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A B S T R A C T   

Diversified cropping is a crucial management practice for increasing carbon (C) and nitrogen (N) sequestration in 
agroecosystems. However, knowledge gaps regarding the mechanisms by which diversified cropping affects C 
sequestration and soil quality remain unclear. Herein, a field experiment across six-year was performed to 
explore the effect of three contrasting cropping systems (i.e., winter wheat/summer maize, winter wheat/ 
summer maize-early soybean, and nature fallow) on soil quality and C sequestration, as well as their main drivers 
at both 0–20 cm and 20–40 cm soil depths. Diversified cropping increased soil organic C (SOC) stock by 9% and 
the majority of the soil biochemical metrics in the topsoil despite a 40% reduction in the fertilizer application 
relative to wheat/maize. This was attributed to increased SOC content in large macroaggregates and enhanced 
microbial turnover due to diverse fresh residue inputs under diversified cropping. Alternatively, the soil organic 
C, microbial biomass C, C-acquisition enzyme activity, and N-acquisition enzyme activity in large macroaggre
gates (> 2 mm) were increased by 15%, 15%, 32%, and 16% in the topsoil under diversified cropping versus 
wheat/maize, respectively. Partial least squares path model displayed that increased C sequestration was mainly 
driven by microbial biomass C irrespective of the bulk- and aggregate scale. Furthermore, diversified cropping 
increased the soil quality index by 1- to 2-fold relative to maize/wheat since increased aggregate stability 
benefited soil structure and nutrient cycling regardless of soil depth. Overall, increased SOC stock is dominantly 
driven by microbial biomass C, and the improved soil quality is mainly impelled by soil organic C and aggregate 
stability in responding to diversified cropping were expected to create win-win scenarios for agroecosystems.   

1. Introduction 

Soil holds more carbon (C) than the atmospheric and vegetation C 
pools combined, and displays a pivotal role in crop production, and 
mitigating the impacts of climate change (Foley et al., 2011; Jansson 
et al., 2020). For instance, a 2% increment of soil organic C (SOC) could 
increase wheat and maize yield by 10% and 23%, respectively (Oldfield 
et al., 2019). However, global SOC stock in intensified agroecosystems 
has decreased by 20–69% (Lal, 2019), which may threaten crop 

production and climate mitigation. As such, implementing targeted crop 
management strategies (e.g., diversified cropping) could moderate such 
circumstances and benefit soil C sequestration (Lal et al., 2015; Zhao 
et al., 2022). However, a lack of systematic research on the mechanisms 
of C sequestration under diversified cropping, particularly in 
aggregate-scale. 

Soil microbes are fundamental for C sequestration, which govern the 
balance between C loss via mineralization and C gains via microbial 
anabolism and necromass formation (Sokol and Bradford, 2019; Liang 
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et al., 2019; Wang et al., 2021). Since a series of microbial-mediated 
biochemical reactions depended on spatially heterogeneous aggre
gates, such stabilization is largely governed by the physical occlusion 
within soil aggregates for reducing mineralization (Trivedi et al., 2015; 
Xu et al., 2021). Here, diversified cropping creates a favorable soil 
microenvironment benefiting microbial diversity and activity and the 
potential for increased microbial-derived by-products (e.g., metabolites 
and enzymes), as well as necromass formation (Zhang et al., 2021). 
Consequently, the higher microbial-derived products might impel mi
crobial functions (e.g., soil aggregate stability and nutrient cycling), 
which are dominantly responsible for C sequestration (Kallenbach and 
Grandy, 2011; Singh et al., 2019). For instance, twelve years of 
legume-based diversified cropping increased the SOC content, which 
was driven by interactions between diversified cropping and microbial 
diversity (Tiemann et al., 2015). Therefore, to make informed decisions 
about how to promote soil quality and C sequestration in response to 
diversified cropping, a comprehensive mechanistic understanding 
regarding the crucial driving factors on microbial-mediated C seques
tration is imperative. 

Soil quality is vital to the health of economies, ecosystems, as well as 
human populations (Fierer et al., 2021; Nayab et al., 2022), which can 
be evaluated by a series of indicators that encompass physical, and 
biochemistry soil properties (Williams et al., 2020; Jia et al., 2022). 
Diversified cropping benefits soil quality due to increased aggregate 
stability, and thus reducing soil erosion (Abid and Lal, 2008; Feng et al., 
2020). Moreover, high crop diversification is responsible for the higher 
microbial diversity, which is involved in secreting various exo-enzymes 
that mediate most of the soil functions and processes (Congreves et al., 
2015). Despite these findings, the precise mechanism by which soil 
health is impacted under diversified cropping has not been fully eluci
dated, especially the regulatory mechanisms and pathways involved in 
these processes still largely elude our comprehension. 

