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A B S T R A C T   

Holding the promise of higher learning outcomes, discovery learning utilizes intrinsic motivation to provide an 
enjoyable self-directed learning experience. Unfortunately, this approach can also lead to a sub-optimal cognitive 
load, which hinders learning. To avoid this, players must be in the optimal Zone of Proximal Development (ZPD). 
A way of accomplishing this is to make use of Artificial Intelligence in a narrative-centered discovery game using 
adaptive guidance. Textual instructions were automatically adapted in real-time to ensure a personalized chal
lenge for one group of learners, where a control group received static instructions. Compared to the control 
group, the learners with personalized instructions showed higher story and spatial learning, while having 
decreased cognitive load and a similar learning experience. So, instructions given to self-directed learners can be 
personalized in real-time, which not only reduces learners’ cognitive load but also leads to enhanced learning 
outcomes without affecting the learning experience.   

1. Introduction 

Artificial Intelligence in Education (AIEd) has many shapes, such as 
Intelligent Tutoring Systems (ITS) (Conati, Barral, Putnam, & Rieger, 
2021; Mousavinasab et al., 2021) and adaptive learning systems 
(Kabudi, Pappas, & Olsen, 2021; Tang, Chang, & Hwang, [in press]), and 
has provided new opportunities as well as offering the potential of 
revolutionizing education (Hwang, Xie, Wah, & Gašević, 2020; Ouyang 
& Jiao, 2021). In this setting, knowledge often needs to be made explicit, 
decision rules need to be transparent, variance among learners is sig
nificant and the amount of data is overwhelming (Graafland et al., 2014; 
Romero & Ventura, 2020; Zliobaite et al., 2012). Consequently, Artifi
cial Intelligence (AI) current trend of subsymbolic machine learning (e. 
g., deep learning) are often not the best choice. Symbolic AI such as 
traditional, symbolic intelligent agents makes more sense. 

In AIED, utility-based intelligent agents seem to be appropriate. In 
particular, utility-based agents take into account i) the environment, ii) 
the educational goals, and iii) a performance measure, which allows the 
agent to make decisions on how a goal can be achieved (Russell & 
Norvig, 2021). Such agents have a strong tradition in AIED, specifically 
in serious games (i.e., video games that serve an educational purpose 
(Caballero-Hernández, Palomo-Duarte, & Dodero, 2017; Doesburg, 
Heuvelink, & van den Broek, 2005; Geuze & van den Broek, 2011, chap. 

8)), which have become more prominent in educational settings as 
complementary learning resources (Lacka, Wong, & Haddoud, 2021) 
and have shown that the knowledge transferred to learners can be 
retained for extended periods (Hu et al., 2021). One particular serious 
game genre, narrative-centered discovery games, could benefit greatly 
from a utility-based agent. This game genre combines two genres: 
narrative-centered games and discovery games. 

Narrative-centered games provide a strong narrative through 
powerful, emotive storylines (Lester et al., 2014) and have been found to 
provide a motivating, engaging, and organized learning experience 
(Dickey, 2006; Lester et al., 2014; Marsh, 2010). In discovery games, 
learners freely explore the virtual environment within the game with 
minimal guidance whilst solving problems (i.e. completing in-game 
tasks by discovering useful items) (Toh & Kirschner, 2020), which 
takes a constructivist approach: learners actively construct representa
tions of reality by linking new information to prior knowledge. 
Combining both game genres results in a self-directed learning experi
ence that exploits intrinsic motivation, where a learner performs an 
activity for its own sake or enjoyment without reward (Liao, Chen, & 
Shih, 2019), which can lead to higher learning outcomes (Froiland & 
Worrell, 2016) (see Fig. 1). 

