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Abstract— Clouds and cloud shadows heavily affect the quality
of the remote sensing images and their application potential.
Algorithms have been developed for detecting, removing, and
reconstructing the shaded regions with the information from
the neighboring pixels or multisource data. In this article, we
propose an integrated cloud detection and removal framework
using cascade convolutional neural networks, which provides
accurate cloud and shadow masks and repaired images. First,
a novel fully convolutional network (FCN), embedded with
multiscale aggregation and the channel-attention mechanism, is
developed for detecting clouds and shadows from a cloudy image.
Second, another FCN, with the masks of the detected cloud
and shadow, the cloudy image, and a temporal image as the
input, is used for the cloud removal and missing-information
reconstruction. The reconstruction is realized through a self-
training strategy that is designed to learn the mapping between
the clean-pixel pairs of the bitemporal images, which bypasses
the high demand of manual labels. Experiments showed that our
proposed framework can simultaneously detect and remove the
clouds and shadows from the images and the detection accuracy
surpassed several recent cloud-detection methods; the effects of
image restoring outperform the mainstream methods in every
indicator by a large margin. The data set used for cloud detection
and removal is made open.

Index Terms— Convolutional neural networks (CNNs), cloud
detection, cloud removal, multitemporal remote sensing images.

I. INTRODUCTION

AS THE most important technology to obtain the geo-
metric and physical information of the Earth surface

[1], remote sensing has raised growing attention and achieved
wide applications in a variety of disciplines and industries.
However, due to the thick atmosphere of the Earth, the quality
of the remote sensing data is severely influenced by the clouds
and cloud shadows. The clouds in the remote sensing images
cause a series of problems in localization, image interpretation,
data fusion [2], and object detection [3]. Consequently, it is
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important to detect the clouds and shadows and restore the
shaded regions from the remote sensing images.

A. Review of Cloud Detection

The fractal structures in the geometry and the diversity
in the spectrum of the clouds cause challenges in detecting
clouds from the remote sensing data. Some studies focus on
the spectral bands that are sensitive to the clouds and extract
their morphological, biological, or physical information to dis-
criminate the cloud from the background [4]–[9]. For example,
Braaten et al. [4] used the brightness and the normalized
difference between the red and green bands to identify the
clouds, and the near-infrared (NIR) band for distinguishing the
cloud shadows. Fisher [5] used the NIR and shortwave-infrared
bands, and watershed-from-markers transform to detect the
cloud and shadow regions from the SPOT5 HRG imagery.
Li et al. [8] introduced a spatial–spectral domain cloud-
detection model for the GF-1 imagery, in which a coarse cloud
mask was refined using the spectral, geometric, and texture
features. Zhu and Woodcock [9] attempted to detect clouds by
several spectral tests including the top of atmosphere (TOA)
reflectance and brightness temperature from thermal bands
and find cloud shadows according to the darkening effect in
the NIR bands. There are also studies designed for detecting
common shadows from a single image [10]–[12].

Other studies attempted to detect clouds from the multitem-
poral images. Some early methods detected clouds through
generating a change map between different temporal images
with an empirical threshold that discriminates the cloud and
noncloud areas. Wang et al. [13] developed the image-fusion
and wavelet-transform technologies for the detection and
removal of clouds and cloud shadows from the multitemporal
Landsat TM images, but designed the detection and removal
as two independent procedures. Bian et al. [14] calculated
the difference in the blue bands between the bitemporal HJ-1
images to discover the clouds. Hagolle et al. [15] detected
clouds based on a sudden increase in the reflectance in
the blue wavelength on a pixel-based change map from the
bitemporal images. As false changes are inevitable due to
different imaging conditions, sensors, seasons, and so on, the
generality ability of these change-detection-based methods is
largely limited.

A group of widely applied methods are based on conven-
tional supervised machine learning, which can detect clouds
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from a single image or multitemporal images. For example,
a support vector machine (SVM) and its variations were
applied to discriminate the cloud from the background using
the luminance and texture features [16]–[18]. Azimi-Sadjadi
and Zekavat [17] introduced a hierarchical SVM structure
to classify six types of clouds and four land cover classes
with the mean and deviation of the temporal images as input.
Lee et al. [19] designed a multicategory SVM framework for
cloud classification.

The mainstream cloud-detection methods are deep learning-
based [20], [21]. As a powerful representation learning
method, deep learning, especially convolutional neural net-
work (CNN), has been widely applied to object detection,
segmentation, and denoising, as well as cloud detection.
Zhan et al. [22] introduced a multiscale prediction strategy,
integrating the low-level and high-level features from a CNN
to classify cloud and snow. Xie et al. [23] used the improved
simple linear iterative clustering (SLIC) to segment the remote
sensing images and then applied a CNN for cloud detection.
Very recently, several new studies appeared [24]–[31], and
all of them are the variants of a fully convolutional network
(FCN) and are featured with different optimization strategies
such as adopting a multiscale aggregation [27] or using atrous
convolutions [28].

B. Review of Cloud Removal

The study of cloud removal belongs to missing-information
reconstruction. The methodologies can be roughly classified
into four categories: spatial-based, spectral-based, temporal-
based and multisource-based methods.

