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We present a proof-theoretical and model-theoretical approach to reasoning about knowledge 
and conditional probability. We extend both the language of epistemic logic and the language 
of linear weight formulas, allowing statements like “Agent Ag knows that the probability of A 
given B is at least a half”. We present both a propositional and a first-order version of the logic. 
We provide sound and complete axiomatizations for both logics and we prove decidability in the 
propositional case.

1. Introduction

Epistemic logics are formal models designed in order to reason about the knowledge of agents and their knowledge of each other’s 
knowledge. During the last couple of decades, they have found applications in various fields such as game theory, the analysis of 
multi-agent systems in computer science and artificial intelligence, and for analyzing the behavior and interaction of agents in a 
distributed system [7,10,28]. In parallel, uncertain reasoning has emerged as one of the main fields in artificial intelligence, with 
many different tools developed for representing and reasoning with uncertain knowledge. A particular line of research concerns 
the formalization in terms of logic, and the questions of providing an axiomatization and decision procedure for probabilistic logic
attracted the attention of researchers and triggered investigation about formal systems for probabilistic reasoning [2,17,9,11,16,26].

Fagin and Halpern [8] emphasized the need for combining the fields of epistemic and probabilistic logics for many application 
areas, and in particular in distributed systems applications, when one wants to analyze randomized or probabilistic programs.1 They 
developed a joint propositional framework for reasoning about knowledge and probability, proposed a complete axiomatization and 
investigated decidability of the framework. Using the approach from the seminal paper by Fagin, Halpern and Meggido [9], they 
extended the propositional epistemic language with formulas which express linear combinations of probabilities, called linear weight 
formulas, i.e., the formulas of the form 𝑎1𝑤(𝛼1) +⋯ + 𝑎𝑘𝑤(𝛼𝑘) ≥ 𝑟, where 𝑎𝑗 ’s and 𝑟 are rational numbers. They proposed a finitary 
axiomatization and proved weak completeness, using a small model theorem. It is worth mentioning that a richer propositional 

✩ This paper is revised and extended version of the conference paper [6] presented at 17th Edition of the European Conference on Logics in Artificial Intelligence 
(JELIA 2021), in which we presented a propositional epistemic logic with conditional probability operators. In this work we also develop a first order extension of 
that logic. We have opted to start by presenting the first order version of the logic and proving its completeness in detail, since that proof can be easily reduced to the 
proof of our propositional version of the logic (first presented at JELIA 2021). In addition, we incorporated the so called consistency condition, which was not present 
on our preliminary work, and which forbids an agent to place positive probabilities to the events she knows to be false.

* Corresponding author.
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probabilistic language, obtained by adding multiplication to the syntax (so called polynomial weight formulas) is also proposed in [9]
in order to allow representation of conditional probabilities.

In this paper, we extend the logic from [8] by also allowing formulas that can represent conditional probability. Thus, our 
language contains both knowledge operators 𝐾𝑖 (one for each agent 𝑖) and conditional probability formulas of the form 𝑎1𝐰𝑖(𝛼1, 𝛽1) +
⋯ + 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛽𝑘) ≥ 𝑟. The expressions of the form 𝐰𝑖(𝛼, 𝛽) represent conditional probabilities that agent 𝑖 places on events according 
to Kolmogorov definition: 𝑃 (𝐴|𝐵) = 𝑃 (𝐴∩𝐵)

𝑃 (𝐵) if 𝑃 (𝐵) > 0, while 𝑃 (𝐴|𝐵) is undefined when 𝑃 (𝐵) = 0.

One of our main objectives is to provide a framework in which we can also model situations that require an underlying first-order 
language. The need for such frameworks is recognized both in case of epistemic logic and probability logic. Indeed, Wolter [28] and 
Bacchus [3] independently advocated use of a first-order language as necessary whenever an application domain is either infinite, or 
finite, but whose size (and its bound) is not known in advance, which is a frequent case in the field of Knowledge Representation. For 
that reason we allow predicates and quantification over variables in our language. The corresponding semantics extends the semantics 
from [8], and it consists of enriched Kripke models, with a probability measure assigned to every agent in each world, where each 
world also carries a first order structure. We denote that logic by CKL𝑓𝑜.2 It should be mentioned that first-order probability logics 
are already studied in the field of Artificial Intelligence from two perspectives: one that puts a probability on the domain, and is 
appropriate for representation of statistical information, and the one that we follow - that puts a probability on possible worlds 
and can be used to model degrees of belief [13,4,20]. An epistemic extension of first order probability logic (in which conditional 
probabilities cannot be neither expressed nor compared) is introduced in [27].

Our main result is a strongly complete axiomatization of the logic. It is known that even in probabilistic fragment of such 
framework there are theoretical difficulties when one considers first-order models with possibly infinite domains. Namely, it is 
shown by Abadi and Halpern [1] that the set of valid first-order probability formulas is not recursively enumerable, so that there is 
no complete recursive axiomatization. In order to overcome that problem, we present an infinitary inference system.

From the technical point of view, we obtain completeness combining and extending the approaches from [8] and [27]. On one 
hand, most of our axioms (including those for reasoning about linear inequalities) extend those from [8]. On the other hand, because 
of the problem of axiomatizing conditional probabilities using linear weight formulas with the approach from [9,8] (mentioned 
below in this paragraph), we modify the Henkin-style proof strategy from [27] and obtain strong version of completeness (“every 
consistent set of sentences has a model”) using infinitary inference rules. The premises and conclusions of those rules are in the form 
of 𝑘-nested implications. This form of infinitary rules is a technical solution already used in probabilistic, epistemic and temporal 
logics for obtaining various strong necessitation results [21,24,27].

For practical purposes, we also propose a propositional variant of the logic, denoted by CKL, for which we prove both complete-
ness and decidability result. The completeness proof is a straightforward simplification of the corresponding proof for CKL𝑓𝑜. The 
main advantage of CKL is that the satisfiability problem is decidable (while CKL𝑓𝑜 is trivially undecidable as it extends classical 
first-order logic). We prove decidability combining the method of filtration [18] and a reduction to a finite set of systems of inequal-
ities. While we have already emphasized impossibility of (even weak) completeness of a finitary axiomatization of our first-order 
logic, one can pose the question can we develop a finitary system for CKL which would be weakly complete (strong completeness of 
a finitary system is impossible due to the noncompactness phenomena for probability logics, see [17]). We do not know a finitary ax-
iomatization for this rich language. Moreover, even for propositional logics which need to express conditional probabilities only (i.e., 
without knowledge operators), the task of developing a finitary system turned out to be very hard to accomplish. Fagin, Halpern and 
Meggido [9] faced problems when they tried to represent conditional probabilities by adding multiplication to the syntax of linear 
weight formulas, and they needed to introduce a first-order quantification over coefficients of their probability polynomial terms in 
order to obtain completeness. The only finitary axiomatization of conditional probabilities (in propositional setting) we are aware of 
is the fuzzy approach of Marchioni and Godo [22], who consider the probability of a conditional event of the form “𝛼 given 𝛽” as 
the truth-value of the fuzzy proposition 𝑃 (𝛼|𝛽) which is read as “𝑃 (𝛼|𝛽) is probable.”

The structure of this paper is as follows. In Section 2 we present the syntax and semantics of our first order logic CKL𝑓𝑜 in detail. 
In Section 3 we propose an axiomatization for CKL𝑓𝑜 and we prove its soundness. In Section 4 we prove that the axiomatization is 
strongly complete with respect to the proposed semantics. Propositional restriction CKL we present in Section 5. We show that CKL
is decidable, and we propose strong complete axiomatization for the logic. We conclude in Section 6.

2. The logic 𝐂𝐊𝐋𝒇𝒐: syntax and semantics

In this section we introduce the set of formulas of our logic CKL𝑓𝑜, provide a class of measurable models in which those formulas 
are evaluated, and define the satisfiability relation.

2.1. Syntax

Let 𝐀 be a finite set of agents. As we emphasized in Introduction, here we want to extend the language of the logic from [8], 
which contains the formulas of the form 𝐰𝑖(𝛼) ≥ 𝑟 with intended meaning “according to the agent 𝑖, the formula 𝛼 holds with 
the probability at least 𝑟”. Our language  allows formulas of the form 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 which we read as “according to the agent 𝑖, 
conditional probability of 𝛼 based on 𝛽 is at least 𝑟”. Actually, as in [9], we extend language further. If 𝛼1, 𝛽1, … , 𝛼𝑛, 𝛽𝑛 are formulas 
2

2 Here, C stands for “Conditional probability” and K stands for “Knowledge”, while L denotes “Logic”.
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then 𝑎1𝐰𝑖(𝛼1, 𝛽1) +⋯ + 𝑎𝑛𝐰𝑖(𝛼𝑛, 𝛽𝑛) ≥ 𝑟 is also a formula of the language, where 𝑎𝑘 ’s and 𝑟 are arbitrary rational numbers, for every 
𝑖 ∈𝐀. The language  further contains:

• a countable set of variables 𝑉 𝑎𝑟 = {𝑥, 𝑦, 𝑧, … },
• universal quantifier ∀, and classical propositional connectives,
• for every integer 𝑘 ≥ 0, denumerably many function symbols 𝐹𝑘0 , 𝐹

𝑘
1 , … of arity 𝑘,

• for every integer 𝑘 ≥ 1, denumerably many relation symbols 𝑃𝑘0 , 𝑃
𝑘
1 , … of arity 𝑘,

• a list of unary knowledge operators 𝐾𝑖, one for every 𝑖 ∈𝐀.

The function symbols of arity 0 are called constant symbols. Terms (denoted by 𝑡1, 𝑡2, … ) and atomic formulas (formulas of the 
form 𝑃𝑘

𝑗
(𝑡1, … , 𝑡𝑘)) are defined as usual, as well as the notion of a term that is free for a variable.

Let  denote the set of all rational numbers and let [0, 1]𝑄 denote the set [0, 1] ∩.

Definition 1 (Formula). The set For of all formulas of the logic is defined as follows:

𝛼 ∶∶= 𝑃𝑘
𝑗
(𝑡1,… , 𝑡𝑘) ∣𝐾𝑖𝛼 ∣

𝑘∑
𝑙=1
𝑎𝑙𝐰𝑖(𝛼, 𝛼) ≥ 𝑟 ∣ 𝛼 ∧ 𝛼 ∣ ¬𝛼 ∣ (∀𝑥)𝛼

where 𝑖 ∈𝐀, 𝑘, 𝑗 ∈ℕ, 𝑘 ≥ 1 and 𝑎1, … , 𝑎𝑘, 𝑟 ∈.

The meaning of the formula 𝐾𝑖𝛼 is “agent 𝑖 knows 𝛼”, while the expression 𝐰𝑖(𝛼, 𝛽) denotes conditional probability of 𝛼 given 𝛽, 
according to the agent 𝑖.

An expression of the form 𝑎1𝐰𝑖(𝛼1, 𝛼′1) +⋯ + 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛼′𝑘) is called probabilistic term. Following [8], we do not allow appearance of 
multiple agents inside of a probabilistic term. We denote probabilistic terms with 𝑓𝑖, 𝑔𝑖 and ℎ𝑖.

We use a number of abbreviations through this paper. The propositional connectives, ∨, → and ↔, are introduced as usual. We 
define ⊤ to be an abbreviation for the formula 𝛼 ∨ ¬𝛼, while ⊥ is ¬⊤. We also use abbreviations to define other types of inequalities, 
for example: 𝑓𝑖 ≥ 𝑔𝑖 as an abbreviation for 𝑓𝑖 − 𝑔𝑖 ≥ 0, 𝑓𝑖 ≤ 𝑔𝑖 is 𝑔𝑖 ≥ 𝑓𝑖, 𝑓𝑖 = 𝑔𝑖 is (𝑓𝑖 ≥ 𝑔𝑖) ∧ (𝑓𝑖 ≤ 𝑔𝑖) and 𝑓𝑖 > 𝑔𝑖 is (𝑓𝑖 ≥ 𝑔𝑖) ∧ ¬(𝑓𝑖 = 𝑔𝑖).

A formula without free variables is called a sentence. A set of sentences we call theory. The set of all sentences of the logic we 
denote by 𝑆𝑒𝑛𝑡.

Example 1. The sentence “The agent 𝑗 knows that according to the agent 𝑖, the probability that all birds from the flock take off if 
one of them takes off, is 0.99” can be formalized by the formula

𝐾𝑗𝐰𝑖((∀𝑥)(InFlock(𝑥)→ TakesOff(𝑥)), (∃𝑥)(InFlock(𝑥) ∧ TakesOff(𝑥))) = 0.99

2.2. Semantics

Now we introduce the semantics of our logic. We define structure as an extension of the first order possible-words for epistemic 
logics with probabilistic spaces.

Definition 2 (CKL𝑓𝑜-structure). An CKL𝑓𝑜-structure is a tuple (𝑊 , 𝐷, 𝐼 , , 𝑃𝑟𝑜𝑏) where:

1. 𝑊 is a non-empty set of objects called worlds.
2. 𝐷 is non-empty domain for every 𝑤 ∈𝑊 ,
3. 𝐼 assigns an interpretation 𝐼(𝑤) to every 𝑤 ∈𝑊 such that for all 𝑖 and 𝑘:

• 𝐼(𝑤)(𝐹𝑘
𝑖
) is a function from 𝐷𝑘 to 𝐷,

• for every 𝑤′ ∈𝑊 , 𝐼(𝑤)(𝐹𝑘
𝑖
) = 𝐼(𝑤′)(𝐹𝑘

𝑖
),

• 𝐼(𝑤)(𝑃𝑘
𝑖
) is a subset of 𝐷𝑘,

4.  = {𝑖 | 𝑖 ∈ 𝐀} is a set of binary equivalence relations on 𝑊 . We denote 𝑖(𝑤) = {𝑤′ | (𝑤′, 𝑤) ∈𝑖}, and we write 𝑤𝑖𝑤′ if 
𝑤′ ∈𝑖(𝑤),

5. 𝑃𝑟𝑜𝑏 assigns to every 𝑖 ∈𝐀 and 𝑤 ∈𝑊 a probability space 𝑃𝑟𝑜𝑏(𝑖, 𝑤) = (𝑊𝑖(𝑤), 𝐻𝑖(𝑤), 𝜇𝑖(𝑤)), where
• 𝑊𝑖(𝑤) is a non-empty subset of 𝑖(𝑤),
• 𝐻𝑖(𝑤) is an algebra of subsets of 𝑊𝑖(𝑤), i.e. a set such that

(a) 𝑊𝑖(𝑤) ∈𝐻𝑖(𝑤),
(b) if 𝐴 ∈𝐻𝑖(𝑤), then 𝑊𝑖(𝑤) ⧵𝐴 ∈𝐻𝑖(𝑤), and
(c) if 𝐴, 𝐵 ∈𝐻𝑖(𝑤), then 𝐴 ∪𝐵 ∈𝐻𝑖(𝑤).

