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Abstract
This paper describes LOGAX, an interactive tutoring tool that gives hints and feedback
to a student who stepwise constructs a Hilbert-style axiomatic proof in propositional
logic. LOGAX generates proofs to calculate hints and feedback. We compare these
generated proofs with expert proofs and student solutions, and conclude that the
quality of the generated proofs is comparable to that of expert proofs. LOGAX rec-
ognizes most steps that students take when constructing a proof. Even if a student
diverges from the generated solution, LOGAX still provides hints, including next steps
or reachable subgoals, and feedback. With a few improvements in the design of the
set of buggy rules, LOGAX will cover about 80% of the mistakes made by students
by buggy rules. The hints help students to complete the exercises.
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Introduction

The ACM 2013 computer science curriculum lists the ability to construct formal
proofs as one of the learning outcomes of a basic logic course (Association for
Computing Machinery (ACM) and IEEE Computer Society Joint Task Force on
Computing Curricula 2013). The three main formal deductive systems are Hilbert
systems, sequent calculus, and natural deduction. Natural deduction is probably the
most popular system, but classical textbooks on mathematical logic usually also dis-
cuss Hilbert systems (Kelly 1997; Mendelson 2015; Enderton 2001). Hilbert systems
belong to the necessary foundation to the introduction of logics (temporary, Hoare,
unity, fixpoint, and description logic) used in teaching of various fields of computer
science (Varga and Várterész 2006), and are treated in several textbooks on logic
for computer science (Ben-Ari 2012; Nievergelt 2002; Arun 2002; van Benthem
2003). Hilbert systems are also taught in mathematics and logic programs (Leary and
Kristiansen 2015; Goldrei 2005).

Students have problems with constructing formal proofs. An analysis of the high
number of drop-outs in logic classes during a period of eight years shows that many
students give up when formal proofs are introduced (Galafassi 2012; Galafassi et al.
2015). Our own experience also shows that students have difficulties with formal
proofs. We analyzed the homework handed in by 65 students who participated in
the course “Logic and Computer Science” during the academic years 2014-2015
and 2015-2016. From these students, 22 had to redo their homework exercise on
axiomatic proofs. This is significantly higher than, for example, the number of stu-
dents in the same group who had to redo the exercise on semantic tableaux: 5 out of
65.

A student practices axiomatic proofs by solving exercises. Since it is not always
possible to have a human tutor available, an intelligent tutoring system (ITS) might
be of help. There are several ITSs supporting exercises on natural deduction sys-
tems (Sieg 2007; Perkins 2007; Broda et al. 2006). In these ITSs, students construct
proofs and get hints and feedback. We found two e-learning tools that can be used by
a student to practice the construction of axiomatic proofs: Metamath Solitaire (Megill
2007) and Gateway to logic (Gottschall 2012). Both tools are proof-editors: a stu-
dent chooses an applicable rule and the system applies this rule automatically. These
systems provide no help on how to construct a proof.

In this paper we describe LOGAX, a new tool that helps students in constructing
Hilbert-style axiomatic proofs. LOGAX provides feedback, hints at different lev-
els, next steps, and complete solutions. LOGAX is part of a suite of tools assisting
students in studying logic, such as a tool to practice rewriting formulae in dis-
junctive or conjunctive normal form, and to prove an equivalence using standard
equivalences (Lodder et al. 2016; 2019).

LOGAX is an example of an ITS that gives hints and feedback to students solv-
ing tasks that can be solved in many different ways. Other domains with similar
characteristics are proof systems such as natural deduction and the sequent calculus,
but also proving geometry theorems (Matsuda and VanLehn 2004), and construct-
ing a program that satisfies some given properties. Developing an ITS that gives
hints for these domains is notably difficult, because not all possible solutions can be

International Journal of Artificial Intelligence in Education (2021) 31:99–133100



calculated upfront or algorithmically, as for almost all kinds of tasks in, for example,
algebra (Heeren and Jeuring 2014). If a student takes a step in the current solution
space, LOGAX can provide feedback and hints. If a student takes a step outside the
current solution space, LOGAX dynamically recalculates the solution space, taking
the student step as a starting point. It then uses the new solution space as the source
for hints and feedback. The dynamic approach and the algorithm to recalculate the
solution space are central to our solution and make it possible to always give feed-
back and hints to a student. Similar techniques would be useful for ITSs for the other
domains mentioned above.

The main contributions of this paper are:

– an example of a tutoring system giving feedback and hints for a domain for which
feedback and hints cannot be specified algorithmically upfront

– an algorithm for generating axiomatic proofs and dynamically extending partial
proofs

– an extension of this algorithm to incorporate lemmas
– generating hints and feedback based on this algorithm and studying the effect of

these in small-scale experiments

To determine the quality of the proofs generated by LOGAX, we compare the
proofs generated by the tool with expert proofs and student solutions. We use the set
of homework exercises mentioned above to collect common mistakes, which we have
added as buggy rules (rules to provide informative feedback) to LOGAX.

This paper is organized as follows. Section “Teaching Hilbert-Style Axiomatic
Proofs” describes Hilbert’s axiom system and the way it is introduced in textbooks
and Section “An E-Learning Tool for Hilbert-Style Axiomatic Proofs” explains the
interface of our e-learning tool LOGAX. Section “An Algorithm for Generating Proof
Graphs” introduces the algorithm to generate proofs automatically. Section “Dis-
tilling Proofs for Students” explains how we linearize these generated proofs and
Section “Lemmas” how we add the possibility to use lemmas. Section “Hints and
Feedback” explains how we use the generated proofs for providing hints. This section
also describes how we collect a set of buggy rules. Section “Evaluation of the Gen-
erated Proofs” and Section “Small-Scale Experiments with Students” discuss the
results of several evaluations of our work. We relate our work to existing approaches
of generating solutions and hints in Section “Related Work”. Section “Conclusion
and Future Work” concludes and presents ideas for future work.

Teaching Hilbert-Style Axiomatic Proofs

We start with a short description of Hilbert-style axiomatic proofs and the way
they are introduced in different textbooks. Axiomatic proof systems come in several
variants. The most common axiom systems are

φ → (ψ → φ) Axiom a
(φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)) Axiom b
(¬φ → ¬ψ) → (ψ → φ) Axiom c
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used for example in Ben-Ari (2012), Nievergelt (2002), van Benthem (2003), Goldrei
(2005), and Kelly (1997), and the system consisting of Axiom a and b, but Axiom c’
instead of Axiom c:

(¬φ → ¬ψ) → ((¬φ → ψ) → φ) Axiom c’

used for example in Hirst and Hirst (2015), Arun (2002), Wasilewska (2018), and
Mendelson (2015). These axioms are schemas that can be instantiated by replacing
the metavariables φ, ψ and χ by concrete formulae. A proof consists of a list of
statements of the form Σ � φ, where Σ is a set of formulae (assumptions) and φ is
the formula that is derived from Σ . In a ‘pure’ axiomatic proof, each line is either
an instantiation of an axiom, an assumption, or an application of the Modus Ponens
(MP) rule:

if Σ � φ and Δ � φ → ψ then Σ ∪ Δ � ψ

From these axioms and MP, the deduction theorem can be derived:

if Σ, φ � ψ then Σ � φ → ψ

The Open University of the Netherlands teaches axiomatic proofs in a bache-
lor course “Logic and computer science” and in a premaster program that prepares
for admission to a master in computer science. The learning objective related to
axiomatic proofs is:

– students are able to construct simple axiomatic proofs.

The course lectures start with recognizing instances of the axioms, and proceed with
simple proofs, providing strategies such as:

– can you derive the last line of the proof by an application of the deduction
theorem or Modus Ponens?

– how can you use the assumptions?

The textbooks we studied (Ben-Ari 2012; Nievergelt 2002; van Benthem 2003;
Goldrei 2005; Hirst and Hirst 2015; Arun 2002; Wasilewska 2018; Mendelson 2015)
do not give explicit learning goals, except for Kelly (1997), which starts each chapter
with chapter aims. The aims of the chapter on axiomatic proofs are amongst others:
“When you have completed your study of this chapter you should have a clear under-
standing of the structure of formal axiomatic systems, and be able to construct formal
proofs of theorems”. From the other textbooks we can deduce learning goals from the
examples and exercises. The textbooks all start the chapter on axiomatic proofs with
introducing the axioms, followed by some examples and exercises in which a student
has to construct simple proofs or provide the motivation to given proof lines. Some of
these proofs use earlier results such as lemmas or derived rules. Some books start with
the first two axioms (Wasilewska 2018; Nievergelt 2002) and introduce the negation
axiom (Axiom c or c’) after the deduction theorem, others introduce the deduction
theorem after the three axioms. After the introduction of the deduction theorem, exer-
cises using this theorem are presented. The exercises in these textbooks suggest that
constructing proofs is a learning goal. The single exception is Wasilewska (2018):
here most exercises only ask to motivate steps in an already constructed proof.

