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Abstract
In recent years, student-generated stop-motion animations (SMAs) have been employed to support sharing, constructing, and
representing knowledge in different science domains and across age groups from pre-school to university students. The purpose of this
review is togive anoverviewof research in this field and to synthesize the findings. For this review, 42publications on student-generated
SMA dating from 2005 to 2019 were studied. The publications were systematically categorized on learning outcomes, learning
processes, learning environment, and student prerequisites. Most studies were of a qualitative nature, and a significant portion (24
out of 42) pertained to student teachers. The findings show that SMA can promote deep learning if appropriate scaffolding is provided,
for example, in terms of presenting general strategies, asking questions, and using expert representations. Also, the science concept that
is to be presented as a SMA should be self-contained, dynamic in nature, and not too difficult to represent. Comparative quantitative
studies are needed in order to judge the effectiveness of SMA in terms of both cognitive and non-cognitive learning outcomes.
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Introduction

Visual representations have been reported to contribute to the
development of students’ learning of science (Evagorou et al.
2015; Heijnes et al. 2018). Moreover, the results of previous
studies confirm that learning gains are greater when students
generate their own representations in general, as opposed to
working with expert-generated representations (Kozma and
Russell 2005; Wu and Puntambekar 2012). Student-

generated representations have been used to evaluate students’
understanding of scientific concepts (Hubber et al. 2010;
Zhang and Linn 2011), to make connections with prior knowl-
edge (Akaygun and Jones 2013), to identify conflicts among
their ideas (Chi 2009), and to provide feedback about stu-
dents’ understanding (Stieff et al. 2005). They can help stu-
dents to become more than just consumers of knowledge
(Danish and Enyedy 2007), but active learners (DiSessa and
Sherin 2000; Yaseen and Aubusson 2018). These advantages
have been shown for a variety of student-generated represen-
tations, such as diagrams (Davidowitz et al. 2010; Gobert and
Clement 1999), sketches (Quillin and Thomas 2015), anima-
tions (Nordin and Osman 2018), and simulations (Olde and de
Jong 2004).

Focusing on student-generated animations, Hoban (2009)
distinguishes three main forms: hand-drawn, stop-motion,
and computer-based animation. Hand-drawn animations are
based on students’ own analog drawings. Stop-motion anima-
tion (SMA) involves taking digital still photographs of objects
or pictures after they have been moved manually to simulate
movement, and computer-based animation involves
employing computer-generated images as the basis for the
animation. Hoban and Nielsen (2013) argue that SMAs have
two key advantages over the other kind of animations. Firstly,
their inherent simplicity means that students can easily and
quickly learn the technique. Secondly, it only requires
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ubiquitous technology such as a digital still camera and a
computer in order to generate the illusion of motion.
Moreover, since a SMA is created frame by frame and can
be played in slow motion using a computer (Macdonald and
Hoban 2009), students reported having enough time to grasp
the underlying concepts (Hoban 2007).

From 2005 onwards, a sizable body of research has fo-
cused on the use of these student-generated SMAs in edu-
cational contexts (Brown et al. 2013; Ekici and Ekici 2014;
Hoban and Nielsen 2014; Mills et al. 2018b; Wilkerson
et al. 2018). However, no overview of this research is cur-
rently available. Also, the results on the effectiveness of the
application of SMAs in education are inconsistent. This
inconsistency can be attributed to a variety of causes, rang-
ing from inadequate pedagogical understanding on how to
integrate digital technology (Vratulis et al. 2011), lack of
students’ digital literacies (Paige et al. 2016), lack of stu-
dents’ argumentation and negotiation skills (Kidman and
Hoban 2009), lack of students’ representational literacies
and higher-order thinking skills (Brown et al. 2013), and to
the problem of cognitive load due to the use of SMAs for
representing inappropriate science concepts (Kidman and
Hoban 2009).

Therefore, the main objective of the current review is to
systematically identify, critically analyze, and discuss sci-
entific research on student-generated SMAs to enable edu-
cators to make the best use of SMAs in science classes.
Besides, this review study also aims to highlight the re-
search gaps, providing directions for future research in
the field. In line with Noroozi et al. (2012), we employ
learning outcomes , learning processes , learning
environment, and student prerequisites (inspired by
Biggs’s (2003) 3P Model) as main categorical descriptions
in this review study. This structure allows us to categorize
available research findings at any educational level into
sections that are relevant to both educators and science
education researchers, highlighting both the main findings
and main avenues for further research of the four
components.