• 𝜇𝑖(𝑤) ∶𝐻𝑖(𝑤) ⟶ [0, 1] is a finitely additive measure, i.e.,
(a) 𝜇𝑖(𝑤)(𝑊𝑖(𝑤)) = 1,
(b) 𝜇𝑖(𝑤)(𝐴 ∪𝐵) = 𝜇𝑖(𝑤)(𝐴) + 𝜇𝑖(𝑤)(𝐵), whenever 𝐴 ∩𝐵 = ∅.
3

The elements of 𝐻𝑖(𝑤) are called measurable sets.
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In this definition we use two assumptions that are fairly standard for the first order modal logics. First assumption is that the 
domain is fixed in a model, it means domain is the same in all the worlds of a considered model. The second assumption is that 
the terms are rigid which means that for every model their meanings are the same in all the worlds of a considered model. These 
assumptions give us validity of all fist-order axioms (see Section 3).

The notion of variable valuation is defined in usual way. Let 𝑀 = (𝑊 , 𝐷, 𝐼, 𝑃𝑟𝑜𝑏) be an CKL𝑓𝑜-structure. A variable valuation 𝑣
assigns some element of the corresponding domain to every variable 𝑥, i.e., 𝑣(𝑥) ∈𝐷. If 𝑑 ∈𝐷 and 𝑣 is a valuation, then 𝑣[𝑑∕𝑥] is a 
valuation same as 𝑣 except that 𝑣[𝑑∕𝑥](𝑥) = 𝑑.

Then we can define the value of terms. The value of a term 𝑡, denoted by 𝐼(𝑤)(𝑡)𝑣 is:

• if 𝑡 is a variable 𝑥, then 𝐼(𝑤)(𝑥)𝑣 = 𝑣(𝑥), and
• if 𝑡 = 𝐹𝑚

𝑖
(𝑡1, … , 𝑡𝑚), then 𝐼(𝑤)(𝑡)𝑣 = 𝐼(𝑤)(𝐹𝑚𝑖 )(𝐼(𝑤)(𝑡1)𝑣, … , 𝐼(𝑤)(𝑡𝑚)𝑣).

Now, we define satisfiability of formulas in the worlds of introduced models.

Definition 3. The truth value of a formula 𝛼 in a world 𝑤 ∈𝑊 of a CKL𝑓𝑜-structure 𝑀 = (𝑊 , 𝐷, 𝐼, , 𝑃𝑟𝑜𝑏), under a valuation 𝑣
(denoted by (𝑀, 𝑤, 𝑣) ⊧ 𝛼) is:

• (𝑀, 𝑤, 𝑣) ⊧ 𝑃𝑚
𝑖
(𝑡1, … , 𝑡𝑚) iff (𝐼(𝑤)(𝑡1)𝑣, … , 𝐼(𝑤)(𝑡𝑚)𝑣) ∈ 𝐼(𝑤)(𝑃𝑚𝑖 ),

• (𝑀, 𝑤, 𝑣) ⊧ 𝐾𝑖𝛼 iff (𝑀, 𝑤′, 𝑣) ⊧ 𝛼 for all 𝑤′ ∈𝑖(𝑤),
• (𝑀, 𝑤, 𝑣) ⊧ ∑𝑛

𝑘=1 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛽𝑘) ≥ 𝑟 if 𝜇𝑖(𝑤)({𝑤′ ∈ 𝑊𝑖(𝑤) | (𝑀, 𝑤′, 𝑣) ⊧ 𝛽𝑘}) > 0 for every 𝑘 ∈ {1, … , 𝑛} and ∑𝑛

𝑘=1 𝑎𝑘𝜇𝑖(𝑤)({𝑤
′ ∈

𝑊𝑖(𝑤) | (𝑀, 𝑤′, 𝑣) ⊧ 𝛼𝑘}|{𝑤′ ∈𝑊𝑖(𝑤) | (𝑀, 𝑤′, 𝑣) ⊧ 𝛽𝑘}) ≥ 𝑟,
• (𝑀, 𝑤, 𝑣) ⊧ ¬𝛼 iff (𝑀, 𝑤, 𝑣) ̸⊧ 𝛼
• (𝑀, 𝑤, 𝑣) ⊧ 𝛼 ∧ 𝛽 iff (𝑀, 𝑤, 𝑣) ⊧ 𝛼 and (𝑀, 𝑤, 𝑣) ⊧ 𝛽
• (𝑀, 𝑤, 𝑣) ⊧ (∀𝑥)𝛼, iff for every 𝑑 ∈𝐷, (𝑀, 𝑤, 𝑣[𝑑∕𝑥]) ⊧ 𝛼

From the previous definition we can see that the satisfiability relation is not in general defined for all formulas. Because of that 
we will consider only CKL𝑓𝑜-measurable structures: an CKL𝑓𝑜-structure 𝑀 is measurable if for every formula 𝛼, every valuation 𝑣
and every world 𝑤 from 𝑀 , the set

[𝛼]𝑣
𝑖,𝑤

= {𝑢 ∈𝑊𝑖(𝑤) | (𝑀,𝑢, 𝑣) ⊧ 𝛼}
belongs to 𝐻𝑖(𝑤). If 𝛼 is a sentence, we omit the superscript 𝑣 in [𝛼]𝑣

𝑖,𝑤
. We denote the set of all measurable CKL𝑓𝑜-structure with 

CKLfo
Meas.

We say that a formula 𝛼 holds in a world 𝑤 from an CKL𝑓𝑜-structure 𝑀 = (𝑊 , 𝐷, 𝐼, 𝑃𝑟𝑜𝑏) (denoted by (𝑀, 𝑤) ⊧ 𝛼) if for every 
valuation 𝑣, (𝑀, 𝑤, 𝑣) ⊧ 𝛼. If 𝑑 ∈ 𝐷, we will use (𝑀, 𝑤) ⊧ 𝛼(𝑑) to denote that (𝑀, 𝑤, 𝑣[𝑑∕𝑥]) ⊧ 𝛼, for every valuation 𝑣. A formula is 
valid in an CKL𝑓𝑜-structure 𝑀 = (𝑊 , 𝐷, 𝐼, 𝑃𝑟𝑜𝑏) (denoted by 𝑀 ⊧ 𝛼), if it is satisfied in every world 𝑤 from 𝑊 . A formula 𝛼 is valid 
if for every CKL𝑓𝑜-structure 𝑀 , 𝑀 ⊧ 𝛼. A sentence 𝛼 is satisfiable if there is a world 𝑤 in an CKL𝑓𝑜-structure 𝑀 such that (𝑀, 𝑤) ⊧ 𝛼. 
A set 𝑇 of sentences is satisfiable if there is a world 𝑤 in an CKL𝑓𝑜-structure 𝑀 such that (𝑀, 𝑤) ⊧ 𝛼 for every 𝛼 ∈ 𝑇 . We also say 
that (𝑀, 𝑤) is a model (or pointed model) of 𝑇 .

At the end of this section, we emphasize that the non-compactness property, which is a common characteristic of many real 
valued probability logics [26], also holds for CKL𝑓𝑜.

Example 2. Consider the set

𝑇 = {¬𝐰𝑖(𝛼, 𝛽) = 0} ∪ {𝐰𝑖(𝛼, 𝛽) <
1
𝑛
| 𝑛 is a positive integer}.

Every finite subset of 𝑇 is satisfiable, but the set 𝑇 itself is not. Therefore, the compactness theorem (“if every finite subset of 𝑇
is satisfiable, then 𝑇 is satisfiable”) does not hold for the logic CKL𝑓𝑜.

3. Aximatization 𝑨𝒙(𝐂𝐊𝐋𝒇𝒐)

In this section we present an axiomatization of our logic, which we denote by 𝐴𝑥(CKL𝑓𝑜). The axiom system 𝐴𝑥(CKL𝑓𝑜) contains 
twenty axiom schemes and six inference rules. But first we need to define one useful notion. In the following definition, for any tuple 
of objects 𝐘 = (𝑌1, … , 𝑌𝑚), let 𝑟𝑒𝑠𝑡(𝐘) = (𝑌2, … , 𝑌𝑚), i.e., the operator 𝑟𝑒𝑠𝑡 removes the first coordinate from the tuple.

In this paper we will employ the notion of 𝑘-nested implications.

Definition 4 (k-nested implication). For every formula 𝛼 ∈ 𝐹𝑜𝑟, a non-negative integer 𝑘 ∈ ℕ, a sequence of formulas Θ = (𝜃0, … , 𝜃𝑘)
and a sequence 𝐗 = (𝑋1, … , 𝑋𝑘) of knowledge operators from {𝐾𝑖 | 𝑖 ∈ 𝐀}, we define a 𝑘-nested implication formula Φ𝑘,Θ,𝐗(𝛼)
recursively as follows:
4

Φ0,𝜃0 ,∅(𝛼) = 𝜃0 → 𝛼
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Φ𝑘,Θ,𝐗(𝛼) = 𝜃𝑘→𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝛼).

For example, if 𝐗 = (𝐾𝑎, 𝐾𝑏, 𝐾𝑐), 𝑎, 𝑏, 𝑐 ∈𝐀, then

Φ3,Θ,𝐗(𝛼) = 𝜃3 →𝐾𝑐(𝜃2 →𝐾𝑏(𝜃1 →𝐾𝑎(𝜃0 → 𝛼))).

Formulas of this form will be used to formulate infinitary inference rules in the axiomatization, and allow us to apply those rules 
not only to the outermost operators, but also to the operators inside formulas. This form is necessary for the inductive proofs of 
Deduction theorem (Theorem 2) and Strong necessitation theorem (Theorem 3). We further discuss the form of 𝑘-nested implications 
in Remark 1.

Our axiomatization contains the following axiom schemes and inference rules.

Axioms and rules for classical first-order reasoning

(A1) All instances of classical propositional tautologies.
(A2) (∀𝑥)(𝛼→ 𝛽) → (𝛼→ (∀𝑥)𝛽) where 𝑥 is not free in 𝛼
(A3) (∀𝑥)(𝛼(𝑥)) → 𝛼(𝑡), where 𝛼(𝑡) is obtained by substituting all free occurrences of 𝑥 in 𝛼(𝑥) by the term 𝑡 which is free for 𝑥 in 𝛼(𝑥)
(R1) From {𝛼, 𝛼→ 𝛽} infer 𝛽.
(R2) From 𝛼 infer (∀𝑥)𝛼.

Axioms and rules for reasoning about knowledge

(A4) ∀𝑥𝐾𝑖𝛼(𝑥) →𝐾𝑖∀𝑥𝛼(𝑥) (Barcan formula)
(A5) (𝐾𝑖𝛼 ∧𝐾𝑖(𝛼→ 𝛽)) →𝐾𝑖𝛽, for every 𝑖 ∈𝐺
(A6) 𝐾𝑖𝛼→ 𝛼,
(A7) 𝐾𝑖𝛼→𝐾𝑖𝐾𝑖𝛼,
(A8) ¬𝐾𝑖𝛼→𝐾𝑖¬𝐾𝑖𝛼,
(R3) From 𝛼 infer 𝐾𝑖𝛼.

Axioms for reasoning about linear inequalities

(A9) (
∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟 ∧𝐰𝑖(𝛼′𝑘+1, ⊤) > 0) ↔ (
∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) + 0𝐰𝑖(𝛼𝑘+1, 𝛼′𝑘+1) ≤ 𝑟)
(A10) (

∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟) → (
∑𝑘

𝑙=1 𝑎𝑗𝑙𝐰𝑖(𝛼𝑗𝑙 , 𝛼
′
𝑗𝑙
) ≤ 𝑟) where 𝑗1, … , 𝑗𝑘 is a permutation of 1, … , 𝑘.

(A11) (
∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟) ∧ (
∑𝑘

𝑙=1 𝑎
′
𝑙
𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟

′) → (
∑𝑘

𝑙=1(𝑎𝑙 + 𝑎
′
𝑙
)𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟 + 𝑟

′)
(A12) (

∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟) ↔ (
∑𝑘

𝑙=1 𝑑𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑑𝑟) where 𝑑 > 0.

(A13)
⋀𝑛

𝑖=0𝐰𝑖(𝛼
′
𝑖
, ⊤) > 0 → (

∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≤ 𝑟) ∨ (
∑𝑘

𝑙=1 𝑎𝑙𝐰𝑖(𝛼𝑙, 𝛼′𝑙 ) ≥ 𝑟)
(A14) (𝑓𝑖 ≥ 𝑟) → (𝑓𝑖 > 𝑟′) for 𝑟 > 𝑟′

Axioms and rule for reasoning about probabilities

(A15) 𝐰𝑖(𝛼, ⊤) ≥ 0
(A16) 𝐰𝑖(𝛼 ∧ 𝛽, ⊤) +𝐰𝑖(𝛼 ∧ ¬𝛽, ⊤) =𝐰𝑖(𝛼, ⊤)
(A17) 𝐰𝑖(𝛼, ⊤) =𝐰𝑖(𝛽, ⊤) if 𝛼↔ 𝛽 is an instance of propositional tautology
(A18)

∑𝑛

𝑗=1 𝑎𝑗𝐰𝑖(𝛼𝑗 , 𝛽𝑗 ) ≥ 𝑟 →𝐰𝑖(𝛽𝑗 , ⊤) > 0 for every 𝑗 ∈ {1, … , 𝑛}
(A19) (𝐰𝑖(𝛽, ⊤) ≥ 𝑠 ∧𝐰𝑖(𝛼, 𝛽) ≥ 𝑟) →𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠 ⋅ 𝑟

(R4) From the set of premises {Φ𝑘,Θ,𝐗(𝑓𝑖 ≥ 𝑟 −
1
𝑙
) | 𝑙 ∈ℕ} infer Φ𝑘,Θ,𝐗(𝑓𝑖 ≥ 𝑟)

(R5) From the set of premises {Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0)} ∪ {Φ𝑘,Θ,𝐗((𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) | 𝑠 ∈ [0, 1]𝑄} infer Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼, 𝛽) ≥ 𝑟)

Axiom for consistency condition

(A20) 𝐾𝑖𝛼→𝐰𝑖(𝛼, ⊤) ≥ 1.

