internal/external exposure to multi-
ple chemicals. This includes multiple sources and routes of exposure. A cluster of correlated 
chemicals (in relation to the remaining chemicals measured) is considered as one chemical 
mixture. This perspective of a chemical mixture does include protracted and sequential expo-
sures of long-lived chemicals, but might exclude (sequential) exposure to short-lived chemi-
cals depending on the time of sampling (Santos et al., 2020).

Measuring exposure to chemical mixtures in the population
Measuring exposure to real-life chemical mixtures can be challenging, specifically to measure 
all potential sources and pathways. This would imply measuring or modelling all these aspects 
per chemical separately; both strategies require a substantial amount of time and effort to 
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collect all necessary data. Besides, large individual differences occur due to life-style or other 
personal factors affecting exposure, such as living location, age, or social-economic status. To 
fully reflect the chemical mixture at individual level, data collection at individual level is key, 
and preferable a combination of multiple measurements should be included to fully capture 
the complete chemical burden. These individual measures can be external (such as silicone 
wristbands), or internal (such as human biomonitoring). To conduct external individual meas-
urements at population level these must be easy to apply and scalable. Passive monitoring 
would for these reasons be preferred above active monitoring. One method to passively 
measure chemical mixtures at the individual level are silicone wristbands, which provide the 
opportunity to measure over a longer period of time with minimal burden to the participant 
(O’Connell et al., 2014; Samon et al., 2022). In the extract of the wristbands a few hundred 
chemicals can be measured (Wacławik et al., 2022). However, wristbands only reflect the expo-
sure routes inhalation and dermal. For an aggregated exposure measure including ingestion, 
internal measures would be preferred. Human biomonitoring (HBM) reflects the internal 
exposure concentration of chemicals in human tissues (Zare Jeddi et al., 2022), providing an 
efficient measurement approach to assess co-occurrence of chemical mixtures internally. 
Within HBM samples a wide range of chemicals can potentially be analyzed, although most 
are rapidly metabolized and biomarkers of exposure might not always be readily available. 
Besides, the application of HBM in population-based studies is often limited by the selection 
of a set of chemicals (targeted measures), the number of samples (due to participant burden, 
ethical aspects (invasive), or difficulties collecting and storing the samples), and often focus 
on a specific situation such as occupational settings or certain age groups. Exceptions of Euro-
pean population-based HBM studies covering a wide range of chemicals are for example the 
German Environmental Survey (GerES, including phthalates, DINCH, PFAS, bisphenols, PAHs, 
heavy metals, acrylamide, pesticides, aprotic solvents, UV filters and flame retardants) (Schwe-
dler et al., 2020), and the Flemish Environment and Health Studies (FLEHS, including phthalates, 
PFAS, bisphenols, PAHs, flame retardants, heavy metals, pesticides, PCBs and dioxins) (Govarts 
et al., 2020; Schoeters et al., 2017). An example of an exception outside Europe is a large HBM 
dataset from the US, the National Health and Nutrition Examination Survey (NHANES), within 
which a method was developed to identify the most prevalent mixtures in human by applying 
frequent itemset mining (finding frequent patterns in the data). Ninety chemical combina-
tions were identified, consisting of relatively few chemicals that occur in at least 30% of the US 
population (Kapraun et al., 2017). 

To overcome the limitation of measuring a selected set of markers within HBM samples, 
the application of high-resolution analytical advances as suspect screening (SS) (see Box 1) 
makes it possible to identify a larger set of relevant chemicals (Pourchet et al., 2020; Walker 
et al., 2019). SS measures co-occurring exposures (parent chemicals plus metabolites) in HBM 
samples such as urine, also including chemicals for which no analytical reference standard is 
readily available (Huber et al., 2022). For SS, supporting annotation databases and follow-up 
work are necessary to assign every detected signal to an identified chemical with a given con-
fidence level (Pourchet et al., 2020; Schymanski et al., 2014).
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Approaches of this thesis to identify chemical mixtures
This thesis presents three approaches to assess real-life co-occurrence patterns in the general 
population. These approaches can be distinguished as, i) visualization of chemical mixtures, 
ii) measuring real-life chemical mixtures at individual level, and iii) application of an analytical 
screening approach to assess pesticide mixtures. The first part of the thesis concentrates on 
visualization techniques applied on existing HBM data. By visualization of co-occurring com-
pounds, clusters in exposure markers (chemical mixtures) can be identified. The second part 
describes the application of the second and third approach on pesticide mixtures, for which 
samples were collected (silicone wristbands and urine samples) and SS was applied on the 
collected urine samples.

i) Visualization of chemical mixtures
Due to analytical advancements as SS, higher dimensional exposure data will become 
available. To describe patterns in these type of data statistical approaches such as variable 
selection (sparse linear regression) or principal component analysis can be applied (Sta-
foggia et al., 2017). Another approach is graphical modeling, such as correlation network 
models combined with a clustering algorithm, which describe and summarize co-occur-
rence patterns by highly correlated groups or clusters of compounds, where correlations 
are low between and high within clusters (Huhn et al., 2021; Santos et al., 2020). Correla-
tion network analyses are increasingly being used in bioinformatics, for example to iden-
tify clusters in highly correlated genes (Friedman et al., 2012; Langfelder et al., 2008). An 
advantage of these network approaches is that they are intuitive to interpret, consider-
ing the interdependencies between all compounds included in the network model. Also, 
these networks can be used to assess differences between strata by covariates such as 
time or smoking status.

Box1. Suspect screening approach (Text and figure adapted from Pourchet et al. 
2020)
Suspect Screening (SS) is typically based on high-resolution mass spectrometry (HRMS), 
which resulting peak-profile (defined by the molecular features: accurate mass, retention 
time and mass spectrum) is matched with a reference library for peak annotation. SS qual-
itatively assesses detection rates or semi-quantitative data. SS approaches are useful in 
analyzing a large set of exposure markers, enabling a better description of the exposure 
pattern; also, SS can be useful for prioritizing future (targeted) developments.
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ii) Measuring pesticide mixtures at individual level
To describe real-life exposure to pesticide mixtures accurately, exposure measures at the 
individual level are preferred. To fully characterize the complete chemical burden, it is 
necessary to use a combination of different measurement technologies. Measurement 
technologies such as HBM and external personal monitoring could be one of these tech-
nologies to be used. HBM is effective to capture chemical mixtures internally (Ganzleben 
et al., 2017; Louro et al., 2019; Zare Jeddi et al., 2022), and measurements such as those 
in blood or urine provide an aggregated measure of exposure from different exposure 
routes (inhalation, ingestion, dermal) and sources. While this aggregated measure could 
be a very efficient manner to capture the mixture, collecting HBM data from large popu-
lations and over longer periods of time remains a challenge. Moreover, compounds with 
a very short lifetime within the body (due to excretion and or metabolization) can easily 
be missed through HBM. External personal monitoring such as silicone wristbands are a 
passive sampling method which is easy to implement and can be worn for several days 
or weeks, allowing larger timeframes due to their low-impact to the wearer. A large set 
of chemicals can be measured in wristbands, reflecting exposure from the entire time of 
wearing. By the different nature of measure, wristbands do however only reflect the inha-
lation and dermal exposure routes and do not capture dietary intake.

iii) Application of an analytical screening approach on pesticide mixtures
Novel and harmonized SS approaches based on high resolution mass spectrometry are 
efficient in detecting a broad range of exposure markers, being able to capture the com-
plexity of chemical mixtures (Huber et al., 2022; Pourchet et al., 2020; Sobus et al., 2018). 
Specifically in HBM samples with often limited volumes, SS enables the detection of more 
chemicals within the same sample, and are relatively quick compared to targeted meas-
urements.

Real-life chemical mixture example: pesticides
The second half of this thesis focusses on co-occurring pesticides as a prime example of mix-
tures. For this, pesticides are measured in silicone wristbands and in urine samples. On the 
urine samples an SS approach will be applied to detect a large set of biomarkers. Pesticides are 
a relevant chemical mixture due to their societal attention and worries (Schaub et al., 2020), as 
well as a point of departure by EFSA for future development of strategies to evaluate mixtures 
(EFSA, 2013). Also, pesticides have inherently toxic properties, such as neurotoxicity, repro-
ductive issues, and developmental problems (Kim et al., 2017; Kori et al., 2020; Mostafalou et 
al., 2017), which have resulted in increased regulatory attention (EFSA, 2014, 2016). Pesticides 
often occur as mixtures, for example by application of farmers with multiple pesticides simul-
taneously, as well as by dietary intake, due to the large variety present in food items. In real-life, 
dietary intake can co-occur with potential residential and/or occupational exposures (Carles 
et al., 2017; Deziel et al., 2015; Rizzati et al., 2016). In the literature there is growing evidence 
that living in agricultural areas where pesticides are applied contributes to higher pesticide 
exposure (Dereumeaux et al., 2020; Figueiredo et al., 2021; López-Gálvez et al., 2019). Despite 
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a large body of literature on dietary exposure to pesticides (Ntzani et al., 2013; Oates et al., 
2011), it is still unclear to which combinations of pesticides the general population in Europe 
is exposed. Moreover, most pesticide exposure measurement campaigns focus on a limited 
set of targeted pesticides, mainly pyrethroids and non-specific markers of organophospho-
rus pesticides. Given the long list of registered pesticides, many targeted assays would be 
required to assess the presence of all urinary pesticides and their metabolites in each sample. 
Another option to assess pesticide mixtures at individual level would be to collect external 
personal samples in which a large number of targeted pesticides could be measured, such as 
silicone wristbands. However, to reflect the internal pesticide mixture (including diet), urine 
samples are more commonly used.

Layout of this thesis
With the application of the abovementioned three approaches, in my thesis I aim to:

• Describe which chemical mixtures can be detected in European HBM data, including 
their variation across measurement campaigns or covariates such as smoking status. 

• Assess the applicability of correlation networks to visualize patterns and clusters in 
chemical mixtures based on European HBM data.

• Present two measurement methods to assess pesticides mixtures, HBM and silicone 
wristbands.

• Address exposure to pesticide mixture exposure patterns in six European countries, 
with a specific focus on variations in these patterns by living location, season and age.

• Describe and interpret differences in pesticide exposure levels, by various covariates 
such as pesticide usage, distance to agriculture and diet.

Part one of this thesis addresses the visualization of chemical mixtures graphically by cor-
relation network analysis. Correlation networks provide an intuitive graphical approach to 
describe which biomarkers in the dataset are (in)dependent of each other, these networks 
are combined with a hierarchical clustering approach to detect separate groups or communi-
ties within these networks. In chapter 2, the correlation network approach is applied to the 
Belgium FLEHS datasets, illustrating the applicability of correlation networks in HBM type of 
datasets. The network approach is described in detail, combined with the application of a 
community detection algorithm. Differences between networks are used to assess variability 
across sampling campaigns, or covariates as smoking status (comparative network analysis). 
In chapter 3, the network approach with the community detection algorithm is applied on a 
larger scale, on four different cohorts across Europe (Belgium, Czech Republic, Germany and 
Spain). The applicability of networks in different settings is shown, including comparative 
network analysis across covariates. This chapter also covers some methodological aspects 
of the application of the network approach on HBM data: a comparison between weighted 
(measure of correlation) and unweighted (correlated yes/no) networks, and the effect of cre-
atine correction of urinary biomarkers on the estimated network are shown.

The second part addresses exposure to pesticide mixtures. In chapter 4, a measurement 
method is described to assess long term exposure (two months) to pesticide mixtures at the 
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individual level by application of silicone wristbands. This matrix allows for a large set of pes-
ticides to be measured in a targeted manner, providing insight into which combinations of 
pesticides the wearers were exposed to. In chapters 5 and 6 a pesticide suspect screening 
approach was applied on urine samples in six European countries, as part of the SPECIMEn 
study. This study was initiated to generate new pesticide exposure data in a harmonized 
European setting. Chapter 5 describes the general study protocol of the SPECIMEn study, 
detection rates, and co-occurrence of multiple pesticides measured in the urine samples. By 
design of the study, pesticide exposure patterns by age, location and season were compared. 
In chapter 6, the semi-quantitative pesticide SS data was used to explore exposure trends in 
the data, and exposure routes and sources underlying the large set of pesticides detected in 
samples from the Netherlands and Switzerland. Exposure sources as pesticide usage, distance 
to agriculture and diet were considered as covariates in regression models.

Chapters 2, 3, 5 and 6 were conducted in the context of the European Initiative for Human 
Biomonitoring (HBM4EU). Chapter 4 was conducted in the context of the Dutch OBO project 
(Onderzoek Bestrijdingsmiddelen Omwonenden).

In chapter 7, the results of the three approaches to identify chemical mixtures are discussed, 
as well as their applicability in future work, limitations and alternatives. The lessons learnt from 
the work performed in this thesis are drawn. The challenges in the mixture exposure charac-
terization are discussed, and a perspective will be given on the next steps in this challenging 
field.
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ABSTRACT

Introduction: Humans are exposed to multiple environmental chemicals via different sources 
resulting in complex real-life exposure patterns. Insight into these patterns is important for 
applications such as linkage to health effects and (mixture) risk assessment. By providing inter-
nal exposure levels of (metabolites of) chemicals, biomonitoring studies can provide snap-
shots of exposure patterns and factors that drive them. Presentation of biomonitoring data 
in networks facilitates the detection of such exposure patterns and allows for the systematic 
comparison of observed exposure patterns between datasets and strata within datasets.
Methods: We demonstrate the use of network techniques in human biomonitoring data from 
cord blood samples collected in three campaigns of the Flemish Environment and Health 
Studies (FLEHS) (sampling years resp. 2002–2004, 2008–2009, and 2013–2014). Measured bio-
markers were multiple organochlorine compounds, PFAS and metals. Comparative network 
analysis (CNA) was conducted to systematically compare networks between sampling cam-
paigns, smoking status during pregnancy, and maternal pre-pregnancy BMI.
Results: Network techniques offered an intuitive approach to visualize complex correlation 
structures within human biomonitoring data. The identification of groups of highly connected 
biomarkers, “communities,” within these networks highlighted which biomarkers should be 
considered collectively in the analysis and interpretation of epidemiological studies or in the 
design of toxicological mixture studies. Network analyses demonstrated in our example to 
which extent biomarker networks and its communities changed across the sampling cam-
paigns, smoking status during pregnancy, and maternal pre-pregnancy BMI.
Conclusion: Network analysis is a data-driven and intuitive screening method when dealing 
with multiple exposure biomarkers, which can easily be upscaled to high dimensional HBM 
datasets, and can inform mixture risk assessment approaches.
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INTRODUCTION

Throughout their life-time, humans are exposed to a plethora of environmental stressors and 
chemicals that independently or in interaction may have an impact on health. Whereas chem-
ical risk assessment typically evaluates single compounds, it generally does not appropriately 
reflect the complexity of concomitant exposure to multiple chemicals in real life. Currently 
there is yet little insight into commonly occurring exposure mixtures and how these mixtures 
change between important covariates, e.g., gender, countries, and time. Human biomonitor-
ing (HBM) has the potential to provide a snapshot of exposure to chemicals (Ganzleben et al., 
2017), and these data can be used to screen for the presence of clusters of correlated expo-
sures. The identification of these communities is important for the analysis and interpretation 
within epidemiological studies (which compounds are more related, and should therefore be 
considered collectively) and for the design of mixture toxicology studies (which combined 
exposures do occur in the population), thereby informing risk assessors/managers on poten-
tial concomitant exposure pathways. 

Patterns between multiple biomarkers are not commonly presented (Tamayo-Uria et al., 
2019). Increasingly, graphical representation of (partial) correlation patterns such as heatmaps 
or circular correlation globes (circos plots) are being used. However, here the distinction 
of groups of correlated compounds is not always straightforward as it depends largely on 
a-priori ordering by the presenter and on the visual interpretation by the reader. Also, the 
comparison of multiple circos plots (for example as presented in (Robinson et al., 2015)), is 
challenging, especially when comparing three or more plots or in high dimensional settings. 
Networks provide a graphical method to represent groups or communities in the data, which 
has been used widely in the OMICs world (Gehlenborg et al., 2010; Mitra et al., 2013; Villaveces 
et al., 2015). Applied to HBM data, networks consist of nodes which represent the biomarkers, 
and edges that represent the conditional dependence between the biomarkers. Networks 
give an intuitive interpretation of patterns in the data without prior assumptions (Green et al., 
2018). A network may consist of multiple subnetworks (connected nodes). Within a subnet-
work, one or more communities of biomarkers can be detected using community detection 
algorithms (Fortunato, 2010). Communities are groups in which nodes (i.e. biomarkers) are 
more connected to each other than to the rest of the (sub)network. Communities in exposure 
biomarker networks might therefore represent common exposure routes (dermal, inhalation 
or ingestion), external sources (such as lifestyle, social or environmental factors) and/or (bio)
chemical properties (e.g. kinetics, distribution). 

Further insights can be generated with comparative network analysis (CNA), which is an 
analytical procedure that allows for the comparison of two or more networks based on (dis)
similarities (Emmert-Streib et al., 2016; Ideker et al., 2012; Zhang et al., 2009). CNA can be used 
to assess the impact of covariates on observed networks. Differences between networks are 
presented as (dis)similar nodes and edges, which in itself are amendable to community detec-
tion as well (Mall et al., 2017).

To pilot and illustrate the use of network techniques in exposure HBM data we applied 
this methodology to data collected as part of the FLEHS (Flemish Environment and Health 
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Study) newborn campaigns (Schoeters, Den Hond, et al., 2012). The FLEHS data consists of 
multiple biomarkers, obtained by targeted analysis of cord blood samples collected directly 
after birth in three subsequent campaigns over a 12 year period (Flemish Center of Expertise 
on Environment and Health, 2020; Koppen et al., 2009; Schoeters et al., 2017; Schoeters, Colles, 
et al., 2012; Schoeters, Den Hond, et al., 2012). Time trends of multiple biomarkers across the 
subsequent FLEHS newborn campaigns (Persistent Organic Pollutants (POPs) and metals) 
have been described before, showing varying rates of decline of different biomarker over the 
three campaigns (Schoeters et al., 2017). 
We were particularly interested in the use of network techniques to visualize biomarker 
correlation patterns within each FLEHS campaign. In addition, we explored the stability of 
these networks across sampling campaigns, smoking status during pregnancy, and maternal 
pre-pregnancy BMI using CNA.

MATERIAL AND METHODS

Flemish Environment and Health Study (FLEHS)
In the newborn campaigns of FLEHS, cord blood samples have been collected at three points 
in time, FLEHS I (N=1196): 2002-2004, FLEHS II (N=255): 2008-2009 and FLEHS III (N=281): 2013-
2014. The FLEHS campaigns are conducted in a population sample that is representative 
for the geographical distribution and the population density of the population in Flanders, 
Belgium. A summary of the characteristics of each campaign, including the p-value, is pre-
sented in Table S1 (Supplementary Material). Details of recruitment, sampling, laboratories, 
limits of detection and quality control measures have been reported before (Baeyens et al., 
2014; Den Hond et al., 2009; Schoeters, Den Hond, et al., 2012). Selection of the chemicals was 
based on health and exposure related criteria, and technical criteria, extensively discussed by 
experts as part of the biomonitoring studies (Schoeters et al., 2017). The biomonitoring studies 
were approved by the Ethical Committee of the University of Antwerp (FLEHS I and II) and of 
the University hospital of Antwerp (FLEHS III).

Biomarkers
Chemicals measured in cord blood of newborns were included for analysis if more than 60% 
of the measurements was above the Limit of Detection (LOD). In FLEHS I, seven biomarkers 
fulfilled this requirement: cadmium, lead, p,p’-DDE, HCB, PCB138, PCB153 and PCB180. In FLEHS 
II, twelve biomarkers: cadmium, lead, p,p’-DDE, PCB138, PCB153 and PCB180, arsenic, copper, 
manganese, thallium, PFOS and PFOA. In FLEHS III, nineteen biomarkers fulfilled this require-
ment: all from FLEHS II plus the additional biomarkers: HCB, PCB118, PCB146, PCB170, PCB180, 
PFHXS and PFNA. For the CNA comparisons between the three campaigns six corresponding 
biomarkers were included, and between FLEHS II and III twelve corresponding biomarkers. 
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Imputations and data preparation
Concentrations of biomarkers were natural log transformed because distributions were 
skewed. p,p’-DDE, HCB, and PCB concentrations were expressed as concentrations per gram 
blood lipid and as such corrected for differences in dietary fat intake. Hence it is expected that 
the correlations are independent of blood fat levels (O’Brien et al., 2017). Biomarker values 
below LOD were imputed based on a maximum likelihood estimation via single conditional 
imputation, dependent on observed values for the other biomarkers (Lubin et al., 2004). 
Missing values in biomarkers and determinants (cholesterol, maternal age, maternal pre-preg-
nancy BMI, parity, singleton or multiples, and maternal smoking during pregnancy) were 
imputed by using a single imputation strategy stratified per campaign, using the R package 
mice. Determinants were imputed first, using linear regression for continuous variables, and 
logistic regression for the binary variables. The determinants and observed values were then 
used as prediction matrix for single imputation of the biomarkers (completely missing, e.g. 
due to insufficient blood volume), using linear regression. The geometric mean, minimum 
and maximum (based on imputed data) biomarker concentrations, and percentage of missing 
samples are presented in Table S2 (Supplementary Material). Pearson correlation structures 
between the natural logarithm transformed biomarkers per sampling campaign are presented 
by heatmaps and circos plots in Figure 1 and the Supplementary Material (Figures S1-2).

For comparisons across sampling campaigns, analytical datasets were created in which 
biomarker concentrations were residualized using a linear model incorporating predictors for 
maternal age, pre-pregnancy BMI and maternal smoking during pregnancy, following the cor-
rections described by Schoeters et al. (Schoeters et al., 2017). For comparisons across covariate 
categories of smoking and BMI, analytical datasets of FLEHS III were created. The datasets 
stratified by smoking were adjusted for maternal age and maternal pre-pregnancy BMI; the 
datasets of BMI strata for maternal age and smoking during pregnancy.

Network graph estimation and community detection
We used undirected and unweighted network analysis to describe the conditional independ-
ence between multiple variables, making use of the packages huge and igraph, using R (v3.5.0) 
(Csárdi et al., 2006; Zhao et al., 2012). A node in the network represents a biomarker, and an 
edge reflects conditional dependency given all other variables (Zhao et al., 2012). For com-
parison purposes, weighted network analysis was applied as well, making use of the package 
EGAnet (v0.9.6) (Hudson Golino et al., 2020).

The graph estimation was conducted using the graphical lasso, which involves penalized 
maximum likelihood estimation (Friedman et al., 2008). This method is a simple and fast algo-
rithm for estimation of a sparse inverse covariance matrix using an L1 penalty. The graphical 
lasso cycles through the variables, fitting a modified lasso regression to each variable in turn. 
Regularization of the graph was conducted along a sequence of 10 equally spaced lambdas 
ranging from the maximum lambda (resulting in an empty graph) to the minimum lambda 
set at 10% of the maximum lambda. Optimal lambda selection was conducted using the sta-
bility approach to regularization selection method (StARS) (Liu et al., 2010), which selects the 
optimal lambda by variability across subsamples (Liu et al., 2010). Variability (or instability) 
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across subsamples is defined as the fraction of times (range: 0-0.5) that two graphs disagree 
on the presence of an edge, averaged over all edges in the graphs. We used the default vari-
ability threshold of 0.1. Within the selected network, the walktrap algorithm from the igraph 
package was used, which performs random walks (in default of 4 steps) across the network to 
merge separate communities in a bottom-up manner (Orman et al., 2009; Pons et al., 2005). 
Nodes were colored according to the community they were assigned to. Sensitivity analysis 
was performed by comparing the networks with and without inclusion of the mice imputed 
values (samples missing at random, see table S2 for percentages of missings).

The low-dimensional setting of the FLEHS data also allows for the application of corre-
lation networks. (Yu et al., 2019). We compared our approach to an application of weighted 
correlation networks for the data in FLEHS I, II, and III. Weighted networks were estimated 
by the EGAnet package, this Exploratory Graph Analysis technique was based on the Graph-
ical lasso model and an EBIC tuning parameter of 0.5 was used (Hudson Golino et al., 2020; 
Hudson F. Golino & Demetriou, 2017; Hudson F. Golino & Epskamp, 2017). A parametric boot-
strap (1,000 iterations) was used to estimate the median network structure. Communities in 
the EGA network were estimated using the walktrap algorithm. The weighted network shows 
the strength of the edge (absolute correlation) by thickness of the line, and direction of the 
correlation by color of the line (green for a positive correlation, red for a negative correlation).

Networks were constructed for each measurement campaign separately. Secondly, net-
works were constructed for different strata of the dataset of FLEHS III. Where FLEHS III was 
either split by maternal smoking status during pregnancy (yes n=33; no n=248), or by maternal 
pre-pregnancy BMI category (≤ 25 kg/m² or low-normal n=195; > 25 kg/m². 

Comparative Network Analysis (CNA)
Systematically comparing networks, or CNA, is of interest to assess the impact of covariates on 
networks derived in HBM data. Networks can be compared on their similarities or their dissim-
ilarities. Multiple network comparison methods have been described before, and some can be 
computationally challenging (Emmert-Streib et al., 2016; Tantardini et al., 2019). In this paper, 
we focus on exact graph matching, which involves the exact correspondence between two 
or more graphs with the exact same set of nodes. We call an edge ‘conserved’ if it is present 
in all of the input graphs. The complement of conserved edges is represented in a network 
graph (network of conserved edges). CNA can also assess the presence of edges in network 
B which are not present in network A. These results can be interpreted as ‘additional’ or dif-
ferent edges, and are presented in a network graph as well (network of differential edges). 
The CNA as applied in this paper focusses on differences in network structure, and not on 
differences in the detected communities. To assess the stability of the independently derived 
networks across the FLEHS sampling campaigns we conducted CNA to identify the conserved 
edges between the networks across campaigns. To evaluate the influence of covariates, differ-
ences between derived networks were assessed between the strata: high versus low-normal 
maternal pre-pregnancy BMI, and non-smoking versus smoking during pregnancy. Within 
the deduced conserved and differential networks multiple subnetworks were distinguished, 
within which the walktrap algorithm was applied for community detection (only if the subnet-
work consisted of 6 or more nodes).
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RESULTS

The study population, summary statistics and time trends of individual biomarkers over the 
three sampling campaign have been described previously (Schoeters et al., 2017; Schoeters, 
Den Hond, et al., 2012). An overview of the study characteristics and the concentrations per 
biomarker are presented in Tables S1 and S2.

The FLEHS III dataset consists of nineteen biomarkers, and has been used to illustrate the 
network techniques since it is most data rich. Figure 1 presents the heatmap, correlation globe 
and network for the FLEHS III dataset. For comparison purposes, we present two alternative 
approaches to represent correlation structures in HBM data. In both the heatmap (Figure 1A) 
and the circular correlation globe (Figure 1B) correlation structures become apparent. The 
identification of communities of strongly correlated markers using these visualizations is not 
straight forward as it depends largely on the subjective interpretation of the reader. The heat-
maps and correlation globes for FLEHS I and II are presented in figures S1 and S2 A-B.

Figure 1. Heatmap (A), circular correlation globe (B) and network including community detection (C) of FLEHS III, 
nineteen biomarkers, n=281. Data is corrected for maternal age, smoking during pregnancy and maternal pre-pregnancy 
BMI. The heatmap is based on Pearson correlation between the biomarkers. Within the circular globe each biomarker 
is presented as a color-block on the circular axis. Within the network, each dot or node represents a biomarker, each 
edge represents a connection between the biomarkers, each different color represents a community within a subnetwork.
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Network estimation and community detection
In the obtained network for FLEHS III, three communities were estimated. The markers of HCB, 
arsenic, thallium and lead were not part of a community. A subnetwork consisted of two con-
nected communities, one with PCBs and p,p’-DDE, and one with PFAS (PFOA, PFOS, PFHXS 
and PFNA). The link between the two communities, marker PFNA within the PFOA community 
was connected to PCB138 and PCB153. The other community consisted of cadmium, copper 
and manganese; and was not connected to any other communities. When we compare these 
networks to weighted networks derived in the same data (Figure S4), we observe the same 
communities of PCBs, PFAS and the metals cadmium, copper and manganese. Additionally, 
the metals thallium and lead also form a community. The markers for HCB and arsenic remain 
not part of any community. 

Figure 2. (A) Network based on individuals FLEHS III where the mother did not smoke during pregnancy (n=248), 
(B) and mothers who smoked during pregnancy (n=33). Within both (A) and (B) networks, each dot or node represents 
a biomarker, each edge represents a connection between the biomarkers, the different colors represent a community 
within a subnetwork. (C) Results of the CNA, dissimilar, or additional, edges when the mother smoked during preg-
nancy, only nodes part of a subnetwork are colored in gray. Data is corrected for maternal age and maternal pre-preg-
nancy BMI.

Figure 3. (A) Network based on individuals from FLEHS III split by low-normal maternal pre-pregnancy BMI (BMI 
≤ 25 kg/m², n=195), (B) and high maternal pre-pregnancy BMI (BMI > 25 kg/m², n=86). Within both (A) and (B) 
networks, each dot or node represents a biomarker, each edge represents a connection between the biomarkers, the dif-
ferent colors represent a community within a subnetwork. (C) Results of the CNA, dissimilar, or additional, edges when 
the mother had a high BMI, only nodes part of a subnetwork are colored in gray. Data is corrected for maternal age and 
smoking status during pregnancy.
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The networks of FLEHS I and II are presented in the Supplementary Material (Figures S1-S2 
C). In the network for FLEHS I two subnetworks were estimated, one consisting of cadmium 
and lead, and the other consisting of PCB138/153/180, HCB and p,p’-DDE. In the network for 
FLEHS II four subnetworks were found, of which two were equal to FLEHS III (PCBs and PFAS). 
The community of the metals cadmium and lead was equal to FLEHS I. The weighted network 
for FLEHS I (including walktrap community detection algorithm) the community for the metals 
as the unweighted network (Figure S4). The markers for p,p’-DDE and HCB were estimated as 
a separate community, connected to PCB138/153/180. It can be seen that between the latter 
two communities the edges were strong. Within the weighted network for FLEHS II the exact 
same communities as the unweighted network were estimated (Figure S4). Sensitivity analysis 
was performed by comparing the networks with and without inclusion of the imputed values. 
No differences between those networks were found.

Comparative Network Analysis

Differential networks (smoking during pregnancy)
Figure 2A and 2B present the networks consisting of biomarkers collected during FLEHS III, 
stratified by smoking status during pregnancy. 248 mothers did not smoke during pregnancy 
and 33 mothers did smoke during pregnancy. Equal to the total FLEHS III dataset, two sub-
networks were identified for mothers who did not smoke during pregnancy. The graph of 
non-smoking mothers only differed by the connection of the community PCBs with PFAS, 
PFOS was also linked with the PCB community (Figure 2A). When the mother did smoke during 
pregnancy, three subnetworks were distinguished, one consisting of PCBs without p,p’-DDE, 
one of PFASs, and one with cadmium, copper and manganese. (Figure 2B). Compared to figure 
2A and the network for the total FLEHS III dataset, the network of mothers who smoked had 
no connection between PCBs and PFAS. The results from the CNA presented in Figure 2C show 
one small subnetwork (colored in gray), reflecting the change in connection between PFOS 
and PFOA, that were not connected when the mother did not smoke during pregnancy, while 
they were connected when the mother did smoke. The CNA of the edges only present when 
the mother did not smoke during pregnancy are shown in Figure S5. Here multiple edges 
between PFNA and PCBs, PFOS with PCB118, and p,p’-DDE with multiple PCBs were shown to 
be only estimated within the network of mothers who did not smoke during pregnancy. 

Differential networks (maternal pre-pregnancy BMI)
Figure 3 presents networks consisting of biomarkers collected during FLEHS III, stratified by 
maternal pre-pregnancy BMI. 195 mothers had a low-normal pre-pregnancy BMI, and 86 
mothers a high pre-pregnancy BMI. Within the network of the stratum of mothers with a 
low-normal pre-pregnancy BMI (≤ 25 kg/m²), two subnetworks were identified. The detected 
subnetworks and communities were the same as in the total FLEHS III dataset. The PCB com-
munity was connected to PFAS, and the community of cadmium/copper/manganese was not 
connected to any other (Figure 3A).Within the stratum of mothers with a high pre-pregnancy 
BMI (> 25 kg/m²) only communities for PCBs and PFAS were estimated, which were not con-
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nected (Figure 3B). Also, p,p’-DDE was not part of the PCB community. CNA of the networks, 
presented in Figure 3C, shows the dissimilar edges between the strata. The edges additional 
to the network for mothers with high pre-pregnancy BMI were identified and colored in gray: 
PCB118, PCB170 and PCB180. The CNA results showing edges only present for mother with 
low-normal BMI are shown in Figure S5. Multiple edges between DDE and PCBs were esti-
mated, as well as the edges between manganese, copper and cadmium.

Conserved networks across campaigns
Figure 4A presents the conserved edges across the three networks that were independently 
derived in the FLEHS I, II, and III datasets (containing the 6 biomarkers measured in all three 
campaigns). The individual networks derived on the six biomarkers measured in FLEHS I, 
II, and III are presented in the Supplementary Material (Figure S3). Edges between PCB138, 
PCB153 and PCB180 were seen in all three campaigns. p,p’-DDE, lead and cadmium were not 
included as a subnetwork of this CNA, as these were not consistently correlated across the 
three campaigns. Figure 4B presents the conserved edges based on FLEHS II, and III datasets 
(containing the 12 biomarkers measured in both campaigns). Here, three subnetworks were 
identified: PFOA and PFOS; p,p-‘DDE and PCB138/153/180; manganese and copper. These sub-
networks identified are the biomarkers that were consistently connected in both sampling 
campaigns. Arsenic, cadmium, thallium and lead were not included in any of the subnet-
works, and therefore not connected to the same biomarkers in both FLEHS II and FLEHS III 
networks. 

Figure 4. Results of the CNA across three campaigns (A), or between two campaigns (B). Resulting networks are the 
similar edges, present in either all three, or both, of the networks per FLEHS campaign. (A) Conserved or similar edges 
over all three networks of FLEHS I, II and III, based on six biomarkers. (B) Conserved or similar edges between the two 
networks of FLEHS II and III, based on twelve biomarkers. 
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DISCUSSION

We provide an application of network analysis in HBM data. The primary utility of this work 
is to demonstrate that network methodologies can be used to identify prevalent mixtures 
of chemicals in HBM data. Conditional independence networks provide a data-driven and 
intuitive approach to highlight the presence of highly connected biomarker measurements 
without prior assumptions or groupings, about for example sources, chemical properties, 
pathways or mode of actions. The primary benefit of a network over the heatmap or circos 
plots is the ease of identification, formalization of the procedure to identify communities and 
providing a structural approach for comparison of exposure patterns between datasets or 
across strata within the dataset.

At the same time, some information is potentially lost when describing an HBM dataset 
using conditional independence networks. Heatmaps and circos plots provide information on 
the degree of correlation. As such the applied network methodology is an addition to other 
graphical presentations, not a replacement. The networks as described in the results section 
are based on unweighted edges, which become of more value in high dimensional HBM 
data such as untargeted screening data. Weighted partial correlation networks that include 
information on the degree and direction of association between biomarkers, can provide 
additional information especially when the number of nodes is not too large and a visual 
interpretation can be made (Hudson F. Golino & Epskamp, 2017). In addition to graphical tools, 
approaches such as principal components or cluster analysis (Govarts et al., 2016) can provide 
insight into complex correlation structures in the data, but are often more difficult to digest 
visually, especially in high dimensional settings. 

Network techniques can be used as a first screening technique to assess patterns in mix-
tures exposure biomarker data and comparisons across strata of covariates, to assist exposure 
scientists (pathway, source identification), to assist epidemiologists in taking the communi-
ties into account during data analysis and interpretation, and to guide toxicological mixture 
experiments in identifying real-life mixtures.

Worked example: FLEHS datasets
The application in FLEHS provided some examples of insights that can be acquired by apply-
ing networks in HBM data. The community structures we detected in the FLEHS data are in line 
with earlier findings that groups with similar chemical structures such as PCBs group together 
(Den Hond et al., 2015). As expected based on previous analyses and literature, due to their 
often observed high correlation structure, we observed a PCB community in all derived net-
works, which could be explained by shared sources and similar kinetics (Fisher et al., 2016; 
Govarts et al., 2016; Lee et al., 2017). We also note, however, that sometimes biomarker p,p’-
DDE was included in the ‘PCB community’ highlighting that, when assessing the impact of 
PCBs, one potentially needs to take into account concurrent exposure of p,p’-DDE. This was 
observed in a previous analyses of the FLEHS data (Govarts et al., 2020), where an associa-
tion between p,p’-DDE and birth weight was observed while correcting for PCBs, which was 
not observed in a single pollutant model between p,p’-DDE and birth weight. Such findings 
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underline that assessing health risks of combinations of exposure biomarkers reflects better 
real-world situations and thereby allow more effective risk assessment. Another group of typ-
ically highly correlated compounds, the PFAS, were consistently identified as a community in 
our networks. For the metals the size and composition of the communities varied across the 
FLEHS campaigns, likely reflecting rather dispersed sources of metal exposure. Within some of 
the networks, some biomarkers were not included in a subnetwork (such as HCB in FLEHS III), 
which could be expected since the partial correlation with other biomarkers was very low (no 
links to other markers in the circos plot), indicating different exposure sources and/or kinetics.

The results of the CNA between the three datasets (Figure 4A), show that the association 
of the PCBs with p,p’-DDE is not always based on the same PCB, and therefore doesn’t show as 
a conserved link across all three campaigns. Multiple explanations can be hypothesized, such 
as a change in correlation between source and usage over time, causing a change in correla-
tion. Also, the concentration of DDT/DDE/DDD changes over time (e.g. by regulation), as well 
as the composition of the PCB mixture. The smaller number of samples analyzed in FLEHS II 
and FLEHS III might also mean that there is a larger impact of random variation or error in the 
estimated networks, which would explain the observed variation as well.

As an example, the FLEHS data was stratified by smoking status and pre-pregnancy BMI, 
other strata such as diet (e.g. fish consumption) are also possible. The FLEHS III networks 
stratified by smoking, both had an equal composition of communities. With the difference 
that when the mother smoked during pregnancy, an additional edge between PFOA/PFOS 
was estimated. We could not identify a straightforward explanation for this observation, yet 
potential explanations would include metabolic changes due to smoking behavior, or a co-ex-
posure that occurs only with smoking women (Rovira et al., 2019). Moreover, only 33 mothers 
indicated they smoked during pregnancy, which could indicate reduced statistical power to 
detect true correlations. Also, since this variable indicates if they have ever smoked during 
pregnancy it could be that the actual smoking frequency was rather low as mothers would 
be aware of the bad influence of smoking on their unborn child. In the network derived in 
mothers with high pre-pregnancy BMI we see that the biomarkers form two communities, one 
with all PCBs and one with PFAS. While both communities were connected when the mother 
had a low-normal BMI, which could be explained in differences in diet or other lifestyle factors. 
The results of the CNA between smoking and BMI such as in Figures 2C and 3C give direction in 
thinking about common exposure sources or common exposures due to lifestyle factors (e.g. 
dietary habits, low SES, smoking) that contribute to the correlations patterns in HBM exposure 
biomarkers and will help to prioritize concurrent exposures that could be considered together 
when assessing exposure-effect associations.

In a biomonitoring study with relatively limited number of markers measured, such as the 
FLEHS campaigns, weighted networks can be applied as well. In our application a weighted 
network provided similar insights to our conditional independence method: communities 
overlap between both methods. The only difference in community was thallium and lead in 
the FLEHS III dataset, which had the weakest within-community edge. Most likely the detec-
tion of this community is just above the threshold; it is dropped in the unweighted network as 
a result of the slightly different network estimation. In the weighted networks the edges that 
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connect the communities are clearly less present (thinner) or not present at all. As such there 
was no significant loss of information by choosing for an unweighted network method. In 
high dimensional settings the application of weighted networks might become unwieldy and 
therefore we suggest our method in such settings. 

Limitations
There were several limitations to the application of the network analysis in the FLEHS data. 
First of all, this work is based on a limited set of biomarkers, which reduced the added infor-
mation of the network estimation, but on the other hand presented easily interpretable net-
works. Due to the limited number of biomarkers in FLEHS I and II, it was decided to focus the 
stratification by covariates only on the FLEHS III dataset with nineteen biomarkers. Secondly, 
the amount of observations was limited. For the comparisons of BMI category or smoking 
status the amount of observations in one of the strata was limited (minimum of n=33). Thirdly, 
an underlying assumption of the temporal comparisons between the FLEHS campaigns, is the 
comparability between the campaigns. Analysis of the biomarkers was done by the same lab 
in the subsequent campaigns, and control samples were analyzed to assess the comparability 
of the results. However, different individuals were measured in the different campaigns and 
slight variations in demographics between participants by campaign could result in different 
networks. 

Future extensions
While not opportune in our current dataset, further extensions to the currently described 
methods can be foreseen. For example, rather than focusing on differences in networks across 
covariates, one could focus on differences in communities: Differential Community Detection 
(Mall et al., 2017). Since the amount of different communities per network was limited for the 
FLEHS data, this would not have added much information in the FLEHS datasets, but would 
in high dimensional HBM datasets. Also, the focus on the community differences would be 
important for applications in epidemiology, mixture toxicology, and mixture risk assessment. 
The communities in a network can be considered as starting points for further assessment of 
mixture health effects or in the design of mixture toxicology studies, providing information on 
combined exposures that occur at population level. Mixture risk assessment might indirectly 
use the community information, focusing on a common health effect for all substances in 
the community. Depending on the risk assessment purpose, it might be of use to apply over-
lapping community detection, where one biomarker could be part of multiple communities 
(fuzzy clustering) (Xie et al., 2013). 

The application of weighted correlation networks to the FLEHS data did not yield sub-
stantially differing insights as compared to the results obtained with the application of the 
conditional independence methods. This is likely explained by the strong communities that 
exist in this data and that the correlation matrix is largely positive. However, in other datasets 
of similar dimensions, weighted network approaches can be a useful addition by providing 
more information (degree and direction) on the associations between biomarkers, underlying 
the observed communities. When the number of biomarkers in the dataset increase, the inter-
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pretation of weighted networks is likely to become more challenging, although community 
detection will facilitate interpretation to a great deal. Also, CNA of weighted networks will 
become more challenging, for example inexact graph matching where networks are assessed 
as equal within certain criteria (Tantardini et al., 2019), or where the most important nodes 
and/or edges are extracted (Koutra et al., 2016).

The network approaches presented here will be a worthwhile tool when applied in high 
dimensional HBM datasets. Technological developments are making such datasets increas-
ingly possible by application of methods such as untargeted high resolution mass spectrome-
try (Andra et al., 2017; Pourchet et al., 2020; Vermeulen et al., 2020). The application of network 
analysis could help identifying clusters in the data, including parent compounds and related 
metabolites. Network analysis on high dimensional data has great potential for mixture risk 
assessment to describe the complex exposure patterns, their composition and variability. 
CNA on strata of covariates may identify specific risk groups with particular communities of 
biomarkers of concern. While initial steps have been made towards the risk assessment of 
mixtures, these approaches are often either based on the assessment of chemically related 
compounds (e.g. PCB congeners), or based on toxicology (Boberg et al., 2019; Howdeshell et 
al., 2017; Kienzler et al., 2016), and not on common occurrence and exposure patterns. Insights 
into complex correlation networks in HBM data, and the presence of communities within 
these networks, provide useful information on the presence of mixtures at population level.
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SUPPLEMENTARY MATERIAL

Table S1. Characteristics of the FLEHS newborn campaigns: mean (min-max). P-value was calculated by ANOVA for 
continuous variables, and by Chi-square for categorical outcomes.

Mothers FLEHS I FLEHS II FLEHS III p-value
Number of participants 1196 255 281
Age (years) 29.6 (18.1 – 44.0) 30.3 (18.2 – 42.4) 30.2 (18.9 – 44.8) 0.02
Mean pre-pregnancy BMI (kg/m2) 23.3 (14.0 – 44.6) 23.5 (16.0 – 47.4) 23.9 (15.2 – 45.2) 0.13
Mean duration of pregnancy (weeks) 39 (31-42) 39 (34-42) 39 (35-42) 0.52
Primipari (%) 60.8 39.8 44.8 <0.0001
Smoking during pregnancy (%) 16.2 11.6 11.7 0.06
Never drinking alcohol during pregnancy (%) 91.7 55.5 74.7 <0.0001



38

Chapter 2 • Network Analysis in Flemish General Population

Table S2. Geometric mean exposure concentrations of the biomarkers, based on the data after imputation and fat-cor-
rection, split by measurement campaign. As well as the percentage of missing values per biomarker, the % missing are 
missing at random, e.g. due to laboratory sample loss or insufficient blood volume.

