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Abstract Peatlands are among the world’s most carbon-

dense ecosystems and hotspots of carbon storage. Although

peatland drainage causes strong carbon emissions, land

subsidence, fires and biodiversity loss, drainage-based

agriculture and forestry on peatland is still expanding on

a global scale. To maintain and restore their vital carbon

sequestration and storage function and to reach the goals of

the Paris Agreement, rewetting and restoration of all

drained and degraded peatlands is urgently required.

However, socio-economic conditions and hydrological

constraints hitherto prevent rewetting and restoration on

large scale, which calls for rethinking landscape use. We

here argue that creating integrated wetscapes (wet peatland

landscapes), including nature preserve cores, buffer zones

and paludiculture areas (for wet productive land use), will

enable sustainable and complementary land-use functions

on the landscape level. As such, transforming landscapes

into wetscapes presents an inevitable, novel, ecologically

and socio-economically sound alternative for drainage-

based peatland use.
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PEATLAND DEGRADATION BY DRAINAGE

Peatlands are terrestrial ecosystems that as a result of wet

and anoxic conditions have accumulated a large amount of

organic matter over decadal to millennial timescales (Yu

et al. 2010). Moreover, peatlands cover only 3% of the land

surface, yet store over 30% of the world’s soil organic

carbon (Gorham 1991; Leifeld and Menichetti 2018; Xu

et al. 2018). Carbon densities of on average 1500 Mg C

ha-1 make peatlands unrivalled carbon stores, largely

exceeding densities of 200 and 900 Mg C ha-1 as reported

for forests and mangroves, respectively (Temmink et al.

2022). Furthermore, peatland ecosystems play an important

role in nutrient storage and cycling, freshwater purification

and retention, and maintaining unique biodiversity (Zedler

and Kercher 2005; Jurasinski et al. 2020).

Peatlands have been drained on a large scale mainly for

agriculture, forestry and peat extraction (Joosten and

Clarke 2002; Fluet-Chouinard et al. 2023). Drainage-based

peatland exploitation flourished for centuries in Northern

countries. Over the last decades, this land-use type gained

traction in Southeast Asia (Rawlins and Morris 2010) and

still expands despite mounting evidence that it is unsus-

tainable (Evers et al. 2017; Pelsma et al. 2020). Perceived

economic benefits hitherto did not consider the societal

costs of drainage-associated greenhouse gas (GHG) emis-

sions, nutrient leaching, land subsidence, loss of water

purification and retention capacity, and loss of biodiversity

(Hutchinson 1980; Hooijer et al. 2012; Turetsky et al.

2015; Günther et al. 2020). Large areas of peatlands were

entirely lost and 12% of all remaining peatlands worldwide

are degraded due to human activities (Leifeld and Meni-

chetti 2018; Günther et al. 2020; UNEP 2022). Most

peatland loss and degradation has taken place in Europe,

Southeast Asia and China (Leifeld and Menichetti 2018;

UNEP 2022). In Europe, 270,000 km2 of peatlands were

drained over the last centuries, with 54% remaining more

or less intact (UNEP 2022). Even more dramatic destruc-

tion took place in Southeast Asia with the drainage and

deforestation of 71% of Malaysian and Western Indonesian

peat swamp forests since the 1990s (133,000 km2), and
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only 6.4% remaining in more or less pristine condition

(Miettinen et al. 2016). Furthermore, drainage makes

peatlands more susceptible to peat fires, which are expected

to increase under climate change (Kettridge et al. 2015;

Page and Hooijer 2016). As an example, the 1997 peat fires

in Indonesia impacted 730,000 ha, emitted 0.19–0.23 Gt

carbon through peat combustion resulting in 25–85 cm of

peat loss, and negatively affected the health of local

inhabitants (Page et al. 2002; Kiely et al. 2021). The total

national damage costs of these events have been estimated

at tens of billions of euros (Gaveau et al. 2021; Kiely et al.

2021).

