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Abstract
It is widely understood that innovations tend to be concentrated in cities, which is
evidenced by innovative output increasing disproportionately with city size. Yet,
given the heterogeneity of countries and technologies, few studies explore the rela-
tionship between population and innovation numbers. For instance, in the USA, in-
novative output scaling is substantial and is particularly pronounced for complex
technologies. Whether this is a universal pattern of complex technologies and a po-
tential facilitator of scaling, is unknown. Our analysis compared urban scaling in
urban areas across 33 countries and 569 technologies. Considerable variation was
identified between countries, which is rooted in two fundamental mechanisms (sort-
ing and boosting). The sorting of innovation-intensive technologies is found to drive
larger innovation counts among cities. Among most countries, this mechanism con-
tributes to scaling more than city size boosting innovation within specific technolo-
gies. While complex technologies are concentrated in large cities and benefit from
the advantages of urbanization, their contribution to the urban scaling of innova-
tions is limited.
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1. Introduction

Famously, Florida (2005) argued that the global distribution of innovation is ‘spiky’.
Almost 20 years later, this is still very much the case (see Figure 1). Innovation does not
randomly concentrate in space, rather, it is seen as an urban phenomenon (Feldman and
Audretsch, 1999; Bettencourt et al., 2007a, 2007b; Glaeser, 2011). In particular, the urban
scaling literature (Bettencourt et al., 2007a, 2007b, 2010, 2015; Arcaute et al., 2013;
Bettencourt and Lobo, 2016; Gomez-Lievano et al., 2017) has sparked discussion on
whether an urban premium exists, and researchers have sought to conceptualize and meas-
ure it. Empirical analyses have demonstrated that larger cities have a disproportionally
higher innovation output by comparison to their rural counterparts, and this relationship is
disproportionately large. Nevertheless, the precise sources and extent of this urban pre-
mium are still debated (Shearmur et al., 2016; Eder, 2018).

The existing urban scaling literature pays little attention to heterogeneity in scaling
across countries and technological fields. It typically claims that empirically identified
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scaling relationships are universal (Bettencourt et al., 2007a, 2007b; Batty, 2008;
Bettencourt and West, 2010; West, 2018). However, the few studies exploring urban scal-
ing of innovation in different countries (Lobo et al., 2013; Fritsch and Wyrwich, 2021), or
those looking at specific activities or technologies (Balland et al., 2020; Hong et al.,
2020), indicate significant heterogeneity in the relationship between population and invent-
ive output. Specifically, innovations in complex activities are attracted to and facilitated
by urban environments (Balland and Rigby, 2017; Balland et al., 2020). However, whether
the concentration of complex technologies is also a facilitator of the generalized scaling of
innovation is so far unknown.

This article separates urban scaling in innovation into two core mechanisms: boosting
and sorting. Boosting includes the location-based advantages of cities for innovation,
which result in larger cities having disproportionately more innovations (per capita) in a
specific activity (technology) than their smaller counterparts. That is, as population
increases, technological innovation increases more than proportionately. Sorting refers to
the urban scaling that originates from the attraction and concentration of innovation-prone
activities in cities because the locational benefits of cities are crucial for these technolo-
gies. Beyond assessing the magnitude of the two processes in urban scaling, we investi-
gate the extent to which they are related to the concentration of complex technologies in
larger cities.

This study merges the recently established patent database (de Rassenfosse et al., 2019)
with information on 1120 functional urban areas (FUAs) in 33 countries. This study there-
by adds to the limited literature that has investigated urban scaling internationally, includ-
ing that of Bettencourt and Lobo (2016), Fritsch and Wyrwich (2021) and Lobo et al.
(2013).

This study’s findings show that urban scaling is a global phenomenon. However, sub-
stantial variations exist between countries and technologies. For instance, few technologies
receive an innovative boost due to their location in more populous places. The average re-
lationship between city size and technology-specific innovation output is sub-linear or not
significantly different from a linear one in many countries. Yet, cities do manage to attract
more innovation-intensive technologies (sorting), which is identified to be the main source
of urban scaling. In line with the literature, this research finds that large cities specialize

Figure 1. The ‘spiky world of innovation’. Figure inspired by Florida (2005). Spikes represent
cumulative sums of patent counts (2001–14) based on the database of de Rassenfosse et al.
(2019). The visualization was created using the rayshader package in R (Morgan-Wall, 2023).
A square root transformation was performed for better visibility. A high-resolution version is
available for download at: https://www.tombroekel.de/visuals/patents_world_sqrt.png.
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in more complex technologies and that innovation activities in complex technologies espe-
cially benefit from being located in areas with large populations. However, no substantial
evidence is found proving that the concentration of complex technologies in larger cities
is a driver of the disproportionately large innovation numbers in cities.

The paper is structured as follows: The next section conceptualizes the urban scaling of
innovation, including a discussion on sorting, boosting and complexity. Subsequently, the
empirical data and methodological approach are introduced in Section 3. Section 4
describes the empirical results and Section 5 concludes the paper.

2. Theory

2.1. International variations in urban scaling of innovation

Urban areas are perceived as hotspots for knowledge production as innovation activities
are disproportionately concentrated there (Feldman and Audretsch, 1999; Bettencourt
et al., 2007a, 2007b; Glaeser, 2011). For instance, more than twice the innovations are
documented in New York City than in a city half its size. Within the scientific literature,
this observation has been termed the ‘law of urban scaling’ (Batty, 2008).

The disproportionate scaling of innovation with population size has been supported by
numerous empirical studies (Bettencourt et al., 2007a, 2007b, 2010; Arcaute et al., 2013;
Bettencourt and Lobo, 2016; Gomez-Lievano et al., 2017). Recent empirical research also
shows that urban scaling is not restricted to innovation in quantitative terms (i.e., the abso-
lute number of innovations), it also encompasses qualitative aspects of innovation: larger
cities tend to produce disproportionately more radical (Mewes, 2019) and complex innova-
tions (Balland et al., 2020).

Several researchers claim that the ‘law of urban scaling’ is universal (Bettencourt et al.,
2007a, 2007b; Batty, 2008; Bettencourt and West, 2010; West, 2018), which challenges
the notion that the historical, physical, political, institutional, sectoral, financial and cul-
tural specificity of countries and cities significantly shapes their innovation systems and,
therefore, their economic performance (Lundvall, 1992; Nelson, 1993; Acs et al., 2017).
Crucially, countries differ in the degree of factor mobility (labor and capital) (Bentivogli
and Pagano, 1999; Tatsiramos, 2009), which are essential determinants in the concentra-
tion of economic activities in space. These cross-cities and cross-country differences in ur-
banization, factor endowments and innovation capabilities shape the spatial distribution of
innovation activities and could translate into deviations from a global trend.

While the majority of empirical studies argue that a universal scaling law exists, many
of them use only data representing the USA (Bettencourt et al., 2007a, 2007b; Bettencourt
and West, 2010; Gomez-Lievano et al., 2017; Hong et al., 2020). In contrast, the smaller
number of studies exploring urban scaling across different geographic contexts reports
substantial international variation (Arcaute et al., 2013; Lobo et al., 2013; Bettencourt and
Lobo, 2016; Fritsch and Wyrwich, 2021). Equipped with higher quality empirical data, in
particular, through the use of the harmonized global definition of FUAs (Dijkstra et al.,
2019) and geo-located patents (de Rassenfosse et al., 2019), this study’s first aim is to
complement existing insights in the cross-country comparison of urban scaling to innov-
ation around the world with a comprehensive analysis. This aim is captured in our first re-
search question:

Research question 1: To what degree does urban scaling of innovation vary around the world?
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2.2. The two components of urban scaling and their international variation

The theories used to explain urban scaling of innovation are drawn from a wide range of
fields and are much more detailed than typical simple empirical approaches. For instance,
based on complex systems theory, Bettencourt (2013) argues that urban scaling stems
from the mixing of populations in cities and their growing infrastructural and social net-
works. Gomez-Lievano et al. (2017) combine ideas of cultural evolution and economic
complexity and develop a theory of urban scaling based on the ability of cities to bring to-
gether complementary resources. Unfortunately, capturing these ideas empirically in an
international comparison study is nearly impossible. Though it is possible to improve our
understanding of the mechanisms behind urban scaling and the reasons for its variance
using empirical methods.

In this study, the three main location-based factors shaping the innovation output of pla-
ces are translated into two mechanisms (boosting and sorting) that account for the degree
of urban scaling of innovation. Especially within the fields of regional science and eco-
nomic geography the spatial distribution of innovation activities and the role of cities
therein have long been the subjects of empirical studies (Feldman and Audretsch, 1999;
Rosenthal and Strange, 2001). Brenner and Broekel (2011) review common approaches
and summarize them into three fundamental location-based factors:

1. Differences in the ability of places to facilitate local innovation activities.
2. Variations in the number and types of innovation activities present.
3. Spatial heterogeneity in attracting and mobilizing further innovation activities.