According to the type of reasoning, our axiomatization is divided into five groups. The first group tells us that classical first order 
logic is a sublogic of our logic. Recall that we use fixed domain CKL𝑓𝑜-measurable models with rigid terms, which is similar to 
the objectual interpretation for first order modal logics [12]. If we reject the assumption that the terms are rigid, then the standard 
first order axiom A3 is not sound. The second group present standard axiomatization for epistemic logic. Axiom A4 is a variant of 
the well-known axiom for modal logics, called Barcan formula. It is proved that Barcan formula holds in the class of all first-order 
fixed domain modal models [19]. The axioms A9-A17 are adapted from axiom system from [8] to our approach to conditional 
probabilities. The axioms A18 and A19, together with the rule R5 properly capture the third condition of Definition 3. The rule R3 
is Necessitation rule for the knowledge operator. In this logic we do not need Probabilistic Necessitation (From 𝛼 infer 𝐰𝑖(𝛼, ⊤) ≥ 1) 
5

because it is derivable from R3 and A20. The rules R4 and R5 are infinitary inference rules. R4 is a variant of so called Archimedean 
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rule, whose role is to prevent nonstandard values. Intuitively, it says that is the value of a term is infinitely close to 𝑟, then it must 
be equal to 𝑟. The necessity of employing such rules comes from the non-compactness phenomena (Example 2). Actually, it is known 
that in a real-valued probabilistic logic there exist unsatisfiable, but finitely satisfiable, sets of formulas. As pointed out in [17], one 
consequence of that fact is that any finitary axiomatization would not be strongly complete.

Let us now define some basic notions of proof theory.

Definition 5 (Theorem, proof). A formula 𝛼 is a theorem, denoted by ⊢
𝐴𝑥(CKL𝑓𝑜) 𝛼, if there is a sequence of formulas 𝛼0, 𝛼1, … , 𝛼𝜆 (𝜆

is finite or countable ordinal), such that 𝛼𝜆 = 𝛼 and every 𝛼𝑖, 𝑖 < 𝜆, is an axiom, or it is derived from the preceding formulas by an 
inference rule.

A formula 𝛼 is deducible from a set 𝑇 ⊆ 𝐹𝑜𝑟 (𝑇 ⊢
𝐴𝑥(CKL𝑓𝑜) 𝛼) if there is a sequence of formulas 𝛼0, 𝛼1, … , 𝛼𝜆 (𝜆 is finite or countable 

ordinal), such that 𝛼𝜆 = 𝛼 and every 𝛼𝑖 is an axiom or a formula from 𝑇 , or it is derived from the preceding formulas by an inference 
rule R1, R2, R4 or R5. The sequence 𝛼0, 𝛼1, … , 𝛼 is a proof of 𝛼 from 𝑇 .

We write ⊢ instead of ⊢
𝐴𝑥(CKL𝑓𝑜) when it is clear from context.

Definition 6 (Consistency). A set of formulas 𝑇 is inconsistent if 𝑇 ⊢ ⊥, otherwise it is consistent.
𝑇 is a maximal consistent set (mcs) of formulas if it is consistent and every proper superset of 𝑇 is inconsistent.
A maximal consistent set 𝑇 is saturated if ¬(∀𝑥)𝛼(𝑥) ∈ 𝑇 , then for some term 𝑡, ¬𝛼(𝑡) ∈ 𝑇 .

At the end of this section, we show that the axiom system 𝐴𝑥(CKL𝑓𝑜) is sound.

Theorem 1 (Soundness). The axiomatization 𝐴𝑥(CKL𝑓𝑜) is sound with respect to the class of structures CKLfo
Meas.

Proof. Let 𝑀 be a CKLfo
Meas-structure, and 𝑤 a world in 𝑀 . Here, we will show only the cases for 𝐴3, 𝐴4, 𝑅5 and 𝐴20.

A3 Let 𝑣 be any valuation such that (𝑀, 𝑤, 𝑣) ⊧ (∀𝑥)𝛼. By Definition 3 we have (𝑀, 𝑤, 𝑣[𝑑∕𝑥]) ⊧ 𝛼(𝑥), for all 𝑑 ∈𝐷. Let 𝐼(𝑤)(𝑡)𝑣 = 𝑑′, 
𝑑′ ∈𝐷 and we know that 𝑣[𝑑′∕𝑥](𝑥) = 𝑑′. Now, from the fact that (𝑀, 𝑤, 𝑣[𝑑′∕𝑥]) ⊧ 𝛼(𝑥) we have (𝑀, 𝑤, 𝑣) ⊧ 𝛼(𝑡).

A4 Suppose that 𝑣 is any valuation such that (𝑀, 𝑤, 𝑣) ⊧ ∀𝑥𝐾𝑖𝛼(𝑥). Similarly as before we have that for every 𝑑 ∈𝐷, (𝑀, 𝑤, 𝑣[𝑑∕𝑥]) ⊧
𝐾𝑖𝛼(𝑥). Therefore, for every 𝑑 and 𝑤′ ∈𝑖(𝑤), it is (𝑀, 𝑤′, 𝑣[𝑑∕𝑥]) ⊧ 𝛼(𝑥). So, for every 𝑤′ ∈𝑖(𝑤) we have (𝑀, 𝑤′, 𝑣) ⊧ (∀𝑥)𝛼(𝑥). 
Therefore (𝑀, 𝑤, 𝑣) ⊧ 𝐾𝑖(∀𝑥)𝛼(𝑥).

R5 We show the soundness of the rule R5 by induction on 𝑘. Let 𝑀 be a model, 𝑤 a world of 𝑀 , and 𝑣 a valuation. We show 
that if (𝑀, 𝑤, 𝑣) ⊧Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0) and (𝑀, 𝑤, 𝑣) ⊧Φ𝑘,Θ,𝐗((𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) for every 𝑠 ∈ [0, 1]𝑄 then (𝑀, 𝑤, 𝑣) ⊧
Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼, 𝛽) ≥ 𝑟).
[𝑘 = 0 step] It follows by the properties of real numbers.
[Inductive hypothesis] It holds for some 𝑘.
[𝑘 + 1 step] Let (𝑀, 𝑤, 𝑣) ⊧Φ𝑘+1,Θ,𝐗((𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) and (𝑀, 𝑤, 𝑣) ⊧Φ𝑘+1,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0), and let 𝑋𝑘+1 =𝐾𝑖, for 
some 𝑖 ∈. Therefore, (𝑀, 𝑤, 𝑣) ⊧ 𝜃𝑘+1 →𝐾𝑖Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0) and (𝑀, 𝑤, 𝑣) ⊧ 𝜃𝑘+1 →𝐾𝑖Φ𝑘,Θ,𝐗((𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠), 
for every 𝑠 ∈ [0, 1]𝑄.
Assume that (𝑀, 𝑤, 𝑣) ⊧ 𝜃𝑘+1, otherwise is trivial. Then (𝑀, 𝑤, 𝑣) ⊧ 𝐾𝑖Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0) and (𝑀, 𝑤, 𝑣) ⊧ 𝐾𝑖Φ𝑘,Θ,𝐗((𝐰𝑖(𝛽, ⊤) ≥
𝑠 → 𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠), for every 𝑠 ∈ [0, 1]𝑄. Now, for every 𝑤′ ∈ 𝑖 we have (𝑀, 𝑤′, 𝑣) ⊧ Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0) and (𝑀, 𝑤′, 𝑣) ⊧
Φ𝑘,Θ,𝐗((𝐰𝑖(𝛽, ⊤) ≥ 𝑠 → 𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠), for every 𝑠 ∈ [0, 1]𝑄. By Inductive step, it is (𝑀, 𝑤′, 𝑣) ⊧ Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼, 𝛽) ≥ 𝑟), for every 
𝑤′ ∈𝑖(𝑤). Then by the definition of satisfiability, (𝑀, 𝑤, 𝑣) ⊧ 𝐾𝑖Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼, 𝛽) ≥ 𝑟). Thus (𝑀, 𝑤, 𝑣) ⊧ 𝜃𝑘+1 →𝐾𝑖Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼, 𝛽) ≥
𝑟), i.e., (𝑀, 𝑤, 𝑣) ⊧Φ𝑘+1,Θ,𝐗(𝐰𝑖(𝛼, 𝛽) ≥ 𝑟).

A20 Let (𝑀, 𝑤, 𝑣) ⊧ 𝐾𝑖𝛼, then for all 𝑤′ ∈𝑖(𝑤) we have (𝑀, 𝑤′, 𝑣) ⊧ 𝛼. From the definition of our structures, we have that 𝑊𝑖(𝑤) ⊂
𝑖(𝑤), therefore (𝑀, 𝑤′, 𝑣) ⊧ 𝛼 for all 𝑤′ ∈𝑊𝑖(𝑤), i.e., (𝑀, 𝑤, 𝑣) ⊧𝐰𝑖(𝛼, ⊤) ≥ 1. □

4. Completeness

In this section we show that the axiomatization 𝐴𝑥(CKL𝑓𝑜) is strongly complete for the logic CKL𝑓𝑜, i.e., we prove that every 
consistent set of formulas has a model. We start with the deduction theorem.

Theorem 2 (Deduction theorem). Let 𝑇 be a theory and 𝛼 and 𝛽 be two sentences. Then

𝑇 ∪ {𝛼} ⊢ 𝛽 iff 𝑇 ⊢ 𝛼→ 𝛽.

Proof. The direction from right to left is trivial. For left to right we use the transfinite induction on the length of the inference. Here 
we will only consider the case when 𝛽 is obtained by the rule R5, i.e. 𝛽 = Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼′, 𝛽′) ≥ 𝑟), where Θ = (𝜃0, … , 𝜃𝑘). Then we have 
by the definition of Φ𝑘,Θ,𝐗:

𝑇 , 𝛼 ⊢ 𝜃𝑘 →𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝐰𝑖(𝛽′, ⊤) > 0),
6

𝑇 , 𝛼 ⊢ 𝜃𝑘 →𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝐰𝑖(𝛽′, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼′ ∧ 𝛽′, ⊤) ≥ 𝑟 ⋅ 𝑠).
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By Inductive hypothesis and the axiom 𝐴1 we obtain:
𝑇 ⊢ (𝛼 ∧ 𝜃𝑘) →𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝐰𝑖(𝛽′, ⊤) > 0),
𝑇 ⊢ (𝛼 ∧ 𝜃𝑘) →𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝐰𝑖(𝛽′, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼′ ∧ 𝛽′, ⊤) ≥ 𝑟 ⋅ 𝑠). For Θ= (𝜃0, … , 𝛼 ∧ 𝜃𝑘) we have
𝑇 ⊢Φ

𝑘,Θ,𝐗(𝐰𝑖(𝛽
′, ⊤) > 0),

𝑇 ⊢Φ
𝑘,Θ,𝐗(𝐰𝑖(𝛽

′, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼′ ∧ 𝛽′, ⊤) ≥ 𝑟 ⋅ 𝑠).
By the rule 𝑅5 and the definition of Φ𝑘,Θ,𝐗 we obtain
𝑇 ⊢Φ

𝑘,Θ,𝐗(𝐰𝑖(𝛼
′, 𝛽′) ≥ 𝑟),

𝑇 ⊢ (𝛼 ∧ 𝜃𝑘) →𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝐰𝑖(𝛼′, 𝛽′) ≥ 𝑟),
𝑇 ⊢ 𝛼→ (𝜃𝑘→𝑋𝑘Φ𝑘−1,𝑟𝑒𝑠𝑡(Θ),𝑟𝑒𝑠𝑡(𝐗)(𝐰𝑖(𝛼′, 𝛽′) ≥ 𝑟),
𝑇 ⊢ 𝛼→Φ𝑘,Θ,𝐗(𝐰𝑖(𝛼′, 𝛽′) ≥ 𝑟)
𝑇 ⊢ 𝛼→ 𝛽. □

Remark 1. Let us observe that the proof of the previous theorem relies on the fact that all the infinitary rules of inference are given 
in the implicative form, i.e., all the formulas in the premises and the conclusion of a rule are implications with the same antecedent. 
Thus, if we want to employ a rule that intuitively says

(IR) From the set of formulas {𝛼𝑚 | 𝑚 ≥ 0} infer 𝛼,

we need the following implicative generalizations:

From the set of formulas {𝛽→ 𝛼𝑚 | 𝑚 ≥ 0} infer 𝛽→ 𝛼,

one for each 𝛽. This is a standard technical solution in infinitary proof systems which ensures that Deduction theorem can be proven 
using the transfinite induction on the length of the inference.

Moreover, in presence of knowledge operator, we will have to prove strong version of Necessitation for knowledge operators, 
namely that 𝑇 ⊢ 𝛼 implies {𝐾𝑖𝛽 | 𝛽 ∈ 𝑇 } ⊢ 𝐾𝑖𝛼. As demonstrated in the proof of our next result below, the transfinite induction on 
the length of the proof requires another type of generalizations of our inference rules (𝐼𝑅):

From the set of formulas {𝐾𝑖(𝐾𝑖𝑛𝐾𝑖𝑛−1 … 𝐾𝑖1𝛼𝑚) | 𝑚 ≥ 0} infer 𝐾𝑖(𝐾𝑖𝑛𝐾𝑖𝑛−1 … 𝐾𝑖1𝛼),

one for each block of knowledge operators 𝐾𝑖𝑛𝐾𝑖𝑛−1 … 𝐾𝑖1 .
This might seem incompatible with our requirement that the rules must formally be in an implicative form - in this case we simply 

use the implication with the antecedent ⊤ (see the proof of Theorem 3). The fact that our rules need to meet both requirements of 
implicative forms and nesting of knowledge operators leads to the form of 𝑘-nested implication as given by Definition 4.

Theorem 3 (Strong necessitation). If 𝑇 is a theory and 𝑇 ⊢ 𝛼, then 𝐾𝑗𝑇 ⊢ 𝐾𝑗𝛼, for all 𝑗 ∈𝐀, where 𝐾𝑗𝑇 = {𝐾𝑗𝛼 | 𝛼 ∈ 𝑇 }.