However, using a self-directed learning approach means that 
learners may not discover important learning materials due to a lack of 
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knowledge of tasks and challenges that need to be solved (i.e. finding 
items related to educational content). This can lead to disorientation (i. 
e., poor navigational efficiency), where users lose their sense of location 
and direction (Head, Archer, & Yuan, 2000) because navigation is too 
much of a cognitive burden, exceeding the capacity of a learner’s 
cognitive abilities (Chen & Ismail, 2008; Gwizdka & Spence, 2007). This 
is referred to as cognitive overload (Sweller, Ayres, & Kalyuga, 2011). 
Cognitive Load Theory (CLT) states that there are three different types of 
cognitive load: intrinsic, which is associated with the complexity of the 
task, extraneous, which is related to task presentation, and germane, 
which is produced by processing and constructing schemas to handle 
new information for learning new skills (Sweller et al., 2011). Therefore, 
the way a task is presented, in terms of instruction and navigation, has a 
large influence on the overall cognitive load so it is often extraneous 
cognitive load that is aimed to be reduced to allow more capacity for 
germane load (Sweller, 2016). Conversely, cognitive underload, exces
sively low cognitive load, has similar effects (Van der Sluis, Van den 
Broek, Glassey, Van Dijk, & de Jong, 2014) and recent research has 
found that extraneous load is necessary for learning success, especially 
in serious games (Skulmowski & Xu, 2022). Human-Computer Interac
tion (HCI) literature shows, for instance, that making the task easier 
often does not lead to better learning, or, conversely, making the task 
more difficult can even lead to better performance, at least when the 
player has sufficient relevant knowledge or skills (O’Hara & Payne, 
1998; Svendsen, 1991; Trudel & Payne, 1995; van Nimwegen, 2008). 
Payne c.s. demonstrated that making the task more difficult with more 
implicit information (more extraneous load) can stimulate players to 
construct more reflective, plan-based strategies leading to better per
formance, compared to players who got an easy, explicit presentation of 
task-related information. Similar effects are also found in other areas 
than HCI. In our previous work, we found that reducing cognitive load 

by giving learners a ‘guided tour’ resulted in a lesser in-game experi
ence, which may have also led to non-optimal learning (Ferguson, van 
den Broek, & van Oostendorp, 2020). For effective learning, there must 
be an appropriate level of cognitive load, the amount of working 
memory resources that are available for cognitive processing (Sweller 
et al., 2011). This is in line with research showing that full discovery 
learning is not as successful as expository learning but, rather, guided 
discovery learning, with appropriate guidance is more successful (de Jong 
& Lazonder, 2014). 

We adopted the concept of the Zone of Proximal Development (ZPD) 
(Vygotsky, 1978) to describe the relationship between disorientation, 
cognitive load and learning, and the effects of appropriate guidance. The 
essence of ZPD is that optimal learning takes place when the space be
tween what a learner can do without guidance and what a learner can do 
with guidance is at a minimum. ZPD puts forward that there are simple 
tasks that do little to challenge the learner (i.e., cognitive underload), 
leading to little learning. Conversely, there are more complex tasks that 
cannot be completed without assistance (i.e., cognitive overload), again 
compromising learning. The tasks in the center of the ZPD will provide 
an appropriate level of challenge without assistance being needed (i.e., 
an appropriate amount of cognitive load necessary for effective learning 
(Schnotz & Kürschner, 2007)), which can be referred to as the “sweet 
spot” where tasks are not too easy nor too difficult (Van der Sluis et al., 
2014). Dependent on the proficiency of the learner on that moment 
during learning, a game can be made easier (by giving guidance) when 
needed or the opposite, making it more difficult (by providing extra 
challenges). In the virtual environment we use, navigation efficiency is 
crucial, and can form an important source of disorientation, hindering 
learning, by imposing extra cognitive load (Ferguson & van Oostendorp, 
2020; Gwizdka & Spence, 2007). On basis of the navigation efficiency 
the intelligent agent will adapt the difficulty of the game in real-time. 

Fig. 1. An example of a task being carried out in “The Chantry”, a narrative-centered discovery game. This game tells the story of Dr. Edward Jenner, his invention of 
vaccination, and the smallpox virus it helped eradicate. The game involves exploring the house of the late Dr. Jenner using node-based movement, where accessible 
locations and items are predefined (Habgood, Moore, Wilson, & Alapont, 2018). When encountering a closed door, the learner is presented with a task, which 
represents a particular story topic and a list of descriptions of items that must be found. To open the doors and progress further, learners must discover and interact 
with the items referenced in the list, which contain further information on the story topic, in the form of an audio narrative. 
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Besides increased learning, being in the appropriate area of ZPD is 
also expected to lead to increased cognitive interest (Trif, 2015) (i.e., 
understanding topics and becoming more interested (Harp & Mayer, 
1997), and higher engagement (Hamari et al., 2016) (i.e., heightened 
concentration, interest, involvement, and enjoyment (Kim, 2018)). This 
may also assist with maintaining a learner’s sense of presence (i.e., 
feeling physically present in a virtual environment (Slater, 2002)), a key 
aspect related to the physically immersive nature of games, which can be 
broken when a learner feels like they require assistance (Steiner & 
Voruganti, 2004). For optimal learning, a personalized experience, 
which takes into account personal differences, should be provided to 
learners to ensure that they are within the correct area of ZPD. This is 
also referred to as adaptivity: adjustments of the game fitting to the 
proficiency of the learner that improve the learner’s experience. (Lopes 
& Bidarra, 2011). 