Within this article, the first factor is referred to as boosting. Boosting captures all loca-
tional characteristics that increase innovation output, and which correlate to (or can be
approximated by) population size. Boosting comprises two effects. First, higher degrees of
urbanization may stimulate innovation-related efforts. For instance, the higher competitive
pressure for scarce resources such as land and human capital in more urban areas (Porter,
1998; Duranton and Kerr, 2018), renders the adoption of technological leadership and
innovation-based growth strategies more likely. Consequently, more actors located in
urban environments are expected to dedicate resources to innovation activities. Second,
innovation-related resources are more productive in densely populated environments trans-
lating into higher innovation efficiency. Economies of agglomeration, particularly urban-
ization and localization externalities, contribute to this. Urbanization externalities lead to
easier and cheaper access to local and international markets (Taylor et al., 2002), to a
highly skilled workforce (Glaeser and Maré, 2001), to research and development (R&D)
infrastructure (Harrison et al., 1996), to knowledge-intensive business services (Doloreux
and Shearmur, 2012) and, spur knowledge spillovers (Henderson et al., 1995; Greunz,
2004). They often coincide with diversification externalities, which originate from the spa-
tial concentration of heterogeneous knowledge and competencies in space allowing for
cross-domain knowledge spillovers (Jacobs, 1969; van der Panne and van Beers, 2006).
As economic (Youn et al., 2016) and technological diversity (Mewes, 2019) systematically
increases with city size, the likelihood of knowledge exchange across different but com-
plementary domains increases accordingly (Gilbert et al., 2008). By contrast, localization
externalities, also called Marshall–Arrow–Romer (MAR) externalities, emerge from the
concentration of the same or similar activities in one location, which allows for efficient
labor market pooling, input-output linkages, positive competitive pressure and intra-
industry knowledge spillovers (Rosenthal and Strange, 2001). Even though MAR
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externalities are not restricted to urban areas, they are more likely to occur in locations of
greater size and density. Altogether, the tendency toward more innovation-based strategies
and the impact of externalities on innovation productivity, contribute to the same econom-
ic activity producing more innovative output per capita when located in larger urban areas,
that is, boosting.

Temporally, the second and third aspects of Brenner and Broekel’s (2011) review (vari-
ance in existing innovation activities and the attraction of new and additional activities) are
closely linked. This is because the potential for places to attract or mobilize specific innov-
ation activities determines the quantities and types of innovation activities present. Within
this research, this is referred to as sorting. Specifically, this refers to the degree to which
larger urban areas systematically accumulate more innovation-intensive technological activ-
ities. Note that innovation intensity should not be confused with higher innovation productiv-
ity or efficiency. Firms and other organizations performing these activities may simply
dedicate more resources (R&D employees, R&D efforts) to innovation processes (Brenner
and Broekel, 2011). Ultimately, sorting in the context of urban scaling encompasses all fac-
tors that attract above-average innovation-intensive activities to a place that correlates (or can
be approximated) with its population size. Most factors that facilitate boosting (e.g., external-
ities) also shape sorting, and making more urban locations more attractive for innovation-
intensive activities. However, there are exceptions. For instance, higher resource competition
within urban areas can fuel boosting but does not attract further activities.

The second research question conveys the aim to disentangle urban scaling of innov-
ation into sorting and boosting to learn more about its underlying mechanisms.

Research question 2: What is the magnitude of boosting and sorting in urban scaling of
innovation?

By disentangling scaling into boosting and sorting, a better understanding can be gained
of the potential causes of international variation in total scaling, which has been observed
in previous studies (Lobo et al., 2013; Fritsch and Wyrwich, 2021).

Both mechanisms are dynamically interrelated, as boosting allows actors in larger urban
regions to outcompete and outgrow those in less populous places, which increases the
urban concentration of the corresponding activity. In addition, actors in less populace pla-
ces might decide to move to cities to benefit from their advantages and thereby add to the
concentration within cities (sorting) and the advantages cities generate (boosting).

Therefore, given the heterogeneity of factor mobility in countries (Bentivogli and
Pagano, 1999; Tatsiramos, 2009), the expectation is that the degree of sorting will vary
substantially between countries. And, as countries differ in their average degree of urban-
ization, infrastructure, institutional structures and general spatial organization (Hidalgo
et al., 2009; United Nations, 2018), cities are unlikely to provide the same boost to innov-
ation activities around the world. Therefore, boosting is also likely to vary across coun-
tries. Our third research question summarizes this.

Research question 3: To what degree do countries differ in terms of sorting and boosting in the
context of urban scaling?

2.3. Complexity and urban scaling of innovation

To illustrate the usefulness of disentangling scaling into sorting and boosting, this research
considers a factor that has recently been related to urban scaling of innovation:
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technological complexity. Research suggests that complex technologies are more likely to
emerge in and be attracted to cities (Balland and Rigby, 2017; Balland et al., 2020).
Complex technologies combine heterogeneous components in a highly interrelated and
structurally diverse manner (Simon, 1962; Zander and Kogut, 1995). Identifying, adapting
and eventually combining these components via collaboration and division of labor is
more feasible in larger cities (Balland et al., 2020; Juhász et al., 2021). Consequently,
complex technologies can be expected to benefit the most from larger cities (boosting)
and thereby contribute strongly to urban scaling. In addition, large cities are more likely
to specialize in complex technologies, which, given their higher innovation intensity,
should also fuel the sorting effect in urban scaling. The final research question concerns
this cluster of ideas.

Research question 4: Do sorting and boosting systematically vary along the dimension of
technological complexity?

3. Empirical set-up

3.1. Data

To explore the urban scaling of innovation, this research emulates the recent work of
Fritsch and Wyrwich (2021). Innovations are approximated using patent applications and
FUAs (which represent a harmonized delineation of urban areas worldwide) were used as
the spatial units of observation. This enabled the construction of a dataset of comparable
(urban) areas using a widely accepted measure of innovation.1

Although patent applications are by no means a perfect approximation of innovation
(see Griliches, 1990, for a detailed discussion), patent data are widely available, are com-
parable across locations over time, and are thus indispensable for the design of this cross-
country study. The patent data prepared by de Rassenfosse et al. (2019) were used, which
contain more than 18 million patent applications worldwide (including those not granted)
until the year 2014. This patent data are not limited to the European Patent Office but in-
clude applications to other patent offices, such as the USPTO and the Japan Patent Office.
It also include information about the patent family, which prevents one from counting the
same invention granted to multiple offices twice.

The FUAs defined by Dijkstra et al. (2019) cover most of the OECD member states.
They seek to capture the economic and functional areas of cities. Following the logic of
labor market regions, the delineation is based on the daily movements of people, with
work-related commuting. The OECD provides geographic shapefiles for 1199 FUAs in 34
countries (OECD, 2021).2

To match patent information with FUAs the exact geo-coordinates (latitude and longi-
tude) were used, as provided in the patent data. These coordinates were based on the ad-
dress information contained in the patent documents.3 The geographic information in the
OECD shapefiles allows for a straightforward assignment of patents to FUAs. That is,

1 Of course, patents capture inventions rather than innovations. However, this distinction is not essential for the
present work, and the more common term ‘innovation’ is used.

2 The countries and the corresponding numbers of FUAs are listed in Table A1 in the Appendix.
3 This is different to Fritsch and Wyrwich (2021) who rely on complex global crosswalks to delineate regions. We

are confident that our procedure is more accurate.
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whenever the coordinate assigned to a patent lies within the geographical boundaries of
the FUA, it will be assigned to this region.

All applications before the year 2001 were excluded because 2001 was the first year
with the necessary population data (see below). This left 9,778,948 patent applications
from 2001 to 2014. Patents with multiple inventors were counted fractionally (Ejermo and
Karlsson, 2006), a method also applied by Fritsch and Wyrwich (2021): for each patent,
the share of inventors located in the same FUA was calculated. Hence, in all estimations
and figures, ‘patent counts’ refer to the sum of patent fractions assigned to FUAs.4 In
total, 7,076,663 patents were assigned to at least one FUA and were consequently allo-
cated according to the fractional counting procedure.

Unfortunately, the 53 FUAs of Colombia did not feature any patents listed in de
Rassenfosse et al. (2019) and were therefore removed. In addition, 26 FUAs were not
linked to patents, leaving a total number of 1120 FUAs.

The second requisite dataset was population information, which was obtained for most
regions (995) from OECD Statistics for the years 2001 to 2014. Noticeably, the time series
were incomplete for some regions, which was unproblematic for this study’s empirical ap-
proach as the data and average population size were pooled. For the remaining 125 FUA,
the population data for the year 2015 were used, as documented in OECD (2021).

In total, there was complete information (population and patents) for 1120 regions in 33
countries. This study thereby extended the international representation of the study of
Fritsch and Wyrwich (2021) considerably, as their study considered 14 countries only.
Almost as many countries were considered as Lobo et al. (2013). The descriptives of the
data are presented in Table A2 in the Appendix.

3.2. Technologies and complexity

To disentangle boosting and sorting as well as assess the potential systematic variance of
complexity, this study relied on the technological disaggregation of patents provided by
the hierarchical Cooperative Patent Classification (CPC). The four-digit level was used,
which offers a useful balance between technological disaggregation and a manageable data
structure (Breschi and Lissoni, 2009; Antonelli et al., 2020). This allowed for the distinc-
tion of more than 660 technologies. In the technology-specific analyses (see next section),
technologies with very low patent numbers were excluded. These were defined as technol-
ogies with less than 500 patents.5 This reduced the number of technologies considered to
569.

The quantification of technological complexity was crucial for the study. Broekel
(2019) provides annual estimates of technological complexity for four-digit CPC classes.6

The measure of structural diversity is based on the representation of technologies as com-
binatorial networks of interrelated (knowledge) elements. The structure of these combina-
torial networks comprised different topologies (e.g., ‘stars’, ‘lines’ and ‘circles’).

4 The analysis was repeated with a full-counting approach. The results did not change in a substantive manner.
They can be obtained from the authors upon request. The distribution of the patent numbers across FUAs using
the two methods are visualized in Figure A1 in the Appendix.

5 Figures A2 and A3 in the Appendix visualize the distributions of the cumulated numbers of patents across tech-
nologies and population across regions respectively for all countries and the complete time span.