The spatial-based methods attempt to recover the shaded
regions only from the clean pixels of an individual cloudy
image, that is, the pixels below the cloud and the shadow
are considered to share the similar textures as the cloud-
free neighborhood and can be restored from them. How-
ever, the shortcoming of this type of methods [32]–[36] is
obvious. The assumption of similarity between the shaded
area and its neighborhood on the large-size and complex
remote sensing images is rarely met. For example, a house
may be located at the center of a large farmland; the het-
erogeneity of the land covers is more complex in urban
areas.

The spectral-based methods are based on the complemen-
tary information between different spectral bands of a mul-
tispectral image. They rely on the prerequisite that parts of
the multispectral bands can penetrate thin clouds [37]–[41];
therefore, they are incompetent to restore images with thick
clouds.

Temporal-based methods introduce additional observations
from different time series at the same area to reconstruct the
corrupted region instead of using only the cloudy image, which
are more generic and commonly show a better performance.
According to the use of multitemporal images, it can be
classified into three categories [42]: temporal replacement,
temporal interpolation, and temporal learning.

The temporal replacement-based methods replace the miss-
ing regions in the cloudy images with the corresponding

clean pixels in the temporal images [43]–[45]. The temporal
interpolation methods are similar to the temporal replacement
methods but introduce some interpretation strategies, such
as ordinary cokriging interpolation [46] and neighborhood
similar-pixel interpolation [47].

Temporal learning methods aim to establish the relationship
between the temporal images by using the learning-based
methods. For example, a dictionary learning algorithm was
developed for the recovery of the cloud and shadow regions
from the multitemporal images [48]; random forest and CNN
were introduced to different tasks of missing-information
reconstruction [49], [50].

The temporal-based methods are sensitive to the geometrical
registration errors and the abrupt spectral changes between the
images, both of which will impact the effect of image-to-image
mapping.

The multisource-based methods focus on fusing the remote
sensing data from different types of sensors. In addition to
the fusion of the optical remote sensing images obtained
from different sensors, synthetic aperture radar (SAR) data are
recently considered as a new type of auxiliary data source for
the recovery of optical cloudy images, as microwave signals
are more capable of penetrating clouds [51], [52].

C. Objective and Contribution

Although cloud detection and cloud removal have been
extensively studied, they are treated independently with dif-
ferent methods: specifically, the former is handled with the
classification and segmentation technologies and the latter
is based on fusion and missing-information reconstruction.
As the cloud detection and removal are highly related and
complementary, an integrated framework processing the two
tasks simultaneously is favorable but currently missing. The
other problem of previous studies is that the advanced deep
learning method has not been fully introduced to the cloud-
removal task. For example, Zhang et al. [50] used a time- and
memory-consuming CNN structure instead of a mainstream
and efficient FCN structure.

In this article, we put forward a novel integrated framework
for simultaneous cloud detection and removal using cascaded
CNNs. The main idea and contribution of this article can be
summarized as follows.

1) The framework we proposed is the first deep learning-
based framework for integrated cloud detection and
removal, to the best of our knowledge. The frame-
work is based on multitemporal remote sensing images
and is generic for any cloud-detection algorithms and
cloud-repairing methods with multitemporal data. It is
also demonstrated that the integrated framework out-
performed recent CNN-based methods in either cloud
detection or cloud removal.

2) An FCN structure is designed for pixelwise cloud and
cloud shadow detection. The FCN focuses on the mul-
tiscale effects of the remote sensing data through intro-
ducing a multiscale aggregation that combines features
from different scales of a densely connected feature
pyramid and a channel-attention mechanism that seeks
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Fig. 1. Integrated framework of cloud detection and removal. The circled
C indicates a concatenation operator. The cloud-detection result is one of the
inputs for the CRN only in the training stage.

global consistency between these features, which boosts
the segmentation effects on remote sensing images from
those classic FCNs for general semantic segmentation.

3) In cloud removal, we introduced a self-training strategy,
i.e., without using any manually labeled samples, to
train another FCN for mapping a temporal image to a
current cloudy image. The strategy uses the relations
of clean-pixel pairs between the bitemporal images,
where invalid pixels (cloud and shadow mask) have been
excluded from the cloud-detection network (CDN). The
self-training strategy is a great benefit for a supervised
deep learning-based method that commonly demands
sufficient labeled samples.

4) The data set (http://gpcv.whu.edu.cn/data/) we used for
experiment has been made open, as we have found there
lacks open data sets for considering both cloud detection
and cloud removal.

The rest of this article is organized as follows. In Section II,
the integrated cloud-detection and removal framework and the
specific CNN networks for cloud detection and removal are
elaborated. The experimental results and the discussion are
presented in Sections III and IV, respectively. A conclusion is
given in Section V.

II. METHOD

A. Integrated Cloud-Detection and Removal Framework

The proposed framework for simultaneous cloud detection
and cloud removal is shown in Fig. 1. The input is a cloudy
image and a corresponding temporal image, which is processed
by two cascaded FCNs. The first FCN, called the CDN, is
developed for cloud and shadow detection. The second FCN,
the cloud-removal network (CRN), is developed for restoring
the cloud-shaded region with the input of the bitemporal
images. The detected clouds and shadows from the CDN are
the input of the CRN only in the training stage. Basically,
the framework can be seen as an integrated spatial–temporal–
spectral model, as it takes different spectral bands and tem-
poral images as inputs and uses CNNs to process the spatial
and spectral information.