Proof. Let 𝑇 ⊢ 𝛼. We will prove the theorem by using the transfinite induction on the length of the proof of 𝑇 ⊢ 𝛼. Here we will only 
consider the application of the rule R5. Let 𝛼 be the formula Φ𝑘,Θ,𝐗(𝐰𝑖(𝛾, 𝛽) ≥ 𝑟), with Θ = (𝜃0, … , 𝜃𝑘) and 𝐗 = (𝑋1, … , 𝑋𝑘), which was 
obtained by the rule R5. Then we have

𝑇 ⊢Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0)
𝑇 ⊢Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛾 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) for all 𝑠 ∈ [0, 1]𝑄
𝐾𝑗𝑇 ⊢ 𝐾𝑗Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0) by IH
𝐾𝑗𝑇 ⊢ 𝐾𝑗Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛾 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) for all 𝑠 ∈ [0, 1]𝑄, by IH
𝐾𝑗𝑇 ⊢ ⊤ →𝐾𝑗Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0)
𝐾𝑗𝑇 ⊢ ⊤ →𝐾𝑗Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛾 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) for all 𝑠 ∈ [0, 1]𝑄
𝐾𝑗𝑇 ⊢Φ

𝑘+1,Θ,𝐗(𝐰𝑖(𝛽, ⊤) > 0), Θ= (𝜃0, … , 𝜃𝑘, ⊤), 𝐗 = (𝑋1, … , 𝑋𝑘, 𝐾𝑗 )
𝐾𝑗𝑇 ⊢Φ

𝑘+1,Θ,𝐗(𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛾 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠) for all 𝑠 ∈ [0, 1]𝑄,
𝐾𝑗𝑇 ⊢Φ

𝑘+1,Θ,𝐗(𝐰𝑖(𝛾, 𝛽) ≥ 𝑟), by 𝑅5
𝐾𝑗𝑇 ⊢ ⊤ →𝐾𝑗Φ𝑘,Θ,𝐗(𝐰𝑖(𝛾, 𝛽) ≥ 𝑟)
𝐾𝑗𝑇 ⊢ 𝐾𝑖𝛼. □

Our next goal is to prove Lindenbaum’s theorem. Before that, we will present several properties about maximal consistent sets 
with respect to our axiomatic system.

Lemma 1. Let 𝑇 be a maximal consistent set of formulas of our logic. Then, 𝑇 satisfies the following properties:

• for every formula 𝛼, exactly one of 𝛼 and ¬𝛼 is in 𝑇 .
7

• 𝑇 is deductively closed,
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• 𝛼 ∧ 𝛽 ∈ 𝑇 iff 𝛼 ∈ 𝑇 and 𝛽 ∈ 𝑇 .
• If {𝛼, 𝛼→ 𝛽} ⊂ 𝑇 , then 𝛽 ∈ 𝑇 ,
• if 𝑟 = sup{𝑟′ ∈ [0, 1] | 𝐰𝑖(𝛼, ⊤) ≥ 𝑟′ ∈ 𝑇 } and 𝑟 ∈ [0, 1], then 𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈ 𝑇 .

Proof. Let 𝑇 be a maximal consistent set of formulas of our logic.

• If both formulas 𝛼, ¬𝛼 ∈ 𝑇 , then 𝑇 would be inconsistent. Suppose ¬𝛼 ∉ 𝑇 . Since 𝑇 is maximal consistent set, then 𝑇 ∪ {¬𝛼} is 
inconsistent. By the Theorem 2 we have 𝑇 ⊢ 𝛼. Also, if 𝛼 ∉ 𝑇 , similarly we have 𝑇 ⊢ ¬𝛼, 𝑇 is inconsistent.

• Suppose that 𝑇 is not deductively closed, there is a formula 𝛼 such that 𝑇 ⊢ 𝛼 and 𝛼 ∉ 𝑇 . By the previous part we have 𝑇 ⊢ ¬𝛼, 
contradiction.

• Let 𝛼 ∧ 𝛽 ∈ 𝑇 , then 𝑇 ⊢ 𝛼 ∧ 𝛽, and also 𝑇 ⊢ (𝛼 ∧ 𝛽) → 𝛼 and 𝑇 ⊢ (𝛼 ∧ 𝛽) → 𝛽. Using R1 and the previous step, we have 𝛼 ∈ 𝑇 and 
𝛽 ∈ 𝑇 . Let now 𝛼 ∈ 𝑇 and 𝛽 ∈ 𝑇 . Then, 𝑇 ⊢ 𝛼, 𝑇 ⊢ 𝛽 and 𝑇 ⊢ 𝛼 ∧ 𝛽. By second step of this Lemma we have 𝛼 ∧ 𝛽 ∈ 𝑇 .

• Let {𝛼, 𝛼→ 𝛽} ⊆ 𝑇 , then 𝑇 ⊢ 𝛼 and 𝑇 ⊢ 𝛼→ 𝛽. Similarly as before, we have 𝛽 ∈ 𝑇 .
• Let 𝑟 = sup{𝑟′ ∈ [0, 1] | 𝐰𝑖(𝛼, ⊤) ≥ 𝑟′ ∈ 𝑇 }, thus 𝑇 ⊢ 𝐰𝑖(𝛼, ⊤) ≥ 𝑠 for every 𝑠 < 𝑟, 𝑠 ∈ [0, 1]𝑄. By the rule R4 we have that 𝑇 ⊢
𝐰𝑖(𝛼, ⊤) ≥ 𝑟. By the second step of this Lemma we have 𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈ 𝑇 . □

Now we can prove that every consistent theory can be extended to a saturated theory in an extended language. This property, 
called Lindenbaum’s theorem, is crucial for the proof of the Completeness theorem.

Theorem 4 (Lindenbaum’s theorem). Let 𝑇 be a consistent theory in the language , and  an infinite enumerable set of new constant 
symbols such that  ∩  = ∅. Then, 𝑇 can be extended to a saturated theory 𝑇⋆ in the language ⋆ =  ∪ .

Proof. Let 𝑇 be an arbitrary consistent theory in the language . Assume that {𝛾𝑖 | 𝑖 = 0, 1, 2, … } is an enumeration of all sentences 
of CKL𝑓𝑜 logic. Let  be an infinite enumerable set of new constant symbols such that  ∩ = ∅. We construct the set 𝑇 ∗ recursively, 
in the following way:

1. 𝑇0 = 𝑇 .
2. If the formula 𝛾𝑖 is consistent with 𝑇𝑖, then 𝑇𝑖+1 = 𝑇𝑖 ∪ {𝛾𝑖}.
3. If the formula 𝛾𝑖 is not consistent with 𝑇𝑖, then:

(a) If 𝛾𝑖 = (∀𝑥)𝛽(𝑥), then for some 𝑐 ∈ , which does not occur in any of the formulas from 𝑇𝑖 , 𝑇𝑖+1 = 𝑇𝑖 ∪ {¬𝛾𝑖, ¬𝛽(𝑐)}, such that 
𝑇𝑖+1 is consistent.

(b) If 𝛾𝑖 =Φ𝑘,Θ,𝐗(𝑓𝑖 ≥ 𝑟) and 𝑓𝑖 =𝐰𝑎(𝛼, 𝛽), then

𝑇𝑖+1 = 𝑇𝑖 ∪
{
¬𝛾𝑖,¬Φ𝑘,Θ,𝐗(𝑓𝑖 ≥ 𝑟−

1
𝑚
), 𝛾 ′′
𝑖

}

where 𝛾 ′′
𝑖
= ¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0), if 𝑇𝑖 ∪ {¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0} ⊬ ⊥, otherwise 𝛾 ′′

𝑖
= ¬Φ𝑘,Θ,𝐗(𝐰𝑖(𝛽, ⊤) ≥ 𝑠 → 𝐰𝑎(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠 ⋅ 𝑟), 

for some 𝑚 ∈ ℕ and 𝑠 ∈ [0, 1]𝑄 such that 𝑇𝑖+1 is consistent.
(c) If 𝛾𝑖 =Φ𝑘,Θ,𝐗(𝑓𝑖 ≥ 𝑟) and 𝑓𝑖 ≠𝐰𝑎(𝛼, 𝛽) then

𝑇𝑖+1 = 𝑇𝑖 ∪
{
¬𝛾𝑖,¬Φ𝑘,Θ,𝐗(𝑓𝑖 ≥ 𝑟−

1
𝑚
)
}

for some 𝑚 ∈ ℕ, such that 𝑇𝑖+1 is consistent.
(d) Otherwise, 𝑇𝑖+1 = 𝑇𝑖 ∪ {¬𝛾𝑖}.

4. 𝑇 ∗ =
⋃∞
𝑛=0 𝑇𝑛.

First we will show that the set 𝑇 ∗ is correctly defined, i.e., there exist the constant 𝑐 ∈  from step (3a), the number 𝑚 ∈ ℕ exists 
from (3b) and (3c) and that the rational number 𝑠 from the step (3b) of the construction exists.

First we consider the case (3a). It is clear that the formula ¬(∀𝑥)𝛽(𝑥) can be added to 𝑇𝑖 consistently. If there is some 𝑐 ∈  such 
that ¬𝛽(𝑐) ∈ 𝑇𝑖, the proof is finished. If there is no such 𝑐, then observe that 𝑇𝑖 is constructed by adding finitely many formulas to 
𝑇 , so there is a constant symbol 𝑐 ∈  which does not appear in 𝑇𝑖. Let us show that we can choose that 𝑐 in (3a). Assume that 
𝑇𝑖 ∪ {¬(∀𝑥)𝛽(𝑥), ¬𝛽(𝑐)} ⊢ ⊥, then by the Deduction theorem, we have

𝑇𝑖,¬(∀𝑥)𝛽(𝑥) ⊢ 𝛽(𝑐).

Note that 𝑐 does not appear in 𝑇𝑖 ∪ {¬(∀𝑥)𝛽(𝑥)}, so 𝑇𝑖, ¬(∀𝑥)𝛽(𝑥) ⊢ (∀𝑥)𝛽(𝑥), which is contradiction.
Now we consider the case (3b). Let us assume now that 𝑇 ′

𝑖
= 𝑇𝑖 ∪ {Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟)} is inconsistent. From Deduction theorem 

we obtain

𝑇𝑖 ⊢ ¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟).

Suppose that 𝑇𝑖 ∪ {¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟 −
1
𝑚
)} inconsistent for every 𝑚 ∈ ℕ. By Theorem 2, we have 𝑇𝑖 ⊢ Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟 −

1
𝑚
) for 
8

every 𝑚 ∈ℕ. Then by the rule R5 we have
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𝑇𝑖 ⊢Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟).

Contradiction.
Now suppose that the set 𝑇 ′

𝑖
∪ {¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0)} is inconsistent, and that the set 𝑇 ′

𝑖
∪ {¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) ≥ 𝑠 →𝐰𝑎(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠 ⋅

𝑟)} is inconsistent for every 𝑠. By Theorem 2, we obtain that 𝑇 ′
𝑖
⊢Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0) and 𝑇 ′

𝑖
⊢Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) ≥ 𝑠 →𝐰𝑎(𝛼∧𝛽, ⊤) ≥ 𝑠 ⋅𝑟), 

for every 𝑠. By the rule 𝑅5 we have

𝑇 ′
𝑖
⊢Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟).

Contradiction. Step (3c) can be shown similarly.
Note that every 𝑇𝑖 is consistent by the construction. This still doesn’t imply consistency of 𝑇 ∗ =

⋃∞
𝑛=0 𝑇𝑛, because of the presence 

of the infinitary rules. Therefore, we prove that 𝑇⋆ is deductively closed, using the induction on the length of proof. If the formula 𝛾
is an instance of some axiom, then 𝛾 ∈ 𝑇 ∗ by the construction of 𝑇 ∗. The proof is clear in the case of finitary rules. Here, we will only 
show that 𝑇⋆ is closed under the rule R5, since the cases when other infinitary rules are considered can be treated in a similar way.

Let us show that 𝑇 ∗ is closed under the inference rule R5. Suppose 𝑇 ∗ ⊢ Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟) was obtained by 𝑅5, where 
Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0) ∈ 𝑇 ∗ and Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) ≥ 𝑠 →𝐰𝑎(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠 ⋅ 𝑟) ∈ 𝑇 ∗ for all 𝑠 ∈ [0, 1]𝑄. Assume that Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟) ∉ 𝑇 ∗. Let 
𝑗 be the positive integer such that 𝛾𝑗 =Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟). Then, 𝑇𝑗 ∪{𝛾𝑗} is inconsistent, since otherwise Φ𝑘,Θ,𝐗(𝐰𝑎(𝛼, 𝛽) ≥ 𝑟) ∈ 𝑇𝑗+1 ⊂
𝑇 ∗. By the step (3b) ¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0) ∈ 𝑇𝑗+1 or there is 𝑠′ ∈ [0, 1]𝑄 such that ¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) ≥ 𝑠′ →𝐰𝑎(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠′𝑟) ∈ 𝑇𝑗+1. Sup-
pose now that ¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0) ∈ 𝑇𝑗+1 and from Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) > 0) ∈ 𝑇 ∗ there is nonegative integer 𝑘 such that Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) >
0) ∈ 𝑇𝑘. Then 𝑇max{𝑘,𝑗+1} ⊢ ⊥, a contradiction.

Now suppose that

¬Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽,⊤) ≥ 𝑠′ →𝐰𝑎(𝛼 ∧ 𝛽,⊤) ≥ 𝑠′𝑟) ∈ 𝑇𝑗+1,

where 𝑠′ ∈ [0, 1]𝑄. We have that Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) ≥ 𝑠 → 𝐰𝑎(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠 ⋅ 𝑟) ∈ 𝑇 ∗ for all 𝑠 ∈ [0, 1]𝑄, so we have Φ𝑘,Θ,𝐗(𝐰𝑎(𝛽, ⊤) ≥ 𝑠′ →
𝐰𝑎(𝛼 ∧ 𝛽, ⊤) ≥ 𝑠′𝑟) ∈ 𝑇 ∗. Then, there is nonegative integer 𝑘′ such that

Φ𝑘,Θ,𝐗(𝐰𝑎(𝐰𝑎(𝛽,⊤) ≥ 𝑠′ →𝐰𝑎(𝛼 ∧ 𝛽,⊤) ≥ 𝑠′𝑟) ∈ 𝑇 ′
𝑘
.