International Journal of Artificial Intelligence in Education (2021) 31:99–133102



Hardly any textbook provides substantial information about how to construct a
proof, except from providing examples and showing the use of the deduction the-
orem. Wasilewska (2018) explicitly states that constructing a proof may start with
searching for two statements such that the conclusion is an application of Modus
Ponens on these statements, and Kelly (1997) explains how to use the deduction the-
orem and gives a heuristic to derive Σ � ψ → φ from Σ � φ. Constructing proofs
requires knowledge of the syntax of propositional logic, and competencies in rewrit-
ing logical formulae. Therefore, most textbooks deal with rewriting formulas using
standard equivalences (Goldrei 2005; Ben-Ari 2012; Wasilewska 2018; Arun 2002)
or semantic tableaux (Kelly 1997; van Benthem 2003; Ben-Ari 2012), before the
introduction of axiomatic proofs.

An E-Learning Tool for Hilbert-Style Axiomatic Proofs

The e-learning tool that we developed, LOGAX , uses the set of axioms a, b and c
described in Section “Teaching Hilbert-Style Axiomatic Proofs” and Modus Ponens
and the deduction theorem. A proof in this system can be constructed in two
directions. To take a step in a proof, a student can ask two questions:

– How can I reach the conclusion?
– How can I use the assumptions?

An answer to the first question might be: use the deduction theorem to reach the
conclusion. This answer creates a new goal to be reached, and adds a backward step
to the proof. An answer to the second question might be: introduce an instance of
an axiom that can be used together with an assumption in an application of Modus
Ponens. This adds one or more forward steps. Figure 1 shows an example of a partial
proof, constructed in our tool LOGAX. A full proof that completes this partial proof
is:

1. p � p Assumption
2. p → q � p → q Assumption
3. p, p → q � q Modus Ponens, 1, 2
4. q → r � q → r Assumption
5. p, p → q, q → r � r Modus Ponens, 3, 4
6. p → q, q → r � p → r Deduction 5
7. q → r � (p → q) → (p → r) Deduction 6

Figure 1 illustrates most of the functionality of our e-learning tool LOGAX. A
student starts with choosing a new exercise from the list, or formulating her own
exercise. She continues working in the dialog box to add new proof lines. Here she
can first choose which rule to apply: an assumption, axiom, an application of Modus
Ponens or deduction theorem, or a new goal. In case of an assumption she enters a
formula, and in case of an axiom, LOGAX asks for parameters to add the instantiation
of the axiom to the proof. Figure 1 shows adding a Modus Ponens: a student has to
fill in at least two of the three line numbers. LOGAX performs a step automatically
and adds a forward or backward step to the proof. In the same way, a student provides
a line number to perform a backward application of the deduction theorem. If the
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Fig. 1 A partial proof of q → r � (p → q) → (p → r) performed in LOGAX. On the right is the dialog
box, in which a student can choose rules and fill in step numbers and help buttons below this dialog box.
On the left is the proof as presented by LOGAX

deduction theorem is applied in a forward step, the student also provides a formula
φ. The new goal option can be used to formulate a subgoal to be reached.

If a student makes a mistake, e.g. she writes a syntactical error in a formula, or tries
to perform an impossible application of Modus Ponens, the tool provides immediate
feedback. At any moment she can ask for a hint, next step, or a complete proof. The
high number labelling the target statement (1000) is chosen deliberately, because at
the start of the proof it is not yet clear how long the proof will be. After finishing the
proof a student can ask the tool to renumber the complete proof.

The reason to use a dialog box in LOGAX to add new proof lines is that a stu-
dent can concentrate on proof construction. The design choice to allow a student to
choose a rule and let the software perform the rule has successfully been applied
in several e-learning tools for logic and mathematics (Mostafavi and Barnes 2016;
Beeson 1998; Robson et al. 2012). For instance, Robson et al. (2012) state that their
interface “allows students to concentrate on strategies while the software carries out
procedures”. The use of the dialog box also implies that students can make fewer
mistakes. By the time students start to develop proofs in LOGAX, they have had exten-
sive training in writing syntactically correct formulae. Hence, LOGAX does not focus
on writing correct formulae. However, a mistake with parentheses in a long formula,
such as an instance of Axiom b, is easily made. By using the dialog box, students
focus on proof construction and spend less time on correcting syntax errors. The only
possible syntax errors students still can make occur in smaller formulae that need
to be entered when adding, for example, an instance of an axiom to the proof. The
evaluation in Section “Small-Scale Experiments with Students” shows that students
make very few syntactical mistakes.

Our approach and design choices build upon scaffolding theories as described by
Wood et al. (1976) and Belland (2017). Wood et al. (1976), referring to Bernshteı̌n
(1967), mention reducing the degrees of freedom as one of the scaffolding functions.
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Reducing the number of steps that a student has to perform makes it possible to
focus on the elements of the task that lead to learning gains (Belland 2017). The
dialog box allows a student to concentrate on the steps that are closely related to the
learning goal of LOGAX. ‘Providing just the right amount of support’ is the second
scaffolding element in Belland’s list. In an intelligent tutoring system scaffolding is
often implemented as a sequence of hints that are increasingly supportive (Belland
2017). We have implemented this scaffolding strategy in our ITS. Since we do not
employ a student model at this moment, we cannot apply fading strategies, which
reduce the amount of feedback when the system thinks that the student does not
need this. This is not necessarily a shortcoming: according to Belland (2017), leaving
control of the support by the ITS to a student may lead to transfer of responsibility.

An Algorithm for Generating Proof Graphs

An ITS for axiomatic proofs provides hints and feedback. There are at least two ways
to construct hints and feedback for a proof. First, they can be obtained from a com-
plete proof. Such a proof can either be supplied by a teacher or an expert, or deduced
from a set of student solutions. An example of an ITS for natural deduction proofs
that uses student solutions has been developed by Mostafavi and Barnes (2016). A
drawback of this approach is that the tool only recognizes solutions that are more or
less equal to the stored proofs. The tool cannot provide hints when a student solution
diverges from these stored proofs. Also, this only works for a fixed set of exercises.
If a teacher wants to add a new exercise, she also has to provide solutions, and the
tool cannot give hints for exercises that are defined by a student herself. The second
way to provide the tool with solutions, which we use, is to create proofs automati-
cally. At first sight this might only solve the second problem: automatically providing
hints for new exercises. Section “Distilling Proofs for Students” explains how our
approach makes it possible to provide hints also in case a student diverges from a
model solution.

We develop an algorithm that automatically generates proofs. This algorithm
should generate proofs that resemble textbook and expert proofs, which we can
use to teach our students. Existing algorithms, such as the Kalmár constructive
completeness proof (Kalmár 1935), or the algorithms used in automatic theorem
proving (Harrison 2009), are unsuitable for this purpose, because the strategies used
in these proofs differ too much from expert and textbook strategies. The Kalmár
construction only provides proofs for tautologies. This is not necessarily a problem,
since instead of, for example, proving q → r � (p → q) → (p → r), we can prove
� (q → r) → ((p → q) → (p → r)). However, the Kalmár construction would
start with eight proofs (¬)p, (¬)q, (¬)r � (q → r) → ((p → q) → (p → r))

for each of the eight valuations of p, q and r , followed by a procedure to combine
these eight proofs in a proof of � (q → r) → ((p → q) → (p → r)). The resulting
proof will be considerably longer and more complicated than the proof we present
in this article. The proofs generated by automatic theorem proving are also longer
than, and different from, textbook or expert proofs. Natural deduction tools such
as ProofLab (Sieg 2007) and Pandora (Broda et al. 2006) also use algorithms to
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Fig. 2 A DAM for the proof of q → r � (p → q) → (p → r)

calculate solutions, and these algorithms can provide useful hints and feedback. We
adapt an existing algorithm for natural deduction to create axiomatic proofs. Before
we describe the algorithm, we first explain how we represent proofs.

Figure 1 shows a partial example proof of q → r � (p → q) → (p → r).
There are alternative ways to start this proof. A student may choose between various
orders, for example swap line number 1 and line number 2. Using one or more axiom
instances we may obtain entirely different proofs. Since we want to recognize dif-
ferent proofs, we represent proofs as labeled directed acyclic multi graphs (DAM),
where the vertices are statements Σ � φ and the edges connect dependent statements.
We annotate vertices with the applied rule: Assumption, Axiom, Modus Ponens or
Deduction. Note that a statement can be the result of different applications of rules.
An example of such a DAM is shown in Fig. 2. Vertices are numbered for readabil-
ity. A blue (dashed) arrow means that the lower statement follows from the higher
by application of the deduction theorem. A pair of red (solid) arrows represents an
application of Modus Ponens. This DAM contains three essentially different proofs:
one that uses Axiom a and b, one that applies the deduction theorem and Axiom a,
and one that uses no axioms and applies the deduction theorem twice. This last proof
is a continuation of the proof provided in Fig. 1.

The basis for our algorithm for axiomatic proofs is Bolotov’s algorithm for natural
deduction proofs (Bolotov et al. 2005). The rules used in this system are presented
in Fig. 3, restricted to the connectives ¬ and →, since these are the only connectives

Fig. 3 Rules for natural deduction
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used in the Hilbert axiomatic system. Here we use the same notation as presented
in van Benthem (2003). A natural deduction proof is here presented as a tree-like
structure. The elimination rules (¬elim and →elim) express that you can extend a
proof of ¬¬φ with φ and combine subproofs of φ → ψ and φ into a proof of ψ .
The introduction rules discard assumptions: subproofs of φ and ¬φ can be combined
in a proof of ¬ψ by an application of rule ¬ intro while discarding ψ . The last rule,
→intro, states that if you have a proof of ψ , you can add φ → ψ and discard φ.