Adaptivity is part of the second paradigm of AIED: AI-supported, 
learner-as-collaborator, where the AI system serves as a supporting tool, 
with the learner collaborating to focus on the individual learner’s 
learning process (Ouyang & Jiao, 2021). Using a learning theory, such as 
ZPD, as a base for an AI adaptive system is necessary for optimal learning 
as such learning theories are vital for explaining the learning process, 
learning outcomes, and evaluation methods for assessing the learner (Er 
et al., 2021; Radianti, Majchrzak, Fromm, & Wohlgenannt, 2020; Slus
sareff, Braad, Wilkinson, & Strååt, 2016). This would offer new oppor
tunities for learning as well as new, possibly unobtrusive, techniques for 
learning assessment. 

As previously mentioned, utility-based agents require two things: a 
goal to be achieved and a performance measure to make rational de
cisions on how this goal can be achieved. Based on the principles of ZPD, 
the goal of the agent is to ensure that a learner finds items and completes 
tasks in the optimal ZPD. To make rational decisions to achieve this goal, 
a quantitative measure of navigational efficiency will be used: the 
Lostness measure (Smith, 1996): 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
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S
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For an information-searching task (i.e., searching for and discovering 
an item), Lostness considers the minimum number of steps that are 
needed to be taken (R), the number of unique steps that a learner has 
taken (N), and the total number of steps that a learner has taken (S) 
(Smith, 1996). This will return a value between 0 and 

̅̅̅
2

√
. 0 indicates 

that the task has been completed perfectly and the learner was not 
disoriented (high navigational efficiency) and 

̅̅̅
2

√
indicates that they 

were completely disoriented (low navigational efficiency) whilst 
completing the task. This measure is originally from the domain of hy
pertext; but, has shown its use in serious games as well (Ferguson, van 
den Broek, van Oostendorp, de Redelijkheid, & Giezeman, 2020). 
Moreover, this measure showed to be a highly predictive and valid in
dicator for learning (Ferguson & van Oostendorp, 2020). 

The Lostness measure can be used to determine how and when to 
support a learner so that they complete a task in the optimal ZPD. In 
other words, the information obtained from the performance measure is 
used to determine when, and in what direction, to adapt to the learner. A 
way the agent can accomplish this adaptivity is through personalized 
automated real-time feedback, which is one of the merits of serious 
games, and computer-assisted learning in general. Personalized real- 
time feedback is an essential component of scaffolding for learning 
and has been shown to increase performance, aid learning outcomes, 
and improve knowledge construction (Cavalcanti et al., 2021; Shute, Ke, 
& Wang, 2017). This guidance can give learners additional information, 
which helps them access key knowledge for learning before they are 
overloaded (Kirschner, Sweller, & Clark, 2006). Conversely, this 
real-time feedback can also provide a greater challenge by providing less 
information to learners that are feeling underloaded. 

More AI-enabled adaptive learning systems have emerged in recent 

years (Kabudi et al., 2021) and learning outcomes have been shown to 
be improved through such systems that utilize adaptive real-time feed
back (Cavalcanti et al., 2021). These include Steiner and Voruganti 
(2004), who found that adding a trail of brightly colored stones was able 
to quickly and effectively guide learners to a target location, and Peirce, 
Conlan, and Wade (2008), who provided a companion, in the form of 
Galileo, to give learners hints throughout the game. These two examples, 
however, only assist struggling learners, which does not always lead to 
better learning (O’Hara & Payne, 1998; Svendsen, 1991; Trudel & 
Payne, 1995). One such AI-system that would meet the needs of both 
overloaded and underloaded learners was developed by Clark, Virk, 
Barnes, and Adams (2016). They manipulated the layout of tasks to 
provide appropriate personalized challenge depending on the learner’s 
current in-game performance. A possible alternative to manipulating the 
layout of tasks would be to modify the educational instructions given to 
learners depending on their current performance, ensuring automatic 
presentation of appropriate personalized challenges. 

In this paper, we will present a ZPD-based narrative-centered 
learning environment, which will automatically adapt and personalize 
educational instructions to ensure that learners are in the most optimum 
area of the ZPD with an appropriate amount of germane cognitive load. 
In the next Section, we will detail the theory behind using textual 
specificity to adapt educational instructions and how this is expected to 
aid learning. Section 3, the methods section, will describe the empirical 
study carried out to evaluate the proposed textual specificity-based 
adaptive system. This is followed by the results of this study in Section 
4 before we end with Section 5, which provides a general discussion. 