Variable (unit) 
/ Campaign

FLEHS I FLEHS II FLEHS III

Geomean  
(Min - Max)

%  
missing

Geomean  
(Min-Max)

%  
missing

Geomean  
(Min-Max)

%  
missing

Arsenic (As)
(mg/L)

0.55 (0.03;14.40) 2.35 % 0.71 (0.09;19.00) 0 %

Cadmium (Cd)
(mg/L)

0.19 (0.00;13.87) 7.02 % 0.08 (0.01;5.31) 2.35 % 0.02 (0.01;0.10) 0 %

Copper (Cu)
(mg/L)

598.46 (299.0;994.0) 2.35 % 556.79 (310.0;995.0) 0 %

Manganese (Mn)
(mg/L)

31.46 (7.29;80.12) 2.35 % 30.10 (12.46;81.05) 0 %

Lead (Pb)
(mg/L)

13.29 (0.63;177.61) 7.36 % 8.60 (2.40;67.40) 2.35 % 6.44 (1.93;43.92) 0 %

Thallium (Tl)
(ng/L)

16.89 (8.00;41.00) 2.35 % 18.59 (8.73;43.86) 0 %

p.p’-DDE 
(ng/g lipid)

108.16 (6.64;1815.53) 6.86 % 77.04 (9.76;641.08) 0.78 % 59.92 (8.85;903.18) 1.78 %

HCB
(ng/g lipid)

17.63 (0.94;402.07) 12.46 % 11.61 (1.26;72.07) 1.78 %

PCB118  
(ng/g lipid)

3.36 (0.33;15.26) 1.78 %

PCB138 
(ng/g lipid)

14.68 (0.56;156.86) 11.62 % 17.20 (1.68;69.78) 0.78 % 10.31 (1.83;39.68) 1.78 %

PCB146
(ng/g lipid)

1.49 (0.24;6.88) 1.78 %

PCB153
(ng/g lipid)

25.69 (0.93;230.21) 10.70 % 26.77 (4.78;108.89) 0.78 % 16.50 (2.91;53.97) 1.78 %

PCB170
(ng/g lipid)

4.34 (0.57;20.18) 1.78 %

PCB180
(ng/g lipid)

20.41 (1.51;153.13) 10.20 % 15.64 (2.68;70.18) 0.78 % 8.57 (0.99;56.42) 1.78 %

PCB187
(ng/g lipid)

2.39 (0.40;21.10) 1.78 %

PFHXS
(mg/L)

0.36 (0.06;1.33) 4.27 %

PFNA
(mg/L)

0.21 (0.05;1.39) 4.27 %

PFOA
(mg/L)

1.53 (0.50;4.30) 13.73 % 1.19 (0.26;5.87) 4.27 %

PFOS
(mg/L)

2.69 (0.80;17.30) 13.73 % 1.11 (0.13;8.37) 4.27 %
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Figure S1. Heatmap (A), circular correlation globe (B) and network (C) of FLEHS I, seven biomarkers, n=1196. Data 
is corrected for maternal age, smoking during pregnancy and maternal pre-pregnancy BMI. Within the circular globe 
each biomarker is presented as a color-block on the circular axis. Within the network, each dot or node represents a bio-
marker, each edge represents a connection between the biomarkers.
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Figure S2. Heatmap (A), circular correlation globe (B) and network (C) of FLEHS II, twelve biomarkers, n=255. 
Data is corrected for maternal age, smoking during pregnancy and maternal pre-pregnancy BMI. Within the circular 
globe each biomarker is presented as a color-block on the circular axis. Within the network, each dot or node represents 
a biomarker, each edge represents a connection between the biomarkers.
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Figure S3. Networks for each FLEHS sampling campaign, including community detection, with networks consisting 
of six corresponding biomarkers of (from left to right) FLEHS I, II and III (upper panel, 1A, 1B, 1C) and networks of 
twelve corresponding biomarkers of FLEHS II and III (lower panel, 2B, 2C). Each dot or node represents a biomarker, 
each edge represents a connection between the biomarkers. FLEHS I includes 1196 samples, FLEHS II 255 samples and 
FLEHS III 281 samples. The biomarker data is corrected for maternal age, smoking during pregnancy and BMI. In the 
upper panel (1) it can be seen that for the FLEHS I and II datasets two (not connected) subnetworks were estimated, one 
consisting of p,p’-DDE and PCB138/153/180, and the other of cadmium and lead. In FLEHS III a single network is 
estimated. In the lower panel (2) it can be seen that in the FLEHS II data four subnetworks were detected, with thallium, 
copper and manganese in one and cadmium, lead and arsenic in another subnetwork. In the FLEHS III data two sub-
networks were estimated. One of the subnetworks contains two communities: PCB180 and PCB153 versus p,p’-DDE, 
PFOS, PCB138, and PFOA. The other subnetwork contained metals cadmium, lead, copper, thallium, and manganese. 
Arsenic was not included in either subnetwork.
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Figure S4. Weighted networks FLEHS I (A), II (B) and III (C). A parametric bootstrap (1,000 iterations) was used to 
estimate the median network structure. Communities in the EGA network were estimated using the walktrap algorithm. 
Nodes are colored according to the community they belong to.

Figure S5. (A) Results of the CNA, dissimilar, or additional, edges when the mother did not smoke during pregnancy, 
only nodes part of a subnetwork are colored in gray. Data is corrected for maternal age and BMI during pregnancy. (B) 
Results of the CNA, dissimilar, or additional, edges when the mother had a low BMI, only nodes part of a subnetwork are 
colored in gray. Data is corrected for maternal age and smoking status during pregnancy.
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ABSTRACT

Human health risk assessment of chemical mixtures is complex due to the almost infinite 
number of possible combinations of chemicals to which people are exposed to on a daily 
basis. Human biomonitoring (HBM) approaches can provide inter alia information on the 
chemicals that are in our body at one point in time. Network analysis applied to such data may 
provide insight into real-life mixtures by visualizing chemical exposure patterns. The identifi-
cation of groups of more densely correlated biomarkers, so-called “communities”, within these 
networks highlights which combination of substances should be considered in terms of real-
life mixtures to which a population is exposed. We applied network analyses to HBM datasets 
from Belgium, Czech Republic, Germany, and Spain, with the aim to explore its added value 
for exposure and risk assessment. The datasets varied in study population, study design, and 
chemicals analyzed. Sensitivity analysis was performed to address the influence of different 
approaches to standardize for creatinine content of urine. Our approach demonstrates that 
network analysis applied to HBM data of highly varying origin provides useful information 
with regards to the existence of groups of biomarkers that are densely correlated. This infor-
mation is relevant for regulatory risk assessment, as well as for the design of relevant mixture 
exposure experiments.
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INTRODUCTION

Humans are exposed to a myriad of concurrent and protracted environmental, occupational, 
dietary, lifestyle, and consumer product exposures. Due to the (increasingly) large number of 
chemicals present in the environment, exposure and risk assessment of chemical mixtures is 
complex and poses several challenges for scientists, risk assessors, and managers (Drakvik et 
al., 2020; EFSA et al., 2021). Increasing awareness that daily-life exposure involves exposure to 
an almost infinite number of different combinations of chemicals, needing a move beyond 
chemical-by-chemical assessments, has led to a prioritization of chemical mixtures in policy 
and research. 

There is no broadly accepted operational definition of mixtures. The European Commission 
communication on “The combination effects of chemicals—Chemical mixtures” (European 
Commission, 2012) was published in response to a request from the European Parliament for 
the Commission to consider the extent to which the existing legislation “adequately addresses 
risks from exposure to multiple chemicals from different sources and pathways, and on this 
basis considers appropriate modifications, guidelines and assessment methods”. In the com-
munication, mixtures are differentiated as follows: (a) intentional mixtures, i.e., manufactured 
formulated products that are marketed as such; (b) mixtures originating from a single source, 
also known as ‘unintentional mixtures’; and (c) mixtures of chemicals originating from multiple 
sources and through multiple pathways, also known as ‘coincidental mixtures’ (Kienzler et al., 
2016; Rotter et al., 2018).

Intentional, unintentional, and coincidental mixtures can arise from combinations of 
ambient environments and indoor sources, food products or contamination, consumer prod-
ucts, cosmetics, occupational exposures, medication and medical implants, and lifestyle. 
In principle, every single substance, once it enters the body, will exhibit its health effects in 
interaction with a person’s genetic makeup and acquired characteristics, and in concert with 
all other (xenobiotic) substances from previous and simultaneous exposures. These mixtures 
thus form a challenge to (experimental and observational) science, to mechanistic and causal 
assessment of risks, and to regulation of substances and general risk management policies 
(Agier et al., 2016; Barrera-Gómez et al., 2017). In this manuscript, the term ‘mixture’ is used to 
describe any combination of exposure to chemical substances or of exposure biomarkers that 
have been measured in one or more biological matrices of a person during a single time point. 
These biomarkers include both the chemical substances themselves and/or their metabolites.

In the context of the European Joint Programme HBM4EU (hbm4eu.eu) on human bio-
monitoring (HBM), we evaluated existing HBM data using correlation network analysis to iden-
tify real-life exposure patterns to mixtures in the human body. Network analysis is a graphical 
method to visualize correlations between variables in a dataset. The method allows for the 
identification of groups of exposure biomarkers that are more densely related amongst each 
other than with other biomarkers. These groups are referred to as “communities”. Building on 
a successful network analysis exploration based on Flemish data (Ottenbros et al., 2021), we 
further developed and applied network analysis to HBM datasets from Belgium, the Czech 
Republic, Germany, and Spain. The objective was to describe the distribution of (patterns in) 
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biomarkers of exposure and to identify possible determinants that explain observed variation 
of patterns in biomarkers of exposure. For each of the four studies, results of the network 
analyses are shown, and findings are discussed.

MATERIAL AND METHODS 

In this section, we first describe data selection and preparation steps, followed by the charac-
teristics of the four datasets, the statistical descriptives and network analyses. 

Selection of Existing HBM Studies 
With the aim to further explore the added value of network analysis, four HBM studies par-
ticipating in the HBM4EU project were selected. The selection of the studies was based on 
data availability, as well as on availability of appropriate statistical expertise at the respective 
institutes. 

Data Selection and Preparation 
Harmonized data selection and preparation steps were performed with the subsequent 
network analyses in mind. Hence, for each of the studies, the most data-rich subset was 
chosen in terms of the maximum number of biomarkers measured. The data preparation steps 
are described in more detail in Ottenbros et al., 2021. In brief, these involve (a) checking the 
distribution of the variables; (b) transforming the data if needed; (c) imputing the data points 
below the LOD (limit of detection) or LOQ (limit of quantification); (d) correcting for outliers; (e) 
standardizing around zero; and (f) scaling of the data.

Concentrations of biomarkers were natural log transformed because HBM distributions 
are typically skewed. The network analysis makes use of the partial correlation structure. 
Therefore, a strategy for dealing with censored and missing data is required. Thus, an (arbi-
trary) cut-off at a maximum of 40% of HBM levels below LOD/LOQ was applied. Substances 
with more than 40% of the measured HBM values below LOD/LOQ were excluded from 
further analysis. For the included substances, values below LOD/LOQ were imputed based on 
a maximum likelihood estimation via single conditional imputation, dependent on observed 
values for the other biomarkers (Lubin et al., 2004). Missing values in biomarkers (completely 
missing, e.g., due to insufficient sample volume) and determinants were imputed by using 
a single imputation strategy using the R package mice (version 3.15; (Buuren et al., 2011)) in 
R (v3.5.0 or higher). Please refer to the description of the individual studies for details on which 
determinants this strategy was applied to. Determinants (e.g., age, sex, and smoking) were 
imputed first, using linear regression for continuous variables and logistic regression for the 
binary variables. The determinants and observed values were then used as prediction matrix 
for single imputation of those biomarkers that were completely missing, using linear regres-
sion.

For several substances, notably metals, different species were measured. For example, 
for arsenic, data for total arsenic, organic, and inorganic arsenic were available. Additionally, 
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in some studies, the same substance was measured in urine as well as in blood, e.g., lead or 
cadmium. This would lead to relatively high correlations between the different biomarkers for 
the same substance. In terms of combined exposures to chemical substances, such correlations 
do not provide relevant information. Furthermore, it may also affect the partial correlations 
structure with other substances. Therefore, only a single biomarker was selected for inclusion 
in the network analysis; where possible, the biomarker that best reflects the long-term expo-
sure of the individual was selected. Furthermore, metabolites of the large group of phthalates 
were not summed up to their diesters but included in their monoester concentration.

For substances measured in urine, a standardization for creatinine content was performed 
to take into account the dilution level of spot or morning urine samples; the dilution level 
could affect the correlation structure with other substances measured in urine. For lipophilic 
substances measured in blood, blood lipid levels were used to standardize measured blood 
levels. A sensitivity analysis was performed on the German data (see Appendix A), showing the 
results standardized for creatinine or not.

Characteristics of the Four Existing HBM Datasets 

3xG (Belgium)
The 3xG study (Health—Municipalities—Birth, translated from Gezondheid, Gemeenten, 
Geboorten) is a birth cohort study that monitors and promotes health of the inhabitants 
of three bordering rural communities (Dessel, Mol, and Retie) in Flanders, Belgium. This 
study focuses on the effect of the environment and lifestyle on health. This is performed by 
researching 301 growing children from the region and by processing the disease and mortal-
ity registers of the 3 municipalities. The aim of the 3xG study is to follow-up the health and 
development of growing children as a sentinel population and to study the influence of envi-
ronmental exposures via biomonitoring. It is one of the initiatives in the region to positively 
impact the well-being and welfare of the population.

All pregnant women in the region that fulfilled the inclusion criteria and were expected to 
give birth between 2010 and 2015 were invited to participate. In total, 301 mother– newborn 
pairs were obtained. All participants signed an informed consent. Inclusion criteria were to be 
able to fill out a Dutch questionnaire and to live in the recruitment area (Govarts et al., 2020).

All participants agreed to fill in questionnaires during pregnancy and after delivery. 
Socioeconomic characteristics, such as the educational level of the household members, 
smoking habits, information on consumption of local food, and the course of pregnancy, were 
collected. A urine sample was collected in the second trimester of pregnancy. Birth weight, 
length, and head circumference of the baby at birth were collected with consent from the 
mothers. A blood sample of the mother and umbilical cord blood were collected at delivery 
and a questionnaire was filled in by the mothers at the same time point. Since not all biomark-
ers were measured in the same group of participants, we selected the biomarkers that ensure 
a subset with enough participants. Consequently, a subset of 125 mother–child pairs were 
included in the network analysis. Biomarkers included in the network analysis were corrected 
for age (in years), body mass index (BMI), and/or smoking status of the participant. Networks 
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were stratified by education status; low ISCED (International Standard Classification of Educa-
tion) is defined by participants belonging to educational levels 0–4, and high ISCED is defined 
by participants belonging to educational level ≥5.

CELSPAC—FIREexpo (Czech Republic)
The CELSPAC—FIREexpo study, conducted in the Czech Republic, aimed to determine the 
health risks resulting from the occupational exposure of Czech firefighters and to imple-
ment measures to minimize such risks. All participants were males between the age of 18 
and 35 years and non-smokers. All participants expressed and signed their informed consent 
before their participation in the study. The sampling campaign took place from January 2019 
to June 2020. Samples of venous blood and morning urine were collected and analyzed for the 
presence of biomarkers. More information is publicly available on the study website (https://
www.recetox.muni.cz/hear/projects/celspac-fireexpo (accessed on 27 January 2023)) and in 
Řiháčková et al., 2023 Because of the case-control study design, the analysis of the detection 
frequency and the imputation of values <LOQ was carried out separately for the two popula-
tion groups (firefighters and controls); therefore, the list of biomarkers used for the network 
analysis slightly differed between the two groups. The biomarker levels were corrected for 
age (in years) and BMI. Stratification for sex and smoking status was not relevant for this study 
(all participants were male and non-smokers), and data on education level were not collected.

GerES V (Germany)
The German Environmental Survey for Children and Adolescents 2014–2017 (GerES V) is a pop-
ulation-representative cross-sectional study carried out in order to determine the exposure 
to pollutants of the general population in Germany and their sources. GerES V investigated 
children and adolescents by determining, on a representative basis, the body burden of envi-
ronmental pollutants and the exposure to pollutants at home, including HBM samples with 
more than 80 biomarkers. The study was performed in a stratified randomly selected sample 
design. In GerES V, a subsample (n = 2294) of the 3- to 17-year-old participants of the German 
Health Interview and Examination Survey for Children and Adolescents (KiGGS Wave 2) by 
the Robert Koch Institute (RKI; Berlin, Germany) was examined (Mauz et al., 2017; Schulz et al., 
2017). Participants of GerES V from 167 different sampling locations in Germany were visited 
by a trained interviewer, conducting an interview on exposure-relevant behavior and collect-
ing information on the living environment with the participants and their parents or legal 
guardians, and collecting inter alia samples of first-morning void urine and blood. For more 
details on both studies, see Murawski et al., 2020 and Hoffmann et al., 2018.

Different biomarkers were measured in subsets of participants in the nationally repre-
sentative GerES V. To have the maximum number of chemical substances while avoiding high 
proportions of missing data, for the current analyses, data from urinary biomarkers were used 
that were available for a subgroup of GerES V participants (n = 515, aged from 3 to 17 years 
old). This resulted in a set of 51 different chemicals.

Biomarkers included in the networks were corrected for the determinant’s age (in years), 
sex, BMI, smoking status of the participant creatinine, and education of the household (ISCED). 
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Networks were stratified by ISCED, median age, and BMI (each only correcting for the remain-
ing determinants). A sensitivity analysis, using different dilution adjustments of creatinine, was 
conducted.

BIOAMBIENT.ES (Spain) 
The BIOAMBIENT.ES study was designed as a population-based cross-sectional epidemio-
logical study representative of the Spanish workforce, with self-administered questionnaires, 
medical examinations, and collection of biological samples throughout the Spanish territory 
(Pérez-Gómez et al., 2013). The study participants were selected through a stratified sample 
by conglomerates to guarantee the inclusion of all the geographical areas of the territory, 
both sexes, and different sectors of activity (services sector and others). The study population 
includes subjects aged 16 or older, who were residents in Spain for at least 5 years prior to the 
start of the study, and who attended the occupational medical examinations during 2009. The 
fieldwork was conducted between March 2009 and July 2010.

Of the 1,892 participants who constitute the population sample of the BIOAMBIENT.ES 
project, 1,880 subjects provided samples with sufficient whole blood volume, while 1,770 sub-
jects provided valid morning void urine samples (defined by having creatinine levels between 
0.3 and 3 g/L). The epidemiological questionnaire was designed to collect basic individual 
information on sociodemographic data, lifestyle, environmental conditions, and some per-
sonal characteristics. Questions about the frequency of food consumption were also included 
to record habitual diet, as well as about recent illnesses and the use of medications. For the 
purpose of the network analysis, the dataset with the highest number of substances was 
selected, although this reduced the number of participants, since not everyone had all sub-
stances determined.

Statistical Analysis

Descriptive Analysis
The descriptive analysis of the data used for network analysis largely follows the conventions 
developed in HBM4EU’s Work Package on data management and analysis (HBM4EU D10.12; 
www.hbm4eu.eu/work-packages/deliverable-10–12-update-statistical-analysis-plan-for-the-
co-funded-studies-of-wp8/ (accessed on 27 January 2023)). Central tendency and distribu-
tional measures are provided to allow an assessment of the HBM levels observed. Common 
scripts were used to generate the tables presenting descriptive statistics.

Descriptive statistics were calculated using R (v3.5.0 or higher). The number of values and 
missing values, percentage below LOD and LOQ, mean, standard deviation, standard error, 
and geometric mean were calculated using standard R functions. Percentiles (P05 to P95) were 
calculated by means of the quantile function (package stats, version 3.6.2). Descriptive statis-
tics were calculated on the imputed values and standardized for creatinine or blood lipids 
(biomarker measured in urine in the case of creatinine or measured in blood in the case of lipid 
standardization for lipophilic biomarkers). Pearson correlation structures in the datasets were 
computed and displayed using heatmaps.
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Network Analysis
Network analyses were performed as previously described (Ottenbros et al., 2021). After the 
data selection and preparation steps, partners performed the network analysis using uniform 
centrally prepared scripts. Network analysis was used to describe the conditional independ-
ence between multiple variables, making use of the packages huge and igraph, using R (v3.5.0 
or higher) (Csárdi et al., 2006; Zhao et al., 2012). Within these networks, a node or dot repre-
sents a biomarker, and an edge or line between two nodes reflects the conditional depend-
ency between these two biomarkers given all other variables. The output network presents 
unweighted edges, only providing information on whether the edge connecting nodes is 
present or absent, depending on a cut-off value (lambda).

For comparison purposes, weighted network analysis, which is more computationally 
demanding, was applied as well, making use of the package EGAnet (v1.2.3 (Golino et al., 
2020)) (Christensen et al., 2021; Golino et al., 2021). The output weighted network shows the 
strength of the edge by thickness of the line and direction of the correlation by color of the 
line (green for a positive correlation and red for a negative correlation). Both the unweighted 
and weighted networks were estimated using the graphical lasso (GLASSO), which involves 
penalized maximum likelihood estimation (Friedman et al., 2008). This method is a simple and 
fast algorithm for estimation of a sparse inverse covariance matrix using a lambda penalty. 
The GLASSO cycles through the variables, fitting a modified lasso regression to each variable 
in turn. Regularization of the graph was conducted along a sequence of 10 equally spaced 
lambdas ranging from the maximum lambda (resulting in an empty graph) to the minimum 
lambda set at 10% of the maximum lambda.

For the unweighted networks, the optimal lambda selection was conducted using the sta-
bility approach to regularization selection method (StARS), which selects the optimal lambda 
by variability across subsamples (Liu et al., 2010). Variability (or instability) across subsamples 
is defined as the fraction of times (range: 0–0.5) that two graphs disagree on the presence of 
an edge, averaged over all edges in the graphs. We used the default variability threshold of 0.1.

For the weighted networks, the optimal graph from the GLASSO was selected with the 
EBIC tuning parameter (default of 0.5). A parametric bootstrap (1000 iterations) was used to 
estimate the median network structure, which was then plotted as the final result.

On both the weighted and the unweighted networks, the walktrap clustering algorithm 
from the igraph package was used, which performs random walks (using a default of 4 steps) 
across the network to merge nodes to so-called communities in a bottom-up manner (Orman 
et al., 2009; Pons et al., 2005). Nodes were colored according to the community they were 
assigned to. Edges of the unweighted networks linking different communities were colored in 
red, and edges within a community were colored in black. Biomarkers within the same com-
munity were more closely related to one another than to the other measured biomarkers in 
the network. To the degree possible, usage of colors is standardized within each dataset, but 
not across datasets, nor between unweighted and weighted network graphs.
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RESULTS

Descriptive statistics for the Chemical substances Included in the Network Analysis
Table 1 shows an overview of the descriptive statistics for the HBM datasets for those chemicals 
that were measured in more than one country, i.e., the biomarkers for the substances included 
for the network analysis, the matrix in which the biomarkers were measured, their proportions 
below LOD or LOQ, and percentiles and geometric mean of the biomarker concentrations. 
Please note that the concentrations for urinary biomarkers were standardized for creatinine. 
Country-specific descriptive statistics of biomarker levels as used in the network analyses are 
presented in Supplementary Tables S1–S4. The correlation structure between biomarkers is 
graphically represented in the subsequent sections by heatmaps.

3xG (Belgium)
The following substances and substance groups were available in a selected subsample of 
125  participants: metals including cadmium (Cd), nickel (Ni), chromium (Cr), antimony (Sb), 
copper (Cu), thallium (Tl), and lead (Pb), total arsenic (As), hydroxy pyrene (1-PYR), trans-mu-
conic acid (TTMA), phthalates including mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-
5-hydroxy- hexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxo-hexyl) phthalate (5oxo-MEHP), 
mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP), mono-ethyl phthalate (MEP), 
and mono-isobutyl phthalate (MiBP), and bisphenol A (BPA total) were available in morning 
urine (UM) samples of the pregnant mother; musks including tonalide (AHTN) and galaxo-
lide (HHCB) were available in the blood samples (MB) of the mother after delivery; metals 
(cadmium, nickel, chromium, antimony, copper, thallium, managenese, and lead) and arsenic 
were available in cord blood (CB) samples of the newborn; and organochlorine compounds 
(OCs) including polychlorinated biphenyl 138 (PCB128), polychlorinated biphenyl 153 (PCB153), 
polychlorinated biphenyl 180 (PCB180), dichlorodiphenyldichloroethylene (p,p’-DDE), and 
hexachlorobenzene (HCB), and PFASs including perfluorooctane sulfonic acid (PFOS), per-
fluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) were available in cord 
blood plasma (CBP) samples of the newborn.

The descriptive statistics for the biomarkers included in the network analysis are given 
in Supplementary Table S1. Nickel measured in the cord blood of the newborn and HCB and 
PFHxS measured in the cord blood plasma of the newborn show the highest percentage of 
values below LOD/LOQ, being 37%, 24.8%, and 20.8%, respectively. Furthermore, for nickel 
measured in the cord blood of the newborns, the P25 value is under the LOD (Supplementary 
Table S1).

Figure 1  shows the correlation between the biomarkers for the abovementioned sub-
stances. Biomarkers belonging to the same chemical groups show higher correlations, such 
as PCBs, phthalates, PFASs, and heavy metals. Interestingly, specific heavy metals measured 
in the urine of the mother during pregnancy and the cord blood of the newborn during birth 
show low correlations. For example, arsenic and lead show a Pearson correlation of 0.34 and 
0.35, respectively, while other heavy metals do not show any significant correlation. PFASs 
and PCBs also show small positive correlations. Significant negative correlations were not 
observed for any of the biomarkers.
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CELSPAC—FIREexpo (Czech Republic)
In the CELSPAC—FIREexpo study, data for the following substances were used (please note 
that the list of substances in the control group and firefighters might slightly differ due to dif-
ferences in percentage above LOD/LOQ, see Materials and Methods): serum PFASs, i.e., PFPeA, 
PFHxA, PFOA, PFNA, PFDA, PFUnDA, PFBS, PFHxS, PFHpS, and PFOS, and urine OH-PAHs, i.e., 
1-NAPH, 2-NAPH, 2-FLUO, 3-FLUO, ∑(2-PHEN + 3-PHEN), 1-PHEN, 4-PHEN, and 1-PYR.

Supplementary Table S2  shows the descriptive statistics for all biomarkers used in the 
analysis for the firefighters and the control group. The summed exposure to PFASs is signifi-
cantly higher in firefighters than in the control group (Mann–Whitney U test, p < 0.05). When 

Figure 1. 3xG: heatmap showing the Pearson correlations between all creatinine-standardized and lipid-standardized 
measured biomarkers measured in urine and blood, respectively, available for the selected subset of participants. Data 
were corrected for age, BMI, and smoking status of the participants. The matrices in which biomarkers were measured 
are shown between brackets (MB: maternal blood, CB: cord blood, CBP: cord blood plasma, UM: morning urine).
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assessing individual substances, the levels of all measured PFASs are higher in firefighters than 
in the control group, except for PFPeA and PFUnDA. No significant difference was observed 
in the summed exposure levels for OH-PAHs between the firefighters and the control group 
(Mann–Whitney U test,  p  < 0.05); however, the levels of individual OH-PAHs slightly differ 
between the firefighters and the control group (Řiháčková et al., 2023).

Figure 2 shows the correlation heatmap for the biomarkers included for the CELSPAC–
FIREexpo study. The correlations of biomarkers for substances belonging to the same family 
of chemicals are generally higher compared to those that belong to different chemical fam-
ilies. This trend is more prominent in firefighters, where the correlations within a chemical 
family slightly increased, while the correlations between substances from different chemical 
families remained weak (except for the correlation between PFBS and 4-PHEN). In the control 
group, the heatmap was more heterogeneous, and the within-family correlations were slightly 
weaker compared to firefighters, but some moderate correlations were observed for chemi-
cals from different families.

GerES V (Germany)
The following substances were included in first-morning void urine samples in the selected 
subset of 515 participants: cadmium (Cd), chromium (Cr), mercury (Hg), phthalates, DINCH, 
bisphenol A (BPA), polyaromatic hydrocarbons (PAHs), acrylamide, pesticides, aprotic solvents 
(n-ethyl-pyrrolidone; n-methyl-pyrrolidone), UV-filters (benzophenones (BP)), antimony (Sb), 
selenium (Se), parabens, lysmeral (TBBA), and CIT/MIT (methylchloroisothiazolinone/methyli-
sothiazolinone). From the above set, 10 biomarkers were excluded from the network analyses 
because more than 40% of the measurements were below LOQ: phthalate metabolites MnOP, 
MnPeP, MCHP, OH-MPHP, and cx-MPHP; the aprotic solvents metabolite 5-HNEP; the pesti-
cide glyphosate and its metabolite AMPA; and the UV-filter metabolites of BP-1 and BP-3. As a 

Figure 2.  CELSPAC—FIREexpo: heatmap showing the Pearson correlations between serum PFASs and creati-
nine-standardized urinary OH-PAHs for firefighters (left) and the corresponding control group (right). Data were cor-
rected for age and BMI.
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result, a total of 51 biomarkers were included in the analyses (see Table 1 and Table S3). Missing 
data in biomarker data were imputed as described in the Materials and Methods section (Data 
Selection and Preparation).

Supplementary Table S3 shows all substances included for network analyses in GerES V, 
their proportions below LOQ, and percentiles and geometric mean of the creatinine-stand-
ardized biomarker concentrations. Figure 3 shows the correlation heatmap for the biomarkers 
included for GerES V, using data standardized for creatinine and corrected for the determi-
nants age, sex, BMI, smoking status of the participant, and education of the household. The 
heatmap shows mostly positive, small to medium correlations. For example, chromium and 
NMMA show correlations around 0.3 with several metabolites from other substance groups 
such as acrylamide, aprotic solvents, and some phthalates, whereas the lowest correlations 

Figure 3. GerES V: heatmap showing the Pearson correlations between all measured creatinine-standardized biomark-
ers available for the selected subset of participants. Data were corrected for age, sex, body mass index (BMI), smoking 
status of the participant, and education of the household.
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with other substance groups (r ≈ 0–0.27) are observed for phthalate substitute DINCH, arsenic, 
mercury, and parabens. In contrast, correlations between metabolites of the same substance 
showed the highest correlations (up to r ≈ 0.95), e.g., acrylamide and glycidamide, and phtha-
lates and their substitute DINCH and DEHTP.

BIOAMBIENT.ES (Spain)
The selected subset of 163 participants had data on biomarkers for the following substances: 
metals, i.e., mercury (Hg), cadmium (Cd), lead (Pb), thallium (Tl), and cobalt (Co), phthalates 
(DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP, and DiDP), DINCH, and PFASs (PFHxS, PFOA, PFOS, 
PFNA, and PFDA). As a result, a total of 31 biomarkers were included in the analyses. Metals and 
phthalates were measured in valid morning void urine and PFAS in blood. Missing values in 

Figure 4. BIOAMBIENT.ES: heatmap showing the Pearson correlations between all measured creatine-standardized 
biomarkers available for the selected subset of participants. Data were corrected for sex, age, body mass index (BMI) 
and smoking status of the participants.
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biomarker data were imputed as described in the Materials and Methods section. Descriptive 
statistics for this set of biomarkers are shown in Table 1 and Table S4. Figure 4 shows the cor-
relation heatmap for the biomarker included for BIOAMBIENT.ES, using data standardization 
for creatinine and corrected by age, sex, body mass index (BMI), and smoking status of the 
participant. The heatmap showed positive and negative, mainly small to medium correlations. 
The correlation among metabolites of the same group of substances showed higher positive 
correlations, except for metals and some phthalates such as MEP. In addition, some negative 
correlations were observed among PFAS or DINCH, and most of the phthalates. Mercury and 
thallium showed negative correlations with most biomarkers, except for PFAS.

Figure 5. Weighted network for 3xG. The data were corrected for age, smoking, and BMI. Urinary markers were stan-
dardised for creatinine and lipid soluble blood markers were standardised for lipids. Matrices in which biomarkers are 
measured appear between brackets. Green lines represent a positive dependency between nodes (biomarkers) while red 
lines represent a negative dependency.
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Network Analysis
The network analyses produce a graphical representation of the conditional independence 
between the observed biomarker levels. Different colours in the networks indicate the cluster-
ing structure or communities and which biomarkers are more closely related to one another 
compared to the rest of the network. The sensitivity analysis of the networks consisted of two 
parts. The first part comprised a comparison of two weighted network estimation approaches. 
This was performed on the Belgium 3xG data. Secondly, the impact of different approaches on 
correcting biomarker levels against creatinine levels (as a measure for the level of dilution of 
the urine sample) was evaluated using the German GerES V data. The results of both compar-
isons are presented in Appendix A.

3xG (Belgium)
Figure 5 shows the weighted network for the 3xG subset of participants (n = 125). Biomark-
ers measured in urine are standardised for creatinine and lipid-soluble biomarkers in blood 
are standardised for lipids. Nine different communities were identified (represented by the 
different colours), with the strongest relations within the communities (thick lines). Negative 
correlations (red lines) were minimal. Green lines represent positive associations while red 
signify negative associations between biomarker levels. Communities with biomarkers orig-
inating from the same chemical group were detected, such as the musks (HHCB and AHTN, 
community 5 in yellow) or the heavy metals. The heavy metals were, however, split into three 
separate communities (numbers 1, 2, and 7 in Figure 5).

In line with what was observed in the heatmap of 3xG (Figure 1), As and Pb measured in 
the urine of the mother during pregnancy and in the cord blood of the newborn at birth are 
highly related, which is in agreement with previous studies on the migration of hazardous 
heavy metals through the placenta to the fetus (Rísová, 2019; Vahter, 2008). Other interest-
ing communities can be observed in Figure 5. For example, community number 6 shows a 
relationship between total BPA, MEP, and Sb measured in the urine of the mother during 
pregnancy. Both BPA and phthalates have been found in packaging for cosmetic and per-
sonal care products and food packaging materials (Benjamin et al., 2017; Schettler, 2006), and 
the use of make-up has been previously associated with an increase in BPA and MEP in urine 
(Fisher et al., 2019). The relationship between Sb and total BPA could be explained due to their 
presence in plastic containers that leach plasticizers and plastic additives into water or other 
food products (Andra et al., 2013). Interestingly, this association is not seen in Figure 6 in a 
subset of participants with high educational level compared to a subset of participants with 
low educational level, which may be due to the fact that women with a higher educational 
level are more aware of the leaching of chemicals from plastic containers to water or food 
products. The relation of total BPA with MEP was not detected in either network once the 
data was stratified. Overall, the networks observed for the higher educated subset appear to 
be more connected with larger communities, having more (red) connections between nodes 
across communities.
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Figure 6. Unweighted network for 3xG for participants with low educational level (left) and participants with high edu-
cational level (right). The data were corrected for age and BMI. Urinary markers were standardised for creatinine and 
lipid soluble blood markers were standardised for lipids. Low ISCED is defined by participants belonging to educational 
levels 0–4 according to the ISCED (International Standard Classification of Education) and high ISCED is defined by 
participants belonging to educational level ≥5. Black lines indicate dependency between nodes (biomarkers) within a 
community; red lines indicate dependency between nodes in different communities.

Figure 7. Unweighted network for 3xG for participants with a BMI ≤ 25 kg/m2 and participants with a BMI > 25 kg/
m2. The data were corrected for age and smoking. Urinary markers were standardised for creatinine and blood markers 
were standardised for lipids. Black lines indicate dependency between nodes (biomarkers) within a community; red lines 
indicate dependency between nodes in different communities.
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In Figure 5, another interesting community is the one consisting of 1-PYR and MiBP, MnBP, 
and TTMA. The most important route of exposure for 1-PYR is through smoking; however, 
living in a highly polluted environment also has an influence on the 1-PYR levels (Llop et al., 
2008). No common route of exposure for 1-PYR and MiBP has been found in the literature. It is 
intriguing to notice that the link is no longer found in the network for participants with a high 
level of education, but it is conserved in those with a low educational level, as seen in Figure 6. 
Furthermore, we also noticed that the link is no longer conserved in participants with a BMI > 
25 kg/m2 while it is in participants with a BMI ≤ 25 kg/m2 (Figure 7). Figure 7 also shows more 
dependencies in the low BMI category, where all substances are part of a community, with 
some communities comprising multiple chemical families. Additionally, some dependencies 
across communities can be observed. Moreover, we observe again a community of BPA and 
MEP. In contrast, the high BMI category displays smaller communities and many substances 
not part of a community.

Further stratifications were explored in Figure 8 where networks are explored for participants 
with a low fish consumption (less than 1–3 times per week) and relatively high fish consump-
tion (equal or more than 1–3 times per week). While some communities are conserved, such 
as the PFASs, DEHP metabolites, and urinary heavy metals (Cu, Cd, Cr, and Ni), some others 
show slight changes, especially regarding other heavy metals measured in the cord blood of 
the newborn at birth.

CELSPAC—FIREexpo (Czech Republic)
Figure 9 shows the weighted network of the firefighters (n = 52) and the control group (n = 55) 
of the CELSPAC—FIREexpo study. The set of biomarkers differ between the two groups due to 
differences in percentage detected above LOQ (Supplementary Table S2).

In the firefighters’ network, most PFASs and OH-PAHs clustered together in a community 
of the same chemical group. Two communities were created in the PFASs group (numbers 2 
in blue and 4 in orange), and two in the OH-PAHs group (naphthalenes and fluorenes in com-
munity 3 in green, and other OH-PAHs in 1 in red). The exception was PFBS which was strongly 
linked to 4-PHEN, and therefore included in the community of OH-PAHs, rather than PFASs. In 
the control group network, three communities were detected: a community of naphthalenes 
and fluorenes (1, red), a community of seven PFAS (2, blue), and the rest of the compounds 
(other OH-PAHs, PFHxA, and PFPeA in the green community, 3).

In the firefighters’ network, the intra-community links were strong, and there were weak 
inter-community links, resulting in more strictly separated PFASs and OH-PAHs communities, 
while in the control group, more inter-community links were present, resulting in communi-
ties with substances from different chemical families. This might be caused by the firefighting 
occupation being the predominant exposure factor contributing to the PAHs and PFASs expo-
sure in firefighters. In the controls, the levels of PFASs and PAHs are, in general, lower than in 
firefighters and there might not be a predominant exposure source contributing to stronger 
communities of PFASs and PAHs.
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GerES V (Germany)
The weighted network for GerES V, allowing for assessment of the strength of the links between 
substances, is shown in Figure 10. Ten communities were identified. Links were stronger (i.e., 
thicker lines) within substance groups and among metabolites from the same parent com-
pound; the strongest links were observed within acrylamide, aprotic solvents, parabens EP 
and MeP, DINCH, DEHTP, and several phthalates.

Figure 8. 3xG: unweighted network for participants with a low fish consumption (left) and participants with a relatively 
high fish consumption (right). The data were corrected for age and smoking. Urinary markers were standardised for 
creatinine and lipid soluble blood markers were standardised for lipids. Low fish consumption is defined as consumption 
of fish less than 1–3 times per week and high fish consumption is defined as fish consumption of at least 1–3 times per 
week. Black lines indicate dependency between nodes (biomarkers) within a community; red lines indicate dependency 
between nodes in different communities.

Figure 9. Weighted network for CELSPAC—FIREexpo firefighters (left) and the control group (right). The data were 
corrected for age and BMI. Urinary markers (OH-PAHs) were standardized for creatinine. Green lines represent posi-
tive associations while red signify negative associations between biomarker levels.
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Figure 11. Stratification of the network for the GerES V subsample by education (ISCED), using creatinine-standard-
ized and creatinine-adjusted data. Data were corrected for sex, smoking status, age, and BMI. Low ISCED reflects 
educational levels 0–4 from the ISCED (International Standard Classification of Education) and high ISCED reflects 
educational level ≥5. Black lines indicate dependency between nodes (biomarkers) within a community; red lines indi-
cate dependency between nodes in different communities.

Comparison of the two networks stratified by education (Figure 11) revealed more differ-
ences than similarities. Few communities can be identified as similar between both groups, 
namely those of DINCH metabolites (blue), DEHTP metabolites (lavender), and PAHs (green). 
However, even within these communities, some remarkable differences can be observed 
between the groups. In the subset of participants from households with low to medium edu-
cation (left panel), DEHTP co-occurs together with BPA, which is not the case for the higher 

Figure 10. Weighted network for GerES V subsample, using creatinine-standardised and creatinine-adjusted data. 
Data were corrected for age and BMI. Green lines represent a positive dependency between nodes (biomarkers).
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educated subset. Similarly, PAHs co-occur with cadmium and benzene (SPMA) in the lower 
educated subset, while this co-occurrence was not observed for participants with a higher 
level of education. Additionally, the networks for phthalates are different between the groups, 
with the major difference being DEHP: this substance is part of a different community of 
phthalates in each education group. Furthermore, phthalate substitutes are more inter-related 
with communities of phthalates among participants of low to medium educated households 
but occur more distinctly in children and adolescents from higher educated households. In 

Figure 12. Stratification of the network for the GerES V subsample by median age (10 years old), using creatinine-stan-
dardized and creatinine-adjusted data. Data were corrected for sex, smoking status, age, and BMI. Black lines indicate 
dependency between nodes (biomarkers) within a community; red lines indicate dependency between nodes in different 
communities.

Figure 13. Stratification of the network for the GerES V subsample by BMI, using creatinine-standardized and creati-
nine-adjusted data. Data were corrected for sex, smoking status, age, and BMI. Black lines indicate dependency between 
nodes (biomarkers) within a community; red lines indicate dependency between nodes in different communities.
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contrast to the 3xG observation, in GerES V, connections between nodes across communities 
are more prominent in the lower education group.

Figure 12 shows stratified networks by the median age of the GerES V subset, which was 
10 years. Both children older than 10 and 10 years old and younger show a community each 
for PAHs (light pink), two aprotic solvents (HNMP and HMSI, green), and DEHTP (light blue) 
metabolites. Interestingly, DINCH forms a community with NMMA and elements selenium 
and chromium (salmon) in younger but not older children in which each element and DINCH 
belong to three separate communities. In addition, the parabens—a sometimes observed 
standalone community—form their community with TBBA in the younger group.

When comparing participants with a BMI ≤ 25 lower versus participants with a BMI > 
25  (Figure 13), we observed that for participants with a higher BMI (right panel), communi-
ties are more likely to include substances from other substance groups or substances which 
usually stand alone. For example, the PAHs community includes in addition SPMA (salmon), 
the phthalate community of DnBP and DiBP co-occurs with mercury (blue), the phthalate com-
munity of DiNP, DEHP, DiDP, and BBzP co-occurs with BPA, and DINCH metabolites co-occur 
with chromium.

BIOAMBIENT (Spain)
Figure 14 shows the weighted network for the BIOAMBIENT.ES dataset (n = 163). The graph 
shows seven communities, with mostly positive dependencies between substances. As in the 
other studies, the strongest dependencies were observed in communities of substances from 
the same chemical family. Nonetheless, in addition to communities from the same chemical 
family, dependencies across chemical families were also observed. For example, the PFAS form 
one community, together with mercury (Hg) through a link to PFOS. Several metals form a 
community with phthalates (community 1). Correlations across communities also exist, e.g., 
lead (Pb) with PFAS.

Figure 14. Weighted network for BIOAMBIENT.ES subsample, using creatinine-standardised and creatinine-ad-
justed data. Data were corrected for sex, smoking status, age, and BMI. Green lines represent positive associations; red 
lines signify negative associations between biomarker levels.
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Figure 14 also shows separate grouping within parent compounds in the case of phtha-
lates: DiBP metabolites (MiBP and OH-MiBP), DEHP metabolites (MEHP, OH-MEHP, oxo-MEHP, 
and cx-MEPP), DiNP metabolites (OH-MiNP, oxo-MiNP, and cx-MiNP), and DiDP metabolites 
(OH-MiDP, oxo-MIDP, and cx-MIDP). However, for DnBP, two metabolites (MnBP and OH-MnBP) 
grouped together, whereas MCPP was grouped together with the DiNP metabolites showing 
strong links to cx-MiNP.

Figure 15. Stratification of the network for the BIOAMBIENT.ES dataset by education (ISCED level), using creati-
nine-standardized data. Low ISCED (left panel) is defined by participants belonging to educational levels 0–4 accord-
ing to the ISCED (International Standard Classification of Education) and high ISCED (right panel) is defined by 
participants belonging to educational level ≥5. Data were corrected for sex, smoking status, age, and BMI. Black lines 
indicate dependency between nodes (biomarkers) within a community; red lines indicate dependency between nodes in 
different communities.

Figure 16. Stratification of the network for the BIOAMBIENT.ES subsample by BMI, using creatinine-standardized 
data. Unweighted network for participants with a normal weight (defined as BMI ≤ 25) is shown in the left panel, while 
the network for participants with overweight (BMI > 25) is shown in the right panel. Data were corrected for sex, smok-
ing status, age, and BMI. Black lines indicate dependency between nodes (biomarkers) within a community; red lines 
indicate dependency between nodes in different communities.
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We performed stratified unweighted network analysis for relevant determinants, 
including educational level (ISCED), BMI, and fish consumption. The networks identified 
with unweighted analysis showed fewer communities than the weighted network, possibly 
because of the smaller number of observations within strata (Figures 15–17). Here, metals tend 
to appear as standalone compounds, DINCH metabolites form a distinct community, as gener-
ally so do PFAS metabolites and phthalates metabolites (two main big communities plus MEP). 
Communities of these two latter substance groups present some differences depending on 
the stratification. MEP, a metabolite of the phthalate substance DEP, always appears separate 
from other phthalates and substances.

Figure 15 shows the stratified networks by education level. We found differences in the 
dependencies amongst PFASs, which appear as standalone substances in the lower education 
group (left panel), whereas PFOA–PFNA–PFDA form a community in the high ISCED group 
(right panel). For phthalates, in the lower ISCED level, each substance appears in a separate 
community, with the exception of MCPP, a metabolite of DnBP, which, as seen earlier, appears 
in the same community as the metabolites of DiNP. In contrast, in the high ISCED group, there 
are two main communities showing dependencies between them. Similar to the GerES V 
study, the community of DINCH metabolites was not different between the groups.

In the stratification by BMI (Figure 16), we observed that for participants with lower BMI 
(BMI < 25), mercury is included in DEHP, DiNP, and DiDP community, whereas in the high BMI 
group (BMI ≥ 25), mercury and OH-MnBP form a separate community.

When evaluating the effect of fish consumption (Figure 17), we observed communities, 
mainly comprising substances from a single chemical family, in both groups. In participants 
with a relatively low fish consumption, MCPP – OH-MnBP and MMP – Co were grouped in 
independent communities.

Figure 17. BIOAMBIENT.ES: unweighted network for participants with a low fish consumption (left) and partici-
pants with a relatively high fish consumption (right), using creatinine-standardized data. The data were corrected for 
age and smoking. Low fish consumption is defined as consumption of fish less than 1–3 times per week and high fish 
consumption is defined as fish consumption of at least 1–3 times per week. Black lines indicate dependency between nodes 
(biomarkers) within a community; red lines indicate dependency between nodes in different communities.
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DISCUSSION

In this study, we applied network analysis to HBM datasets from Belgium, Czech Republic, 
Germany, and Spain, with the aim to further explore its added value for mixture risk assess-
ment. The network approach combined with a clustering algorithm (community detection) 
proved to be an intuitive graphical manner to describe the correlation structure in a dataset, 
taking into account all exposure markers in the mixture. Application of the network analysis in 
this study revealed some new insights in inter-dependencies within each dataset. Importantly, 
pan-European application of these methods and their interpretation would require harmoni-
zation across Europe in terms of study design, biomarker media, chemical analysis, and the 
substances that are assessed. Overall, the four studies yielded diverse correlations, with more 
positive than negative associations (Figure 1, Figure 2, Figure 3 and Figure 4). With the excep-
tion of parent–metabolite relations, correlations were generally below 0.8, while negative cor-
relations were generally below 0.3. It should be noted that in this study, the focus was rather 
on the dependencies between biomarkers (correlation structure), and not so much on the 
absolute levels of exposure. Nonetheless, when interpreting differences or commonalities in 
community patterns across studies, one should be aware that sometimes marked differences 
exist between studies in biomarker levels, sometimes up to one or two orders of magnitude. 
These may reflect differences in study population, in design, chemical analytical procedures, 
and actual differences in exposure patterns between study populations. In case the output 
should be used for prioritizing mixtures of concern, of course the absolute levels should be 
considered as well.