Drained and degraded peatlands cover only 0.3% of the

world’s land surface (i.e., 12% of all current peatlands), but

emit 4% of the total human-induced global greenhouse gas

(GHG) emissions and even more when including fires

(Leifeld and Menichetti 2018; Friedlingstein et al. 2020;

UNEP 2022). Agricultural crops on deeply drained peat-

land contribute disproportionately to these numbers; the

1.1% of all crops produced on drained peatlands account

for 32% of the total cropland GHG emissions worldwide

(Carlson et al. 2017). In addition, peatland drainage leads

to land subsidence with rates ranging from 0.5 to

20 mm year-1 in temperate regions (Lipka et al. 2017;

Ikkala et al. 2021) and up to 50 mm year-1 in the tropics

(Hooijer et al. 2012; Giesen and Sari 2018). In the

Netherlands, home to a human population of c. 17 million,

estimated costs related to land subsidence caused by peat

oxidation range from 1.7 to 5.2 billion euros from 2010 to

2050 (van den Born et al. 2016). Costs of renovating

foundations of buildings on peat soils will over that period

add an extra 5–38 billion euros (van den Born et al. 2016)

or even as much as 80 billion euros (Dutch Knowledge

Center Approach to Foundation Problems). Moreover, land

subsidence combined with rising sea levels increases flood

risk and salt water intrusion in coastal zones (Barlow and

Reichard 2010; Herbert et al. 2015). With sea levels

expected to rise (Dayan et al. 2021; Masson-Delmotte et al.

2021), further subsidence will cause many drained coastal

peatlands to be flooded and degraded due to salinization

(Herbert et al. 2015; Hooijer et al. 2015; van Dijk et al.

2015), ultimately leading to a substantial loss of productive

land.

Responses for peatland restoration to mitigate the neg-

ative environmental effects of current peatland use emerge

across the globe, but these efforts are very often local scale

focussed and hardly enough to reach the restoration goals.

Considering the climate and biodiversity crises, an ambi-

tious integrated wetscape approach is needed that allows

rewetting of all drained peatlands worldwide and focuses

on long-term sustainability at the landscape scale.

CREATION OF SUSTAINABLE WETSCAPES

Landscape-scale peatland restoration, to be successful

and adopted widely, should embrace the different—

sometimes opposing—societal interests (e.g., nature

conservation versus agricultural production) and

acknowledge the wide variety of stakeholders. The mit-

igation of negative environmental impacts requires full

rewetting of all drained peatlands (Günther et al. 2020;

Jurasinski et al. 2020; Convention on Wetlands 2021;

UNEP 2022; Hiller and Fisher 2023). This aim is,

however, frustrated by the trillions of euros/dollars that

have been invested in drainage infrastructure to support

agricultural land-use and the concomitant cultivated

perception that draining peatlands is good practice. The

necessary complete rewetting can, therefore, only be

achieved by creating wetscapes, wet peatland landscapes,

that combine a variety of functions and management

options in a sustainable and integrated, mutually rein-

forcing spatial setting (Fig. 1):

(i) core areas of conserved or restored near-natural

peatlands with the aim to preserve and re-install

unique natural biodiversity and high carbon seques-

tration and storage (‘wet wilderness’), which are

fringed by

(ii) rewetted peatlands utilized for the production of

biomass in a way that preserves the peat body and

minimizes greenhouse gas emissions, i.e., paludicul-

ture (wet agriculture and forestry) and are embedded

in

(iii) rewetted peatlands that function as hydrological and

hydrochemical buffer zones against negative impacts

of adjacent intensive land use on mineral soils.

Overall, rewetting and restoring peat accumulation will

provide emerging benefits by offsetting methane produc-

tion by mitigating carbon emission and enhancing

sequestration (Günther et al. 2020; Mrotzek et al. 2020),

freshwater water retention and flood control, and nutrient

storage and removal (Bonn et al. 2016; Vroom et al. 2020).

Finally, we envision that these functions may transition

over space and time (Fig. 2).

Core reserves: Peatland conservation

and restoration

The conservation and restoration of core peatland reserves

aim to preserve biodiversity and sustain important

ecosystem services. Such natural areas are under pres-

sure by adjacent land-use, including drainage, (over)exp-
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loitation of resources and atmospheric nitrogen deposition

(Lamers et al. 2015; UNEP 2022; Hiller and Fisher 2023).