2. Automatic, personalized, adaptive specificity of educational 
instructions 

There is scant literature available that mentions the use of infor
mation searching in video games (Beheshti, 2012), yet there is no 
literature available that utilizes textual specificity in this area. However, 
recent research by Albus, Vogt, and Seufert (2021) found that signaling, 
in the form of textual information, can increase learning performance 
and impact cognitive load. It is expected that using a similar system, 
which automatically adapts textual information, depending on the 
learner’s in-game performance, could be even more beneficial and 
improve learning outcomes. 

Words rapidly guide early visual processing (Boutonnet & Lupyan, 
2015). Specific instructions or descriptions are more likely to lead to a 
successful search (Spärck Jones, 1988), whereas a decrease in specificity 
of instructions or descriptions makes this less likely (Wolfe, 2020). 
Following this observation, the utility-based agent adapts its in
structions to either widens or narrows the learner’s search space so that 
they remain in the center of the ZPD, resulting in higher levels of 
intrinsic motivation (Froiland & Worrell, 2016; Liao et al., 2019) with 
higher cognitive interest (Trif, 2015), engagement (Hamari et al., 2016), 
and presence (Kim, 2018). In this regard, if a learner performs poorly, 
the agent eases the process of finding educational content. In contrast, if 
the learners performs very well, it widens his/her search space by pre
senting less specific/generic instructions, making it more challenging to 
find educational content. If the learner is performing moderately, the 
agent will stick to the active difficulty level. In terms of CLT, the amount 
of germane cognitive load that a learner experiences will be impacted as 
this utility-based agent changes how the task is presented. 

When carrying out an information-searching task, there are two 
different ways of increasing the chance of an item matching a request (i. 
e., an efficient search): adding terms to the search string or making use 
of more specific phrases, such as choosing the word ‘tea’ over ‘beverage’ 
(Spärck Jones, 1988). Contrarily, through the use of generic terms, one 
adds distractors, which can increase the task difficulty (Wolfe, 2020). 
Accordingly, it can be argued that describing an item more specifically 
(i.e. feature guidance) decreases the difficulty of an 
information-searching task and describing an item more generally 
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increases difficulty (Wolfe, 2020). Guidance towards a location (i.e., 
scene guidance) that is more likely to contain the target item is also 
important in real-life search (Wolfe, 2020). Consequently, the descrip
tion of both the item and the location is a key component of a successful 
search. 

To provide an appropriate challenge for a wide range of learners, 
ensuring a personalized experience so that learners are within the 
optimal ZPD, an appropriate number of difficulty levels should be made 
available for the intelligent agent to provide to the learner. These will be 
defined along the two dimensions identified as being important for a 
successful search: the description of the item (feature guidance) and the 
description of the location of the item (scene guidance). Based on Fig. 1, 
Table 1 shows how learners are given more information to help them 
complete a task when they are not performing well and less information 
when performing very well. 

For the utility-based agent to know when to modify the difficulty 
level (see Table 1), thresholds for the Lostness measure need to be 
predetermined to assess a learner’s performance. In the Chantry (see 
Fig. 1), learners are given 11 tasks overall, with a median of 3 items. 
Before the start of a new task, a reliable impression of the learners’ 
performance needs to be obtained. Therefore, the navigational effi
ciency in the previous 6 items was determined. To circumvent the cold 
start problem, we will make use of data collected from our previous 
research using this game. This dataset consists of data from 12 learners 
from the Virtual Reality (VR) condition in (Ferguson et al., 2020b) and 
13 learners from an identical condition in (Ferguson et al., 2020a) was 
used, leading to 179 data points (mean: 0.427, SD: 0.160), following a 
normal distribution. 

Two k-means cluster analyses were carried out on the data using both 
3 clusters, (7 iterations, F(2, 176) = 454.665, p < .001) and 5 clusters 
(10 iterations, F(4, 174) = 589.368, p < .001). Based on the equality of 
clusters’ data distribution, 3 clusters could be distinguished. The clus
ters’ center-points were: 0.260 (n = 63), 0.454 (n = 81), and 0.665 (n =
35), which gave the following inter-cluster border values: 0.357 and 
0.559. If the Lostness value of a learner drops below the lower threshold, 
the utility-based agent will increase the difficulty, as a player is deemed 
to be in the lower ZPD. Conversely, a player with a Lostness value above 
the upper threshold will be deemed to be in the upper ZPD so the utility- 
based agent will decrease the difficulty. A player with a Lostness value 
between these two thresholds will be considered in the optimal ZPD so 
the difficulty will not be modified. 