Then 𝑇max{𝑘′ ,𝑗+1} ⊢ ⊥, a contradiction. Consequently, the set 𝑇 ∗ is deductively closed.
From the fact that 𝑇 ∗ is deductively closed we can prove that 𝑇 ∗ is consistent. Indeed, if 𝑇 ∗ is inconsistent, there is 𝛾 ′ ∈ 𝐹𝑜𝑟 such 

that 𝑇 ∗ ⊢ 𝛾 ′ ∧ ¬𝛾 ′. But then there is a nonnegative integer 𝑖 such that 𝛾 ′ ∧ ¬𝛾 ′ ∈ 𝑇𝑖, a contradiction.
Finally, the step (3a) of the construction guarantees that the theory 𝑇⋆ is saturated in the extended language ⋆. □

Now we will construct a special Kripke structure using saturated theories. First, we need to introduce some notation. For a given 
set of formulas 𝑇 and 𝑖 ∈𝐀, we define the set 𝑇 ∕𝐾𝑖 as the set of all formulas 𝛼, such that 𝐾𝑖𝛼 belongs to 𝑇 , i.e.,

𝑇 ∕𝐾𝑖 = {𝛼 | 𝐾𝑖𝛼 ∈ 𝑇 }.
Definition 7 (Canonical model). The canonical model 𝑀𝐶 is the tuple (𝑊 , 𝐷, 𝐼, , 𝑃𝑟𝑜𝑏) where:

• 𝑊 = {𝑤 | 𝑤 is a saturated theory},
• 𝐷 is the set of all variable-free terms;
• 𝐼(𝑤) is an interpretation such that:

– For each function symbol 𝐹𝑘
𝑗

, 𝐼(𝑤)(𝐹𝑘
𝑗
) is a function from 𝐷𝑘 to 𝐷 such that for all variable-free terms 𝑡1, … , 𝑡𝑘, 𝐼(𝑤)(𝐹𝑘𝑗 ) ∶

(𝑡1, … , 𝑡𝑘) → 𝐹𝑘
𝑗
(𝑡1, … , 𝑡𝑘),

– For each relational symbol 𝑅𝑘
𝑗
, 𝐼(𝑤)(𝑅𝑘

𝑗
) = {(𝑡1, … , 𝑡𝑘) | 𝑡1, … , 𝑡𝑘 are variable-free terms in 𝑅𝑘

𝑗
(𝑡1, … , 𝑡𝑘) ∈𝑤};

•  = {𝑖 | 𝑖 ∈𝐀} where 𝑖 = {(𝑢, 𝑤) | 𝑢∕𝐾𝑖 ⊂ 𝑤}, and as before we denote 𝑖(𝑤) = {𝑤′ | (𝑤′, 𝑤) ∈𝑖};
• 𝑃𝑟𝑜𝑏(𝑖, 𝑤) = (𝑊𝑖(𝑤), 𝐻𝑖(𝑤), 𝜇𝑖(𝑤)) such that:

– 𝑊𝑖(𝑤) =𝑖(𝑤),
– 𝐻𝑖(𝑤) = {[ [𝛼] ]𝑖,𝑤 | 𝛼 ∈ 𝑆𝑒𝑛𝑡} where [ [𝛼] ]𝑖,𝑤 = {𝑤′ ∈𝑖(𝑤) | 𝛼 ∈𝑤′},
– 𝜇𝑖(𝑤) ∶𝐻𝑖(𝑤) → [0, 1] such that 𝜇𝑖(𝑤)([ [𝛼] ]𝑖,𝑤) = sup{𝑟 ∈ [0, 1]𝑄 | 𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈𝑤}.

We will write [ [𝛼] ] instead of [ [𝛼] ]𝑖,𝑤 if 𝑖 and 𝑤 are clear from the context. Next we want to show that 𝑀𝐶 ∈ CKLfo
Meas. We start by 

proving that 𝑀𝐶 is an CKL𝑓𝑜-structure.

Lemma 2. The canonical model 𝑀𝐶 is an CKL𝑓𝑜-structure.

Proof. Here we will show that 𝑃𝑟𝑜𝑏(𝑖, 𝑤) is a probability space, since the rest of the proof is trivial. First we show that 𝐻𝑖(𝑤) is an 
algebra of subsets of 𝑊𝑖(𝑤).

We know that 𝑊𝑖(𝑤) =𝑖(𝑤). We have [ [𝛼 ∨ ¬𝛼] ]𝑖,𝑤 = {𝑤′ ∈𝑖(𝑤) | 𝛼 ∨ ¬𝛼 ∈𝑤′} =𝑖(𝑤), so from the definition of 𝐻𝑖(𝑤) we have 
that [ [𝛼 ∨ ¬𝛼] ]𝑖,𝑤 = 𝑖(𝑤) ∈𝐻(𝑤). Also, if [ [𝛼] ]𝑖,𝑤, [ [𝛽] ]𝑖,𝑤 ∈𝐻𝑖(𝑤) then [ [𝛼] ]𝑖,𝑤 ∪ [ [𝛽] ]𝑖,𝑤 = ({𝑤′ ∈ 𝑖(𝑤) | 𝛼 ∈ 𝑤′}) ∪ ({𝑤′ ∈ 𝑖(𝑤) | 𝛽 ∈
9

𝑤′}) = {𝑤′ ∈𝑖(𝑤) | 𝛼 ∨ 𝛽 ∈𝑤′} = [ [𝛼 ∨ 𝛽] ]𝑖,𝑤 ∈𝐻𝑖(𝑤). Similarly, 𝑖(𝑤)∕[ [𝛼] ]𝑖,𝑤 =𝑖(𝑤)∕{𝑤′ ∈𝑖(𝑤) | 𝛼 ∈𝑤′}, therefore
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𝑖(𝑤)∕[[𝛼]]𝑖,𝑤 = {𝑤′ ∈𝑖(𝑤) | ¬𝛼 ∈𝑤′} = [[¬𝛼]]𝑖,𝑤 ∈𝐻𝑖(𝑤).

Next we show that 𝜇(𝑤) is correctly defined. First we show that if [ [𝛼] ]𝑖,𝑤 = [ [𝛽] ]𝑖,𝑤 then sup{𝑟 ∈ [0, 1]𝑄 |𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈𝑤} = sup{𝑟 ∈
[0, 1]𝑄 |𝐰𝑖(𝛽, ⊤) ∈𝑤}, in other words, 𝜇𝑖(𝑤)([ [𝛼] ]𝑖,𝑤) = 𝜇𝑖(𝑤)([ [𝛽] ]𝑖,𝑤).

We prove that if [ [𝛼] ]𝑖,𝑤 ⊆ [ [𝛽] ]𝑖,𝑤 then 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) ≤ 𝜇(𝑤)([ [𝛽] ]𝑖,𝑤). From [ [𝛼] ]𝑖,𝑤 ⊆ [ [𝛽] ]𝑖,𝑤 we have that 𝑤′ ⊢ ¬(𝛼 ∧ ¬𝛽) for every 
𝑤′ ∈𝑖(𝑤). Using R3 and A20 we obtain 𝑤′ ⊢𝐰𝑖(𝛼→ 𝛽, ⊤) ≥ 1 for every 𝑤′ ∈𝑖(𝑤). Now, we must show that if 𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈𝑤′ then 
𝐰𝑖(𝛽, ⊤) ≥ 𝑟 ∈𝑤′, for every 𝑤′ ∈𝑖(𝑤), i.e., 𝜇𝑖(𝑤)([ [𝛼] ]𝑖,𝑤) ≤ 𝜇𝑖(𝑤)([ [𝛽] ]𝑖,𝑤). It is sufficient to show that 𝑤′ ⊢𝐰𝑖(𝛼→ 𝛽, ⊤) ≥ 1 → (𝐰𝑖(𝛼, ⊤) ≥
𝑟 → 𝐰𝑖(𝛽, ⊤) ≥ 𝑟) for all 𝑤′ ∈𝑖(𝑤). Suppose now that 𝑤′ ⊬ 𝐰𝑖(𝛼→ 𝛽, ⊤) ≥ 1 → (𝐰𝑖(𝛼, ⊤) ≥ 𝑟 → 𝐰𝑖(𝛽, ⊤) ≥ 𝑟) for some 𝑤′ ∈𝑖(𝑤). Using 
Lemma 1 and A7 we can obtain 𝑤′ ⊢𝐰𝑖(¬𝛼 ∨ 𝛽, ⊤) ≥ 1 ∧𝐰𝑖(¬𝛼, ⊤) ≤ 1 − 𝑟 ∧𝐰𝑖(𝛽, ⊤) < 𝑟.

Now we show that 𝑤′ ⊢ (𝐰𝑖(𝛼, ⊤) ≤ 𝑟 ∧ 𝐰𝑖(𝛽, ⊤) < 𝑡) → 𝐰𝑖(𝛼 ∨ 𝛽, ⊤) < 𝑟 + 𝑡 for every 𝑤′ ∈ 𝑖(𝑤). Suppose that there is a world 
𝑤′′ ⊢𝐰𝑖(𝛼, ⊤) ≤ 𝑟 ∧𝐰𝑖(𝛽, ⊤) < 𝑡 ∧ ¬𝐰𝑖(𝛼 ∨ 𝛽, ⊤) < 𝑟 + 𝑡. By the axiom A11 and Lemma 1 it is

𝑤′′ ⊢𝐰𝑖(𝛼,⊤) +𝐰𝑖(𝛽,⊤) < 𝑟+ 𝑡

and 𝑤′′ ⊢ 𝐰𝑖(¬(𝛼 ∨ 𝛽), ⊤) ≤ 1 − 𝑟 − 𝑡. Using A16 twice we have 𝑤′′ ⊢ 𝐰𝑖(¬𝛼⊤) −𝐰𝑖(𝛽, ⊤) +𝐰𝑖(𝛼 ∧ 𝛽) ≤ 1 − 𝑟 − 𝑡. It is easy to see (by A9, 
A11 and A14) ⊢ (𝐰𝑖(𝛼, ⊤) +𝐰𝑖(𝛽, ⊤) ≤ 𝑟) →𝐰𝑖(𝛼, ⊤) ≤ 𝑟. Using that we obtain

𝑤′′ ⊢𝐰𝑖(¬𝛼,⊤) −𝐰𝑖(𝛽,⊤) ≤ 1 − 𝑟− 𝑡.

Therefore, by A11, 𝑤′′ ⊢𝐰𝑖(𝛼, ⊤) +𝐰𝑖(¬𝛼, ⊤) < 1, a contradiction. Hence, it is

𝑤′ ⊢ (𝐰𝑖(𝛼,⊤) ≤ 𝑟 ∧𝐰𝑖(𝛽,⊤) < 𝑡)→𝐰𝑖(𝛼 ∨ 𝛽,⊤) < 𝑟+ 𝑡

for every 𝑤′ ∈𝑖(𝑤). So we have 𝑤′ ⊢ (𝐰𝑖(¬𝛼, ⊤) ≤ 1 − 𝑟 ∧𝐰𝑖(𝛽, ⊤) < 𝑟) →𝐰𝑖(¬𝛼 ∨ 𝛽, ⊤) < 𝑟, i.e., 𝑤′′ ⊢ ¬((𝐰𝑖(𝛼→ 𝛽), ⊤) ≥ 1 → (𝐰𝑖(𝛼, ⊤) ≥
𝑟 → 𝐰𝑖(𝛽, ⊤) ≥ 𝑟)) → 𝐰𝑖(¬𝛼 ∨ 𝛽, ⊤) ≥ 1 ∧ ¬𝐰𝑖(¬𝛼 ∨ 𝛽) ≥ 1), a contradiction. Thus, 𝑤′ ⊢ 𝐰𝑖(𝛼→ 𝛽, ⊤) ≥ 1 → (𝐰𝑖(𝛼, ⊤) ≥ 𝑟 → 𝐰𝑖(𝛽, ⊤) ≥ 𝑟) for 
all 𝑤′ ∈𝑖(𝑤).

Therefore, 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) ≤ 𝜇(𝑤)([ [𝛽] ]𝑖,𝑤).
Next we show that 𝜇(𝑤) is a finitely additive probability measure.
Since 𝐰𝑖(𝛼, ⊤) ≥ 0 is an axiom, we have 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) ≥ 0.
To show that 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤 ∪ [ [𝛽] ]𝑖,𝑤) = 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) +𝜇(𝑤)([ [𝛽] ]𝑖,𝑤) for all disjoint [ [𝛼] ]𝑖,𝑤 and [ [𝛽] ]𝑖,𝑤 first we prove that 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) =

1 − 𝜇(𝑤)([ [¬𝛼] ]𝑖,𝑤).
Let 𝑟 = 𝜇([ [𝛼] ]𝑖,𝑤) = sup{𝑠 ∈ [0, 1]𝑄 | 𝐰𝑖(𝛼, ⊤) ≥ 𝑠 ∈𝑤}. Suppose that 𝑟 = 1 so 𝐰𝑖(𝛼, ⊤) ≥ 1 ∈𝑤. Thus, ¬𝐰𝑖(¬𝛼, ⊤) > 0 ∈𝑤. If for some 

𝑟 > 0, 𝐰𝑖(¬𝛼, ⊤) > 𝑟 ∈ 𝑤, it must be 𝐰𝑖(¬𝛼, ⊤) > 0 ∈ 𝑤 and it is a contradiction. It follows that 𝜇(𝑤)([ [¬𝛼] ]𝑖,𝑤) = 0. Suppose now that 
𝑟 < 1. Then, for every rational number 𝑟′ ∈ (𝑟, 1]𝑄,

¬𝐰𝑖(𝛼,⊤) ≥ 𝑟′ =𝐰𝑖(𝛼,⊤) < 𝑟′ ∈𝑤.

By Axiom A14 we get 𝐰𝑖(𝛼, ⊤) ≤ 𝑟′ ∈𝑤 and 𝐰𝑖(¬𝛼, ⊤) ≥ 1 − 𝑟′ ∈𝑤. Also, if there is a rational number 𝑟′′ ∈ [0, 𝑟)𝑄 such that 𝐰𝑖(¬𝛼, ⊤) ≥
1 − 𝑟′′ ∈ 𝑤 then ¬𝐰𝑖(𝛼, ⊤) > 𝑟′′ ∈ 𝑤, a contradiction. Hence, sup{𝑟 ∈ [0, 1]𝑄 |𝐰𝑖(¬𝛼, ⊤) ≥ 𝑟 ∈ 𝑤} = 1 − sup{𝑟 ∈ [0, 1]𝑄 |𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈ 𝑤}, 
i.e., 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) = 1 − 𝜇(𝑤)([ [¬𝛼] ]𝑖,𝑤).