6 The data are publicly available at https://www.tombroekel.de/updated-values-of-technological-complexity/ and
the GeoInno package for R features a function for the calculation of the structural diversity measure, see https://
github.com/tombroekel/GeoInno.
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Accordingly, technologies were more complex when their combinatorial networks had a
greater diversity of such topologies, that is, more distinct ways in which the technologies’
(knowledge) elements were interrelated. Presumably, this increases the effort needed to in-
vent, learn and copy a technology. The measure of structural diversity captured this diver-
sity at the four-digit CPC level. Broekel (2019) shows that structural diversity outperforms
other measures of technological complexity in mirroring patterns commonly associated
with complexity (growing over time, requiring more R&D and collaboration, concentrating
in space). Recently, Mewes and Broekel (2022) add to this by showing that this measure
of complexity explains the growth differentials of European regions. The technological
complexity of the four-digit CPC technologies was averaged over the period 2001–14, as
well.

3.3. Methodology

Mewes (2019) shows that scaling coefficients change rather slowly over time, which
allows for cross-sectional analysis. As already outlined, population and complexity values
were averaged across all years, whereas patent numbers were summed to correspond to
the total innovative output in that period.

Cross-sectional OLS regressions were employed relating the logarithm of patent num-
bers to the logarithm of population. The resulting coefficient of population was interpreted
as an indication of the degree of scaling (Bettencourt et al., 2007a). The relationship be-
tween population and patents was estimated as reliably as possible (using fixed effects,
interaction terms and clustered standard errors). Still, the results cannot be interpreted
causally and suffer from an omitted variable bias, as population is not the primary, let
alone, only explanatory factor of patented innovation (Brenner and Broekel, 2011).
Moreover, patents are not the only or best approximation of innovative output. While this
needs to be considered in the interpretation, it is still the most widely used approach in
this context.

To answer Research Question 1, the degree to which urban scaling in innovation varies
across the world, all country-specific data were pooled, and the OLS was run including
country-fixed effects and clustered standard errors at the country level, which provided the
baseline model. By estimating varying slopes and varying intercepts models using interac-
tions of country-dummies and population, differences between countries were quantified
(Fritsch and Wyrwich, 2021).

Research questions 2, 3, and 4 require the disaggregation of scaling into boosting and sorting.
According to the discussion, the analysis focused on the technological dimension of sorting.
Technologies (4-digit CPC fields) were assumed to represent technologically homogeneous
innovation processes, implying that no significant sorting takes place within each technology.7

That is, if patent numbers per capita within a specific technology were higher in larger regions, it
was the result of actors being more innovative there (having a higher innovation efficiency and
higher investments into innovation) and not because they operate in technologies that are more
innovation-intensive in general. The data was restructured with 569 technology-specific observa-
tions for each of the 1,120 regions leading to a total of 637,280 observations. All observations

7 The relative homogeneity of the presumed innovation processes within four-digit CPC technologies implied that
no substantial sorting of more innovation- and patent-prone subfields correlated with city size. The validity of
this assumption increased with further technological disaggregation. Unfortunately, this came at the cost of thin-
ner empirical data. We believe that the four-digit level represents the best trade-off in this scenario.
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with zero patents were removed, leaving 272,399 valid observations that formed the basis for the
subsequent analyses.

To capture the boosting effect, the OLS scaling regression on this data was estimated.
This allowed the intercept and scaling-coefficient (slope parameter of population) to vary
between technologies.8 The resulting technology-specific scaling coefficients were not
shaped by sorting and hence, represented pure boosting.9

Technically, the varying slopes were implemented using varying slopes and intercept
model (i.e., 569 technology-specific parameters) for population. The technology B32B
(Layered products, products build of strata of flat or non-flat form) was selected as the
reference group because of all technologies, its slope-parameter was closest to 1
(b¼ 1.000, 95% conf. int.: 0.929–1.070, 818 observations) when considering country-
fixed effects. Using it as a reference allowed for the interpretation of a technology’s sig-
nificant boosting coefficient as over-linear or sub-linear scaling with population and conse-
quently, whether there was a significant boosting effect. Hence, these coefficients were
referred to as boosting coefficients in the following.

In an extension of this approach, variations between countries were assessed with a
varying slopes (i.e., country-specific) model for population using a combination of coun-
try and technology dummies. In this case, the technology-country combination ‘E03C-
USA’ served as a reference because its slope parameter was closest to 1 (b¼ 1.00003,
95% conf. int.: 0.858–1.14, 154 observation). In consequence, significant coefficients of
the varying slope parameter can be interpreted as indication of slopes that are statistically
larger or smaller than 1. To test if international variations significantly shaped the magni-
tude of boosting, a second-stage analysis was conducted in which the boosting coeffi-
cients were regressed on country dummies with the USA set as the benchmark. The USA
was chosen because it was the case that was the subject of the most investigation in the
scaling literature. As the values of the dependent variable (boosting coefficients) were
outcomes of a statistical analysis itself, a meta-regression approach was employed that
considers variance in the (statistical) precision with which the values were estimated.
This was achieved by employing a residual maximum-likelihood approach (REML) in
the second stage (Viechtbauer et al., 2015). This two-stage approach also allowed for a
simple exploration of the relationship between boosting and complexity, as the complex-
ity of technologies could be added into the meta-regression as an additional explanatory
variable.

To isolate the sorting effect from boosting, the degree to which (larger) regions special-
ize in more innovative (patent-intensive) technologies was assessed. First, each technol-
ogy’s patent intensity was calculated as the average of the ratio between patents and
population across regions with at least one patent in the focal technology
(INNO_TECH).10 Second, the technology-specific regional patent numbers (in logs) were
regressed onto the corresponding technology’s log-transformed patent intensity (the latter

8 Fritsch and Wyrwich (2021) were not emulated in doing the analysis for patents per inventor. They argue that
this ratio represents inventors’ productivity, which, in the setting of this research, might capture the boosting ef-
fect as well. However, this ratio is heavily shaped by the intensity of collaboration activities and consequently
represents a rather biased estimate of inventor productivity.

9 All OLS scaling regressions were done using the fixest R-package (Bergé, 2018).
10 The robustness check using the median value of technologies’ patent to population ratios yields very similar

results.
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being identical across all regions). Figure 2 illustrates this schematically, with the dots rep-
resenting individual technologies that are sorted according to their patent intensity along
the x-axis and their region-specific patent numbers on the y-axis. The slope parameters of
the regression obtained represent a simple measure of regions’ specialization in
innovation-intensive technologies. In practice, we achieve this by pooling all region-
specific observations and estimating varying slopes and varying intercepts (i.e., region-
specific parameters) model interacting technologies’ patent intensities (INNO_TECH) with
region dummies (REG). Subsequently, the relationships of these coefficients with popula-
tion counts were explored with a REML meta-regression, which is illustrated in Figure 3.
The region closest to not having any specialization concerning innovation-intensive tech-
nologies was chosen as a reference group, that is, a region with a slope parameter closest
to zero. This is region ES048 (Guadalajara, Spain, b¼�0.000352, 95% conf. int.:
[�0.120, 1.20], 30 observations).

An interaction of innovation intensity, complexity and region dummies
(INNO_TECH*COMPLEX*REG), provides varying slopes (region-specific) and varying
(region-specific) intercepts for the relation of innovation intensity and complexity. In the
second stage, the resulting coefficients were regressed on population to evaluate the rela-
tionship between sorting and complexity.

4. Results

4.1. Cross-country differences of urban scaling to innovation

Table 1 shows the results of the typical scaling regression between population and patents
(both in logs) across all 1120 regions. The size of the coefficient for population is relative-
ly large (1.445), but it decreases considerably to 1.269 when considering country-level
fixed effects. That the pooled data stems from different sub-populations are also visible in
Figure 4. When considering the country-fixed effects, the scaling coefficient obtained is
very similar to those reported by Bettencourt et al. (2007a, 2007b) and Balland et al.
(2020) for USA cities (1.27 and 1.26, respectively). The result without fixed effects is al-
most identical to those reported by Lobo et al. (2013) for the USA and to the one for the
combined sample of regions in 33 other countries. The data clearly confirm the existence
of positive urban scaling across countries.

Next, following Fritsch and Wyrwich (2021), the same regression was estimated, this
time with varying slopes (country-specific) for population using the USA as a reference.
The slope coefficients are visualized in Figure 5 (Table A3 in the Appendix reports the
full regression results). Only 9 out of 30 countries’ coefficients are significantly different
from that of the USA (at the level of p< 0.1). The coefficients are significantly smaller
for Switzerland, Ireland, Italy, Lithuania, the Netherlands and the UK. They are larger for
Mexico and Slovenia (there are only two regions in Slovenia). While the signs of the coef-
ficient are the same as reported by Fritsch and Wyrwich (2021), by contrast, the lower
scaling for Canada, Germany and Spain is not observed to be statistically significant in
this research. This discrepancy is likely the result of better quality (geo-located) patent
data used in this study.

Hence, the analysis provides a mixed answer to the first research question: while
urban scaling of innovation is observed across all countries and it is not statistically
different from that observed in the USA, there are significant differences between
some countries. In particular, the UK, Ireland, Switzerland and Austria show scaling

988 � Broekel et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article/23/5/979/7128251 by U

trecht U
niversity Library user on 09 O

ctober 2023



coefficients below one and, accordingly, do not experience super-linear urban scaling of
innovation.11 Consequently, this study casts some doubt on the idea that scaling could
hold universally.

Figure 2. Specialization in innovation-intensive technologies.