The natural deduction rules for implication translate directly to rules in the Hilbert
system: → elim corresponds to Modus Ponens and → intro to the deduction theorem.
The rules for negation do not have direct counterparts in the axiomatic system. There-
fore, the first adaptation that we have to make to Bolotov’s algorithm is the use of
axiomatic subproofs that mimic the natural deduction rules for negation. The ¬ elim

rule is translated to a single subproof, and we use seven different subproofs to trans-
late the ¬ intro rule, mainly to cover the possible different dependencies from φ and
¬φ on ψ .

The Bolotov algorithm is goal-driven, and uses a stack of goals. We build a DAM
using steps that are divided into five groups. The first group contains a single step
to initialize the algorithm. The steps in the second group check whether or not a
goal is reached. The steps in the third group extend the DAM. The steps in group
4 handle the goals and may add new formulae to the DAM. In this group, a goal F

can be added. The symbol F is not part of the language, but we use F as shorthand
for “prove a contradiction”. Finally, group 5 completes the algorithm, where we omit
certain details for the steps that are needed to prevent the algorithm from looping.

1. We start the algorithm by adding the target statement (e.g. q → r � (p →
q) → (p → r)) to our stack of goals, and the assumptions of this goal
(q → r � q → r) to the DAM.

Until the stack of goals is empty, repeat:

2. (a) If the top of the stack of goals (the top goal from now on) belongs to the
DAM, we remove this goal from the stack of goals.

Motivation: the goal is reached.
(b) If the top goal is Δ � F and the DAM contains the statements Δ′ � φ and

Δ′′ � ¬φ such that Δ′ ∪ Δ′′ ⊆ Δ, we add a set of axioms to the DAM that
can be used to prove the goal below the top from these two statements. We
remove the goal Δ � F from the stack.

Motivation: we can use the contradiction to prove the goal below the top.
Apart from the instances of the axioms, this proof will use applications of
Modus Ponens. Hence, the goal below the top will be removed in a later step.

3. (a) If the DAM contains a formula Δ � ¬¬φ, we add an instance of Axiom
a (� ¬¬φ → (¬¬¬¬φ → ¬¬φ)) and two instances of Axiom c to the
DAM. The next step uses these axioms to deduce Δ � φ.

Motivation: use the doubly negated formula.
(b) We close the DAM under applications of Modus Ponens.

Motivation: here we perform a broad search, and any derivable statement
will be added to the DAM.
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(c) If the DAM contains a formula Δ � ψ and the top goal is Δ \ φ � φ → ψ ,
we add Δ \ φ � φ → ψ to the DAM.

Motivation: use the deduction theorem.
4. (a) If the top goal is Δ � φ → ψ , we add φ � φ to the DAM and the goal

Δ, φ � ψ to our stack of goals.
Motivation: prove Δ � φ → ψ with the deduction theorem.

(b) If the goal is Δ � ¬φ we add φ � φ to the DAM and the goal Δ, φ � F to
our stack of goals.

Motivation: prove Δ � ¬φ by contradiction.
(c) If the goal is Δ � p, where p is an atomic formula, we add ¬ p � ¬p to the

DAM and the goal Δ, ¬p � F to our stack of goals.
Motivation: we cannot prove Δ � p directly, and hence we prove it by

contradiction.
5. (a) If the top goal is Δ � F and Δ � φ → ψ belongs to the DAM, we add

Δ � φ to our stack of goals.
Motivation: we cannot prove a contradiction with the steps performed

thus far. Hence, we exploit the statements we already have. Since our goal
is to prove Δ � F , any formula is provable from Δ.

(b) If the top goal is Δ � F and Δ � ¬φ belongs to the DAM we add Δ � φ

to our stack of goals.
Motivation: use derived statements.

This algorithm constructs a basic DAM. Bolotov shows that his algorithm is sound
and complete. Our adaptations, as for instance the replacement of a negation intro-
duction rule by a set of instances of axioms, preserve soundness and completeness.
We omit a detailed description of our adaptations and a proof of the correctness.

The above algorithm only uses axioms in a proof of a contradiction, or in the use
of double negations. This means that without extra adaptations, Axiom b will never
be used in a generated proof. Since we want the constructed proofs to resemble the
proofs constructed by experts or students, and since LOGAX should teach our students
to recognize the possibility to use axioms, we use extra heuristic rules to add more
instances of axioms to the DAM. With these heuristics we can produce the example
DAM in Fig. 2. The heuristics to produce the right branch with nodes 4, 7, 8, 9 and
10 of the DAM are:

– If the top goal equals Δ � (φ → ψ) → (φ → χ) and Δ′ � ψ → χ already
belongs to the DAM and Δ′ ⊆ Δ , then add an instance (φ → (ψ → χ)) →
((φ → ψ) → (φ → χ)) of Axiom b to the DAM.

– If the top goal equals Δ � φ and Δ′ � (ψ → χ) → φ and Δ′′ � χ belong to the
DAM with Δ′ ⊆ Δ and Δ′′ ⊆ Δ, then add an instance χ → (ψ → χ) of Axiom
a to the DAM.

Distilling Proofs for Students

In the previous section we described the algorithm used to construct the DAM. Such
a DAM may contain different solutions. For example, Fig. 2 shows three essentially
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different solutions for the proof of q → r � (p → q) → (p → r). Since we use
this DAM to generate proofs for the purpose of giving hints to students or providing
sample solutions, we have to find a way to isolate single proofs. Moreover, the proofs
in the DAM are structured as directed acyclic graphs, whereas an axiomatic proof
is a linear structure. Hence, we need a procedure to extract linear proofs from a
DAM. We will not only use this procedure to provide complete solutions, but also
to generate next steps and hints, which means that the procedure should meet the
following requirements:

– R1: generate a complete linear proof at once or stepwise
– R2: complete a partial proof, even if this proof diverges from the generated linear

proof or contains a user-defined goal
– R3: add steps to a proof in an order that corresponds to the way students or

experts add steps.

Requirement R1 is a direct consequence of our goal to use the DAM to provide
sample solutions, hints, and next steps. Since a student solution may differ from the
sample solution constructed from the DAM, we need requirement R2 to ensure that
LOGAX can always provide a hint or a next step, using the procedure to complete
a partial proof. There are two ways in which the order of the steps while construct-
ing a proof may vary. To illustrate the first way, we look at the example proof in
Section “An E-Learning Tool for Hilbert-Style Axiomatic Proofs”. We could con-
struct this proof in a forward way, from top to bottom, starting with line number 1 and
finishing with line number 7. However, most textbooks advise to apply the deduction
theorem backwards. Hence we prefer a solution that starts with line number 6 and 7.
A second way in which the order of the steps may vary is the order of the lines in the
completed proof. Take, for example, the proof in Section “An E-Learning Tool for
Hilbert-Style Axiomatic Proofs” again. This proof might also start with line number
4.

To fulfil requirement R3, we studied example proofs in textbooks and student
assignments. Most textbooks introduce an assumption or axiom only when it can
be used directly. When an axiom or assumption is introduced in line n, it is used
in an application of Modus Ponens or the deduction theorem in line n + 1, or in an
application of Modus Ponens in line n + 2 combined with another component in line
n + 1. We found one case in which an assumption in line n was followed by a proof
of a second component of Modus Ponens, and an application of Modus Ponens. All
but two of the textbooks described in Section “Teaching Hilbert-Style Axiomatic
Proofs” use this proof order. Mendelson (2015) and Wasilewska (2018) form the
only exceptions: they start a proof with stating all the necessary assumptions and
axioms. In the homework assignments we also notice that students tend to introduce
an assumption or axiom only when it is needed. This was confirmed by the pretest,
described in Section “Small-Scale Experiments with Students”, where all students
who completed at least half of the axiomatic proof in propositional logic (16 out of 18
students) followed this strategy. In exams we also find sometimes student solutions
starting with stating all the assumptions. If a student asks for a hint, we want LOGAX

to provide the step that would be advised by an expert or a fellow student, hence
R3 requires an order of the steps corresponding to the way students or experts add
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steps. In the rest of this section we will first explain how we extract linear proofs
and motivate why this way of extracting proofs matches the requirements later in this
section.

The correctness of the algorithm defined in Section “An Algorithm for Generating
Proof Graphs” ensures that the DAM contains a complete proof. Extracting a single
proof can be seen as searching for a subtree. Linearization of this subtree requires
topological sorting. Since generating a stepwise solution is one of the requirements,
we perform these two tasks, extracting and linearization, simultaneously.

The procedure for proof extraction consists of four different kinds of steps, which
are repeated until the linearized proof is complete. In each step a new line is added
to the proof under construction, or an unmotivated line is motivated. In the following
list, the different steps are ordered according to the preference in which a certain step
is chosen:

– a close step: add a motivation to an unmotivated proof line
– a backward step: add a backward application of the deduction theorem to a proof
– a forward step: add a forward application of the deduction theorem or Modus

Ponens to a proof
– an introduction step: add an assumption or axiom to a proof.

While performing these steps, the procedure keeps track of the partial linearized
proof, which consists of the grounded part (the already proven proof lines), and the
ungrounded part. The latter part consists of lines that are already in the linearized
proof, but are either unmotivated, or their motivation depends on unmotivated proof
lines. The unmotivated lines are part of a list of goals, which may also contain a set
of other subgoals to be reached.