The network analysis identified in all four studies, as expected, several communities of 
chemical families, e.g., phthalates and PAHs. Additionally, links between parent substances and 
metabolites were observed, e.g., for acrylamide and glycidamide. However, also exposure pat-
terns involving substances from different chemical families were observed. Examples include 
the dependency between 1-PYR (biomarker for PAHs), TTMA (biomarker for benzene), and the 
phthalates MiBP and MnBP in the 3xG study, and the dependency between acrylamide, its 
metabolite glycidamide, SPMA (biomarker for benzene), and aprotic solvents (NMMA, HNMP, 
and HMSI) in the GerEs V study. In the CELSPAC—FIREexpo study, the network analysis revealed 
both positive (e.g., 4-PHEN and PFBS in firefighters) and negative (e.g., 4-PHEN and PFPeA in 
controls) dependencies between PAHs and PFASs. Such communities, comprising substances 
from different chemical families, possibly reflect a commonality in exposure patterns and thus 
reflect real-life mixture patterns. The communities observed may also be impacted by simi-
larities in physicochemical properties of the substances involved. Our findings also show that 
in the German and Spanish data, metals (e.g., arsenic and mercury) were not always part of 
communities, in contrast to the Belgian data. Additionally, in the German weighted network 
(Figure 10), BPA was not part of a community, while a relatively strong correlation between 
BPA and MEP was observed in the Belgian weighted network (Figure 5). In contrast to the 
mostly positive links observed in the weighted networks in the three larger studies, in the 
smaller CELSPAC-FIREexpo control group network, a negative dependency could be observed 
(between 4-PHEN and PFPeA).
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The unweighted network analysis stratified by covariates demonstrated differences in 
the community patterns. These may reflect differences in exposure patterns and pathways 
between strata, although no clear interpretation can be given at this point. The differences 
between strata may also reflect some sample differences between strata. The stratified 
unweighted networks also show many dependencies across communities, as indicated by the 
red lines in the graphs. Even though the unweighted network analysis showed differences 
between strata, no obvious immediate clues about sources or exposure pathways were 
observed. Nonetheless, the communities in the network analysis may hold some indications 
about relevant exposure routes. For example, the community of parabens (MeP and EP), pre-
servatives in cosmetics, with lysmeral (TBBA), a fragrance in cosmetics, in the German network 
results would point at the role of cosmetics.

The above (and other) differences between studies may deserve further investigation; 
however, we here explicitly abstain from doing so because of the differences in study designs. 
Firstly, the populations sampled highly differ across the four studies. The German study 
focused on exposure in adolescents, the Spanish study on subjects aged 16 or over, while the 
Belgian study combined data from mothers and newborns, with different time points of sam-
pling, and the Czech study focused on occupational exposure in firefighters. Additionally, the 
biomarkers, and thus the substances, included in the four studies vary. The same applies to the 
matrices in which biomarkers were determined: in the German study, only urine samples were 
used, while in the other three studies also blood samples were included. Hence, differences 
observed between the studies may stem not only from differences in exposure patterns, but 
also from differences in various aspects of the study designs. For a better interpretation of 
cross-country differences, a harmonized sample collection and laboratory analysis would be 
beneficial.

The analyses applied comprised both weighted and unweighted network analyses. 
The weighted and unweighted network analyses yielded generally similar results (data not 
shown). While weighted network analysis is more computationally intensive and less fit for 
high dimensional data in comparison to the unweighted networks, a clear advantage is the 
indication of the relative strength of the links and the direction of the association (Horvath, 
2011). For a comparison between determinants within a study, only unweighted networks 
were used for their ease in interpretation (occurring or not-occurring edges between the 
biomarkers). Future work could also include a comparison between determinants based on 
weighted correlation networks.

The results of our study clearly show that network methods become more informative 
when biomarkers for a larger number of substances are included in the HBM dataset, as 
demonstrated, e.g., by the findings for the GerES V study versus the CELSPAC—FIREexpo study. 
Existing HBM studies typically have a limited number of individuals in which a wide range of 
chemical substances has been measured. This hampers the potential to identify patterns of 
chemical mixtures, and even more so to study the role of determinants, with fewer observa-
tions per stratum. For future studies, we therefore recommend to expand, where possible, the 
number of observations with a wide(r) range of chemicals, to improve the ability to identify 
real-life mixtures and to study determinants of the patterns observed.
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Regarding the methodology applied, some aspects certainly deserve further improve-
ment. Firstly, better insight into the stability and consistency of the identified networks and 
communities is needed (Bodinier et al., 2021). Further work should also include characterization 
of the uncertainty in the networks, and the decision for the community detection algorithm 
(Orman et al., 2009). Better insight into aspects such as the impact of measurement errors on 
the networks and communities identified will enhance the appreciation of the possibilities 
and limitations of network analysis of HBM data for mixture risk assessment. This is crucial for 
its acceptance and implementation in regulatory risk assessment. Further work should also be 
conducted on the interpretation of the communities and the possible impact for regulatory 
risk assessment. We consider it crucial to take into account the toxicological properties and 
mechanisms of the chemical substances included in a community, because this may indicate 
which communities might be of more toxicological concern compared to others. Furthermore, 
in cases where chemicals from different families appear together in the same community, the 
different families may fall under different legislations and/or regulations. Such a situation 
would give rise to the question of how to deal with this in regulatory risk assessment.

Taken together, our study demonstrates that network analysis of HBM data allows for the 
identification of real-life exposure patterns to chemical mixtures occurring at a single point 
in time in the human body. Network analysis can be a good addition to other data explora-
tive methods, such as heatmaps or principal component analysis. The derived networks and 
accompanying communities should, therefore, not replace existing methods, but rather com-
plement and assist researchers in the description of complex mixtures in HBM data.

Graphical visualization of the networks and communities identified greatly aids the inter-
pretation of the output. Weighted network analysis reveals the strength and direction of the 
links between substances identified as co-occurring, while stratification provides insight into 
the impact of determinants on the exposure patterns. These features make network analysis 
of HBM data a useful, valuable tool for mixture risk assessment.
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Figure A1. Weighted network for 3xG using the graphical lasso method. Data were corrected for age, smoking, and BMI. 
Urinary markers were standardized for creatinine; lipid soluble blood markers were standardized for lipids. Matrices 
in which biomarkers are measured appear between brackets. Green lines represent a positive dependency between nodes 
(biomarkers) while red lines represent a negative dependency.

Figure A2. Weighted network for 3xG using the graphical lasso method with bootstrap of 80 iterations. Data were cor-
rected for age, smoking, and BMI. Urinary markers were standardised for creatinine; lipid soluble blood markers were 
standardised for lipids. Matrices in which biomarkers are measured appear between brackets. Green lines represent a 
positive dependency between nodes (biomarkers) while red lines represent a negative dependency.
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SUPPLEMENTARY MATERIAL

Appendix A

Comparison of the Two Unweighted and Weighted Network Estimation Approaches
Two methods to visualize weighted networks were explored with the R Package EGAnet 
(v1.2.3 (Golino et al., 2020)). For the first method, the EGA() function was applied to the corre-
lation matrix of the data. This function estimates the number of dimensions of the correlation 
matrix using graphical lasso with extended Bayesian information criterion to select optimal 
regularization parameters. Figure A1 shows the resulting weighted network from this method.

The second method uses the function bootEGA() from the EGAnet R package which estimates 
the number of dimensions of n bootstraps using the empirical (partial) correlation matrix 
(parametric) or resampling from the empirical dataset (non-parametric). It also estimates a 
typical median network structure, which is formed by the median or mean pairwise (partial) 
correlations over the n bootstraps. Here, a parametric bootstrap (1000 iterations) was used to 
estimate the median network structure, which was then plotted as the final result (shown in 
Figure A2).

Networks obtained using the two different methods maintain the communities constituted by 
PFASs, PCBS with HCB and p,p’-DDE, DEHP metabolites, and DiBP metabolites with 1-PYR. The 
network of MEP and BPA total is conserved; however, Sb is included in the bootstrap network, 
while in the GLASSO network, it constitutes its own community. The composition of other, 
less strong communities seems to vary slightly between the two methods; nevertheless, the 
overall relationships do not seem to differ heavily between the two approaches.

Impact of Different Approaches to Correcting Biomarker Levels Against Creatinine Levels
The impact of different approaches for standardisation of creatinine (or lack thereof) in 
the network analyses was studied in the GerES V sample (Figures A3–A5) with networks as 
described above (using a parametric bootstrap of 1000 iterations). We distinguished between 
the following terms when taking into account dilution. ‘Standardisation’ means that each indi-
vidual’s raw concentration for the biomarkers studied is divided by its individual dilution level 
(e.g., creatinine). ‘Adjustment’ for dilution reflects that the dilution was included as a control 
variable into multivariate regression (see also (Horvath, 2011)). Finally, ‘correction’ is used as 
the general term of taking into account dilution levels as standardisation, adjustment, or the 
combination of both. To illustrate the effect of correction of urinary dilution with creatinine, 
Figure A3 shows the resulting communities when standardising raw concentrations for creati-
nine and adjusting for creatinine in multivariate analyses (recommended by HBM4EU). A total 
of eight communities containing three or more substances was observed. The communities 
are grouped into DINCH metabolites (yellow), PAHs (green), parabens and TBBA (salmon), 
acrylamide and SPMA (plum), DEHTP metabolites (blue), aprotic solvent HNMP, NMMA, and 
acrylamide (plum), selenium, chromium, antimony, and aprotic solvent HMSI (lavender), and 
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Figure A4. Network of GerES V subset, using creatinine-standardised data. Black lines indicate dependency between 
nodes (biomarkers) within a community; red lines indicate dependency between nodes in different communities.

Figure A3. Network of GerES V subset, using creatinine-standardised and creatinine-adjusted data. Black lines indi-
cate dependency between nodes (biomarkers) within a community; red lines indicate dependency between nodes in dif-
ferent communities.
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two communities of phthalate metabolites. Among the phthalate communities, MMP co-oc-
curs together with BBzP, and DnBP and DiBP metabolites (grey), and DEHP metabolites co-oc-
cur with DPHP, and DiNP and DiDP metabolites (blue). Several substances were not part of any 
community, such as some elements (mercury, arsenic, and cadmium), BPA, and the phthalate 
MEP.

The differences between the network obtained using creatinine-standardised and creati-
nine-adjusted data (Figure A3) versus using only creatinine-standardised data (Figure A4) are 
limited. The major differences include an additional community (comprising mercury and 
arsenic), and the split of the community that consists of acrylamide, aprotic solvents, selenium, 
chromium, antimony, NMMA, and SPMA into two different communities (plum and yellow in 
Figure A4). However, not correcting for creatinine in any form results in considerably different 
communities. As can be seen in Figure A5, three heavily inter-related communities (green, 
pink, and grey) mask the detailed communities detected in the network when standardis-
ing and adjusting for creatinine, possibly due to a similar degree of dilution being reflected 
in stronger correlations. These findings indicate that it is important to correct for creatinine 
when aiming at analysing mixtures and at least to standardise the biomarker concentrations 
for this parameter; nevertheless, this needs to be confirmed by further studies. In conclusion, 
not correcting for dilution effects may create spurious results. The two methods for correction 
for dilution effects showed little difference.

Figure A5. Network of GerES V subset, without application of any correction for creatinine. Black lines indicate depen-
dency between nodes (biomarkers) within a community; red lines indicate dependency between nodes in different com-
munities.
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Chapter 4 • Pesticide characterization in silicone wristbands

ABSTRACT

Public health concerns exist regarding pesticide exposure of residents living near agricultural 
fields. Still, knowledge is limited in part due to the difficulties of assessing cumulative personal 
exposure to pesticides over time. Silicone wristbands are a low-cost and non-invasive passive 
sampling tool to assess exposure to multiple pesticides over time.

In this study, 19 residents living close to flower bulb fields in the Netherlands wore wristbands 
for an average of 60 days (range: 38-155). 31 different pesticides were quantified in the wrist-
bands via liquid chromatography with tandem mass spectrometry (LC-MS/MS). Pesticides 
were categorized by application status: 1) applied during the course of the study, 2) registered 
for usage on flower bulbs but not applied, 3) not applied and not registered. 

Measured concentrations reflected long-term, highly individualized exposure profiles. The 
minimum number of pesticides that were detected in a wristband was 6, with an average of 19 
(maximum: 31). Azoxystrobin, carbendazim and pymetrozine were detected in all wristbands. 
While carbendazim was not authorized for agricultural spraying, it is an environmental degra-
dation product of thiophanate-methyl (authorized at that time). No distinction could be made 
between days of wearing, vapor pressure and soil half-life of the pesticides.

Wristbands efficiently assessed pesticide mixture exposure profiles. The co-occurrence of pes-
ticides in the wristbands allowed the identification of realistic chemical mixtures in residents 
living near agricultural fields. This study demonstrates the potential of wristbands to assess a 
large number of pesticides over a long period of time, informing future toxicology and expo-
sure studies. 
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INTRODUCTION 

Exposure characterization and quantification of pesticides among residents living close to 
agricultural fields remains of great interest, mostly due to a large amount of different com-
pounds available on the market, but also due to their potential health effects (Dereumeaux 
et al., 2020). In the Netherlands, a recent study showed that homes close to flower bulb fields 
have increased pesticide concentrations in dust and air (Figueiredo et al., 2022; Oerlemans 
et al., 2021). These findings, however, are limited by the measurement period and don’t nec-
essarily reflect long-term personal exposure. Characterization of exposure through human 
biomonitoring is also limited, mainly due to personal variability, rapid excretion, metabolism 
and analytical challenges to reliably quantify a large variety of pesticides. On the other hand, 
silicone wristbands provide a possible solution to measure personal pesticide exposures, with 
the applicability to measure large numbers of pesticides over longer periods of time (Dixon et 
al., 2019; Doherty et al., 2021). Wristbands are passive samplers with low-impact and low-costs, 
and can be used for long-term personal exposure assessments in the general population 
(O’Connell et al., 2014). While most studies have a maximum wearing time of 30 days (Samon et 
al., 2022), for this study, the wristbands were worn for longer periods (average 60 days). Wrist-
bands will continuously bind and sequester pesticides, providing a time-weighted average 
during the time of wearing (Dixon et al., 2020). This allows for detection of less often applied 
pesticides and provides aggregated cumulative exposure estimates. This study describes 
exposure to a wide range of pesticides measured by silicone wristbands, providing insight in 
the applicability of using wristbands for pesticide mixture exposure assessment.

MATERIAL AND METHODS

Sample collection
In the previously described OBO study (Figueiredo et al., 2021), exposure to pesticides among 
residents living close to flower bulb fields was measured via different sampling methods (a.o. 
active air sampling, biomonitoring/urine, collection of dust samples). Samples were collected 
through different measurement campaigns and linked to the actual spraying activities of the 
farmer. 

Silicone wristband samplers were worn by a subgroup of the OBO participants to pas-
sively measure personal exposure between measurement campaigns. Subjects participated 
voluntarily. Wristbands were worn continuously by 20 participants (even during showering 
and sleeping) between two measurement campaigns (between non-spraying and spraying 
season) from January to October 2017, on average for 60 days. One participant was a farmer by 
profession and was excluded from further comparisons.

Pesticide analyses
Pesticide compounds were extracted from the silicone wristbands using acetonitrile (about 
200 hours), the pesticide analyses were performed with LC-MS/MS. Exact analyses steps and 
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details are provided in Supplementary Info 1. The detected concentrations ranged from 0.27-
414 ng/g. The list of pesticide compounds analyzed (n=46) is the same as those measured in 
vacuum floor dust (VFD), described previously in Figueiredo et al., 2022.

Statistical analyses
The log10 transformed concentrations detected in the wristbands were presented in a 
heatmap (Gu et al., 2016), sorted by actual application of the pesticides in that area and the kg 
of pesticide/year used in 2016 in the Netherlands (Gu et al., 2016). The participants were sorted 
by the percentage of crops within a 250-meter buffer around their household.

Wristbands were compared to VFD samples from the same study, taken at the beginning 
and end of wearing the wristbands (Figueiredo et al., 2022). For 8 participants, both measure-
ment types were collected, and possible trends were explored graphically.

For pesticides detected in at least 8 participants (42%), data below the limit of detection 
was imputed, using the same approach as in Figueiredo et al., 2022. Imputed data was only 
used to graphically explore patterns with days of wearing, vapor pressure, and chemical soil 
half-life. 

All data analyses were performed using R, version 4.2.1.

RESULTS

A total of 19 participants wore the wristbands for an average of 60 days (range: 38-155). These 
participants came from 15 different households, which were located on average 117 (range: 
24-236) meters from the nearest flower bulb field (Table S1). The majority (63%) was female, 
and the mean age was 58 years (range: 24-73). 

The 46 different pesticides measured in the wristbands are listed in Figure 1 and Table S2. 
Figure 1 shows the log10-transformed concentrations of all pesticides per wristband/partic-
ipant, sorted by application and kg used in 2016. The application of pesticides was divided 
into three categories: 1) applied on the OBO flower bulb fields during the course of the study, 
2) registered for usage on flower bulbs but not applied during the course of the study, 3) not 
applied and not registered for use in flower bulb industry. 

In each wristband at least 6 different pesticides were detected, with an average of 19 and 
maximum of 31 pesticides. In general, participants with a larger crop area around their house 
had more pesticides detected in their wristband, with the exception of ID 4. Consistencies 
between participants from the same household (IDs 1:2, 6:7, 10:11 and 13:14) were low with 
intraclass correlations below 0.2.

The pesticides azoxystrobin, carbendazim and pymetrozine were detected in all 19 wrist-
bands. These three together with chlorpropham and sulcotrione had the highest concentra-
tions detected. Carbendazim and sulcotrine were not applied on flower bulb field during the 
course of the study. Others frequently detected (>70%) but not reported to be sprayed were 
imidacloprid, fludioxonil, and terbuthylazine (plus the latter two were not registered for use 
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in bulb fields). Metamitron-desamino, prothioconazole, asulam, trifloxystrobin, spirotetra-
mat-enol, propamocarb and thiophanate-methyl were not detected at all, although all of them 
were registered for use in the flower bulb industry (latter two not applied during the study).

The least frequently detected pesticides (of those reported to have been sprayed) were 
also used in smaller quantities per year (kg in the Netherlands), except for pymetrozine and 
mepanipyrim. While for the pesticides not registered for use, the most frequently detected 
were the ones applied in the smallest quantities in the Netherlands (kg/year).

A graphical comparison was made between VFD and wristband samples originating from the 
same household (maximum n=8, Figure S4). Overall, no clear pattern was seen between both 
measurement types, likely due to the low number of pairs.

The wristband concentrations versus the days of wearing did not show a clear pattern across 
all pesticides (Figure S1). Similarly, no clear pattern was seen in relation to the vapor pressure 
per pesticide and the soil half-life per pesticide (Figures S2-S3).

DISCUSSION AND CONCLUSION

Silicone wristbands were worn to detect a wide range of pesticides among individuals living 
near flower bulb fields in the Netherlands, providing a quantitative insight in the mixture of 
pesticides. While this study is limited by the number of wristbands, we were able to quantify a 
large set of pesticides. In total 31 out of 46 measured pesticides were detected.

Carbendazim was one of the pesticides, that although not applied, was frequently detected. 
Carbendazim was also frequently detected in dust, handwipes and urine samples from the 
OBO study (Figueiredo et al., 2022; Oerlemans et al., 2021). Carbendazim is the environmental 
degradation product from thiophanate-methyl, which could explain the measured concen-
trations, since thiophanate-methyl rapidly transforms and was not detected at all in the wrist-
bands.

Like wristbands, VFD reflects more long-term exposure (Samon et al., 2022). Two pesticides 
were frequently detected in the wristbands, but not in VFD samples (Figueiredo et al., 2022): 
fludioxonil (fungicide) and terbuthylazine (herbicide). A possible hypothesis is exposure 
caused by field applications (long-range transport). When comparing wristbands with VFD 
data of the entire OBO study (Figueiredo et al., 2022), six pesticides were frequently detected 
in both matrices: pendimethalin, S-metalochlor, azoxystrobin, prothioconazole-desthio, 
tebuconazole, boscalid. A more in-depth exploration of differences between the exposure 
matrices would require more samples per household.

This study describes the exposure profile over a long-period of time (average of 60 days), in 
between seasons (spraying and non-spraying) of the OBO study (Figueiredo et al., 2021). This 
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measure provides an aggregated exposure level and cannot distinguish on which day the 
actual exposure took place. In literature wearing periods of maximum one month (typically 
a few days) have been reported (Samon et al., 2022). These differences in wearing time would 
require further analyses per compound (e.g. when equilibrium was reached). The variation 
between household members in our study was high, however due to a lack of statistical power 
we could not explore the drivers of these differences.

Other wristband exposure studies also detected highly individual exposure profiles (Dixon et 
al., 2019; Fuhrimann et al., 2022). The longer period of wearing in our study could have resulted 
in more pesticides per wristband (at least 6 pesticides detected in 100% of the samples), 
compared to another study in agricultural areas in South Africa (at least 2, detected in 92%) 
(Fuhrimann et al., 2022). Here, wristbands were worn for six days; the most frequently detected 
overlapping pesticides between both studies were deltamethrin and boscalid. Differences 
might occur due to differences in crops and agricultural practices. In Belgium, boscalid was 
detected at lower frequency compared to our study (7% versus 95%), possibly due to the 
shorter exposure time (5-days) and higher LOD (Aerts et al., 2018).

In conclusion, wristbands can be used to efficiently (low impact, and easy to implement) 
assess exposure to pesticide mixtures, capturing both inhalation and dermal individual expo-
sures. The co-occurrence of pesticides in the wristband allows the identification of realistic 
chemical mixtures, in personal samples over longer periods of time. Our example showed the 
applicability to capture a large number of pesticides in a quantitative manner using personal 
samples, informing future toxicology and exposure studies.
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SUPPLEMENTARY MATERIAL

Supplementary Information I1. Description of analytical steps

Extraction:
Add 75 ml of acetonitrile(ACN) Place on shaker (Gerhardt: type RO 500) for 96 hours (120 rpm)
Transfer the ACN to a flask (250 ml) and add 75 ml of acetonitrile to the silicone rubber.
Let this shake for another 96 hours (120 rpm) (almost 200 hours to extract)
Combine the ACN extracts in the round bottom and rinse the silicone rubber with approxi-
mately 25 ml of ACN.
Evaporate the extract back to ca 1-2 ml with a rotary evaporator. (117 mbar, 45˚C)
Add 100 ml Hexane and concentrate to 1 to 2 ml. Transfer the extract to a 15 ml conical point 
tube and rinse the round bottom 3x with approx. 2 ml hexane.
Evaporate under nitrogen the extract back to < 1000 µl, transfer to an injection vial and make 
up to exactly 1000 µl.

GPC clean-up: 
The 250 µl extract was measured with an Agilent 100 series HPLC system with GPC column 
(PLgel 5µm, 300 x 7.5 mm). Mobile phases consisted of DCM (100%, A), and Hexane/MTBE 
(1:1, B). 
The chromatographic separation was performed at a flow rate of 2 mL/min, the collected frac-
tion was between 6.5 and 20 minutes. Concentrate under nitrogen
Convert the extract to MeOH and evaporate the extract back to < 250 µl, transfer to an injec-
tion vial and make up to exactly 250 µl. For LCMS analyses take 50 µl of extract and dilute it 
with 50 µl of ultra-pure water.

Chemical LCMS analyses Pesticide:
The analytes and internal standards were detected by an Agilent 1260 series high-performance 
liquid chromatographer using a 100 × 2.1 mm, 2.6 μm Kinetex column (Phenomenex, Utrecht, 
the Netherlands) coupled with an Agilent 6460 triple quadrupole LC/MS with Jetstream Elec-
tron Spray Ionisation (ESI) and multiple reaction monitoring (MRM). A sample volume of 5 μL 
was injected with a column temperature of 60 °C and a flow rate of 200 μL min−1. The sample 
was eluted with a gradient of methanol (eluent A) and 1 mM ammonium fluoride with 0.01% 
acetic acid in Milli-Q water (eluent B) with flow rates of 0.5 mL min−1. Eluent A was increased 
from 5% to 90% in 10 min and maintained for 3 min. After this it is decreased to 5% in 0.1 min 
and maintained for 1.9 min to complete the cycle of 15 min. Mass spectrometry was performed 
with a gas temperature of 350 °C and a flow rate of 7 L min−1. Sheath gas temperature was set 
at 350 °C with a flow rate of 12 L min−1. The capillary voltage was set at 3500 V.
 
The target compounds were determined with two transitions. Calibration was done before 
measuring the samples with known amounts of the analytes in 6 steps with concentrations 
ranging between 0.1 and 20 ng mL−1. 
The method resulted in values for LOQ ranging between 0.8 – 8 ng/g. (LOD = 0.3 - 2.7 ng/g).
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Supplementary Table S1. Main characteristics study population. subgroup of OBO study

Adults (n=19)
Households with 2 participants 4
Gender, female (%) 63
Age, mean (years; min-max) 58 (24 – 73)
BMI, mean 24.7
Self-reported usage of pesticide products at home, 6 months prior to the campaign. % yes 47
Distance to closest active bulb field, mean (meter, min-max) 117 (24 – 236) 
Days wearing the wristband, mean (days, min-max) 60 (38 – 155)
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Supplementary Figure S1. Scatter plots between the concentration of wristbands vs days wearing. distinction is made 
between the pesticides which were used in the vicinity (flower bulb fields) and which were not.

Supplementary Figure S2. Scatter plot between the concentration of wristbands versus vapor pressure.
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Supplementary Figure S3. Scatter plot between the concentration of wristbands versus soil half-life.
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ABSTRACT

Humans are exposed to a mixture of pesticides through diet as well as through the environ-
ment. We conducted a suspect-screening based study to describe the probability of (concom-
itant) exposure to a set of pesticide profiles in five European countries (Latvia, Hungary, Czech 
Republic, Spain and the Netherlands). We explored whether living in an agricultural area 
(compared to living in a peri-urban area), being a child (compared to being an adult), and the 
season in which the urine sample was collected had an impact on the probability of detection 
of pesticides (-metabolites).

In total 2,088 urine samples were collected from 1,050 participants (525 parent-child pairs) 
and analyzed through harmonized suspect screening by five different laboratories. Fourty 
pesticide biomarkers (either pesticide metabolites or the parent pesticides as such) relating 
to 29 pesticides were identified at high levels of confidence in samples across all study sites. 
Most frequently detected were biomarkers related to the parent pesticides acetamiprid and 
chlorpropham. Other biomarkers with high detection rates in at least four countries related to 
the parent pesticides boscalid, fludioxonil, pirimiphos-methyl, pyrimethanil, clothianidin, flua-
zifop and propamocarb. In 84% of the samples at least two different pesticides were detected. 
The median number of detected pesticides in the urine samples was 3, and the maximum was 
13 pesticides detected in a single sample. The most frequently co-occurring substances were 
acetamiprid with chlorpropham (in 62 urine samples), and acetamiprid with tebuconazole 
(30 samples). Some variation in the probability of detection of pesticides (-metabolites) was 
observed with living in an agricultural area or season of urine sampling, though no consistent 
patterns were observed. We did observe differences in the probability of detection of a pesti-
cide (metabolite) among children compared to adults, suggesting a different exposure and/or 
elimination patterns between adults and children. 

This survey demonstrates the feasibility of conducting a harmonized pan-European 
sample collection, combined with suspect screening to provide insight in the presence of 
exposure to pesticide mixtures in the European population, including agricultural areas. 
Future improvements could come from improved (harmonized) quantification of pesticide 
levels.

Graphical Abstract
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INTRODUCTION

Humans are typically exposed to pesticides through multiple sources, including diet, occu-
pational or environmental exposures (Damalas et al., 2011; Deziel et al., 2015). Growing evi-
dence indicates that living in an agricultural area where pesticides are applied contributes to 
higher exposure than residents living away from agricultural areas (Dereumeaux et al., 2020; 
Figueiredo et al., 2021; Teysseire et al., 2020, 2021). Determinants contributing to this increased 
exposure include proximity to agricultural fields where pesticides are applied, crop acreage 
around the home, and season (Dereumeaux et al., 2020; Teysseire et al., 2021). Pesticide expo-
sure has been linked to various short-term and chronic health effects such as respiratory or 
neurological development issues (Kim et al., 2017; Ntzani et al., 2013). Therefore a comprehen-
sive characterization of the exposure to real-life mixtures of pesticides, which includes the 
contribution of living close to agricultural areas where pesticides are applied, is essential for 
human health risk assessment.

Most non-occupational pesticide exposure studies focus on selected sets of targeted pes-
ticides for human biomonitoring (HBM), often based on a priori selected biomarkers related 
to e.g. the spraying activities in a certain area, the health outcome of interest, or practical 
considerations such as the commercial availability of standards (Dereumeaux et al., 2020; 
Teysseire et al., 2021). Currently, HBM for urinary pesticide biomarkers by targeted methods 
is limited to mostly pyrethroids and non-specific markers of organophosphorus pesticides. 
However, in real-life pesticide exposure often is already a mixture of multiple co-occurring 
compounds with repeated exposure timeframes (Crépet et al., 2019). With more than 450 
active pesticides currently approved (plus 50 more currently pending) for use in the European 
Union (EU Database Pest, 2022), there is a growing need for information on the co-occurrence 
of these compounds in the human body. HBM of pesticides in urine is a useful method to 
assess the aggregate exposure of pesticides from various exposure sources and routes, by 
measuring the parent pesticide and/or the corresponding biotransformation products (Bon-
vallot et al., 2021). However, as the list of registered pesticides is long and they occur often 
highly metabolized in urine, a large number of targeted assays would be required to assess 
presence of all urinary pesticides and their metabolites in each sample. This is currently not 
feasible since many human urinary biomarkers of exposure (typically phase I/II metabolites) 
are often unknown, and the analytical reference standards are not readily available. Suspect 
screening (SS) approaches based on full scan High Resolution Mass Spectrometry (HRMS) 
emerge as an innovative way to assess the presence of a broad range of exposure markers and 
better capture the complexity of pesticide mixtures (Andra et al., 2017; Pourchet et al., 2020; 
Huber et al., 2022).

The study presented here, the Survey on PEstiCIde Mixtures in Europe (SPECIMEn), 
aimed to generate new pesticide exposure data in a harmonized pan-European setting (as 
part of the European Human Biomonitoring Initiative HBM4EU, www.hbm4eu.eu). This was 
done by analyzing 2,088 urine samples collected in five countries through a multi-laboratory 
high-throughput SS approach. This study aimed at exploring co-occurrence (probability of 
exposure) of pesticide biomarkers across Europe and within each participating country. It also 
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aimed at assessing differences of exposure patterns by location (living close to agricultural 
fields versus non-agricultural areas), seasons (differences in spraying activities), as well as age 
groups (adults versus children, of which the latter are more sensitive to health effects and 
usually have higher internal exposure levels, due to e.g. a higher food intake/kg body weight 
(Eskenazi et al., 1999; Sapbamrer et al., 2019)). The study design therefore provides insight into 
local contributions, based on a broad combination of pesticides. Higher detection frequencies 
of pesticide markers might be expected for those pesticides applied on local crops during the 
spraying season in residents living close to the agricultural fields.

MATERIAL AND METHODS

Sampling strategy
To create geographical coverage across Europe, study sites from five countries were included 
to provide insight into variations of pesticide exposure patterns across Europe, namely the 
Czech Republic, Hungary, Latvia, Spain and the Netherlands. Within each country, urine 
samples were collected simultaneously at two locations: agricultural and non-agricultural 
areas. Each address in the agricultural area was located within 250 meters from an agricultural 
field where pesticides were typically applied, mainly focusing on tree-crops or so-called ‘over-
head cultures’ (except Latvia where tree-crops were hardly grown). These ‘overhead-cultures’ 
will result in potentially higher exposure concentrations in the air due to machine-drawn air 
blast or a hand-held overhead spray, which are more prone to drift (Willenbockel et al., 2022). 
The crop types differed slightly between countries due to e.g. differences in climate. A detailed 
description of the area selection in all five country can be found in Supplementary Material 
F. In summary, Spain focused on residential areas close to citrus fruits, Czech Republic on 
apples, vineyards, peach, plums and apricots, Hungary on apples, the Netherlands on apples 
and pears, and Latvia mostly on winter and summer rapeseed, summer wheat and barley. 
Non-agricultural areas were defined as sub-urban areas at least 500 meters away from any 
agricultural fields. 

Per country at each agricultural and non-agricultural area, 50 parent-child pairs (50 house-
holds) were included (total of 100 parent-child pairs per country). Each parent-child pair was 
composed of one child aged 6 to 11 years at the time of inclusion, accompanied by one of their 
parents or legal guardians living in the same household. Adults who worked in the agricultural 
sector (i.e. farmers) were excluded from recruitment, since the sample size was too limited to 
distinguish occupational exposures. The same selection criteria were used in all five countries. 

A minimum of 100 parent-child pairs per country (200 individuals) provided a first 
morning void urine sample, and completed a harmonized questionnaire. The admission of the 
questionnaire, sample collection procedures and timing of sampling was coordinated, and 
sampling materials such as cups and tubes were bought in bulk to avoid any batch differences. 
All collected urine samples were stored and transported refrigerated (at 4°C), until samples 
were aliquoted and stored at -80°C (within 48 hours of sample collection). Samples were trans-
ported to the laboratory of analysis after each season.
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All households were visited twice: the first visit was made in winter 2019/2020 (season 
1), the second in summer 2020 (season 2). The specific sampling dates (Supplementary Mate-
rial A) differed slightly between study sites, partly due to differences in spraying season due 
to climate and the type of crop grown on the field. The sampling of the second season was 
slightly delayed (end of summer) due to the COVID-19 pandemic and accompanied uncertain-
ties. The recruitment strategy differed between the study sites, a detailed description of the 
recruitment strategy per country can be found in Supplementary Material F. In summary, the 
Hungarian partner involved local public health officers to get in touch with the participants, 
while others sent out letters (the Czech Republic and the Netherlands), contacted colleagues 
as study participants (Spain and the Netherlands), conducted an online campaign (the Czech 
Republic and the Netherlands), and/or contacted participants through schools (Spain and 
Latvia). A detailed questionnaire was completed during the first season by the parent, and a 
subset of questions was asked again during the second season (Supplementary Material B). 
The joint questionnaire was developed in English, and subsequently translated to the local 
languages. The questionnaire covered personal and household characteristics, activities up 
to three days prior to sampling, potential pesticide exposure scenarios (occupational, usage 
of products containing pesticides), and the food consumption pattern of the day prior to 
sampling (origin of consumed foods as well as a food frequency table for food consumption 
24 hours prior to sampling).

All partner countries acquired approval from the appropriate local medical ethical com-
mittees, and written informed consent was obtained from all participants (parents and chil-
dren separately). A description of the ethical approval procedure per country can be found in 
supplementary material F. A harmonized informed consent form was used for all participants, 
which was evaluated by an internal HBM4EU review board.

Suspect Screening Approach
A SS methodology was applied to analyze the urine samples, of which a detailed description can 
be found in Huber et al., 2022. Briefly, the applied analytical workflow from sample preparation, 
instrumental analysis, and data processing was conducted under harmonized conditions in five 
different laboratories across Europe, in the Netherlands, Germany, France, the Czech Republic 
and Spain (Vitale et al., 2022). Each laboratory analyzed approximately 400 urine samples origi-
nating from one of the five SPECIMEn study sites. Samples were analyzed after each season, and 
potential batch effects were addressed (Huber et al., 2022). The suspect database generation, 
MS data analysis and confirmation procedures were performed in a centralized way. Several 
consolidated quality assurance/quality control (QA/QC) dispositions, parameters and criteria 
were first implemented to ensure the consistency of the results obtained across the different 
participating laboratories as well as to document the applied method performances (Vitale 
et al., 2022). The applied analytical workflow was described in detail by Huber et al., 2022 and 
consists of i) SPE cleanup/concentration (5-fold) of the urine after pH adjustment, ii) measure-
ment of the extracts by full scan liquid chromatography coupled to HRMS (LC-HRMS), iii) data 
pre-processing and analysis, iv) prioritization of putative detects, v) generation of a list of rep-
resentative samples for follow up identification experiments using tandem mass spectrometry 
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(MS/MS), and vi) final confirmation of putative detects by spectral comparison with reference 
standards either purchased/synthesized or generated in vitro by human liver S9 incubations. 
The curated suspect list of pesticides may include multiple metabolites originating from the 
same parent compound, resulting in a final datafile with potentially several metabolites that 
reflect exposure of the same parent compound. This redundancy is considered enhancing 
confidence. In the case of SPECIMEn, this list focused on pesticides and one aggregated list 
of known and predicted pesticide metabolites from all five laboratories was used as suspect 
database. ‘Fully identified’ were those with the highest level of confidence: Schymanski level 
1 if a reference standard material is commercially available, or Schymanski 2 by diagnostic evi-
dence acquired by human liver S9 incubation experiments (Schymanski et al., 2014). Biomarkers 
which were identified at a lower tier will end up in lower confidence levels, reflecting the level 
of uncertainty about the identity of that feature. In the context of the present paper, only bio-
markers identified with confidence levels 1 and 2 were considered.

Statistical analysis
In line with the basic principle of the SS approach, the data generated in SPECIMEn are 
‘semi-quantitative’, i.e. quantitative signal intensities for each representative spectrometric 
mass are reported per sample, yet these intensities cannot be considered as urinary pesti-
cide concentrations and are not standardized across laboratories. The data was analysed by 
dichotomizing the intensities into ‘detected’ versus ‘non-detected’, which allows comparisons 
across study sites as well as inclusion of biomarkers with low detection rates in the statistical 
analysis. 

The detection rate was calculated as the number of samples in which a particular bio-
marker was detected and identified with confidence levels 1 and 2 over the total number 
of samples collected, expressed in percentage. Based on the parent pesticides (if multiple 
metabolites and the parent pesticide were measured, these were considered as one), the pat-
terns of co-occurrences were explored. First, the total number of pesticides per urine sample 
was evaluated. Secondly, with the usage of an UpSet plot it was evaluated which parent 
pesticide combinations co-occurred and how frequent. Thirdly, the correlation pattern in the 
total set of parent pesticides was evaluated for each study site with a weighted correlation 
network using the IsingFit R package v0.3.1 (van Borkulo et al., 2015). This package estimates 
the network based on the Ising model: combining L1-regularized logistic regression with EBIC 
model selection (gamma 0.25). On this network a clustering algorithm was applied (walktrap), 
to detect communities of closely related features indicated by different colours in the network 
(Pons et al., 2005). 

To assess the influence of co-variates, logistic mixed effects regression models were 
applied, with participant ID and household ID as random effects. Our main model includes fixed 
effects for season (season 1/season 2), location (agricultural/non-agricultural) and age category 
(child/adult). We assessed the sensitivity for further adjustment for potential confounding by 
including body mass index (BMI) level, education of the parent, consumption of homegrown 
foods (yearly average percentage), and a summary indicator for pesticide usage in an extended 
model. The pesticide usage indicator indicates whether pesticide containing products were 
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used up to three days prior to sampling either for human use, in the garden, indoors and/or for 
professional use. The estimates for season, location and age groups were transformed to Odds 
Ratios (OR) with 95% Confidence Intervals (CI) for both the main and extended models.

RESULTS

Population characteristics
The description of the study population for the five study sites of the SPECIMEn study is 
provided in Table 1. In total 2,088 urine samples were collected, which were equally spread 
across the five study sites and areas. The loss to follow-up of individuals between seasons was 
low, varying from 0.9 to 2.9%. Reasons for loss to follow-up were loss of contact, divorce and/
or move to another location. The adult samples mainly originated from the mothers, while 
gender was equally divided across the children’s samples. The mean age of the adults was 
comparable across all study sites, varying from 38 to 44 years. The mean BMI (self-reported) 
of the adults originating from Latvia and Hungary was slightly higher compared to the adults 
from other study sites. Most of the participants did not smoke, although in the agricultural 
areas of Spain and Hungary there was a substantial group of current smokers 35% and 45%, 
respectively (Supplementary Material B). Based on the total household income categories, par-
ticipants of agricultural areas mostly earned less money than those living in non-agricultural 
areas. In all areas except the agricultural area in Hungary, the majority of the participants had 
a university education level. In Spain and Hungary, about half of the households in agricultural 
areas used pesticide products during summer season, which includes the use of consumer 
products, usage indoors, in the garden and/or professional use. These different categories are 
presented separately in Supplementary Material B. Overall, the homegrown food consump-
tion percentage was higher in households in agricultural areas than those in non-agricultural 
areas, mostly during summer.

Annotations and detection rates
The application and harmonization of the SS approach was performed on 2,088 urine samples 
using the method described in detail in Huber et al. 2022. A total number of 498 tentative 
annotations of pesticide biomarkers was obtained and prioritized, of which 40 pesticide bio-
markers were annotated with confidence level 1 or 2 (Table 2). These 40 related to a total of 
29 parent pesticides. In addition to these 40, 54 other pesticide biomarkers (either pesticide 
metabolites or the parent pesticides as such) were detected with a lower confidence level 
(Schymanski levels 3-5) which are detailed in Supplementary Material C. These 54 are not 
further described in this paper and not used in the analyses.

For each annotated exposure marker (confidence levels 1 and 2), the overall detection 
rate per study site was calculated (Table 2). Overall, biomarkers were generally detected below 
25% of the samples. The results evidenced a significant variability between study sites, with 
Latvia having generally the lowest number of detects and Spain the highest one. Overall, the 
metabolites related to the parent pesticides acetamiprid (N-demethylated metabolite) and 
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chlorpropham (4-HSA metabolite) were most frequently detected in samples of all study sites. 
Other biomarkers that had detection rates of at least 10% (including both locations and both 
season) relate to the parent pesticides boscalid (not in Hungary), chlorpyrifos (only in Spain 
and Czech Republic), clothianidin (not in Latvia), cyprodinil (not in Latvia and Hungary), floni-
camid (not in Latvia and Czech Republic), fluazifop (not in Latvia), fludioxonil (not in Hungary), 
imazalil (only in Spain and Latvia), imidacloprid (only in Spain), pirimiphos-methyl (not in 
Hungary), propamocarb (not in Latvia), pyrimethanil (not in Hungary), tebuconazole (not in 
Latvia), and thiamethoxam (only in Spain and Hungary). Biomarkers that were detected at 
low frequencies (<10%) across all study sites include 2,4-dichlorophenoxy acetic acid (2,4-D), 
ametoctradin, chlorantraniliprole, clopyralid, fluopyram, flupyradifurone, fluvalinate, pen-
conazole, propyzamide, thiabendazole, thiacloprid, trifloxystrobin, as well as the metabolite 
permethric acid (DCCA) (originated from parent pesticides cypermethrin, cyfluthrin, perme-
thrin or transfluthrin).

Table 1. Descriptive characteristics of the SPECIMEn study participants by study site and location.

Study site ES1 LV2 HU2 CZ2 NL2
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Adult-child pairs2 , n 52 53 50 51 51 52 51 60 55 50
Urine samples, n  206  212  200  202  201  208  204  238  219  198 

Season 1  104  106  100  102  102  104  102  120  110  100 
Season 2  102  106  100  100  99  104  102  118  109  98 

Gender, female, %                          Adults 50  87  90  82  94  85  71  60  71  66
Children  54  49  58  47  49  52  43  43  53  46

Mean age, years                              Adults  44  44  40  39  38  40  41  42  42  42 
Children  8.2  8.7  8.9  8.4  9.7  9.2  8.8  9.1  8.6  8.6 

Mean BMI                                       Adults  25  24  26  26  26  26  24  24 24  23 
Children  17  17  17  17  18  19  16  16 16 16.0 

Educational level adult, % 
No or only primary education 

 
0  0 

 
2.0 

 
0 

 
40 

 
5.8 

 
0 

 
1.7 

 
1.8 

 
0 

Secondary education  7.8  17  30  12 28  20  2.0  3.3  5.5  2.0 
Tertiary education (post-secondary)  25  17  8.0  7.8  23  26  26  10.0  18  18 
University studies (BSc, MSc, PhD)  67  66  60 77  8.0  48  71  83  71  76 
Don’t Know/ NA  0  0  0  3.9  0  0  2.0  1.7  3.6  4.1 
Usage of pesticide (-products) up 
to 3 days prior to sampling 3 ,  
n households                                Season 1 9 5 4 7 2 6 4 2 1 6

Season 2 27 8 12 8 22 7 14 12 10 4
Seasonal homegrown vegetables,  
fruit and/or herbs consumption,  
% of total consumption               Winter  6.7  1.1  30  22  23  4.5  13  10  2.0  0.1 

Spring  10  3.4  28  19  21  9.4  22  12  4.8  2.2 
Summer  12  8.0  63  44  41  25  64  51  15  7.8 
Autumn  8.9  6.0  63  45  39  17  45  40  8.3  4.5 

1. ES: Spain, LV: Latvia, HU: Hungary, CZ: Czech Republic, NL: the Netherlands
2. Number of individuals included in season 1 
3.  Summary indicator which includes: pesticides for human use, use indoors, use in garden, and professional use. For specification of 

the categories see Supplementary Material B
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Table 2. Annotated pesticide biomarkers with Schymanski confidence levels 1 and 2 (p = 40) and their overall detection 
frequency (%) per study site (Schymanski et al., 2014).

ID 
Pesticide 
type1 Parent pesticide 

Pesticide 
(meta bolite) 
annotation2

Confi-
dence 
level3  Overall Detection Frequency (%)

ES 4 LV  HU  CZ  NL 
P1  H 2,4-Dichlorophenoxy-

acetic acid
Parent   1  4.1  0  2.2  2.7  0 

P2_a  I Acetamiprid   -CH2  1  99  33  94  98  93 
P3_a  F Ametoctradin  -C2H6 +2O  1  5.0  2.7  1.2  4.8  2.9 
P5_a  F Boscalid  +O +SO3 5 2  36  18  3.9  23  33 
P5_b  +O +SO3 6 2 7.2  0  0  0.5  0.2 
P6  I Chlorantraniliprole  +O  2 3.8  0.3  0.2  0  0.2 
P8_a  H, GR Chlorpropham  +O +SO3 (4-HSA)  1  56  32  31  34  75 
P9_a  I Chlorpyrifos (methyl) TCPy  1  1.7  0  0.2  0.2  0.2 
P9_b  -CH2  1  36  0  6.9  21.7  6.5 
P10  H Clopyralid  Parent   1  1.0  0  0  1.4  0.7 
P11_a  I Clothianidin (can come 

from thiamethoxam)
Parent  1  34  1.7  22 25  20 

P11_b  -NO2 +H  1  0.5  0  0.2  0  0.2 
P11_c  -CH2  2  21  0.8  9.8  6.6  3.1 
P12_a  I Cypermethrin, cyfluthrin, 

permethrin, transfluthrin 
DCCA  1  0.5  0  0  0  0 

P13_a  F Cyprodinil  +O +SO3  2  14  7.7  2.7  10  26 
P18_a  I Flonicamid  Parent  1  1.7  0.8  2.0  2.7  5.7 
P18_b  -C2HN  2  15  0.3  27  0.2  57 
P19_a  H Fluazifop 

 
Parent 6 1  20  2.5  11  18  21 

P19_b  Parent 7 1  8.1  1.5  4.9  5.2  8.2 
P20  F Fludioxonil  +O +C6H8O6  2  16  15  2.0  14  27 
P21_a  F Fluopyram +O +SO3  2  3.6  0.5  0.2  1.1  1.0 
P21_b  +O +C6H8O6  2  2.4  0.8  0.5  3.2  4.8 
P21_c  -2H  2  11  6.7  0.5  3.4  3.1 
P22_a  I Flupyradifurone  Parent  1  2.6  0.3  0.5  0.7  2.2 
P25_a  I, Ac Fluvalinate  -C14H9NO  2  1.0  0  0.7  0.2  0 
P27_a  F Imazalil  +C6H8O6  2  19  11  8.3  4.5  4.6 
P28_a  I Imidacloprid  -NO2 +H  1  17  1.7  4.2  0.7  9.4 
P32_a  F Penconazole  +O +C6H8O6  2  6.5  1.7  2.2  2.0  2.4 
P34_a  I, Ac Pirimiphos-methyl  -CH2  1  85  10  6.6  24  48 
P35_a  F Propamocarb Parent  1  9.6  1  11  5.0  23 
P35_b  +O  2  21  5.5  18  12  43 
P37  H Propyzamide  +H2O3  2  8.6  0  0.5  0.9  1.0 
P38_a  F Pyrimethanil +O +SO3  2  27  14  4.9  22  32 
P38_b  +O  2  0.7  0  2.7  0  0.5 
P40_a  F Tebuconazole  -2H +2O  2  71  5.5  25  52  36 
P41_a  F Thiabendazole  +O +C6H8O6  2  0  0.8  0.2  0  0.5 
P42_a  I Thiacloprid  +O  2  8.4  0.8  2.9  7.9  4.6 
P43_a  I Thiamethoxam Parent  1  0.7  0  2.4  0  0.5 
P43_b  -NO2 +H  1  23  0  15  0  0.2 
P46_a  F Trifloxystrobin  -CH2 -CH2  2  0.7  0.5  0  3.6  3.8 

1. H: Herbicide, F: Fungicide, I: Insecticide, GR: Plant Growth Regulator, Ac: Acaricide
2.  Metabolite annotation: “-CH2” means the molecular formula of the metabolite is that of the parent minus CH2 (corresponding to 

demethylation). Similarly, “+O” means the metabolite is the parent compound plus one oxygen atom (hydroxylation). “+SO3” and 
“+C6H8O6” indicate sulfation and glucuronidation, respectively.