Table 1. Urban scaling in innovation regression

Dep: log (Patents)

Constant �12.394*** (�15.878, �8.909)
log (Population) 1.445***(1.131, 1.759) 1.269***(1.182, 1.355)

FE (Dummies) No Countries
Cluster Std. Error Yes Yes
Observations 1,120 1,120
R2 0.412 0.878
Adjusted R2 0.411 0.874
Residual Std. Error 1.928 (df ¼ 1118) 0.891 (df¼ 1086)

***p< 0.001, **p< 0.01, *p< 0.05.

Figure 3. Sorting meta-regression.

11 The coefficient of the USA is 1.362 and the coefficients of these countries’ interaction effects are large than its
difference to one.
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4.2. Boosting and sorting in urban scaling to innovation

This study is arguing that scaling is rooted in two effects: boosting and sorting. To iden-
tify boosting, the patent data were disaggregated into 569 technology-specific observations
and a scaling regression on this basis was estimated whereby the population parameter
was allowed to vary between technologies. The resulting coefficients are shown in
Figure 6 and the condensed regression results are in Table A4 in the Appendix. Red indi-
cates whether the coefficient is significantly different from the reference technology’s
slope, which is approximately 1.

The findings are remarkable: across the world, merely four of 569 technologies scale
super-linearly, whereas about 50% scale sub-linearly and the remaining technologies scale
approximately linearly. That is, in only 4 of 569 cases a larger population leads to dispro-
portionally more patents, and the median coefficient across all technologies of 0.764 is
well below 1. This clearly shows that boosting as a part of scaling does not solely account
for the super-linear scaling coefficient found in the overall regression.

This is even more interesting given the inter-country variance in boosting. Figure 7
illustrates the results of the varying (country-specific) slopes of technologies
(COUNTRY*TECH*Population) in which the boosting coefficients for each country were
classified as significantly larger or smaller than 1 or approximately 1 (the summary of the

Figure 4. Visualization of urban scaling in innovation.
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regression results is shown in Table A6 in the Appendix). Most technologies scale ap-
proximately linearly or sub-linearly within individual countries. There is only a handful of
countries (USA, Germany, Japan, South Korea and France) where larger populations boost
the innovation activities of some technologies’ (between 21 and 85) super-linearly.
Unfortunately, two countries (IS and LU) do not have enough observations to be tested
against the reference (USA).

For three countries, most technologies’ scale sub-linear: Italy, United Kingdom and
Spain. However, there is no apparent reason why boosting differs so much between the
observed countries. Both groups of countries feature large cities (in terms of population)
and are highly developed. The two groups also simultaneously include highly centralized
(France, South Korea and UK) and less centralized (USA, Germany and Italy) countries.
The coefficients of the meta-regression, which test if significant differences in boosting
exist between countries (using USA as the reference group once again), demonstrate sig-
nificant inter-country variance (Figure 8 and the according regression results in Table A5).
There are only five countries in which the boosting effect is similar to or stronger than
that in the USA: Slovenia, South Korea, Japan, Finland and Germany. Interestingly, the
largest boosting is found in countries that are classified as being most economically
advanced (Hausmann et al., 2011), an observation which should be explored further in fu-
ture research.

Figure 5. Variations in scaling across countries.
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Insights into sorting, that is, innovation-intensive technologies concentrating in larger
urban areas, were obtained by relating region-technology-specific patent numbers on the
innovation intensity of technologies (INNO_TECH) with a varying (region-specific) slope
and varying intercept regression, to obtain a measure of each region’s specialization in
innovation-intensive technologies (see a summary of the regression in Table A7 in the
Appendix). Subsequently, the region-specific slopes were regressed on region’s population
using a meta-regression. The outcome of the latter confirms the significantly positive rela-
tionship with a coefficient of 0.285*** (see Table 2). Accordingly, regions with larger pop-
ulations are more strongly specialized in innovation-intensive technologies. That is, sorting
significantly contributes to urban scaling.

Like boosting, sorting varies across countries. It was quantified by interacting regions’
populations with country dummies in an extension of the previous meta-regression (the
summary of the regression results is given in Table A8 in the Appendix). Figure 9 visual-
izes the coefficients obtained. For 22 countries, sorting is found not to be significantly dif-
ferent than that observed for the USA. Again, two countries (IS and LU) do not have
enough observations to be tested against the reference (USA). In eight countries sorting is
significantly weaker, which means their urban areas do not attract innovation-intensive
technologies to the same extent as cities in the USA. Seven of these eight countries are
also characterized by lower boosting than the USA [e.g., Poland (PL), Italy (IT), Lithuania
(LT), Chile (CL), Mexico (MEX), United Kingdom (UK) and Spain (ES)]. Yet, this does

Figure 6. Variations in boosting across technologies.
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not imply that total scaling is necessarily lower than what is observed in the USA. For in-
stance, Mexico has weaker boosting and sorting than the USA, but overall, urban scaling
is stronger (Figure 4). This is due to two reasons. First, in the boosting and sorting estima-
tions, all technologies are treated equally, while in the estimations of total scaling, they
are (implicitly) weighted by their country-specific patent numbers. That is, the technology-
specific estimations of boosting and sorting do not consider countries being specialized in
some technologies. Put differently, in the estimations of total scaling, countries’ results dif-
fer because their patent portfolios are shaped by other technologies. Second, a globally
patent-intensive technology (value of INNO_TECH) may, for country-specific reasons, not
be patent-intensive in a country, for example, its actual ratio of regional patents to popula-
tion may be lower than the global average. Both effects are independent of the scaling ar-
gument and are hence not explored further. Consequently, in the empirical methodology,
the empirically identified magnitudes of sorting and boosting do not add up to that of total
scaling. Nevertheless, when explaining countries’ total scaling coefficients with the
country-specific boosting and sorting effects (see Table A9 in the Appendix), both effects
jointly and significantly explain about three-quarters of total scaling (Table 3). According
to these regressions, on its own, sorting has the much larger explanatory power of total
scaling.

Figure 7. Variations in boosting across technologies and countries.
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An interesting case is South Korea. It is the only country with lower sorting than the
USA but stronger boosting. Accordingly, cities boost innovation activities, but the most
innovative technologies are not more attracted to larger cities. It is beyond the scope of

Figure 8. Variations in boosting across countries.

Table 2. Population and sorting

Dep: Coef. INNO_TECH

Intercept �2.626 (0.109)***
log (Population) 0.285 (0.008)***

FE (Dummies) Countries
I2 92.514
Test of moderators 107.043
Test of moderators’ p-value 0.000
Log-likelihood �130.598
BIC 505.466
Nobs 1108

***p< 0.001, **p< 0.01, *p< 0.05.
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the paper to explain the special role of South Korea. However, it is clear is that despite
the supposed universality of urban scaling, substantial heterogeneity exists between coun-
tries including very distinct scaling patterns that call for deeper analyses in future studies.

In summary, Research Questions 2 and 3 are answerable: while boosting contributes to
urban scaling, there are few technologies that experience an (urban) boosting effect on a

Table 3. Contribution of boosting and sorting to total scaling

Dep: Total scaling Dep: Total scaling Dep: Total scaling

(Intercept) 0.537 [0.053; 1.020]a 0.586 [0.274; 0.899]a 0.524 [0.217; 0.831]a

Average_boosting 1.180 [0.434; 1.926]a 0.343 [0.069; 0.617]a

Sorting 2.427 [1.487; 3.367]a 1.871 [1.013; 2.729]a

R2 0.639 0.746 0.761
Adj. R2 0.626 0.737 0.744
Num. obs. 31 31 31
RMSE 0.377 0.316 0.312

aNull hypothesis value outside the confidence interval.

Figure 9. Variations in sorting across countries.
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global scale. The effect is primarily visible when zooming into specific countries (e.g.,
USA, Japan and Germany), which means that the same technology shows distinct scaling
properties in different countries. In addition, countries differ significantly in the magnitude
of boosting. Both observations starkly contrast with the idea that urban scaling might be
universal. A similar logic applies to sorting. More urbanized areas generally attract more
innovation-intensive technologies, which contribute to their total innovation output and
total urban scaling. This research shows that this holds across all countries as well.
However, countries differ substantially in the strength of this effect. Accordingly, as total
urban scaling is varying across the world, so does the relative relevance of the mecha-
nisms at its roots (boosting and sorting).

4.3. Boosting and sorting and technological complexity

Research question 4 considers whether more complex technologies benefit more from
boosting and whether sorting into innovation-intensive technologies is facilitated by more
complex technologies being attracted to larger urban areas. Testing this is straightforward
for boosting. For instance, Figure 10 gives a first intuitive visualization of the relationship
between boosting and complexity. The 568 technology-specific boosting coefficients (one
being the reference category) of Figure 4 (y-axis) were ordered by their corresponding
complexity values (x-axis). The figure also features each technology’s share in all patents
(size of points). The increasing trend line suggests a positive relationship between com-
plexity and boosting. This is confirmed with two meta-regressions. The first relates tech-
nologies’ boosting coefficients [slope coefficients of the interaction of population and
technology-dummies (Table A4 in the Appendix)] to their corresponding complexity val-
ues (first column in Table 4). The second explains the technology- and country-specific
boosting coefficients (slope coefficients of the interaction of population, technology and
country dummies (Table A6 in the Appendix)) with complexity (second column in
Table 4). In both cases, complexity obtains a significantly positive coefficient (see
Table 4), implying that the boosting effect of population is more pronounced for more
complex technologies. This means that innovation activities in complex technologies bene-
fit more from being located in more populous areas than innovation activities in simpler
technologies, which confirms what Balland et al. (2020) observed within the USA.