If possible, the procedure performs a close step, since in general this step com-
pletes the proof. The next preferred step is a backward step since a backward
application of the deduction theorem replaces the goal to be reached by a simpler
goal. When applications of the deduction theorem are impossible, the procedure tries
to use already proven lines in an application of a forward step, and only if all other
three kinds of steps are impossible, the procedure introduces an assumption or an
axiom. Here we have to take care of the logical structure of the proof. We illustrate
this by means of the example in Fig. 2. Suppose that the partial proof consists of
nodes 6 and 10, which means that deduction was applied to node 10. Continuing with
node number 7 would add a superfluous line to the proof. To prevent this, the pro-
cedure trims the DAM into a subDAM using the first goal of the list of subgoals as
a root. In our example, node number 6 becomes the new root, and the leaves in this
subDAM are the nodes 1, 2 and 4. Suppose the procedure continues with node num-
ber 1. That leaves two possibilities for the next step, namely node number 2 or 4.
Because of the last requirement R3, node number 2 is preferred, since in general stu-
dents or experts choose an assumption that can be used directly over an assumption
that can only be used later. The procedure realizes this preference by adding subgoals
to the list of subgoals after performing an introduction step. These subgoals consist
of the nodes between the introduced leaf and the node that corresponds to a subgoal
already in the list of subgoals. In our example, the line numbers 3 and 5 are added as
subgoals, which forces the procedure to look for a next leaf in the subtree rooted by
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line number 3 in the next step. As a consequence, line number 2 is indeed added in
this step.

We claim that this procedure meets the three requirements given above. Require-
ment R1, generating complete proofs, is guaranteed by the construction of the DAM.
To show that requirement R2 is met, we distinguish two situations. As long as the
steps in the student solution correspond to the steps generated by the procedure
described in this section, this proof can be completed directly. If the student solution
diverges from the generated solution, LOGAX will use the student solution as a start-
ing point to build a new DAM. Motivated lines will be marked as grounded lines and
unmotivated lines will be part of the list of goals. This ensures that the procedure
indeed extends the partial proof into a complete proof. Note that this complete proof
may contain superfluous lines, for example when the student introduced an assump-
tion that cannot be discarded by an application of the deduction theorem. This will
result in a path in the DAM that is not connected to the goal. In such a case, LOGAX

will not remove the student lines, but complete the proof using the student lines that
lead to the goal.

From student solutions to exercises and the log data collected from LOGAX we
know that students can perform the steps of a proof in many different orders. How-
ever, there are some heuristics in the construction of a proof, such as trying to use
assumptions, or simplifying the goal by applying the deduction theorem. The pref-
erence on the order of the steps in our procedure ensures that the procedure follows
these heuristics (requirement R3). This implies that steps can be added in two direc-
tions, forward and backward, and that a user can switch direction at any moment.
Moreover, the order of the steps should be such that we can always motivate the next
line: why do we perform a certain step at a certain moment. To achieve this, we use a
dynamic programming approach, where subproblems are defined by the list of sub-
goals. The restriction to subDAMs as described above, ensures that we complete the
subproblem defined by the first node of this list before we start a new subproblem.
All steps can thus be motivated by a subgoal.

Lemmas

Reusing proven results is common practice in mathematics and logic. For example,
the proof of the fundamental theorem of arithmetic (every number larger than 1 can
be written in a unique way as a product of primes) uses the lemma that a prime divisor
of a product a · b is also a divisor of a or b. In logic the use of proven results is
widespread too. Here, proven results are sometimes presented as derived rules, such
as for instance the rule Modes Tollens (¬φ can be derived from φ → ψ and ¬ψ)
in Huth and Ryan’s textbook (2004). Axiomatic proofs often build on each other: for
example, a proof of � ¬¬p → p can be used as a lemma in another proof.

Lemmas appear in several ITSs that deal with constructing proofs. They serve vari-
ous purposes, such as a starting set to generate geometry problems (Alvin et al. 2014),
or just as a predefined set that can be used by the student to solve a problem (Matsuda
and VanLehn 2005). Perhaps more interesting is the possibility to allow the addition
of lemmas by the user. In both the Jape natural deduction proof assistant (Bornat
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2017) and the proof assistant described by Aguilera et al. (2000), a student can save
proven results and use these results as lemmas in a new proof. The proof assistant
Gateway to Logic for axiomatic proofs offers a user the possibility to state and use
lemmas too (Gottschall 2012).

Lemmas in axiomatic proofs have various shapes. For example, we distinguish
tautologies (� φ) and valid sequents (φ1, ....φn � ψ), but also schemas (for example
¬¬φ � φ) and instantiations of schemas (¬¬p � p). We include the use of lemmas
in LOGAX. The main purpose of including lemmas is to support adding relatively easy
exercises. Without lemmas, many axiomatic proofs are too lengthy and complicated
to be used in education. With the possibility to use lemmas, a new class of relatively
easy exercises becomes available. The second goal is to give users the possibility
to use their own lemmas. LOGAX can provide a student with an exercise together
with a lemma that may be used in the proof, and in a user-defined exercise the user
can use her own lemmas. We impose two restrictions: predefined exercises use only
instantiations of lemmas, and the interface only accepts user-defined lemmas that are
instantiations of a tautology. The latter is not a real restriction since a valid sequent
φ1, ....φn � ψ can always be rewritten as a tautology � (φ1 → (... → (φn → ψ))).

We adapt the algorithm to create a DAM to support the use of lemmas. In pre-
defined exercises, lemmas are added to the DAM at the start of the algorithm,
comparable to the addition of assumptions. The construction of the DAM and the
extraction of a linear proof work in the same way as described in Section “An Algo-
rithm for Generating Proof Graphs” and “Distilling Proofs for Students”. Students
who solve these predefined exercises receive the lemma as a first line of the proof.
To facilitate user-defined lemmas, a lemma rule is added to the set of rules. In a user-
defined exercise, a student can introduce a lemma at any stage during the proof. The
algorithm constructs a DAM based on the partial proof including the lemma and uses
this DAM to provide hints and feedback.

Figure 4 shows an example of an exercise with a lemma. Since a motivation
of line 999 as an application of Modus Ponens to the lemma in line 1 and line 4
completes the proof, the hint tells the student to add a motivation.

Fig. 4 A partial proof with a lemma, performed in LOGAX
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Hints and Feedback

Hints

One of the reasons for the effectiveness of human tutors is that they provide feed-
back at the level of solution steps, and help a student to overcome impasses using
hints (Merrill et al. 1992). Hence, for ITSs to be as effective as human tutors, they
should give stepwise feedback and some form of help. In a first version of LOGAX,
we implemented a hint sequence consisting of three hint types: the direction of a
next step (forward or backward), the axiom or rule to apply, and a bottom-out hint
that shows how to perform a next step. Although these hints can help students to
complete a proof, they might not always help a student to understand why a certain
step is useful. A study with the Geometry Tutor (McKendree 1990) shows that stu-
dents who receive informative feedback combined with information about a subgoal
are more effective in correcting mistakes than students who only receive informative
feedback. Several logic tutors offer hints containing subgoals. An early attempt is the
P-logic tutor (Lukins et al. 2002), in which students learn to construct proofs using
standard equivalences and inference rules. Since this tutor cannot construct proofs,
it uses heuristics to construct possible useful subgoals, such as an atomic formula
from which the truth can be deduced. A drawback of this approach is that the tutor
might suggest an unnecessary subgoal. The Deep Thought Logic tutor (Eagle et al.
2012; Barnes and Stamper 2008) uses datamining to construct proofs and subgoal
hints from student solutions. In a comparison of the performance of students receiv-
ing next step hints with students receiving hints about a subgoal to be reached in two
or three steps, the latter group outperformed the former one in the more difficult exer-
cises both with respect to the time needed to take a step as well as accuracy (Cody
et al. 2018).

In LOGAX we keep track of a list of subgoals while constructing a proof. We
use this list to provide hints about a subgoal. We do not give a subgoal as hint if
a student can still apply deduction backwards, when a subgoal coincides with an
unmotivated line in the proof, or when a subgoal coincides with the next step. In the
other cases, we give a hint concerning a subgoal instead of a hint about the direction
of the proof. For instance, the hint for the unfinished proof in Fig. 5 will be: try
to prove p, p → q � q. An example where our algorithm deliberately not gives a
subgoal as hint can be found in the proof in Fig. 1. Here, he first hint will be: perform
a forward step, since in this case the subgoal p, q → q � q, Modus Ponens, is equal
to the next step.

Feedback

In this subsection we first analyze student errors, and then describe how we use this
analysis to create feedback. Students make mistakes in axiomatic proofs. From the
homework of 40 students participating in our course we collected a set of mistakes,
and classified these mistakes in three categories:

– oversights (19),
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Fig. 5 The start of a proof for q → r � (p → q) → (p → r)

– conceptual errors (11), and
– ‘creative’ rule adaptations (9).