Therefore, based on the four components mentioned above,
the following research questions are formulated to be an-
swered in this study:

& RQ1. What research findings are available regarding the
relationship between student-generated SMA and learning
outcomes in science classes?

& RQ2. What research findings are available regarding
learning processes involving student-generated SMAs?

& RQ3. What research findings are available on the learning
environment prerequisites in relation to student-generated
SMAs?

& RQ4. What research findings are available on the student
prerequisites in relation to student-generated SMAs?

Method

This work follows the systematic literature review protocol by
Brereton et al. (2007). For this review, we adapted a narrative
analysis (Van Dinther et al. 2011) approach identifying cur-
rent trends and also practical implications of student-
generated SMA as a learning approach in science classes from
a holistic point of view, contributed by the adopted framework
as our theoretical basis. The result of this narrative analysis
will be more qualitative than quantitative, providing in-depth
information about the topic under study (Dochy et al. 2003).

Literature Search

Literature search was conducted on the following databases:
Scopus, Web of Science (WoS), ERIC, Science Direct, and
Google Scholar. We have limited the search to English publica-
tions with an available full-text version. The time span for the
search was limited from 2005 through 2019. The last search was
performed on August 10, 2019.

For selecting the most relevant keywords to the research
scope, in a first step, we identified synonyms or related terms
concerning SMA, and we found the terms Stop-action anima-
tion, Slow-motion animation, Slowmation, and flipbook-like
animation. In the second step, we combined the related terms
with the Boolean operators OR and the overlapping concept
areas with AND to arrive at the following search string:
Learn* OR understand* AND physics OR chemistry OR
biology OR Geology OR science AND Slowmation OR
Slow-motion animation OR Stop-motion animation OR
Stop-action animation OR Flipbook-like animation.We com-
posed the search string in each of the five databases manually
based on the search functionality offered by that database.

Criteria for Inclusion

The literature search and publication selection process is
shown in Fig. 1. The initial search resulted in 29 papers in
Scopus, 21 papers in WoS, 4 papers in ERIC, 51 papers in
ScienceDirect, and 33 papers in Google scholar. Among the
findings, 54 papers appeared to be duplicated. Then, five in-
clusion criteria were employed for screening the abstracts and
collecting relevant studies:

1. The study investigated the stop-motion technique for gen-
erating an animation.

2. The SMA had to be generated by the students—at any
level (e.g., from pre-elementary to tertiary education).

3. The study had to report quantitative and/or qualitative data.
4. The study had to be performed in science classes (i.e.,

physics, biology, chemistry, and geology).
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5. The study had to address educational purposes, e.g., learning
outcomes, learning processes, design procedures of SMA in
an educational context, and/or SMA as a teaching approach.

After reading the abstracts, 50 studies (37 peer-reviewed
and 13 conference papers) remained for a full reading. Studies
that did not meet one or more of the above criteria were ex-
cluded for analysis.

Identification of Relevant Publications

In the next step, full texts were analyzed using the
abovementioned inclusion criteria. Also, to ensure the quality
of conference papers, we adopted criteria by Theelen et al.
(2019) (p.19) for quality appraisal of qualitative and quantita-
tive empirical studies. Among the 13 conference papers which
had a clear contribution, four papers were excluded for further

review after quality appraisal (mean score below 2).
Moreover, six other papers were excluded since they turned
out to be off-topic or were not available full text. Also,
snowballing the references of included articles yielded another
two peer-reviewed studies. After reading the abstracts and full
texts, both of them were included in the review.

Eventually, 42 publications were retained for the review,
all pertaining to quantitative and/or qualitative empirical data
on using the stop-motion technique for developing an anima-
tion in science classes. A complete list of reviewed publica-
tions is provided in Appendix 1 and is indicated by asterisks in
the Reference section.

The Quantitative Description of Scientific Research
into Student-Generated SMAs

Figure 2 shows the number of papers published each year. The
observed slight increase in recent years can be the result of the

Fig. 1 Selection process
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growing tendency toward technology-based learning environ-
ments in science classes (see Oliveira et al. 2019).