B. Cloud and Shadow Detection

The CDN is implemented by a pixel-to-pixel FCN with a
DenseNet-style building block [53], embedded with a multi-
scale feature-fusion strategy and a channel-attention mecha-
nism to handle the clouds and shadows of various sizes and
shapes, and outputs a cloud mask map with the same size of
the input image. As is shown in Fig. 2, the structure consists
of an encoder, a decoder, and lateral connections between
them. In each scale of the encoder, the densely connected
architecture is used, i.e., the features of all previous scales
are concatenated to the current features. In each DenseNet
block, the input feature (denoted as dotted parallelogram) is
concatenated to the feature maps after each of the first and
second convolutions, respectively, both of which have been
activated by the ReLU. The downsampling layer in the encoder
and the upsampling layer in the decoder are realized by using
a 2× max pooling and a 2× deconvolution, respectively. To
make full use of the multiscale features, we upsample the
last features of each scale to the original resolution, apply
a 1 × 1 convolution for compression and an ReLU for
activation, and then concatenate them channelwisely to form
a multiscale feature map (the concatenated four gray layers).
Since the multiscale feature map is inconsistent between the
channels as they come from different scales, we further apply a
channel-attention module (CAM) on the map to achieve global
consistency between the channels.

Our CAM is inspired by the work of Vaswani et al. [54]
and Fu et al. [55], and combines the former’s multiheaded
self-attention strategy and the latter’s between-channel inter-
dependence calculation. As shown in Fig. 3, the CAM takes a
feature map (denoted as F with dimension H ×W ×C) from a
CNN as input and processes it with three independent 3 × 3
convolutions to produce three parallel feature maps K , Q,
and V . The reshaped K and Q (N = H× W ) are multiplied
to produce a C×C feature map, which is then multiplied by the
reshaped V . Finally, the result of the dot product is reshaped,
convoluted with a 1 × 1 kernel, and added to the input feature
map to be the channel-attention boosted feature map.

The specific parameters and superparameters in the CDN
are set as follows: the stride of the convolution layer is 1
and the kernel size is 3. The rate of max pooling and the
stride in the deconvolution layers are 2. The growth rate
of a DenseNet block in encoder is set to 256. The feature
dimension of each scale in the decoder is 1024, 512, 256,
128, and 64, respectively.

A multicategory cross-entropy loss function is used to pro-
duce a probability map indicating how likely a pixel belongs to
the cloud and cloud shadow. We set a relatively low threshold
to translate the probability map to a mask map, which means
most of the cloud and cloud shadow regions will be covered
with a high recall. This guarantees that the rest of the images
are clean for training the following CRN, which will learn
an optimal radiometric transformation between the noncloudy
regions of the bitemporal images.

C. Cloud Removal

The cloud-removal process is a dual task: a relative radio-
metric transformation from the temporal image to the current
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Fig. 2. Structure of the CDN. CAM is the channel-attention module.

Fig. 3. Structure of the proposed CAM for cloud and cloud shadow segmentation. The F , K , and Q are the feature maps. H and W indicate the height and
width of the features. C is the dimension of the features. N = H × W .

image, which ensures the radiometric consistency of the two
images, and a restoration of the shaded area using the learned
transformation parameters. The dual task is simultaneously
handled by a self-trained CRN based on an FCN structure.

In the training stage, the CRN learns the relative radiometric
transformation through the corresponding pixels of the two-
time images after having automatically excluded the shaded
pixels, which were detected by the CDN, from the bitemporal
images. The core idea of the CRN is to simulate randomly
the cloud regions as the training samples, which avoids the
requirement of true samples. A highly accurate recovering
model is trained with these samples to restore an image

that approaches the original cloudy image with real clouds
excluded.

Fig. 4 shows the cloud-removal process. In the training
stage, the input images of the CRN are the simulated dam-
aged image (A2) and the temporal clean image (B1). For
generating the two images, the cloud (marked in green) and
cloud shadow (marked in red) masks detected from the CDN
are required. First, the masked pixels are excluded from
the bitemporal images. Then, new clouds (black pixels) are
randomly simulated in large amount in the current image
(A2). The CRN is trained with A2 and B1 to adapt to any
possible missing information that is simulated and to produce
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Fig. 4. Cloud-removal process. In the training process, real cloud and shadows (green and red masks) are detected from the CDN with high recall; simulated
clouds (black mask) are randomly generated to simulate the arbitrary clouds. In the test, the input is the original bitemporal images.

Fig. 5. Structure of a CRN.

an image approaching to the current image with the real clouds
excluded, i.e., the current clean image (A1).

The self-training strategy has two obvious advantages. First,
the pixels in the simulated cloud region can be used as a part
of ground truth to assess quantitatively the performance of an
algorithm, which cannot be accomplished with the real cloud
regions. Second, the simulation of a large amount of random
clouds helps build a robust model that can recover arbitrary
cloud-shaded area in the real remote sensing images, including
those cases in the test images; otherwise, the usage of the
small set of real cloudy images can hardly train an applicable
model.

In the prediction stage, the network takes the original
bitemporal images as input and produces a repaired image.
Note that the cloud location and region in the cloudy image
is not required, as the model has learned how to fix arbitrary
clouds in an image through the training process with simulated
clouds.

It should also be noted that, to achieve the optimal perfor-
mance of the CRN model, the model should better be trained
on the current bitemporal images to be repaired. Hence, the
simultaneous cloud-detection and removal framework plays a
key role in providing the mask of cloud and shadows.