Testing the relationship between complexity and sorting is more difficult.
Unfortunately, it is not possible to simply calculate the concentration of technologies in
regions and explain this with complexity, as this gives insights into the spatial distribution
of complex technologies but not if populous regions attract more innovation-intensive
technologies because they are also more complex. Therefore, a different approach was
used. Complexity was integrated into the previous approach of testing sorting by interact-
ing the varying slope components (INNO_TECH*REG) with complexity
(COMPLEX*INNO_TECH*REG). This resulted in three sets of varying slope values. The
first set, which was already included in the initial regression, approximates the degree of
sorting within regions into innovation-intensive technologies (INNO_TECH). The second
provides insights into the sorting of regions into complex technologies (COMPLEX). The
third reflects the tendency of regions to attract innovation-intensive technologies that are
also complex (COMPLEX*INNO_TECH). Each set of coefficients (region-specific slope
parameters) was subsequently related to population using a meta-regression approach. If
complexity plays a significant role in sorting, the relation between INNO_TECH’s coeffi-
cients and population is expected to weaken in comparison to what is observed without
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complexity (Table 2). Second, a significantly positive relationship between population and
the coefficients for COMPLEX*INNO_TECH suggests that sorting is more pronounced
for complex innovation-intensive technologies.

Table 4. The relationship between boosting and complexity

Dep: Boosting coefficients Dep: Country-specific boosting
coefficients

Intercept �1.015*** (0.060) �0.969 (0.024)***
Complexity 0.074*** (0.006) 0.085 (0.002)***

FE (Dummies) No Countries
I2 50.475 30.732
Test of moderators 170.323 274.886
Test of moderators’ p-value 0.000 0.000
Log-likelihood 166.261 �5856.485
BIC �313.559 12,023.234
Nobs 558 12,144

***p< 0.001, **p< 0.01, *p< 0.05.

Figure 10. Visualization of the relationship between boosting and complexity.
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Working with interaction effects is tricky because the interpretation of the main effects
is conditional on the significance of the interaction effects. As this was the case here, the
meta-regressions for COMPLEX*INNO_TECH were estimated using the full sample of
observations and those for INNO_TECH and COMPLEX excluding regions with signifi-
cant coefficients of COMPLEX*INNO_TECH (879 of 1108 regions).12 The regression
outcomes are presented in Table 5. For completeness, the results for INNO_TECH and
COMPLEX using the full sample of observations are reported in Table A10 in the
Appendix. Moreover, to assess changes in INNO_TECH’s coefficients due to the consider-
ation of COMPLEX, the exercise was repeated and the relationship between population
and the coefficients of INNO_TECH and COMPLEX was estimated when the latter two
had been estimated without their interaction (see Table A11 in the Appendix).

Across all specifications, the population has a significantly positive relationship with
INNO_TECH and COMPLEX (Columns 1 and 2 in Table 5). Accordingly, more
innovation-intensive and complex technologies are attracted to more populous places.

However, the relation between population and INNO_TECH weakens only slightly
when considering complexity: From an initial value of 0.285*** (Table 2), the coefficient
drops to 0.260*** when varying (region-specific) slopes for complexity are added (first
column in Table A11) and to 0.221*** in the case that complexity and the interaction of
INNO_TECH and COMPLEX are considered (first column in Table 5). This means that
complexity shares little variance with INNO_TECH, which correlates with population
numbers. This is also indicated by the barely significant coefficient of population when it
is regressed on the slope parameters of the interaction of INNO_TECH*COMPLEX (third
column in Table 5). That is, the analysis finds limited evidence that sorting into complex
technologies is a facilitator of urban scaling of innovation when controlling for the innov-
ation intensity of technologies. To a certain degree, this resembles the relatively low bi-
variate correlation of 0.31*** of the complexity of technologies and their innovation
intensity.

In sum, Research Question 4 can be answered: the boosting effect is clearly larger for
more complex technologies implying that they benefited more from more urban environ-
ments. More populous areas also tended to specialize in more innovation-intensive tech-
nologies. While larger regions also attract more complex technologies, this is not the
major source of the sorting effect that contributes to the urban scaling of innovation.

5. Discussion and conclusion

The paper contributes to the recent literature on urban scaling of innovation, which is con-
cerned with the degree to which innovation concentrates disproportionately in more popu-
lous regions (Bettencourt et al., 2007a, 2007b, 2010; Lobo et al., 2013; Mewes, 2019;
Fritsch and Wyrwich, 2021). Using a novel dataset including 1120 FUAs in 33 countries
around the globe, this research adds comprehensive cross-country evidence of the exist-
ence of urban scaling while simultaneously demonstrating that it differs across countries.
The research distinguishes between boosting and sorting as basic mechanisms underlying
total urban scaling. It is shown that the effect of boosting, which refers to the same
technological activity generating more innovation output per inhabitant in larger cities,

12 A threshold of p< 0.05 is used. Moreover, we also estimated the regression excluding the interaction of
COMPLEX and INNO_TECH. The results remain the same.
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varies substantially between countries. A similar logic applies to sorting, which captures
the tendency of larger cities to specialize in technologies with higher innovation intensities
than smaller ones. While this analysis suggests that sorting explains a larger share of total
urban scaling of innovation, there are noticeable differences between countries. For in-
stance, in eight countries, boosting and sorting were both less pronounced than in the
USA. By contrast, in South Korea, boosting was stronger and sorting weaker than what
was observed in the USA. Consequently, our study shows that while urban scaling is a
global phenomenon, there is substantial international heterogeneity in its magnitude and,
even more crucially, in its underlying mechanisms.

This research also confirms that complexity is related to urban scaling, as suggested by
Balland et al. (2020). More complex technologies, indeed, also benefit more (than less
complex technologies) from being located in larger urban areas. However, only weak evi-
dence is found to suggest that for populous locations, specialization in complex technolo-
gies contributes to the overall sorting effect. Given that sorting has greater importance for
urban scaling of innovation relative to boosting, the attraction of complex technologies to
cities is not a primary contributor to this process.

These findings have at least two crucial policy implications. First, Fritsch and Wyrwich
(2021) indicate that innovation is not bound to (large) cities. Smaller and more remote pla-
ces are also centers of technological advancements suggesting that (public) investments
into the technological capabilities of these places (e.g., research centers) can be fruitful.
However, this greatly varies between countries. Some countries (e.g., the Netherlands and
Switzerland) were among the most innovative countries in the world and yet, in their case,
hardly any (technological) innovation processes were subject to urban scaling. Apparently,
being a leader in innovation does not require urban scaling: a national innovation system
less spatially concentrated than in the USA can be at least as successful. However, this
does not apply to complex technologies, which supports the second policy implication.
Innovation in these technologies benefits from urban environments, and while inventors
from smaller cities also contribute to and utilize them, (large) cities offer substantial loca-
tional advantages boosting research activities therein. Consequently, (public) investments
contributing to their development are better placed in cities. Unfortunately, this may fur-
ther stimulate spatial inequality, because competencies in complex technologies, in particu-
lar, are linked to economic growth (Mewes and Broekel, 2022). Consequently, smart

Table 5. Meta-regression for sorting and complexity

INNO_TECH COMPLEX INNO_TECH*COMPLEX

Intercept �2.522 (0.487)*** �0.494 (0.090)*** �0.031 (0.083)
log (Population) 0.221 (0.025)*** 0.039 (0.005)*** 0.009 (0.004)*

FE (Countries) Yes Yes Yes
I2 51.880 83.039 79.719
Test of moderators 8.966 5.409 2.443
Test of moderators’ p-value 0.000 0.000 0.006
Log-likelihood �1056.116 468.646 488.791
BIC 2341.409 �708.316 �733.904
Nobs 879 879 1090

***p< 0.001, **p< 0.01, *p< 0.05.
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policies are required to remedy this conflict between the core aims of innovation policies
(supporting complex technologies) and regional policies (reducing regional inequality).

These implications must be taken with a grain of salt, as the study’s empirical approach
has several limitations. Most importantly, the research only considers patents as indicators
of innovation, which implies several kinds of biases. Spatial dependencies were addressed
only by including country dummies and clustered standard errors, although more advanced
approaches are available. Furthermore, most of the regressions were rather bivariate and
only controlled for influences at the country level. The regressions exclusively considered
log–log relationships and disentangling potential endogenous relationships was not even
attempted. The investigations rely on a cross-sectional approach, which would be fascinat-
ing to extend to a longitudinal format in the style of Mewes (2019). However, from an
empirical perspective, reliable data on a global scale are nearly impossible to gather. From
a theoretical perspective, arguments were not presented as to how and why the dynamics
of scaling, boosting and sorting relate to one another or develop over time. Recently,
Bettencourt et al. (2020) and Mewes (2019) began to explore this topic.

Except for the reliance on patent data, which is simply due to the lack of alternatives,
many of the study’s limitations are by choice. That is, the study was modeled after other
studies in the urban scaling of innovation literature are conducted to generate comparable
results for ‘typical’ outcomes (Balland et al., 2020; Fritsch and Wyrwich, 2021), while still
being able to contribute to the advancement of this literature stream.

Future research on urban scaling of innovation should address two questions (one em-
pirical and one provocative) and consider at least one empirical recommendation. The two
questions are:

� Why does super-linear scaling only hold for total patent numbers but not for
many individual technologies?

� Recent developments in the scaling framework (e.g., Youn et al., 2016) empha-
size that urban scaling is an outcome of the agglomeration of more diverse
knowledge in larger places. This study confirms this in the context of innov-
ation. However, which activities precisely are located in larger regions, for
which reasons, and why do improvements in communication and transportation
not (yet) erode this feature of larger places?