Twenty-eight of empirical studies (out of 42) used qualita-
tive methods (e.g., surveys, interviews, and observations) to
analyze student-generated SMA processes and outcomes; on-
ly six exclusively used quantitative methods. The remaining
eight used both qualitative and quantitative methods (i.e.,
mixed method). Student-generated SMAs have been reported
to be used in different science classes such as biology (14
publications), multi-domain (different science classes) (11),
physics (9), chemistry (4), geology (2), and general science
(2). The educational context of the empirical studies varied
among undergraduate student teachers (24 publications), stu-
dents in secondary (6), elementary (5), middle (4) schools, and
multi-level (e.g., elementary, middle, and secondary) (2) and
pre-elementary (1) students. Table 1 summarizes these quan-
titative results.

Results

Following the structure of our research questions, we extract-
ed the influential and constitutional factors of employing
student-generated SMA as a teaching and learning approach
in science classes from the reviewed publications and catego-
rized them into four inter-related components: learning out-
comes, learning process, learning environment, and student
prerequisites.

What Research Findings Are Available Regarding the
Relationship Between Student-Generated SMA and
Learning Outcomes in Science Classes?

In most studies, cognitive and non-cognitive learning out-
comes were among the most frequently reported outcomes
of using student-generated SMA in science classes. While
cognitive learning outcomes are those knowledge-related at-
tributes usually measured by students’ overall GPA (Walker
2008) or exam scores (Shi et al. 2020), non-cognitive out-
comes are generally viewed as attitudes, behaviors, and values
(Levin 2012) that can contribute to students’ educational per-
formances (Wanzer et al. 2019).

Concerning the cognitive outcomes, many favorable re-
sults on domain-specific knowledge are reported in the
reviewed papers. However, some studies showed inconclu-
sive or neutral results. Also, an increase in motivation and
engagement has been reported as non-cognitive outcomes of
student-generated SMAs. Moreover, domain-general skills
such as reasoning, collaboration, and digital literacy skills
are generally reported to be positively influenced by the ap-
plication of SMA. For the specific target group of student
teachers, a remarkable outcome is that their knowledge of
instructional strategies concerning the use of SMAs in sci-
ence classes did not seem to develop.

Cognitive Learning Outcomes Several papers reported signif-
icant improvement in students’ domain-specific knowledge

Table 1 Quantitative data description of the reviewed papers

Variables Items Number of
publications

Percentage

Type of analysis Qualitative 28 66.7

Quantitative 6 14.3

Mixed 8 19.0

Class (subject) Biology 14 33.3

Multi-domain 11 26.2

Physics 9 21.4

Chemistry 4 9.5

Geology 2 4.8

Science (general) 2 4.8

Educational level Student teachers 24 57.2

Secondary school 6 14.3

Elementary school 5 11.9

Middle school 4 9.5

Multi-level 2 4.7

Pre-elementary 1 2.4

Fig. 2 Yearwise distribution of
selected papers
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(Ekici et al. 2014; Hoban et al. 2009a; Jablonski et al. 2015;
Macdonald and Hoban 2009; Wilkerson et al. 2015; Wishart
2017; Yaseen and Aubusson 2018). Also, according to the
reviewed papers, student-generated SMAs facilitate conceptu-
al understanding by revising mis- or alternative conceptions
and improving students’ mental models (Akaygun 2016;
Brown et al. 2013; Church et al. 2007; Fleer and Hoban
2012; Hoban and Nielsen 2013, 2014; Keast et al. 2010;
Kidman et al. 2012; Loughran et al. 2012; Mills et al.
2018a; Nielsen and Hoban 2015; Peter et al. 2011).

Neutral or conflicting results have also been reported.
Chang et al. (2010) found that students’ understanding of
science concepts was better for students who only viewed
the animation than the students who designed and developed
their animation. Only when integrating peer-evaluation and
designing, a significant improvement of students’ learning
was found. Peter et al. (2011) pointed out that there was no
significant difference between students’ conceptual under-
standing among SMA and paper sketch groups. Also, in
Ekici et al.’ s (2014) study, despite higher achievement scores
for SMA generated groups immediately after the intervention,
no statistical difference in retention test scores was found be-
tween control and experimental groups.

Non-cognitive Learning Outcomes The majority of studies
that address non-cognitive learning outcomes report an im-
provement in motivation, engagement, and interest through
the use of SMAs. The autonomy support that is implicit in
allowing students to develop their own animations increases
autonomous types of motivation and, eventually, engagement
(Bogiages and Hitt 2008; Brown et al. 2013; Hoban 2005,
2007; Hoban and Nielsen 2010; Jablonski et al. 2015; Mills
et al. 2018b; Peter et al. 2011; Wilkerson et al. 2015). Mills
et al. (2018b) study reports differentiated findings in this re-
spect. Despite an improvement in students’ individual interest
in learning geology, their maintained situational interest value,
i.e., the belief that the content itself is meaningful to one’s life
beyond the classroom (Linnenbrink-Garcia et al. 2010), did
not improve. Also, Church et al. (2007) claimed that generat-
ing a SMA concerning an event of interest in the student’s life
(i.e., connecting more closely with their personal lives) ap-
pears to improve their motivation and engagement better.