Through adaptive real-time feedback, the utility-based agent uses 
textual specificity to provide a personalized experience for learners. 
Using the thresholds described, this should lead to the “sweet spot”, 
where each learner is given an appropriate level of challenge (Van der 
Sluis et al., 2014). To investigate whether such adaptive feedback is 
effective in terms of reducing cognitive load (Schnotz & Kürschner, 
2007) and increasing learning (Shute et al., 2017), a study was executed 
on a VR narrative-centered discovery game. 

The effect that the adaptive system has on story and spatial knowl
edge will be investigated separately. Additionally, the learner’s experi
ence (i.e., presence, engagement, and cognitive interest) (Hamari et al., 
2016) will be evaluated. 

The following research question was examined: 
Compared to a game providing static instructions, will a game 

featuring a utility-based agent, which provides adaptive instructions, 
result in less cognitive load and lead to better learning, as well as a better 
learning experience? 

Based upon the above theoretical background, this initial question is 
decomposed into the following hypotheses: 

Compared to a game providing static instructions, a game featuring a 
utility-based agent, which provides adaptive instructions, will lead to:  

1. A lower amount of cognitive load;  
2. Higher transfer of both story and spatial information;  
3. Higher engagement and cognitive interest in the subject matter; and  
4. A higher feeling of presence. 

These hypotheses will be evaluated, in a randomized control study, 
using a commercially published serious game. 

3. Methods 

3.1. Material 

As shown in Fig. 1, “the Chantry” (Steel Minions and the Jenner 
Trust, 2018) (https://jennermuseum.com/), a narrative-centered dis
covery game for PlayStation VR, will be used. The item descriptions 
given to players, which serve as educational instructions, will manipu
lated by the utility-based agent to provide different levels of textual 
specificity for these activities and the overall task. 

Each learner wore a Sony PlayStation VR headset (model: CUH- 
ZVR1), connected to a PlayStation 4. They navigated using a standard 
PlayStation DualShock 4 controller (model: CUH-ZCT1) and wore noise- 
canceling over-ear headphones. Learners used their head movements to 
look at a movement/item node and used a single button press on the 
controller to jump to that node or pick up an item. After picking up an 
item, learners could move and rotate it by doing the same action holding 
on to the controller, as if they were holding the physical item. 

3.2. Participants 

A total of 40 learners, 22 males and 18 females, aged 21–55 (mean: 
31.80, standard deviation (SD): 7.27), who were residents of Utrecht, 
the Netherlands were recruited to participate through email and online 
adverts. They had differing levels of VR experience, as indicated on a 
post-experiment 5-point Likert scale (from 1 = “Used very little” to 5 =
“Use all the time”, mean: 1.73, SD: 1.09). Informed consent was ob
tained along with information that would disqualify any of these 
learners from taking part, such as being susceptible to migraines or not 
having a professional comprehension of the English language. To avoid 
introducing biases, no participants were selected that had a background 
in health sciences or medicine. Moreover, as the in-game story is very 
specific, it is safe to assume participants had no prior knowledge of the 
topics within the game. Eligible learners were randomly assigned to 
either the adaptive or the non-adaptive group, both consisting of 11 
males and 9 females. 

3.3. Questionnaires 

To evaluate learning, learners were provided with a short bespoke 
knowledge test, consisting of 24 true/false statements about the parts of 
the game to gauge how well that knowledge was transferred. 16 of these 
questions concerned facts related to the story and 8 involved spatial 
aspects related to the location of items/rooms in the game. This 

Table 1 
Five levels of specificity-based textual adaptation.  

Difficulty 
Level 

Information Made 
Available 

Example 

Very Easy Specific location 
information 
Specific item description 

A County Map on the Wall (Look 
Left) 

Easy Generic location 
information 
Specific item description 

A County Map on the Wall 

Normal No location information 
Specific item description 

A County Map 

Hard No location information 
Less Specific item 
description 

Representation of the County 

Very Hard No location information 
Generic item description 

The County  
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questionnaire was used in previous research Ferguson and van Oos
tendorp (2020), where we reported very high correlations between the 
two knowledge tests and the lostness measure, as well in two other 
empirical studies and it was sensitive enough to pick up effects of ma
nipulations applied (see (Ferguson, van den Broek, van Oostendorp, de 
Redelijkheid, & Giezeman, 2020,a)). 

Standard questionnaires consisting of 5-point Likert scales were used 
to measure engagement (Brockmyer et al., 2009), presence (Schubert, 
2003), and cognitive interest (Schraw, Bruning, & Svoboda, 1995). For 
all these standard questionnaires acceptable levels of reliability and 
validity are reported in the literature. 