Successful peatland conservation and restoration starts by

keeping wet areas wet and making formerly drained peat-

lands wet again (rewetting) (Minayeva et al. 2017; Renou-

Wilson et al. 2019; Convention on Wetlands 2021).

Especially peatlands that have only been subject to drai-

nage and fertilization to a limited extent have high poten-

tial to transition to core reserves (Convention on Wetlands

2021) (Fig. 1).

Paludiculture: Transforming agricultural

landscapes

Paludiculture—wet productive peatland use –in a wetscape

may act in concert with outer buffer zones to protect the

core peatland reserves by keeping them wet and to prevent

negative influences from the surrounding non-wetscape

area. Additionally, paludiculture offers an alternative

business model for current environmentally harmful drai-

nage-based peatland use (Fig. 1).

Fig. 1 Intact wetscape, destructive landscape-use, and sustainable wetscape-use. (a) Conceptual representation of an intact wetscape – a

wetscape does not always consists of the depicted features – that consists of a raised bog (left), dry mineral soils (middle), and a groundwater-fed

fen (right). Natural peatlands retain water, store carbon and nutrients and host characteristic species. (b) Destructive land-use, including drainage-

based agricultural and forestry use and peat extraction, which results in land subsidence, carbon losses through peat oxidation, reduced water

holding capacity, nutrient release, all affecting biodiversity. Landscape-wide drainage influences near-natural peatlands, resulting in lateral and

vertical water losses, despite human interventions to prevent water losses (e.g., dam construction). (c) Creation of a sustainable wetscape:

protected core (near) natural peatland, surrounded by wet agriculture (paludiculture), fringed by buffer zones with lower natural values.

Rewetting aims to restore ecosystem services and processes, such as carbon storage and water and nutrient retention, and to prevent land surface

subsidence (and possibly even re-installs a gain in surface height), while allowing sustainable production of raw materials
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Paludiculture may produce biomass for construction,

fuel, fodder, growing media, food or medicine (Wichtmann

et al. 2016; Ziegler et al. 2021) (Fig. 1). The question of

which crops to farm and which raw materials to produce

depends on site conditions, climate and management

(Wichtmann et al. 2016; Geurts et al. 2019). Paludiculture

in temperate fens currently focuses on growing plants for

insulation and fodder (Typha), thatch (Phragmites),

wood/timber (Alnus), direct energy/heat generation or

biogas production (Typha, Phragmites, Carex, Phalaris

etc.) and food (e.g., wild rice and berries) (Wichtmann

et al. 2016; Geurts et al. 2019) but much more options do

exist (Abel and Kallweit 2022). In temperate bogs, palu-

diculture focuses on growing peatmoss (Sphagnum) bio-

mass as a renewable raw material for horticultural growing

media to replace fossil Sphagnum peat (Gaudig et al.

2018). In the tropics, traditional paludiculture focuses on

Sago (Metroxylon sagu) for starch or Illipe Nut (Shorea

stenoptera) as cocoa butter substitute (Joosten et al. 2012;

Abel et al. 2013), though a much wider range of products

are being trialled (Giesen 2021). Paludiculture also offers

opportunities for wet animal husbandry, such as water

buffalo for meat and dairy (Sweers et al. 2014), or fresh-

water fish in Southeast Asia (Setiadi and Limin 2015).

Paludiculture may be best established in locations where

complete restoration is challenging and a well-developed

infrastructure for production (e.g., water management,

product chains, markets) exists.

Paludicultures can facilitate high yields by optimizing

site conditions and selecting optimal crops (Gaudig et al.

2018). Precise water table regulation allows the optimiza-

tion of carbon sequestration and storage. An average

annual water level of 10 cm below the peat surface maxi-

mizes peat formation and carbon dioxide (CO2) uptake and

Fig. 2 A decision tree with land-use change pathways for wetscape creation. The decision tree leads to four functions in green (conservation,

near-natural, buffer and paludiculture function), important measures in blue (rewetting and best practises in the case that rewetting is impossible)

and the transition over time and space between functions
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limits methane (CH4) emissions, which may occur at

higher water levels (Couwenberg et al. 2011; Evans et al.