Domain-General Knowledge and SkillsWilkerson et al. (2018)
reported that students’ mechanistic reasoning skills could be
elicited and improved by creating mechanistic models with a
combination of multiple representations, i.e., drawing, SMA,
and simulation. Berg et al.’s (2019) study illustrated that the
SMA task enabled students to better engage in reasoning
concerning both the macro (i.e., observable) and the sub-
micro-level (i.e., a level that cannot be observed) models,
and how they relate to each other. Nordin and Osman (2018)
found that student-generated SMA can be effective in

fostering collaborative problem-solving skills in terms of es-
tablishing and maintaining shared understanding and group
organization toward finding the appropriate action to solve a
physics problem in secondary education. The results of some
studies also revealed that the SMA task contributed to the
development of twenty-first-century skills such as creativity,
communication, and cooperation skills, information literacy,
research skills, technology, and media literacy skills (Atalay
and Belet Boyaci 2019; Karakoyun and Yapıcı 2018). Skills
in using technology, such as taking photos with digital cam-
eras, were also reported as an outcome of intentionally teach-
ing using SMA in early childhood science classes (Fleer and
Hoban 2012).

Researchers also noticed that their student teachers were
able to further their abilities in many other areas aside from
‘just science’, including information and technology skills,
creative writing, group work, and research (Keast et al.
2010; Kidman et al. 2012). Having student teachers create a
narrated SMA to explain a science concept in Hoban and
Nielsen’s (2014) study provided a context for generating dis-
cussions, exchange, and clarification of ideas, which finally
contributed to scientific reasoning skills.

Knowledge of Instructional StrategiesAlthough research con-
firmed the possibility and the benefits of generating SMA as a
teaching approach in science classes (Ekici and Ekici 2014;
Fleer and Hoban 2012; Hoban et al. 2007; Keast et al. 2010;
Loughran et al. 2012; Nielsen and Hoban 2015; Paige et al.
2016), Vratulis et al. (2011) stated that student teachers did not
encourage their pupils to design and make SMA projects in
practice—despite the student-centered approach advocated
during the program. Therefore, knowledge and beliefs about
instructional strategies for teaching science as one of the main
elements of Magnusson et al.’s (1999) pedagogical content
knowledge model, did not improve in this study. Vratulis
et al. (2011) concluded that introducing student teachers to
alternate instructional strategies employing digital technology
as learners in a teacher education program in itself is not
enough for them to deploy these technologies in their schools.

What Research Findings Are Available Regarding
Learning Processes Involving Student-Generated
SMAs?

The learning process involving SMA turns out to be cyclical
rather than linear. Both surface and deep learning are encoun-
tered in the studies on SMA, depending on the amount of
scaffolding provided. The learning activities such as class
discourse about the generated SMAs and peer-evaluation
bring to the fore students’ sometimes conflicting ideas and
thus stimulates deeper learning. Moreover, putting narration
on the generated SMA can provoke a better understanding of
the subject matter. Several scaffolding techniques, such as
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presenting general strategies, asking questions, and the use of
expert representations, are reported.

Learning Process In order to improve learning in any learning
environment, it is important to understand students’ learning
processes (Beyaztaş and Senemoğlu 2015). The more instruc-
tors understand this process, the better their chance of meeting
the diverse learning needs and scaffolding their students’
learning (Felder and Brent 2005). In this line, Kidman
(2015) distinguishes first- and second-order learning in the
context of the process of generating SMAs. First-order learn-
ing refers to considering only observable characteristics of the
phenomena, with very little analysis of the visual representa-
tion to be made. Second-order learning (or deep learning)
emerges once the learner engages in the science content be-
hind the phenomenon. Here, the learner mentally engages
with prior knowledge, the new information provided in pub-
lished sources, and the information interpretation provided by
group participants. The learner makes meaning of all this in-
formation and then re-represents the new findings in a SMA.