The structure of the CRN is shown in Fig. 5. It can be
seen as a simplified version of the CDN, where the DenseNet-
style building block is replaced with the simpler VGG building
block and the CAM in the decoder is removed. Each VGG
block contains two 3 × 3 convolution layers followed by
an ReLU. The features after multiscale fusion are used to
reconstruct the final cloud-free images. The feature dimensions
from the original to the lowest scale in the encoder and decoder
are symmetrically set to 64, 128, 256, 512, and 1024.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To demonstrate the effectiveness of our integrated frame-
work for cloud and shadow detection and removal, several
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Fig. 6. Six different areas of the WHU Cloud data set. The first row is the cloudy images to be processed and the second row is the temporal auxiliary
images.

Fig. 7. GF data set, which is very different from the WHU data set, contributing to a reliable comparison between the cloud-detection methods.

TABLE I

SUMMARY OF THE STUDY SITES OF WHU CLOUD DATA SET

experiments are performed and evaluated quantitatively and
visually. In Section III-A, the data set is introduced;
cloud-detection and removal experiments are described in
Sections III-B and III-C, respectively; in Section III-D, the
integrated cloud-detection and removal test is analyzed.

A. Experimental Data Set

A new Landsat-8 data set is proposed for simultaneous
cloud detection and removal (called WHU Cloud data set).
The data set consists of six cloudy and cloud-free image pairs
in different areas (Fig. 6). The original data are downloaded
from USGS (https://earthexplorer.usgs.gov/). To avoid real
land cover changes, the bitemporal images were acquired at a
similar time. We manually delineated the areas of clouds and
shadows as ground truth. To make up the scarcity of such
a data set designed for both cloud detection and removal,
we open the data set to facilitate relevant supervised deep
learning-based methods ( http://gpcv.whu.edu.cn/data/).

Table I lists the location, ground cover, and acquisition time
of the six images. The tile of path/row 118/032 is located at the
junction of Liaoning Province, China, and North Korea, and
covers forests, residential areas, and sea. The image obtained
on May 23, 2018 is used as the temporal reference data, and
the cloud and shadows in the image on June 24, 2018 is to

be detected and repaired. The second tile, path/row 119/38, is
located at the eastern flat coastal area of China with a large res-
idential area. The tile of path/row 123/39 consists of mountains
and plains with lakes. The fourth area is in Hebei Province,
northern China (path/row 124/33). Half of this image covers a
plain area with cities and the other half mountains. The tiles
path/row 126/35 and path/row 127/34 are mountainous and
located in Shanxi and Shaanxi provinces, China.

To evaluate comprehensively our method, an additional GF
cloud-detection data set [24], [31] is employed in the cloud-
and cloud-shadow-detection task. The data set consists of ten
GF cloudy images and covers a wide range of land covers
including seaside, lakes, mountains, urbans, cropland, and
deserts (Fig. 7).

To make the algorithm compatible with most of the optical
satellite images, only red, green, and blue bands, which
correspond to bands 4, 3, and 2 of the Landsat 8 images, and 4,
3, and 2 of the GF images, are chosen. In practice, the images
were seamlessly cropped into 512 × 512 patches for training
and prediction, considering the GPU memory capacity.

For the cloud-detection task, on the WHU Cloud data
set, 680 patches are prepared for training, 50 patches for
validation, and 129 for test. From the GF data set, 1604 patches
are selected for training, 1200 for validation, and 1046 for test.
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Fig. 8. Comparison of the cloud- and shadow-detection results predicted from different methods on the WHU-Cloud data set. (a) Image. (b) Label. (c) CDN.
(d) MSCN. (e) MF-CNN. (f) DeeplabV3+. (g) U-Net. White mask is cloud and the gray one is the cloud shadow.

In the cloud-detection process, the adaptive moment estima-
tion (Adam) optimization algorithm is used and the learning
rate is set to 10e−5. In the cloud-removal process, only
randomly simulated samples on the current image pairs are
used for training, 86 patches for validation, and 100 for testing
on average. The stochastic gradient descent (SGD) is used, and
the learning rate is set to 10e−4. The training processes for
both tasks were iterated 1000 epochs for our model and other
deep learning-based methods that are applied for comparison.
The algorithm is implemented using the Keras framework
of Windows 10 environment, with an NVIDIA 11G 1080-Ti
GPU.

B. Cloud and Shadow Detection

The proposed CDN for cloud and shadow detection
is compared with several general segmentation methods,
DeeplabV3+ [56] and U-Net [57], and two very recent CNN-
based cloud-detection methods, MF-CNN and MSCN [24],
[31], both quantitatively and visually. IoU, recall, precision,
and overall accuracy (OA) are employed to evaluate the
quantitative results. The OA assesses the pixel-level accuracy

including foreground (cloud and cloud shadow treated as two
types) and background, and other indicators are for the assess-
ment of foreground detection. In Table II, where different
methods are tested on the WHU data set, S&C indicates
that the segmentation results of cloud and cloud shadow are
counted together. The best result of each index is stressed in
bold, and the second-optimal is underlined. It is observed that
all the indices of the CDN we proposed surpassed all the other
methods in the cloud detection. The IoU of our method is 10%
higher than that of the second-best method. In the integrated
cloud and cloud shadow detection, the IoU of our method
is 9% higher than the second-best one. The DeeplabV3+
performed worse than the U-Net, and the MF-CNN and MSCN
performed the worst.