Answering these questions will allow for a better understanding of the emergence of
urban scaling of innovation in the technological and geographical dimensions. The empir-
ical recommendation of this research is to differentiate urban scaling into sorting and
boosting effects. In itself, this is not novel given that it has been part of the conceptual
framework of the measurement of innovation performance of spatial units for a long time
(see, e.g., Brenner and Broekel, 2011). However, for too long, the urban scaling literature
has paid little attention to it. For instance, Bettencourt (2013) focuses on how city size
may shape the interactions of its inhabitants (or subsystems) in his discussion on the ori-
gins of urban scaling. But the degree to which city size may act as a selection mechanism
attracting (and breeding) specific types of competencies and resources, which in turn may
contribute to urban scaling, has only recently been discussed in this context (Youn et al.,
2016; Gomez-Lievano et al., 2017; Balland et al., 2020). In particular, the idea of cities
providing the necessary conditions for more (economically) complex activities to emerge
and grow, is a promising new direction to follow in answering the question above
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(Balland et al., 2022). Even though this study casts some doubts on the role of complexity
in this context, this should not discourage endeavors in this direction. This study has
focused on technological complexity and not on economic complexity. Notwithstanding a
certain degree of relatedness, the two types of complexity represent distinct dimensions
with specific features. They are, hence, likely party to different dynamics; yet another area
calling for more research.

Lastly, stronger interactions between the economic geography and urban scaling com-
munities would be advantageous for future research. The urban scaling literature will
clearly benefit from the insights into place-specificity and potential explanations for devia-
tions from average urban scaling relations (e.g., differences between countries) that have
been discussed and explored for a long time in economic geography. Conversely, regional
science and economic geography scholars will benefit from the scaling literature’s rigorous
translation of micro-level dynamics into system-level features and dynamics.
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Glaeser, E. L., Maré, D. C. (2001) Cities and skills. Journal of Labor Economics, 19: 316–342.
Available online at: https://doi.org/10.1086/319563

Gomez-Lievano, A., Patterson-Lomba, O., Hausmann, R. (2017) Explaining the prevalence, scaling
and variance of urban phenomena. Nature Human Behaviour, 1: 0012. Available online at: https://
doi.org/10.1038/s41562-016-0012

Greunz, L. (2004) Industrial structure and innovation—evidence from European regions. Journal of
Evolutionary Economics, 14: 563–592.

Griliches, Z. (1990) Patent statistics as economic indicators. NBER Working Paper, National Bureau
of Economic Research, Cambridge, MA, USA.

1002 � Broekel et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article/23/5/979/7128251 by U

trecht U
niversity Library user on 09 O

ctober 2023

https://doi.org/10.1073/pnas.0610172104
https://doi.org/10.1073/pnas.0610172104
https://doi.org/10.1016/j.respol.2006.09.026
https://doi.org/10.1371/journal.pone.0013541
https://doi.org/10.1038/srep05393
https://doi.org/10.1098/rsif.2019.0846
https://doi.org/10.1080/13662716.2010.528927
https://doi.org/10.1080/13662716.2010.528927
https://doi.org/10.1093/jeg/lbp008
https://doi.org/10.1371/journal.pone.0216856
https://doi.org/10.1038/s41597-019-0264-6
https://doi.org/10.1787/d58cb34d-en
https://doi.org/10.1093/jeg/lbr003
https://doi.org/10.1093/oxfordhb/9780198755609.013.14
https://doi.org/10.1177/0160017618764279
https://doi.org/10.1177/0160017618764279
https://doi.org/10.1016/j.respol.2021.104237
https://doi.org/10.1016/j.respol.2021.104237
https://doi.org/10.1016/j.jbusvent.2007.04.003
https://doi.org/10.1086/319563
https://doi.org/10.1038/s41562-016-0012
https://doi.org/10.1038/s41562-016-0012


Harrison, B., Kelley, M. R., Gant, J. (1996) Innovative firm behavior and local milieu: Exploring the
intersection of agglomeration, firm effects, and technological change. Economic Geography, 72:
233–258.

Hausmann, R., Hidalgo, C. A., Bustos, S., Coscia, M., Chung, S., Jimenez, J., Simoes, A., Yldrim,
M. A. (2011) The Atlas of Economic Complexity. Hollis, NH: Puritan Press.

Henderson, V., Kuncoro, A., Turner, M. (1995) Industrial development in cities. Journal of Political
Economy, 103: 1067–1090.

Hidalgo, C. A., Hausmann, R., Hidalgo, A., Hausmann, R. (2009) The building blocks of economic
complexity. Proceedings of the National Academy of Sciences of the United States of America,
106: 10570–10575. Available online at: https://doi.org/10.1073/pnas.0900943106

Hong, I., Frank, M. R., Rahwan, I., Jung, W. S., Youn, H. (2020) The universal pathway to innova-
tive urban economies. Science Advances, 6: eaba4934. Available online at: https://doi.org/10.1126/
sciadv.aba4934

Jacobs, J. (1969) The Economy of Cities. New York, NY: Random House.
Juhász, S., Broekel, T., Boschma, R. (2021) Explaining the dynamics of relatedness: The role of

co-location and complexity. Papers in Regional Science, 100: 3–21. Available online at: https://
doi.org/10.1111/pirs.12567

Lobo, J., Strumsky, D., Rothwell, J. (2013) Scaling of patenting with urban population size:
Evidence from global metropolitan areas. Scientometrics, 96: 819–828. Available online at: https://
doi.org/10.1007/s11192-013-0970-3

Lundvall, B. A. (1992) National Systems of Innovation: Towards a Theory of Innovation and
Interactive Learning. London: Pinter Publishers.

Mewes, L. (2019) Scaling of atypical knowledge combinations in American Metropolitan areas from
1836 to 2010. Economic Geography, 95: 341–361. Available online at: https://doi.org/10.1080/
00130095.2019.1567261

Mewes, L., Broekel, T. (2022) Technological complexity and economic growth of regions. Research
Policy, 51: 104156. Available online at: https://doi.org/10.1016/j.respol.2020.104156

Morgan-Wall, T. (2023) Rayshader: Create maps and visualize data in 2D and 3D, https://github.
com/tylermorganwall/rayshader.

Nelson, R. R. (ed.). (1993) National Innovation Systems: A Comparative Analysis. New York, NY:
Oxford University Press.

OECD. (2021) Functional Urban Areas by Country [WWW Document]. Reg. Stat. Available online
at: https://www.oecd.org/regional/regional-statistics/functional-urban-areas.htm

Porter, M. E. (1998) Cluster and the new economics of competition. Harvard Business Review, 6:
77–90. https://doi.org/10.1042/BJ20111451

Rosenthal, S. S., Strange, W. C. (2001) The determinants of agglomeration. Journal of Urban
Economics, 50: 191–229.

Shearmur, R., Carrincazeaux, C., Doloreux, D. (2016) Handbook on the Geographies of Innovation,
Handbook on the Geographies of Innovation. Cheltenham: Edward Elgar Publishing Ltd.
Available online at: https://doi.org/10.4337/9781784710774

Simon, H. A. (1962) The architecture of complexity. Proceedings of the American Philosophical
Society, 106: 467–482. Available online at: https://doi.org/10.1080/14759550302804

Tatsiramos, K. (2009) Geographic labour mobility and unemployment insurance in Europe. Journal
of Population Economics, 22: 267–283. Available online at: https://doi.org/10.1007/s00148-008-
0194-7

Taylor, P., Catalano, G., Walker, D. (2002) Exploratory analysis of the world city network. Urban
Studies, 39: 2377–2394. Available online at: https://doi.org/10.1080/004209802200002701

United Nations. (2018) World Urbanization Prospects, Demographic Research. San Francisco, CA:
United Nations.

van der Panne, G., van Beers, C. (2006) On the Marshall–Jacobs controversy: It takes two to tango.
Industrial and Corporate Change, 15: 877–890.
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Appendix

Figure A1. Distribution of patents across FUA. This figure shows the distribution of patents
across urban areas. It also features the comparison between the fractional and full counting of
patents, which confirms that there are hardly any distributional differences between the two.
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Figure A2. Distribution of population across FUA.
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Figure A3. Distribution of patents across technologies.
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Table A1. Overview of considered countries

Name Country code Country patent code Numbers of FUA

1 Australia AUS AU 18
2 Austria AUT AT 6
3 Belgium BEL BE 14
4 Canada CAN CA 26
5 Chile CHL CL 26
6 Czech Republic CZE CZ 15
7 Switzerland CHE CH 12
8 Colombia COL 53
9 Denmark Denmark DK 4
10 Estland EST EE 3
11 Greece GRC/EL EL 13
12 Finland FIN FI 7
13 France FRA FR 88
14 Germany DEU DE 96
15 Hungary HUN HU 19
16 Island ISL IS 1
17 Ireland IRL IE 5
18 Italy ITA IT 84
19 Japan JPN JP 61
20 South Korea KOR KR 22
21 Latvia LVA LV 4
22 Lithuania LTU LT 6
23 Luxembourg LUX LU 1
24 Mexico MEX MX 92
25 Netherlands NLD NL 35
26 Norway NOR NO 6
27 Poland POL PL 58
28 Portugal PRT PT 13
29 Slovakia SVK SK 8
30 Slovenia SVN SI 2
31 Spain ESP ES 81
32 Sweden SWE SE 12
33 USA USA US 211
34 UK GBR GB 96
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Table A2. Country-specific descriptives