To measure cognitive load, the NASA-TLX scale (Hart & Staveland, 
1988) was used. This is a highly valid and reliable cognitive load 
questionnaire, consisting of 6 questions, which has been used in many 
studies on cognitive load (Lum, Greatbatch, Waldfogle, & Benedict, 
2018; Xu, Liang, Zhang, & Baghaei, 2020). To avoid the questions 
becoming too complicated and time-consuming, along with results 
shown to be similar to the weighted version (Byers, Bittner, & Hill, 
1989), the unweighted version of the questionnaire was used. 

3.4. Procedure 

Upon being seated, the learners were given instructions in both oral 
and written form. This involved safety information, such as not to 
attempt to physically grab anything and what to do in the event of 
motion sickness, along with their right to withdraw. This was followed 
by instructions on the game, including controls. The learners were then 
given 5 min to experience a simple controls tutorial before being 
instructed to play through the game for 30 min and learn about the 
story. 

As each learner played the game, information on which tasks were 
started and completed, including found items and associated Lostness 
values, were logged. In the adaptive version, when a learner started a 
new task, their Lostness was compared to the thresholds and the diffi
culty (min: 0, max: 4) set, which remained constant for the duration of 
the task. For example, as shown in Table 1, a learner playing a game at 
normal difficulty would be given the description ‘a county map’. 
Increasing the difficulty would give the description ‘representation of 
the county’, giving less information to the learner in the form of a more 
generic item description. Conversely, decreasing the difficulty would 
give the description ‘a county map on the wall’, giving more information 

to the player in the form of a location. For the non-adaptive condition, 
the difficulty remained at the ‘normal’ level (2) for the whole game. 

After 30 min, the game stopped, fading to black, and the learners 
were invited to complete the knowledge test and questionnaires. Once 
completed, game logs and questionnaire answers were exported and 
saved. Also, all learners were debriefed and informed about the nature of 
the study and our future plans. 

4. Results 

To determine the differences across conditions, adaptive and non- 
adaptive, a Multivariate Analysis of Variance (MANOVA) was per
formed after ensuring that the experiment dataset met the requirements 
of this analysis, such as following a normal distribution and the absence 
of multicollinearity. The presence/absence of adaptivity was the only 
independent between-subjects variable. Presence, engagement, cogni
tive interest, and the results on the knowledge test, separated into the 
story and spatial aspects, were examined as dependent variables, which 
all followed a normal distribution. The presence of adaptivity was found 
to have an overall significant effect (F(6, 33) = 5.641, p< .001, η2

p =

.506). For univariate effects, it was found that cognitive load and 
knowledge transfer, of both story and spatial information, were affected 
by the presence of adaptivity at a significant level (p < .050, see Fig. 2). 
There were no significant effects found for presence, engagement, and 

Fig. 2. Chart showing the means of cognitive load and knowledge transfer (story and spatial information) for learners in both the adaptive and non- 
adaptive condition. 

Table 2 
Means, standard deviations (SDs), effect (F), significance (p) and ratio of vari
ance (η2

p ) for the variables included in the MANOVA analysis.   

Non-Adaptive 
Mean (SD) 

Adaptive 
Mean (SD) 

F(6, 
33) 

p η2
p 

Story Knowledge 
(0–1) 

.625 (.111) .706 (.084) 6.817 .013 .152 

Spatial 
Knowledge 
(0–1) 

.525 (.165) .719 (.167) 13.636 .001 .264 

Presence (1–5) 3.214 (.359) 3.136 (.375) .458 .503 .012 
Cognitive Interest 

(1–5) 
3.760 (.692) 3.580 (.652) .835 .367 .022 

Engagement 
(1–5) 

3.139 (.472) 2.934 (.334) 2.395 .130 .059 

Cognitive Load 
(0–100) 

54.208 (13.111) 40.750 
(13.456) 

10.264 .003 .213  
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cognitive interest. The full results are shown in Table 2. 
As shown in Fig. 3, Lostness values over time showed a similar 

pattern in both conditions, which follows events that occur at these 
points. For example, some of the higher peaks correspond to the events 
that lead to more of the environment being unlocked, meaning that the 
learners needed to explore more to discover these new areas and the 
items within them. For the most part, the adaptive system was able to 
keep the average Lostness of the learners within the optimal range to 
avoid cognitive overload, this is also shown by the smaller variance in 
the results compared to when the adaptive system was not present. 
Overall, the mean Lostness, measured from the beginning of the con
dition until its end was .491 (SD: 0.139) for the adaptive and .549 (SD: 
0.135) for the non-adaptive condition. No significant differences were 
expected between participants across conditions due to the adaptive 
system increasing the difficulty of tasks when navigational efficiency 
was high. This was confirmed through an independent-samples t-test, 
which found no significant difference in Lostness across conditions (t 
(38) = 1.343, p = .187). 