Fig. 8 shows the examples of the cloud and shadow detec-
tion using different methods. The MSCN and DeepLabV3+
can only distinguish a part of fragmented clouds. The
deeplabV3+ has weak detection ability for shadows, which
may be caused by the scarce training samples and coarse
upsampling process in its decoder. The MSCN showed poorer
performance than the U-Net, likely due to the introduction of
batch normalization. According to [58], the performance of
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Fig. 9. Comparison of the cloud- and shadow-detection results predicted from different methods on the GF data set. (a) Image. (b) Label. (c) CDN.
(d) MSCN. (e) MF-CNN. (f) DeeplabV3+. (g) U-Net.

Fig. 10. Comparison between different cloud-removal methods based on the simulated clouds on the WHU data set. The region in the red thick box is
enlarged at the top-right corner. (a) Simulated cloudy image (black mask). (b) Temporal image. (c) Ground truth. (d) Result of STSCNN. (e) U-Net. (f) CRN.

batch normalization relies on large batch size. While in our
experiment, the batch size is set to 2 due to the restriction
of the GPU memory. The results of U-Net are oversmooth
due to the lack of the multiscale aggregation strategy, as used
in our method. The MF-FCN produced oversharp boundaries.
Our CDN performed obviously better than the other methods
and predicted a mask map close to the ground truth. With our
method, it is guaranteed that clean pixels can be segmented
from clouds and shadows to train the CRN that follows.

Table III shows the quantitative results of different methods
on the GF data set. Our method performed the best again. It
outperformed the second-best DeeplabV3+ over 9% IoU at
the cloud and shadow detection. The MSCN and MF-CNN
performed almost the same as DeeplabV3+, and U-Net was
the worst. Fig. 9 shows some examples of various land cover
scenes covering the clouds. Our method exhibited an overall
advantage against the other methods at various terrain and
atmospheric conditions.
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TABLE II

QUANTITATIVE EVALUATION OF THE CLOUD AND SHADOW DETECTION ON WHU CLOUD DATA SET. S&C IS THE
JOINT SEGMENTATION RESULT OF CLOUD AND SHADOW

TABLE III

QUANTITATIVE EVALUATION OF THE CLOUD AND SHADOW DETECTION ON GF DATA SET

Fig. 11. Simulated masks with different sizes and types. (a) Image with no shaded pixels. (b)–(e) Images with increasing missing pixels. The percentages
of the missing pixels in (b)–(e) is 0.7%, 8%, 18%, and 22%, respectively.

C. Cloud Removal

In this section, the experiments of different cloud-removal
methods, our CRN, the recent spatial–temporal–spectral CNN
(STSCNN) [50], and the U-Net [57] are executed for quanti-
tative and visual comparisons.

Several representative indicators are employed to evaluate
the reconstruction result quantitatively, including the structural
similarity index measurement (SSIM), peak signal-to-noise
ratio (PSNR), spectral angle mapper (SAM), and correlation
coefficient (CC). The SSIM measures the similarity in the
structures and pixels between the prediction result and the
ground truth. The PSNR is the ratio between the maximum
power of a signal and the power of noise that affects the fidelity
of its representation. The SAM reveals the spectral distortion

of the reconstruction result. The CC assesses the correlation
of the prediction and ground truth in pixel level.

For quantitative assessment, we randomly simulated the
missing pixels in a current image without clouds, as the pixel
values beneath the true clouds are inaccessible to evaluate any
indicator. The goal is to train a network with the input of the
bitemporal images to produce a repaired image approaching to
the current image. The ground truth is the whole current image
instead of only the shaded area so that the reconstruction effect
of an algorithm could be evaluated comprehensively.

After trained with the simulated masks, the prediction
results of the three methods are displayed in Table IV. In all
the indicators, our CRN considerably exceeded the other two
methods. As the U-Net and the CRN share a similar FCN
structure, it is concluded that the multiscale strategy through
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Fig. 12. Comparison of different methods on reconstructing real cloudy area from the WHU data set. (a) Cloudy image. (b) Temporal image. (c) STSCNN.
(d) U-Net. (e) CRN.

Fig. 13. Prediction results of integrated cloud and shadow detection and removal. (a) Original cloudy data. (b) Cloud (green) and shadow (red) masks
detected from the CDN. (c) Simulated random masks (black) for training the CRN. (d) Temporal data excluding the shaded regions. (e) Reconstruction results
of simulated masks. (f) Final cloud-removal results. Note that the first row is a special case where the simulated mask is set empty.

a concatenation of the features from different scales improves
the performance of an FCN, considering the size differences
of the objects on the remote sensing data. Although the
STSCNN introduced dilated convolutions to extract features
with different-size receptive fields, its inferior performance
is resulted from two factors. First, the size of all feature
maps is fixed and the feature channels are shallow. It is a
time- and memory-consuming CNN structure compared with

the mainstream FCN structure. Second, different feature maps
extracted from the dilated convolutions cannot completely
reflect the scale robustness, because an aggregation of mul-
tiscale information is lacking.

Fig. 10 shows an area covering a large river. The missing
information, i.e., the simulated black mask, is poorly predicted
by the STSCNN [Fig. 10(d)]. The enlarged window contains
obvious raw textures from the temporal image, indicating that
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Fig. 14. ResNet-style building block with (Left) BN and (Right) without BN layer.