Mistakes such as missing parentheses belong to the first category. This category
mainly consists of missing parentheses in Axiom b. A typical example of a mistake
in the second category is the following application of Modus Ponens:

1. ¬p, ¬ q � ¬ q Assumption
2. ¬ q � ¬p → ¬ q Deduction 2
3. � (¬p → ¬ q) → (q → p) Axiom c
4. ¬p → ¬ q � q → p Modus Ponens 2, 3

Here, the student has the (wrong) idea that after an application of Modus Ponens on
Δ � φ and Σ � φ → ψ , the formula φ becomes the assumption of the conclu-
sion. Creative rule adaptations may take various forms. An example of such a rule
adaptation is:

1. ¬p → (q → ¬ r) � ¬p → (q → ¬ r) Assumption
2. q � q Assumption
3. ¬p → (q → ¬ r), q � ¬p → ¬ r Modus Ponens 1, 2

In this example the ultimate goal is to prove that ¬ p → (q → ¬ r), q � r → p.
The student tries to reach this via the subgoal ¬p → (q → ¬ r), q � ¬p → ¬ r ,
but she misses the possibility to reach this subgoal with an instantiation of Axiom b
and Axiom a. Instead, she creates her own variant of Modus Ponens in line 3 of the
proof.

Further analysis of the homework exercises suggests that students typically make
these mistakes when they do not know how to proceed. This is in line with the repair
theory, which describes the actions of students when they reach an impasse (Brown
and VanLehn 1980).
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The example of a conceptual error given above is impossible to construct in
LOGAX, since LOGAX fills in the assumptions automatically. In the evaluation in
Section “Small-Scale Experiments with Students” we analyze whether students rec-
ognize these kinds of conceptual mistakes after practicing with LOGAX. However, it
is still possible that a student tries to apply a rule incorrectly. For example, a student
might apply Modus Ponens on Δ � φ and Σ � φ′ → ψ where φ and φ′ are equiv-
alent but not equal. We used homework solutions to define a set of buggy rules for
mistakes that can be made in LOGAX. Most of these rules relate to Modus Ponens
(8 buggy forward applications, 3 buggy backward applications and 2 closure rules),
the other to deduction (2 buggy backward applications and 4 buggy closure rules).
Using these rules, LOGAX can give informative feedback. Shute’s guidelines (2008)
state that feedback should be elaborate, specific, clear, and as simple as possible.
Our feedback not only points out a mistake, but if possible also mentions exactly
which formula, subformula or set of formulae do not match with the rule chosen. For
example, if a student wants to complete the proof

1. ¬ q, ¬p � ¬ q Assumption
2. ¬ q � ¬p → ¬ q Deduction 1
3. � (¬p → ¬ q) → (q → p) Axiom c
4. ¬p → ¬ q � q → p

by applying Modus Ponens to lines 2, 3 and 4, she gets a message that line 4 cannot
be the result of an application of Modus Ponens on lines 2 and 3, since the assumption
of line 2 does not belong to the set of assumptions in line 4.

Evaluation of the Generated Proofs

We first evaluate the proofs generated by LOGAX by comparing them with expert
proofs. After that, we evaluate the recognition of student solutions by LOGAX.
Section “Small-Scale Experiments with Students” describes the final part of the
evaluation, which is a small-scale experiment with students using LOGAX.

Comparison of the Generated Proofs with Expert Proofs

We evaluate the proofs generated by LOGAX in two ways. First, we compare the
generated proofs with expert proofs. Since example proofs and worked solutions in
textbooks often use earlier proofs as a lemma, the number of proofs that we can
compare with the LOGAX proofs without lemmas is small. We found 10 examples
we could use for a comparison in the textbooks of Ben-Ari, Kelly, and Goldrei, and
in the lecture notes of a course on logic (LenI) (Lodder and et al. 2018). The list of
exercises can be found in Table 1.

Eight of the ten expert proofs are equal to the LOGAX proofs. In exercise 6,
LOGAX uses the deduction theorem instead of Axiom a. The LOGAX proof of
� ¬ p → (¬¬ p → p) (exercise 5) is one step longer than the expert proof, since
LOGAX proves � ¬¬p → p directly without making use of an assumption ¬p. The
LOGAX proof uses a standard construction. Although this standard construction is
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Table 1 Exercises without lemmas in textbooks and lecture notes. The last column compares thet LOGAX

proof with the expert proof

Exercise Textbook Equal

1. q, p → (q → r) � p → r Kelly, LenI yes

2. p → q, q → r � p → r Kelly, LenI yes

3. p → q � p → (r → q) Kelly yes

4. p → q � (r → p) → (r → q) LenI yes

5. � ¬ p → (¬¬ p → p) LenI no

6. � ((p → q) → (p → r)) → (p → (q → r)) LenI no

7. � (p → q) → ((q → r) → (p → r)) Ben-Ari yes

8. � (p → (q → r)) → (q → (p → r)) Ben-Ari yes

9. � ¬ p → (p → q) Ben-Ari, Goldrei yes

10. � ¬¬ p → p Ben-Ari yes

useful in quite a lot of proofs, in this case, missing the shorter solution is a shortcom-
ing of LOGAX since a goal of the exercise is that the student recognizes the possibility
to use this assumption. However, the completion of LOGAX of a student proof that
starts using this assumption in an application of Axiom c, equals the proof in the lec-
ture notes. In the future, we might fine-tune LOGAX such that the generated solution
equals the lecture notes solution also in other cases. We conclude that for most of the
examples and exercises in textbooks, LOGAX generates a proof that is equal to the
expert proof.

To evaluate the version of LOGAX with lemmas, we have nine expert proofs avail-
able. The course on logic contains five examples of exercises using lemmas, together
with example proofs of these exercises, see Table 2. In the first three exercises only
instantiated lemmas are given. The proofs generated by LOGAX for these exercises
are equal to the solutions in the course notes. The fourth and fifth exercise ask for a
proof in predicate logic, but we can compare the propositional part of these proofs.
Both exercises present lemmas as schemas, and instantiations of these schemas are
used in the solution. We add these instantiations as lemmas in LOGAX. The solution
to the fifth exercise is equal to the proof generated by LOGAX, except for the order
of the proof lines. In the fourth exercise, LOGAX originally only used one of the two
lemmas, and the proof by LOGAX was longer than the solution in the logic course
notes. After some minor changes in the implementation of the heuristics, LOGAX

uses no lemmas, but generates a shorter proof. Both proofs are given in Appendix A.
Since exercises in textbooks also use derived rules, we have only 4 extra exercises
with lemmas in these books. All the proofs of these exercises are equal to the LOGAX

proofs.
To evaluate more proofs we use the large collection of proofs on the Metamath

website.1 This website collects formal proofs, not only for logic statements, but
also for mathematical statements. The part on propositional logic contains proofs of

1http://us.metamath.org/mpegif/mmtheorems.html
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Table 2 Exercises in a logic course

Textbook Exercise Lemma Equal

LenI � (p → q) → (¬ q → ¬ p) � (p → q) → (¬¬ p → ¬¬ q) yes

LenI ¬¬ p � ¬ p → ¬¬¬ p ¬¬ p � ¬¬¬¬ p → ¬¬ p yes

LenI � ¬¬ p → p ¬¬ p � ¬ p → ¬¬¬ p yes

LenI � ¬ (p → q) → (¬ p → ¬ q) ¬¬ q � q, p → q � ¬¬ (p → q) no

LenI p → (q → ¬ p) � p → ¬ q ¬¬ q � q yes

Ben-Ari � (p → q) → (¬ q → ¬ p) ¬¬ p → p,� ¬ q → (q → ¬¬ q) yes

Ben-Ari � (¬ p → q) → ((¬ p → ¬ q) → p) � (¬ p → p) → p yes

Kelly � ¬ (p → q) → ¬ q � (q → (p → q)) → (¬ (p → q) → ¬ q) yes

Kelly � (p → q) → ((¬ p → q) → q) � (¬ q → q) → q,� (p → q) → (¬ q → ¬ p) yes

well-known theorems, for example from the Principia Mathematica by Russell and
Whitehead. In general, a Metamath theorem is presented as follows:

� φ1 and � φ2 and ... and � φn ⇒� ψ

So if φ1, ..., φn are provable, then ψ is provable. Since LOGAX cannot deal with
general tautologies, we translate a Metamath theorem in a theorem with assumptions.
Instead of � φ1 and � φ2 and ... and � φn ⇒ � ψ , we prove φ1, φ2, ..., φn � ψ .
Since proofs in Metamath build on each other, these proofs seem to be nat-
ural candidates to use in a comparison with LOGAX with lemmas. However,
the best way to compare proofs is not immediately clear. To demonstrate this,
we present an example of a Metamath proof in Fig. 6. This example shows a
proof of φ → (ψ → (ψ → χ)) � φ → (ψ → χ). The proof uses two previous
theorems: id (� ψ → ψ) and mpdi (from � φ → χ and � φ → (ψ → (χ → θ))

follows � φ → (ψ → θ)). The most direct way to translate this in a LOGAX

proof with lemmas would be by rewriting mpdi in a theorem with assumptions
(φ → χ, φ → (ψ → (χ → θ)) � φ → (ψ → θ)), and using instantiated versions
of these theorems as lemmas in the proof. However, to complete this proof, a forward
application of deduction followed by an application of Modus Ponens by LOGAX suf-
fices, which makes the comparison not very informative. A more interesting way to

Fig. 6 An example of a Metamath proof
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compare proofs would be by letting LOGAX find useful instantiations of lemmas, but
so far, we have not implemented this functionality. In the comparison, we therefore
add just a single instantiated lemma to LOGAX. We inline the other lemmas in the
Metamath proofs. Since Metamath proofs do not make use of the deduction theorem,
a last adaptation we have to make is to remove applications of the deduction theo-
rem in the LOGAX proofs. We use the constructive proof of the deduction theorem to
remove occurrences of deduction in LOGAX proofs, and compare these proofs with
the Metamath proofs. The results are shown in Appendix B. The comparison consists
of 24 theorems, 12 with and 12 without negation. Nearly two thirds (15 out of 24)
proofs are equal except for the order of the lines. The LOGAX proof is shorter than
the Metamath proof in eight cases. In seven of these cases LOGAX does not use the
lemmas. It is not surprising that in these cases, inlined proofs in Metamath are longer:
the Metamath proofs are constructed by choosing suitable lemmas. Metamath does
not inline proofs and uses lemmas that are known theorems, or variants, for example
originating from the Principia Mathematica. Hence a Metamath proof is short when it
uses a small set of lemmas, without caring about the total length of the inlined proof.