Overall, 4 participants completed the adaptive version of the game 
(mean progress: 0.717, SD: 0.183) compared to 1 for the non-adaptive 
version of the game (mean progress: 0.628, SD: 0.241). However, an 
independent-samples t-test found no significant difference (t(38) =
1.324, p = .173). 

For the adaptive condition, the average difficulty level for partici
pants was 1.682 (SD: 1.030) with an average difficulty change of 0.087 
(SD: 0.213) for each task. 

5. Discussion 

Artificial Intelligence in Education (AIEd) has many different forms 
and can have many different uses (Conati et al., 2021; Mousavinasab 
et al., 2021; Kabudi et al., 2021; Tang et al., [in press]), offering the 
potential to revolutionize education (Hwang et al., 2020; Ouyang & 
Jiao, 2021). We showed that AIED can help avoid eventual problems 
with cognitive overload and non-optimal learning during discovery 
learning. A utility-based agent was developed using the principles of the 
Zone of Proximal Development (ZPD) and Cognitive Load Theory (CLT) 
and applied to narrative-centered discovery learning with the aim of 
delivering an appropriate level of challenge to learners. The 
utility-based agent produced an adaptive system providing a personal
ized experience by giving learners automatic and personalized real-time 
feedback, presenting a task differently in the form of specific or generic 
descriptions for items to be found as part of a task so that learners are 
within the optimal ZPD and undergoing an appropriate amount of 
germane cognitive load. This feedback was in response to the learners’ 
navigational efficiency obtained from the Lostness measure, which was 
used as a performance measure for the agent, as they were exploring the 
environment. The results showed that, compared to the non-adaptive 
version of the game, playing the adaptive version of the game led to: 
lower cognitive load (confirming hypothesis 1) and transfer retention of 
both story and spatial information (confirming hypothesis 2). Engage
ment, and cognitive interest, and presence were not affected (rejecting 
hypothesis 3 and hypothesis 4). 

Cognitive load was significantly lower in learners playing the 
adaptive condition. Therefore, the support from the adaptive system (i. 
e., generic and specific search descriptions) led to these learners being in 
the appropriate area of the ZPD, avoiding disorientation and cognitive 
overload, which normally inhibits learning (Gwizdka & Spence, 2007). 

It is interesting that this significantly lower average cognitive load 
occurred despite the additional challenge (i.e., by presenting generic 
descriptions) given to some learners, which is expected to lead to higher 
germane load and, consequently, overall cognitive load. On the one 
hand, it could simply be that being in the correct area of ZPD does, in 
fact, lead to higher learning with less effort, in the form of lower 
cognitive load. On the other hand, this would suggest that, overall, 
learners playing the adaptive version of the game received lower 

difficulty levels, which is backed up by the relatively low average dif
ficulty of these learners. Furthermore, the high standard deviations 
showed that both the average difficulty and average change greatly 
varied for each participant, showing that participants varied in this 
aspect and each needed a different level of challenge. This shows the 
importance of personalization in games. 

For knowledge retention, the adaptive condition led to better 
learning outcomes as shown by significant increases in knowledge 
retention for both story and spatial aspects in the form of higher 
knowledge test scores. It seems that the lower cognitive load, reported 
by learners in the adaptive condition, left cognitive capacity free for 
learning. Interestingly, this effect appeared to be stronger for spatial 
knowledge, compared to story knowledge. This could be due to the 
additional location information given by the adaptive system assisting 
with remembering the location of different objects. 