Country Vars n Mean sd Median Min Max Skew Kurtosis

AT Patents 6 3095.67 2539.83 2277 995 7462 0.66 �1.35
AT Patents Fractional 6 2432.96 1986.74 1808.84 729.29 5813.06 0.63 �1.4
AT Population 6 794,933.86 923,289.57 471,744.82 248,574.29 2,655,059.79 1.28 �0.21
AUS Patents 18 1108.78 2204.74 213.5 25 8760 2.47 5.41
AUS Patents Fractional 18 891.01 1847.56 151.14 21 7428.69 2.57 5.97
AUS Population 18 905,367.91 1,311,310.25 254,340.46 107,000 4,409,081.29 1.68 1.48
BE Patents 14 1610.71 2494.44 523.5 54 9349 2.11 3.72
BE Patents Fractional 14 993.44 1553.95 324.87 39.42 5759.75 2.08 3.48
BE Population 14 462,397.29 628,001.16 183,615.11 70,000 2,409,237.86 2.1 3.7
CAN Patents 26 3307.85 5565.12 848 101 23,953 2.25 4.88
CAN Patents Fractional 26 2596.26 4443.72 631.78 64.27 19,024.13 2.25 4.82
CAN Population 26 884,448.15 1,398,449.47 363,501.79 85,000 6,313,701.57 2.68 6.85
CH Patents 12 2812.08 3583.63 1481.5 148 13,033 1.88 2.61
CH Patents Fractional 12 2132.4 2789.65 1126.06 104.45 10,328.1 2.04 3.27
CH Population 12 293,050.51 335,498.62 133,269.43 23,000 1,197,450.21 1.52 1.54
CL Patents 22 47.45 168.57 6 1 798 4 14.87
CL Patents Fractional 22 39.67 140.95 3.92 0.25 666.47 3.98 14.78
CL Population 22 578,997.12 1,395,899.68 216,500 54,000 6,737,076.46 3.88 14.22
CZ Patents 15 283.07 447.09 162 4 1707 2.25 4.12
CZ Patents Fractional 15 208.2 344.38 111.83 2.67 1319.16 2.32 4.43
CZ Population 15 360,280.57 502,677.35 168,478.15 74,500.62 2,014,561.07 2.36 4.89
DE Patents 96 7534.03 13,202.03 3335.5 183 91,844 4.27 21.54
DE Patents Fractional 96 5349.39 10,142.92 2190.44 122.08 71,969.76 4.59 24.25
DE Population 96 628,611.88 866,406.27 338,191.71 62,098.93 5,211,672.79 3.47 13.35
DK Patents 4 1875.25 2104.78 1009.5 473 5009 0.72 �1.71
DK Patents Fractional 4 1592.74 1795.3 841.96 419.12 4267.92 0.72 �1.71
DK Population 4 722,197.61 691,426.66 418,029.54 298,917.29 1,753,814.07 0.73 �1.7
EE Patents 3 226.33 239.2 189 8 482 0.15 �2.33
EE Patents Fractional 3 182.18 195.59 149.74 4.83 391.97 0.16 �2.33
EE Population 3 219,782.09 281,106.72 85,699 30,821.12 542,826.14 0.37 �2.33
EL Patents 13 164.77 403.21 15 5 1479 2.63 5.7
EL Patents Fractional 13 137.63 348.56 11.67 3.17 1277.58 2.66 5.81
EL Population 13 455,451.39 1,023,594.75 110,000 27,447.2 3,742,265.29 2.53 5.2
ES Patents 80 331.84 1112.92 66 1 7751 5.61 31.83
ES Patents Fractional 80 286.43 971.29 54.88 1 6707.11 5.59 31.52
ES Population 80 362,770.9 885,935.75 108,909.59 21,269.8 6,264,812.86 5.24 29.06
FI Patents 7 5143.71 6328.61 2988 718 18,577 1.25 �0.02
FI Patents Fractional 7 4428.34 5508.48 2465.93 629.83 16,166.72 1.27 0.02
FI Population 7 397,314.03 421,322.99 236,914.29 128,227.21 1,325,265.36 1.44 0.41
FR Patents 83 2698.16 10,114.58 885 70 90,887 8.02 66.67
FR Patents Fractional 83 2210.12 8865.29 628.18 48.5 79,849.18 8.12 67.9
FR Population 83 474,722.47 1,354,713.41 185,764.64 51,409.21 1,228,2292.2 7.99 66.56
HU Patents 19 237.84 662.23 79 16 2958 3.63 11.99
HU Patents Fractional 19 184.14 535.03 54.45 11.58 2383.31 3.64 12.03
HU Population 19 302,225.89 627,154.09 128,452.46 76,929.15 2,873,415.93 3.61 11.88
IE Patents 5 1387.2 1651.99 814 165 4287 0.97 �1.03
IE Patents Fractional 5 1053.33 1272.66 644.31 102.09 3286.68 0.97 �1.03
IE Population 5 459,869.07 677,884.76 140,769.07 57,470.07 1,652,469.93 0.99 �1.03
IS Patents 1 435 435 435 435
IS Patents Fractional 1 356.37 356.37 356.37 356.37
IS Population 1 218,591.07 218,591.07 218,591.07 218,591.07
IT Patents 84 786.69 1897.82 303 6 15,643 6.09 42.66
IT Patents Fractional 84 646.46 1596.22 237.08 4.33 12,990.97 5.96 40.82

(continued)
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Table A2. (continued)

Country Vars n Mean sd Median Min Max Skew Kurtosis

IT Population 84 350,479.61 753,831.04 131,688.25 25,594.29 4,630,304.29 4.31 18.87
JPN Patents 61 58,050.51 259,107.75 7155 287 1,898,954 6.14 39.39
JPN Patents Fractional 61 54,607.95 248,535.38 6150.56 240.92 1,825,144.72 6.18 39.8
JPN Population 61 1,636,921.62 4,903,505.47 591,720.57 163,000 3,456,2643.9 5.53 32.08
KOR Patents 22 75,968.09 212,251.55 24,560.5 1126 1,009,557 3.85 14.02
KOR Patents Fractional 22 58,342.66 182,133.5 15,433.23 641.9 865,945.77 3.95 14.58
KOR Population 22 1,918,763.25 4,965,501.4 560,000.88 134,000 2,370,1129.3 3.82 13.84
LT Patents 6 70.83 104.74 12 1 256 0.82 �1.25
LT Patents Fractional 6 53.17 79.83 10.25 1 199.42 0.91 �1.03
LT Population 6 220,206.37 283,795.66 69,344.35 11,322 704,781.21 0.73 �1.43
LU Patents 1 1898 1898 1898 1898
LU Patents Fractional 1 1499.41 1499.41 1499.41 1499.41
LU Population 1 489,341.36 489,341.36 489,341.36 489,341.36
LV Patents 4 153.25 283.85 13 8 579 0.75 �1.69
LV Patents Fractional 4 135.49 254.88 9.92 4.33 517.79 0.75 �1.69
LV Population 4 304,964.2 458,039.24 87,328.1 53,615.25 991,585.36 0.75 �1.69
MEX Patents 77 59.17 201.7 8 1 1508 5.59 34.04
MEX Patents Fractional 77 47.04 169.62 5 0.17 1318.02 6.02 39.53
MEX Population 77 890,847.44 2,177,588.85 454,184.67 153,000 1,866,3829.6 7.15 54.79
NL Patents 35 1456.09 2214.25 882 101 11,539 3.05 10.09
NL Patents Fractional 35 1004.69 1693.57 498.99 65.02 9037.14 3.35 12.12
NL Population 35 377,247.49 514,015.02 203,561.64 49,858.29 2,627,361.36 3 9.22
NO Patents 6 1427.5 1563.7 1088 56 4360 0.91 �0.79
NO Patents Fractional 6 1239.61 1355.16 944.84 40.67 3781.31 0.91 �0.79
NO Population 6 367,152.92 407,772.42 265,428.61 43,723.36 1,163,414.71 1.11 �0.48
PL Patents 58 171.79 371.68 32 2 2054 3.25 11.19
PL Patents Fractional 58 141.53 311.48 18.92 1 1695.06 3.19 10.67
PL Population 58 336,918.17 550,274.19 134,887.05 28,683.2 2,976,845.79 3.3 11.62
PT Patents 13 158.46 244.52 43 3 842 1.7 1.9
PT Patents Fractional 13 130.23 204.5 28.78 1.5 697.04 1.67 1.76
PT Population 13 433,649.25 807,164.02 120,000 60,055.08 2,883,921.07 2.2 3.66
SE Patents 12 3444 4784.05 1535.5 294 16,121 1.56 1.29
SE Patents Fractional 12 2881.94 4093.69 1210.22 227.58 13,713.08 1.56 1.27
SE Population 12 398,653.75 549,175.7 167,121.79 59,576.07 1,949,451.71 1.87 2.41
SI Patents 2 673.5 693.67 673.5 183 1164 0 �2.75
SI Patents Fractional 2 616.5 662.68 616.5 147.92 1085.08 0 �2.75
SI Population 2 410,317.21 125,871.27 410,317.21 321,312.79 499,321.64 0 �2.75
SK Patents 8 74.38 121.58 33 10 372 1.78 1.51
SK Patents Fractional 8 58.19 100.38 24.02 7 304.57 1.8 1.56
SK Population 8 185,117.31 182,043.38 119,817.98 65,956.67 607,124 1.47 0.67
UK Patents 96 1217.58 3045.69 527 48 27,983 7.27 59.59
UK Patents Fractional 96 921.12 2356.06 369.33 18.71 21,686.65 7.31 60.24
UK Population 96 504,575.4 1,214,937.07 194,695.61 39,330.57 11,063,787.8 7.07 56.91
USA Patents 211 9840.51 26,881.63 2171 9 291,771 6.77 59.46
USA Patents Fractional 211 7087.44 20,781.95 1513.07 5.83 236,460.16 7.45 71.34
USA Population 211 1,056,362.91 2,162,243 419,666.93 58,000 19,425,328.7 5.52 37.4