In Lodder et al. (2017) we compared 30 Metamath proofs with proofs generated
by LOGAX without lemmas. After inlining the used lemmas in Metamath and remov-
ing applications of the deduction theorem in the LOGAX proofs, we found that 27
LOGAX proofs were equally long as the Metamath proofs. In three cases the LOGAX

proof was shorter than the Metamath proof. Although the comparison of LOGAX

with Metamath can only be done indirectly, the results (from the proofs with lem-
mas nearly two thirds of the LOGAX proofs are equal to Metamath proofs, and most
of the LOGAX proofs have equal length as these proofs) indicate that LOGAX indeed
generates proofs that are comparable to expert proofs.

Recognizing Student Solutions

In a second evaluation we investigate whether or not correct student solutions can
be recognized by LOGAX. Axiomatic proofs are part of a course on logic where we
also deal with other topics, such as semantics of predicate logic, axiomatic proofs
in predicate logic, structural induction and Hoare calculus. Students may hand in
homework to earn a bonus point. The homework exercises contain one exercise about
propositional logic axiomatic proofs and one on predicate logic axiomatic proofs.
Furthermore, the exams usually have an exercise on axiomatic proofs. We use solu-
tions of two homework exercises, and one exam exercise, to determine whether or
not LOGAX recognizes student proofs.

In the exam exercise, students have to prove that ¬¬ p → ¬ q, r → q � r → ¬ p.
The correct student solutions to this exercise can be divided into two groups, where
each group contains solutions that are equal up to the order of the proof lines. Solu-
tions in the first group contain an application of Axiom a, b and c, and no application
of the deduction theorem. Solutions in the second group contain an application of the
deduction theorem, and of Axiom c. From the 19 correct solutions, the majority (16)
belongs to the second group, and the remaining three solutions to the first group. The
example solution provided by LOGAX also belongs to the second group. The solu-
tions of the first group do not (yet) appear in our initial DAM, but they do appear
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Table 3 Recognized solutions

Exercise preferred non-pref. dynamic total

Exam 16 3 19

Homework 1 1 16 17

Homework 2 2 13 15

in the DAM we dynamically obtain when a student introduces Axiom b, and we use
this DAM to provide feedback. In the future we might add an extra heuristic for the
use of Axiom b:

– If the top goal equals Δ � φ → χ , and Δ′ � φ → ψ and Δ′′ � ψ → χ

both appear in the DAM, where Δ′ ∪ Δ′′ ⊆ Δ, then add an instance
(φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)) of Axiom b to the DAM.

In the first homework exercise students have to prove that
q, ¬ p → (q → ¬ r) � r → p. Here almost all student solutions (16) use Axiom a, b
and c. Only one student uses the deduction theorem instead of Axiom b. LOGAX gen-
erates this last proof. Solutions using the three axioms are not part of the DAM that
is generated at the start of the exercise, but can be recognized by a dynamically gen-
erated DAM. The second homework exercise is an exercise in predicate logic, but it
contains a propositional part that amounts to a proof of (p → q) → ¬ p � q → ¬ p.
Again, there were two groups of solutions: 13 students use Axiom a and the deduc-
tion theorem, and 2 students use an extra application of the deduction theorem
instead of Axiom a. In this case the solution generated by LOGAX is the solution that
does not use Axiom a, but the DAM also contains a solution with Axiom a.

We summarize the results in Table 3. The first column (preferred) shows the num-
ber of solutions that corresponds to the preferred solution of LOGAX, the second the
number that corresponds to a non-preferred solution, and solutions in the third col-
umn can be recognized by a dynamically generated DAM. The conclusion of this
evaluation is that with the use of dynamically generated DAMs, we can recognize
all student solutions, and also give hints. Still, we might optimize LOGAX by adding
more heuristics, e.g. such that the solution generated by LOGAX for homework exer-
cise 2 equals the student solutions. In the current implementation, heuristics for the
use of Axiom b and the deduction theorem interfere: extra heuristics for Axiom b
can broaden the DAM, but the algorithm for the distillation of a linear proof prefers
applications of the deduction theorem, a local decision. We would have to extend this
algorithm with global heuristics to ensure that the extracted proof contains instances
of axioms when applicable.

Small-Scale Experiments with Students

We have performed several small-scale experiments with LOGAX. The main results
in this section are obtained from an experiment with LOGAX without lemmas,

International Journal of Artificial Intelligence in Education (2021) 31:99–133 119



performed in May 2018. The 18 participants in this experiment were preparing for
admission to a master program Computer Science at the Open University of the
Netherlands. A course on logic is part of the premaster program. We required partic-
ipants to submit a solution to the first homework exercise, see Section “Comparison
of the Generated Proofs with Expert Proofs”, before participating in the experiment.
Thus, we guaranteed that participants had studied the subject before the experiment.
We used their solutions to the exercise as an indication of their prior knowledge.
The experiment consisted of a 20-minute (online) instruction, after which students
practiced with the tool for 75 minutes. The experiment concluded with a 20-minute
posttest. All interactions of the students with LOGAX were logged. The 10 exercises
in the tool and the questions in the posttest can be found in Appendix C.

We use the results of this experiment

(1) to evaluate the hints and feedback given by LOGAX,
(2) to analyze the way students use LOGAX, and
(3) to evaluate the effect of using LOGAX on students’ performance.

Evaluation of Hints and Feedback

We start with evaluating the generated hints and feedback by answering the following
questions:

– does LOGAX recognize common mistakes?
– is the feedback sufficient to repair mistakes?
– do hints on subgoals help students to reach these subgoals?

To answer these questions, we analyze the log data of the experiments. Table 4 sum-
marizes the results of this analysis, and in the following paragraphs we will discuss
these results in more detail.

Apart from 5 syntax errors, the log data contain 179 incorrect steps of a total
of 1480 steps performed by the students. The syntax errors were performed by 5
different students who could repair this error in the next step without asking for
extra help. It seems that the dialog box indeed prevents students from spending time
repairing syntax errors. In 24% (43/179) of the incorrect steps, a student tries to
apply Modus Ponens, but interchanges the first and second line in the dialog box, as

Table 4 Number of different errors in logged student steps

recognized common error 86

interchanged lines MP 43

not yet recognized common error 15

other incorrect steps 35

total number of incorrect steps 179

syntax errors 5

total number of correct steps 1296

total number of steps 1480
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shown in Fig. 7. This typically occurs when the implication (φ → ψ) has a smaller
line number than the antecedent of this implication (φ). During the experiment we
did not have a buggy rule implemented for this situation, and hence students received
the feedback ‘φ is not an implication’, or ‘Modus Ponens is not applicable’. In 34
out of the 43 occurrences of this kind of mistake, this feedback was sufficient for
the student to fill in the dialog box correctly. In the other cases students asked for a
hint or next step, or continued with another rule. One student did not realize that the
implication may precede the antecedent, and consequently constructed the proofs in
such a way that implications always have a higher line number than the antecedents.

A second category of mistakes also seems to have its origin in an incorrect use
of the dialog box. Examples are backward applications of Modus Ponens where the
last line is already motivated, or the other line is unmotivated (10 occurrences). A
student who puts the number 2 in the bottom field in Fig. 7 and leaves the middle
field open makes this type of mistake. The feedback message in such a case was not
very helpful: “Cannot apply Modus Ponens”. Some buggy applications of Modus
Ponens were only recognized when students completed the dialog box ‘correctly’
(entering the implication in the second field). For instance, an erroneous application
of Modus Ponens on formulae Σ � φ → ψ and Δ � ψ is not recognized if the stu-
dent enters the line number of the first line in the uppermost (antecedent) field, and
the second in the middle (implication) field. Some misreading of parentheses is rec-
ognized by LOGAX, but, for example, the misreading of parentheses in an application
of Modus Ponens on Σ � p → (q → r) and Δ � (p → q) → (r → (p → q)) is
not recognized as a common mistake. Also mistakes in the introduction of an axiom
or assumption in the dialog box, such as interchanging p and q with a faulty Modus
Ponens application on Σ � ¬p → ¬ q and � (¬ q → ¬p) → (p → q) as a result,
is not recognized. The remaining errors that are not recognized cannot be classified
as buggy rules, since we cannot find a pattern in, or a misconception as a cause of,
these errors.