Now, let [ [𝛼] ]𝑖,𝑤 ∩ [ [𝛽] ]𝑖,𝑤 = ∅, 𝜇(𝑤)([ [𝛼] ]𝑖,𝑤) = 𝑟 and 𝜇(𝑤)([ [𝛽] ]𝑖,𝑤) = 𝑠. Since [ [𝛽] ]𝑖,𝑤 ⊆ [ [¬𝛼] ]𝑖,𝑤, by the above steps we have 𝑟 + 𝑠 ≤
𝑟 + (1 − 𝑟) = 1. Suppose that 𝑟 > 0 and 𝑠 > 0, then for every 𝑟′ ∈ [0, 𝑟]𝑄 and every 𝑠′ ∈ [0, 𝑠]𝑄 we have 𝐰𝑖(𝛼, ⊤) ≥ 𝑟′ and 𝐰𝑖(𝛽, ⊤) ≥ 𝑠′ are 
in 𝑤. It follows, from the previous part, that 𝐰𝑖(𝛼 ∨ 𝛽, ⊤) ≥ 𝑟′ + 𝑠′ ∈𝑤. Hence,

𝑟+ 𝑠 ≤ 𝑡0 = sup{𝑡 ∈ [0,1]𝑄 | 𝐰𝑖(𝛼 ∨ 𝛽,⊤) ≥ 𝑡 ∈𝑤}.
If 𝑟 + 𝑠 = 1, then the statement trivially holds. Suppose that 𝑟 + 𝑠 < 1. If 𝑟 + 𝑠 < 𝑡0 then for every 𝑡′ ∈ (𝑟 + 𝑠, 𝑡0)𝑄 we have 𝐰𝑖(𝛼∨𝛽, ⊤) ≥

𝑡′ ∈𝑤. We can choose rational numbers 𝑟′′ > 𝑟 and 𝑠′′ > 𝑠 such that ¬𝐰𝑖(𝛼, ⊤) ≥ 𝑟′′, 𝐰𝑖(𝛼, ⊤) < 𝑟′′ ∈𝑤, ¬𝐰𝑖(𝛽, ⊤) ≥ 𝑠′′, 𝐰𝑖(𝛽, ⊤) < 𝑠′′ ∈𝑤
and 𝑟′′ + 𝑠′′ = 𝑡′ ≤ 1. Using A14 we have 𝐰𝑖(𝛼, ⊤) ≤ 𝑟′′ ∈ 𝑤. As we proved before, we have 𝐰𝑖(𝛼 ∨ 𝛽, ⊤) < 𝑟′′ + 𝑠′′ ∈ 𝑤, ¬𝐰𝑖(𝛼 ∨ 𝛽, ⊤) ≥
𝑟′′ + 𝑠′′ ∈𝑤 and ¬𝐰𝑖(𝛼 ∨ 𝛽, ⊤) ≥ 𝑡′ ∈𝑤, a contradiction. Hence 𝑟 + 𝑠 = 𝑡0 and

𝜇(𝑤)([[𝛼]]𝑖,𝑤 ∪ [[𝛽]]𝑖,𝑤) = 𝜇(𝑤)([[𝛼]]𝑖,𝑤) + 𝜇(𝑤)([[𝛽]]𝑖,𝑤).

Finally, suppose that 𝑟 = 0 or 𝑠 = 0, then we can do the same as above with the only exception that 𝑟′ = 0 or 𝑠′ = 0. □

Now we prove that the condition from the last item of Definition 7 naturally extends to all probabilistic terms.

Lemma 3. Let 𝑤 be a world in the canonical model 𝑀𝐶 . If a probabilistic term 𝑓𝑖 = 𝑎1𝐰𝑖(𝛼1, 𝛼′1) +⋯ +𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛼′𝑘) then 𝑎1𝜇𝑖(𝑤)([ [𝛼1] ]|[ [𝛼′1] ]) +
⋯ + 𝑎𝑘𝜇𝑖(𝑤)([ [𝛼𝑘] ]|[ [𝛼′𝑘] ]) = sup{𝑠 | 𝑤 ⊢ 𝑓𝑖 ≥ 𝑠}.

Proof. First we will show that

𝜇𝑖(𝑤)([[𝛼]]|[[𝛽]]) = sup{𝑟 ∈ [0,1]𝑄 | 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 ∈𝑤}.
10

If 𝜇𝑖(𝑤)([ [𝛽] ]) = 0 then 𝜇𝑖(𝑤)([ [𝛼] ]|[ [𝛽] ]) and sup{𝑟 ∈ [0, 1]𝑄 | 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 ∈𝑤} are not defined.
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Suppose that 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 ∈ 𝑤 and let {𝑠𝑛 | 𝑛 ∈ ℕ} be strictly increasing sequence of numbers from [0, 1]𝑄, such that lim𝑛→∞ 𝑠𝑛 =
𝜇𝑖(𝑤)([ [𝛽] ]). Let 𝑛 be any number from ℕ. Then 𝑤 ⊢𝐰𝑖(𝛽, ⊤) ≥ 𝑠𝑛. Using the assumption 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 ∈𝑤, the axioms 𝐴18 and 𝐴19 and 
propositional reasoning, we obtain 𝑤 ⊢ 𝐰𝑖(𝛽, ⊤) > 0 and 𝑤 ⊢ 𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑟 ⋅ 𝑠𝑛. Finally, by Definition 7 we have 𝜇𝑖(𝑤)([ [𝛽] ]) > 0 and 
𝜇𝑖(𝑤)([ [𝛼 ∧ 𝛽] ]) ≥ lim𝑛→∞ 𝑟𝑠𝑛 = 𝑟𝜇𝑖(𝑤)([ [𝛽] ]), i.e., 𝜇𝑖(𝑤)([ [𝛽] ]) > 0 and 𝜇𝑖(𝑤)([ [𝛼] ]|[ [𝛽] ]) ≥ 𝑟. We can conclude that

𝜇𝑖(𝑤)([[𝛼]]|[[𝛽]]) ≥ sup{𝑟 ∈ [0,1]𝑄 | 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 ∈𝑤}.
Let now 𝜇𝑖(𝑤)([ [𝛼] ]|[ [𝛽] ]) ≥ 𝑡 and 𝜇𝑖(𝑤)([ [𝛽] ]) > 0. We want to show that 𝑤 ⊢ 𝐰𝑖(𝛽, ⊤) > 0 and 𝑤 ⊢ 𝐰𝑖(𝛽, ⊤) ≥ 𝑠 → 𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑡𝑠 for 

all 𝑠 ∈ [0, 1]𝑄.
If 𝑤 ⊬𝐰𝑖(𝛽, ⊤) > 0 then 𝑤 ⊢𝐰𝑖(𝛽, ⊤) = 0, i.e., 𝜇𝑖(𝑤)([ [𝛽] ]) = 0, contradiction.
If 𝑠 > 𝜇𝑖(𝑤)([ [𝛽] ]), then 𝑤 ⊢ ¬(𝐰𝑖(𝛽, ⊤) ≥ 𝑠), so 𝑤 ⊢𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼∧𝛽, ⊤) ≥ 𝑡𝑠. Let now 𝑠 ≤ 𝜇𝑖(𝑤)([ [𝛽] ]), then 𝑠𝑡 ≤ 𝜇𝑖(𝑤)([ [𝛼∧𝛽] ]), so 

𝑤 ⊢𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑡𝑠. Now, we have that for every 𝑠 ∈ [0, 1]𝑄, 𝑤 ⊢𝐰𝑖(𝛽, ⊤) ≥ 𝑠 →𝐰𝑖(𝛼 ∧ 𝛽, ⊤) ≥ 𝑡𝑠, by the rule R5 we get 𝑤 ⊢𝐰𝑖(𝛼, 𝛽) ≥ 𝑡. 
So

𝜇𝑖(𝑤)([[𝛼]]|[[𝛽]]) ≤ sup{𝑟 ∈ [0,1]𝑄 | 𝐰𝑖(𝛼, 𝛽) ≥ 𝑟 ∈𝑤}.
Let 𝑓𝑖 = 𝑎1𝐰𝑖(𝛼1, 𝛼′1) +⋯ + 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛼′𝑘). Using the properties of supremum and A11 and A12 we obtain 𝑎1𝜇𝑖(𝑤)([ [𝛼1] ]|[ [𝛼′1] ]) +⋯ +

𝑎𝑘𝜇𝑖(𝑤)([ [𝛼𝑘] ]|[ [𝛼′𝑘] ]) = 𝑎1 sup{𝑠1 | 𝑤 ⊢𝐰𝑖(𝛼1, 𝛼′1) ≥ 𝑠1} +⋯ + 𝑎𝑘 sup{𝑠𝑘 | 𝑤 ⊢𝐰𝑖(𝛼𝑘, 𝛼′𝑘) ≥ 𝑠𝑘} = sup{𝑠 | 𝑤 ⊢ 𝑓𝑖 ≥ 𝑠}. □

Next we prove that truth lemma holds for CKL𝑓𝑜.

Lemma 4 (Truth lemma). Let 𝑀𝐶 be the canonical model and 𝛾 ∈ 𝐹𝑜𝑟. Then for every world 𝑤 from 𝑀𝐶 , 𝛾 ∈𝑤 iff 𝑀𝐶, 𝑤 ⊧ 𝛾 .

Proof. We use induction on the complexity of the formula 𝛾 . If 𝛾 is an atomic formula, the statement follows from the construction 
of 𝐼(𝑤) in 𝑀𝐶 . The cases when 𝛾 is a conjunction or a negation are straightforward.

Suppose 𝛾 =𝐾𝑖𝛽. Let 𝐾𝑖𝛽 ∈𝑤. Since 𝛽 ∈𝑤∕𝐾𝑖, then 𝛽 ∈𝑤′ for every 𝑤′ such that (𝑤, 𝑤′) ∈𝑖 (by the definition of 𝑖). Therefore, 
𝑀𝐶, 𝑤 ⊧ 𝛽 by induction hypothesis (𝛽 is subformula of 𝐾𝑖𝛽), and then 𝑀𝐶, 𝑤 ⊧ 𝐾𝑖𝛽.

Let now 𝑀𝐶, 𝑤 ⊧ 𝐾𝑖𝛽. Assume the opposite, that 𝐾𝑖𝛽 ∉ 𝑤. Then, 𝑤∕𝐾𝑖 ∪ {¬𝛽} must be consistent. If it would not be consistent, 
then 𝑤∕𝐾𝑖 ⊢ 𝛽 by the Deduction theorem and 𝑤 ⊃ 𝐾𝑖(𝑤∕𝐾𝑖) ⊢ 𝐾𝑖𝛽 by Theorem 3, i.e., 𝐾𝑖𝛽 ∈𝑤, which is a contradiction. Therefore, 
𝑤∕𝐾𝑖 ∪ {¬𝛽} can be extended to a maximal consistent 𝑈 , so 𝑤𝑖𝑈 . Since ¬𝛽 ∈ 𝑈 , then 𝑀𝐶, 𝑈 ⊧ ¬𝛽 by induction hypothesis, so we 
get the contradiction 𝑀𝐶, 𝑤 ̸⊧ 𝐾𝑖𝛽.

Let 𝑓𝑖 = 𝑎1𝐰𝑖(𝛼1, 𝛼′1) +⋯ + 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛼′𝑘). We suppose that 𝑓𝑖 ≥ 𝑟 ∈ 𝑤, then 𝑟 ≤ sup{𝑠 | 𝑤 ⊢ 𝑓𝑖 ≥ 𝑠} and 𝐰𝑖(𝛼′𝑗 , ⊤) > 0 ∈ 𝑤 for every 
𝑗 ∈ {1, … , 𝑘}. Then by Lemma 3, 𝑀𝐶, 𝑤 ⊧ 𝑓𝑖 ≥ 𝑟.

For the other direction, assume that 𝑀𝐶, 𝑤 ⊧ 𝑓𝑖 ≥ 𝑟. Suppose that 𝑓𝑖 ≥ 𝑟 ∉𝑤. Then we have 𝐰𝑖(𝛼′𝑗 , ⊤) = 0 ∈𝑤 for some 𝑗 ∈ {1, … , 𝑘}
or 𝑓𝑖 < 𝑟 ∈𝑤. If 𝐰𝑖(𝛼′𝑗 , ⊤) = 0 for some 𝑗 then 𝑀𝐶, 𝑤 ̸⊧ 𝑓𝑖 ≥ 𝑟, a contradiction. Let 𝑓𝑖 < 𝑟 ∈𝑤, then, by the first part of this proof and 
abbreviations we conclude 𝑀𝐶, 𝑤 ⊧ 𝑓𝑖 < 𝑟, a contradiction. □

Hence, we have shown that for every formula 𝛼 ∈ 𝐹𝑜𝑟, every agent 𝑖 ∈𝔸 and every world 𝑤 from 𝑀𝐶 the equality [𝛼]𝑖,𝑀𝐶 ,𝑤 = [ [𝛼] ]
holds, we have the following corollary.

Corollary 1. The canonical model 𝑀𝐶 is an CKL𝑓𝑜-measurable structure which is a model of every consistent set 𝑇 .

Theorem 5 (Strong completeness of CKL𝑓𝑜). A set of formulas 𝑇 is consistent iff 𝑇 is CKLfo
Meas-satisfiable.

Proof. Note that the direction from right to left follows from Theorem 1. For the other direction, suppose that 𝑇 is a consistent set 
of formulas. By Theorem 4, there is a saturated superset 𝑇 ∗ of 𝑇 . From the previous corollary we have that 𝑀𝐶 ∈ CKLfo

Meas, so we 
only need to show that 𝑀𝐶 is a model of 𝑇 ∗. By Lemma 4, if 𝑇 is consistent set we know that 𝑇 ∗ is a world in 𝑀𝐶 , so we obtain 
𝑀𝐶, 𝑇 ∗ ⊧ 𝑇 . □

5. The logic 𝐂𝐊𝐋

In this section, we present the logic CKL which is the propositional restriction of the logic CKL𝑓𝑜. We briefly present its syntax 
and semantic, and sketch the proof of completeness. We avoid repetition of some technical details that were already presented in 
detail in the first order case. We also show that the logic CKL is decidable.

Let  = {𝑝, 𝑞, 𝑟, … } be a denumerable set of propositional letters and as before let 𝐀 be a finite set of agents.
The set 𝐹𝑜𝑟 of all formulas of the logic is the smallest set such that:

•  ⊂ 𝐹𝑜𝑟;
• If 𝛼 ∈ 𝐹𝑜𝑟 then 𝐾𝑖𝛼 ∈ 𝐹𝑜𝑟.
• For any 𝑖 ∈𝐀 and 𝑘 ≥ 1, if 𝛼1, 𝛼′1, … , 𝛼𝑘, 𝛼′𝑘 ∈ 𝐹𝑜𝑟 and 𝑎1, … , 𝑎𝑘, 𝑟 ∈, then 𝑎1𝐰𝑖(𝛼1, 𝛼′1) +⋯ + 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛼′𝑘) ≥ 𝑟 ∈ 𝐹𝑜𝑟,
11

• If 𝛼 and 𝛽 are formulas then ¬𝛼, 𝛼 ∧ 𝛽 ∈ 𝐹𝑜𝑟.
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We define the semantics of the logic as follows:

Definition 8 (CKL-structure). A CKL-structure is a tuple (𝑊 , , 𝑃𝑟𝑜𝑏, 𝑣) where:

1. 𝑊 is a non-empty set of objects called worlds.
2. 𝑣 ∶𝑊 × → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} assigns to each world 𝑢 ∈𝑊 a two-valued evaluation 𝑣(𝑢, ⋅) of propositional letters,
3.  = {𝑖 | 𝑖 ∈𝐀} is a set of binary equivalence relations on 𝑊 . We denote 𝑖(𝑢) = {𝑢′ | (𝑢′, 𝑢) ∈𝑖}, and write 𝑢𝑖𝑢′ if 𝑢′ ∈𝑖(𝑢),
4. 𝑃𝑟𝑜𝑏 assigns to every 𝑖 ∈𝐀 and 𝑢 ∈𝑊 a probability space 𝑃𝑟𝑜𝑏(𝑖, 𝑢) = (𝑊𝑖(𝑢), 𝐻𝑖(𝑢), 𝜇𝑖(𝑢)), where

• 𝑊𝑖(𝑢) is a non-empty subset of 𝑊 ,
• 𝐻𝑖(𝑢) is an algebra of subsets of 𝑊𝑖(𝑢),
• 𝜇𝑖(𝑢) ∶𝐻𝑖(𝑢) ⟶ [0, 1] is a finitely additive measure.