TABLE IV

QUANTITATIVE EVALUATION OF DIFFERENT CLOUD-REMOVAL ALGORITHMS ON SIMULATED CLOUDS ON DATA I OF THE WHU DATA SET

TABLE V

QUANTITATIVE EVALUATION OF OUR CRN ON DIFFERENT MASKS

the radiometric transformation between the bitemporal images
was not properly learned. The U-Net [Fig. 10(e)] and CRN
[Fig. 10(f)] show much better results both in textural and
spectral information preservations. However, it can be clearly
observed that the CRN reconstructed more details, preserved
finer and clearer textures, and was the closest to the ground
truth. The U-Net blurred the image, as it is predicted only
through one upsampling path from the lowest spatial resolution
layer.

The algorithm’s stability is further evaluated through vary-
ing sizes and types of the simulated masks (Fig. 11). Table V
shows the metrics stay almost the same with respect to
the increased amount of missing pixels, demonstrating the
robustness of our algorithm against different sizes and types
of masks.

The trained models on the simulated cloud masks can then
be applied to reconstruct the real cloudy area. In Fig. 12,
we visually investigate the cloud-removal effects of different
methods, as the values of the shaded pixels are unavailable for
quantitative evaluation. It is observed that the cloud-shaded
area in the top-right rectangle is considerably blurred by the
STSCNN, which is also confused by the snow in the eclipse.
The U-Net and our CRN can preserve the color and texture
of the snow area. In the top-right cloudy area, our method
preserved more details than the U-Net, demonstrating again
the effectiveness of the multiscale strategy.

D. Integrated Cloud Detection and Removal

This experiment evaluates the cloud-removal performance
of our integrated cloud-detection and cloud-removal frame-
work. A high recall rate up to 95% of cloud and shadow
detection is realized through adaptively adjusting the threshold

that translates the probability map obtained from the CDN
to a mask map, which ensures most of the cloud areas are
located and the rest of the pixels are clean. Then, the mask
map is fed into the CRN along with the bitemporal images.
Although the real pixels underneath the clouds and shadows
are unavailable, the quantitative cloud-removal performance
of the integrated framework can be assessed by the simulated
masks in the prediction stage.

To demonstrate the advantage of our integrated cloud-
detection and removal framework (Fig. 4) and the self-training
strategy, we compare it with a CRN that is trained with
the available cloud-detection data set. In Table VI, “pretrain”
means the model is pretrained on the WHU training set, i.e.,
all the pixels excluding clouds and shadows are used to train
the CRN. “Self-train” means the model is self-trained on the
randomly simulated masks of the current image, excluding the
detection results from the CDN. From Table VI, our “Self-
train” method is comprehensively better than the pretrained
CRN. The reason is explicit: due to the diversity of images,
e.g., the time interval between the current and temporal data,
imaging condition, and regional terrain, which also result in
significant varying of the values of PSNR, SSIM, SAM, and
CC, the pretrained model has not enough generalization ability
against the various situations to recover a new cloudy image
that is not trained on. In contrast, our integrated detection and
recover model is highly advantageous and can significantly
improve the performance from a general pretrained model, as
the self-training is specified for only the current image pairs
and could be implemented without any labels.

In Fig. 13, the detected clouds and shadows are marked
in green and red, respectively [Fig. 13(b)], on the original
cloudy images [Fig. 13(a)]. Fig. 13(c) simulates random clouds
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Fig. 15. Comparison of different FCN structures in cloud and shadow detection. (a) Cloudy image. (b) Label. (c) U-Net. (d) CRN(VGG). (e) CRN(ResNet).
(f) CRN(ResNet-BN). (g) CRN(DenseNet). (h) CRN(VGG) with CAM. (i) CRN(ResNet) with CAM. (j) CRN(DenseNet) with CAM (i.e., our CDN).

TABLE VI

EVALUATION OF CLOUD REMOVAL ON SIMULATED MASKS USING THE INTEGRATED CDN AND CRN

(black) to evaluate quantitatively the CRN along with the tem-
poral image [Fig. 13(d)]. Fig. 13(e) and (f) shows the recon-
struction results of only the simulated cloudy masks and the
complete cloudy images, respectively. It is observed that the
reconstructed images preserved the color and texture of
the original images, and the shaded areas were well repaired.

IV. DISCUSSION

The novel deep learning framework for simultaneous cloud
detection and removal integrates the tasks of cloud and cloud
shadow detection and cloud removal. It not only improves
from the recent methods to enable integrated cloud detection
and removal but also is a general framework for accom-
modating different algorithms or tasks, e.g., a traditional
spectral-based cloud detection, and other missing-information-
reconstruction problems, e.g., the dead lines in the Aqua
MODIS band 6 and the Landsat SLC-off problem. The other
contribution is that we advanced the CDN from a conventional
FCN by introducing a multiscale strategy, a densely connected
encoder, and a CAM. In this section, ablation experiments are
executed to demonstrate explicitly their effects. The perfor-
mance of the alternative CNN building blocks and the effect of
batch normalization are also discussed. Finally, the limitations
and extensions of our method are analyzed.