Hoban et al. (2009b) observe that the learning pathway in
the SMA learning approach is cyclical, iterative, and dynamic
rather than linear. This recursive checking of information was
clearly manifested in Hoban et al.’s (2011) study when stu-
dents referred back to the support material and discussed it
with their peers. Also, according to Kidman et al.’s (2012)
observations, in a collaborative setting, groups can choose to
superficially accept one representation of the chunks (i.e., sur-
face learning) or through discussion and planning agree by
consensus on the key “chunks” that need to go in their SMA
(i.e., deep learning). According to scholars, this iterative pro-
cess is responsible for revealing and revisiting students’ mis-
conceptions (Hoban et al. 2009b; Hoban and Nielsen 2013)
and encouraging their conceptual learning (Hoban et al.
2011).

Learning Activities According to Wilkerson et al. (2015), in-
tentionally letting students generate and evaluate knowledge,
e.g., asking them to construct a model and share their product
individually, will help them to both realize the wealth of
knowledge they already have about the subject and evaluate
that knowledge. Moreover, scholars reported that asking stu-
dents to share their final products can also bring their conflict-
ing ideas and uncertainties about the science concept to the
fore (Mills et al. 2018a), leading to a substantive discourse in
the classroom (Brown et al. 2013). This discourse, especially
in the form of peer-evaluation, can effectively improve the
accuracy of the representations (Hoban and Nielsen 2014)
and contribute to students’ conceptual learning (Chang et al.
2010; Mills et al. 2018a) and student teachers’ better mastery
of subject matter (Hoban and Nielsen 2013). In this regard,
Kamp and Deaton (2013) reported that providing a rubric for
students’ peer-evaluation could support the evaluation process

of final student-generated SMAs. Also, Hoban and Nielsen
(2013) claimed that clear explanation as a narration in the final
representation provoked the student teachers’ better realiza-
tion of subject matter.

Scaffolding Techniques In their study with 28 elementary
school students, Wilkerson et al. (2018) found that groups
struggling to construct a model progressedwhen they received
guidance about general modeling strategies (i.e., rules and
constraints for making a model), but not when they received
guidance about model content. They claim that in terms of
complex systems reasoning, students benefit from explicit
support in considering the elements, behavior, and interac-
tions in a system both before and during the exploration and
construction of models. Their findings also highlight that an
iterative modeling activity across multiple representations
(drawing, SMA, and simulation) can facilitate and deepen
student learning and engagement.

According to Nielsen and Hoban’s (2015) study, expert’s
representations can scaffold students’ understanding while
students discuss their own representations. In the same line,
Yaseen and Aubusson (2018) claim that teachers can ask stu-
dents to identify, discuss, explain, and map the similarities and
differences between student- and expert- generated anima-
tions. They reported that with this sort of mediation, concep-
tual learning was improved more than if the students had only
viewed the experts’ animations.

Also, asking questions by the teacher is highlighted in
some papers as a way to scaffold students “learning toward
the science part of the animation during the developing pro-
cess of a SMA” (Mills et al. 2018a; Wilkerson et al. 2015;
Yaseen and Aubusson 2018). In Yaseen and Aubusson
(2018)’s study, students focused on the technical quality of
animation, but the teacher took the discussion beyond this, by
asking students to consider the scientific propositions implicit
in the animations. These guiding questions helped the students
to both understand and explain the exact science concepts
related to the subject of their SMA. Also, they claim that
teachers can enhance students’ critical thinking by asking
why their SMA might be inadequate and how it could be
improved and by showing them other ways of looking at a
specific concept. Similarly, Mills et al. (2018a) reported that
teachers’ questions to encourage thinking and provoke scien-
tific explanations were crucial in revising students’ conflicting
ideas and developing conceptual understanding.

What Research Findings Are Available on the
Learning Environment Prerequisites in Relation to
Student-Generated SMAs?

The findings suggest that the science concept needed to be
presented as a SMA by students should be self-contained,
dynamic in nature, and not too difficult to represent. As for
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software and hardware, most studies employ generic soft-
ware, and this is sometimes claimed to be an essential prereq-
uisite. There are, however, several studies based on software
developed specifically for the creation of SMAs. A collabo-
rative setting is chosen in almost all studies since discourse
during the process of constructing an SMA is considered to be
of prime importance for more in-depth learning.