We define satisfiability similarly as in Definition 3 and, as before, we denote by [𝛼]𝑖,𝑀,𝑢 the set of all worlds from 𝑊𝑖(𝑢) in which 
𝛼 holds. Here will also consider only CKL-measurable structures.

5.1. Decidability of CKL

In this subsection we prove that the logic CKL is decidable. Recall the satisfiability problem: given an CKL-formula 𝛼, we want 
to determine if there exists a world 𝑤 in an CKLMeas-model 𝑀 such that 𝑀, 𝑤 ⊧ 𝛼. First, we show that an CKL-formula is satisfiable 
iff it is satisfiable in a measurable structure with a finite number of worlds.

For a formula 𝛼 we denote 𝑆𝑢𝑏𝑓 (𝛼) the set of all subformulas of 𝛼.

Theorem 6. If an CKL-formula 𝛼 is satisfiable in a model 𝑀 ∈ CKLMeas, then it is satisfied in a model 𝑀∗ ∈ CKLMeas with at most 2|𝑆𝑢𝑏𝑓 (𝛼)|
number of worlds.

Proof. Let 𝑀 = (𝑊 , , 𝑃𝑟𝑜𝑏, 𝑣) be a CKL structure, with 𝑃𝑟𝑜𝑏(𝑖, 𝑢) = (𝑊𝑖(𝑢), 𝐻𝑖(𝑢), 𝜇𝑖(𝑢)), and let 𝑠 be a world from 𝑀 such that 
𝑀, 𝑠 ⊧ 𝛼. Let 𝑆𝑢𝑏𝑓 (𝛼) be the set of all subformulas of 𝛼 and 𝑘 = |𝑆𝑢𝑏𝑓 (𝛼)|. By ∼ we denote the equivalence relation over 𝑊 ×𝑊 , 
where 𝑠 ∼ 𝑠′ iff for every 𝛽 ∈ 𝑆𝑢𝑏𝑓 (𝛼), 𝑀, 𝑠 ⊧ 𝛽 iff 𝑀, 𝑠′ ⊧ 𝛽. The quotient set 𝑊∕∼ is finite and |𝑊∕∼| ≤ 2|𝑆𝑢𝑏𝑓 (𝛼)|. Now, for every class 
𝐶𝑖 we choose an element and denote it 𝑠∗

𝑖
. We consider the model 𝑀∗ = (𝑊 ∗, ∗, 𝑃𝑟𝑜𝑏∗, 𝑣∗), where:

• 𝑊 ∗ = {𝑠∗
𝑖
| 𝐶𝑖 ∈𝑊∕∼},

• ∗ = {∗
𝑎
| 𝑎 ∈𝐀} is a set of binary relations on 𝑊 ∗ where (𝑠∗

𝑖
, 𝑠∗
𝑗
) ∈∗

𝑎
iff for every 𝐾𝑎𝜙 ∈ 𝑆𝑢𝑏𝑓 (𝛼), 𝑀, 𝑠∗

𝑖
⊧ 𝐾𝑎𝜙 iff 𝑀, 𝑠∗

𝑗
⊧ 𝐾𝑎𝜙

• For every agent 𝑎 and 𝑠∗
𝑖
∈𝑊 ∗, 𝑃𝑟𝑜𝑏∗(𝑎, 𝑠∗

𝑖
) = (𝑊 ∗

𝑎
(𝑠∗
𝑖
), 𝐻∗

𝑎
(𝑠∗
𝑖
), 𝜇∗

𝑎
(𝑠∗
𝑖
)) is defined as follows:

– 𝑊 ∗
𝑎
(𝑠∗
𝑖
) = {𝑠∗

𝑗
∈𝑊 ∗ | (∃𝑢 ∈ 𝐶𝑗 )𝑢 ∈𝑊𝑎(𝑠𝑖)},

– 𝐻∗
𝑎
(𝑠∗
𝑖
) is the power set of 𝑊 ∗

𝑎
(𝑠∗
𝑖
),

– 𝜇∗
𝑎
(𝑠∗
𝑖
)({𝑠∗

𝑗
}) = 𝜇𝑎(𝑠∗𝑖 )(𝐶𝑗 (𝑠

∗
𝑖
)), where 𝐶𝑗 (𝑠∗𝑖 ) = 𝐶𝑗 ∩𝑊𝑎(𝑠

∗
𝑖
) and for any 𝐷 ∈𝐻∗

𝑎
(𝑠∗
𝑖
), 𝜇∗

𝑎
(𝑠∗
𝑖
)(𝐷) =∑

𝑠∗
𝑗
∈𝐷 𝜇

∗
𝑎
(𝑠∗
𝑖
)({𝑠∗

𝑗
}),

• 𝑣∗(𝑠𝑖, 𝑝) = 𝑣(𝑠𝑖, 𝑝).

It is straightforward to show that 𝑀∗ ∈ CKLMeas. Now, we want to prove that for any 𝛽 ∈ 𝑆𝑢𝑏𝑓 (𝛼), 𝑀, 𝑠 ⊧ 𝛽 iff 𝑀∗, 𝑠∗
𝑖
⊧ 𝛽 where 

𝑠∗
𝑖

represents 𝐶𝑠 in 𝑀∗. The proof is by induction on the complexity of the formulas. Let us briefly consider the cases when 𝛽 =𝐾𝑎𝛼′
and 𝛽 =∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛼
′
𝑘
, 𝛽′
𝑘
) ≥ 𝑟, while the proofs for the other cases are similar. In the case when 𝛽 =𝐾𝑎𝛼′ we have:

𝑀,𝑠 ⊧ 𝛽

iff 𝑀,𝑠∗
𝑖
⊧ 𝛽 (since 𝑠∗

𝑖
∈ 𝐶𝑠)

iff 𝑀,𝑢 ⊧ 𝛼′ for all 𝑢 ∈𝐾𝑎(𝑠∗𝑖 )

iff 𝑀∗, 𝑢∗ ⊧ 𝛼′ for all 𝑢∗ ∈𝐾∗
𝑎
(𝑠∗
𝑖
) (𝐼𝐻)

iff 𝑀∗, 𝑠∗
𝑖
⊧ 𝛽.

For the case when 𝛽 =∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛼
′
𝑘
, 𝛽′
𝑘
) ≥ 𝑟 we have:

𝑀,𝑠 ⊧ 𝛽

iff 𝑀,𝑠∗
𝑖
⊧ 𝛽

iff 𝜇𝑎(𝑠∗𝑖 )([𝛽
′
𝑘
]) > 0 for all 𝑘 ∈ {1,… , 𝑛} 𝑎𝑛𝑑

𝑛∑
𝑘=1
𝑎𝑘

𝜇𝑎(𝑠∗𝑖 )([𝛼
′
𝑘
∧ 𝛽′

𝑘
])

𝜇𝑎(𝑠∗𝑖 )([𝛽
′
𝑘
])

≥ 𝑟

iff
∑

𝜇𝑎(𝑠∗)(𝐶𝑢(𝑠∗)) > 0 for all 𝑘 ∈ {1,… , 𝑛} and
12

𝐶𝑢(𝑠∗𝑖 )∶𝑀,𝑢⊧𝛽
′
𝑘

𝑖 𝑖
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𝑛∑
𝑘=1
𝑎𝑘

∑
𝐶𝑢(𝑠∗𝑖 )∶𝑀,𝑢⊧𝛼

′
𝑘
∧𝛽′
𝑘
𝜇𝑎(𝑠∗𝑖 )(𝐶𝑢(𝑠

∗
𝑖
))∑

𝐶𝑢(𝑠∗𝑖 )∶𝑀,𝑣⊧𝛽
′
𝑘
𝜇𝑎(𝑠∗𝑖 )(𝐶𝑢(𝑠

∗
𝑖
))

≥ 𝑟

iff
∑

𝐶𝑢(𝑠∗𝑖 )∶𝑀
∗ ,𝑢⊧𝛽′

𝑘

𝜇∗
𝑎
(𝑠∗
𝑖
)({𝑢}) > 0 for all 𝑘 ∈ {1,… , 𝑛} and

𝑛∑
𝑘=1
𝑎𝑘

∑
𝐶𝑢(𝑠∗𝑖 )∶𝑀

∗ ,𝑢⊧𝛼′
𝑘
∧𝛽′
𝑘
𝜇∗
𝑎
(𝑠∗
𝑖
)({𝑢})∑

𝐶𝑢(𝑠∗𝑖 )∶𝑀
∗ ,𝑢⊧𝛽′

𝑘
𝜇∗
𝑎
(𝑠∗
𝑖
)({𝑢})

≥ 𝑟

iff 𝜇∗
𝑎
(𝑠∗
𝑖
)([𝛽′

𝑘
]) > 0 for all 𝑘 ∈ {1,… , 𝑛} and

𝑛∑
𝑘=1
𝑎𝑘

𝜇∗
𝑎
(𝑠∗
𝑖
)([𝛼′

𝑘
∧ 𝛽′

𝑘
])

𝜇∗
𝑎
(𝑠∗
𝑖
)([𝛽′

𝑘
])

≥ 𝑟

iff 𝑀∗, 𝑠∗
𝑖
⊧ 𝛽 □

Note that there are infinitely many finite models from CKLMeas with at most 2|𝑆𝑢𝑏𝑓 (𝛼)| worlds, because there are infinitely many 
possibilities for real-valued probabilities. Thus, the previous theorem does not directly imply decidability. In order to show decid-
ability, we use the previous theorem and we translate the problem of satisfiability of a formula to the problem of satisfiability of 
finite sets of equations and inequalities.

Theorem 7. Satisfiability problem for CKL is decidable.

Proof. Let 𝛼 be an CKL-formula. We want to check whether there is a CKLMeas-structure 𝑀 and a world 𝑠 from𝑀 such that 𝑀, 𝑠 ⊧ 𝛼. 
Using the previous theorem, we will consider only the structures with 𝑙 worlds, where 𝑙 ≤ 2|𝑆𝑢𝑏𝑓 (𝛼)|.

The idea is to see is there any structure with at least 𝑙 worlds whom we can join a valuation, a set of binary equivalence relations 
and finitely additive probabilities such that the formula 𝛼 is satisfied in some world of the structure. For this we will use potential 
structures which we call pre-structures. In pre-structures we do not specify probability measures (in order to avoid infinitely many 
cases), but we want to specify enough information about measures from which we can determine satisfiability of all subformulas of 
𝛼.

Let 𝑆𝑢𝑏𝑓 (𝛼) be the set of subformulas of 𝛼, let 𝛼 =  ∩ 𝑆𝑢𝑏𝑓 (𝛼) and let 𝑆𝑢𝑏𝑃 (𝛼) be the set of all subformulas of 𝛼 of the form ∑𝑛

𝑘=1 𝑎𝑘𝐰𝑖(𝛼𝑘, 𝛽𝑘) ≥ 𝑟. For every 𝑙 ≤ 2|𝑆𝑢𝑏𝑓 (𝛼)| we consider pre-structures 𝑀 = (𝑊 , , 𝑆, 𝑣) such that:

• 𝑊 is a set of worlds such that |𝑊 | = 𝑙
• 𝑣 ∶𝑊 ×𝛼 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.
•  = {𝑎 | 𝑎 ∈𝐀} on 𝑊 .
• 𝑆 ∶𝑊 × 𝑆𝑢𝑏𝑃 (𝛼) → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

Note that for every number 𝑙 we have finitely many possibilities for the choice of pre-structures, i.e., we have finite number of 
choices of valuation, binary equivalence relations and function 𝑆. This pre-structure is not a CKL-structure, but we can check if a 
subformula of 𝛼 holds in a world of a pre-structure 𝑀 using the relation ⊩, defined as follows:

1. If 𝛾 ∈ 𝛼 then 𝑀, 𝑠 ⊩ 𝛾 iff 𝑣(𝑠, 𝛾) = 𝑡𝑟𝑢𝑒,
2. 𝑀, 𝑠 ⊩𝐾𝑎𝛾 iff 𝑀, 𝑠′ ⊩ 𝛾 for all 𝑤′ ∈𝑎(𝑠),
3. 𝑀, 𝑠 ⊩∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟 iff 𝑆(𝑠, ∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟) = 𝑡𝑟𝑢𝑒
4. 𝑀, 𝑠 ⊩ ¬𝛾 iff 𝑀, 𝑠 ⊮𝛾 ,
5. 𝑀, 𝑠 ⊩ 𝛾 ∧ 𝛽 iff 𝑀, 𝑠 ⊩ 𝛾 and 𝑀, 𝑠 ⊩ 𝛾 .

We will consider only those 𝑀 = (𝑊 , , 𝑆, 𝑣) such that 𝑀, 𝑠 ⊩ 𝛼 for some world 𝑠 ∈𝑊 . For each such 𝑀 we want to check whether 
𝑀 can be extended to a structure, i.e., whether there is a measurable structure 𝑀 = (𝑊 , , 𝑃𝑟𝑜𝑏, 𝑣) such that 𝑣 is a restriction of 𝑣 and 
for every agent 𝑎 and every 𝑠 ∈𝑊 and ∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟 ∈ 𝑆𝑢𝑏𝑃 (𝛼) we have 𝑀, 𝑠 ⊧∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟 iff 𝑆(𝑠, ∑𝑛

𝑘=1 𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥
𝑟) = 𝑡𝑟𝑢𝑒. It is straightforward to check that for such 𝑀 we have 𝑀, 𝑠 ⊧ 𝛽 iff 𝑀, 𝑠 ⊩ 𝛽 holds for every 𝛽 ∈ 𝑆𝑢𝑏𝑓 (𝛼). Since the way 𝑣
extends 𝑣 is irrelevant, it suffices to check whether 𝑆 can be replaced with 𝑃𝑟𝑜𝑏 in some 𝑀 = (𝑊 , , 𝑆, 𝑣) such that 𝑀, 𝑠 ⊩𝛼 for some 
world 𝑠 ∈𝑊 . For that purpose, for each such 𝑀 we consider specific equations and inequalities, that we describe below. We chose 
the variables of the form 𝑦𝑎,𝑠𝑖 ,𝑠𝑗 which represent the values 𝜇𝑎(𝑠𝑖)({𝑠𝑗}).