3. Schymanski confidence level, ranging from 1 to 5, (Schymanski et al., 2014) 
4. ES: Spain, LV: Latvia, HU: Hungary, CZ: Czech Republic, NL: the Netherlands
5. Positive precursor ion
6. Negative precursor ion
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Figure 2. Frequency (number of urine samples, n=2,088) of co-occurrent parent pesticides; the most frequent (in 5 or 
more urine samples) co-occurrences are shown. Different study sites are indicated by colours (CZ=Czech Republic, ES=-
Spain, HU=Hungary, LV=Latvia, NL=Netherlands), the detection frequency (%) of the listed parent pesticides is given 
on the right. Pesticides are co-occurring in the same sample when both have a black connected dot. Multiple metabolites 
and/or parent compounds related to the same parent pesticide were considered as one.

Figure 1. Number of parent pesticides (p=29) detected per urine sample (n=2,088), with the five different study sites 
indicated in different colours (CZ=Czech Republic, ES=Spain, HU=Hungary, LV=Latvia, NL=Netherlands). Multi-
ple metabolites and/or parent compounds related to the same parent pesticide were considered as one.
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Co-occurrence of pesticides
In order to assess how many pesticides were co-occurring within the same individual at a 
single time point, the number of detected parent pesticides per urine sample are presented 
in Figure 1. In line with the detection ratios, the lowest number of detected pesticides were 
in samples originating from Latvia, with mostly less than 3 co-occurring pesticides per urine 
sample. Samples originating from Spain showed the highest numbers of co-occurring pes-
ticides, with a median value of 7. In the majority of the samples the number of parent pesti-
cides per samples typically ranged from 2 to 5. The maximum number of different pesticides 
detected in the same urine sample was 13, which was the case for two samples. The samples 
with no (n=100) or only one (n=225) detected pesticide add up to 16% of the total amount of 
samples, indicating that in a majority of the samples from the SPECIMEn study at least two 
different parent pesticides were detected.

The next step was to evaluate which pesticides were co-occurring in each urine sample, 
for which the most frequently (in 5 or more urine samples) co-occurrent pesticides or mixtures 
are presented in an UpSet plot in Figure 2. These most frequent co-occurrences consisted of 
44 different combinations based on 14 different pesticides. The majority of co-occurrences 
consisted of 2 or 3 pesticides, with minimal overlap across all study sites. The most common 
co-occurrence was acetamiprid with chlorpropham, detected in 62 samples although this 
combination was not detected in any sample originating from Spain. The second most fre-

Figure 3. Weighted correlation networks per study site based on the parent pesticides. Relationships between markers 
are indicated by a line (green = positive, red = negative). The colours indicate the different communities or groups of more 
closely related markers. ES) Spain (p=28), LV) Latvia (p=21), HU) Hungary (p=26), CZ) Czech Republic (p=25), 
NL) the Netherlands (p=26). See Table 2 for a description of the used ID numbers for each pesticide. Multiple metabo-
lites and/or parent compounds related to the same parent pesticide were considered as one.
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quently co-occurring pesticides were acetamiprid with tebuconazole, however this combina-
tion was not seen in the Netherlands. The only co-occurrence combination detected in all 
five study sites was acetamiprid with pirimiphos-methyl. The less frequent the co-occurrent 
pesticides the more variation in combinations were seen, which was even more pronounced 
when detected in just 2, 3 or 4 urine samples (see Supplementary Material D for the extended 
UpSet plot).

The stability of the co-occurrences at each study site can be evaluated with correlation 
networks, which are presented in Figure 3A-E. Similar to the findings of Figure 2, mostly small 
groups (two to four biomarkers) of co-occurrent pesticides were found. Consistent across 
all study sites was the positive relation between cyprodinil (P13) and fludioxonil (P20), both 
fungicides, although sometimes together with other pesticides and/or part of a different com-
munity. Also, in both Spain and the Czech Republic, imazalil (P27) was related to pyrimethanil 
(P38), which are both fungicides. Finally, in Spain and Hungary chlorpyrifos-methyl (P9) was 
related to pirimiphos-methyl (P34), which are both insecticides. Interestingly, the relations 
of acetamiprid (P2) with chlorpropham (P8) or tebuconazole (P40) were not detected in the 
networks.

Changes in occurrence of pesticides by location, season, age category
To explore the differences in occurrence of the pesticide biomarkers by location, season, and 
age category, logistic mixed effects models were constructed. The main model includes the 
covariates for location, season and age category, the extended model was also corrected for 
pesticide usage (self-reported), BMI, level of education and homegrown food consumption. 
Results of the models of the biomarkers detected in at least four study sites are shown in Table 
3, the full table with estimates for all exposure markers associated with confidence levels 1 and 
2 can be found in Supplementary Material E. 

In Spain, no effect of location was detected in the models, except for clothianidin which 
was less frequently detected in agricultural areas compared to non-agricultural areas. Chlor-
propham, chlorpyrifos, clothianidin, fluazifop, fludioxonil, imazalil, imidacloprid, pyrimethanil, 
and tebuconazole were most frequently detected during the first sampling season. These 
effects were not influenced by inclusion of the additional predictors in the extended model. 
Between the group of parents and children in Spain, the biomarkers related to boscalid, and 
cyprodinil were most frequently detected among parents, while chlorpropham, chlorpyri-
fos, chlothianidin, pirimiphos-methyl, tebuconazole, and thiacloprid were more frequently 
detected among children. The extended models confirmed most of these effects (not for 
clothianidin and cyprodinil).

In Latvia, propamocarb was the only biomarker more frequently detected at the agricul-
tural area. Acetamiprid, fluopyram, imazalil, and propamocarb were more frequently detected 
in the first season (winter), while pyrimethanil and tebuconazole were more frequently 
detected during the second season (summer). Only the effects related to propamocarb and 
pyrimethanil were confirmed with the extended models. Chlorpropham, pirimiphos-methyl, 
and propamocarb were more frequently detected among the Latvian children compared to 
adults, while imazalil was more frequently detected within Latvian parents (not in extended 
model). 
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In Hungary, both biomarkers related to clothianidin were more frequently detected at 
the agricultural areas. On the other hand, chlopyrifos, pirimiphos-methyl, propamocarb, 
tebuconazole, and thiacloprid were most frequently detected at the non-agricultural areas. 
Chlorpyrifos, chlothianidin, pirimiphos-methyl, propamocarb, and tebuconazole were most 
frequently detected during the second season. While, in contrary, chlorpropham and imazalil 
were most frequently detected during the first season. Acetamiprid, chlorpropham, chlorpy-
rifos, chlothianidin, fluazifop, pirimiphos-methyl, propamocarb, and tebuconazole, were most 
frequently detected among the Hungarian children. Of which chlorpropham, fluazifop, pirimi-
phos-methyl, propamocarb and tebuconazole were confirmed in both models.

In the Czech Republic, the metabolite of ametoctradin was more frequently detected at 
the agricultural areas, although this effect disappeared in the extended model. The biomark-
ers related to cyprodinil and fludioxonil were more frequently detected at the non-agricultural 
locations (only cyprodinil confirmed with the extended model). The chlorpropham metabo-
lite (4-HSA) was more frequently detected during the second season. While the biomarkers 
related to ametoctradin, imazalil, and pyrimethanil showed an opposite effect, and were more 
frequently detected during the first season. Of these three, only the effect of pyrimethanil 
was confirmed with the extended model. Seven different biomarkers were found to be more 
detected among children compared to adults: boscalid, chlorpropham, chlorpyrifos, flonic-
amid, pirimiphos-methyl, tebuconazole, and thiacloprid. The extended model confirmed the 
effects seen for chlorpropham and tebuconazole. 

Finally, in the Netherlands, the metabolites of chlorpropham were most frequently 
detected at agricultural areas. While biomarkers related to cyprodinil and pyrimethanil had 
higest detection frequencies at the non-agricultural areas. Chlorpropham, fluazifop, and 
thiacloprid were more frequently detected during the second season, while acetamiprid, 
chlorpyrifos, clothianidin, imazalil, and pyrimethanil had highest detection rates during the 
first season. The biomarkers related to ametoctradin, cyprodinil, flonicamid, fludioxonil, pirim-
iphos-methyl, and tebuconazole were more frequently detected among children. Of these, 
the effects seen for pirimiphos and tebuconazole were confirmed in the extended models. 
While on the other hand, propamocarb was more frequently detected among adults (only in 
extended model). 

Overall, almost no biomarkers were more frequently detected in both agriculture areas 
and (summer) season 2. Only exceptions were chlorpropham (4-HSA metabolite) in the Neth-
erlands, and clothianidin (parent compound and the N-demethylated metabolite) in Hungary.

DISCUSSION

This study reports on the co-occurrence patterns of 40 different pesticide biomarkers at 
study sites from five European countries, and identifies whether proximity to agricultural 
fields, season, and age category impacted the probability of detection of these biomarkers. 
The developed application of a harmonized SS methodology allowed screening for 1000s of 
suspects (pesticides and their known/predicted phase I/II metabolites), and enabled detection 
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Table 3. Results of logistic mixed effects models, main and extended. Results are presented as Odds Ratios (OR) with 
95% confidence intervals (CI). Significance levels based on p-value: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05. Random effects 
are household and participant ID. Main model includes the predictors: location, season, and age category. Extended 
model includes additional predictors for pesticide usage, BMI, level of education and homegrown food consumption. 
Results are shown of features detected in at least 4 study sites.

ID 
Parent 
pesticide  Category 

SP LV
Main
OR (95% CI)1

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

P2_a  Acetamiprid  Agricultural vs 
Non-Agricultural2

Season 2 vs 12

Parent vs Child2

NA3

0.5 (0.1; 2.7)
0.2 (0.0; 1.7)

NA3

0.5 (0.1; 2.7)
0.2 (0.0; 2.8)

1.0 (0.6; 1.6)
0.6 (0.4; 1.0)
0.8 (0.5; 1.3)

1.1 (0.7; 1.9)
0.6 (0.4; 1.0) *
0.7 (0.4; 1.5)

P3_a Ametoctradin Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.3 (0.0; 2.8)
0.4 (0.1; 1.5)
2.1 (0.3; 17)

0.4 (0.1; 1.0)
0.6 (0.2; 1.4)
3.0 (0.9; 10)

1.8 (0.5; 6.3)
0.6 (0.2; 2.0)
0.8 (0.2; 2.8)

1.3 (0.3; 5.3)
0.5 (0.2; 1.9)
2.3 (0.3; 15)

P5_a  Boscalid Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.0 (0.6; 1.9)
0.7 (0.4; 1.0)
2.9 (1.8; 4.6) ***

1.0 (0.5; 1.8)
0.6 (0.4; 1.0)
2.5 (1.3; 4.9) **

1.2 (0.5; 2.6)
0.9 (0.5; 1.6)
1.3 (0.7; 2.4)

1.4 (0.6; 3.1)
0.9 (0.5; 1.6)
1.0 (0.4; 2.6)

P8_a  Chlorpropham  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.7 (0.4; 1.3)
0.4 (0.3; 0.7) ***
0.4 (0.2; 0.6) ***

0.7 (0.4; 1.3)
0.4 (0.3; 0.7) ***
0.3 (0.2; 0.6) ***

1.3 (0.7; 2.7)
1.6 (1.0; 2.6)
0.3 (0.2; 0.6) ***

1.2 (0.6; 2.5)
1.5 (0.9; 2.4)
0.4 (0.2; 1.0) *

P9_a Chlorpyrifos 
(/methyl)

Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.8 (0.5; 1.3)
0.2 (0.1; 0.4) ***
0.5 (0.3; 0.7) ***

0.8 (0.5; 1.3)
0.2 (0.1; 0.4) ***
0.4 (0.2; 0.7) **

ND6 ND

P11_a  Clothianidin 
(can come 
from thiame-
thoxam)

Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.5 (0.3; 0.8) **
0.6 (0.4; 0.9) **
0.6 (0.5; 0.9) *

0.4 (0.3; 0.7) ***
0.5 (0.3; 0.8) **
0.6 (0.3; 1.0)

1.4 (0.3; 6.3)
6.3 (0.7; 53)
0.2 (0.0; 1.4)

0.9 (0.2; 4.6)
5.7 (0.7; 50)
0.3 (0.0; 5.7)

P11_c  1.4 (0.8; 2.8)
0.9 (0.5; 1.5)
0.7 (0.4; 1.3)

1.4 (0.7; 2.8)
0.8 (0.5; 1.4)
0.8 (0.4; 1.8)

ND ND

P13_a  Cyprodinil  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.4 (0.7; 2.7)
1.2 (0.7; 2.1)
2.0 (1.6; 5.6) ***

1.4 (0.7; 2.7)
1.2 (0.6; 2.2)
2.3 (1.0; 5.4)

1.1 (0.4; 2.8)
0.7 (0.3; 1.5)
0.9 (0.4; 2.1)

1.1 (0.4; 2.9)
0.7 (0.3; 1.5)
1.5 (0.5; 5.1)

P18_a Flonicamid 
 

Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

2.6 (0.5; 14)
1.4 (0.3; 6.3)
6.2 (0.7; 52)

2.6 (0.4; 15)
1.4 (0.3; 7.1) 5

7.8 (0.6; 96)

ND ND

P19_a  Fluazifop 
 

Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.0 (0.6; 1.9)
0.5 (0.3; 0.8) **
1.0 (0.6; 1.7)

1.1 (0.6; 2.1)
0.5 (0.3; 0.9) *
0.7 (0.3; 1.5)

4.2 (0.9; 20)
0.7 (0.2; 2.4)
1.0 (0.3; 3.5)

3.1 (0.6; 16)
0.6 (0.1; 2.3)
1.2 (0.2; 7.8)

P19_b  1.6 (0.7; 3.6)
0.8 (0.4; 1.6)
1.0 (0.5; 2.1)

1.6 (0.6; 4.1)
0.7 (0.3; 1.6)
0.4 (0.1; 1.2)

5.2 (0.6; 45)
0.5 (0.1; 2.7)
0.5 (0.1; 2.7)

4.6 (0.5; 44)
0.4 (0.1; 2.6)
1.9 (0.1; 29)

P20  Fludioxonil  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.1 (0.6; 2.1)
0.5 (0.3; 0.9) *
1.5 (0.8; 2.8)

1.0 (0.5; 2.0)
0.5 (0.3; 0.9) *
0.9 (0.4; 2.2)

0.8 (0.4; 1.7)
0.8 (0.4; 1.4)
1.1 (0.6; 2.1)

0.9 (0.4; 1.9)
0.8 (0.4; 1.4)
0.8 (0.3; 2.1)

P21_c Fluopyram Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.4 (0.6; 3.4)
1.0 (0.5; 1.9)
1.5 (0.8; 3.0)

1.5 (0.6; 4.0)
1.1 (0.5; 2.2)
0.9 (0.3; 2.6)

0.6 (0.1; 4.3)
0.2 (0.0; 0.8) *
0.9 (0.1; 6.1)

0.7 (0.2; 2.2)
0.4 (0.2; 1.1)
1.1 (0.3; 4.3)

P27_a  Imazalil  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.0 (0.5; 2.0)
0.2 (0.1; 0.3) ***
1.1 (0.7; 2.0)

1.1 (0.6; 2.2)
0.2 (0.1; 0.4) ***
0.8 (0.4; 1.9)

1.7 (0.6; 4.9)
0.4 (0.2; 0.8) *
2.4 (1.1; 5.2) *

0.7 (0.2; 2.2)
0.4 (0.2; 1.1)
1.1 (0.3; 4.3)

P28_a  Imidacloprid  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.5 (0.7; 3.1)
0.6 (0.3; 1.0) *
1.4 (0.8; 2.5)

1.2 (0.6; 2.6)
0.5 (0.3; 1.0) *
1.8 (0.8; 4.2)

1.4 (0.3; 6.2)
0.2 (0.0; 1.4)
1.4 (0.3; 6.1)

1.1 (0.2; 5.7)
0.2 (0.0; 1.4)
0.7 (0.1; 6.2)

P32_a  Penconazole  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.7 (0.3; 1.7)
1.1 (0.5; 2.5)
2.2 (0.9; 5.0)

0.8 (0.3; 1.9)
1.2 (0.5; 2.6)
2.9 (0.9; 9.0)

1.4 (0.3; 6.1)
0.8 (0.2; 3.4)
0.8 (0.2; 3.4)

1.6 (0.3; 7.7)
0.8 (0.2; 3.4)5

0.6 (0.1; 6.0)
P34_a  Pirimi-

phos-methyl 
Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.7 (0.3; 1.4)
0.8 (0.4; 1.4)
0.4 (0.2; 0.9) *

1.1 (0.5; 2.5)
1.0 (0.5; 2.0)
0.2 (0.1; 0.7) *

1.0 (0.5; 1.9)
1.5 (0.8; 2.9)
0.4 (0.2; 0.9) *

1.5 (0.3; 7.4)
0.8 (0.2; 3.8)
0.6 (0.1; 5.4)
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C
ha

pt
er
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HU CZ NL
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

1.2 (0.1; 2.7)
1.2 (0.5; 2.7)
0.4 (0.2; 1.0) *

1.4 (0.5; 3.5)
1.3 (0.5; 3.1)
0.5 (0.2; 1.5)

0.5 (0.1; 2.2)
0.6 (0.1; 2.5)
1.0 (0.2; 4.1)

0.6 (0.1; 3.0)
0.8 (0.2; 3.9)
12 (1.0; 149)

2.0 (0.3; 14)
0.2 (0.0; 0.8) *
1.3 (0.2; 9.0)

2.4 (0.9; 6.2)
0.5 (0.2; 1.2)
1.7 (0.3; 8.0)

1.6 (0.3; 9.5)
0.7 (0.1; 4.1)
4.0 (0.4; 37)

NA4 3.2 (1.1; 9.5) *
0.4 (0.1; 1.0) *
0.6 (0.2; 1.5)

3.0 (1.0; 9.4)
0.4 (0.1; 1.1)
0.2 (0.0; 1.3)

0.8 (0.03; 20)
0.3 (0.1; 1.6)
0.1 (0.02; 0.9) *

NA4

0.8 (0.2; 2.2)
0.6 (0.2; 1.7)
2.1 (1.0; 9.9)

0.5 (0.1; 1.5)
0.6 (0.2; 1.9)
2.4 (0.6; 9.3)

1.4 (0.8; 2.5)
0.7 (0.4; 1.2)
2.1 (1.3; 3.5) **

1.4 (0.8; 2.7)
0.8 (0.5; 1.3)
2.5 (1.0; 6.1)

0.6 (0.3; 1.0)
1.4 (0.9; 2.2)
1.4 (0.9; 2.1)

0.5 (0.3; 1.0)
1.4 (0.9; 2.2)
1.1 (0.4; 2.6)

1.3 (0.7; 2.5)
0.5 (0.3; 0.8) **
0.5 (0.3; 0.7) **

1.5 (0.7; 3.2)
0.5 (0.3; 0.9) *
0.4 (0.2; 0.7) **

1.0 (0.6; 2.0)
2.1 (1.3; 3.3) **
0.4 (0.2; 0.6) ***

1.0 (0.5; 2.0)
1.9 (1.2; 3.1) *5

0.3 (0.1; 0.8) *

2.1 (1.1; 3.9) *
2.8 (1.7; 4.7) ***
0.6 (0.4; 1.1)

2.1 (1.1; 4.1) *
2.7 (1.6; 4.6) ***
0.5 (0.2; 1.2)

0.2 (0.1; 0.7) *
2.5 (1.0; 6.1) *
0.5 (0.2; 1.1)

0.3 (0.1; 1.0)
2.7 (1.1; 6.5) *
0.2 (0.1; 0.8) *

1.3 (0.7; 2.4)
0.6 (0.4; 1.0)
0.5 (0.3; 0.7) **

1.3 (0.7; 2.4)
0.6 (0.4; 1.0)
0.7 (0.3; 1.7)

1.2 (0.4; 3.2)
0.5 (0.2; 1.1)
0.8 (0.3; 1.8)

1.2 (0.4; 3.3)
0.4 (0.1; 1.0) *
0.9 (0.2; 5.2)

2.8 (1.6; 4.7) ***
3.1 (1.8; 5.2) ***
0.6 (0.4; 1.0)

2.8 (1.5; 5.1) **
3.5 (2.0; 6.1) ***
0.4 (0.2; 0.7) **

1.3 (0.8; 2.2)
0.6 (0.4; 1.0)
1.0 (0.6; 1.5)

1.4 (0.8; 2.5)
0.7 (0.4; 1.1)
1.1 (0.5; 2.7)

1.3 (0.7; 2.3)
0.6 (0.4; 1.0)
0.9 (0.5; 1.5)

1.4 (0.8; 2.7)
0.6 (0.4; 1.0)
1.7 (0.6; 4.6)

4.4 (1.8; 11) ***
1.9 (0.9; 3.9)
0.8 (0.4; 1.5)

5.5 (2.1; 14) ***
2.5 (1.2; 5.5) *
0.3 (0.1; 0.8) *

1.3 (0.6; 2.7)
0.5 (0.2; 1.1)
0.9 (0.4; 2.0)

1.3 (0.6; 2.8)
0.5 (0.2; 1.1)
1.2 (0.3; 4.6)

1.5 (0.0; 38)
0.02 (0.0; 0.3) **
1.6 (0.0; 42)

1.4 (0.7; 2.6)
0.6 (0.4; 1.0)5,7

1.8 (0.7; 4.9)
1.9 (0.1; 44)
0.3 (0.1; 2.0)
6.2 (0.9; 40)

1.8 (0.1; 61)
0.4 (0.1; 2.9)
2.9 (0.3; 26)

0.3 (0.1; 0.6) **
0.9 (0.5; 1.6)
0.8 (0.4; 1.5)

0.3 (0.1; 0.6) **
0.9 (0.5; 1.7)
1.0 (0.3; 3.0)

0.6 (0.3; 0.9) *
0.8 (0.5; 1.2)
0.5 (0.3; 0.8) **

0.5 (0.3; 0.9) *
0.8 (0.5; 1.2)
1.2 (0.5; 2.8)

1.0 (0.3; 4.3)
3.1 (0.6; 16)
0.3 (0.1; 1.6)

2.3 (0.5; 11)
3.8 (0.7; 20)
0.2 (0.0; 1.5)

2.7 (0.1; 84)
1.0 (0.2; 5.3)
0.1 (0.0; 0.4) **

NA4 0.4 (0.1; 1.5)
1.6 (0.6; 4.0)
0.3 (0.1; 0.8) *

0.4 (0.1; 1.3)
1.5 (0.6; 3.8)
0.3 (0.0; 2.3)

1.1 (0.5; 2.2)
1.1 (0.6; 2.0)
0.6 (0.3; 1.2)

0.9 (0.4; 2.1)
0.9 (0.4; 1.7)
0.4 (0.2; 1.0) *

1.1 (0.6, 2.1)
0.9 (0.5; 1.4)
0.7 (0.4; 1.2)

1.3 (0.7; 2.4)
0.8 (0.5; 1.4) 5

0.5 (0.2; 1.3)

1.4 (0.7; 3.0)
1.0 (0.6; 1.6)
0.7 (0.4; 1.2)

1.5 (0.7; 3.1)
1.0 (0.6; 1.7)
0.5 (0.2; 1.5)

2.1 (0.3; 17)
1.4 (0.1; 4.5)
0.2 (0.0; 0.9) *

2.4 (0.8; 7.2)
1.0 (0.3; 2.6)
0.3 (0.1; 0.9) *

0.9 (0.3; 2.3)
2.5 (1.0; 6.3)
1.3 (0.6; 3.2)

0.9 (0.3; 2.5)
2.4 (0.9; 6.3) 5

1.0 (0.2; 4.6)

1.4 (0.2; 10)
7.2 (1.6; 32) **
0.6 (0.1; 4.1)

3.1 (0.3; 29)
4.5 (1.1; 17) *
0.0 (0.0; 2.9)

0.6 (0.1; 2.6)
1.7 (0.4; 7.2)
1.0 (0.2; 4.0)

0.9 (0.2; 4.8)
1.7 (0.4; 7.5)
0.9 (0.2; 5.5)

0.5 (0.3; 0.9) *
0.7 (0.4; 1.2) 
0.7 (0.4; 1.2)

0.6 (0.3; 1.1)
0.7 (0.4; 1.2)
1.1 (0.4; 3.1)

0.9 (0.5; 1.6)
0.6 (0.3; 0.9) *
0.5 (0.3; 0.9) *

0.8 (0.5; 1.4)
0.6 (0.4; 0.9) *
0.8 (0.3; 1.8)

ND ND 1.3 (0.2; 10)
1.8 (0.5; 6.4)
0.8 (0.2; 2.8)

1.9 (0.2; 20)
1.8 (0.5; 7.2)
1.0 (0.1; 12)

1.0 (0.1; 22)
4.3 (0.5; 36)
0.5 (0.2; 12)

NA13

0.6 (0.2; 2.0)
0.2 (0.1; 0.5) ***
0.5 (0.2; 1.2)

0.7 (0.2; 2.3)
0.2 (0.1; 0.5) **
0.3 (0.1; 1.1)

0.9 (0.1; 11)
0.1 (0.0; 0.6) *
2.9 (0.2; 44)

1.0 (0.4; 2.6)
0.4 (0.2; 1.2)5

3.1 (0.6; 15)

1.6 (0.6; 4.2)
0.3 (0.1; 1.0) *
1.4 (0.6; 3.6)

1.6 (0.6; 4.1)
0.4 (0.1; 1.0)5

2.2 (0.4; 11)
0.9 (0.2; 3.3)
0.9 (0.3; 2.5)
0.9 (0.3; 2.4)

1.0 (0.3; 3.7)
1.1 (0.4; 3.0)
0.5 (0.1; 2.0)

ND ND 1.2 (0.6; 2.5)
1.1 (0.5; 2.1)
0.8 (0.4; 1.7)

1.4 (0.6; 2.9)
1.1 (0.5; 2.1)
0.9 (0.2; 3.3)

0.5 (0.1; 2.1)
3.6 (0.7; 18)
1.3 (0.3; 4.8)

0.7 (0.0; 38)
9.5 (1.0; 93)
0.7 (0.0; 12) 

2.4 (0.6; 9.7)
0.5 (0.1; 2.0)
2.0 (0.5; 8.3)

2.2 (0.5; 9.3)
0.6 (0.1; 2.5)5, 7

2.9 (0.3; 30)

0.9 (0.3; 3.2)
1.0 (0.3; 3.6)
1.5 (0.4; 5.5)

0.8 (0.2; 3.0)
1.0 (0.3; 3.6) 5

0.5 (0.1; 4.5)
0.1 (0.02; 0.4) ***
3.6 (1.4; 9.4) **
0.2 (0.1; 0.5) **

0.2 (0.1; 0.8) *
4.1 (1.5; 11) **
0.1 (0.0; 0.3) ***

1.5 (0.8; 2.7)
0.6 (0.4; 1.0)
0.5 (0.3; 0.8) **

1.3 (0.7; 2.5)
0.6 (0.4; 1.1)
0.6 (0.2; 1.5)

1.4 (0.8; 2.7)
0.7 (0.4; 1.0)
0.3 (0.2; 0.5) ***

1.4 (0.8; 2.7)
0.7 (0.4; 1.0)
0.3 (0.1; 0.8) *
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of many pesticides/metabolites at different levels of confidence in urine. As such, this study 
should be seen as the first step towards a more complete assessment of the pesticide mixture 
exposure in the general European population. 

Detected pesticides and the impact of location, season and age category
The most frequently detected biomarkers across all study sites were related to the parent 
pesticides acetamiprid and chlorpropham. Acetamiprid is a neonicotinoid (insecticide), is 
approved in the EU and commonly used on fruit trees such as apples, pears and citrus, but 
also on e.g. potatoes and rapeseed (Allema et al., 2017; EU Database Pest, 2022). All study sites 
included agricultural areas where these crops are grown. However since we did not find a 
difference between areas for acetamiprid, this high detection frequency is likely due to other 
factors such as diet. For Latvia and the Netherlands, acetamiprid was less frequently detected 
during the second season (summer), arguing that additional exploration is needed on for 
example the change of diet between seasons. Chlorpropham is a plant growth regulator and 
herbicide, commonly used on e.g. onions and potatoes to prevent sprouting. In the Nether-
lands only, chlorpropham had a higher probability of detection in the summer season, which 
is consistent with an earlier study on flower bulb fields in the Netherlands (Gooijer et al., 2019; 
Oerlemans et al., 2021). Although chlorpropham has no longer been approved as pesticide 
since 2019 in the EU, still high probabilities of detection were seen in both seasons (EU Data-
base Pest, 2022). This is not unexpected due to periods of grace until October 2020, which 
overlaps with both sampling periods of the current study. Interestingly, in Spain and Hungary 
chlorpropham was more frequently detected during the first season, while in Czech Republic 

1 OR: Odds Ratio, CI: Confidence Interval.
2 Underlined is the reference category.
3 100% detected in one of the categories, no estimate could be provided.
4 Due to low detection rate no extended model possible.
5 Model not corrected for level of Education, separation issue.
6 ND: Not detected or low detection rate (<1%), no model possible.
7 Model not corrected for Pesticide usage, separation issue

Table 3. Continued

ID 
Parent 
pesticide  Category 

SP LV
Main
OR (95% CI)1

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

P35_a  Propamocarb Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.3 (0.5; 3.1)
1.9 (0.9; 4.1)
1.1 (0.5; 2.5)

1.0 (0.4; 2.4)
1.7 (0.8; 3.5)
1.2 (0.4; 3.4)

ND ND

P35_b  1.3 (0.7; 2.4)
1.2 (0.7; 1.9)
1.1 (0.7; 1.9)

1.2 (0.7; 2.2)
1.1 (0.7; 1.9)
1.1 (0.5; 2.3)

4.2 (1.1; 16) *
0.3 (0.1; 0.9) *
0.4 (0.1; 1.1)

4.0 (1.0; 17)
0.3 (0.1; 0.8) *
0.2 (0.0; 1.0) *

P38_a  Pyrimethanil Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.8 (0.5; 1.3)
0.6 (0.4; 1.0) *
0.8 (0.5; 1.2)

0.8 (0.5; 1.3)
0.7 (0.4; 1.0)
0.7 (0.3; 1.3)

1.2 (0.6; 2.4)
2.1 (1.1; 3.8) *
1.0 (0.6; 1.8)

1.1 (0.5; 2.3)
2.1 (1.1; 3.8) *
1.3 (0.5; 3.2)

P40_a  Tebuconazole  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

0.9 (0.5; 1.7)
0.5 (0.3; 0.9) *
0.3 (0.2; 0.4) ***

0.7 (0.4; 1.4)
0.5 (0.3; 0.8) **
0.2 (0.1; 0.4) ***

1.5 (0.4; 5.3)
3.3 (1.1; 9.3) *
0.8 (0.3; 2.1)

1.5 (0.6; 4.0)
2.8 (1.1; 7.4)
2.9 (0.7; 12)

P42_a  Thiacloprid  Agri. vs Non-Agri.
Season 2 vs 1
Parent vs Child

1.6 (0.6; 4.4)
0.9 (0.4; 2.0)
0.4 (0.2; 1.0) *

1.6 (0.6; 4.5)
1.1 (0.5; 2.4)
0.3 (0.1; 1.2)

ND ND
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and the Netherlands highest frequencies were seen in the second season. Chlorpropham also 
had higher probabilities of detection in children compared to adults, which could be related 
to food consumption: children have a larger food intake per kg of bodyweight; also, biological 
elimination mechanisms may differ between children and adults (Arena et al., 2017).

Also, high detection rates in SPECIMEn were found for the biomarkers related to pirim-
iphos-methyl and tebuconazole, which are in good agreement with other targeted studies 
(Norén et al., 2020; Yusà et al., 2022). For these and other highly detected pesticides, no con-
sistent effect across all countries of season or location was found, in contrast with expecta-
tions based on previous findings (Dereumeaux et al., 2020; Teysseire et al., 2020). Differences 
in study sites might occur due to different crop types. Detected differences are most likely 
influenced by a set of other covariates not included in the current regression models, such as 
diet. Dietary habits of participants may differ between the countries, locations within coun-
tries, seasons and age groups. Also, there might be differences in percentage of consumption 
of imported foods, and percentage of homegrown food consumption. These aspects make 
the variety of exposure due to diet complex and subject to many changes; therefore future 
work needs to focus on the actual consumed diet and their pesticide residue levels versus the 
suspect screening patterns. For example, the consumption of organic foods has been linked 
to lower exposure concentrations of several pesticides such as organophosphates and pyre-
throids (Baudry et al., 2019; Hyland et al., 2019).

As a final remark on the detected pesticides, the SS methodology is only recently being 
applied in large scale studies to assess exposure to pesticides, and only a few HBM studies 
have previously applied SS approaches to complement for example targeted monitoring 

HU CZ NL
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

0.5 (0.2; 1.0)
1.1 (0.6; 2.1)
0.4 (0.2; 1.0) *

0.5 (0.2; 1.2)
1.1 (0.6; 2.2)
0.3 (0.1; 0.9) *

0.5 (0.1; 4.5)
1.5 (0.4; 6.0)
0.5 (0.1; 3.9)

0.5 (0.2; 1.9)
1.4 (0.5; 3.5) 7

1.5 (0.2; 10)

1.6 (0.8; 3.0)
1.4 (0.9; 2.4)
1.0 (0.6; 1.6)

1.9 (1.0; 3.6)
1.5 (0.9; 2.5)
3.1 (1.1; 8.5) *

0.5 (0.3; 0.9) *
2.1 (1.2; 3.6) *
0.5 (0.3; 0.9) *

0.5 (0.2; 1.0) *
2.3 (1.3; 4.1) **
0.4 (0.2; 0.8) *

0.7 (0.3; 1.9)
1.4 (0.7; 2.6)
0.5 (0.3; 1.0)

0.8 (0.3; 2.1)
1.4 (0.7; 2.8)
0.9 (0.2; 3.3)

1.2 (0.7; 1.9)
1.0 (0.6; 1.5)
1.2 (0.8; 1.8)

1.3 (0.8; 2.2)
1.0 (0.7; 1.5)
3.2 (1.4; 7.3) **

0.4 (0.1; 2.0)
1.3 (0.5; 3.8)
2.3 (0.8; 7.2)

0.3 (0.0; 3.1)
1.6 (0.5; 5.2)
1.7 (0.8; 7.4)

0.9 (0.5; 1.7)
0.4 (0.3; 0.7) **
1.4 (0.9; 2.3)

1.0 (0.5; 1.8)
0.5 (0.3; 0.8) **
2.1 (0.9; 5.3)

0.6 (0.4; 1.0) *
0.6 (0.4; 1.0) *
0.8 (0.5; 1.2)

0.6 (0.4; 0.9) *
0.6 (0.4; 1.0) *
1.1 (0.5; 2.4)

0.5 (0.3; 1.0)
2.1 (1.2; 3.5) **
0.3 (0.2; 0.5) ***

0.5 (0.2; 1.0) *
2.2 (1.3; 3.8) **
0.5 (0.2; 0.9) *

1.0 (0.6; 1.5)
0.7 (0.5; 1.0)
0.2 (0.2; 0.4) ***

1.1 (0.7; 1.7)
0.7 (0.4; 1.0)
0.4 (0.2; 0.7) **

0.8 (0.4; 1.5)
0.6 (0.4; 1.0)
0.1 (0.1; 0.2) ***

0.8 (0.4; 1.6)
0.6 (0.4; 1.1)
0.2 (0.1; 0.5) ***

0.1 (0.0; 0.7) *
3.2 (0.8; 12)
0.3 (0.1; 1.2)

0.1 (0.0; 0.5) *
3.5 (0.9; 14) 7

0.6 (0.1; 3.3)

1.6 (0.6; 4.7)
0.9 (0.4; 2.0)
0.3 (0.1; 0.7) **

2.1 (0.8; 5.8)
1.2 (0.6; 2.7)
0.2 (0.1; 1.1)

0.4 (0.1; 3.5)
6.5 (1.5; 29) *
0.6 (0.2; 2.1)

0.5 (0.1; 4.0)
6.3 (1.3; 30) * 7

2.4 (0.2; 27)
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programs (Gerona et al., 2018; Pellizzari et al., 2019; Plassmann et al., 2015; Wang et al., 2018). 
Within a cohort of approximately 300 pregnant women in France, Bonvallot et al. (Bonvallot et 
al., 2021) performed a large targeted pesticide exposure study which was extended with the 
application of suspect screening. This SS approach resulted in the most frequent detection 
of the parent pesticides azoxystrobin, fenpropimorph, phenmedipham, fluazifop(/butyl) and 
chlorpyrifos. From these, only the metabolites of fluazifop(/butyl) and chlorpyrifos overlapped 
and were also detected in the samples of the SPECIMEn study. This is due to among others dif-
ferences in the suspect database, for example fenpropimorph was not included in our current 
study because it didn’t contain Cl, Br or PO3 (Huber et al., 2022). Another interesting point is 
the difference in detection frequency between the TCPy and -CH2 biomarkers of chlorpyri-
fos (methyl) in Spain and Czech Republic. TCPy can originate from both parent compounds 
chlorpyrifos and methyl-chlorpyrifos. -CH2 is not a human metabolite of chlorpyrifos, and its 
detection is likely due to exposure through diet. Also, a higher sensitivity for -CH2 compared 
to TCPy at an individual instrument level might have contributed to this difference.

Co-occurrence
To explore the exposure to pesticide mixtures in the general population, it was assessed which 
parent pesticides co-occurred in the same urine sample. With the current work we were able 
to assess the probability of detection of 29 different parent pesticides simultaneously. In a 
large majority of the samples (84%) two or more different pesticides were detected. Our find-
ings confirm the presence of mixtures and the necessity of assessing co-occurrent exposures, 
which is a topic of high concern in risk assessment (European Commission, 2020; Socianu et 
al., 2022; Luijten et al., 2022). The number of co-occurring pesticides typically ranged from 2 
to 5, with a maximum of 13 different pesticides (2 urine samples). These two urine samples 
originate both from the Spanish non-agricultural area, one from a child of the first season, the 
other of an adult of the second season. Both individuals had a lower number of co-occurring 
pesticides during the other season, respectively 8 and 10 pesticides.

Based on the 14 most frequent co-occurrent pesticides, 44 different combinations could 
be made, resulting in highly individualized exposure profiles. The most common combina-
tion of acetamiprid with chlorpropham, occurred in just 3% (n=62) of the urine samples. Also, 
assessment of the co-occurrence patterns at country level (network analysis), did not result in 
strong relations and hardly any overlap across countries was seen. The underlying correlations 
between these probabilities of detection were also low, generally below 0.3. These results 
indicate that, qualitatively, pesticide mixtures might be highly variable between individuals. 
Nevertheless, the combined exposures may still pose a concern in terms of public health, 
especially when the different components of a chemical mixture share modes of action under-
lying toxicity (Rotter et al., 2018). Acetamiprid and chlorpropham seem to induce different 
toxicological effects (Arena et al., 2017; EFSA, 2016). Acetamiprid has been reported to mainly 
target the liver (EFSA, 2016), where it may cause, at least in rodents, oxidative stress leading to 
mitochondrial dysfunction (EL-Hak et al., 2022; Siwen Li et al., 2021). Exposure to chlorpropham 
rather leads to adverse effects on the hematopoietic system (Arena et al., 2017; Fujitani et 
al., 2000, 2004). Hemotoxicity such as hemolytic anemia, however, is considered to be due 
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to oxidative stress (Rokushima et al., 2007; Sivilotti, 2004). Chlorpropham belongs to the 
family of carbamates, which have been reported to induce oxidative stress in occupationally 
exposed workers (Saad-Hussein et al., 2022). The other frequently observed combination of 
co-occurring substances involved acetamiprid and tebuconazole. Tebuconazole is a fungicide 
that mainly affects the liver and the adrenals (EFSA, 2014). Additionally, it has been reported 
to induce oxidative stress in the liver and endocrine disruption including anti-androgenic 
effects (Taxvig et al., 2007; Yang et al., 2018). Follow-up studies involving a larger number of 
participants and targeted biomarkers for these substances are needed to better assess the 
composition of the relevant mixtures and associated health risks. 

Strengths and limitations
With the uniform design of our study a comparison could be made across Europe between 
agricultural and non-agricultural areas, seasons, and adults and children. Close collaborations 
with partners from all five countries resulted in the harmonized data collection, with little loss 
to follow up. The collection of the urine samples required a minimal invasive protocol, reduc-
ing the burden of citizens to participate in this survey, and opening up possibilities for scal-
ing-up studies in future endeavors. A novel SS approach was harmonized and standardized 
across laboratories, with extensive QA/QC procedures (Vitale et al., 2022). Such harmonization 
is crucial to compare SS data and results coming from different laboratories and countries, a 
situation that is often unavoidable in large-scale studies. The applied SS approach allows for a 
relatively cost-effective way of providing semi-quantitative measurements of a large number 
of pesticides. A clear strength of the SPECIMEn study is that information is obtained on (puta-
tive) internal exposure to pesticides not or hardly monitored before, and on simultaneous 
exposure to multiple pesticides. Across countries, different pesticides targeted to different 
controls on different crops are likely to have been applied at the time of sampling, of which 
the variation is covered with the SS approach. As such, this study should be seen as the first 
step towards a more complete assessment of the pesticide mixtures that the general Euro-
pean population is exposed to. Further in-depth screening of the collected data and further 
methodological developments will increase the number of biomarkers that can be detected 
in the collected urine samples. This allows an increasingly more complete coverage of all pes-
ticides that are present in these samples as well as the detection of other biomarkers that 
might potentially interact with the pesticide mixture. Also, future more quantitative analysis 
of signal intensities will allow for a semi-quantitative interpretation, both in co-occurrence 
patterns and in the role of determinants of pesticide levels.

Although the current study yields many new insights and perspectives on pesticide 
occurrence and mixtures, several limitations need to be addressed. From an analytical meth-
odology point of view, the suspect screening approach is less sensitive than targeted methods 
(Pourchet et al., 2020), and the data mining was biased towards halogenated pesticides (Huber 
et al., 2022). Despite harmonized methods between the involved laboratories, differences in 
sensitivity between the instruments used by the labs did occur, potentially introducing varia-
bility between countries which should be interpreted with care (Vitale et al., 2022, Huber et al., 
2022). Importantly, data generated by the SS approach applied in the SPECIMEn can currently 
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not be related to urinary pesticide concentration levels in the traditional quantitative way as in 
targeted analysis, but rather as semi-quantitative intensities as indicators of exposure. 

With regards to the sample collection, it should be kept in mind that samples of the 
second season were collected during the COVID-19 pandemic, while the first sample collec-
tion was not affected by the pandemic. Activity patterns or diet of participants might have 
been altered, and differences between seasons should be interpreted with caution. Also, the 
different seasons cannot be interpreted as ‘non-spraying’ and ‘spraying’, since the timing of 
the actual spraying activities (and spraying techniques) most likely differed between coun-
tries and crop types. Since the applied study design was not timed with an actual spraying 
activity, the detected exposures might be an underestimation as compared to what has been 
reported in the literature (Dereumeaux et al., 2020; Teysseire et al., 2020). Agricultural areas 
were selected based on national databases on land-use (see Supplementary Material F for 
a description of the area selection per country), due to which the application of pesticides 
during the time of sampling could not be confirmed. Within SPECIMEn, only first morning 
void urines were collected. Due to the rapid excretion of many pesticides, the detected pes-
ticides in the morning voids likely do not reflect the total daily exposure (Adela Jing Li et al., 
2019; Scher et al., 2007). Finally, with respect to the performed logistic regression models, no 
correction for multiple testing was performed, since we wanted to detect any possible effects, 
accepting the risk of false-positive results. The inclusion of both location and season could 
have led to an over-correction, especially since no difference between seasons at the non-ag-
ricultural locations would be expected due to any spraying activity (although diet might still 
differ between the seasons).

CONCLUSIONS

The current survey demonstrates the feasibility of conducting a harmonized pan-European 
sample collection combined with suspect screening (SS) to provide insight in the co-occur-
rence of pesticide mixtures in European agricultural areas. The application of a novel LC-HRMS 
based SS approach harmonized between different laboratories, resulted in detection of 40 
biomarkers related to 29 parent pesticides with high levels of confidence.  Some effects of 
living close to agricultural fields or season were detected, but these effects were not common 
at a European level. This study is a first step in addressing pesticide mixture exposure under 
real-life conditions. Combined with a suspect screening approach, this approach is a promising 
strategy for pesticide mixture risk assessment in the European population, that can guide the 
prioritization of pesticide (metabolites) to be measured using quantitative targeted methods.

Conflict of Interest
Declarations of interest: none.



125

 Pesticide mixtures in five European countries by suspect screening • Chapter 5

C
ha

pt
er

 5

Credit author statement
Conceptualization and design (IO, JV, EL, RV, JA); Investigation (IO, JV, EL, PČ, LŠ, OM, TS, 
SK, IM, ZM, LA, OP, SF, CC, SP); Analytical methodology (JA, CH, AL, OP, SF, MK, LD, KW, 
RN, HM, CM, JK, BG, NL) ; Formal analysis (IO, JV); Writing - Original Draft (IO, JV, EL); Writing 
– Review and Editing (all authors); Visualization (IO); Supervision (ML, RV); Project administra-
tion (IO, JV, EL); All authors read and approved the final manuscript.

Acknowledgement
This project has received funding from the European Union’s Horizon 2020 research and inno-
vation program under grant agreement No 733032 HBM4EU, No 857560 and No 857340. P.Č., 
O.M. & L.Š. acknowledge the RECETOX research infrastructure supported by the Ministry of 
Education, Youth and Sports of the Czech Republic (LM2018121) and the Ministry of Education, 
Youth and Sports of the Czech Republic ( CZ.02.1.01/0.0/0.0/17_043/0009632). This publication 
reflects only the author’s view and the European Commission is not responsible for any use 
that may be made of the information it contains. BG was supported by the Margarita Salas 
postdoctoral contract MGS/2021/25 (UP2021-021) financed by the European Union-NextGen-
erationEU.