We further analyzed the log data to see whether in the cases that a common error
is detected (86 errors), the error message is sufficient to help a student in mak-
ing progress. In 60% (52/86) of these cases, a student can proceed without help of
the system, in over 8% (7/86) a student gives up on the exercise directly after this
mistake, and in 3% (3/86) after one or more erroneous steps, and in the other cases a
student can proceed with a hint or next step. If a student needs more help, this does

Fig. 7 A common error: interchanging line 1 and 2 in the dialog box for Modus Ponens
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not necessarily mean that the error message is not clear: the log data suggest that
often a student recognizes the mistake (in 60% of the cases a student does not make
the same error again during the session), but does not know how to proceed.

We conclude that we can improve error messages by recognizing the cases where
a student interchanges the lines in the dialog box. In the 43 cases where interchanging
the lines was the only mistake, students will receive a message about how to fill in
the dialog box correctly. In 15 other cases, where students now get a default message
or a message that probably does not refer to the actual mistake, we will also improve
the feedback. An example of this situation is the application of Modus Ponens on
Δ � p → q and Δ′ � q (entered in this order). At this moment, students receive
the error message that q is not an implication, but after recognizing this mistake as
a combination of a common error and swapping lines in the dialog box, the error
message will say that the formula in the second line should be equal to the left-hand
side of the implication instead of the right-hand side. With these improvements we
would have provided specific feedback in 80% ((86 + 43 + 15) / 179) of the mistakes
made by students, instead of in 48% (86/179) of the mistakes in the version used in
the experiment.

Since the possibility to give a hint about a subgoal was new in the LOGAX version
that we used in this experiment, we evaluate the effect of this type of hints. A student
receives a hint that indicates a subgoal to be reached if it takes more than one step
to reach this subgoal, and if the subgoal is not already present in the proof as an
unmotivated line. LOGAX gives a hint about a subgoal in 75 of its 192 hints, and 40 of
these subgoals were reached by the students without further assistance of LOGAX. In
the other cases, the students used next step hints which told them the rule to proceed
or a next step. This number might seem somewhat disappointing, but a more detailed
analysis shows that in general only students who ask a lot of help do not reach the
subgoal without extra help. Figure 8 presents a scatter plot with the total number of
different subgoal hints given to the student on the x-axis, and the number of reached
subgoals after the hint, without further help on the y-axis. The figure shows that
students who use fewer than eight different subgoal hints (hints in different exercises
or in different stages of their proof), in general reach the subgoal themselves.

Fig. 8 The effectivity of subgoal hints
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Use of LOGAX

The second part of this evaluation is the question: how do students use LOGAX. Do
students misuse the system by asking too much help, or by randomly filling in the
dialog boxes, or do they struggle without using the help offered by LOGAX? The
results of our experiment show that the use of LOGAX is related to performance in
the homework exercise, which we use as a pretest. From the 12 students who score
at least 0.8 (out of 1) in the pretest, eight students can complete the exercises without
using much help or making many mistakes. One student reported that he completed
the exercises with pen and paper and used LOGAX mainly to check his answers. Two
students use quite a lot of hints, also to complete the exercises, and one student seems
to misuse the system by performing lots of actions (338 interactions versus an average
of 173). From the students who score lower than 0.8 on the pretest, only one student
completes all the exercises without much help. In this group help seeking strategies
differ considerably: two students hardly ask any help, one student performs 65 help-
seeking actions. We conclude that in this experiment, in general, good students use
LOGAX as intended, and can complete exercises without a lot of help. Since only six
weaker students participated, we cannot draw hard conclusions, but the log data seem
to indicate that these students either tend to overuse or underuse help. Another obser-
vation is that most of the weaker students can complete the first four or five easier
exercises, but the later exercises seem to be too difficult for this group. This indi-
cates a shortcoming in our experiment: it seems the difference in difficulty between
the first five and the other exercises is too big. We could regulate hint use by letting
LOGAX provide unsolicited hints when students make too many mistakes or do not
make progress in their exercise, and on the other hand maximize the number of hints
that a student can ask for.

Evaluation of Learning Effects

The last question we want to answer is whether LOGAX supports students with learn-
ing axiomatic proofs. Most of the participants in the experiment were good students,
who performed already well on the pretest: the average score on the pretest was
0.84, where the maximum possible score was 1. This might have influenced learn-
ing effects negatively. The posttest consisted of two parts. In the first part, students
had to point out possible errors in five small proofs. Four of the five proofs were
incorrect. The incorrect proofs contained common errors collected from the home-
work exercises, see Section “Hints”. We deliberately added errors that are possible
to make in LOGAX and errors that are prevented by the interface, since we wanted
to know whether the last type would occur more often in the posttest. In the second
part, students had to provide a proof.

The scores of the posttest can be found in Table 5. The low scores on exercises
1b and 1d are remarkable. The score on exercise 1b was more or less expected,
because the exercise contains an error in the set of assumptions after applying Modus
Ponens. Since LOGAX automatically determines this set, students do not practice in
correctly determining this set. Exercise 1a also contained an error that is not possi-
ble in LOGAX (mixing an application of Modus Ponens with Axiom b), but this error
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Table 5 Results of the posttest

Exercise 1a 1b 1c 1d 1e 2

Average score 0.78 0.39 0.72 0.34 0.83 0.61

was recognized by students. Exercise 1d applies deduction in ‘the wrong direction’,
a common mistake made by students, which is apparently not sufficiently corrected
while practicing with LOGAX (the log data contain only 3 occurrences of this error).
The misreading of parentheses in exercise 1e (a possible error in LOGAX) is recog-
nized by most students. Students scored lower on exercise 2, an exercise in which a
student has to construct a proof, than in the pretest. We hypothesize that this is caused
by fatigue (since most of our students combine study with a job, the experiment took
place in an evening, and the posttest started at 21:15), and the fact that we asked
students not to spend more than 20 minutes on the posttest, while they could spend
as much time as they needed for the pretest, since this was part of the homework
assignment.

We also looked at the results on the exam. Students who participated in the exper-
iment receive on average the same score for the exercise on axiomatic proofs as they
got for the pretest. Since most students participated in the experiment, we cannot
compare their results with students who did not participate. The results of an ear-
lier experiment (January 2018) with 9 students were more or less comparable. The
average score on the pretest of this group is a little lower (0.8) and also the score
on the posttest proof, exercise 2, is lower (0.52). The results on the exam are a bit
higher (0.89), but the exercise was slightly different, and the time between the exper-
iment and the exam was considerably shorter: 13 days instead of 40 days for the last
experiment. We conclude that at this moment we do not have enough data to evaluate
learning effects. However, experiments with other tools (Lodder et al. 2019) show
that this kind of tutoring system can be effective.

Limitations

In the previous subsections, we described our pilot experiments and mentioned some
limitations. First, the number of participants in the experiments is too low to draw
statistical conclusions or measure learning gains. Second, most Open University stu-
dents combine their study with a job, and hence the online lessons are organized in
the evening. This may have influenced the results in the posttest. Third, the difference
in difficulty between the first five and the remaining exercises is a problem. Weaker
students could have benefited from a more gradual increase in difficulty. There
are other factors that could have influenced learning effects, for example gaming
behaviour of students while working with LOGAX. Since the participants in our
experiments where motivated adults, preparing for admissions to a master program,
we did not expect much gaming behaviour. Still, analysis of the log data shows
that one student overused the possibility to let the system perform a next step. This
might have been caused by frustration, one of possible causes of gaming behaviour,
mentioned by Baker et al. (2008).
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RelatedWork

As mentioned in the introduction, there are two e-learning tools that can be used
to practice the construction of Hilbert-style axiomatic proofs in propositional logic:
Metamath Solitaire (Megill 2007) and Gateway to logic (Gottschall 2012). Both tools
are proof-editors: a student chooses an applicable rule and the system applies this
rule automatically. These systems provide no help on how to construct a proof. There
are quite a lot of systems that help students with other kinds of exercises in logic, and
many more in other subjects.

In the AProS project, Sieg and collegues have developed Proof Tutor, a tutor that
teaches students natural deduction (Sieg 2007; Perkins 2007). They have developed
an automated proof search method, which differs from the Bolotov method in the
use of normal proofs. Their algorithm uses a set of tactics that are explicitly used as
hints for students. Perkins (2007) describes how they provide help such as hints or
next steps in the case that the partial solution of a student diverges from a generated
model solution. First, they check if the subgoals of the partial solution are indeed
derivable from the assumptions (we do not need this check since a situation in which
a subgoal is not derivable is not possible in LOGAX). Second, they check whether
the partial solution can be completed by the Proof Tutor; if this is not the case, they
let the student erase the lines of the part that does not belong to a generated proof.
In LOGAX we do not let students erase lines. The consequence is that a final proof
may contain unnecessary lines, but also that we will not erase a useful part that is not
recognized as useful by LOGAX.

We use a strategy language to generate both the solutions and the feedback (Heeren
et al. 2010). The use of such a language is related to the use of production rules
as, for example, in Anderson et al. (1995) and Corbett et al. (1997), and the way
in which we recognize student solutions is akin to their model-tracing approach.
The Geometry Tutor makes use of contextualized rules, which means that a rule
will only fire in a specific context. The different axioms that we add in step 2(b) of
our version of the algorithm depend on assumptions in the statements Δ′ � φ and
Δ′′ � ¬φ, and these rules could also be perceived as contextualized rules. When
more than one rule can be applied in the same situation, tools based on production
systems may add preferences to specific rules (Anderson et al. 1995; Jaques et al.
2013). We use the strategy language to specify a preference in the application of
the rules.