Now we state the equations and inequalities:

(1) 𝑦𝑎,𝑠𝑖,𝑠𝑗 ≥ 0, for every world 𝑠𝑗

(2)
∑
𝑠𝑗∈𝑀

𝑦𝑎,𝑠𝑖,𝑠𝑗
= 1

(3)
∑

𝑦𝑎,𝑠 ,𝑠 > 0 for every 𝑘 ∈ {1,… , 𝑛}, and
13

𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘
𝑖 𝑗
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𝑛∑
𝑘=1

(
𝑎𝑘

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘∧𝛾𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗

𝑛∏
𝑡≠𝑘,𝑡=1

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑡

𝑦𝑎,𝑠𝑖,𝑠𝑗

)
≥

𝑟

𝑛∏
𝑘=1

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗
, for every formula

𝑛∑
𝑘=1
𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟

such that 𝑆(𝑠𝑖,
𝑛∑
𝑘=1
𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟) = 𝑡𝑟𝑢𝑒

(4)
𝑛⋁
𝑘=1

( ∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗
= 0

)
or

𝑛∑
𝑘=1

(
𝑎𝑘

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘∧𝛾𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗

𝑛∏
𝑡≠𝑘,𝑡=1

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑡

𝑦𝑎,𝑠𝑖,𝑠𝑗

)
<

𝑟

𝑛∏
𝑘=1

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗
, for every formula

𝑛∑
𝑘=1
𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟

such that 𝑆(𝑠𝑖,
𝑛∑
𝑘=1
𝑎𝑘𝐰𝑎(𝛾𝑘, 𝛽𝑘) ≥ 𝑟) = 𝑓𝑎𝑙𝑠𝑒

The inequality (1) above assures that all the probability measures are non-negative, and the equality (2) states that the probability 
of the set of all possible worlds has to be equal to 1. The equality (3) states that the probabilities of the sets of all evidences in a 
formula are greater than 0 and the linear combination of probabilities is greater than 𝑟, from the corresponding formula. It is easy to 
see that (3) corresponds to the third condition of the satisfiability relation from Definition 3, after we clean the denominators.

Let us show that in the case when 𝑛 = 2. We use [𝛽] for the set {𝑠′ ∈𝑊 | 𝑀, 𝑠′ ⊩ 𝛽}. From ∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗
> 0 for every 𝑘 ∈ {1, 2}

we have that 𝜇𝑎(𝑠𝑖)([𝛽𝑘]) > 0 for all 𝑘 ∈ {1, 2}. From the

2∑
𝑘=1

(
𝑎𝑘

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘∧𝛾𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗

2∏
𝑡≠𝑘,𝑡=1

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑡

𝑦𝑎,𝑠𝑖,𝑠𝑗

)
≥

𝑟

2∏
𝑘=1

∑
𝑠𝑗∶𝑀,𝑠𝑗⊩𝛽𝑘

𝑦𝑎,𝑠𝑖,𝑠𝑗

we obtain

2∑
𝑘=1

(
𝑎𝑘𝜇𝑎(𝑠𝑖)([𝛽𝑘 ∧ 𝛾𝑘])

2∏
𝑡≠𝑘,𝑠=1

𝜇𝑎(𝑠𝑖)([𝛽𝑡])
)
≥ 𝑟

2∏
𝑘=1
𝜇𝑎(𝑠𝑖)([𝛽𝑘]),

i.e.,

𝑎1𝜇𝑎(𝑠𝑖)([𝛽1 ∧ 𝛾1])𝜇𝑎(𝑠𝑖)([𝛽2]) + 𝑎2𝜇𝑎(𝑠𝑖)([𝛽2 ∧ 𝛾2])𝜇𝑎(𝑠𝑖)([𝛽1])

𝜇𝑎(𝑠𝑖)([𝛽1])𝜇𝑎(𝑠𝑖)([𝛽2])
≥ 𝑟.

Then we have

𝑎1𝜇𝑎(𝑠𝑖)([𝛽1 ∧ 𝛾1])

𝜇𝑎(𝑠𝑖)([𝛽1])
+
𝑎2𝜇𝑎(𝑠𝑖)([𝛽2 ∧ 𝛾2])

𝜇𝑎(𝑠𝑖)([𝛽2])
≥ 𝑟,

i.e.,

2∑
𝑘=1
𝑎𝑘𝜇𝑎(𝑠𝑖)([𝛾𝑘]|[𝛽𝑘]) ≥ 𝑟.

Similarly, (4), corresponds to the combination of the fourth and the third condition from Definition 3.
The equations and inequalities (1)-(4) form not one, but a number of finite systems of equations and inequalities. Note that 

adding (4) to any system 𝑆𝑦𝑠 of equations and inequalities results with a disjunction of at least two different extensions of 𝑆𝑦𝑠. For 
the purpose of this proof, the fact that we always have finitely many systems is sufficient, and it is enough if one of the systems is 
solvable. Those systems are represented in the language of real closed fields, and it is well known that the theory of real closed fields 
is decidable. Since we have finitely many possibilities for the choice of 𝑙, and for every 𝑙 finitely many possibilities for the choice of 
14

pre-structure, our logic CKL is decidable as well. □
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5.2. Completeness of 𝐶𝐾𝐿

The axiomatic system for the logic 𝐶𝐾𝐿 is very similar to the axiomatic system for the logic CKL𝑓𝑜. We denote the system by 
𝐴𝑥(𝐶𝐾𝐿).

Axiom schemes consist of the Axioms (5)–(20) from the logic CKL𝑓𝑜 and the following axiom: (a) all instances of the classical 
propositional tautologies, while Inference Rules consists of all the Inference Rules from the logic CKL𝑓𝑜 except R2. It is easy to see 
that classical propositional logic is sublogic of the CKL. Inference relation, consistent and maximally consistent sets are defined in 
the same way as for the logic CKL𝑓𝑜.

It is clear that the axiomatic system is sound with respect to the class of CKLMeas-models. Also, Deduction theorem and Strong 
necessitation hold for the logic. The proofs of those statements are straightforward adaptations of the proofs of corresponding results 
for CKL𝑓𝑜.

In order to prove the strong completeness theorem for the logic CKL, we first need to adapt Theorem 4, since we now deal with a 
propositional language. We build maximal consistent set as in the proof of Theorem 4, except that we now omit the step 3(a). Using 
this theorem, we define canonical model.

Definition 9 (Canonical model). The canonical model 𝑀𝐶 = (𝑊 , , 𝑃𝑟𝑜𝑏, 𝑣) is defined as follows:

• 𝑊 = {𝑢 | 𝑢 is maximal consistent set},
• for every world 𝑢 and every propositional letter 𝑝 ∈  , 𝑣(𝑢, 𝑝) = 𝑡𝑟𝑢𝑒 iff 𝑝 ∈ 𝑢,
•  = {𝑖 | 𝑖 ∈𝐀} where 𝑖 = {(𝑢′, 𝑢) | 𝑢′∕𝐾𝑖 ⊂ 𝑢},
• 𝑃𝑟𝑜𝑏(𝑖, 𝑢) = (𝑊𝑖(𝑢), 𝐻𝑖(𝑢), 𝜇𝑖(𝑢)) such that:

– 𝑊𝑖(𝑢) =𝑖(𝑢),
– 𝐻𝑖(𝑢) = {{𝑢′ ∈𝑖(𝑢) | 𝛼 ∈ 𝑢′} | 𝛼 ∈ 𝐹𝑜𝑟},
– 𝜇𝑖(𝑢) ∶𝐻𝑖(𝑢) → [0, 1] such that 𝜇𝑖(𝑢)({𝑢′ ∈𝑖(𝑢) | 𝛼 ∈ 𝑢′}) = sup{𝑟 ∈ [0, 1]𝑄 |𝐰𝑖(𝛼, ⊤) ≥ 𝑟 ∈ 𝑢}.

We can prove that 𝑀𝐶 is well defined and that it belongs to CKLMeas analogously as it is done before.

Theorem 8 (Strong completeness of CKL). A set of formulas 𝑇 is consistent iff 𝑇 is CKLMeas-satisfiable.

The proof of this theorem is almost the same as the proof of the strong completeness theorem for a logic CKL𝑓𝑜. The minor 
differences are caused by the fact that now we consider propositional formulas instead of classical first-order formulas (for example, 
in the proof of Truth lemma, the base step in the induction proof will consider propositional letters instead of atomic first-order 
formulas).

6. Conclusion

We have investigated extensions of epistemic logic that allows explicit reasoning about conditional probabilities. We have con-
sidered a first-order and a propositional case and we have been able to obtain strongly complete axiomatizations for both languages, 
combining the axiomatization approaches from two previously developed epistemic probabilistic logics [8] and [27]. In addition, we 
have obtained decidability result for the propositional version of the logic by combining the method of filtration and a reduction to 
a finite set of systems of inequalities. The novelty of our logic with respect to [8] and [27] does not lie in the epistemic part of the 
logic, but on expressiveness of the probabilistic part of the language. Indeed, while probabilities of formulas can be expressed in [27], 
they cannot be compared, and the conditional probabilities are not even expressible. Similarly, the logic from [8] cannot compare 
conditional probabilities, nor express first order statements. To the best of our knowledge, our work is the first axiomatization of an 
epistemic logic which can reason about conditional probabilities.

The semantic relationship between the modalities for knowledge and probability in CKL𝑓𝑜 is given by the condition 𝑊𝑖(𝑢) ⊆𝑖(𝑢), 
which forbids an agent to place positive probabilities to the events she knows to be false. The syntactical counterpart of that 
condition is given by the axiom A20. Fagin and Halpern [8] also considered several other modifications of their semantics, by posing 
relations between the indistinguishably relations and probability spaces, and which model some typical situations in the multi-agent 
systems. For example, if 𝑃𝑟𝑜𝑏(𝑖, 𝑤) = (𝑊𝑖(𝑤), 𝐻𝑖(𝑤), 𝜇𝑖(𝑤)) and 𝑤′ ∈ 𝑊𝑖(𝑤), they consider the assumption 𝑃𝑟𝑜𝑏(𝑖, 𝑤) = 𝑃𝑟𝑜𝑏(𝑖, 𝑤′), 
which they call uniformity and which divides the possible worlds to partitions which share the same probability distributions. Two 
other considered properties are state determined property, which requires that 𝑃𝑟𝑜𝑏(𝑖, 𝑤) = 𝑃𝑟𝑜𝑏(𝑖, 𝑤′) whenever 𝑤′ ∈ 𝑖(𝑤), and 
objectivity, which requires that 𝑃𝑟𝑜𝑏(𝑖, 𝑤) = 𝑃𝑟𝑜𝑏(𝑗, 𝑤) for all 𝑖 and 𝑗 and for every 𝑤 ∈𝑊 . The paper [8] provides characterization of 
all those semantic assumptions in terms of corresponding axioms. Adding those axioms to our system would also make it complete 
for the considered semantics.

Finally, when we deal with epistemic logic we cannot ignore one of its main notions: common knowledge, which has been shown 
as crucial for many applications dealing with reaching agreements or coordinated actions [14]. Informally, a formula 𝛼 is common 
knowledge of a group of agents exactly when everyone knows that everyone knows that everyone knows. . . that 𝛼 holds. There 
are two similar proposals for a probabilistic variant of common knowledge [8,25], which assumes that coordinated actions hold 
15

with high probability. The first complete axiomatization that encompasses probabilistic common knowledge is proposed in [27]. It 
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would be interesting to see whether there is a sensible generalization of that notion that uses conditional probabilities. We plan to 
investigate that topic in future work.
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[6] Š. Dautović, D. Doder, Z. Ognjanović, An epistemic probabilistic logic with conditional probabilities, in: W. Faber, G. Friedrich, M. Gebser, M. Morak (Eds.), 

Logics in Artificial Intelligence - 17th European Conference, JELIA 2021, Virtual Event, May 17-20, 2021, Proceedings, Springer, 2021, pp. 279–293.
[7] R. Fagin, J. Geanakoplos, J.Y. Halpern, M.Y. Vardi, The hierarchical approach to modeling knowledge and common knowledge, Int. J. Game Theory 28 (1999) 

331–365.
[8] R. Fagin, J.Y. Halpern, Reasoning about knowledge and probability, J. ACM 41 (2) (1994) 340–367.
[9] R. Fagin, J.Y. Halpern, N. Megiddo, A logic for reasoning about probabilities, Inf. Comput. 87 (1990) 78–128.

[10] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning About Knowledge, MIT Press, Cambridge, MA, USA, 2003.
[11] A. Frisch, P. Haddawy, Anytime deduction for probabilistic logic, Artif. Intell. 69 (1994) 93–122.
[12] D.M. Gabbay, I.M. Hodkinson, An axiomitization of the temporal logic with until and since over the real numbers, J. Log. Comput. 1 (1990) 229–259.
[13] J.Y. Halpern, An analysis of first-order logics of probability, Artif. Intell. 46 (1990) 311–350.
[14] J.Y. Halpern, Y. Moses, Knowledge and common knowledge in a distributed environment, J. ACM 37 (1990) 549–587.
[15] J.Y. Halpern, R. Pass, A knowledge-based analysis of the blockchain protocol, in: Proceedings Sixteenth Conference on Theoretical Aspects of Rationality and 

Knowledge, TARK 2017, Liverpool, UK, 24-26 July 2017, 2017, pp. 324–335.
[16] J.Y. Halpern, R. Pucella, A logic for reasoning about evidence, J. Artif. Intell. Res. 26 (2006) 1–34.
[17] W. van der Hoeck, Some considerations on the logics pfd a logic combining modality and probability, J. Appl. Non-Class. Log. 7 (1997) 287–307.
[18] G.E. Hughes, M.J. Cresswell, A Companion to Modal Logic, Methuen London, New York, 1984.
[19] G.E. Hughes, M.J. Cresswell, A Companion to Modal Logic, Methuen, London, England, 1984.
[20] V. Koponen, Conditional probability logic, lifted Bayesian networks, and almost sure quantifier elimination, Theor. Comput. Sci. 848 (2020) 1–27.
[21] G.R.R. de Lavalette, B. Kooi, R. Verbrugge, A strongly complete proof system for propositional dynamic logic, in: AiML2002—Advances in Modal Logic (Confer-

ence Proceedings), 2002, pp. 377–393.
[22] E. Marchioni, L. Godo, A logic for reasoning about coherent conditional probability: a modal fuzzy logic approach, in: J.J. Alferes, J.A. Leite (Eds.), Logics in 

Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings, Springer, 2004, pp. 213–225.
[23] B. Marinkovic, P. Glavan, Z. Ognjanovic, D. Doder, T. Studer, Probabilistic consensus of the blockchain protocol, in: ECSQARU, Springer, 2019, pp. 469–480.
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