Notes: This table provides insights into the regions across the countries considered in this study. The USA has
the largest number (211) with the UK (96) and Germany (96) having less than half that number. This distribution
exemplifies the substantial differences in the spatial distribution of population between countries. For instance,
Japan has about twice as many inhabitants than the UK. Yet, it is divided into fewer FUAs (61) than the UK
(96). All numbers are based on the authors’ own calculations using the data from the sources mentioned in the
text.
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Table A3. Country-specific scaling as varying slopes

Dep.: log(Patents)

(Intercept) �10.519 [�12.070; �8.968]a

log(Population) 1.362 [1.247; 1.477]a

AT �0.470 [�0.757; �0.182]a

AUS 0.084 [�0.083; 0.251]
BE �0.177 [�0.459; 0.104]
CAN �0.060 [�0.258; 0.137]
CH �0.473 [�0.821; �0.125]a

CL 0.199 [�0.057; 0.456]
CZ �0.057 [�0.538; 0.424]
DE �0.110 [�0.328; 0.108]
DK �0.205 [�0.549; 0.139]
EE 0.049 [�0.564; 0.662]
EL �0.115 [�0.255; 0.025]
ES �0.145 [�0.353; 0.063]
FI 0.001 [�0.278; 0.281]
FR �0.151 [�0.333; 0.030]
HU �0.075 [�0.329; 0.179]
IE �0.526 [�0.842; �0.210]a

IT �0.248 [�0.543; 0.046]
JPN 0.016 [�0.210; 0.241]
KOR �0.146 [�0.373; 0.082]
LT �0.145 [�0.313; 0.022]
LV 0.177 [�0.215; 0.568]
MEX 0.315 [0.058; 0.573]a

NL �0.260 [�0.515; �0.005]a

NO �0.050 [�0.431; 0.332]
PL 0.002 [�0.202; 0.206]
PT �0.114 [�0.582; 0.355]
SE �0.147 [�0.374; 0.080]
SI 3.158 [3.044; 3.273]a

SK 0.054 [�0.342; 0.450]
UK �0.398 [�0.567; �0.229]a

Reference USA
FE (Dummies) Country
Robust std. err Yes
Num. obs. 1120
R2 (full model) 0.883
Adj. R2 (full model) 0.876

a0 outside the 95% confidence interval.
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Table A4. Boosting regression with technology-specific boosting coefficients

Dep.: log(Patents)

log(Population) 1.001 [0.815; 1.188]a

. . . 567 coefficients shown in Figure 5 . . .
Reference B32B
FE Technology and Country
Robust std.err Yes
Num. obs. 271,623
Num. groups: Tech^Country 15,176
R2 (full model) 0.598
R2 (proj model) 0.424
Adj. R2 (full model) 0.573
Adj. R2 (proj model) 0.423

a0 outside the confidence interval.
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Table A5. Meta-regression of boosting effect across countries

Coef. log(Population)

Intercept �0.087 (0.009)***
AT �0.229 (0.028)***
AUS �0.190 (0.020)***
BE �0.195 (0.021)***
CAN �0.073 (0.016)***
CH �0.315 (0.019)***
CL �0.347 (0.047)***
CZ �0.412 (0.029)***
DE 0.044 (0.014)**
DK �0.082 (0.043)
EE �0.688 (0.092)***
EL �0.440 (0.031)***
ES �0.442 (0.015)***
FI 0.153 (0.029)***
FR �0.135 (0.014)***
HU �0.323 (0.026)***
IE �0.392 (0.030)***
IT �0.473 (0.014)***
JPN 0.124 (0.014)***
KOR 0.249 (0.015)***
LT �0.566 (0.092)***
LV �0.254 (0.099)*
MEX �0.502 (0.023)***
NL �0.261 (0.017)***
NO �0.212 (0.035)***
PL �0.536 (0.021)***
PT �0.592 (0.031)***
SE �0.078 (0.020)***
SI 1.689 (0.264)***
SK �0.340 (0.077)***
UK �0.385 (0.014)***
I2 38.169
Test of moderators 18,995.921
Test of moderators’ p-value 0.000
BIC 13,620.105
Nobs 12,390

***p< 0.001, **p< 0.01, *p< 0.05.
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Table A6. Initial boosting regression across technologies and regions

Dep.: log(Patents)

(Intercept) �12.175 [�14.285; �10.065]*

log(Population) 1.000 [0.843; 1.157]*

. . . 27,541 coefficients . . .

Reference Tech B32B
Reference Country USA
FE (Dummies) TECH and COUNTRY
Robust std.err No
Num. obs. 271,623
R2 (full model) 0.630
Adj. R2 (full model) 0.589

***p< 0.001, **p< 0.01, *p< 0.05.

Table A7. Initial specialization regression (sorting)

Dep. log(Patents)

(Intercept) 0.329 [0.290; 0.369]a

INNO_TECH 0.001 [�0.054; 0.055]
. . . 1109 coefficients . . .

FE (Dummies) Regions
Clustered std.err TECH and COUNTRY
Num. obs. 271,623
R2 (full model) 0.653
Adj. R2 (full model) 0.650

a0 outside the confidence interval.

Boosting, sorting and complexity � 1013

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article/23/5/979/7128251 by U

trecht U
niversity Library user on 09 O

ctober 2023



Table A8. Meta-regression of sorting and country differences

Coef. INNO_TECH

intercept �3.361 (0.228)***
log(Population) 0.341 (0.017)***
AT �0.128 (0.135)
AUS 0.047 (0.055)
BE 0.039 (0.072)
CAN 0.011 (0.050)
CH �0.075 (0.067)
CL �0.224 (0.064)***
CZ �0.099 (0.080)
DE 0.005 (0.036)
DK �0.002 (0.188)
EE 0.085 (0.146)
EL �0.074 (0.061)
ES �0.093 (0.031)**
FI 0.121 (0.133)
FR 0.025 (0.036)
HU �0.025 (0.077)
IE �0.161 (0.097)
IT �0.086 (0.034)*
JPN �0.038 (0.039)
KOR �0.189 (0.051)***
LT �0.225 (0.078)**
LV �0.104 (0.119)
MEX �0.206 (0.040)***
NL �0.008 (0.053)
NO �0.009 (0.106)
PL �0.175 (0.037)***
PT �0.111 (0.068)
SE 0.086 (0.077)
SI 1.051 (0.796)
SK �0.054 (0.136)
UK �0.066 (0.031)*
Reference country USA
FE (Dummies) Countries
I2 91.943
Test of moderators 61.311
Test of moderators’ p-value 0.000
BIC 639.481
Nobs 1108

***p< 0.001, **p< 0.01, *p< 0.05.
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Table A9. Overview: scaling, boosting and sorting effects

Name Country patent code Total scaling Boosting Sorting

Austria AT 0.892 0.6725 0.213
Australia AU 1.446 0.7115 0.388
Belgium BE 1.185 0.7065 0.38
Canada CA 1.302 0.8285 0.352
Switzerland CH 0.889 0.5865 0.266
Chile CL 1.561 0.5545 0.117
Czech Republic CZ 1.305 0.4895 0.242
Germany DE 1.252 0.9455 0.346
Denmark DK 1.157 0.8195 0.339
Estland EE 1.411 0.2135 0.426
Greece EL 1.247 0.4615 0.267
Spain ES 1.217 0.4595 0.248
Finland FI 1.363 1.0545 0.462
France FR 1.211 0.7665 0.366
UK GB 0.964 0.5165 0.275
Hungary HU 1.287 0.5785 0.316
Ireland IE 0.836 0.5095 0.18
Island IS
Italy IT 1.114 0.4285 0.255
Japan JP 1.378 1.0255 0.303
South Korea KR 1.216 1.1505 0.152
Lithuania LT 1.217 0.3355 0.116
Luxembourg LU
Latvia LV 1.539 0.6475 0.237
Mexico MX 1.677 0.3995 0.135
Netherlands NL 1.102 0.6405 0.333
Norway NO 1.312 0.6895 0.332
Poland PL 1.364 0.3655 0.166
Portugal PT 1.218 0.3095 0.23
Sweden SE 1.215 0.8235 0.427
Slovenia SI 4.52 2.5905 1.392
Slovakia SK 1.416 0.5615 0.287
USA US 1.362 0.803 0.341
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Table A10. Meta-regression of sorting and complexity—full sample

INNO_TECH COMPLEX

intercept �3.126 (0.143)*** �0.542 (0.050)***
log(Population) 0.310 (0.011)*** 0.035 (0.004)***
I2 94.252 90.810
Test of moderators 755.141 79.011
Test of moderators’ p-value 0.000 0.000
Log-likelihood �617.153 540.242
BIC 1255.328 �1059.473
Nobs 1107 1103

***p< 0.001, **p< 0.01, *p< 0.05.

Table A11. Meta-regression sorting and complexity—no interaction of INNO_TECH and COMPLEX

INNO_TECH COMPLEX

Intercept �2.285 (0.178)*** �0.448 (0.081)***
log(Population) 0.260 (0.009)*** 0.033 (0.004)***
I2 89.164 90.254
Test of moderators 75.671 4.582
Test of moderators’ p-value 0.000 0.000
Log-likelihood �253.800 543.207
BIC 751.838 �842.308
Nobs 1107 1103

***p< 0.001, **p< 0.01, *p< 0.05.
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