Abbreviations
HBM Human Biomonitoring
HBM4EU European Human Biomonitoring Initiative
LC-HRMS Liquid chromatography coupled to High Resolution Mass Spectrometry
SPECIMEn Survey on PEstiCIde Mixtures in Europe
SS Suspect Screening



126

Chapter 5 • Pesticide mixtures in five European countries by suspect screening

REFERENCES

Allema, B., Hoogendoorn, M., van Beek, J., & Leendertse, P. (2017). Neonicotinoids in European agriculture. 
CLM-937.

Andra, S. S., Austin, C., Patel, D., Dolios, G., Awawda, M., & Arora, M. (2017). Trends in the application 
of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying 
the environmental chemical space of the human exposome. Environment International, 100, 32–61. 
https://doi.org/10.1016/j.envint.2016.11.026

Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., … Villamar‐Bouza, L. (2017). Peer 
review of the pesticide risk assessment of the active substance chlorpropham. EFSA Journal, 15(7). 
https://doi.org/10.2903/j.efsa.2017.4903

Baudry, J., Debrauwer, L., Durand, G., Limon, G., Delcambre, A., Vidal, R., … Kesse-Guyot, E. (2019). Urinary 
pesticide concentrations in French adults with low and high organic food consumption: results from 
the general population-based NutriNet-Santé. Journal of Exposure Science & Environmental Epidemi-
ology, 29(3), 366–378. https://doi.org/10.1038/s41370-018-0062-9

Bonvallot, N., Jamin, E. L., Regnaut, L., Chevrier, C., Martin, J.-F., Mercier, F., … Le Bot, B. (2021). Suspect 
screening and targeted analyses: Two complementary approaches to characterize human expo-
sure to pesticides. Science of The Total Environment, 786, 147499. https://doi.org/10.1016/j.scito-
tenv.2021.147499

Crépet, A., Vanacker, M., Sprong, C., de Boer, W., Blaznik, U., Kennedy, M., … van Klaveren, J. (2019). Select-
ing mixtures on the basis of dietary exposure and hazard data: application to pesticide exposure in 
the European population in relation to steatosis. International Journal of Hygiene and Environmental 
Health, 222(2), 291–306. https://doi.org/10.1016/j.ijheh.2018.12.002

Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide Exposure, Safety Issues, and Risk Assessment 
Indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. https://
doi.org/10.3390/ijerph8051402

Dereumeaux, C., Fillol, C., Quenel, P., & Denys, S. (2020). Pesticide exposures for residents living close 
to agricultural lands: A review. Environment International, 134, 105210. https://doi.org/10.1016/j.
envint.2019.105210

Deziel, N. C., Friesen, M. C., Hoppin, J. A., Hines, C. J., Thomas, K., & Freeman, L. E. B. (2015). A Review of 
Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas. Environ-
mental Health Perspectives, 123(6), 515–524. https://doi.org/10.1289/ehp.1408273

EFSA. (2014). Conclusion on the peer review of the pesticide risk assessment of the active substance 
tebuconazole. EFSA Journal, 12(1). https://doi.org/10.2903/j.efsa.2014.3485

EFSA. (2016). Peer review of the pesticide risk assessment of the active substance acetamiprid. EFSA 
Journal, 14(11). https://doi.org/10.2903/j.efsa.2016.4610

EL-Hak, H. N. G., Al-Eisa, R. A., Ryad, L., Halawa, E., & El-Shenawy, N. S. (2022). Mechanisms and histopatho-
logical impacts of acetamiprid and azoxystrobin in male rats. Environmental Science and Pollution 
Research, 29(28), 43114–43125. https://doi.org/10.1007/s11356-021-18331-3

Eskenazi, B., Bradman, A., & Castorina, R. (1999). Exposures of children to organophosphate pesticides 
and their potential adverse health effects. Environmental Health Perspectives, 107(suppl 3), 409–419. 
https://doi.org/10.1289/ehp.99107s3409

EU Database Pest. (2022). EU Database Pest. Retrieved June 21, 2022, from https://ec.europa.eu/food/
plant/pesticides/eu-pesticides-database/active-substances/?event=search.as

European Commission. (2020). Progress Report on the Assessment and Management of Combined Exposure 
to Multiple Chemicals (Chemical Mixtures) and Associated Risks (Staff Working Document SWD 250 
Final). Retrieved from https://ec.europa.eu/environment/pdf/chemicals/2020/10/SWD_mixtures.
pdf

Figueiredo, D. M., Duyzer, J., Huss, A., Krop, E. J. M., Gerritsen-Ebben, M. G., Gooijer, Y., & Vermeulen, 
R. C. H. (2021). Spatio-temporal variation of outdoor and indoor pesticide air concentrations in 
homes near agricultural fields. Atmospheric Environment, 262, 118612. https://doi.org/10.1016/j.atm-
osenv.2021.118612



127

 Pesticide mixtures in five European countries by suspect screening • Chapter 5

C
ha

pt
er

 5

Fujitani, T., Tada, Y., Fujii, A., Kimura, M., & Yoneyama, M. (2000). Subchronic toxicity of chlorpropham (CIPC) 
in ICR mice. Food and Chemical Toxicology : An International Journal Published for the British Industrial 
Biological Research Association, 38(7), 617–625. https://doi.org/10.1016/s0278-6915(00)00043-0

Fujitani, T., Tada, Y., & Yoneyama, M. (2004). Chlorpropham-induced splenotoxicity and its recovery in 
rats. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biologi-
cal Research Association, 42(9), 1469–1477. https://doi.org/10.1016/j.fct.2004.04.008

Gerona, R. R., Schwartz, J. M., Pan, J., Friesen, M. M., Lin, T., & Woodruff, T. J. (2018). Suspect screening of 
maternal serum to identify new environmental chemical biomonitoring targets using liquid chro-
matography–quadrupole time-of-flight mass spectrometry. Journal of Exposure Science & Environ-
mental Epidemiology, 28(2), 101–108. https://doi.org/10.1038/jes.2017.28

Gooijer, Y. M., Hoftijser, G. W., Lageschaar, L. C. C., Oerlemans, A., Scheepers, P. T. J., Kivits, C. M., … Sauer, 
P. J. J. (2019). Research on Exposure of Residents to Pesticides in The Netherlands OBO Flower Bulbs. 
Retrieved from https://edepot.wur.nl/475219

Hyland, C., Bradman, A., Gerona, R., Patton, S., Zakharevich, I., Gunier, R. B., & Klein, K. (2019). Organic diet 
intervention significantly reduces urinary pesticide levels in U.S. children and adults. Environmental 
Research, 171, 568–575. https://doi.org/10.1016/j.envres.2019.01.024

Kim, K.-H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. 
Science of The Total Environment, 575, 525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

Li, A. J., Martinez-Moral, M.-P., & Kannan, K. (2019). Temporal variability in urinary pesticide concentrations 
in repeated-spot and first-morning-void samples and its association with oxidative stress in healthy 
individuals. Environment International, 130, 104904. https://doi.org/10.1016/j.envint.2019.104904

Li, S., Cao, Y., Pan, Q., Xiao, Y., Wang, Y., Wang, X., … Ran, B. (2021). Neonicotinoid insecticides triggers 
mitochondrial bioenergetic dysfunction via manipulating ROS-calcium influx pathway in the liver. 
Ecotoxicology and Environmental Safety, 224, 112690. https://doi.org/10.1016/j.ecoenv.2021.112690

Norén, E., Lindh, C., Rylander, L., Glynn, A., Axelsson, J., Littorin, M., … Nielsen, C. (2020). Concentrations 
and temporal trends in pesticide biomarkers in urine of Swedish adolescents, 2000–2017. Journal of 
Exposure Science & Environmental Epidemiology, 30(4), 756–767. https://doi.org/10.1038/s41370-020-
0212-8

Ntzani, E. E., Ntritsos G, C. M., Evangelou, E., & Tzoulaki, I. (2013). Literature review on epidemiological 
studies linking exposure to pesticides and health effects. EFSA Supporting Publications, 10(10). 
https://doi.org/10.2903/sp.efsa.2013.EN-497

Oerlemans, A., Figueiredo, D. M., Mol, J. G. J., Nijssen, R., Anzion, R. B. M., van Dael, M. F. P., … Scheepers, 
P. T. J. (2021). Personal exposure assessment of pesticides in residents: The association between 
hand wipes and urinary biomarkers. Environmental Research, 199, 111282. https://doi.org/10.1016/j.
envres.2021.111282

Pellizzari, E. D., Woodruff, T. J., Boyles, R. R., Kannan, K., Beamer, P. I., Buckley, J. P., … Bennett, D. H. 
(2019). Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for 
Biomonitoring and Health-Related Research. Environmental Health Perspectives, 127(12), EHP5133. 
https://doi.org/10.1289/EHP5133

Plassmann, M. M., Brack, W., & Krauss, M. (2015). Extending analysis of environmental pollutants in human 
urine towards screening for suspected compounds. Journal of Chromatography A, 1394, 18–25. 
https://doi.org/10.1016/j.chroma.2015.03.040

Pons, P., & Latapy, M. (2005). Computing Communities in Large Networks Using Random Walks (pp. 
284–293). https://doi.org/10.1007/11569596_31

Pourchet, M., Debrauwer, L., Klanova, J., Price, E. J., Covaci, A., Caballero-Casero, N., … Antignac, J.-P. 
(2020). Suspect and non-targeted screening of chemicals of emerging concern for human bio-
monitoring, environmental health studies and support to risk assessment: From promises to chal-
lenges and harmonisation issues. Environment International, 139, 105545. https://doi.org/10.1016/j.
envint.2020.105545



128

Chapter 5 • Pesticide mixtures in five European countries by suspect screening

Rokushima, M., Omi, K., Imura, K., Araki, A., Furukawa, N., Itoh, F., … Ishizaki, J. (2007). Toxicogenomics of 
Drug-Induced Hemolytic Anemia by Analyzing Gene Expression Profiles in the Spleen. Toxicological 
Sciences, 100(1), 290–302. https://doi.org/10.1093/toxsci/kfm216

Rotter, S., Beronius, A., Boobis, A. R., Hanberg, A., van Klaveren, J., Luijten, M., … Solecki, R. (2018). Over-
view on legislation and scientific approaches for risk assessment of combined exposure to multiple 
chemicals: the potential EuroMix contribution. Critical Reviews in Toxicology, 48(9), 796–814. https://
doi.org/10.1080/10408444.2018.1541964

Saad-Hussein, A., Shahy, E. M., Ibrahim, K. S., Mahdy-Abdallah, H., Taha, M. M., Abdel-Shafy, E. A., & Shaban, 
E. E. (2022). Influence of GSTM1, T1 genes polymorphisms on oxidative stress and liver enzymes in 
rural and urban pesticides-exposed workers. Archives of Environmental & Occupational Health, 77(10), 
800–808. https://doi.org/10.1080/19338244.2021.2025024

Sapbamrer, R., & Hongsibsong, S. (2019). Effects of prenatal and postnatal exposure to organophosphate 
pesticides on child neurodevelopment in different age groups: a systematic review. Environmental 
Science and Pollution Research, 26(18), 18267–18290. https://doi.org/10.1007/s11356-019-05126-w

Scher, D. P., Alexander, B. H., Adgate, J. L., Eberly, L. E., Mandel, J. S., Acquavella, J. F., … Brzak, K. A. (2007). 
Agreement of pesticide biomarkers between morning void and 24-h urine samples from farmers 
and their children. Journal of Exposure Science & Environmental Epidemiology, 17(4), 350–357. https://
doi.org/10.1038/sj.jes.7500505

Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying 
Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmen-
tal Science & Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105

Sivilotti, M. L. A. (2004). Oxidant stress and haemolysis of the human erythrocyte. Toxicological Reviews, 
23(3), 169–188. https://doi.org/10.2165/00139709-200423030-00004

Socianu, S., Bopp, S. K., Govarts, E., Gilles, L., Buekers, J., Kolossa-Gehring, M., … Franco, A. (2022). Chem-
ical Mixtures in the EU Population: Composition and Potential Risks. International Journal of Environ-
mental Research and Public Health, 19(10), 6121. https://doi.org/10.3390/ijerph19106121

Taxvig, C., Hass, U., Axelstad, M., Dalgaard, M., Boberg, J., Andeasen, H. R., & Vinggaard, A. M. (2007). Endo-
crine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological 
Sciences : An Official Journal of the Society of Toxicology, 100(2), 464–473. https://doi.org/10.1093/
toxsci/kfm227

Teysseire, R., Manangama, G., Baldi, I., Carles, C., Brochard, P., Bedos, C., & Delva, F. (2020). Assessment of 
residential exposures to agricultural pesticides: A scoping review. PLOS ONE, 15(4), e0232258. https://
doi.org/10.1371/journal.pone.0232258

Teysseire, R., Manangama, G., Baldi, I., Carles, C., Brochard, P., Bedos, C., & Delva, F. (2021). Determinants 
of non-dietary exposure to agricultural pesticides in populations living close to fields: A systematic 
review. Science of The Total Environment, 761, 143294. https://doi.org/10.1016/j.scitotenv.2020.143294

van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. 
J. (2015). A new method for constructing networks from binary data. Scientific Reports, 4(1), 5918. 
https://doi.org/10.1038/srep05918

Vitale, C. M., Lommen, A., Huber, C., Wagner, K., Garlito Molina, B., Nijssen, R., … Antignac, J.-P. (2022). 
Harmonized Quality Assurance/Quality Control Provisions for Nontargeted Measurement of Urinary 
Pesticide Biomarkers in the HBM4EU Multisite SPECIMEn Study. Analytical Chemistry. https://doi.
org/10.1021/acs.analchem.2c00061

Wang, A., Gerona, R. R., Schwartz, J. M., Lin, T., Sirota, M., Morello-Frosch, R., & Woodruff, T. J. (2018). A 
Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demograph-
ically Diverse Population of Pregnant Women in San Francisco. Environmental Health Perspectives, 
126(7), 077009. https://doi.org/10.1289/EHP2920

Willenbockel, C. T., Prinz, J., Dietrich, S., Marx-Stoelting, P., Weikert, C., Tralau, T., & Niemann, L. (2022). A 
Critical Scoping Review of Pesticide Exposure Biomonitoring Studies in Overhead Cultures. Toxics, 
10(4), 170. https://doi.org/10.3390/toxics10040170



129

 Pesticide mixtures in five European countries by suspect screening • Chapter 5

C
ha

pt
er

 5

Yang, J.-D., Liu, S.-H., Liao, M.-H., Chen, R.-M., Liu, P.-Y., & Ueng, T.-H. (2018). Effects of tebuconazole on 
cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats. Environmental 
Toxicology. https://doi.org/10.1002/tox.22575

Yusà, V., F. Fernández, S., Dualde, P., López, A., Lacomba, I., & Coscollà, C. (2022). Exposure to non-persis-
tent pesticides in the Spanish population using biomonitoring: A review. Environmental Research, 
205, 112437. https://doi.org/10.1016/j.envres.2021.112437



130

Chapter 5 • Pesticide mixtures in five European countries by suspect screening

SUPPLEMENTARY MATERIAL

Table A. Specific sampling dates, per study site and season

Season 1  Season 2 
Area  Start  End  Start  End 
Spain 

Agricultural  07/11/2019  20/12/2019  01/09/2020  02/10/2020 
Non-agricultural  05/11/2019  19/12/2019  01/09/2020  05/10/2020 

Latvia 
Agricultural  18/02/2020  31/03/2020  02/06/2020  18/06/2020 

Non-agricultural   18/02/2020  31/03/2020  02/06/2020  18/06/2020 
Hungary 

Agricultural  29/01/2020  10/02/2020  07/09/2020  16/09/2020 
Non-agricultural   11/02/2020  18/02/2020  16/09/2020  17/09/2020 

Czech Republic 
Agricultural  14/1/2020  13/3/2020  26/5/2020  30/7/2020 

Non-agricultural   14/1/2020  13/3/2020  26/5/2020  30/7/2020 
The Netherlands 

Agricultural  22/01/2020  06/03/2020  02/06/2020  24/06/2020 
Non-agricultural   22/01/2020  06/03/2020  02/06/2020  24/06/2020 
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Table B. Descriptive characteristics of the SPECIMEn study participants based on the questionnaire, by study site and 
location.

Study Site  Spain  Latvia  Hungary 
Czech 
Republic  Netherlands 

Area  A
gr

ic
ul

-
tu

ra
l

N
on

-a
gr

i-
cu

lt
ur

al
 

A
gr

ic
ul

-
tu

ra
l

N
on

-a
gr

i-
cu

lt
ur

al
 

A
gr

ic
ul

-
tu

ra
l

N
on

-a
gr

i-
cu

lt
ur

al
 

A
gr
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ul

-
tu

ra
l

N
on

-a
gr

i-
cu

lt
ur

al
 

A
gr

ic
ul

-
tu

ra
l

N
on

-a
gr

i-
cu

lt
ur

al
 

Smoking status adult1, % 
No-current smoker  65.4  73.6  88.0  82.4  54.9  78.8  84.3  91.7  94.5  100.0 

Household income, % of country average1 
< 25% 

 
7.7  0 

 
14.0 

 
9.8 

 
27.4 

 
17.3 

 
15.7 

 
16.7 

 
1.8 

 
0 

25-50%  5.8  0  0  0  39.2  19.2  39.2  26.7  5.5  6.0 
50-75%  17.3  3.8  0  0  13.7  7.7  35.3  33.3  49.1  44.0 

>75%  57.7  75.5  74.0  70.6  5.9  44.4  9.8  21.7  20.0  44.0 
Don’t Know/NA  11.5  20.8  12.0  19.6  13.7  9.3  0  1.7  23.6  6.0 

Professional contact with pesticides in 
the past month, n adults 

Season 1 0  1  2  0  0  0  1  0  0  0 
Season 2  2  0  4  1  2  1  3  1  0  0 

Having other adult household member(s) 
who had professional contact with pesti-
cides, n adults  1  0  16  2  9  1  0  0  1  0 
Usage of any type of products for treating 
the plants in the garden up to 3 days prior to 
sample collection, n adults 

Season 1 0  2  1  1  0  2  1  0  1  0 
Season 2  4  2  4  2  1  2  6  4  4  2 

Usage of any type of products for treating 
the plants inside the house up to 3 days 
prior to sample collection, n adults 

Season 1 2  0  2  4  0  2  0  1  1  3 
Season 2  2  0  3  3  17  4  2  0  2  2 

Usage of external antiparasitic treatments 
for pets in the 3 days prior to sample 
collection, n adults 

Season 1 2  2  0  1  2  11  1  1  1  0 
Season 2  1  2  4  1  4  5  0  1  6  1 

Usage of insect repellent or antiparasitic 
human products in the 3 days prior to 
sample collection, n adults 

Season 1 6  1  0  3  2  2  2  1  0  2 
Season 2  25  6  5  4  4  2  6  8  5  0 

1. 50% is country mean average income
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Table E. Results of logistic mixed effects models, main and extended. Results are presented as Odds Ratios (OR) with 
95% confidence intervals (CI). Significance levels based on p-value: ‘***’ <0.001, ‘**’ <0.01, ‘*’ <0.05. Random effects 
are household and participant ID. Main model includes the predictors: location, season, and age category. Extended 
model includes additional predictors for pesticide usage, BMI, level of education and homegrown food consumption. 

ID  Parent 
pesticide 

Category ES LV
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

P1 2,4-D Season 2 vs 11

Parent vs Child
Agricultural vs 
Non-agricultural

1.7 (0.5; 5.9)
2.5 (0.7; 8.8)
0.7 (0.1; 5.5)

1.6 (0.4; 5.9)
3.4 (0.5; 21)
0.8 (0.1; 7.3)

NA NA

P2_a  Acetamiprid  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.5 (0.1; 2.7)
0.2 (0.0; 1.7)
(100% detect 
in Agricultural 
area, no estimate 
possible) 

0.5 (0.1; 2.7)
0.2 (0.0; 2.8)
(Not possible)

0.6 (0.4; 1.0) .
0.8 (0.5; 1.3)
1.0 (0.6; 1.6)

0.6 (0.4; 1.0) *
0.7 (0.4; 1.5)
1.1 (0.7; 1.9)

P3_a Ametoctradin Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.4 (0.1; 1.5)
2.1 (0.3; 17)
0.3 (0.0; 2.8)

0.6 (0.2; 1.4)
3.0 (0.9; 10)
0.4 (0.1; 1.0)

0.6 (0.2; 2.0)
0.8 (0.2; 2.8)
1.8 (0.5; 6.3)

0.5 (0.2; 1.9)
2.3 (0.3; 15)
1.3 (0.3; 5.3)

P5_a  Boscalid Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.7 (0.4; 1.0) .
2.9 (1.8; 4.6) ***
1.0 (0.6; 1.9)

0.6 (0.4; 1.0) .
2.5 (1.3; 4.9) **
1.0 (0.5; 1.8)

0.9 (0.5; 1.6)
1.3 (0.7; 2.4)
1.2 (0.5; 2.6)

0.9 (0.5; 1.6)
1.0 (0.4; 2.6)
1.4 (0.6; 3.1)

P5_b  0.5 (0.2; 1.7)
1.2 (0.2; 6.8)
1.1 (0.2; 7.5)

0.6 (0.2; 1.7)
4.6 (0.9; 23)
1.1 (0.2; 8.0)

NA NA

P6 Chlorantrani-
liprole 

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

7.6 (1.7; 34) **
1.0 (0.4; 2.7)
1.0 (0.4; 2.9)
No random 
effects, this 
resulted in 
unreliable model

6.8 (1.5; 31) *
0.8 (0.2; 3.2)
0.7 (0.2; 2.4)
No random 
effects

NA NA

P8_a  Chlorpropham  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.4 (0.3; 0.7) ***
0.4 (0.2; 0.6) ***
0.7 (0.4; 1.3)

0.4 (0.3; 0.7) ***
0.3 (0.2; 0.6) ***
0.7 (0.4; 1.3)

1.6 (1.0; 2.6) .
0.3 (0.2; 0.6) ***
1.3 (0.7; 2.7)

1.5 (0.9; 2.4)
0.4 (0.2; 1.0) *
1.2 (0.6; 2.5)

P9_a Chlorpyrifos 
(/methyl)

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.4 (0.1; 2.1)
6.2 (0.7; 52) .
1.4 (0.3; 6.3)

0.4 (0.1; 2.4)
3.9 (0.3; 52)
1.5 (0.3; 7.2)
Not correct Educ

NA NA

P9_b  0.2 (0.1; 0.4) ***
0.5 (0.3; 0.7) ***
0.8 (0.5; 1.3)

0.2 (0.1; 0.4) ***
0.4 (0.2; 0.7) **
0.8 (0.5; 1.3)

NA NA

P10 Clopyralid Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

NA NA NA NA

P11_a  Clothianidin 
(can come 
from thiame-
thoxam)

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.6 (0.4; 0.9) **
0.6 (0.5; 0.9) *
0.5 (0.3; 0.8) **

0.5 (0.3; 0.8) **
0.6 (0.3; 1.0) .
0.4 (0.3; 0.7) ***

6.3 (0.7; 53) .
0.2 (0.0; 1.4) .
1.4 (0.3; 6.3)

5.7 (0.7; 50)
0.3 (0.0; 5.7)
0.9 (0.2; 4.6)

P11_b NA NA NA NA

P11_c  0.9 (0.5; 1.5)
0.7 (0.4; 1.3)
1.4 (0.8; 2.8)

0.8 (0.5; 1.4)
0.8 (0.4; 1.8)
1.4 (0.7; 2.8)

NA NA
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HU CZ NL
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

0.5 (0.1; 2.0)
0.8 (0.2; 3.0)
0.8 (0.2; 3.1)

0.4 (0.1; 1.7)
0.6 (0.1; 2.9)
0.6 (0.1; 2.8)

0.5 (0.1; 1.7)
1.0 (0.3; 3.2)
1.7 (0.5; 5.3)

0.4 (0.1; 1.4)
1.7 (0.2; 12)
1.6 (0.5; 5.4)

NA NA

1.2 (0.5; 2.7)
0.4 (0.2; 1.0) *
1.2 (0.1; 2.7)

1.3 (0.5; 3.1)
0.5 (0.2; 1.5)
1.4 (0.5; 3.5)

0.6 (0.1; 2.5)
1.0 (0.2; 4.1)
0.5 (0.1; 2.2)

0.8 (0.2; 3.9)
12 (1.0; 149) .
0.6 (0.1; 3.0)

0.2 (0.0; 0.8) *
1.3 (0.2; 9.0)
2.0 (0.3; 14)

0.5 (0.2; 1.2)
1.7 (0.3; 8.0)
2.4 (0.9; 6.2) .

0.7 (0.1; 4.1)
4.0 (0.4; 37)
1.6 (0.3; 9.5)

Not reliable, 1.2% 
detected

0.4 (0.1; 1.0) *
0.6 (0.2; 1.5)
3.2 (1.1; 9.5) *

0.4 (0.1; 1.1) .
0.2 (0.0; 1.3) .
3.0 (1.0; 9.4) .

0.3 (0.1; 1.6)
0.1 (0.02; 0.9) *
0.8 (0.03; 20)

Not reliable, 2.9% 
detected

0.6 (0.2; 1.7)
2.1 (1.0; 9.9) .
0.8 (0.2; 2.2)

0.6 (0.2; 1.9)
2.4 (0.6; 9.3)
0.5 (0.1; 1.5)

0.7 (0.4; 1.2)
2.1 (1.3; 3.5) **
1.4 (0.8; 2.5)

0.8 (0.5; 1.3)
2.5 (1.0; 6.1) .
1.4 (0.8; 2.7)

1.4 (0.9; 2.2)
1.4 (0.9; 2.1)
0.6 (0.3; 1.0) . 

1.4 (0.9; 2.2)
1.1 (0.4; 2.6)
0.5 (0.3; 1.0) .

NA NA NA NA NA NA

NA NA NA NA NA NA

0.5 (0.3; 0.8) **
0.5 (0.3; 0.7) **
1.3 (0.7; 2.5)

0.5 (0.3; 0.9) *
0.4 (0.2; 0.7) **
1.5 (0.7; 3.2)

2.1 (1.3; 3.3) **
0.4 (0.2; 0.6) ***
1.0 (0.6; 2.0)

1.9 (1.2; 3.1) *
0.3 (0.1; 0.8) *
1.0 (0.5; 2.0) Not 
correct Edu

2.8 (1.7; 4.7) ***
0.6 (0.4; 1.1) .
2.1 (1.1; 3.9) *

2.7 (1.6; 4.6) ***
0.5 (0.2; 1.2)
2.1 (1.1; 4.1) *

NA NA NA NA NA NA

2.5 (1.0; 6.1) *
0.5 (0.2; 1.1) .
0.2 (0.1; 0.7) *

2.7 (1.1; 6.5) *
0.2 (0.1; 0.8) *
0.3 (0.1; 1.0) .

0.6 (0.4; 1.0) .
0.5 (0.3; 0.7) **
1.3 (0.7; 2.4)

0.6 (0.4; 1.0) .
0.7 (0.3; 1.7)
1.3 (0.7; 2.4)

0.5 (0.2; 1.1) .
0.8 (0.3; 1.8)
1.2 (0.4; 3.2)

0.4 (0.1; 1.0) *
0.9 (0.2; 5.2)
1.2 (0.4; 3.3)

NA NA 1.0 (0.2; 5.1)
2.0 (0.4; 11)
0.2 (0.0; 2.0)

0.6 (0.4; 1.0) .
0.7 (0.3; 1.7)
1.3 (0.7; 2.4) not 
correct PestUse

NA NA

3.1 (1.8; 5.2) ***
0.6 (0.4; 1.0) .
2.8 (1.6; 4.7) ***

3.5 (2.0; 6.1) ***
0.4 (0.2; 0.7) **
2.8 (1.5; 5.1) **

0.6 (0.4; 1.0) .
1.0 (0.6; 1.5)
1.3 (0.8; 2.2)

0.7 (0.4; 1.1)
1.1 (0.5; 2.7)
1.4 (0.8; 2.5)

0.6 (0.4; 1.0) .
0.9 (0.5; 1.5)
1.3 (0.7; 2.3)

0.6 (0.4; 1.0) .
1.7 (0.6; 4.6)
1.4 (0.8; 2.7)

NA NA NA NA NA NA

1.9 (0.9; 3.9) .
0.8 (0.4; 1.5)
4.4 (1.8; 11) ***

2.5 (1.2; 5.5) *
0.3 (0.1; 0.8) *
5.5 (2.1; 14) ***

0.5 (0.2; 1.1) .
0.9 (0.4; 2.0)
1.3 (0.6; 2.7)

0.5 (0.2; 1.1) .
1.2 (0.3; 4.6)
1.3 (0.6; 2.8)

0.02 (0.0; 0.3) **
1.6 (0.0; 42)
1.5 (0.0; 38)

0.6 (0.4; 1.0) .
1.8 (0.7; 4.9)
1.4 (0.7; 2.6)
Not corrected for 
PestUse &Educ, 
3% detect
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ID  Parent 
pesticide 

Category ES LV
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

P12_a Cypermethrin, 
cyfluthrin, 
permethrin, 
transfluthrin

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

NA NA NA NA

P13_a  Cyprodinil  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

1.2 (0.7; 2.1)
2.0 (1.6; 5.6) ***
1.4 (0.7; 2.7)

1.2 (0.6; 2.2)
2.3 (1.0; 5.4) .
1.4 (0.7; 2.7)

0.7 (0.3; 1.5)
0.9 (0.4; 2.1)
1.1 (0.4; 2.8)

0.7 (0.3; 1.5)
1.5 (0.5; 5.1)
1.1 (0.4; 2.9)

P18_a Flonicamid 
 

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

1.4 (0.3; 6.3)
6.2 (0.7; 52)
2.6 (0.5; 14)

1.4 (0.3; 7.1)
7.8 (0.6; 96)
2.6 (0.4; 15)
Not correct Educ

NA NA

P18_b  0.3 (0.2; 0.6) ***
0.6 (0.4; 1.1)
0.8 (0.5; 1.5)

0.3 (0.2; 0.6) ***
0.6 (0.3; 1.4)
0.9 (0.5; 1.6)

NA NA

P19_a  Fluazifop 
 

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.5 (0.3; 0.8) **
1.0 (0.6; 1.7)
1.0 (0.6; 1.9)

0.5 (0.3; 0.9) *
0.7 (0.3; 1.5)
1.1 (0.6; 2.1)

0.7 (0.2; 2.4)
1.0 (0.3; 3.5)
4.2 (0.9; 20) .

0.6 (0.1; 2.3)
1.2 (0.2; 7.8)
3.1 (0.6; 16)

P19_b  0.8 (0.4; 1.6)
1.0 (0.5; 2.1)
1.6 (0.7; 3.6)

0.7 (0.3; 1.6)
0.4 (0.1; 1.2)
1.6 (0.6; 4.1)

0.5 (0.1; 2.7)
0.5 (0.1; 2.7)
5.2 (0.6; 45)

0.4 (0.1; 2.6)
1.9 (0.1; 29)
4.6 (0.5; 44)

P20  Fludioxonil  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.5 (0.3; 0.9) *
1.5 (0.8; 2.8)
1.1 (0.6; 2.1)

0.5 (0.3; 0.9) *
0.9 (0.4; 2.2)
1.0 (0.5; 2.0)

0.8 (0.4; 1.4)
1.1 (0.6; 2.1)
0.8 (0.4; 1.7)

0.8 (0.4; 1.4)
0.8 (0.3; 2.1)
0.9 (0.4; 1.9)

P21_a Fluopyram Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

3.1 (0.8; 12)
0.8 (0.2; 2.8)
1.1 (0.1; 9.5)

3.6 (0.8; 15) .
1.0 (0.1; 8.1)
2.0 (0.2; 19)

NA NA

P21_b 2.1 (0.4; 11)
1.0 (0.2; 4.5)
1.2 (0.1; 20)

2.2 (0.4; 13)
0.3 (0.0; 5.6)
1.7 (0.1; 41)

NA NA

P21_c  1.0 (0.5; 1.9)
1.5 (0.8; 3.0)
1.4 (0.6; 3.4)

1.1 (0.5; 2.2)
0.9 (0.3; 2.6)
1.5 (0.6; 4.0)

0.2 (0.0; 0.8) *
0.9 (0.1; 6.1)
0.6 (0.1; 4.3)

P22_a Flupyradifu-
rone 

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.0 (0.0; 0.8) *
1.2 (0.0; 33)
0.6 (0.0; 18)

0.3 (0.1; 1.2)
0.7 (0.1; 4.2)
0.5 (0.1; 1.8)

NA NA

P25_a Fluvalinate Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

NA NA NA NA

P27_a  Imazalil  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.2 (0.1; 0.3) ***
1.1 (0.7; 2.0)
1.0 (0.5; 2.0)

0.2 (0.1; 0.4) ***
0.8 (0.4; 1.9)
1.1 (0.6; 2.2)

0.4 (0.2; 0.8) *
2.4 (1.1; 5.2) *
1.7 (0.6; 4.9)

0.4 (0.2; 1.1) .
1.1 (0.3; 4.3)
0.7 (0.2; 2.2)

P28_a  Imidacloprid  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.6 (0.3; 1.0) *
1.4 (0.8; 2.5)
1.5 (0.7; 3.1)

0.5 (0.3; 1.0) *
1.8 (0.8; 4.2)
1.2 (0.6; 2.6)

0.2 (0.0; 1.4)
1.4 (0.3; 6.1)
1.4 (0.3; 6.2)

0.2 (0.0; 1.4)
0.7 (0.1; 6.2)
1.1 (0.2; 5.7)

P32_a  Penconazole  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

1.1 (0.5; 2.5)
2.2 (0.9; 5.0) .
0.7 (0.3; 1.7)

1.2 (0.5; 2.6)
2.9 (0.9; 9.0) .
0.8 (0.3; 1.9)

0.8 (0.2; 3.4)
0.8 (0.2; 3.4)
1.4 (0.3; 6.1)

0.8 (0.2; 3.4)
0.6 (0.1; 6.0)
1.6 (0.3; 7.7) Not 
correct PestUse

Table E. Continued.
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HU CZ NL
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

NA NA NA NA NA NA

0.3 (0.1; 2.0)
6.2 (0.9; 40)
1.9 (0.1; 44)

0.4 (0.1; 2.9)
2.9 (0.3; 26)
1.8 (0.1; 61)

0.9 (0.5; 1.6)
0.8 (0.4; 1.5)
0.3 (0.1; 0.6) **

0.9 (0.5; 1.7)
1.0 (0.3; 3.0)
0.3 (0.1; 0.6) **

0.8 (0.5; 1.2)
0.5 (0.3; 0.8) **
0.6 (0.3; 0.9) *

0.8 (0.5; 1.2)
1.2 (0.5; 2.8)
0.5 (0.3; 0.9) *

3.1 (0.6; 16)
0.3 (0.1; 1.6)
1.0 (0.3; 4.3)

3.8 (0.7; 20)
0.2 (0.0; 1.5)
2.3 (0.5; 11)

1.0 (0.2; 5.3)
0.1 (0.0; 0.4) **
2.7 (0.1; 84)

Not reliable, 2.7% 
detect

1.6 (0.6; 4.0)
0.3 (0.1; 0.8) *
0.4 (0.1; 1.5)

1.5 (0.6; 3.8)
0.3 (0.0; 2.3)
0.4 (0.1; 1.3)

2.2 (1.4; 3.6) **
0.9 (0.5; 1.5)
0.6 (0.4; 1.0) .

2.6 (1.6; 4.4) ***
0.6 (0.3; 1.2)
0.8 (0.4; 1.4)

NA NA 0.9 (0.6; 1.4)
0.7 (0.4; 1.0) .
1.0 (0.6; 1.6)

0.9 (0.6; 1.4)
1.2 (0.6; 2.8)
0.9 (0.5; 1.5)

1.1 (0.6; 2.0)
0.6 (0.3; 1.2)
1.1 (0.5; 2.2)

0.9 (0.4; 1.7)
0.4 (0.2; 1.0) *
0.9 (0.4; 2.1)

0.9 (0.5; 1.4)
0.7 (0.4; 1.2)
1.1 (0.6, 2.1)

0.8 (0.5; 1.4)
0.5 (0.2; 1.3)
1.3 (0.7; 2.4) not 
correct Educ

1.0 (0.6; 1.6)
0.7 (0.4; 1.2)
1.4 (0.7; 3.0)

1.0 (0.6; 1.7)
0.5 (0.2; 1.5)
1.5 (0.7; 3.1)

1.4 (0.1; 4.5)
0.2 (0.0; 0.9) *
2.1 (0.3; 17)

1.0 (0.3; 2.6)
0.3 (0.1; 0.9) *
2.4 (0.8; 7.2)

2.5 (1.0; 6.3) .
1.3 (0.6; 3.2)
0.9 (0.3; 2.3)

2.4 (0.9; 6.3) .
1.0 (0.2; 4.6)
0.9 (0.3; 2.5) not 
correct Educ

7.2 (1.6; 32) **
0.6 (0.1; 4.1)
1.4 (0.2; 10)

4.5 (1.1; 17) *
0.0 (0.0; 2.9)
3.1 (0.3; 29)

1.7 (0.4; 7.2)
1.0 (0.2; 4.0)
0.6 (0.1; 2.6)

1.7 (0.4; 7.5)
0.9 (0.2; 5.5)
0.9 (0.2; 4.8)

0.7 (0.4; 1.2) 
0.7 (0.4; 1.2)
0.5 (0.3; 0.9) *

0.7 (0.4; 1.2)
1.1 (0.4; 3.1)
0.6 (0.3; 1.1) .

0.6 (0.3; 0.9) *
0.5 (0.3; 0.9) *
0.9 (0.5; 1.6)

0.6 (0.4; 0.9) *
0.8 (0.3; 1.8)
0.8 (0.5; 1.4)

NA NA NA NA NA NA

NA NA 3.9 (1.1; 14) *
1.0 (0.3; 2.9)
0.6 (0.2; 1.9)

4.0 (1.1; 15)
1.9 (0.3; 12)
0.7 (0.2; 2.3)

1.0 (0.2; 4.5)
0.5 (0.0; 6.2)
0.7 (0.1; 8.3)

1.1 (0.3; 3.5)
1.6 (0.1; 28)
0.7 (0.1; 5.4)

NA NA 1.8 (0.5; 6.4)
0.8 (0.2; 2.8)
1.3 (0.2; 10)

1.8 (0.5; 7.2)
1.0 (0.1; 12)
1.9 (0.2; 20)

4.3 (0.5; 36)
0.5 (0.2; 12)
1.0 (0.1; 22)

Not reliable, 3% 
detected

NA NA NA NA 0.1 (0.0; 1.9)
0.8 (0.0; 25)
0.8 (0.0; 27)

0.6 (0.1; 5.4)
0.1 (0.0; 3.0)
0.8 (0.0; 27)

NA NA NA NA NA NA

0.2 (0.1; 0.5) ***
0.5 (0.2; 1.2)
0.6 (0.2; 2.0)

0.2 (0.1; 0.5) **
0.3 (0.1; 1.1) .
0.7 (0.2; 2.3)

0.1 (0.0; 0.6) *
2.9 (0.2; 44)
0.9 (0.1; 11)

0.4 (0.2; 1.2)
3.1 (0.6; 15)
1.0 (0.4; 2.6) Not 
correct Edu

0.3 (0.1; 1.0) *
1.4 (0.6; 3.6)
1.6 (0.6; 4.2)

0.4 (0.1; 1.0) .
2.2 (0.4; 11)
1.6 (0.6; 4.1) not 
corrected for Edu

0.9 (0.3; 2.5)
0.9 (0.3; 2.4)
0.9 (0.2; 3.3)

1.1 (0.4; 3.0)
0.5 (0.1; 2.0)
1.0 (0.3; 3.7)

NA NA 1.1 (0.5; 2.1)
0.8 (0.4; 1.7)
1.2 (0.6; 2.5)

1.1 (0.5; 2.1)
0.9 (0.2; 3.3)
1.4 (0.6; 2.9)

3.6 (0.7; 18)
1.3 (0.3; 4.8)
0.5 (0.1; 2.1)

9.5 (1.0; 93)
0.7 (0.0; 12) 
0.7 (0.0; 38)

0.5 (0.1; 2.0)
2.0 (0.5; 8.3)
2.4 (0.6; 9.7)

0.6 (0.1; 2.5)
2.9 (0.3; 30)
2.2 (0.5; 9.3) Not 
correct Educ. 
PestUse unreliable 
estim

1.0 (0.3; 3.6)
1.5 (0.4; 5.5)
0.9 (0.3; 3.2)

1.0 (0.3; 3.6)
0.5 (0.1; 4.5)
0.8 (0.2; 3.0) 
not corrected for 
PestUse
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ID  Parent 
pesticide 

Category ES LV
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

P34_a  Pirimip-
hos-methyl 

Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.8 (0.4; 1.4)
0.4 (0.2; 0.9) *
0.7 (0.3; 1.4)

1.0 (0.5; 2.0)
0.2 (0.1; 0.7) *
1.1 (0.5; 2.5)

1.5 (0.8; 2.9)
0.4 (0.2; 0.9) *
1.0 (0.5; (1.9)

0.8 (0.2; 3.8)
0.6 (0.1; 5.4)
1.5 (0.3; 7.4)

P35_a  Propamocarb Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

1.9 (0.9; 4.1) .
1.1 (0.5; 2.5)
1.3 (0.5; 3.1)

1.7 (0.8; 3.5)
1.2 (0.4; 3.4)
1.0 (0.4; 2.4)

NA NA

P35_b  1.2 (0.7; 1.9)
1.1 (0.7; 1.9)
1.3 (0.7; 2.4)

1.1 (0.7; 1.9)
1.1 (0.5; 2.3)
1.2 (0.7; 2.2)

0.3 (0.1; 0.9) *
0.4 (0.1; 1.1) .
4.2 (1.1; 16) *

0.3 (0.1; 0.8) *
0.2 (0.0; 1.0) *
4.0 (1.0; 17) .

P37  Propyzamide  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

1.2 (0.6; 2.4)
2.3 (1.1; 5.0) *
1.8 (0.7; 4.4)

1.2 (0.6; 2.7)
1.4 (0.5; 4.2)
1.8 (0.7; 4.7)

NA NA

P38_a  Pyrimethanil Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.6 (0.4; 1.0) *
0.8 (0.5; 1.2)
0.8 (0.5; 1.3)

0.7 (0.4; 1.0) .
0.7 (0.3; 1.3)
0.8 (0.5; 1.3)

2.1 (1.1; 3.8) *
1.0 (0.6; 1.8)
1.2 (0.6; 2.4)

2.1 (1.1; 3.8) *
1.3 (0.5; 3.2)
1.1 (0.5; 2.3)

P38_b NA NA NA NA

P40_a  Tebuconazole  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.5 (0.3; 0.9) *
0.3 (0.2; 0.4) ***
0.9 (0.5; 1.7)

0.5 (0.3; 0.8) **
0.2 (0.1; 0.4) ***
0.7 (0.4; 1.4)

3.3 (1.1; 9.3) *
0.8 (0.3; 2.1)
1.5 (0.4; 5.3)

2.8 (1.1; 7.4)
2.9 (0.7; 12)
1.5 (0.6; 4.0)

P41_a Thiabendazole Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

NA NA NA NA

P42_a  Thiacloprid  Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

0.9 (0.4; 2.0)
0.4 (0.2; 1.0) *
1.6 (0.6; 4.4)

1.1 (0.5; 2.4)
0.3 (0.1; 1.2) .
1.6 (0.6; 4.5)

NA NA

P43_a Thiamethoxam Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

NA NA NA NA

P43_b  94 (22; 396) ***
1.1 (0.7; 1.8)
0.6 (0.4; 1.1)

93 (22; 390) ***
1.3 (0.6; 2.7)
0.5 (0.3; 1.0) *

NA NA

P46_a Trifloxystrobin Season 2 vs 1
Parent vs Child
Agricultural vs 
Non-agricultural

NA NA NA NA

Table E. Continued.

1. Underlined is the reference category.
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HU CZ NL
Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

Main
OR (95% CI)

Extended
OR (95% CI)

3.6 (1.4; 9.4) **
0.2 (0.1; 0.5) **
0.1 (0.02; 0.4) ***

4.1 (1.5; 11) **
0.1 (0.0; 0.3) ***
0.2 (0.1; 0.8) *

0.6 (0.4; 1.0) .
0.5 (0.3; 0.8) **
1.5 (0.8; 2.7)

0.6 (0.4; 1.1) .
0.6 (0.2; 1.5)
1.3 (0.7; 2.5)

0.7 (0.4; 1.0) .
0.3 (0.2; 0.5) ***
1.4 (0.8; 2.7)

0.7 (0.4; 1.0) .
0.3 (0.1; 0.8) *
1.4 (0.8; 2.7)

1.1 (0.6; 2.1)
0.4 (0.2; 1.0) *
0.5 (0.2; 1.0) .

1.1 (0.6; 2.2)
0.3 (0.1; 0.9) *
0.5 (0.2; 1.2)

1.5 (0.4; 6.0)
0.5 (0.1; 3.9)
0.5 (0.1; 4.5)

1.4 (0.5; 3.5)
1.5 (0.2; 10)
0.5 (0.2; 1.9) Not 
correct educ

1.4 (0.9; 2.4)
1.0 (0.6; 1.6)
1.6 (0.8; 3.0)

1.5 (0.9; 2.5)
3.1 (1.1; 8.5) *
1.9 (1.0; 3.6) .

2.1 (1.2; 3.6) *
0.5 (0.3; 0.9) *
0.5 (0.3; 0.9) *

2.3 (1.3; 4.1) **
0.4 (0.2; 0.8) *
0.5 (0.2; 1.0) *

1.4 (0.7; 2.6)
0.5 (0.3; 1.0) .
0.7 (0.3; 1.9)

1.4 (0.7; 2.8)
0.9 (0.2; 3.3)
0.8 (0.3; 2.1)

1.0 (0.6; 1.5)
1.2 (0.8; 1.8)
1.2 (0.7; 1.9)

1.0 (0.7; 1.5)
3.2 (1.4; 7.3) **
1.3 (0.8; 2.2)

NA NA NA NA NA NA

1.3 (0.5; 3.8)
2.3 (0.8; 7.2)
0.4 (0.1; 2.0)

1.6 (0.5; 5.2)
1.7 (0.8; 7.4)
0.3 (0.0; 3.1)

0.4 (0.3; 0.7) **
1.4 (0.9; 2.3)
0.9 (0.5; 1.7)

0.5 (0.3; 0.8) **
2.1 (0.9; 5.3)
1.0 (0.5; 1.8)

0.6 (0.4; 1.0) *
0.8 (0.5; 1.2)
0.6 (0.4; 1.0) *

0.6 (0.4; 1.0) *
1.1 (0.5; 2.4)
0.6 (0.4; 0.9) *

0.6 (0.2; 2.0)
1.2 (0.4; 4.0)
2.8 (0.7; 11)

0.6 (0.2; 2.5)
4.5 (0.9; 23) .
3.3 (0.7; 16)

NA NA NA NA

2.1 (1.2; 3.5) **
0.3 (0.2; 0.5) ***
0.5 (0.3; 1.0) .