A. Cloud Detection With Different Building Blocks

The ResNet-style building block is another popular block
for a CNN-based feature extractor in addition to the VGG

and DenseNet blocks, both of which have been used in
our networks. Although the ResNet block is applied in the
MSCN [31], the BN layers and small batch size hindered
its performance. For the ablation study, we start from the
U-Net and the CRN (Fig. 5), and the latter can be seen as a
multiscale-aggregation-boosted U-Net. Based on the relatively
simple CRN, we replace the VGG block with the ResNet
block with and without BN layers (Fig. 14) and DenseNet
block, respectively, and introduce the CAM block to assess
the performance of the building block variations as well as the
effects of the CAM. Note that our CDN for cloud detection
is exactly equal to the combination of CRN(DensNet256) and
CAM.

Table VII lists the detection results of different methods,
which lead to several implications. First, the side effect of the
BN layer when the batch size is small is verified, which is
consistent with the observation from [58]. The results of the
CDN without BN (ResNet) outperformed the CDN with BN
(ResNet-BN) more than 15% IoU. Second, the importance of
the multiscale strategy is clearly demonstrated. Without multi-
scale aggregation, the U-Net performed the worst (62.6% IoU
in S&C) In contrary, our multiscale-boosted CRN structures
with the three different building blocks all obtained much
better results, i.e., 68.8% (VGG), 70.1% (ResNet), and 71.4%
(DenseNet) IoU on the combined cloud and shadow detection.
Third, the CRN (DenseNet), with the least parameters, shows
to be marginally advantageous over the other models. The
shallow and middle-level features may be important to identify
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Fig. 16. Examples of cloud and shadow detection with different growth rates based on CDN on the WHU Cloud data set. (a) Image. (b) Label. (c) CRN(VGG).
(d) CRN(DenseNet 256). (e) CRN(DenseNet 128). (f) CRN(DenseNet 64).

TABLE VII

QUANTITATIVE EVALUATION OF DIFFERENT FCN STRUCTURES ON THE WHU DATA SET

clouds and shadows from the backgrounds. Accordingly, the
densely connected architecture that uses all features at different
levels in the encoder performed the best. Finally, the channel-
attention mechanism is demonstrated effective. Under different
building blocks, the performances of using the CAM were all
improved compared with the original ones. The best perfor-
mance is achieved by the combination of CRN (DenseNet256)
and CAM, which is precisely the CDN structure we proposed.

Fig. 15 shows four examples of cloud and shadow detec-
tion from different FCN structures. The result of U-Net
[Fig. 15(c)] is oversmooth and rough due to the absence
of a multiscale strategy. The CRN(VGG) [Fig. 15(d)] is
obviously better than the U-Net. The map generated by
the CRN(ResNet-BN) [Fig. 15(f)] contains many fragments,
and shadows are missing; on the contrary, the map from
the CRN(ResNet) [Fig. 15(e)] without BN is much better.
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TABLE VIII

QUANTITATIVE EVALUATION OF THE CLOUD DETECTION FOR THE ANALYSIS OF GROWTH RATE ON WHU CLOUD DATA SET

TABLE IX

QUANTITATIVE EVALUATION OF DIFFERENT FCN STRUCTURES ON SIMULATED CLOUDS ON DATA I OF WHU DATA SET

The maps generated by the CRN(DenseNet) [Fig. 15(g)] are
similar to the VGG and ResNet-based structure. Boosted
with the CAM that helped reorganize the between-channel
consistency of the features from different scales, all the
three structures [Fig. 15(h)–(j)] can delineate more details on
individual cloud and shadow with more precise boundaries.

B. Growth Rate in Densely Connected Architecture

The dimension of the feature maps in each DenseNet block,
which is called growth rate [53], controls the feature dimension
and the total amount of parameters. In this section, the effect
of growth rate is discussed. Three different cloud detection
experiments are conducted, in which the growth rate is set as
256, 128, and 64, respectively.

The quantitative evaluations of cloud and shadow detection
on the WHU Cloud data set for the analysis of growth rate are
presented in Table VIII. The IoU of the CRN(DenseNet) with
growth rate 256 is significantly higher than that of CRN(VGG)
by 2% on average. The result with the growth rate equal
to 64 also proves that a small growth rate is sufficient to
obtain perfect detection performance on the data set. It is
worth noting that the consistent conclusion as quantitative
evaluation is made from Fig. 16. Local details are amplified
in the bottom left of the image, CRN(DenseNet) with the
growth rate equal to 256 achieves the most comprehensive
and complete detection. While the result of CRN(VGG) is
fragmented.

C. Cloud Removal Using Different FCN Structures

We also compare the performance of different building
blocks and CAM in cloud removal. Table IX shows the
quantitative comparisons of different FCN structures based on
the simulated cloudy images. The performances of different

FCN structures for cloud removal are generally the opposite
of their performances in the cloud detection. The CRN(VGG)
outperformed the other models in all the indicators. The SAM
score of the CRN(ResNet) is the highest, indicating the result
has severe spectral distortion. The CRN(DenseNet) performs
poor as well. The indication is that in the cloud-removal
task, the simplest VGG block performs well. Moreover, it is
observed that the CAM is not necessary, which even slightly
downturned the performances. It is uncommon in image
classification or semantic segmentation, where an attention
mechanism almost always boosts the CNN backbone. These
could be explained by the dissimilarities between the two
tasks. Cloud removal is a pixel-to-pixel mapping from the
temporal image to the current image; in other words, every
pixel plays its role and concentrating on parts of pixels seems
unnecessary. It is worth noting that although simple network
structures seem welcoming in the cloud-removal task, the
multiscale strategy is necessary, which is the reason that our
CRN outperforms the U-Net on all the indicators in Table IV.