Ahmed et al. (2013) use a different approach to generate and solve natural deduc-
tion exercises. Their main idea is to use truth tables, representing an equivalence class
of logical formulae. The representations of these formulae are used in a proof graph
of predefined size. Proof generation consists of finding a truth-table-representative
of the assumptions and conclusion, searching for a proof using these representatives,
and adding rewrite steps (such as replacing subformulae of the form ¬¬φ by φ, or
vice versa) to this proof. In this way, they can generate exercises and solutions typ-
ically used in education. However, in their approach it is essential that rewrite steps
on subformulae are allowed, which is not the case in Hilbert axiomatic systems, and
also often not in natural deduction systems.
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Answer set programming, for example used by O’Rourke et al. (2019), is related
to the production systems used by Anderson et al. (1995). Their program finds all dif-
ferent solutions of an algebra exercise, using deductive rules and integrity constraints
that forbid certain solutions. Also explanations and a subset of misconceptions can be
generated automatically. To restrict the search space to a finite space (which is neces-
sary in their program), the number of terms in an equation and the solution length is
maximized. In LOGAX we do not need to maximize the length of formulae; formula
length is not a good measure for the expected proof length. For technical reasons, we
maximize calculation time, but thus far LOGAX has been able to solve all problems
within this limit.

For some domains it is possible to use existing tools to generate solutions or cor-
rect student solutions. An example of this approach is (Sadigh et al. 2012): to solve
state machine problems such as finding a trace for a given model that violates or sat-
isfies a certain property, they use existing model checking tools. This approach can be
very useful to produce solutions or grade exercises, but is in general less suitable for
giving hints, since steps performed by a tool not always correspond to human steps.

Conclusion and FutureWork

By using an existing algorithm for natural deduction, we developed a sound and
complete algorithm to generate Hilbert-style axiomatic proofs, and introduced a rep-
resentation of these proofs as a directed acyclic multi graph (DAM). We use these
DAMs in a new interactive tutoring tool LOGAX to give hints and next steps to stu-
dents, and to extract model solutions. Comparing the generated proofs with expert
solutions shows that the quality of the proofs is comparable to that of expert proofs.
The tool recognizes most of the steps in a set of student solutions, and in case a
step diverges from the generated proof, LOGAX can still provide hints and next steps.
This holds both for the original version of LOGAX as well as for the extension with
lemmas. We derived buggy rules from a set of student solutions, and added these to
LOGAX. Evaluation with a test set showed that this set covers the majority of student
errors. In an experiment with students we discovered that we overlooked a source of
errors originating in the user interface (i.e. errors made while filling in the dialog box
for Modus Ponens). We expect that after adding buggy rules for this kind of error,
LOGAX will recognize about 80% of the errors.

We performed several pilot evaluations with LOGAX. Since the number of par-
ticipating students was low, and students performed already well on the pretest, we
cannot derive conclusions about the learning effect of LOGAX. However, we conclude
that well-prepared students use the system as intended, and can complete most of the
exercises without using much help or making a lot of mistakes. Students who do not
ask more hints than on average, reach the subgoal given in a hint without extra help.
Future evaluations can investigate whether students indeed learn by using LOGAX. It
might be necessary to add more easy exercises for weaker students, since the results
of the evaluation indicate that the difficulty level of the exercises rises too quickly for
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this category of students. Also mechanisms to diminish excessive hint use, or stimu-
late hint use in case of minimal use, might help the weaker students to benefit from
the use of LOGAX.

We developed algorithms for generating DAMs and distilling proofs from this
DAM for the domain of Hilbert-style axiomatic proofs. The strategy language used
to formulate these algorithms is much broader applicable, and we expect that also
some of the ideas used in our algorithms can be applied to other problem domains.
For example, the dynamic extension of partial student proofs, or the use of the strat-
egy language to order the introduction of the proof steps in a way that corresponds to
an expert’s pen-and-paper proof, could be based on techniques similar to LOGAX. For
instance, it would be interesting to compare the approach in the AProS project with
our approach. Contrary to the LOGAX approach, AProS erases lines in a partial stu-
dent proof that are not used in the generated completion. These different approaches
could have different effects on learning and motivation.

Also geometry tutors could benefit from our approach. The geometry prover used
by Matsuda and VanLehn (2004) restricts the number of points that can be used as a
starting point in a construction to prevent combinatorial explosion. With dynamically
generated strategies it could be possible to add points introduced by students without
a high increase in CPU time. QED-Tutrix is a geometry tutor that uses a different
approach by first extending a problem figure into a super-figure that contains possible
useful points and segments (Font et al. 2020). A student who uses this system can
only use points and segments in the figure and the super-figure. The authors state
that a limitation of their system is the necessity to provide all the possible elements
of the proof in advance. With the dynamic approach, it could be possible to find also
solutions using extra points of segments introduced by students.
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Appendix A: Exercise 11.1.5

In Tables 6 and 7 we compare the solution of the logic course exercise 11.1.5 by the
solution generated by LOGAX. Note that the second solution does not use the lemmas
and hence is in fact shorter than the solution in the course.
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Table 6 Solution of exercise 11.1.5 in the logic course:

1. � q → ( p → q) Axiom a

2. ¬¬ q � q Lemma

3. ¬¬ q � p → q Modus Ponens 1 2

4. p → q � ¬¬ ( p → q) Lemma

5. � ( p → q) → ¬¬ ( p → q) Deduction 4

6. ¬¬ q � ¬¬ ( p → q) Modus Ponens 3 5

7. � ¬¬ q → ¬¬ ( p → q) Deduction 6

8. � (¬¬ q → ¬¬ ( p → q)) → (¬ ( p → q) → ¬ q) Axiom c

9. � ¬ ( p → q) → ¬ q Modus Ponens 7 8

10. ¬ ( p → q) � ¬ ( p → q) Assumption

11. ¬ ( p → q) � ¬ q Modus Ponens 9 10

12. � ¬ q → (¬ p → ¬ q) Axiom a

13. ¬ ( p → q) � ¬ p → ¬ q Modus Ponens 11 12

14. � ¬ ( p → q) → (¬ p → ¬ q) Deduction 13

Table 7 Solution of exercise 11.1.5 generated by LogAx:

1. ¬¬ q � q Lemma

2. p → q � ¬¬ (p → q) Lemma

3. ¬ p � ¬ p Assumption

4. � ¬ p → (¬ q → ¬ p) Axiom a

5. ¬ p � ¬ q → ¬ p Modus Ponens 3 4

6. � (¬ q → ¬ p) → (p → q) Axiom c

7. ¬ p � p → q Modus Ponens 5 6

8. ¬ (p → q) � ¬ (p → q) Assumption

9. ¬ (p → q) � ¬¬ q → ¬ (p → q) Deduction 8

10. � (¬¬ q → ¬ (p → q)) → ((p → q) → ¬ q) Axiom c

11. ¬ (p → q) � (p → q) → ¬ q Modus Ponens 9 10

12. ¬ (p → q),¬ p � ¬ q Modus Ponens 7 11

13. ¬ (p → q) � ¬ p → ¬ q Deduction 12

14. � ¬ (p → q) → (¬ p → ¬ q) Deduction 13

Appendix B: Metamath Theorems Compared with LOGAX
with Lemmas

Table 8 compares a set of proofs in Metamath with generated proofs by LOGAX using
lemmas. The first column gives the name of the theorem in Metamath, the second
column the theorem and the third the lemma that is used. The last two columns show
the number of steps. Proofs with the same number of steps are equal except for any
differences in the order of the steps.
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Appendix C: Exercises Used in the Experiment and the Posttest

The exercises presented by LOGAX in the experiment are listed in Table 9, while the
questions of the posttest are presented below:

Exercise 1

Check whether these proofs are correct. In case of an incorrect proof, indicate the
incorrect step, and explain why this step is not correct.

a
1. p → (p → ¬ q) � (p → p) → (p → ¬ q) Axiom b
2. p → p � p → p Assumption
3. p → (p → ¬ q) � p → ¬ q Modus Ponens 1, 2

b
1. p � p Assumption
2. p → (q → r) � p → (q → r) Assumption
3. p, p → (q → r) � q → r Modus Ponens 1, 2
4. q � q Assumption
5. q → r, q � r Modus Ponens 3, 4

c
1. p � p Assumption
2. � p → p Deduction 1
3. � (p → p) → (p → (p → p)) Axiom a
4. � p → (p → p) Modus Ponens 2, 3

d
1. p → q � p → q Assumption
2. p → q, p � q Deduction 1

e
1. p → (q → r), p, p → q � p → (q → r) Assumption
2. p → (q → r), p, p → q � p → q Assumption
3. p → (q → r), p, p → q � r Modus Ponens 1, 2

Exercise 2

Prove axiomatic: (p → q) → r � q → r

Table 9 Exercises in LOGAX

1. ¬ q → ¬ p � p → q

2. p, p → q, q → r � r

3. p → (q → r) � (p → q) → (p → r)

4. � p → ((p → q) → q)

5. p, p → q � r → q

6. p → q � (r → p) → (r → q)

7. p,¬ p � q

8. q, (p → q) → r � r

9. p → ¬ q � p → (q → r)

10. q,¬ (p → q) � r
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