2021). In addition, high water levels prevent peat fires

(Putra et al. 2018). Management of (particularly eutrophic)

irrigation ditches needs special attention as these may be

notorious hotspots of CH4 emissions (Schrier-Uijl et al.

2010; Peacock et al. 2021).

Paludiculture may provide multiple ecosystem services,

which may change over time. For example, while Sphag-

num paludiculture focuses on producing renewable

resources for growing media, the rewetted production site

prevents CO2 emissions (Günther et al. 2017), supports

biodiversity (Muster et al. 2020), and removes nutrients

(Temmink et al. 2017; Vroom et al. 2020). Furthermore,

the harvesting of plants removes the nutrients sequestered

in the biomass (Zerbe et al. 2013; Geurts et al. 2020). As

such, paludiculture may gradually lower nutrient avail-

ability and facilitate the transition from nutrient-rich and

highly productive paludiculture to less nutrient-demanding

but higher quality crops or even on the long-term to

nutrient poor and biodiverse near-natural peat-forming

ecosystem (Smolders et al. 2008; Jabłońska et al. 2021)

(Fig. 2). The latter developments need to take the economic

transition dynamic into account, such as decreasing yields,

changing paludiculture crops, or even discontinuing palu-

dicultural practise.

Buffer zones: Rewetted peatlands as hydrological

buffers

Drainage alters the hydrological functioning of entire

landscapes, and negatively impacts biodiversity and

ecosystem services of (near)-natural peatlands and paludi-

cultures even without direct water diversion and extraction

(Holden et al. 2006; Yule 2010; Krejčová et al. 2021). As

such, rewetted (peat)land surrounding core peatland

reserves and paludicultures can function as a hydrological

buffer against adjacent high-intensity land use (Fig. 1).

Ideally, rewetted buffer zone peatlands will allow the rise

and stabilization of the water table in core peatland

reserves and paludicultures, while not negatively affecting

(but even enhancing) agricultural productivity on adjacent

mineral soils (Joosten et al. 2015; Ahmad et al. 2020).

The additional values of wetter landscapes include

lowering land surface temperatures and pollution control

(Wu et al. 2021). For example, channelling nutrient-en-

riched surface water through the wet buffer (peat)land will

lead to uptake of nutrients by vegetation (i.e., phytoreme-

diation) and soil and to denitrification, lowering nutrient

input in the core peatland reserve (Adler et al. 2008; Cusell

et al. 2014; Vroom et al. 2018) and may also lower water

hardness and sulphate concentrations (Lamers et al. 2015;

Van Diggelen et al. 2020). Care has to be taken, however,

that the internal mobilization of nutrients in the formerly

fertilized, rewetted peatland does not lead to eutrophication

of the core reserve (Smolders et al. 2006; Van Diggelen

et al. 2020).

The buffer zone is not fixed in time and in the best case

will transition to a core peatland reserve (Fig. 2). Measures

to improve site conditions to guide the transition of

degraded towards biodiverse peatlands may involve nutri-

ent attenuation, topsoil removal and species introduction

(Smolders et al. 2008; Emsens et al. 2015; Van Diggelen

et al. 2020; Convention on Wetlands 2021; Quadra et al.

2023).

THE POTENTIAL OF WETSCAPES

To reach global climate goals, the implementation of

wetscapes should take place on 570,000 km2 (57 million

ha) of peatlands that are degrading worldwide (UNEP

2022) (Fig. 3). With respectively 272,000 (27.2 million ha)

and 209,000 km2 (20.9 million ha) of degraded peatlands

(UNEP 2022), Europe and Southeast Asia emerge as global

transformation hotspots. To successfully transform drai-

nage-based landscapes into wetscapes we advise a step-

wise implementation of the spatial setting (nature, buffer,

and paludiculture). This concept is based on (i) small (ha)

to larger (thousands of ha)-scale pilot projects with inten-

sive and cross-disciplinary monitoring to gather sound

scientific evidence, that (ii) are part of a large-scale and

longer-term (10–30 years) innovation and transformation

strategy, which (iii) accounts for costs to consumers and

producers who have to change lifestyles, and that (iv)

involves a policy mix that encourages new practices and

prevents and terminates drainage-based peatland use

(Mazzucato 2018; Ziegler 2020). Wider implementation of

the wetscape approach needs to account for several pre-

requisites. Wetscapes demand ample water to prevent peat

desiccation during summer (Page et al. 2002; Thompson

and Waddington 2013). In many countries, water infras-

tructure is designed for fast water discharge, which frus-

trates water-use efficiency and calls for the restoration of

landscape hydrology over complete catchments. As the

presence of peat indicates a local (former) water surplus,

retaining, preserving, and re-using water, instead of dis-

charging it into the sea as fast as possible, will strongly

improve the perspectives of large-scale peatland rewetting.