2.2 (1.3; 3.8) **
0.5 (0.2; 0.9) *
0.5 (0.2; 1.0) *

0.7 (0.5; 1.0) .
0.2 (0.2; 0.4) ***
1.0 (0.6; 1.5)

0.7 (0.4; 1.0) .
0.4 (0.2; 0.7) **
1.1 (0.7; 1.7)

0.6 (0.4; 1.0) .
0.1 (0.1; 0.2) ***
0.8 (0.4; 1.5)

0.6 (0.4; 1.1) .
0.2 (0.1; 0.5) ***
0.58 (0.4; 1.6)

NA NA NA NA NA NA

3.2 (0.8; 12) .
0.3 (0.1; 1.2) .
0.1 (0.0; 0.7) *

3.5 (0.9; 14) .
0.6 (0.1; 3.3)
0.1 (0.0; 0.5) *
Not correct 
PestUse

0.9 (0.4; 2.0)
0.3 (0.1; 0.7) **
1.6 (0.6; 4.7)

1.2 (0.6; 2.7)
0.2 (0.1; 1.1) .
2.1 (0.8; 5.8)

6.5 (1.5; 29) *
0.6 (0.2; 2.1)
0.4 (0.1; 3.5)

6.3 (1.3; 30) *
2.4 (0.2; 27)
0.5 (0.1; 4.0) not 
corrected for Edu

4.3 (0.9; 21) .
1.0 (0.3; 3.5)
10 (1.2; 80) *

3.7 (0.7; 20)
0.3 (0.1; 1.7)
7.2 (0.7; 79)

NA NA NA NA

NA
1.4 (0.8; 2.3)
1.9 (1.1; 3.4) *
(not detected in 
season 1..)

NA
1.0 (0.5; 1.9)
1.9 (1.0; 3.5) .

NA NA NA NA

NA NA 2.3 (0.4; 15)
0.4 (0.0; 9.8)
1.0 (0.1; 19)

2.4 (0.3; 17)
0.1 (0.0; 25)
1.5 (0.1; 25)

2.3 (0.8; 6.8)
0.6 (0.2; 1.7)
1.5 (0.5; 4.3)

2.3 (0.8; 6.7)
2.6 (0.4; 17)
1.7 (0.6; 4.8)
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Additional Information F. Information on area selection and recruitment of participants.

AREA SELECTION

This paragraph describes the selection of the agricultural and non-agricultural areas per 
country.

Spain
The agricultural area is located in Valencia, which is the second most important agricultural 
area in Spain and one of the regions with the highest pesticide use: 12.1% of the national 
total in 2009 (ECPA, 2010). The selected area in Valencia was the village of Godella, located 
in the “Valencian orchard”, around 10km northwest of the capital, with a population of more 
than 10,000 inhabitants and in close vicinity to agricultural areas. The main crops in this 
municipality are orchards and citrus. In these kind of crops, pesticide application takes place 
regularly during the spraying season. Households located in the municipality of Godella, Roca-
fort, Masarojos, Moncada or Burjasot were included. Eligible households were located within 
250 meters distance to an orchard or citrus field. Satellite images (Google maps) were used 
to confirm that the home location of each participant was within 250 m of an agricultural 
field. Active application of pesticides in these areas was confirmed according to data from the 
Municipal Tax Agency of Godella and the information of the warning bulletins of the Depart-
ment of Plant Health of the “Conselleria de Agricultura, Medio Ambiente, Cambio Climático y 
Desarrollo Rural” of the Valencian Government of 2018.

The non-agricultural area is located in the peri-urban areas of Madrid (outside the ring 
road of M40 which defines central/urban Madrid), with low levels of agricultural activity. Eligi-
ble households were located at least 500 meters away from any agricultural area based on the 
information provided by participants and checked using Google Maps.

Latvia
Multiple agricultural areas were defined because of the low population density in countryside 
and also difficult recruitment of study participants. The agricultural areas were chosen from 
Kurzeme and Zemgale regions since historically these regions of Latvia are the most used for 
agriculture purposes. Area selection was based on the agricultural register from 2017, where 
farmers submit their land use (hectares and crops grown). The register indicated the largest 
total amount of agricultural land was located in Kurzeme and Zemgale regions.

Non-agricultural areas were defined as persons living at least 500m away from actively 
used agricultural lands – these were small villages, small cities and suburbs. We excluded pos-
sible study subjects that lived in the “big cities” that are known either because of their dense 
population (more than 10,000 inhabitants) or because of high economic activity – having 
many factories, a lot of traffic, etc.

Each study participant prior their acceptance in the study was asked how far from pesti-
cide application sites do they live. This information was then evaluated using publicly available 
databases – one called kadastrs.lv was for checking the addresses to determine the cadastral 
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number of the property which was then submitted in a system for checking agricultural land 
usage (all crop types were considered, mostly cereals and potatoes are grown in Latvia) called 
https://karte.lad.gov.lv/. This system provides the opportunity to measure the distance from 
a specific area (one’s address) to agricultural lands. In this way we determined whether our 
study subjects fitted as agricultural or non-agricultural addresses.

The system updates according to the season – this creates a situation where different cul-
tures and crops can be grown in agricultural areas. The data was gathered taking into account 
the current situation – starting from March, 2020. The data of previous season was used to 
determine whether the person lives in an area with agricultural lands nearby where pesticides 
are used actively. Some study participants had only one type of crop/fruit/vegetable fields 
around their houses while most had several different types of fields.

Hungary
The selection of the agricultural and non-agricultural areas was based on the volume of apple 
growing. Szabolcs-Szatmár-Bereg Country has the largest area of apple orchards (17577 ha 
out of the 25044 ha). Based on the data provided by the Hungarian Central Statistical Office 
(KSH), the apple production amounted to around 0.3 million tons (approximately 60% of the 
total volume produced in Hungary) in 2016. Almost all settlements in the county have apple 
orchards where pesticides are used; however, we selected those settlements were several 
apple orchards are located. The selection of the household and participants was based on the 
predefined criteria and the distance between each household and the orchard was checked 
by Google Maps. Furthermore, the Division of Agriculture Plant Protection and Soil Conserva-
tion Department of the Government Office of Szabolcs-Szatmár-Bereg County provided infor-
mation on the pesticide use at the exposed locations (e.g. date, name of pesticide product and 
active ingredient, dose).

We selected certain settlements in Nógrád Country as the non-agricultural area, since 
there is no significant fruit growing in this region. Most of the selected households were 
located in peri-urban area; however, some of them were in urban or rural areas. The distance 
from agricultural areas was checked by Google Maps.

Czech Republic
The area of interest was selected with the use of ArcGIS PRO. Two GIS layers containing infor-
mation were used: the Land Parcel Identification System (LPIS CZ, Ministry of Agriculture) 
(https://eagri.cz/public/app/eagriapp/lpisdata/) and the Registry of territorial identification, 
addresses and real estate (RUIAN CZ, State Administration of Land Surveying and Cadaster) 
(https://www.cuzk.cz/ruian/RUIAN.aspx). LPIS CZ contains data on location, area, and general 
type of land parcel (e.g., field, orchard, vineyard, forest, pasture). RUIAN CZ contains informa-
tion on addresses in the Czech Republic. The following procedure was then used:

1. Main focus was aimed at the South Moravian Region (SMR) in the Czech Republic (the 
Brno city is approximately in the center of SMR).

2. Only areas of fields, orchards, and vineyards were considered since we can expect the 
application of pesticides in these areas (LPIS CZ).
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3. Street addresses in small cities (<5000 inhabitants) were extracted as layer (RUIAN CZ).
4. Buffer zone (250 m) around agricultural areas in SMR was created and intersected 

with the layer of street addresses. The street addresses within the buffer zone were 
considered potential agricultural areas.

5. Analogically, the buffer zone was expanded to 500 m and any street addresses not 
falling into this buffer zone were considered the non-agricultural area.

The address of those who expressed interest to join the study (and provided their home 
address) was then checked against the agricultural and non-agricultural area street addresses 
and potential participants were then categorized accordingly. The provisional check was also 
done via google.com/maps and mapy.cz. Finally, the surroundings were checked by field 
workers at the time of urine sample collection.

The Netherlands
Agricultural areas were areas with at least 100 inhabitants living within 250 meters from apple 
and pear orchards. A selection of addresses was made by combining two publicly available 
databases: the agricultural land-use database (2019), and the basic registration of buildings 
database (2019). All agricultural land use for apples and pears (orchards only) were selected, 
all buildings with a living function were selected. The focus was on the ‘Betuwe’ area, with the 
highest density of households fulfilling the criteria. This area is roughly located in the prov-
inces Gelderland, Utrecht and part of North-Brabant between the rivers ‘Nederrijn’ and ‘Waal’.
Non-agricultural areas were defined as any address which was located at least 500 meters 
away from any agricultural land (including greenhouses). Households fulfilling these criteria 
from the Betuwe area and suburban Utrecht were included.

RECRUITMENT OF PARTICIPANTS

This paragraph describes the recruitment strategies implement in the different areas within 
each country.

Spain
For the agricultural area, recruitment started on October 15, 2019 and ended October 25, 
2019. The recruitment was done in primary schools located in Godella (Valencia). This fact 
facilitated finding children with the age object of study (between 6 and 11 years old) and also 
their parents (or caretaker) living in households within 250 meters of agricultural area(s). The 
recruitment has been performed in public schools only, in which the number of volunteers 
was reached. After recruitment, 4 families withdrew, resulting in a total of 52 parent-child pairs 
participating.

In order to encourage participation, those in charge of recruiting followed a flexible policy 
with regards to dates and contact hours with children’s parents. First of all, a first meeting with 
the school board of directors was organized at beginning of October-19 in order to inform 
school staff about the project, to request support from the centre and to organize the first 



145

 Pesticide mixtures in five European countries by suspect screening • Chapter 5

C
ha

pt
er

 5

meeting with parents. The meetings with parents took place on 15th and 16th October 2019 
in the following two primary schools of Godella: “CEIP Cervantes” and “CEIP El Barranquet”. 
Copies of the information letter and invitation letter were provided to potential participants at 
this point. They also received the documents associated to the participation, such as a screen-
ing questionnaire, for further examination and consideration at home. Additionally, posters 
were displayed on schools to encourage the participation in the study.

For the non-agricultural area, recruitment started on June 14, 2019 and ended on Septem-
ber 30, 2019. Recruitment took place among co-workers. At the end of May 2019 a press note 
was released at the Spanish research institute webpage to inform workers about the project 
and about the 2 informative seminars that would take place in June. An email was sent at the 
beginning of June to all co-workers with basic information on the study. Additionally, posters 
were displayed to promote the seminars and to encourage participation in the HBM4EU study. 
At the seminars, the recruitment materials (information and invitation letters plus the screen-
ing questionnaire) were distributed to attendants. Recruitment started already at the seminars 
and followed by email among co-workers and co-workers’ contacts willing to participate. A 
positive response was received from 60 families, however, 7 of them could not enter the study 
because they did not fulfil the selection criteria. This resulted in a total of 53 parent-child pairs 
participating. Those entering the study were given an envelope with the documentation 
associated to their participation i.e informed consent for parents, informed assent with an 
adapted language for child, FAQ sheet, information leaflet and the reply card as well as the 
urine sample collection kit in a portable coolbox with sampling instructions. 

The study was approved by the medical ethical committee under number 20200109/10 
for the agricultural area and by the Research Ethics Committee of the Instituto de Salud Carlos 
III under number CEI PI 34_2019-v2-Enmienda_2020  for the non-agricultural area 

Latvia
Recruitment took place from February 18, 2020 until March 31, 2020.

There were many stages and ways of recruitment of study participants. First a list of con-
tacts of all schools taking part in “eco-school” programme was made and the schools were 
contacted via e-mail (in total 70 schools). Only one responded via email and so the schools 
were contacted individually via phone and asked whether they are willing to participate by 
allowing to spread information on the project to children and their parents. Information enve-
lopes containing a brief description of project activities, deadlines and contact persons were 
driven to schools for handing out. 33 respondents, mostly from agricultural areas, responded 
to this action.

A press release and a post on Facebook via Rīga Stradiņš University was made on October 
21st, 2019, resulting in 400 shares. An email of general practitioners (family doctors) of Kurzeme 
and Zemgale regions were sent with information on this project as well.

Next banners and posters were made and sent out to Kurzeme and Zemgale local newspa-
pers and the message was also put in “e-klase.lv” which is a system for all schools for organis-
ing the educational process – parents have access to the information on their child and checks 
the system regularly for grades, comments and information therefore a banner was made 
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visible to parents from Kurzeme and Zemgale for a week (10,000 views), with little result. At 
this point the research team concluded, that despite the effort to limit our study participants 
to be only from Kurzeme and Zemgale, the insufficient count of participants broadened the 
borders, and study participants are mostly from Kurzeme and Zemgale, but also from Vidzeme 
and Latgale. In total 50 parent-child pairs from agricultural areas, and 51 parent-child pairs 
from non-agricultural areas were included.

The study was approved by the medical ethical committee of Rīga Stradiņš University 
under number 6-3/3/48.

Hungary
The recruitment of the participants was performed between October and December 2019 and 
was coordinated by the staff of the Public Health Department of the Szabolcs-Szatmár-Bereg 
and Nógrád County Government Offices in close collaboration with the project team of 
the National Public Health Center. The recruitment of the volunteers was done through the 
primary schools in Nódrág County (non-agricultural area), while the health visitors being very 
familiar with the local circumstances were also involved in Szabolcs-Szatmár-Bereg County 
(agricultural area). In total, 54 YES reply cards from 11 settlements and 40 NO reply cards were 
collected at the agricultural area. Regarding the non-agricultural area, 68 YES reply cards from 
8 settlements and 199 NO reply cards were received. It must be noted that the difference 
might be caused by the different recruitment strategies applied at the two areas; the health 
visitors at the agricultural locations selected families with whom they have already been in 
contact before the study. During the selection process, the volunteers were checked for the 
predefined selection criteria and the most suitable and the most committed adult – child 
pairs were included in the study. Before the sample collection, the signed informed consents 
were collected.In the case of agricultural areas, we have requested spray logs through the 
Szabolcs-Szatmár-Bereg County Government Office, so we know when and with what they 
were sprayed.

According to the spray logs, acetamiprid, an insecticide and acaricide, was also used on 
the apples (agricultural area), but chlorpropham was not used.

The study was approved by the Medical Research Council of Hungary under registration 
number 15521-3/2019/EKU.

Czech Republic
Recruitment started in mid-September 2019 and was finished at the end of February 2020 
during at that time ongoing first sampling season. 

Recruitment of all participants was done by post (letters, ~ 1000 sent, very low response 
rate <1%), promotional leaflets (1000 – 1500 delivered, very low response rate <1%), internet 
advertisement (e.g., posting on Social network web pages, short announcements on local 
news pages, announcements on internet pages of selected towns after communication with 
town mayor), announcements in a radio station and announcement in news relation on CZ - TV.

Approximately 200 people expressed interest to join the study. About 90 of them did not 
meet the criteria to join (children out of age range, occupation associated with pesticides, 
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etc.) or decided not to join (for whatever reason). Overall, 111 participants (adults) were eli-
gible and willing to join. Of these 111 families, 16 were “double families” – families with both 
parents involved in the study with two children. This meant that samples were collected from 
95 unique address points. The remaining 16 address points are associated with two sets of 
parent-child pairs.

We have encountered 3 cases where parents reported the incorrect age of their child in 
the initial screening questionnaire. This issue was discovered during the fieldwork of the first 
sampling season. We have ultimately decided to finish the collection of such samples in the 
second sampling season. The age of children out of the study target range (6 to 12 years old) 
was 4 years old (1 from an agricultural address and 1 non-agricultural) and 15 years (from agri-
cultural address).

The SPECIMEn study in the Czech Republic received ethical approval under ref. no. 
ELSPAC/EK/3/2019.

The Netherlands
Recruitment of participants started in November 2019 and continued until February 2020.

In the Netherlands it turned out to be quite a challenge to combine the databases of land 
and building-use with the basic administration of municipalities (GBA) because of privacy 
regulations. Since we had no access to the age of subjects from a specific residential location, 
letters were sent out at random to addresses within the selected postal codes. Two batches 
of letters were sent out, the first of 1,000, the second of 10,000. Each letter contained an infor-
mation letter, the screening questionnaire, a reply card, informed consent for both parent and 
child, and an information brochure about the study. The first batch consisted of 500 agricul-
tural and 500 non-agricultural area addresses and was send in the first week of November 
2019. The second batch of 4,000 agricultural and 6,000 non-agricultural area addresses was 
send half of December 2019. The numbers of letters are quite high, since most of letters would 
go to non-eligible households e.g. without children. The response was around 2%, of which 
about half was not eligible to participate. For example, when one of the household members 
was working with pesticides.

Because of time pressure and urge to start collecting the samples in January, we decided to 
combine recruitment strategies. A news item was placed in local newspapers (Figure 5.5.2) and 
on news-websites, including a QR-code directing to the website of the study. The study-web-
site (https://www.rivm.nl/europees-onderzoek-naar-bestrijdingsmiddelen-in-urine) included 
an online sign-up form were potential participants could complete the screening question-
naire. It turned out that specifically the addresses within agricultural areas were interested 
in participating and some non-agricultural addresses were still missing. Therefore, additional 
recruitment was done among co-workers with children to participate. In total 55 parent-child 
pairs were recruited from agricultural areas, and 50 parent-child pairs from non-agricultural 
areas.

The medical research ethics committee confirmed that the Dutch Medical Research 
Involving Human Subjects Act (WMO) does not apply to the above mentioned study and that 
therefore an official approval of this study by the MREC Utrecht was not required under the 
WMO (reference number WAG/mb/19/027712).
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ABSTRACT

Introduction: Non-occupational sources of pesticide exposure may include domestic pesti-
cide usage, diet, occupational exposure of household members, and agricultural activities in 
the residential area. We conducted a study with the ambition to characterize pesticide mixture 
patterns in a sample of the adult population of the Netherlands and Switzerland, using a 
suspect screening approach and to identify related exposure determinants.
Methods: A total of 105 and 295 adults participated in the Dutch and Swiss studies, respec-
tively. First morning void urine samples were collected and analyzed in the same laboratory. 
Harmonized questionnaires about personal characteristics, pesticide-related activities, and 
diet were administered. Detection rates and co-occurrence patterns were calculated to 
explore internal pesticide exposure patterns. Censored linear and logistic regression models 
were constructed to investigate the association between exposure and domestic pesticide 
usage, consumption of homegrown and organic foods, household members’ exposure, and 
distance to agricultural and forest areas. 
Results: From the 37 detected biomarkers, 3 (acetamiprid (-CH2), chlorpropham (4-HSA), and 
flonicamid (-C2HN)) were detected in ≥40% of samples. The most frequent combination of 
biomarkers (acetamiprid-flonicamid) was detected in 22 (5.5%) samples. Regression models 
revealed an inverse association between high organic vegetable and fruit consumption and 
exposure to acetamiprid, chlorpropham, propamocarb (+O), and pyrimethanil (+O +SO3). 
Within-individual correlations in repeated samples (summer/winter) from the Netherlands 
were low (≤ 0.3), and no seasonal differences in average exposures were observed in Switzer-
land.
Conclusion: High consumption of organic fruit and vegetables was associated with lower 
pesticide exposure. In the two countries, detection rates and co-occurrence were typically 
low, and within-person variability was high. Our study results provide an indication for target 
biomarkers to include in future studies aimed at quantifying urinary exposure levels in Euro-
pean adult populations.

Graphical Abstract



151

 Urinary pesticide mixtures in the Netherlands and Switzerland • Chapter 6

C
ha

pt
er

 6

INTRODUCTION

Pesticides are widely used in agriculture to protect crops. In Europe, more than 400 pesticide 
compounds are registered and marketed (European Commission, 2023). On a daily basis, the 
general population is exposed to a mixture of various pesticides by consumption of pesti-
cide-containing food or drinks, domestic usage of pesticide-containing products, or living 
close to agricultural areas. The active ingredients of pesticides are intrinsically toxic and can 
adversely affect human health (Gilden et al., 2010; Cimino et al., 2017). Adverse health effects 
of single compounds, particularly reported in occupational settings, include cancer, neuro-
logical, mental, respiratory, reproductive, and developmental disorders as well as rheumatoid 
arthritis (Ohlander et al., 2020). The characterization of pesticide exposure patterns and expo-
sure sources in the general population is an essential step toward understanding the full scope 
of health impacts of single compounds and mixtures. Exposure characterization by human 
biomonitoring (HBM) has the advantage, depending on the biomonitoring method chosen, 
to cover all possible exposure routes (dermal, oral, inhalation), thereby reflecting the internal 
exposure concentrations of a wide range of chemicals (Ganzleben et al., 2017). Since most 
pesticides are rapidly metabolized into more polar derivatives and excreted through urine, 
this matrix is typically used for pesticide exposure assessment (Angerer et al., 2007; Egeghy et 
al., 2011). Suspect Screening (SS) approaches based on liquid chromatography (LC) combined 
with high-resolution mass spectrometry (HRMS) make it possible to effectively measure large 
numbers of pesticides co-occurring in the same urine sample (Bonvallot et al., 2021; Huber 
et al., 2022; Vitale et al., 2022). This SS approach provides a list with annotations of pesticides 
and pesticide metabolites in a sample (Pourchet et al., 2020; Huber et al., 2022), and presents 
the measurements as semi-quantitative signal intensities. Although these signal intensities do 
not refer to absolute pesticide concentration levels, signal intensities for the same biomarker 
analyzed under identical laboratory settings can be compared. 

Epidemiological studies describing exposure pathways to pesticides are mostly focusing 
on occupational populations or residents living in agricultural areas, where the exposure 
levels are typically higher compared to the general population (Deziel et al., 2015; Teysseire et 
al., 2021). Information on pesticide exposure in the general population is rather limited (Hef-
fernan et al., 2016; Dahiri et al., 2021; Yusà et al., 2022), in particular with regard to exposure 
to pesticide mixtures at low concentrations (Hernández et al., 2017) and temporal variation of 
exposure (Attfield et al., 2014; Li et al., 2019). While for the general population, the exposure 
levels and the total number of exposure pathways might be lower, understanding the contri-
bution of non-occupational exposure sources is crucial to study the link between pesticide 
exposure and adverse health effects, as well as to propose preventive measures to protect the 
general population, specifically those most vulnerable (pregnant or nursing women, infants or 
children, and the elderly) (European Commission, 2022). 

The overall aim of this study was to explore pesticide mixture patterns of exposure in 
a sample of the adult population from the Netherlands and Switzerland using an HBM SS 
approach and to identify possible determinants. 
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MATERIAL AND METHODS

Study population and sample collection
The two studies presented here, the Dutch arm of the Survey on PEstiCIde Mixtures in Europe 
(SPECIMEn) and the Swiss pesticide suspect screening study, are part of the European Human 
Biomonitoring (HBM4EU) initiative and sought to generate new evidence on pesticide expo-
sure in the general population. While the Dutch SPECIMEn study focused on exploring varia-
tions of pesticide exposure patterns in parent-child pairs by repeated sampling design in two 
seasons, the Swiss study provided exposure data of adults by taking single samples during 
three different seasons. 

A concise summary of the Dutch sampling strategy is provided here, as the study pop-
ulation recruitment and sample collection procedure have already been described in detail 
elsewhere (Ottenbros et al., 2023). In short, first-morning void urine samples were collected 
from participants (parent-child pairs) from different locations (closer and further away from 
orchards) in two seasons (winter 2020: Jan-Mar 2020; and summer 2020: Jun-Jul 2020). For 
the current study, samples of 105 adults from the SPECIMEn study were included. In order 
to minimize the influence of pesticide applications in nearby agricultural areas on exposure 
intensity and to better assess baseline exposure of the adult population, only winter samples 
of adults were included in the main analyses. Farmers and other adults employed in the agri-
cultural sector were not included. Participants mainly lived in the Betuwe area (between Arn-
hem-Gorinchem-Utrecht). The distance to the nearest agricultural plot and forest from each 
geo-coded address was calculated using QGIS software (v3.4.4) using publicly available data 
from the Dutch Central Bureau of Statistics (CBS). At the time of urine collection, a question-
naire was administered covering personal and household characteristics, activities prior to 
sampling, potential pesticide usage, and food consumption the day prior to sampling.

In the Swiss study, 300 adults from the canton of Basel-Stadt participated in the HBM4EU 
pesticide suspect screening study (Buekers et al., 2022). A total of five participants indicated 
that they used pesticides for occupational use, and were thus excluded from further analyses. 
Data and sample collection were performed between January 08, 2020, and October 10, 2020. 
Study participants were contacted in five sex-stratified recruitment waves via postal mail con-
taining the study invitation letter, an information leaflet, and a response card. A total of 6,000 
subjects, selected from the resident register based on age and long-term residency in Basel-
Stadt, had been invited. Interested subjects were contacted after their successful electronic 
registration to the REDCap® (Research Electronic Data Capture) data collection tool (Harris et 
al., 2009), to identify a date for the urine sample collection. Instructions and a urine sample 
collection kit were sent by postal mail prior to the day of collection. The participants collected 
first-morning void urine samples at their homes and were asked to store the morning urine 
sample at 4°C using cooling pads and a cooling bag until the study team collected the sample. 
The urine samples were then transported to and processed in the study center at Swiss TPH, 
maintaining the cold chain throughout until the biobanking of urine aliquots at -80°C. An 
electronic self-administered pre-sample questionnaire (answered before the day of sample 
collection) and a post-sample questionnaire (answered on the day of sample collection) were 
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distributed. Participant recruitment, data collection, and laboratory workflow were performed 
and documented using REDCap® (Harris et al., 2009). The “minimal geo data model” (MGDM) 
for agricultural land use in the Basel-Stadt area was used to calculate the distance of the partic-
ipants’ geo-coded addresses to the nearest agricultural area and forest in QGIS 3.4.4 (MMQGIS 
and NNJoin plugin). An exact description of the definitions used for forest and agricultural 
areas for both countries is provided in the Appendix (Table A.1).

The harmonized questionnaires administered in the two countries were developed in the 
context of the HBM4EU project and mostly contained identical questions in both countries. 
Where necessary, they were additionally harmonized between the two study countries. Ques-
tions and variables of interest for the analysis were manually compared and, where necessary, 
re-coded by the authors (for details see Appendix, Table A.2). The medical research ethics 
committee confirmed that the Dutch Medical Research Involving Human Subjects Act (WMO) 
does not apply to the above-mentioned study and that therefore an official approval of this 
study by the Medical Research Ethics Committee (MREC) Utrecht was not required under the 
WMO (reference number WAG/mb/19/027712). The Swiss study acquired ethical approval from 
the local ethics committee (Ethikkommission Nordwest- und Zentralschweiz (EKNZ), 2019-
02136). All participants provided their written informed consent.

Suspect screening approach
The urine samples from the Dutch and Swiss studies were both analyzed at the Wageningen 
Food Safety Research laboratory in the Netherlands under a harmonized and quality-con-
trolled suspect screening (SS) analysis framework. Huber et al. (2022) and Vitale et al. (2022) 
provide a detailed description of the applied analytical workflow, which includes the follow-
ing steps: 1) pH adjustment and solid phase extraction (SPE) cleanup, 2) LC coupled to full scan 
HRMS (LC-HRMS) to measure the extracts, 3) data processing and analysis, 4) prioritization of 
supposed detects, and 5) spectral comparison of suspected detects with reference standards 
for final confirmation. 

Several metabolites of the same parent compound may be included in the final list of 
pesticides, but the confidence with which a compound can be determined may vary. Schy-
manski et al. (2014) developed a confidence score representing the (un)certainty about the 
identity of a compound, ranging from 1: ‘Fully confirmed structure’ to 5: ‘Exact mass (m/z) of 
interest’. Only compounds identified by molecular structure, or confidence levels 1 (confirmed 
structure) and 2b (probable structure by diagnostic evidence), were considered in the current 
study. 

The results of the SS analysis are presented as semi-quantitative signal intensities of the 
compound detects, i.e. as indicators of exposure rather than quantitative concentration levels. 
Higher signal intensity scores generally correspond to higher concentrations for the same 
compound, but may also depend on levels of ion suppression due to matrix effects. Equal 
signal intensity scores for different compounds may correspond to different concentration 
levels depending on their ionization efficiency.

Biomarkers are indicated with their parent pesticide name and the respective metabolite 
in parentheses the first time mentioned in the text. Upon the second mention, the name of 
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the biomarkers will be noted only by the parent pesticide for improved readability. To avoid 
confusion, metabolites in parentheses will remain stated if two or more biomarkers of the 
same pesticide were detected. 

Statistical Analyses
For the analysis of the suspect screening data, the subset of 37 biomarkers confirmed with 
high confidence (Schymanski levels 1 and 2b) were considered. The detection frequency for 
each biomarker was calculated for the pooled dataset, as well as the Dutch and the Swiss 
population separately (see Appendix A, Figure A.1). The biomarkers were plotted with their 
log-transformed SS signal intensity score and their detection ratio. Co-occurrence of biomark-
ers (detected together in the same urine sample) was shown graphically using an UpSet plot 
(UpSetR, v1.4.0). 

Temporal differences in both studies were assessed. In the Dutch study, two samples 
from the same individual were taken, one in each season, for which the intra-class correlation 
coefficient (ICC) was calculated. A linear mixed effects model with censored data (using the 
log-transformed intensity scores) was used, i.e. a multilevel Tobit model. This two-level (first: 
measurements, second: subjects) random intercept model was defined as follows:

log(yij) = β + uj
(2) + εij

(1)

where β represents the intercept, uj the between-subject error, and εij the within-subject error.
To assess the temporal differences in the Swiss study, average intensity scores for each season 
(winter, spring, summer) were displayed in boxplots for the 13 most detected biomarkers (see 
Appendix A, Figure A.2).

In order to explore determinants of exposure, censored regression models were con-
structed (Tobit, VGAM v1.1.7) (Henningsen, 2022). Given the explorative nature of the analyses, 
models were not adjusted for multiple comparisons. For biomarkers of only three pesticides 
(acetamiprid, chlorpropham and flonicamid), the detection rate was sufficiently high (at least 
40% at each study side) to construct a censored linear regression model. For the remaining 
biomarkers, logistic censored regression models were constructed (based on detected yes/
no). All models were a priori corrected for age (years), gender (male/female), BMI (normal: 
<25, overweight: 25-30, obese: >30), level of education (primary, secondary, tertiary, higher), 
income (<25%, 25-50%, 50-75%, >75% of country average), and country (not for country-spe-
cific models). The following exposure variables were mutually included in the models: having 
a household member who used pesticides occupationally (yes/no), pesticide usage in the 
garden (up to 3 days (3d) prior to sampling, yes/no), pesticide usage indoors (up to 3d prior 
sampling, yes/no), pesticide usage on pets (up to 3d prior sampling, yes/no), pesticide usage 
for hobby use (up to 3d prior sampling, yes/no), homegrown food consumption in summer 
(not-high (<50%), high (≥50%)), organic food consumption per food category (vegetables 
and fruit, bread, meat, rice, eggs, dairy; not-high (<50%), high (≥50%)), and distance (m) to the 
closest agricultural area or forest. Continuous variables were log-transformed (age, distance 
to agriculture, distance to forest). For sensitivity analyses, following the study of Baudry et al. 
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(2019), a ‘low’ category was created for less than 10% of homegrown/organic foods consump-
tion (see Appendix A, Table A.3). Missing values in the independent variables were imputed 
using mice (v3.14.0), with normal distribution for the continuous variables, proportional odds 
model for the categorical (education, income, BMI), and logistic regression for the remaining 
variables. All regression models were built on the pooled dataset, including an adjustment for 
country. Additionally, models were constructed for each country separately (see Appendix A, 
Figures A.3 and A.4). Results of the censored linear and logistic models were shown in forest 
plots. 

To identify whether exposure to the pesticides detected in our study was driven by the 
consumption of specific food items, we identified food items from the 2020 European Food 
Consumption Database by the European Food Safety Authority (EFSA) in which the 12 most 
frequently detected parent pesticides from our study were often detected (European Food 
Safety Authority et al., 2022). For each compound, the five most frequently contaminated food 
items from the EFSA database were selected, with contamination frequencies ranging from 
2.5% to 75.9%. Food items irrelevant for our study population, i.e. infant formulas and ready-
made meals for children, were excluded. A description of these food items and the percentage 
consumed in the Dutch and Swiss population is provided in Appendix A (Table A.4).

RESULTS

Characteristics of the study samples
An overview of the two study population characteristics is shown in Table 1. A total of 105 
(70% female) and 295 (46% female) adults were included from the Dutch (NL) and Swiss (CH) 
HBM4EU study, respectively. Both the age range as well as the mean age was higher in the 
Dutch sample (range: 29-56 years, mean: 42 years) as compared to the Swiss participant popu-
lation (range: 20-39 years, mean: 31 years), reflecting the differences in the target population. 
With regard to BMI and educational level, the two study populations were similar. Approxi-
mately 73% of participants were of normal weight/underweight, and 73% had a university 
degree. The majority of the Dutch participants had a household income between 50-75% 
of the country average (47%), while the majority of the Swiss participants had an income of 
25-50% of the country average (37%). Distance to agricultural areas was similar in both pop-
ulations, with an average of 976 (NL) and 979 (CH) meters to agricultural areas, but distance 
to forest areas was higher in Switzerland (NL: average of 271 m; CH: average of 566 m). The 
distribution of participants based on their distance to both areas is included in Appendix A 
(Figure A.5).
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Pesticide distribution in the study samples
A total of 37 biomarkers were confirmed with high confidence (Schymanski levels 1 and 
2b), relating to 27 different parent pesticides. An overview of all 37 biomarkers (including 
detected metabolites and types of pesticides) are presented in Appendix A (Table A.5). 
A graphical presentation of the detection rates and the distribution of the signal intensity 
scores (log-transformed) of the 13 most frequently detected biomarkers (related to 12 parent 
pesticides) are shown in Figure 1. Supplementary Figure A.1 (Appendix A) shows the distri-
bution of the intensity scores and the detection rates of all 37 biomarkers. The magnitude of 
detection rates was comparable in both countries, but detection rates were generally higher 
in the Dutch population than in the Swiss population, regardless of the between-country dif-
ferences in the biomarkers’ intensity scores. Metabolites of the three pesticides acetamiprid 
(-CH2, insecticide), flonicamid (-C2HN, insecticide), and chlorpropham (4-HSA, herbicide) had 
detection rates above 40% in both the Dutch and Swiss study samples. In the Netherlands, 
also propamocarb (+O, fungicide) and pirimiphos-methyl (-CH2, insecticide/acaricide) were 
detected in at least 40% of the samples. Biomarkers of an additional eight pesticides, namely 
fludioxonil (+O +C6H8O6), boscalid (+O +SO3), pyrimethanil (+O +SO3), fluazifop (parent), clo-
thianidin (parent), propamocarb (parent), cyprodinil (+O +SO3), and tebuconazole (-2H +2O), 
were detected in at least 20 urine samples in each country (total detection ratio of >10%). The 
intensity scores of each biomarker were comparable for both countries. The highest intensity 
scores were found for metabolites of propamocarb (+O and parent), yet intensity score differ-
ences between biomarkers cannot be directly translated into concentration differences.

Table 1. Participant characteristics of the Dutch (NL) and Swiss (CH) studies

Country Netherlands (NL) Switzerland (CH)
Participants, n 105 295
Gender female, n (%) 73 (69.5) 136 (46.1)
Mean age, years [min-max] 42.1 [29-56] 30.8 [20-39]
BMI, n (%)

Normal/Underweight (<25)
Overweight (25-30)

Obese (>30)

 
129 (72.3)
60 (22.9)
18 (4.8)

 
217 (73.6)
64 (21.7)
14 (4.7)

Education level, n (%)
No or only primary education

Secondary education
Tertiary education (post-secondary)

University (BSc, MSc, PhD) 
Don’t Know/ NA

 
1 (1.0)
5 (4.8)
19 (18.1)
76 (72.3)
4 (3.8)

 
2 (0.7)
1 (0.3)
67 (22.7)
221 (74.9)
4 (1.4)

Household income1, % of country average
< 25%

25-50%
50-75%

>75%
Don’t Know/NA

 
1 (1.0)
6 (5.7)
49 (46.7)
33 (31.4)
16 (15.2)

 
 61 (20.7)
109 (36.9)
47 (15.9)
53 (18.0)
25 (8.5)

Mean distance to agricultural areas, m [min-max] 976 [21-2618] 979 [24-2221]
Mean distance to forest, m [min-max] 271 [0-1739] 566 [8-1294]

1.  Income categories from the Swiss questionnaire were assigned to the <25th, 25th - 50th, 50th – 75th and >75th percentile categories based 
on the publication by the Swiss Federal Department of Finance (2014): https://biblio.parlament.ch/e-docs/377581.pdf
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Figure 1. The distribution of the percentage detected and the intensity scores of the 13 most frequently detected bio-
markers for pesticides (noted as parent: F(ungicide), I(nsecticide), H(erbicide), Ac(aricide)), based on n=105 samples 
from the Netherlands (NL) and n=295 samples from Switzerland (CH). Note: Signal intensity scores reported here are 
semi-quantitative and can therefore not be directly translated into urine concentration levels. 

Based on the 13 most frequently detected biomarkers, the combinations that co-occurred 
the most in each country are shown in Figure 2. Only combinations occurring at least four 
times (arbitrary cut-off point) are shown, resulting in a co-occurrence pattern based on eight 
biomarkers and 17 different combinations. In 211 out of 400 samples (52.8%), at least two 
biomarkers were detected. The most frequent co-occurring pesticide biomarker patterns 
included different combinations of acetamiprid-flonicamid-chlorpropham, of which the 
acetamiprid-flonicamid combination occurred in 22 urine samples, or 5.5%. In general, the 
frequency of co-occurrence for a specific combination of biomarkers was low. In the Nether-
lands, fewer co-occurrences were detected (relatively), while in Switzerland more co-occur-
rences were identified, with the most common pair acetamiprid-flonicamid found in 7.1% of 
the samples (see Appendix A, Figure A.6). 
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Temporal variation in pesticide distribution 
Since the study design in the Netherlands included two samples per individual from two dif-
ferent seasons, we utilized this opportunity to calculate the ICC based on the intensity scores. 
The ICC values (considering within-individual and between-season variation) for all 13 bio-
markers were low (<0.3), indicating high within-person variability.

The Swiss samples were collected across multiple seasons (ranging from January until 
October 2020). Seasonal averages of intensity scores (winter, spring and summer) for the Swiss 
samples showed no temporal differences. Results of the ICC calculations (Table A.6) and Swiss 
seasonal averages in boxplots (Figure A.2) are displayed in Appendix A.

Figure 2. Frequency of co-occurrences of the 13 most detected pesticide biomarkers in the pooled dataset, (noted as 
parent: F(ungicide), I(nsecticide), H(erbicide), Ac(aricide)). Only the most frequent combinations (in at least four urine 
samples) are presented, based on n=105 samples from NL and n=295 samples from CH.

Figure 3. Association between potential exposure determinants with the intensity scores of acetamiprid, chlorpropham, 
and flonicamid in urine; results of the Tobit regression models for the pooled dataset. All models were corrected for age, 
gender, BMI, level of education, income, and country. Factors related to pesticide usage (orange box), household member 
exposure (blue), distance to agriculture/forest (green), and diet (yellow) are shown. All variables are mutually adjusted.
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Determinants of exposure to acetamiprid, chlorpropham and flonicamid
For acetamiprid, chlorpropham, and flonicamid, censored linear regression (Tobit) models 
were constructed to explore the potential role of exposure determinants. The covariate mutu-
ally adjusted associations of product usage (orange box around the variable names), occu-
pational exposure of household members (blue), homegrown food consumption (yellow), 
organic diet (yellow), and distance to agricultural areas and forest (green) with the intensity 
score of the respective metabolite in the pooled study sample are shown in Figure 3 by forest 
plots. For the country-stratified analyses, see Appendix A (Figure A.3). 

The only discernible association for the pooled data models was a lower urinary intensity 
score for acetamiprid and chlorpropham when organic vegetables and fruit were frequently 
(>50%) consumed. For flonicamid, no effect was detected in the pooled data model. 

Determinants of exposure to biomarkers detected in <40% of samples
For the 10 biomarkers detected in between 10% and 40% of the samples, logistic regression 
models revealed no discernible association (log odds) with any potential determinant across 
biomarkers and countries. For the pooled dataset, forest plots for each biomarker are pre-
sented in Figure 4. Country-specific results of the logistic regression models can be found 
in Appendix A (Figure A.4). A high organic vegetable and fruit consumption was associated 
with a lower detection rate in the pooled data models for propamocarb (+O) and pyrimethanil 
(+O +SO3). For fluazifop, a greater distance to forest areas was associated with an increase in 
detection rate in the pooled data models. In the pooled data model for pyrimethanil, distance 
to agricultural areas was positively associated with the detection rate. In general, the log odds 
of the non-dietary determinants had large confidence intervals, mainly due to low numbers 
of occurrence in the study population (see Appendix A, Table A.3). In addition, some exposure 
variables dropped out of the regression models for certain biomarkers due to the same reason 
of low occurrence (see Appendix, Table A.3).

DISCUSSION

The present study examines and compares human biomonitoring data on pesticides col-
lected in a sample of the adult population in the Netherlands and in Switzerland as part of 
the HBM4EU project. Overall, 37 biomarkers (relating to 27 parent pesticides) were detected 
in 400 urine samples by a suspect screening methodology conducted at the same laboratory. 
The pesticides present in the urine samples obtained in the two countries were comparable, 
despite some differences in population characteristics. Detection rates were typically low, 
co-occurrence of biomarkers not common, and temporal variation at the level of individu-
als high. Detection rates were highest for acetamiprid, chlorpropham and flonicamid. We 
observed that consumption of organic fruit and vegetables was an important determinant for 
exposure to several of the measured pesticide metabolites. In contrast, no clear association of 
other determinants, such as non-occupational pesticide usage, household member’s expo-
sure, distance to agricultural or forest areas, and other dietary habits, with signal intensity and 
exposure probability was found. 
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Detection rates and exposure pathways
Despite the considerable number of detected biomarkers (confirmed by molecular struc-
ture, n=37), only three biomarkers of the parent pesticides acetamiprid, chlorpropham and 
flonicamid were detected in at least 40% of all samples. In the Dutch data, two additional 
compounds (pirimiphos-methyl and propamocarb) had a detection rate of ≥40%. These 3 
most frequently detected parent pesticides were also part of 8 selected pesticides for tar-
geted analysis by the OBO (Research on exposure of residents to pesticides in the Netherlands) 
study, based on their usage frequency, monitoring data, analytical possibilities, and possible 
exposure of the residential population Figueiredo et al. (2021). Two of our frequently detected 
biomarkers (chlorpropham and flonicamid) have hardly been studied thus far, but our data 
suggests including these markers in future pesticide exposure studies.

The high detection frequency in the Dutch (98%) and the only slightly lower detection 
frequency in the Swiss data (87%) indicate ubiquitous exposure to acetamiprid, despite its 
relatively quick excretion time. The negative association between high organic vegetable and 

Figure 4. Association between potential exposure determinants with the urinary presence of biomarkers detected 
10-40%; results of the logistic regression models for the pooled dataset. All models were corrected for age, gender, BMI, 
level of education, income, and country. Factors related to pesticide usage (orange box), household member exposure 
(blue), distance to agriculture/forest (green), and diet (yellow) are shown. All variables are mutually adjusted. Note: 
Odds for certain exposure variables are missing due to low frequency of participants using pesticides, e.g. in the garden. 
Hence, variation in the detected biomarkers was too low for the variable to be included in the regression model.



161

 Urinary pesticide mixtures in the Netherlands and Switzerland • Chapter 6

C
ha

pt
er

 6

fruit consumption and acetamiprid exposure in our study points to conventionally grown 
vegetables and fruits as potential determinants of exposure. Acetamiprid is a neonicotinoid 
(insecticide) and is approved in the EU as well as in Switzerland for professional use on mainly 
fruit trees and vegetables, as well as for non-occupational use (only certain acetamiprid-con-
taining products). Due to neonicotinoids’ systemic mechanism of action, i.e. their ability to 
enter and persist in plant tissue, residues of neonicotinoids in food cannot be removed by 
peeling or washing (Magalhaes et al., 2009; Simon-Delso et al., 2015). Hence, for the general 
population, fruit and vegetable intake is likely to be the main exposure pathway and target to 
reduce exposure to acetamiprid (Zhang et al., 2018; Zhang and Lu, 2022). Based on the EFSA 
database, residues of acetamiprid are mainly found in cherries (48%), chili peppers (38%), 
pomelos (30%), roman rocket (29%), and pears (26%) (see Appendix A, Table A.4). While data 
on cherries, chili peppers, pomelos, and roman rocket consumption is not available for the 
Dutch and Swiss study population, leafy greens were consumed by 32% of the Dutch, and 54% 
of the Swiss participants. Pears were consumed slightly less in Switzerland (NL: 11%, CH: 7%).

Detection rates for chlorpropham, an herbicide and plant growth regulator, were high in 
both the Dutch (63%) and Swiss (40%) samples, indicating frequent exposure in both popula-
tions. Our Tobit regression results for chlorpropham point to dietary exposure as an important 
exposure pathway, showing a negative association between organic vegetable and fruit con-
sumption and chlorpropham exposure. The pesticide is mainly used to prevent sprouting of 
potatoes during storage, and the application is usually done using fogging or spraying equip-
ment (European Food Safety Authority et al., 2017). EU and Swiss approval for chlorpropham 
was withdrawn in 2019, but periods of grace lasted until autumn 2020 (European Commission, 
2019). Hence, exposure through diet in the two study populations was still possible and likely 
in the year 2020. EFSA data shows that residues of chlorpropham can be found in 15-29% of 
potatoes (see Appendix A, Table A.4). The relatively high consumption of potatoes in the Neth-
erlands (72 kg/year), as compared to Swiss consumption (47 kg/year), might explain the differ-
ence in detection rates (Helgi Library, 2020). Results from the food frequency questionnaires 
(FFQ) additionally show frequent consumption of potatoes in both the Dutch and Swiss study 
population (see Appendix A, Table A.4), with 38.1% of Dutch and 28.7% of Swiss participants 
stating they consumed potatoes within 24 hours before urine collection. 

The insecticide flonicamid is authorized for occupational use in both countries and is 
mainly applied on fruit, vegetables, wheat, and potatoes. Detection rates in the Netherlands 
were slightly higher (52%) than in Switzerland (43%), and point towards a frequent exposure to 
flonicamid in both populations. The regression model for flonicamid exposure in the Nether-
lands indicates that having a household member who is occupationally exposed to pesticides 
(self-assessment by the participant) is associated with higher exposure. The occupational 
exposure to flonicamid specifically in orchards was confirmed in another study as well (Zhao et 
al., 2015). Preferential consumption of organic bread was also associated with lower exposure 
to flonicamid in the Dutch model. In the Dutch study population, bread was consumed by 
83.8% participants within 24 hours before urine collection, as compared to 49% in the Swiss 
population. The top-5 flonicamid-contaminated food items in the EFSA database, however, 
do not include bread or other wheat products (see Appendix A, Table A.4). Instead, residues 
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of flonicamid were mainly found in cucumbers, sweet peppers, peas, peaches, and brussel 
sprouts. In the Dutch study, data on the consumption of sweet peppers (30%) and peas (12%) 
is available, but the Swiss FFQ did not inquire about these food items.