Characteristics of the Science Concept Keast et al. (2010)
found that the SMA approach was shown to be most effective
when it used to present a science concept which is small, self-
contained, and easy to chunk and represent. Peter et al. (2011)
reported that student-generated SMA improves learning, es-
pecially for content that involves dynamic events, e.g., moon
phase, cellular division, or smell diffusion. In terms of cogni-
tive load, Kidman and Hoban (2009) claimed that when a
topic requires a considerable representation effort (such as
the fiddly detail in the representation of chromosome map-
ping), cognitive load focuses on the representation, rather than
scientific processes.

Software and HardwareHoban et al. (2011) claimed that a key
feature of generating a SMA is that it does not involve the use
of any specific software. In most of the studies, learners used
generic software such as Apple’s QuickTime Pro (Hoban
2005; Hoban and Ferry 2006; Vratulis et al. 2011),
Windows Movie Maker (Jablonski et al. 2015; Nordin and
Osman 2018; Wishart 2016), SAM animation (Church et al.
2007; Hoban et al. 2009a; Hoban and Nielsen 2013;
Wilkerson et al. 2015) and mobile apps like MyCreate
(Mills et al. 2018b), iMotionHD (Wishart 2017), and
iStopMotion (Berg et al. 2019; Kamp and Deaton 2013).

In some studies, however, domain-specific software was
used to develop student-generated SMAs. For example,
Chang et al. (2010) used “Chemation” for making a molecular
SMA in Chemistry. Akaygun (2016) used “ChemSense”
which is specifically designed to generate drawings and ani-
mations for chemistry concepts through a stop-motion tech-
nique. Yaseen and Aubusson (2018) used K-Sketch for gen-
erating SMAs about different states of matter by students.
Akaygun (2016) also suggested that participants in K-Sketch
produced their animations faster and had a significantly lower
cognitive load than common animation software, such as
ChemSense, with which it was compared. Also, according to
his findings, K-Sketch provides the most freedom for
representing dynamics, and ChemSense provides more op-
tions for representing structural features. SiMSAM
(Simulation, Measurement, and Stop-Action Moviemaking)
allows students to create SMAs by using an external camera
to capture successive photos of drawings or craft materials and
was used in different studies byWilkerson et al. (2015, 2018).
This software was designed specifically to support learners in
“discovering” aspects of kinetic molecular theory.

Setting: Collaborative/Individual Most of the empirical re-
search in the domain of student-generated SMAs have been
performed in a collaborative setting (Brown et al. 2013;
Jablonski et al. 2015; Mills et al. 2018a; Vratulis et al. 2011;
Wilkerson et al. 2015, 2018; Wishart 2016, 2017; Yaseen and
Aubusson 2018). Many researchers argued that generating
discussion is the main benefit of student-generated SMAs in
collaborative settings. Brown et al. (2013) claim that the col-
laborative creation of a SMA facilitates rich opportunities for
students to use discourse as a representational form to generate
and mediate between other representational forms. Their find-
ings are in line with Hoban and Nielsen’s (2014) study, which
suggests having student teachers create a narrated animation
in order to explain science, the narrative sparking subsequent
discussion. Loughran et al. (2012) found that collaborating
with peers in developing SMAs helped student teachers rec-
ognize and respond to a range of pre- or alternative concep-
tions that they held, not only in terms of pre-conceptions’
nature but also in terms of their origin and possible address
in the classroom.

According to Wishart (2016, 2017), group discussions
were found to be key to student science learning through the
co-construction of meaning. In the same line, Kidman (2015)
asserted that SMA, when used in a collaborative inquiry-based
learning context, is a technique in which “the new ‘meaning-
making’ of the designers facilitates the new ‘meaning-mak-
ing’ of others.” Paige et al.’s (2016) study with science student
teachers showed that working in a collaborative setting was
preferred to an individual setting by the students.

What Research Findings Are Available on the Student
Prerequisites in Relation to Student-Generated SMAs?

SMA can be used at all age levels from pre-school to univer-
sity, an important subset of studies (24 out of 42) pertaining to
student teachers. There are conflicting results on the impor-
tance of prior knowledge for the construction of a SMA.
Digital literacy, however, does appear to be an important
factor.

Age The main trend is that SMA can be applied to almost all
age levels, from early childhood to university classrooms
(Hoban and Nielsen 2014). Studies include 4-year olds learn-
ing science concepts (Fleer and Hoban 2012), elementary
classes co-constructing spinning in space through collabora-
tive generating of a SMA (Brown et al. 2013), and smell
diffusion by grade 6 students through multimodal representa-
tion, including SMA (Wilkerson et al. 2015).