Next to water quantity, water quality—which varies

between and within countries—determines which function

aligns with a specific rewetted peatland. However, one

should note that surface water and groundwater quality will

improve over time as a result of rewetting and new peat

formation (Van Diggelen et al. 2020; Vroom et al. 2020).

The feasibility of creating a wetscapes is thus context
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dependent and strongly depends on landscape morphology,

peatland type and local eco-(hydro-)logical setting (Joosten

et al. 2017).

Beyond landscape eco(hydro-)logical issues, challenges

include selecting and testing prospective crops, improving

their cultivation and harvesting techniques, and developing

value chains, industries and markets for the novel products

that emerge from paludiculture (Wichtmann and Joosten

2007; Giesen 2021). In the near future, wetscape farmers

should have a portfolio of crops that provide a secure

income, while industries need a constant influx of high-

quality raw materials for production and sales. Nowadays,

farmers still receive subsidies for climate-damaging agri-

culture on drained peat soils, whereas paludiculture often

remains ineligible. Large-scale implementation requires

mainstreaming paludiculture by long-term support and

income guarantees to raise trust in future economic via-

bility and to ‘level the playing field’.

The public perception of rewetting may hinder rapid

large-scale realization of wetscapes. Previous generations

have painstakingly reclaimed wet ‘wastelands’ to turn them

into ‘valuable’ and ‘productive’ fields, pastures and forests

and the current generation views the drained peatland

landscape as home and a source of identity (Wichtmann

et al. 2016; Ziegler 2020; Flood et al. 2021). Consequently,

the idea to turn back these lands into wetlands could invoke

substantial opposition. Yet, novel narratives on meaningful

and responsible land-use and changing socio-economic

perspectives (e.g., paludiculture) will most likely rapidly

increase social acceptance. In the Netherlands, famous for

its technological water management, the traditional attitude

has—after some serious flood events in the 1990s—slowly

shifted from fighting against towards moving along with

water and adopting landscape-scale measures. More

recently, the ever more prominently visible downsides of

peatland drainage have led to an attitude in which

Fig. 3 Global peatland rewetting potential and countries with paludiculture pilots. Colours illustrate the estimated potential for peatland

rewetting per country (km2), which is based on the extent of degraded peatland area (source: Greifswald Mire Centre – Global Peatland

Database). Country names indicate where paludiculture pilots are ongoing with an inset of Europe for detail (after (Geurts et al. 2019; Ziegler

et al. 2021))

123
� The Author(s) 2023, corrected publication 2023

www.kva.se/en

1524 Ambio 2023, 52:1519–1528



freshwater qualifies as a scarce resource that warrants

sustainable management (Rijksoverheid 2021). Moreover,

a discrete-choice experiment with Danish, German, and

Polish citizens towards ecosystem services of the Baltic

Sea basin pointed to a willingness to pay substantial

amounts for restoration measures including wild wetlands

and wetland agriculture (Giergiczny et al. 2022).

CONCLUSIONS

Human-induced climate change and biodiversity loss for-

ces humanity to drastically reduce GHG emissions and to

restore ecosystems on a global scale. Re-creating and

maintaining peatland-dominated wetscapes as an alterna-

tive for drainage-based land use provides benefits for both

nature and human societies and is socio-economically

feasible. The implementation of wetscapes, rather than just

restoring and conserving peatland cores, leads to the

recovery of biodiversity, water retention, carbon seques-

tration, cooling of land surface, and great reduction of

nutrient emissions. Most importantly it will substantially

reduce greenhouse gas emissions and allow farmers to

produce crops sustainably and act again as real stewards of

the land.
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