The logistic models for propamocarb (+O), pirimiphos-methyl, fludioxonil, fluazifop, clothi-
anidin, propamocarb (parent), boscalid, cyprodinil, pyrimethanil, and tebuconazole revealed 
no consistent direction of association between the determinants and exposure probability 
across biomarkers and countries. However, a high consumption of organic vegetables and 
fruit was associated with lower exposure probability for propamocarb (+O) and pyrimethanil. 
Based on the EFSA database, residues of propamocarb are found in about 24% of lettuces, and 
pyrimethanil is found in about 35-45% of citrus fruit (see Appendix A, Table A.4). Data on the 
consumption of lettuces and various citrus fruits within 24 hours before urine collection is not 
available for the Dutch and Swiss study population.

Our findings add evidence to previous studies indicating that food choices have an 
influence on pesticide exposure in the general population (Fortes et al., 2013; Ye et al., 2015; 
Rempelos et al., 2022). Especially for vegetable and fruit consumption, prior research consist-
ently shows negative correlations between organic food consumption and urinary pesticide 
concentrations (Baudry et al., 2019; Hyland et al., 2019; Baudry et al., 2021). In our study, a high 
consumption of organic fruits and vegetables was related to a lower exposure to four bio-
markers. However, for the other food groups, the direction of association varied, with high 
levels of uncertainty. Although not assessed in this study, consumption of imported foods 
might explain rather small differences in detection frequencies for compounds which are 
applied in much larger quantities in the Netherlands (see Appendix A, Table A.4) as compared 
to Switzerland, such as chlorpropham (NL: 39t, CH: 0.06t).

Within-individual variability and mixture exposure patterns
For all biomarkers, correlation between winter and summer season samples of the same indi-
vidual in the Dutch population was low (≤0.3). This indicates a high within-individual variability 
of exposure and pesticide levels in urine. Potentially important sources of within-individual 
variability are changes in lifestyle, including dietary habits, and environmental influences. 
Longer-term exposure profiles are not well captured in the light of quick metabolization of 
most pesticides and short biological half-lives (Egeghy et al., 2011). This is in line with previous 
research on pesticide exposure levels over time, showing high within-individual variability of 
pesticide levels in urine (Morgan et al., 2016; Li et al., 2019). High within-individual variability 
was also detected in occupationally highly exposed groups, which can lead to challenges in 
capturing exposure windows (Fuhrimann et al., 2020). Similarly, a previous study analyzing the 
Dutch SPECIMEn and HBM4EU data of four other countries found no consistent effect of season 
on detection frequencies (Ottenbros et al., 2023). Considering also the absence of seasonal 
differences in average exposure in Switzerland, day-to-day variations of lifestyle and environ-
mental exposures may be more important drivers of exposure than seasonal variations.

Based on the exploration of co-occurrence of biomarkers within the same sample, the 
most frequent combination (acetamiprid with flonicamid) was only detected in 5.5% (n = 
22) of the samples. The 17 most frequent combinations (found in at least four urine samples) 
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were based on different variations of eight biomarkers, which also reflect the most frequently 
detected biomarkers in the studies. This points towards individualized and variable pesticide 
mixture exposure profiles among the general population, as found in previous HBM studies 
(Aerts et al., 2018; Ottenbros et al., 2023). This is also in agreement with the observed high 
within-person variability of exposure in our study. The fewer co-occurrence patterns in the 
Netherlands likely can be explained by the overall smaller number of biomarkers detected in 
comparison to Switzerland.

Strengths and limitations
The harmonized data collection with questionnaires filled in at the time of urine sampling and 
standardized urine sample analysis at the same laboratory within the HBM4EU project allowed 
for the joint analysis of the two datasets. The comparison of pesticide mixtures and expo-
sure pathways in adult populations across the Netherlands and Switzerland was additionally 
justified by similar pesticide regulations in both countries. The employment of an innovative 
SS methodology offered the opportunity to semi-quantitatively measure exposure to a large 
number of compounds previously rarely examined within a single study. Despite the informa-
tive insights gained from our study, a few limitations have to be addressed. Regarding sample 
collection, it should be noted that many pesticides are metabolized and excreted quickly. 
Hence, the distribution of individual long-term exposures will not adequately be captured 
by the collection of one first morning void urine sample. Longitudinal and repeated study 
designs (or longer sampling times, such as 24h voids) will be necessary to adequately monitor 
temporal variations and estimate temporally integrated pesticide exposure in the general 
population. We should also point out that part of the urine samples from Switzerland and 
all samples from the summer season in the Netherlands were collected during the COVID-19 
pandemic. This might have affected diet, daily activities, and habits (Bertrand et al., 2021).

Second, a myriad of labels for organic and biological foods exist within the EU and in Swit-
zerland. Thus, it might not have been straightforward for participants to declare how much 
of their usual food intake is produced organically and participants’ might have based their 
answers on different labels. Additionally, the employed FFQs did not query the consumption 
of specific food items frequently contaminated with pesticide residues, as reported by the 
EFSA database. Hence, we did not include single food items in the regression models, which 
could have diminished the ability to detect any effect. Future studies may profit from a more 
detailed FFQ that is better aligned with pesticide exposure databases. Additionally, there 
might be country-specific differences in the proportion of consumption of imported foods, 
which was not assessed in this study. 

Third, we did not observe any effect of distance to agricultural or forest areas on the expo-
sure estimates. Although it must be noted that definitions for agricultural and forest areas 
were different in the two geospatial datasets for the two study countries (see Table A.1), with 
the Dutch definitions being more precise. In addition, in contrast to the Swiss sample, the 
Dutch study design focused specifically on distance to orchards. 

Lastly, although the SS approach is a useful analytical methodology to explore exposure to 
large numbers of pesticides, targeted methods have a higher specificity and sensitivity (Pour-
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chet et al., 2020). Moreover, due to time and budget reasons, experts reviewed and prioritized 
the tentative annotations before starting the compound confirmation workflow, resulting in a 
suspect screening analysis biased toward halogenated and PO3-containing pesticides (Huber 
et al., 2022). The list of 37 identified biomarkers is additionally limited by technical possibilities 
and conventions. Therefore, technological advances might increase the number of identified 
biomarkers in the future. This might be one of the reasons why the three most commonly 
detected pesticides might not reflect the most commonly used pesticides in the Netherlands 
and Switzerland.

For the most commonly detected pesticides, targeted methods will need to be applied 
for a more precise estimation of determinants. In addition, future studies should carry out 
improvements regarding the compilation of the list of tentative annotations.

Nonetheless, taking these limitations into account, the results of this multi-country 
study contribute to the growing field of HBM of pesticides and offer first insights into pesti-
cide mixture patterns and exposure sources and pathways in two countries in the European 
context. Future studies with a more detailed dietary and behavioral assessment, as well as 
targeted quantitative, ideally multi-biomarker, screenings of several HBM samples will be able 
to draw on these results for a more complete assessment of the general populations’ exposure 
to pesticides and determinants thereof. 

CONCLUSION

Using a semi-quantitative suspect screening approach, 37 well-annotated pesticide metabo-
lites (relating to 27 parent pesticides) were present in urine collected from participants of the 
adult population in the Netherlands and Switzerland. Detection rates were typically low, yet 
three pesticides (acetamiprid, chlorpropham, flonicamid) were detected in at least 40% of the 
samples at both study sites. High consumption of organic fruits and vegetables was associated 
with decreased urinary levels for acetamiprid, chlorpropham, propamocarb and pyrimethanil. 
The suspect screening applied in this study provides an example of how a first-tier screening 
exercise for pesticide exposure can be conducted. Our study provides an indication for target 
biomarkers to include in follow-up studies dedicated to the quantification of urinary exposure 
levels. Also, it highlights the importance of repeated sampling in light of substantial within-in-
dividual variability, as well as food contamination reduction as a preventive target to lower 
pesticide exposures.
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SUPPLEMENTARY MATERIAL

Figure A.1. The distribution of intensity scores and percentage detected of the 37 most frequently detected biomarkers, 
based on n=105 samples from the Netherlands (NL) and n=295 samples from Switzerland (CH). For the full name of 
each biomarker, see Table A.5.
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Figure A.2. Distributions of signal intensity scores (log-transformed) across seasons in the Swiss population.
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Figure A.3. Associations between potential exposure determinants and the intensity scores of acetamiprid, chlorpro-
pham, and flonicamid in urine; results of the Tobit regression models for the country-specific dataset. All models were 
corrected for age, gender, BMI, level of education, and income. Factors related to pesticide usage (orange box), household 
member exposure (blue), distance to agriculture/forest (green), and diet (yellow) are shown. All variables are mutually 
adjusted.
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Figure A.4. Association of exposures with the urinary presence of biomarkers detected 10%-40%; results of the logistic 
regression models for the country-specific dataset. All models were corrected for age, gender, BMI, level of education, and 
income. Factors related to pesticide usage (orange box), household member exposure (blue), distance to agriculture/
forest (green), and diet (yellow) are shown. All variables are mutually adjusted.



173

 Urinary pesticide mixtures in the Netherlands and Switzerland • Chapter 6

C
ha

pt
er

 6

Figure A.5. Distribution of distance to agriculture and forest for the Netherlands (NL) and Switzerland (CH). 
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Figure A.6. Frequency of co-occurrences of the 13 most detected pesticide biomarkers, for both the Netherlands (NL, 
blue, left) and Switzerland (CH, orange, right). Based on n=105 samples from the Netherlands (NL) and n=295 sam-
ples from Switzerland (CH).



175

 Urinary pesticide mixtures in the Netherlands and Switzerland • Chapter 6

C
ha

pt
er

 6

Table A.1. Country definitions of agricultural and forest areas used for distance calculations.

 Netherlands (NL) Switzerland (CH)
Agricultural 
land

Arable land, farm (excluding detached dwelling 
house if it can be included as a residential area), 
grassland, orchard, nursery, cultivated land, grassy 
dike, high and low stem orchard, apiary, farmland, 
poplar pasture, horticulture, meadow, pasture; land 
for greenhouse horticulture includes land used 
for growing crops under standing glass, in- and 
adjacent water basins, associated gas tanks;

Arable land, permanent green space, area with 
permanent crops, greenhouses, area with hedges, 
riparian and field woodland that is not forest

Forest Area grown with trees destined for wood 
production and or nature management. Forest = 
area with trees where the crowns are about to be 
closed (or will be closed soon), cut down trees area, 
burned down trees area, newly planted trees, forest 
path, tree nursery, wood collection area, spread out 
houses inside the forest (such as single houses, but 
not multiple streets), wet forest, poplars field, small 
waters inside the forest (smaller than 1ha and or 
smaller than 6m).
Not forest = forest areas of parks, not in forest 
located tree nurseries, residential areas inside the 
forest area (with multiple streets), open strips for 
high voltage masts
Minimal area = 1ha, minimal 25m in width

Area planted with forest trees or shrubs and capable 
of performing forest functions; pasture forests, 
stocked pastures; unstocked or unproductive areas 
of a forest property, such as forest blocks, forest 
roads and other forestry structures and facilities
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Table A.2. Comparison and re-coding of questionnaire variables of interest for the analysis from the Dutch and Swiss 
questionnaires applied on the day of urine sampling. 

Question NL  
[Unit/Categories]

Question CH  
[Unit/Categories]

Analysis variable  
[Unit/Categories] Recoded categories

Date of birth [DD/MM/
YYYY]

Date of birth [DD/MM/
YYYY]

Age [YY] -

Sex [0=M; 1=F; 2=Other] Sex [1=F; 2=M] Sex [0=M; 1=F; 2=Other] CH: M=0
Height [cm] and weight [kg] BMI [kg/cm2] BMI [kg/cm2] NL: calculate BMI 

(weight*10000/
(height*height))

Highest education 
[1=No education or 
only primary education 
;2=Secondary education; 
3=Tertiary education 
(post-secondary); 4=Uni-
versity (BSc, MSc, PhD); 
99=Don’t know; 999=NA]

Highest education 
[1=Lower level than primary 
school; 2=Primary school; 
3=Secondary school; 
4=High school/tertiary 
school; 5=Apprenticeship; 
6=Vocational school; 
7=University: Bachelor; 
8=University: Master; 
9=University: Doctorate/
PhD; 999=NA]

Highest education 
[1=No education or 
only primary education 
;2=Secondary education; 
3=Tertiary education 
(post-secondary); 4=Uni-
versity (BSc, MSc, PhD); 
999=Don’t know/NA]

CH: combine categories 
into 4
(Lower level than primary 
school OR primary school=1; 
Secondary school=2; High 
school/tertiary school OR 
Apprenticeship OR Voca-
tional school=3; University: 
Bachelor OR University: 
Master OR University: 
Doctorate/PhD=4)

Total household income (% 
of country average) 
[1=<25 %; 2=25-50 %; 
3=50-75 %; 4=>75 %; 
99=Don’t know; 999=NA]

Total average monthly 
household income 
[1=Less than CHF 3’000; 
2=Between CHF 3’000.- and 
CHF 4’500; 3=Between 
CHF 4’500 and  CHF 6’000; 
4=Between CHF 6’000 and 
CHF 9’000; 5=Between 
CHF 9’000 and CHF 11’000; 
6= More than CHF 11’000; 
7=I prefer not to answer this 
question]

Total household income (% 
of country average) 
[1=<25 %; 2=25-50 %; 
3=50-75 %; 4=>75 %; 
999=Don’t know/Prefer not 
to answer/NA]

CH: combine categories 
into 4
(Less than CHF3’000 OR 
Between CHF 3’000 and 
4’500=<25%=1; Between 
CHF 4’500 and  CHF 6’000 
OR Between CHF 6’000 
and CHF 9’000=25-50%=2; 
Between CHF 9’000 
and CHF 11’000=50-
75%=3; More than CHF 
11’000=75%;=4; I prefer not 
to answer this question=999)

NL: combine Don’t know 
and NA
(Don’t know OR NA=999)

Family members’ profes-
sional contact with pesticides 
[1=Yes; 999=NA]

Number of household 
members coming in contact 
with pesticides in their 
profession [1= Nobody; 2=1 
Person; 3=2 People; 4=More 
than 2 people]

Household members’ profes-
sional contact with pesticides 
[0= No; 1=Yes; 999=NA]

NL: make 3 categories 
(not 1 or 999=0)
CH: make 3 categories 
(Nobody=0; 1 Person 
OR 2 People OR More 
than 2 people=1; not 
answered=999]

Pesticide use in garden 
up to 3 days prior to urine 
sampling 
[0=No; 1=Yes; 99=Don’t 
know; 999=NA]

Pesticide use in garden 
up to 3 days prior to urine 
sampling 
[1=No, not on these days; 
2=Yes, in the 12 hours 
before the urine collection; 
3=Yes, the day (in the 12 to 
24 hours) before the urine 
collection; 4=Yes, on the 2. 
day (24 to 48 hours) before 
the urine collection; 5= 
Yes, on the 3. day (48 bis 72 
Stunden) before the urine 
collection; 6=I don’t know]

Pesticide use in garden 
up to 3 days prior to urine 
sampling 
[0=No; 1=Yes; 999=Don’t 
know/NA]

CH: make 4 categories
(No, not on these days=0; 
12 hours before OR 12-24 
hours before OR 24-48 
hours before OR 48-72 hours 
before=1; I don’t know=999; 
NA=999)
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Question NL  
[Unit/Categories]

Question CH  
[Unit/Categories]

Analysis variable  
[Unit/Categories] Recoded categories

Pesticide use indoors at home 
up to 3 days prior to urine 
sampling
[0=No; 1=Yes; 99=Don’t 
know; 999=NA]

Pesticide use indoors at home 
or at work up to 3 days prior 
to urine sampling [1=No, 
not on these days; 2=Yes, in 
the 12 hours before the urine 
collection; 3=Yes, the day (in 
the 12 to 24 hours) before the 
urine collection; 4=Yes, on 
the 2. day (24 to 48 hours) 
before the urine collection; 
5= Yes, on the 3. day (48 bis 
72 Stunden) before the urine 
collection; 6=I don’t know]

Private pesticide use indoors 
up to 3 days prior to urine 
sampling 
[0=No; 1=Yes; 999=Don’t 
know/NA]

CH: make 4 categories
(No, not on these days=0; 
12 hours before OR 12-24 
hours before OR 24-48 
hours before OR 48-72 hours 
before=1; I don’t know=999; 
NA=999)

Pesticide use on pets up to 3 
days prior to urine sampling
[0=No; 1=Yes; 99=Don’t 
know; 999=NA]

[1=No, not on these days; 
2=Yes, in the 12 hours 
before the urine collection; 
3=Yes, the day (in the 12 to 
24 hours) before the urine 
collection; 4=Yes, on the 2. 
day (24 to 48 hours) before 
the urine collection; 5= 
Yes, on the 3. day (48 bis 72 
Stunden) before the urine 
collection]

Pesticide use on pets up to 3 
days prior to urine sampling 
[0=No; 1=Yes; 999=Don’t 
know/NA]

CH: make 4 categories
(No, not on these days=0; 
12 hours before OR 12-24 
hours before OR 24-48 
hours before OR 48-72 hours 
before=1; NA=999)

Insect repellent use on 
self-up to 3 days prior to 
urine sampling
[0=No; 1=Yes; 99=Don’t 
know; 999=NA]

Insect repellent use on 
self-up to 3 days prior to 
urine sampling [1=No, not 
on these days; 2=Yes, in the 
12 hours before the urine 
collection; 3=Yes, the day (in 
the 12 to 24 hours) before the 
urine collection; 4=Yes, on 
the 2. day (24 to 48 hours) 
before the urine collection; 
5= Yes, on the 3. day (48 bis 
72 Stunden) before the urine 
collection; 6=I don’t know]

Insect repellent use on 
self-up to 3 days prior to 
urine sampling 
[0=No; 1=Yes; 999=Don’t 
know/NA]

CH: make 4 categories
(No, not on these days=0; 
12 hours before OR 12-24 
hours before OR 24-48 
hours before OR 48-72 hours 
before=1; I don’t know=999; 
NA=999)

Pesticide use during DIY 
activities or hobbies 3 days 
prior to urine sampling
[0=No; 1=Yes; 99=Don’t 
know; 999=NA]

Pesticide use during 
activities 3 days prior to 
urine sampling [1=No, not 
on these days; 2=Yes, in the 
12 hours before the urine 
collection; 3=Yes, the day (in 
the 12 to 24 hours) before the 
urine collection; 4=Yes, on 
the 2. day (24 to 48 hours) 
before the urine collection; 
5= Yes, on the 3. day (48 bis 
72 Stunden) before the urine 
collection]

Pesticide use during DIY 
activities or hobbies 3 days 
prior to urine sampling
[0=No; 1=Yes; 999=Don’t 
know/NA]

CH: make 4 categories
(No, not on these days=0; 
12 hours before OR 12-24 
hours before OR 24-48 
hours before OR 48-72 hours 
before=1; NA=999)

Professional contact with 
pesticides in past month
[0=No; 1=Yes; 99=Don’t 
know; 999=NA]

Professional contact with 
pesticides in past month
[1=Yes; 2=No; 3=I don’t 
know; 999=NA]

Professional contact with 
pesticides in past month
[0=No; 1=Yes; 999=I don’t 
know/NA]

CH: No=0; I don’t 
know=999

Table A.2. Continued.
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Question NL  
[Unit/Categories]

Question CH  
[Unit/Categories]

Analysis variable  
[Unit/Categories] Recoded categories

Percentage of diet that was 
organic in last 6 months
[0=No consumption; 
1=Consumption; 99=Don’t 
know; 999=NA; % organic]

Percentage of diet that is 
organic in general
[% organic, 999=NA

Percentage of diet that is 
organic
[% organic, 999=I don’t 
know/NA]

NL and CH: make 2 
categories
(<50% organic; ≥50% 
organic); for sensitivity anal-
ysis: <10% organic, 10-50% 
organic, >50% organic

Percentage of homegrown 
food in last 6 months, per 
season
[1=Known; 99=Don’t know; 
999=NA; % homegrown]

Percentage of homegrown 
food in last 6 months, per 
season
[1= I don’t know; %; NA=999

Percentage of homegrown 
food per season
[% homegrown, 999=I don’t 
know/NA]

CH: I don’t know=999
NL and CH: limit to summer 
season

Food items eaten during 24 
hours before urine collection
[0=Not eaten; 1=Eaten 
during the past 24h; 
999=NA]

Food items eaten up to 3 days 
before urine collection
[1=No; 2=Yes, in the 12 
hours before the urine 
collection; 3=Yes, the day (in 
the 12 to 24 hours) before the 
urine collection; 4=Yes, on 
the 2. day (24 to 48 hours) 
before the urine collection; 
5= Yes, on the 3. day (48 bis 
72 Stunden) before the urine 
collection]

Food items eaten during 24 
hours before urine collection
[0=Not eaten; 1=Eaten 
during the past 24h; 
999=NA]

CH: make 2 categories and 
limit to 24 hours before urine 
collection
(No=0; 12 hours OR 
12-24 hours before urine 
collection=1; NA=999)
CH and NL: Combine 
single food items into food 
categories
(vegetables and fruit, rice, 
bread, eggs, dairy, meat)

Variables for the planned analyses were chosen by the first authors, and listed and compared in an excel file. Recoding and categorization 
was done in R software.
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Table A.3. Exposure variables included in the Tobit and logistic regression models and their distribution. Numbers in 
brackets signify the total after imputation.

Country Netherlands Switzerland
Samples, n 105 295
Having a household member exposed to pesticides, n 1 3 (4)
Usage of pesticides in the garden, n 1 (1) 13
Usage of pesticides indoors, n 4 (5) 6 (7)
Usage of pesticides on pets, n 1 5
Usage of pesticides for human use, n 2 (2) 9
Consumption of homegrown foods in summer, n

<10%
10-50%

>50%

88
11
6

274
15
6

Organic consumption of vegetables, n
<10 %

10-50%
>50%

 
47
41
17

  
13
70
212

Organic consumption of bread, n
<10%

10-50%
>50%

88
8
9

73
94
128

Organic consumption of meat, n
<10%

10-50%
>50%

52
15
38

57
67
171

Organic consumption of eggs, n
<10%

10-50%
>50%

50
5
50

32
32
231

Organic consumption of dairy, n
<10%

10-50%
>50%

62
12
31

42
58
195

Organic consumption of rice, n
<10%

10-50%
>50%

68
16
21

68
109
118
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Table A.5. Detected biomarkers through the suspect screening approach (n=37). Only compounds of confidence levels 
(Schymanski score) 1 and 2b are presented. Biomarkers are ordered based on their overall detection frequency. Pesticides 
marked in bold were included in the linear regression models, pesticides underlined were included in the logistic regres-
sion model.

ID
Pesticide 
type1 Parent pesticide

Metabolite found 
in urine ID2 level

Detection 
ratio, % NL

Detection 
ratio, % CH

P2_a I Acetamiprid -CH2 1 98.1 87.5
P18_b I Flonicamid -C2HN 2b 52.4 43.7
P8_a H, GR Chlorpropham +O +SO3 (4-HSA) 1 63.8 39.7
P35_b F Propamocarb +O 2b 47.6 29.5
P34_a I, Ac Pirimiphos-methyl -CH2 1 44.8 19.0
P20 F Fludioxonil +O +C6H8O6 2b 27.6 16.3
P5_a F Boscalid +O +SO3 2b 32.4 12.5
P38_a F Pyrimethanil +O +SO3 2b 31.4 11.5
P19_a H Fluazifop Parent 1 20.0 14.6
P11_a I Clothianidin (can come  

from thiamethoxam)
Parent 1 21.9 12.5

P35_a F Propamocarb Parent 1 18.1 13.2
P13_a F Cyprodinil +O +SO3 2b 21.0 11.2
P40_a F Tebuconazole -2H +2O 2b 20.0 6.8
P28_a I Imidacloprid -NO2 +H 1 4.8 10.5
P11_c I Clothianidin (can come  

from thiamethoxam)
-CH2 2b 5.7 5.1

P19_b H Fluazifop Parent 1 4.8 5.4
P27_a F Imazalil +C6H8O6 2b 6.7 3.4
P9_b I Chlorpyrifos (/methyl) -CH2 1 7.6 2.0
P46_a F Trifloxystrobin -CH2 -CH2 2b 0.0 4.1
P42_a I Thiacloprid +O 2b 1.9 2.4
P21_b F Fluopyram +O +C6H8O6 2b 4.8 1.0
P21_c F Fluopyram -2H 2b 2.9 1.4
P37 H Propyzamide +H2O3 2b 1.0 2.0
P18_a I Flonicamid Parent 1 2.9 0.7
P43_a I Thiamethoxam Parent 1 0.0 1.7
P22_a I Flupyradifurone Parent 1 2.9 0.3
P3_a F Ametoctradin -C2H6 +2O 1 1.0 1.0
P32_a F Penconazole +O +C6H8O6 2b 1.9 0.3
P43_b I Thiamethoxam -NO2 +H 1 0.0 1.0
P21_a F Fluopyram +O +SO3 2b 1.9 0.0
P41_a F Thiabendazole +O +C6H8O6 2b 1.0 0.3
P9_a I Chlorpyrifos (/methyl) TCPy 1 0.0 0.7
P1 H 2,4-D Parent 1 0.0 0.3
P10 H Clopyralid Parent 1 0.0 0.3
P11_b I Clothianidin (can come  

from thiamethoxam)
-NO2 +H 1 0.0 0.3

P25_a I,  Ac Fluvalinate -C14H9NO 2b 0.0 0.3
P38_b F Pyrimethanil +O 2b 1.0 0.0

1.   H: Herbicide, F: Fungicide, I: Insecticide, GR: Plant Growth Regulator, Ac: Acaricide, M: molluscicide, Al: Algicide, Ab: antibac-
terial, Af: antifungal

2. Schymanski confirmation level
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Table A.6. ICCs Netherlands. Correlation between seasons and within individuals for the 12 pesticide biomarkers. 

Pesticide Parent pesticide Mean ICC SD
P2_a Acetamiprid 0.05 0.05
P5_a Boscalid 0.15 0.11
P8_a Chlorpropham 0.28 0.10
P11_a Clothianidin (can come from thiamethoxam) 0.14 0.13
P13_a Cyprodinil 0.09 0.10
P18_b Flonicamid 0.10 0.09
P19_a Fluazifop 0.34 0.17
P20 Fludioxonil 0.25 0.15
P34_a Pirimiphos-methyl 0.23 0.13
P35_b Propamocarb 0.13 0.10
P38_a Pyrimethanil 0.06 0.07
P40_a Tebuconazole 0.31 0.16

For the 3 pesticides acetamiprid, chlorpropham, and flonicamid, detection ratios of the corre-
sponding biomarkers were above 40% in both the Dutch and Swiss study samples (marked in 
bold). Tobit regression was performed on these three compounds. An additional 10 biomark-
ers (underlined) were detected in at least 40 samples (overall detection ratio >10%). These 10 
were included in logistic regression models.
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During daily life, humans are exposed to a plethora of manufactured chemical compounds 
originating from various sources. These exposures can potentially lead to an almost infinite 
number of co-occurring compounds. All these possible combinations simply cannot be 
covered by single chemical (or: chemical family) risk assessment approaches. The assessment 
of chemical mixtures is one of the major current challenges in environmental epidemiology 
(Price et al., 2022; Taylor et al., 2016; Vermeulen et al., 2020a). Part of this challenge is how to 
accurately measure real-life chemical mixtures. This thesis contributes to the existing knowl-
edge by applying several approaches to identify chemical mixtures in the general population. 
These approaches can be distinguished by, i) visualization technique to describe co-exposure 
of chemicals in mixtures, ii) measuring real-life chemical mixtures at the individual level, and iii) 
applying a novel analytical suspect screening (SS) approach. The first part of the thesis is con-
centrated on a visualization technique, applied to existing human biomonitoring (HBM) data. 
By visualizing co-occurring compounds in correlation networks, clusters of exposure markers 
(chemical mixtures) were identified. The second part describes the application of the second 
and third approaches to pesticide mixtures, involving the measurement of pesticide mixtures 
at the individual level and employing a SS approach. Together, these three approaches aim to 
demonstrate the feasibility of assessing real-life chemical mixtures at the individual level in 
the general population.
The key messages of this thesis are:

• Graphical correlation network analysis enables the visualization of mixture patterns in 
HBM data, facilitating the identification of clusters of closely related biomarkers within 
these networks. Additionally, the role of factors influencing the clusters can be explored 
through covariate analysis.

• Personal exposure assessment, using HBM and personal samplers, such as silicone 
wristbands, effectively identifies co-occurrence patterns of pesticide mixtures at the 
individual level.

• A harmonized SS approach provides the opportunity to efficiently detect a wide range 
of pesticides within a pan-European HBM study.

In this chapter, the results of the three approaches to identify chemical mixtures are discussed, 
along with their applicability, limitations and alternative methods. Lessons learned from the 
research conducted in this thesis are presented, followed by a discussion on the interpreta-
tion and relevance of chemical mixtures, implications for mixture risk assessment, and future 
research opportunities. The author’s perspective on the next steps in this challenging field will 
also be provided.

Visualization of chemical mixtures - Main findings
When describing exposure to chemical mixtures, one of the challenges lies in identifying 
co-occurrence patterns among the different chemicals. In chapter 2 we presented a possible 
solution to address this issue: a correlation network approach that visualizes the chemical 
mixtures present in the data. This approach was applied on HBM samples obtained during 
three measurement campaigns conducted in Flanders, Belgium. Among these campaigns, 
the one with the most comprehensive data included measurements of 19 organic pollutants 
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and metals in cord blood samples collected from 281 children at birth (FLEHS III). Graphical 
correlation networks were used to describe dependence between multiple chemicals, pro-
viding a data-driven and intuitive way to identify correlated biomarkers. The identification of 
groups of highly connected biomarkers, “communities”, within these networks highlighted 
which biomarkers should be considered collectively in the analysis and interpretation of epi-
demiological studies or the design of toxicological mixture studies. In chapter 2, we observed 
how biomarker networks and its communities changed across the three sampling campaigns, 
between smoking status during pregnancy, and between high and low maternal pre-preg-
nancy BMI. As expected, FLEHS III revealed communities consisting of similar chemical struc-
tures such as PCBs and PFASs. Additionally, a community emerged involving the metals Mn, Cu 
and Cd. Notably, p,p’-DDE (a metabolite of DDT) clustered together with the PCB community, 
both persistent organochlorines, highlighting the importance of considering them jointly 
when assessing potential risks (Longnecker et al., 1997; van den Berg et al., 2017). Comparisons 
of networks across covariates, such as stratification by smoking status or BMI, showed minor 
differences in network and community structure. 

In chapter 3, the same network approach was applied to four HBM datasets from 
Belgium, Czech Republic, Germany and Spain. This chapter also addressed some methodo-
logical aspects such as a comparison of different approaches to correct for creatinine in urine 
samples and a comparison of unweighted and weighted networks. From the Belgium 3xG 
study 125 mother-child pairs were included, with measurements of 36 different biomarkers 
in maternal blood, cord blood, cord blood plasma, or morning urine. The resulting network 
revealed nine communities, two of which consisted of chemicals from different families, while 
the metals formed three separate communities. The seven within chemical family commu-
nities mostly reflected samples from the same biological medium. From the Czech FIREexpo 
study 52 firefighters were included, in which 16 different biomarkers were measured in serum 
and urine. Four communities were identified in the resulting network, and one of them 
demonstrated a cross chemical family link between PFBS and 4-PHEN. From the German GerES 
V cohort, 515 participants aged 3 to 17 years were selected, with measurements of 51 different 
biomarkers in first morning void urine. In the resulting network, we identified ten commu-
nities, two of which did not exclusively represent the same chemical family. Lastly, from the 
Spanish BIOAMBIENT study 163 participants were selected with 31 different biomarkers meas-
ured in morning void urine or blood. The resulting network comprised six communities, of 
which half did have links across chemical families. An example was the connection between 
lead and DiBP (phthalate) metabolites. Overall, this was the first, to our knowledge, applica-
tion of a harmonized and standardized (shared script) network approach on multiple datasets 
from different countries, incorporating a substantial number of biomarkers and individuals. 
Utilizing existing HBM datasets allowed us to conduct an initial exploration of co-occurrence 
of substances within the human body. The application of community detection was useful 
in identifying patterns within and between chemical families. It is important to note that the 
overlap between biomarkers measured in the different studies was limited, and networks 
were only applied on non-harmonized data (exposure markers and covariates) as each study 
was analyzed separately due to privacy regulations. Consequently, the observed differences 
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between study, such as the variations in phthalate communities between Germany and Spain 
(split into seven and four communities respectively), may be attributed to differences in study 
populations, design, chemical analytical procedures and actual exposure differences.

In chapter 2 and 3 the communities identified within the networks provided an initial 
insight into the patterns of chemical mixtures present in the data. It is plausible that these 
communities reflect shared sources, routes of exposure, or physiochemical properties among 
the biomarkers. For instance, both PCBs and DDT can be ingested through diet. In chapter 2, 
the comparative network analysis conducted by stratifying the data based on covariates such 
as education level, age, BMI did show promise, with changing community structures for some 
of the stratifications. This comparative approach, holds potential for future investigations to 
identify specific sets of covariates that influences the community structures. Such findings 
could then be translated to action perspectives, such as making adaptations in diet or other 
lifestyle factors based on the identified differences. 

In chapter 3 HBM samples from different media were included, both blood and urine 
samples. Based on the Belgium data, we could see that metals detected in the urine of the 
mother were highly related to metals in the cord blood of their baby, which is in line with pre-
vious studies on migration of metals through the placenta to the fetus (Rísová, 2019; Vahter, 
2008). For chemicals measured in urine, a standardization for creatine content was performed 
to account for the level of dilution and to allow for a better comparison with the biomark-
ers measured in blood. Comparing creatinine adjusted and non-adjusted networks for the 
German data, the non-adjusted network resulted in more spurious results (more false-positive 
edges), indicating the need to harmonize the creatinine adjustments across studies. Different 
creatinine adjustment procedures yielded similar results.

In chapters 2 and 3, networks were presented with both unweighted and weighted 
edges. The inclusion of weighted edges provided a more detailed understanding of the 
level of dependency (thickness of the edge) and the direction (positive or negative, by colors 
green or red) between biomarkers. While the same regularization method was used for both 
network types, some differences were observed. The weighted approach tended to capture 
more connections between biomarkers, as indicated by the presence of thin lines Moreover, 
the detected communities differed even more between both network types, as the clustering 
algorithm was applied to the final optimized network (first the network was estimated, then 
the communities were derived). It is important to acknowledge that the weighted approach 
enhanced interpretability for the datasets presented in chapters 2 and 3. In (future) high-di-
mensional HBM datasets, for example generated with SS, weighted networks are likely too 
computationally intensive and visually challenging to interpret. In such cases, unweighted 
networks would be preferable.

Compare our findings with existing literature is a challenge, as the application of corre-
lation networks on datasets based on biomarkers of chemical exposure is still rather novel. 
In other scientific fields, network approaches are more commonly used, for example in cell 
biology (Schwikowski et al., 2000), metabolomics (Gauglitz et al., 2020) and psychology 
(Epskamp et al., 2018). An exception on HBM data is based on six birth cohort studies in Europe 
(the HELIX project), where network analysis was performed based on the within-cohort cor-
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relation matrix (Tamayo-Uria et al., 2019). The actual correlations were used to determine the 
network structure and no regularization (as used in chapters 2 and 3) was applied. These net-
works of Tamayo-Uria et al. detected clusters of e.g. outdoor variables and PFASs with organ-
ochlorine compounds (Tamayo-Uria et al., 2019), while certain metals were not connected to 
other exposures, the latter being similar to the findings in chapters 2 and 3.

Visualization of chemical mixtures - Applicability and limitations
With the application of network analysis, I aimed to propose an easy to implement method 
to visualize prevalent chemical mixtures in HBM data. Visualizing chemical mixtures helps 
to better understand which chemicals are more closely related to each other, which can be 
explained by a commonality in source, exposure route or physiochemical properties in the 
human body. Detecting chemicals with a commonality, for example in source, could assist 
in performing more accurate risk assessments on those compounds that occur together in 
real-life. 

Current methods for visualizing chemical mixtures in population-based HBM data include 
heatmaps, circos plots, and dendrograms. Heatmaps and circos plots display the correlation 
or partial correlation structure of compounds, with compounds ordered on the axes by the 
researcher’s choice. The choice of axis order has a major impact on the ability to visually dis-
tinguish groups of more correlated chemicals. In circos plots, a manual threshold can be set to 
show only the most prominent links between chemicals, improving interpretability. However, 
this threshold must be manually determined and impacts the interpretation largely. Adding 
a dendrogram to heatmaps or circos plots helps to assess similarity between chemicals. The 
most commonly used methods to determine the optimal number of clusters are k-means or 
agglomerative clustering, which require prior decisions on the ideal number of clusters. The 
non-supervised network approach presented in chapters 2 and 3 addresses these limitations 
by plotting chemicals in a network based on their dependency to others. By application of 
data-driven variable selection and a clustering algorithm the optimal number of clusters can 
be identified. In the data structure exploration phase, networks can complement heatmaps 
and circos plots. Networks are also valuable for detecting changes between datasets or within 
subsets of a dataset, such as different time points, smoking status or the use of specific prod-
ucts. The comparisons can potentially direct to previously unexplored links between chemical 
combinations (in certain subpopulations). 

While this thesis has demonstrated the value of correlation networks in the field of HBM, 
it is important to note that networks are not a quick fix and there are some critical considera-
tions and potential areas for improvement based on recent developments. The construction 
of networks relies on certain assumptions about the input data. Similar to other non-super-
vised statistical methods, the quality and construction of the input data impacts the correla-
tion network structure. Presence of clear outliers, measurement errors, poor normalization, 
and batch effects can influence the network results (Santos et al., 2020). It is worth noting 
that networks become less unreliable or unstable with small sample sizes (<200) and a limited 
number of variables (<20, only when based on the partial correlation) (Epskamp et al., 2018). 
Furthermore, the dependency between two chemicals within a network is impacted by the 
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presence of other compounds included in the dataset, making it challenging to compare net-
works across studies, especially when different sets of chemicals are included.

During network estimation inducing sparsity is crucial to improve interpretability. Differ-
ent methods to estimate sparsity can be chosen, such as the regularized nodewise regression 
of Meinshausen and Buhlmann (Meinshausen et al., 2006), or the graphical lasso (Glasso) by 
Friedman et al. (Friedman et al., 2008). In chapters 2 and 3 the Glasso method was used, which 
simultaneously performs variable selection and estimation, resulting in a sparse graphical 
network. It should be noted that there is no one-size-fits-all approach, and choice of network 
estimation highly depends on the specific characteristics and structure of the data. The esti-
mation of the true network can be challenging and there is a risk of both false-positive and 
false-negative edges. A proposed suggestion to control for false-positives as by Lafit et al. 
(Lafit et al., 2019), where correlations below a given threshold are set to zero, could be consid-
ered for future purposes, specifically when dealing with high-dimensional data. Also, recent 
advances in stability selection (based on resampling) as presented by Petrovic et al. (Petrovic 
et al., 2022) could be considered.

Exciting new developments in network modelling have taken place in the past couple 
years, offering potential improvements and alternative approaches for future research. Here, 
I discuss some of these considerations. First, the clustering algorithm walktrap used in this 
thesis detects biomarker sets with stronger connections within the set compared to outside 
(Fortunato, 2010; Pons et al., 2005). However, in the context of HBM mixtures, sometimes 
overlapping clusters may be more realistic. For instance when the research question relates 
to identifying different sources of exposure, such as pesticide exposure through both con-
sumer use and diet. In such cases, fuzzy or overlapping clusters (such as the Clique Perculation 
Method (Palla et al., 2005)) would be more suitable to address this research question. In this 
thesis only non-overlapping clustering was applied, as the aim was to describe the co-occur-
rence, not related to source-identification. Second, the comparative network analysis in chap-
ters 2 and 3 was based on the presence or absence of edges. Alternative approaches, such 
as cluster-based comparisons or dynamic clustering (how clusters evolve over time periods) 
could be promising to address HBM mixture research questions (Palla et al., 2007). Third, it 
should be mentioned that many other methods are available to describe mixtures in HBM 
data, many complementary to network models. These methods can be categorized based on 
a description of the correlation structure (among which networks), of the dimensionality and 
of the variability (Santos et al., 2020). Unsupervised dimension reduction techniques, such as 
principal component analysis, factor analysis and sparse non-negative matrix underapproxi-
mation capture the variability of the dataset in a manageable number of variables (Gillis et al., 
2013; Kalia et al., 2020). Furthermore, a recent study proposed a combination of networks with 
dimension reduction called graphical lasso-guided iterative principal component analysis 
(Harakawa et al., 2022), which removes trends with indirect correlations generated by other 
essential trends. This proposed methodology is especially interesting when looking into time 
trends of chemical mixtures. 
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Measuring pesticide mixtures at individual level - Main findings
When addressing exposure to chemical mixtures, individual measures are necessary to deter-
mine the frequency and magnitude of chemical mixtures, these measurements can either be 
external (active or passive) or internal. In large population-based studies passive sampling is 
often preferred, mostly due to practical constraints. Personal passive samplers, such as silicone 
wristbands as described in chapter 4, can effectively assess personal exposure to chemical 
mixtures over extended periods. Chapter 4 focused on pesticide exposure among 19 resi-
dents living close to flower bulb fields in the Netherlands, as add-on to the existing pesticide 
exposure study OBO (Figueiredo et al., 2021). In the wristbands in chapter 4, out of 46 meas-
ured pesticides, 31 were detected. The overlap in detected pesticides between individuals 
was minimal, with only three pesticides detected in all wristbands (azoxystrobin, pymetrozine, 
carbendazim). Similar individual exposure profiles were detected in other wristband exposure 
studies (Dixon et al., 2019; Fuhrimann et al., 2022). Of the 31 measured pesticides, eight were 
not registered for use on flower bulb fields, and two were registered for use on flower bulb 
fields but were not recorded as being used during the study. Vacuumed floor dust samples 
were collected from participants’ homes before and after wearing the wristbands, but no clear 
patterns emerged in the comparisons between the two measurement types. 

In addition to external measures, internal measurements are informative in collecting 
the individual-level mixture exposure. Internal measures, also known as HBM, can be very 
time and labor intensive, invasive, and have typically higher costs, specifically when com-
pared to passive external measures. Despite these challenges, we were able to collect HBM 
samples to measure pesticide mixtures for 1,345 participants in six countries across Europe 
as part of the European initiative HBM4EU. This study, SPECIMEn (Survey of Pesticide Mixtures 
in Europe), focused on the internal exposure assessment by pesticide biomarkers in urine, 
aimed to provide a comprehensive and integrated picture of human exposure to pesticide 
mixtures across various sources and pathways. In chapters 5 and 6 urinary first morning void 
samples were collected from adults and children, in agricultural (< 250m from agricultural 
land) and non-agricultural (> 500m) residential areas, in six countries across Europe (Neth-
erlands, Switzerland, Hungary, Czech Republic, Spain, Latvia), during two seasons. The hot-
spot-seasonal based design aimed to detect different levels of pesticide exposure related to 
e.g. spraying activities of a neighboring field during growing season. The application of a SS 
approach resulted in a qualitative assessment of a large number of pesticides detected across 
all different countries (chapter 5). Contrary to the hypothesis, the number of detects was not 
consistently higher among hotspot locations, and during spraying season (summer/autumn 
depending on the country). The number of detected pesticides was higher in samples from 
children compared to adults, likely due to their higher dietary pesticide intake per kg body 
mass. Analysis of co-occurrence showed that in 84% of the samples at least two different pes-
ticides were detected, with a maximum of 13 pesticides detected in a single urine sample. Fre-
quently detected specific combinations of pesticides consisted of acetamiprid-chlorpropham 
(62 samples) and acetamiprid-tebuconazole (30 samples). Acetamiprid with pirimiphos-methyl 
was the only combination found in all five study sites. Also, assessment of the co-occurrence 
patterns at country level (network analysis), did not result in strong relations and hardly any 
overlap across countries was seen.
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Chapter 6 builds upon the data from the Netherlands and Switzerland, measured at the same 
laboratory, aiming to identify sources of exposure through construction of censored linear 
models. We found that the most frequently detected pesticides, namely acetamiprid and 
chlorpropham, were reduced in individuals with a high consumption of organic fruits and veg-
etables, which aligns to previous studies on these compounds (Hyland et al., 2019; Rempelos 
et al., 2022; Ye et al., 2015; Zhang et al., 2022). The indication of dietary exposure as the main 
source could explain the lack of differences observed in location and season in chapter  5. 
However, to precisely determine additional exposure through inhalation of outdoor air or con-
taminated house dust, a more in-depth analysis focused on pesticide-specific factors would 
be required.

The two applied measurement approaches (wristbands and HBM) were applied in dif-
ferent study designs, locations and time periods. However, when focusing on data from the 
Netherlands, there was some overlap in detected pesticides. A total of 14 pesticides were 
detected with both methods, of which 11 were confirmed with high levels of confidence in 
the urine samples. Chlorpropham was the most frequently detected pesticide, being found in 
95% of the wristbands and 75% of the urine samples. The frequent detection of chlorpropham 
in the wristbands indicates not only dietary exposure but also exposure through inhalation. 
Acetamiprid was frequently detected in urine (93%) but in just 26% of the wristbands, likely 
indicating dietary exposure as the primary route. Boscalid and fludioxonil were detected 
in over 90% of the wristbands, but in just 33% and 27% of the urine samples, respectively. 
The short half-lives in soil of boscalid and fludioxonil (less than 2 weeks), may indicate infre-
quent exposure or exposure that did not occur around the time of urine collection for most 
participants. Although chapters 4 and 5 had a different focus in study design (flower bulb 
fields versus apple and pear orchards) and data were collected in different years, the overlap 
in detected pesticides suggests airborne or direct physical contact exposure to those com-
pounds in addition to dietary exposure.

Measuring pesticide mixtures at individual level - Applicability and limitations
With the application of personal measures as silicone wristbands and HBM the mixture of 
exposure at individual level was assessed, reflecting individual differences for example due to 
lifestyle. However, to fully capture the variability of mixtures present in the population, larger 
sample sizes and advanced modelling would be required. Moreover, to assess the determi-
nants of individual pesticide mixture exposure, more detailed information on dietary intake 
and pesticide levels in and around the residences will be needed.