Finally, it was shown that the experience aspects (i.e., engagement, 
cognitive interest, and presence) were not affected by using the adaptive 
system. It appears that the learners had the same experience in both 
conditions, although they were given more support in the adaptive 
condition. It was expected that this personalized level of challenge 
would lead to higher engagement and cognitive interest, in line with the 
findings of others (Hamari et al., 2016). As shown in Table 2, these 
values were already high in the non-adaptive condition so perhaps there 
was not much room for improvement. Moreover, regarding engagement 
in particular, the Game Engagement Questionnaire (Brockmyer et al., 
2009), which was used to measure engagement, was developed with 
violent games in mind. Perhaps differences may have been found with 
an alternative questionnaire (e.g., Player Experience of Need Satisfac
tion (Ryan, Rigby, & Przybylski, 2006) or User Engagement Scale 
(Wiebe, Lamb, Hardy, & Sharek, 2014)). Presence was also not affected 
by the adaptation which was not as expected. Building a (spatial) mental 
model of a situation (e.g. of the Chantry) is expected to correlate to a 
sense of presence (Bailey & Witmer, 1994; Lee, Wong, & Fung, 2010; 
Slater, 2002). So we might expect that the support we provided would 
lead to construct an appropriate mental model (Wasserman & Banks, 
2017) and, consequently, to a higher sense of presence (which appeared 
not to be the case). However, other recent research was also unable to 
find a significant relationship between presence and learning (Alsina-
Jurnet & Gutiérrez-Maldonado, 2010; Coxon, Kelly, & Page, 2016; Ling, 
Nefs, Brinkman, Qu, & Heynderickx, 2013). In our own previous 
research using the same game and the same presence and learning 
measurements, we even found a (strong) negative correlation, where 
participants learned less when they felt more present in the game 
(Ferguson & van Oostendorp, 2020). These negative correlations be
tween presence and learning are also found in studies by Schrader and 
Bastiaens (2012), Makransky et al. (2019), and Frederiksen et al. (2020). 
It is clear from these sets of conflicting outcomes that the role of pres
ence in virtual environments needs more research. 

Although the adaptive system was successful, the higher Lostness 
values, in certain areas, for learners in the adaptive condition (see Fig. 3) 
indicate potential issues with the adaptive system. The reason could be 
that the agent set the difficulty at the beginning of each task for each 
learner and this difficulty level did not change for the duration of the 
task. Therefore, in some cases, a learner may have been given a difficulty 
level that was too high, putting them in the upper area of ZPD, and this 
remained the case until the task was completed or they ran out of time. 
Unquestionably, the timing of feedback is an important issue of adaptive 
systems. Further research is needed to determine its optimal usage, 
particularly for adaptive personalized feedback. 

To fully generalize these results, additional empirical studies should 
be executed. Firstly, further research should go into further detail into 
types of adaptivity to see whether or not the additional challenge, given 
by providing generic item descriptions, was actually beneficial or if the 
overall positive effect attributed to adaptivity is mainly due to the 
assistance given through specific item descriptions leading to a lower 
level of challenge. Interestingly, a recent study by Beege, Nebel, 
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Schneider, and Rey (2021) found that adding additional germane load 
did not influence learning outcomes, yet signaling, similar to the lower 
difficulty levels shown in this study, reduced cognitive load overall and 
led to higher learning outcomes. In addition, to fully evaluate the ad
vantages and disadvantages of a textual specificity-based adaptive sys
tem, alternative forms of adaptivity could be investigated, such as 
guiding learners towards an item (Steiner & Voruganti, 2004) and more 
research on the validity of predictors for learning, similar to the Lostness 
measure, would also be beneficial to this area of research (Ferguson & 
van Oostendorp, 2020). This may include making use of temporal 
measures (i.e., task time) alongside the Lostness measure. Another area 
of interest could even be the effect of such an adaptive system outside of 
VR games, such as so-called ‘scavenger hunts’ inside museums or other 
tasks where information must be searched for in specific locations. 
Moreover, as utility-based agents are a type of symbolic AI, perhaps 
more complex solutions, such as sub-symbolic machine learning, could 
engender even better results. 

In conclusion, inspired by the ZPD concept of Vygotsky (1978) and 
CLT of Sweller et al. (2011), we developed a utility-based agent, which 
created an adaptive system that provided a personalized experience 
through real-time feedback by adapting the level of challenge in 
narrative-centered discovery learning game based on a learner’s navi
gation efficiency. This system modified the specificity of item de
scriptions to either increase or decrease the difficulty of a task so that 
each learner faced an appropriate level of challenge to their perfor
mance. Our results showed that such a system was highly successful and 
leads to lower levels of cognitive load, indicating that a learner is in the 
correct area of ZPD (i.e., the “sweet spot” (Van der Sluis et al., 2014)), 
resulting in increased learning outcomes for both story and spatial as
pects. This increased learning was achieved with the same feelings of 
engagement, cognitive interest, and presence. The value of such 
personalized experiences is becoming more well-known and are even 
being introduced into real-world museums (Not & Petrelli, 2019). As 
more AI-enabled adaptive learning systems continue to emerge (Kabudi 
et al., 2021), with automated real-time feedback showing to be benefi
cial (Cavalcanti et al., 2021) follow-up research is encouraged in this 
area. Such research is crucial for the advancement of Artificial Intelli
gence in Education (AIEd) and the identification of other real-time 
learning analytics and monitoring variables, such as the Lostness mea
sure of navigational efficiency. 
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