The qualitative comparison of different cloud-removal
methods on real clouds is shown in Fig. 17. The CRN,
CRN(ResNet), and CRN(DenseNet) all repaired the images
well. In the first row of Fig. 17, the spectral distortion of the
CRN [Fig. 17(c)] is the smallest, and the zoomed-in region of
the other five methods [Fig. 17(d)–(h)] seems darker, which
is impacted by the dark temporal image. In the second row,
except the CRN(DenseNet) with CAM [Fig. 17(h)] mistook
the color in the circled region, and all the other methods
[Fig. 17(c)–(g)] obtained satisfactory results.

From the comparison of the cloud-detection and cloud-
removal experiments under different network structures and
settings, it could be concluded that the performance of a CNN
on a specific task is not fully dependent on the complex struc-
tures and extensive parameters, even if samples are sufficient,
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TABLE X

CLOUD AND SHADOW DETECTION RESULTS (IOU) ON DIFFERENT TYPES OF TERRAINS AND LAND USES ON WHU AND GF DATA SETS

Fig. 17. Comparison of the cloud-removal methods with real clouds. (a) Cloudy image. (b) Temporal image. (c) CRN. (d) CRN(ResNet). (e) CRN(DenseNet).
(f) CRN with CAM. (g) CRN(ResNet) with CAM. (h) CRN(DenseNet) with CAM.

for example, in the case of cloud removal, every clean pixel is
a sample. This implies that empirical network structure design-
ing is important for a specific remote sensing data processing
task, just as handcraft feature designing for a conventional
machine learning method. The automated machine learning
(AutoML) technology may be introduced in further study, as
it may automatically find optimal models for a specific task.

D. Impact of Different Land Types on Cloud Detection

We list the detection results (in IoU score) on different types
of terrains or land uses on both WHU and GF data sets using
our CDN (Table X). After the CDN model has been pretrained
on the training samples covering different types, it is applied
to the subsets of the images, which each singles out a terrain or
land use type. From Table X, the cloud-detection performance
is relatively less optimal in snow or ice regions, which is
likely due to the similar patterns shared between snow, ice,
and clouds. Bare land also obtained a lower score in both data
sets. This is caused by the limited areas of bare land in both
data sets, leading to inadequate training samples of this land
cover type. In other terrain or land use types, the CDN showed
stable performance and the IoU scores all exceeded 70%.

E. Limitation and Extension

Our framework can be directly extended to multi or hyper-
spectral, medium- or low-resolution remote sensing images, as
these structured remote sensing data can be easily regularized,
resized, or compacted by a convolution operator to be the input
of any CNN structure. The limitation exists in the applications
on high-resolution images. The registration accuracy of the
high-resolution temporal images, e.g., Worldview images, may

hardly reach subpixels. This will impact the learning ability
of the CRN from pixel pairs containing inaccurate corre-
spondents. An available high-accuracy digital surface model
(DSM) can help the registration to achieve subpixel accuracy,
or the images could be cropped smaller to improve the local
registration accuracy.

The WHU and GF data sets mainly consist of various
types of heavy clouds. However, as the deep learning-based
methods are generic (as has been widely demonstrated in
various disciplines and applications), we believe when trained
with data sets covering light clouds, our model is capable of
predicting light clouds.

The percentage of cloudage is not a significant parameter to
our CRN. The CRN can be trained with all the noncloud pixel
pairs. In Table IV, we have demonstrated that its performance
was not affected by cloud coverage that is up to 22%. Taking
a Landsat 8 image with 60% cloud coverage for example,
there are still millions of samples remained to train a CRN
model. However, in practice, an image with more than 30%
or 50% cloud coverage may be considered removed instead of
repaired.

The result of the CRN depends on the high performance
of the CDN, which may not be always guaranteed due to
the diversity in the remote sensing data, different imaging
situations, and labeled training samples. The strategy in this
article is to improve the recall rate as much as possible after
the CDN model has been trained with available samples.
The precision of cloud detection is correspondingly reduced,
but this does not affect the training of the CRN. A possible
improvement is to consider the precision–recall curve of the
background, from which these clean pixels with a high degree
of confidence can be used preferentially.

Authorized licensed use limited to: University Library Utrecht. Downloaded on October 09,2023 at 14:35:37 UTC from IEEE Xplore.  Restrictions apply. 



JI et al.: SIMULTANEOUS CLOUD DETECTION AND REMOVAL FROM BITEMPORAL REMOTE SENSING IMAGES 747

V. CONCLUSION

In this article, we proposed a novel deep learning framework
for the integrated cloud and cloud shadow detection and
removal from the bitemporal images. This integration greatly
simplifies the processing of cloudy remote sensing images.
Our framework is also generic to different cloud-detection or
removal algorithms and other missinformation-reconstruction
problems in remote sensing.

We developed two FCNs that formed the main body
of the framework, and their performances exceeded those
recent methods designed for separate cloud detection or cloud
removal on a large margin. In the CDN, multiscale aggregation
and densely connected encoder handle the complex and scale
effect of the remote sensing data and the CAM leads to the
global consistency of features from multiscales and different
channels. In the CRN, we applied a self-training strategy
to eliminate the need of manual labels. The data set is
also opened to facilitate the development of supervised deep
learning methods that heavily relay on large and quality-
labeled samples.
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