On the middle school level, more studies with SMA have
been performed (e.g., Jablonski et al. 2015; Mills et al. 2018a;
Mills et al. 2018b). The same holds for secondary school
classrooms (e.g., Church et al. 2007; Kamp and Deaton
2013). In the context of university teacher education
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programs, there have beenmany studies (24 out of 42) on how
creating a SMA influenced student teachers in learning vari-
ous science concepts (Berg et al. 2019; Hoban et al. 2009a;
Hoban and Nielsen 2012, 2013), pedagogical intent (Hoban
et al. 2007; Hoban and Ferry 2006; Keast et al. 2010; Nielsen
and Hoban 2015), and technological pedagogical content
knowledge (Paige et al. 2016). Finally, Wishart (2016), in a
multi-level study (primary, middle, and secondary school),
found that students of different ages can benefit from gener-
ating SMA in science classes. She found that the younger
students (aged 8–9) most often enjoyed making, whereas the
older ones (aged 15–16) most enjoyed seeing their finished
results.

Prior KnowledgeKidman et al. (2012) compared learning pro-
cesses in student-generated SMAs with Peirce’s (1955) model
of semiotic systems and claimed that students ‘prior knowl-
edge serves as a “referent” in this system, and it is important
for starting the cumulative semiotic progression responsible
for learning through generating SMA. As learners revisit their
prior knowledge through different semiotic systems during
design and development, building from one representation to
the next promotes learning (Nielsen and Hoban 2015).
However, Hoban and Nielsen (2013) found that the process
of creating a SMA was effective even if students (pre-school
children) did not have any prior knowledge about the domain.
This finding is in line with Church et al. (2007) andMills et al.
(2018a), who found that the SMA task induced higher cogni-
tive activity and led students to critically examine their own
mental models even in the absence of prior instruction.

Digital Literacies Paige et al. (2016) found that learners who
were novices in digital literacies had difficulties accessing
basic digital technology and equipment, impeding their con-
struction of a SMA. This finding supports the general impor-
tance of improving ICT skills in a cross-curricular fashion.
Brown et al. (2013) claim that explicit teaching of representa-
tional literacies, i.e., to effectively communicate ideas using
multimedia (Flood et al. 2004), could be beneficial in this
respect.

Discussion and Conclusions

Overall, the reviewed papers agree that engaging in designing
and developing a SMA can facilitate the acquisition of differ-
ent domain-specific/general knowledge and skills as well as
non-cognitive learning outcomes in different scientific con-
texts. However, studies report varying and sometimes con-
flicting results on students’ conceptual learning (Chang et al.
2010; Peter et al. 2011), retention (Ekici et al. 2014), interest
(Mills et al. 2018b), and student teachers’ knowledge of in-
structional strategies development (e.g., Vratulis et al. 2011).

Regarding the latter, a striking finding was that student
teachers did not start to use SMA in their own classes, indi-
cating that their knowledge of instructional strategies had not
matured.

The central focus of reviewed papers is on learning pro-
cesses and activities in student-generated SMAs, pertaining to
surface and deep learning processes and scaffolding tech-
niques toward specific learning activities. Peer-evaluation
and adding narration stand out as activities that can improve
the learning outcomes of student-generated SMAs. Deep
learning during the generation of a SMA does not happen
automatically (Kidman 2015; Kidman et al. 2012), and it
needs scaffolding techniques in the form of:

(1) explicit support in considering elements, behaviors, and
both before and during the construction of the SMAs
(Wilkerson et al. 2018);

(2) discourse on similarities and differences between
student- and expert-generated animations (Nielsen and
Hoban 2015; Yaseen and Aubusson 2018);

(3) teachers’ questions highlighting the science aspects of
the animation, provoking students’ critical thinking
(Mills et al. 2018a; Wilkerson et al. 2018; Yaseen and
Aubusson 2018);

(4) teaching the modes of discourse and the skills for class-
room discussion and collaborative learning (Brown et al.
2013); and

(5) providing rubrics for peer-evaluation (Kamp and Deaton
2013).

Some of the findings are in line with other studies in the
field of modeling-based learning. For example, in comparing
student- and expert- generated animations, it was found that a
discussion on the (mis)match between animations and target
phenomenon may be more valuable to students’ learning than
the development of a more accurate animation per se
(Aubusson et al. 2009). Yaseen and Aubusson (2018) argued
that the errors and imperfections in student-generated SMAs
create a locus for learning. Their findings also support the idea
that relatively weak student-generated animations can be bet-
ter stimuli for students’ learning than expert animations.