Wristbands are a relatively new (first described in 2014) measurement technique, and val-
idation with HBM samples and other external exposure samplers is still ongoing (Hou et al., 
2021; Samon et al., 2022; Wacławik et al., 2022a). These passive and low-impact samplers allow 
for longer timeframes of measurement and can detect a wide array of compounds using tar-
geted or non-targeted high-resolution approaches (Bergmann et al., 2018; Travis et al., 2021). 
They provide insights into the chemical mixture to which an individual is exposed over time 
through air or direct physical contact (Samon et al., 2022; Wacławik et al., 2022b). Wristbands 
are easy to implement, have low burden, and are cost-effective. It’s important to note that 
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wristbands represent time-weighted averages rather than episodic concentrations (Samon 
et al., 2022). In chapter 4, wristbands were worn for an average of 60 days, which is longer 
than the usual one to seven-day period (Hamzai et al., 2022a). This extended wearing period 
increases the potential of reaching equilibrium for compounds to which the wearer is repeat-
edly exposed (O’Connell et al., 2014; Samon et al., 2022). However, less frequent exposures 
may not remain stable in the wristbands for the entire 60-day duration (up to 7 days for some 
VOCs, and up to 30 days for SVOCs). Wristbands are able of sampling dermal exposure (both 
vapor phase compounds and compounds on the skin), as well as airborne exposure (capturing 
the portion of VOCs and SVOCs that can be inhaled, although particle exposure capture is still 
uncertain) (O’Connell et al., 2014; Samon et al., 2022). An alternative to silicone wristbands is for 
example Fresh Air wristbands, which focus on capturing NO2, VOCs, and PAHs. Incorporated 
in the Fresh Air bands are an triethanolamine-coated pad besides a polydimethylsiloxane 
sorbent bar, together able to capture non-direct exposure from ambient air. These could be 
considered in research settings focused on for example longitudinal air pollutant exposure 
(Lin et al., 2020).

HBM is commonly applied to measure aggregated exposure, reflecting internal concen-
trations originating from different routes of exposure. In the case of pesticide mixtures, HBM 
reflects ingestion, dermal exposure and airborne exposure. Insights into the actual internal 
concentrations of chemicals is crucial for accurate risk assessment. The application of SS (see 
next paragraph) to HBM samples allows for the measurement of larger sets of pesticides in a 
single sample, although efforts to quantify these compounds still need further development. 
It should be noted that HBM samples are highly impacted by inter- and intra-individual varia-
bility which challenge the interpretation of differences across population, this variability can 
be caused by for example metabolism rate, toxicokinetics, timing of exposure, timing of sam-
pling, and body mass index (Aylward et al., 2014a; Koch et al., 2014). Additionally, urinary flow is 
known to be variable and influenced by many short-term (e.g. hydration status) and long-term 
parameters such as age and BMI (Aylward et al., 2014b; Wacławik et al., 2022a). These aspects 
often result in a large day-to-day variation, particularly for short-lived compounds. Repeated 
samples would be preferred, although this is not always possible due to practical limitations. 
A possible solution would be to analyze pooled samples, for example from an entire week 
(Perrier et al., 2016; Vernet et al., 2018). Although from a mixture perspective, the analysis of 
individual samples would be preferred to not underestimate (for example by dilution when 
pooling) the mixture of exposure.

Silicone wristbands and HBM samples offer complementary advantages and disadvan-
tages. Wristbands pose a lower participant burden and can be employed over longer periods, 
but lack health-based guidance values. HBM samples reflect internal concentrations and 
provide an accurate assessment of multiple compounds at a single timepoint, allowing for 
comparison with existing data. 

The comparison of wristbands with HBM samples is limited by differences in exposure 
route reflection (wristbands only capture dermal and inhalation exposure). Correlation 
between wristbands and urine samples may be impacted by factors as timing of urine sample, 
use of pooled or spot urine samples, correction of urinary metabolites for creatinine, timing 
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of wristband application, and whether the chemical of concern reached equilibrium in the 
wristband (Samon et al., 2022). As a result, variable correlations between the two methods 
have been reported in the literature (Hamzai et al., 2022b; Samon et al., 2022; Wacławik et al., 
2022a). It can be hypothesized that the correlation between wristbands and HBM samples 
would be highest in occupational settings where the ingestion route is minimal compared 
to dermal and inhalation exposure routes, this hypothesis was confirmed for phthalate esters 
exposure among nail salon workers (Craig et al., 2019).

Application of an analytical screening approach on pesticide mixtures - Main findings
When analyzing exposure to multiple chemicals in HBM samples, measurements are limited 
by known measurable exposure biomarkers with established (targeted) methods, the sample 
volume, and costs of analyses. Besides, these targeted measures need to be standardized 
to provide a reliable and reproducible quantitative exposure estimate. The characterization 
of the total real-life mixture exposure would require an increase of detection of biomarkers 
measured in a single sample in an efficient and effective manner. SS is based on liquid chroma-
tography coupled with high-resolution mass spectrometry (LC-HRMS) and aims to generate a 
list of semi-quantitative annotations present in a sample set (Huber et al., 2022; Pourchet et 
al., 2020). SS enables detection of a large set of chemicals in a single sample, which is of great 
value for mixture exposure assessments. SS approaches have only been applied in a handful 
of HBM studies before, for example in the US by Pellizzari et al. (Pellizzari et al., 2019) and Wang 
et al. (Wang et al., 2018), gaining insight in chemicals not covered by targeted approaches. In 
chapters 5 and 6 a pesticide SS approach was conducted on 2,383 collected urine samples 
from 1,345 participants across Europe (SPECIMEn study), performed in five laboratories. The 
main challenge for this SS approach is the harmonization across all laboratories of the i) sample 
preparation, ii) QA/QC provisions and criteria, and iii) data processing (Huber et al., 2022; Vitale 
et al., 2022). Novel in this study was the aggregation of previously curated proprietary suspect 
lists of pesticides and their metabolites among the five laboratories, which was made public 
with the publication (Huber et al., 2022). In total 498 tentative annotations were achieved (11% 
of the aggregated suspect list) (Huber et al., 2022), of which 40 pesticide biomarkers were 
confirmed with high levels of confidence (Schymanski scores 1 and 2b) and 54 with lower con-
fidence levels (Schymanski levels 3-5) (Schymanski et al., 2014). The 40 high-confidence level 
biomarkers were used for analysis in chapters 5 and 6. These 40 related to a total of 29 parent 
pesticides and had generally low detection rates (<25% of the samples). The most frequently 
detected parent pesticides at all study sites were acetamiprid and chlorpropham.

Application of an analytical screening approach on pesticide mixtures - Applicability 
and limitations
The application of the SS approach on the HBM samples as described in chapters 5 and 6, pro-
vided a total of 40 detected pesticide biomarkers. This number is significantly larger compared 
to targeted studies, where typically a handful of biomarkers is measured. The advantages of 
SS over targeted methods are among others, a smaller sample volume needed (mg-mL range 
instead of g-mL range), quick simple non-selective extraction, and no or very limited purifica-
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tion needed; this preserves sample integrity, limits sample preparation related variability and 
facilitates interlaboratory harmonization (Pourchet et al., 2020). Other advantages of SS are the 
higher number of compounds detected and the high-throughput capability, although at the 
cost of a lack of quantification, higher limits of detection, susceptibility to matrix effects and 
limited method repeatability.

In the application of SS on the SPECIMEn study (chapter 5), only biomarker identities 
(qualitative) and their detection rates could be compared across countries; across samples 
measured within the same laboratory, signal intensity could be used as a semi-quantitative 
measure as the concentration is proportional to the peak intensity (chapter 6). The five labo-
ratories involved used harmonized methods in which the hardware was relatively compara-
ble, but differences in sensitivity did occur (Huber et al., 2022; Vitale et al., 2022). Quantitative 
signal intensities (for only the ‘unambiguously’ identified biomarkers) were not standardized 
and harmonized across the laboratories, and could only be looked at from a within-laboratory 
perspective. Future efforts are needed to standardize between the laboratories. The lack of 
quantitative exposure data is a major restraint compared to targeted exposure studies, where 
patterns in exposure markers could be compared quantitatively. The data produced in the 
SPECIMEn study did provide a first glimpse of the potential overall exposure and can guide 
the prioritization of pesticide (metabolites) to be included as biomarkers in targeted methods.

Lessons learnt from the real-life example: pesticide mixtures
Based on the pesticide mixture characterization in the second part of my thesis, some lessons 
learnt specifically related to pesticide mixtures could be drawn.

First, setting up a harmonized pan-European pesticide mixture exposure study in six 
countries was challenging. Finding one overlapping crop in all countries was nearly impossible 
among others due to differences in climate. Additionally, spraying and non-spraying seasons 
for the selected set of crops (orchards, olive trees, citrus trees) varied between countries, par-
ticularly between Northern and Southern Europe. Moreover, active spraying periods varied 
per pesticide, and the spraying season of some pesticides, applied during e.g. planting instead 
of growing, could have been missed with the current study design. The use of SS eliminated 
the need for prior selection of pesticides, allowing for a harmonized exposure assessment 
across all countries without relying on specific sets of pesticides. At the time of collection, the 
SPECIMEn dataset was unique by its harmonized sampling collection and handling protocol, 
the harmonized laboratory analysis, and its scale, a total of 2,383 urine samples across Europe. 
Although a current European collaborative effort (the SPRINT project), within which large 
numbers of external and internal samples are collected, is exceeding this scale. 

Second, out of the 40 pesticide biomarkers detected with high confidence, only a small 
number were detected within a substantial number of individuals. While it is known that SS 
is generally less sensitive compared to targeted approaches (Bonvallot et al., 2021; Pourchet 
et al., 2020), this likely only partially explains the observed low detection rates. Other factors 
that could contribute to low detection rates include limitations in the study design (seasonal 
sampling with only one sample per season), or simply low pesticide exposure in the study 
populations. A previous study by Bonvallot et al. showed less sensitivity of SS specifically for 
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highly polar low molecular-weight metabolites compared to targeted approaches; overall a 
target LOD below 1 μg/L was found and an estimated SS LOD of 200 μg/L (Bonvallot et al., 
2021). When comparing the SS data with targeted pyrethroid measures in a subset of SPECI-
MEn participants (Dutch children, Tarazona et al., 2022), the metabolite DCCA (associated with 
cypermethrin, cyfluthrin, permethrin, transfluthrin) was the only overlapping pesticide. DCCA 
was not detected using SS in Dutch children, while it was found in 197 out of 207 samples 
using the targeted approach.

Third, the co-occurrence of pesticides detected by SS in the SPECIMEn study within indi-
vidual urine samples was low, with most samples containing a small number of co-occurring 
parent pesticides (ranging from two to five). The intraclass correlation coefficients, a measure 
of within- and between-person variability, based on the Dutch data, were low (< 0.3) for the 
12 most frequently detected pesticides (chapter 6). In 84% of the samples at least two dif-
ferent parent pesticides were detected, indicating the presence of combined exposures. The 
most frequent combination (acetamiprid with chlorpropham) occurred in only 3% of the total 
samples. Additionally, network analyses conducted at country level showed minimal overlap 
between countries. These findings suggest that pesticide mixtures are highly individual-spe-
cific, location-specific and time-specific. However, the used analytical approach (SS) and study 
design might have underestimated the detected pesticide mixture.

Fourth, in chapter 6 we explored potential sources of pesticide exposure based on urine 
samples from the Netherlands and Switzerland. Considering the overall results of the SPEC-
IMEn study, no seasonal differences were observed and only a small number of biomarkers 
was detected at high rates. For the two most frequently detected pesticides (acetamiprid and 
chlorpropham metabolites) it was found that high consumption of organic fruit and vegeta-
bles reduced the levels of exposure. Due to limitations in collected exposure source data and 
the low detection rates of biomarkers, further exploration of this finding was not possible. 

Interpretation and relevance of mixtures
Mixture exposure is gaining increasing attention on scientific, societal and political agendas, 
due to a growing awareness of complex interrelationships between compounds. Mainly, there 
are growing concerns about the health effects of exposure to multiple compounds, even at 
low doses, as the additive dose of all compounds together could potentially result in adverse 
effects. Policy-makers are particularly interested in addressing the regulatory challenges asso-
ciated with assessing risks linked to exposure to mixtures (Savitz. et al., 2023). The scientific 
interest in mixtures lies in a more accurate description of total exposure and their associated 
risk assessments (Lesliam et al., 2023). The research presented in this thesis also adds to the 
expanding field of exposome science, which encompasses all environmental exposures, 
including diet, consumer products and lifestyle factors (Vermeulen, 2022; Vermeulen et al., 
2020b; Wild, 2005, 2012). 

Exposure assessment of real-life mixtures
Based on current practice, a chemical mixture is defined by the specific focus and width of 
exposure measurements. Different measurement approaches may yield varying representa-
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tions of the mixture. To accurately describe a chemical mixture, it is preferable to measure a 
wide range of chemicals uniformly. Besides, the sharing of individual-level data is preferred 
for detecting mixture patterns in the datasets. Currently, the overlap in HBM datasets across 
Europe is limited (both in terms of measured biomarkers, as in study characteristics), and factors 
such as privacy regulations hinder easy data sharing. The HBM4EU initiative aimed to establish 
a harmonized HBM database, but due to practical constraints this was limited to summary 
statistics of a preselected set of priority chemicals (Ougier et al., 2021). Moving forward, estab-
lishing a clear agreement on data collection and sharing at the European level would be highly 
beneficial. In terms of data collection, adopting a mixture perspective that encompasses mul-
tiple chemical families would be preferable. This agreement should outline the minimal level 
of information to be shared regarding the performed chemical analysis and co-occurrence of 
chemicals in the data. Publishing at least a correlation matrix, including potential variations in 
subpopulations, would advance the field of mixture exposure assessment.

Besides harmonized collection and sharing of exposure data, the use of SS approaches 
can efficiently expand the coverage of biomarkers per sample, accommodating the increasing 
number of chemicals on the market, including rapidly produced homologous compounds. A 
current major drawback of SS is the lack of quantitative exposure concentrations for detected 
biomarkers between laboratories, which hampers their integration in risk assessment efforts. 
Currently, quantitative interpretations of SS data mainly rely on relative comparisons, assum-
ing linear relationships between instrument response and concentration (McCord et al., 
2022a). Recently, advances in quantitative non-target analysis have shown promise in support-
ing risk-based decisions, such as quantification by a surrogate standard or response modeling 
based on chemical structure (McCord et al., 2022b). Efforts to standardize and quantify the 
SPECIMEn data will be the next step forward. To accurately assess the mixture risks to human 
health, insights in co-occurring compounds only will not be sufficient and actual exposure 
concentrations plus their level of toxicity should be considered as well. For example, if a strong 
correlation is observed between two biomarkers in a network, but their individual toxicity 
estimates are low, their contribution to the overall mixture risk would be minimal.

The timing of sampling largely impacts the detected mixture, especially for short-lived 
and rapidly metabolized compounds. In this thesis, the focus was on the combination of com-
pounds measured in a single sample. For the HBM samples this also meant exposure charac-
terization at a single point in time, possibly overlooking exposures of short-lived compounds 
with non-frequent exposures. Short-lived compounds can only be detected in the short to 
medium term (few days), e.g. after dietary consumption, or pesticide application. On the other 
hand, some long-lived compounds can accumulate in the body and be detected even after a 
drop in exposure. Understanding the differences between protracted and sequential expo-
sures and their behavior in the overall mixture requires more knowledge on the stability of 
biomarkers. The use of different complementary measurement methods, such as HBM with 
silicone wristbands, can assist in detecting (pesticide) mixtures over a certain period of time 
without a substantial increase in participant burden.
Furthermore, it is worth noting that modelling exposure scenarios can help address the current 
gaps in available monitoring data and improve the focus of new monitoring campaigns in 
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terms of time and space. Examples of these exposure models are spatial models, dietary expo-
sure models, and consumer use models.

Mixture Risk Assessment
To interpret chemical mixtures on their potential adverse effects to human health, various 
efforts have been published. The toxicological effect of mixtures is a debated topic in liter-
ature and of great interest to policy makers. Mixture risk assessment is specifically not the 
focus of this thesis, in fact it could result to another complementary thesis. Nevertheless, I will 
present here some MRA approaches that I think are relevant in the scope of this work. 
Once a mixture of exposure has been characterized, the question arises what the functional 
or relevant real-life mixture is (Vermeulen et al., 2020b). A relevant mixture can include com-
pounds that act together and share similar chemical structures, indicating a similar mode of 
action. In the context of HBM data, a common approach for risk assessment is to compare bio-
marker levels with existing health-based guidance or limit values (when available), resulting 
in a hazard quotient. For mixtures, the hazard quotients are summed to derive a composite 
hazard index.
The study by Loh et al. applied a toxicity weighing method on the communities identified 
in the GerES networks, as presented in chapter 3 (Loh et al., 2023). For this a biomonitoring 
hazard index was developed by summing hazard quotients, where each biomarker concentra-
tion was weighted (divided) by its associated HBM health-based guidance value (HBM-HBGV). 
However, this approach was limited by the availability of HBGVs for only 17 out of 51 sub-
stances, which greatly restricts its applicability. Also, this approach did not consider common-
ality in mode of action or health outcomes, leading to a relatively conservative assessment by 
simply summing risks per community. Furthermore, as the complexity of mixtures increase, 
for example with higher dimensional data, the HBGV approach becomes less applicable due 
to the lack of HBGVs and the fact that more compounds will always result in a higher sum and 
therefore higher risk.

Other available risk assessment approaches are taking a shared mechanism or target 
organ as starting point, however most are also limited by a lack of available guidance values. 
A recent example is the assessment of PFAS mixtures by Bil et al. which employed the Relative 
potency factor (RPF) approach, the Hazard Index approach (HI) and the sum value approach 
of EFSA (Bil et al., 2023). The HI approach resulted in the highest risk estimates (most conserva-
tive), followed by the RPF approach that considered differential potencies, and the sum value 
approach based on a limited set of PFAS with available HBGVs. Another approach suggested 
grouping based on toxic effects in six target organs or systems (CAGs), also allowing a tiered 
risk assessment (Boberg et al., 2019, 2021). 

In the context of legislative settings, the European Regulation REACH is considering the 
application of generic factors (Mustafa et al., 2023). For instance, the Mixture Allocation Factor 
(MAF) of 5 is proposed by ECHA to account for potential mixture risks for chemicals produced 
above a certain tonnage limit. This generic factor assumes higher and more widespread expo-
sure, resulting in a potentially higher risk for the entire population, although it lacks data-
driven, evidence-based specificity. An alternative could be the use of a data-driven mixture 
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driver factor (MDF) for each chemical class/family separately, within which chemicals that are 
the main driver of the mixture effect for a specific adverse effect are assigned with an addi-
tional factor (Mustafa et al., 2023). It should be noted that the use of generic factors like MAF 
or MDF may be overly conservative, as not all compounds exhibit commonalities in mode of 
action or adverse outcome pathways, and may have different co-occurring exposure patterns.

Future research opportunities and author perspective
Exposure characterization of real-life chemical mixtures remains a scientific and regulatory 
challenge. Despite the growing attention for chemical mixtures in literature, integrating the 
results of mixture related studies into legislation is challenging. One of the challenges is that 
legislation per chemical class is regulated in separate regulatory silos, whereas chemical mix-
tures in real-life exceed the borders of these silos.

Based on the work presented in my thesis, I will highlight several opportunities in this 
challenging but interesting field of expertise. Including correlation networks in HBM studies 
would be a good addition to improve understanding of biomarker interdependencies. Net-
works are especially valuable for high-dimensional datasets, for example generated by SS. 
Networks can assist in the detection of clusters and how these change across covariates, pro-
viding direction for future actions for example related to source-identification. An extension 
of the methods with temporal network approaches, where nodes and links disappear and 
(re)emerge depending on factors e.g. related to variability in exposures across a life-course, 
would be valuable in the interpretation of differences over time (Vermeulen et al., 2020b). The 
application of dynamic clustering (changing clusters, e.g. also over time), and fuzzy cluster-
ing (overlapping clusters) can be informative for specific research questions. The SPECIMEn 
field survey provided valuable new insights into pesticide mixture patterns in Europe. An 
improved survey design would involve repeated urine samples, possibly in a subpopulation 
due to practical limitations, alongside silicone wristbands to capture internal concentrations 
and long-term exposure. High-resolution screening methods should be integrated in HBM 
studies to build a comprehensive database. Further development of the SS approach with 
quantitative analysis (McCord et al., 2022b) would benefit exposure science, epidemiology, 
mixture risk assessment, and legislative efforts. Lastly, to enhance the collection and sharing 
of uniform mixture exposure data, clear agreements at European level would be necessary 
regarding the minimal level of information to be shared when publishing HBM datasets which 
could contribute to mixture risk characterization. This minimal level of information would for 
example include a detailed description of the analytical method used and an overview of the 
observed correlations within the dataset.

In my thesis mostly positive and low to moderate correlations were observed between 
chemical families. For each of the detected clusters a hazard characterization would be nec-
essary to conduct a chemical mixture risk assessment. The approach as performed by Loh 
et al. 2023 based on the results of chapter 3, demonstrated that the HI for certain clusters 
exceeded one, despite the fact that only a limited number of compounds was included. With 
an increasing number of chemicals in real-life exposure scenarios, the likelihood of higher risks 
becomes even more significant. Co-occurring chemicals that share a common mode of action 
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should be collectively considered in risk assessments. Based on the SPECIMEn study, three 
or more co-occurring pesticides were not frequently detected. These findings indicate that 
the mixture profile is likely different between individuals and a high-level of granularity in 
data collection is necessary for mixture risk assessment purposes. Also, it is important to note 
that for specific highly exposed groups or subpopulations, such as workers, the correlation 
pattern may differ, potentially indicating an increased link between chemical families. The 
use of health-based generic factors such as MDF could be a pragmatic starting point in cases 
where information is lacking. However, scientific knowledge should be carefully assessed for 
each detected mixture, and as more information on common exposures and risks becomes 
available this should be included into mixture risk assessment. 

Applying the methods presented in this thesis, such as analyzing community structures in 
networks, could provide valuable insights into the most relevant mixtures of exposure for risk 
assessment purposes. While the focus of my work was on characterizing exposure to chem-
icals, it is important to prioritize the first tier of action, which should always be focused on 
prevention of exposure in the first place.
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ENGLISH SUMMARY

Humans are exposed to a large number of chemicals from various sources in their environ-
ment, including cosmetics, household products, diet, medication, and occupational sources. 
To properly assess the risks associated with these chemical exposures, it is necessary to esti-
mate the level of exposure (how much) and the toxicity posed by these chemicals. As the 
number of chemicals available on the market increases and new applications for existing 
chemicals arise, there is a need for efficient high throughput methods for the risk assessment 
of a large number of chemicals. Current risk assessment approaches often focus on individual 
chemicals or single sources, which not sufficiently account for possible combinations of chem-
icals and overlooks potential additional risks associated with chemical mixtures. Moreover, for 
those chemicals that act together in the same toxicological pathway, combined risk assess-
ment is key. To accurately assess the risks of chemical mixtures in relation to human health, 
three main themes can be identified: i) measuring combined exposures to chemical mixtures, 
ii) accurately assessing the health risks posed by these chemical mixtures, and iii) translating 
these risks to the policy and regulatory fields to manage mixture health risks. In this thesis I 
focus on the first challenge, which involves measuring and describing exposure patterns of 
chemical mixtures in the general population. 

Measuring exposure to chemical mixtures in real-life situations at a population level is 
a complex task. The preferably individual measurements can be obtained either externally 
(outside the human body), using silicone wristbands for instance, or internally (inside the 
human body), through human biomonitoring, for which exposure is measured in human 
tissue, such as urine or blood. In this thesis, chemical mixtures are described as combinations 
of manufactured chemicals that co-occur within the same individual or sample.

This thesis
My thesis revolves around three different approaches to identify chemical mixtures in the 
general population. 

1. The first approach focusses on describing co-occurrence patterns of chemicals in 
existing human biomonitoring datasets, using a combination of graphical correlation 
network model and a clustering algorithm. This method visualizes and summarizes 
these co-occurrence patterns by identifying highly correlated groups or clusters of 
chemicals. 

 These correlation networks are explored in the first half of this thesis (chapters 2 
and 3) and applied to existing human biomonitoring datasets. 

2. The second approach involves measuring chemical mixtures at individual level, 
employing external measurements (silicone wristbands) and internal measurements 
(human biomonitoring in urine samples). 
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3. The third approach refers to the analytical measurement of chemical mixtures in 
urine samples, for which a suspect screening approach based on high resolution mass 
spectrometry was applied, enabling detection of a broad range of biomarkers in a 
single sample. 

The second and third approach make up the second half of this thesis (chapters 4, 5 and 6), 
specifically examining pesticide mixtures. Samples were collected to assess exposure to mul-
tiple pesticides, including silicone wristbands as part of the Dutch OBO study (chapter 4), and 
urine samples combined with suspect screening as part of the European initiative HBM4EU 
(chapters 5 and 6).

The second half of this thesis focusses on pesticides as an example of a chemical mixture. Pes-
ticides are commonly used as mixtures by farmers (potential environmental exposure to pes-
ticide mixtures for residents living in agricultural areas), and pesticides are present in various 
food items (dietary exposure to pesticide mixtures). Besides, pesticides are a relevant chemical 
mixture due to the attention and concerns they generate in society. Despite the extensive 
body of literature on human exposure to pesticides, it remains unclear which pesticide mix-
tures the general population is exposed to.

After Chapter 1 as a general introduction of this thesis, Chapter 2 describes a correlation 
network approach to visualize chemical mixtures based on human biomonitoring data. We 
demonstrated that presenting biomonitoring data in networks facilitates the identification 
of exposure patterns that contribute to the observed exposure levels in the samples. This 
approach was applied to cord blood samples collected during three measurement campaigns 
of the Flemish Environment and Health Studies (FLEHS). By utilizing a clustering algorithm, 
highly connected groups of biomarkers, referred to as communities, were identified. These 
communities mostly consisted of biomarkers belonging to the same chemical family, such as 
PFASs and metals. Links between chemical families were also found, such as between PCBs 
and p,p’-DDE. The detected communities highlight which biomarkers should be considered 
collectively in the analysis and interpretation of epidemiological studies or in the design of 
toxicological mixture studies. The comparison of networks between sampling campaigns, 
smoking status, and BMI provided insights into the extent of changes in networks and commu-
nities across these covariates. The applied network methodology benefits over e.g. heatmaps 
by the intuitive visual identification, formalization of the procedure to identify communities 
and providing a structural approach for comparison of exposure patterns. 

In Chapter 3 the same correlation network visualization was applied to four existing human 
biomonitoring datasets from Belgium, Czech Republic, Germany and Spain. The added value 
of network analyses was demonstrated at a larger scale and showed potential for a cross-Euro-
pean mixture exposure and risk assessment. This was the first, to our knowledge, application of 
a harmonized and standardized network approach on multiple datasets from different coun-
tries, incorporating a substantial number of biomarkers and individuals. The four included 
datasets varied in study population, study design and chemicals analyzed. Compared to the 
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data in chapter 2, the datasets included in this chapter were on a larger scale, both in terms 
of the number of participants and the number of biomarkers measured. The application of 
community detection with a clustering algorithm was instrumental in identifying patterns 
within and between chemical families. Within each country, the majority of the detected com-
munities reflected a single chemical family. Cross chemical family connections were reflected 
in two out of the nine detected communities, one out of four, two out of ten, and three out 
of six, for the four countries respectively. Other observed differences between countries, such 
as a variation in the phthalate community distribution between Germany and Spain (split into 
seven and four communities respectively), maybe be attributed to differences in study popu-
lation, design, chemical analytical procedures and actual exposure differences. It is plausible 
that the detected communities reflect shared sources, routes of exposure, or physiochemical 
properties among the biomarkers.

The assessment of pesticide mixtures begins with Chapter 4, where silicone wristbands were 
utilized as an add-on to a Dutch pesticide exposure study. Nineteen residents living close to 
flower bulb fields in the Netherlands wore the wristbands for an average of sixty days. Out of 
forty-six pesticides measured, thirty-one were identified in the wristbands. On average, nine-
teen pesticides were detected, with azoxystrobin, carbendazim and pymetrozine detected 
in all wristbands. We found highly individual exposure profiles, which is similar to findings 
of other studies. The study showed that wristbands are able to capture pesticide exposure 
profiles over sixty days, which is substantial longer than the usual application of several days 
or a week. However, it should be noted that they only reflect dermal and inhalation routes of 
exposure, which may lead to an underestimation of the pesticide mixtures for pesticides that 
are also present in the diet.

In Chapter 5 the study protocol and results of a European pesticide exposure study (SPEC-
IMEn study) are presented. The study employed a suspect screening based protocol using 
first morning void urine samples from parent-child pairs in different seasons and residential 
areas. The objective was to investigate the impact of proximity to agricultural areas, age (child 
vs adult), and sampling season on the likelihood of detecting pesticides and their metabo-
lites. Biomonitoring samples were collected of 1,345 participants across six countries: Latvia, 
Hungary, Czech Republic, Spain, the Netherlands and Switzerland (with Switzerland having 
a slightly different study design). Samples were analyzed by five different laboratories across 
Europe. Forty pesticide biomarkers, including pesticide metabolites and parent pesticides, 
corresponding to 29 different pesticides were confidently identified across all study sites. The 
most frequently detected biomarkers were associated with the parent pesticides acetamiprid 
and chlorpropham. In 84% of the samples, at least two different pesticides were detected. The 
median number of detected pesticides in the urine samples was three. Some variation but no 
consistent pattern in the probability of detection of pesticide biomarkers was observed based 
on living in an agricultural area or season of urine sampling. Notably, differences in detection 
were observed between adults and children, suggesting a different exposure and/or elim-
ination patterns between these age groups. This chapter demonstrated that a harmonized 
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pan-European sample collection, combined with suspect screening provided valuable new 
insights into the presence of pesticide mixture exposure in the European population. 

Chapter 6 is also based on the SPECIMEn study, focusing on the samples collected in the Neth-
erlands and Switzerland. Since both countries’ samples were analyzed by the same laboratory, 
the pesticide biomarkers could be analyzed by their semi-quantitative levels between the two 
countries. The objective of this chapter was to describe the pesticide mixture patterns in the 
adult populations of the Netherlands and Switzerland, and to identify related exposure deter-
minants. A total 400 adults were included in this study, and questionnaires between both 
study sites were harmonized. Among the 37 detected biomarkers, only three were found in at 
least 40% of the samples. The most frequent combination, acetamiprid with flonicamid, was 
detected in 22 samples (5.5%). Regression models revealed an inverse association between 
high organic vegetable and fruit consumption and exposure to urinary concentrations of 
acetamiprid and chlorpropham. Other exposure determinants assessed related to pesticide 
usage, exposed household members, distance to forest or agriculture, and consumption of 
organic rice, meat, eggs, diary, bread and homegrown foods, did not reveal any effect in the 
regression models. Within-individual correlations in repeated samples (summer/winter) from 
the Netherlands were low (≤ 0.3), and no significant seasonal differences in average exposures 
were observed in Switzerland. In both countries, detection rates and co-occurrence of pesti-
cides in the same urine sample were typically low.

Chapter 7 provides a comprehensive review of the main findings presented in this thesis and 
discusses the applicability of the three different approaches employed to identify chemical 
mixtures. The work conducted in this thesis represents significant steps towards describing 
and measuring exposure to chemical mixtures. Understanding real-life exposure patterns is 
crucial for conducting mixture risk assessment. Co-occurring chemicals that share a common 
mode of action should be collectively considered together in risk assessments. 

Two directions for future progress can be identified: 1) I recommend to incorporate corre-
lation networks to investigate interdependencies between chemicals measured in biomoni-
toring data. The network approach as applied in this thesis can be improved by incorporating 
overlapping clusters and identifying temporal changes to facilitate addressing specific research 
questions. 2) High-resolution screening methods should be integrated in HBM studies to build 
a comprehensive database to assess exposure and risks to chemical mixtures. To improve the 
collection and sharing of exposure data from chemical mixtures, I believe it is important that 
agreements are made at the European level regarding the minimum information that must 
be shared when publishing a biomonitoring dataset that can contribute to risk assessment. A 
good description of the analytical method used and an overview of the observed correlations 
with the dataset are important points.
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Mensen worden blootgesteld aan een groot aantal chemische stoffen uit verschillende 
bronnen vanuit hun omgeving, vanuit cosmetica, huishoudelijke producten, voeding, medi-
cijnen, en tijdens het werk. Om de risico’s van de blootstelling aan chemische stoffen goed te 
kunnen beoordelen is het nodig om het niveau van blootstelling (hoeveelheid) en de toxi-
citeit van deze stoffen in te schatten. Aangezien het aantal beschikbare chemische stoffen 
toeneemt en er continue nieuwe toepassingen voor bestaande chemische stoffen ontstaan, 
is er behoefte aan beoordelingsmethodes die efficiënt op een groot aantal stoffen tegelijk 
toepasbaar zijn. Binnen de huidige kaders van risicobeoordeling wordt er vaak naar afzonder-
lijke chemische stoffen of afzonderlijke bronnen gekeken, waardoor er onvoldoende rekening 
wordt gehouden met mogelijke combinaties van chemische stoffen en de mogelijke extra 
risico’s van deze chemische mengsels. Daarnaast is een gecombineerde risicobeoordeling van 
cruciaal belang voor chemische stoffen die mogelijk hetzelfde toxicologische effect hebben. 
Het inschatten van gezondheidsrisico’s van chemische mengsels kan worden samengevat in 
drie belangrijke thema’s: i) het  meten van gecombineerde blootstelling aan chemische meng-
sels, ii) het beoordelen van de gezondheidsrisico’s van deze mengsels, en iii) het vertalen van 
deze risico’s naar het beleid en de regelgeving om zo de gezondheidsrisico’s van mengsels te 
verlagen. Dit proefschrift richt zich op het eerste thema, die bestaat uit het meten en beschrij-
ven van blootstellingspatronen van chemische mengsels met een specifieke nadruk op het 
gezamenlijk voorkomen van chemische stoffen in de algemene bevolking.

Het meten van de daadwerkelijke blootstelling aan chemische mengsels is een complexe 
taak. De bij voorkeur individuele metingen kunnen extern (buiten het lichaam) worden uit-
gevoerd, bijvoorbeeld met siliconen polsbandjes, of intern (in het lichaam) via bijvoorbeeld 
biomonitoring, waarbij blootstelling wordt gemeten in menselijk lichaamsmateriaal zoals 
urine of bloed. In dit proefschrift worden chemische mengsels beschreven als de combinaties 
van door de mens gemaakte chemische stoffen die samen in hetzelfde individu of monster 
gevonden worden.

Dit proefschrift
Mijn proefschrift beschrijft drie verschillende benaderingen om chemische mengsels in de 
algemene bevolking te identificeren.

1. De eerste methode richt zich op het beschrijven van patronen van chemische stoffen 
die gelijktijdig voorkomen in bestaande biomonitoring datasets. Deze patronen 
worden beschreven met behulp van een grafisch correlatienetwerkmodel en een 
clusteralgoritme. Met deze methode kunnen de patronen van stoffen die gelijktijdig 
voorkomen worden gevisualiseerd en samengevat door middel van identificatie van 
sterk gecorreleerde groepen of clusters van chemische stoffen.
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 Deze correlatienetwerken worden beschreven en toegepast op bestaande biomonito-
ring data in de eerste helft van dit proefschrift (hoofdstukken 2 en 3).

2. De tweede benadering is het meten van chemische mengsels op individueel niveau, 
waarbij gebruik wordt gemaakt van externe metingen (siliconen polsbandjes) en 
interne metingen (biomonitoring door middel van urinemonsters).

3. De derde benadering verwijst naar de analytische meting van mengsel in urinemon-
sters, waarvoor een screening methode (“suspect screening”) op basis van hoge 
resolutie massaspectrometrie werd toegepast. Deze op screening gebaseerde analyse 
kan een breed scala aan biomarkers detecteren in een enkel urinemonster.

De tweede en derde benadering vormen samen de tweede helft van dit proefschrift (hoofd-
stukken 4, 5 en 6), waarbij specifiek naar mengsels van bestrijdingsmiddelen werd gekeken. 
Er werden monsters verzameld om de blootstelling aan meerdere bestrijdingsmiddelen 
in kaart te brengen, waaronder siliconen polsbandjes als onderdeel van het Nederlandse 
OBO-onderzoek (hoofdstuk 4), en urinemonsters gecombineerd met suspect screening 
analyse als onderdeel van het Europese initiatief HBM4EU (hoofdstukken 5 en 6).

De tweede helft van dit proefschrift richt zich op bestrijdingsmiddelen als een voorbeeld van 
een chemisch mengsel. Bestrijdingsmiddelen worden vaak als een mengsel toegepast door 
boeren (potentiële mengsel blootstelling voor omwonenden van landbouwgebieden), en 
bestrijdingsmiddelen zijn aanwezig in verschillende voedingsmiddelen (potentiële mengsel 
blootstelling via de voeding). Daarnaast zijn bestrijdingsmiddelen een relevant chemisch 
mengsel vanwege de maatschappelijke aandacht en zorgen over mogelijke risico’s. Ondanks 
een groot aantal studies naar de blootstelling aan bestrijdingsmiddelen, is de vraag aan welke 
combinaties van bestrijdingsmiddelen de algemene bevolking wordt blootgesteld nog niet 
beantwoord.

Na hoofdstuk 1 als algemene inleiding van dit proefschrift, beschrijft hoofdstuk 2 een corre-
latienetwerkmethode om chemische mengsels te visualiseren op basis van biomonitoringsge-
gevens. We laten hier zien dat deze netwerken de identificatie van patronen tussen biomarkers 
kan vergemakkelijken. De netwerkmethode werd in dit hoofdstuk toegepast op navelstreng-
bloedmonsters die verzameld werden tijdens drie meetcampagnes van de Vlaamse Milieu- en 
Gezondheidsstudies (FLEHS). Door gebruik te maken van een clusteralgoritme werden sterk 
verbonden groepen biomarkers, “communities” genoemd, geïdentificeerd. Deze communities 
bestonden meestal uit biomarkers die tot dezelfde chemische familie behoren, zoals PFASs en 
metalen. Er werden echter ook verbanden tùssen chemische families werden gevonden, zoals 
tussen de PCB’s en p,p’-DDE. De gevonden communities geven inzicht in welke chemische 
stoffen gezamenlijk moeten worden meegenomen bij de analyse en interpretatie van epide-
miologische studies, of bij het ontwerp van toxicologische mengsel studies. Door netwerken 
te vergelijken tussen meetcampagnes, wel/niet roken, en normaal/hoog BMI verkregen we 
inzicht in veranderingen in de netwerkstructuur en bijbehorende communities. De voordelen 
van de toegepaste netwerkmethode ten opzichte van bijvoorbeeld “heatmaps”, zijn de intuï-
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tieve visuele interpretatie, formalisering van de procedure om communities te identificeren en 
een gestructureerde methode voor het vergelijken van blootstellingspatronen. 

In hoofdstuk 3 werd dezelfde netwerk visualisatie methode toegepast op vier bestaande 
biomonitoring datasets uit België, Tsjechië, Duitsland en Spanje. De toegevoegde waarde van 
netwerken werd gedemonstreerd op een grotere schaal, naast het potentieel van netwerken 
voor een pan-Europese mengsel blootstellings- en risicobeoordeling. Dit was, voor zover wij 
weten, de eerste toepassing van een geharmoniseerde en gestandaardiseerde netwerkme-
thode op meerdere biomonitoring datasets uit verschillende landen. De vier gebruikte datas-
ets varieerden in studiepopulatie, onderzoeksopzet en geanalyseerde stoffen. Vergeleken 
met de dataset uit hoofdstuk 2, waren de vier datasets grootschaliger, zowel wat betreft het 
aantal deelnemers als het aantal gemeten biomarkers. De toepassing van het cluster algoritme 
was een waardevol hulpmiddel om patronen tussen en binnen chemische families te identifi-
ceren. Binnen elk land reflecteerde de meerderheid van de gedetecteerde communities patro-
nen binnen dezelfde chemische familie. Kruisverbanden tussen chemische families werden 
gevonden in twee van de negen communities, één van de vier, twee van de tien, en drie van 
de zes, respectievelijk voor de vier landen. Andere gedetecteerde verschillen tussen landen, 
zoals een verschil in spreiding tussen weekmakers tussen Duitsland en Spanje (opgesplitst in 
respectievelijk zeven en vier communities), kunnen worden toegeschreven aan verschillen in 
studiepopulatie, design, chemische analyseprocedures, en feitelijke blootstellingsverschillen. 
Het is aannemelijk dat de gedetecteerde communities een gemeenschappelijk bron, bloot-
stellingsroute of fysiochemische eigenschappen van de biomarkers weerspiegelen.

De beoordeling van mengsels van bestrijdingsmiddelen begint met hoofdstuk 4, waarin 
siliconen polsbandjes werden gedragen als aanvulling op een Nederlands onderzoek naar 
blootstelling aan bestrijdingsmiddelen. Negentien bewoners die in de buurt van bloembollen-
velden in Nederland woonden, droegen de polsbandjes gedurende gemiddeld zestig dagen. 
Van de zesenveertig gemeten bestrijdingsmiddelen werden er eenendertig gevonden in de 
polsbandjes. Gemiddeld werden negentien bestrijdingsmiddelen gemeten, waarbij azoxys-
trobin, carbendazim en pymetrozine in alle polsbandjes werden gevonden. We vonden zeer 
individuele blootstellingsprofielen, wat vergelijkbaar is met bevindingen uit andere studies. 
Het onderzoek toonde aan dat blootstellingspatronen over een langere periode van zestig 
dagen gemeten konden worden door middel van polsbandjes, wat aanzienlijk langer is dan 
gebruikelijk (enkele dagen of een week). Er dient de kanttekening gemaakt te worden dat de 
polsbandjes alleen blootstellingsroutes via de huid en luchtwegen reflecteren, wat kan leiden 
tot een onderschatting van het mengel van bestrijdingsmiddelen ook aanwezig in voeding.

In hoofdstuk 5 worden het onderzoeksprotocol en de resultaten van een Europees onderzoek 
naar blootstelling aan bestrijdingsmiddelen (SPECIMEn-studie) beschreven. Het onderzoek 
maakte gebruik van suspect screening analyse, waarbij urinemonsters werden geanalyseerd 
van ouder-kind paren in verschillende seizoenen en woongebieden. Het doel van deze studie 
was om de invloed van het wonen nabij landbouwgebieden, leeftijd (kind vs. volwassene) 
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en seizoen op de detectie van bestrijdingsmiddelen te beoordelen. Er werden urinemonsters 
verzameld van 1.345 deelnemers in zes landen: Letland, Hongarije, Tsjechië, Spanje, Neder-
land en Zwitserland (waarbij Zwitserland een iets andere onderzoeksopzet had). De monsters 
werden geanalyseerd door vijf verschillende laboratoria verspreid over Europa. Er werden met 
hoge mate van zekerheid 40 biomarkers (metabolieten en oorspronkelijke stoffen) geïdenti-
ficeerd, die zijn terug te voeren tot 29 verschillende bestrijdingsmiddelen. De meest frequent 
gedetecteerde biomarkers zijn gerelateerd aan de bestrijdingsmiddelen acetamiprid en 
chloorprofam. In 84% van de monsters werden ten minste twee verschillende bestrijdings-
middelen gedetecteerd. De mediaan van het aantal gedetecteerde bestrijdingsmiddelen in 
de urinemonsters was drie. Er werd wel enige variatie maar geen consistent patroon in de 
detectie van bestrijdingsmiddelen waargenomen op basis van wonen nabij landbouwgebied 
of het seizoen van de urinemonstering. Er werden met name verschillen in detectie waar-
genomen tussen volwassenen en kinderen, wat duidt op verschillende blootstellings- en/
of eliminatiepatronen tussen deze leeftijdsgroepen. Dit hoofdstuk heeft laten zien dat een 
geharmoniseerde pan-Europese monsterverzameling, gecombineerd met suspect screening, 
waardevolle nieuwe inzichten kan opleveren over welke bestrijdingsmiddelenmengsels aan-
wezigheid zijn in de Europese bevolking.

Hoofdstuk 6 is ook gebaseerd op de SPECIMEn-studie en heeft betrekking op de monsters 
die in Nederland en Zwitserland zijn verzameld. Aangezien de urinemonsters van beide 
landen door hetzelfde laboratorium werden geanalyseerd, konden semi-kwantitatieve 
niveaus van de gemeten biomarkers worden vergeleken tussen de twee landen. Het doel 
van dit hoofdstuk was om de patronen in blootstelling aan meerdere bestrijdingsmiddelen 
in de volwassen populaties van Nederland en Zwitserland te beschrijven, en om gerelateerde 
blootstellingsdeterminanten te identificeren. In totaal werden 400 volwassenen geïncludeerd 
in dit onderzoek en de vragenlijsten van beide onderzoek locaties werden geharmoniseerd. 
Van de 37 gedetecteerde biomarkers werden er slechts drie in minstens 40% van de mon-
sters aangetroffen. De meest voorkomende combinatie, acetamiprid met flonicamid, werd 
aangetroffen in 22  monsters (5,5%). Regressiemodellen toonden een associatie tussen een 
hoge consumptie van biologische groente en fruit en lagere blootstelling aan acetamiprid 
en chloorprofam. Andere onderzochte blootstellingsdeterminanten, gerelateerd aan bestrij-
dingsmiddelen gebruik, huisgenoten die werkzaam zijn met bestrijdingsmiddelen, afstand tot 
bos of landbouw, en consumptie van biologische rijst, vlees, eieren, zuivel, brood en zelfge-
kweekt voedsel, lieten geen effect zien in de regressiemodellen. Intra-individuele correlaties 
in herhaalde steekproeven (zomer/winter) uit Nederland waren laag (≤ 0,3), en in Zwitserland 
werden geen significante seizoensgebonden verschillen in gemiddelde blootstellingen waar-
genomen. In beide landen waren de detectiepercentages en de gelijktijdige aanwezigheid 
van bestrijdingsmiddelen in dezelfde urinemonsters laag.

Hoofdstuk 7 geeft een overzicht van de belangrijkste bevindingen in dit proefschrift en 
belicht de toepasbaarheid van de drie verschillende benaderingen die zijn gebruikt om che-
mische mengsels te identificeren. De resultaten uit dit proefschrift zijn een belangrijke stap 
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naar het beschrijven en meten van blootstelling aan chemische mengsels. Inzicht in de daad-
werkelijke is cruciaal om het risico van mengsels te kunnen inschatten. De tegelijk voorko-
mende chemische stoffen met een gemeenschappelijk werkingsmechanisme dienen samen 
in beschouwing te worden genomen in risicobeoordelingen. 

Twee aanbevelingen voor toekomstig onderzoek kunnen worden geïdentificeerd: 1) Ik 
adviseer om correlatienetwerken mee te nemen in de om het onderlinge verband tussen 
chemische stoffen te onderzoeken in biomonitoringsdata. De netwerkmethode zoals toege-
past in deze thesis kan voor bepaalde onderzoeksvragen worden verfijnd door bijvoorbeeld 
overlappende clusters en identificatie van veranderingen in de tijd te beschrijven. 2) Hoge-res-
olutie screeningmethoden moeten worden geïntegreerd in biomonitoringstudies om een 
uitgebreide database op te bouwen, om zo de blootstelling aan en risico’s van mengsels van 
chemische stoffen te kunnen beoordelen. Om het verzamelen en delen van blootstellings-
gegevens van chemische mengsels te verbeteren, vind ik het belangrijk dat er op Europees 
niveau afspraken gemaakt worden wat betreft de minimale informatie die gedeeld moet 
worden bij het publiceren van een biomonitoring dataset die kan bijdragen aan risicobeoor-
deling. Een goede beschrijving van de gebruikte analytische methode en een overzicht van 
de geobserveerde correlaties binnen de dataset zijn daarbij belangrijke punten. 
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