There is a small but growing body of research focusing on
learning environment prerequisites for using student-
generated SMAs, in terms of resources and settings. The con-
sensus among researchers is that the science concept which is
used for developing a SMA should be small, self-contained,
and easy to chunk and represent dynamic events, preferably
related to learners’ daily life. A plausible explanation is that a
highly complex topic adversely influences the learning task by
requiring a great effort in the actual representation. This can
take attention away from the scientific process or concept.

In most of the studies, learners designed and developed
SMAs in a collaborative setting. Findings reveal that the
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construction process encourages a practice of collaborative
learning and requires that students negotiate what content to
include and how to represent their ideas in multiple
modalities. Brown et al. (2013) demonstrate that the use of
SMA techniques prompted students to work cooperatively
and develop their cooperation skills.

Although many researchers argued that having prior
domain knowledge is crucial for starting the cumulative
semiotic progression in generating a SMA, Macdonald
and Hoban (2009) found that prior knowledge is not
predictive for the results of a knowledge post-test.
This result can be interpreted by referring to the design
procedure of a SMA, that in the first step, students are
needed to enrich their content knowledge about a given
science concept. Thus, this initial step helps them to
acquire needed knowledge for building the SMA.

Implications for Research and Practice

In our review, the qualitative studies outnumber the quantita-
tive ones, which indicates a further need for quantitative re-
search in the field. As qualitative research on pedagogical
effects of student-generated SMAs in science classes domi-
nates the field so far, several researchers recommend (quasi-)
experimental designs to generate data to compare the learning
outcomes with those of other forms of instruction, such as
direct instruction or constructivist approaches (Hoban et al.
2011; Hoban and Nielsen 2013, 2014).

While there has been much mention of both person-
ality and cognitive factors relating to learning with ex-
ternal representations (see ChanLin 2001; Klein 2003),
no research has been found to assess or control for
these factors in student-generated SMA. For example,
many researchers argued that spatial ability is crucial
for any modeling activity, especially when students are
engaged with dynamic and static visualization (Höffler
2010; Sudatha et al. 2018). Spatial ability is defined as
the ability of “thinking about the shapes and arrange-
ments of objects in space and about spatial processes,
such as the deformation of objects, and the movement
of objects and other entities through space” (Marunic
and Glazar 2014). Mayer (1994) found that students
with lower spatial ability have difficulties processing
and profiting from the animations, and students with
higher spatial ability profit from such animations.
Although Nielsen and Hoban (2015) referred to spatial
ability as a critical factor for generating SMA, none of
the studies in this review considered and controlled for
this ability. Therefore, it is recommended to conduct
quantitative studies controlling for spatial ability as well
as other personality and cognitive factors.

Some studies suggest working with multiple ages, gen-
ders, and cultural influences to examine social factors in
using SMAs in the classroom (Church et al. 2007), or to
repeat the study with a range of learners such as student
teachers and different levels of students in general (Hoban
et al. 2011). Also, with regard to the collaborative settings,
future research has to take into account crucial factors
such as group composition (Wishart 2017), demographic
population, and group size (Brown et al. 2013).

Most of the studies conducted so far have focused
mainly on pre and post data collection and not on
data collection during the actual development process.
In this regard, Yore and Treagust (2006) state that there
have been few studies to investigate the “enhanced cog-
nition that occurs during the transformation from one
representation to another representation or one mode to
another” (p. 208). Therefore, there is a need for further
research on learning outcomes, and on the nature of the
learning process, how that learning develops both in and
between the different stages of creating a SMA. This
will improve the understanding of how each representa-
tion or mode influences learning, especially in relation
to the proposed educational affordance (Hoban et al.
2009a; Hoban and Nielsen 2010, 2012; Wishart 2016).

Although some research has been done on teacher practices
and instructional strategies of successful implementation of
SMA, there is a need for more research focusing on the role
of the teacher in supporting student learning with this model-
ing technique (Chang et al. 2010).

Last but not least, teachers and researchers should
pay close attention to the different learning pathways
(i.e., deep vs. superficial learning). Since it is quite
common and easy for the students to take the surface
learning pathway, teachers should employ different scaf-
folding techniques such as guidance about general
modeling strategies, showing expert-generated anima-
tions, asking questions, and providing a rubric for
peer-evaluation in order to elicit deeper learning.
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