The North China Plain comprises about 39% of the national arable 
land where the winter wheat-summer maize cropping system is wide
spread (Wu et al., 2006, 2008). However, the long-term continues 
wheat-maize monoculture cropping system combined with the increase 
in extensive N fertilization, which is responsible for soil acidification 
and threatens agricultural sustainability (Yu et al., 2019). Alternative 
cropping systems (e.g., diversified cropping and nature fallow) and 
better management thus promise to deliver new solutions to reduce N 
fertilization, promote C sequestration, and increase soil quality for 
sustainable agricultural development (Toivonen et al., 2013; Gao et al., 
2015; Lal, 2015). While large knowledge gaps remain regarding quan
titative and mechanistic research on the changes in soil quality and C 
sequestration, particularly in aggregate scale, in response to alternative 
cropping systems. Thus, three field cropping systems (i.e., winter 
wheat/summer maize, winter wheat/summer maize-early soybean, and 
natural fallow) across six-year were utilized to probe the mechanisms of 
soil quality and C sequestration, as well as their main drivers. We aimed 
to 1) evaluate whether the soil aggregate stability, microbial biomass C, 
SOC mineralization, as well as enzyme activities varied, and if so, how to 
mediate C sequestration under diversified cropping; 2) determine the 
effect of diversified cropping on soil quality. We hypothesized that: 1) 
legume inclusion could increase SOC stock due to the occlusion physi
cally within macroaggregates and increased microbial biomass; 2) 
legume inclusion could enhance the soil quality attributing to the 
diverse fresh residues benefited soil aggregate stability and nutrient 
cycling. 

2. Materials and methods 

2.1. Site description 

The field experiment was established on a loamy Mollisol (37◦62′ N, 
116◦43′ E) in October 2015, which belongs to the Wuqiao Experimental 
Station of China Agricultural University, Hebei Province, China. The 

mean annual temperature and mean annual precipitation are 13.8 ◦C 
and 547 mm in this region, respectively. The climate belongs to a sub- 
humid continental monsoon (Wang et al., 2022). The 0–20 cm soil 
characteristics in 2015 were: 9.0 g kg− 1 of SOC, 1.3 g kg-1 of total ni
trogen (TN), 1.72 g kg-1 of total phosphorus (P), 89.8 mg kg-1 of avail
able P, and soil pH = 7.74. The 20–40 cm soil characteristics in 2015 
were: 3.48 g kg-1 of SOC, 0.45 g kg-1 of TN, and soil pH = 8.25. The 
texture of the 20–40 cm soil comprised: sand = 17.98%, silt = 67.67%, 
and clay = 14.35%. 

2.2. Experimental design and management 

Three cropping systems were utilized as follows: (1) conventional 
winter wheat (Triticum aestivum L.; Jimai 22)/summer maize (Zea mays 
L.; Zhengdan 958) (WM) with two harvests in one year in the North 
China Plain as the control treatment; (2) optimized winter wheat/ 
summer maize-early soybean (Glycine max L.; Xudou 20) (WMEB) with 
three harvests in two years as the diversified cropping system to achieve 
sustainable development for agroecosystem; and (3) natural fallow (F). 
Each cropping system (10 m × 7.2 m) was replicated thrice with a 
randomized design completely. The farming operations (e.g., fertiliza
tion, sown, harvest, irrigation, seeding rate, and tillage) of three crop
ping systems were shown in Table S1. For all treatments, the agronomic 
and management practices were performed according to normal prac
tices in this region. 

2.3. Collection of soil sample and preparation 

A soil auger (8 cm diameter) was used to collect three sub-samples 
from each plot at 0–20 cm (topsoil) and 20–40 cm (subsoil) soil 
depths after the wheat harvest in early June 2021. Soil samples were 
collected from 0–20 cm and 20–40 cm depth of three cropping system 
with three field replicates. Three random individual soil cores were 
collected from each plot, and mixed as one sample. Fine roots and other 
plant residues were manually removed from soil samples. The samples 
were then placed in a marked plastic bag ensuring no pressure was 
applied. The sampled topsoil represents the plough horizon (Ap). The 
subsoil was sampled to estimate the soil organic carbon accumulation, 
which was affected by topsoil management. All visible roots and crop 
residues (e.g., mixed during sampling from recent crop harvest) were 
manually removed. Additionally, three soils sampled with 100 cm3 

cylinders for both top and subsoil were used to determine bulk density 
based on the volumetric ring method (Li et al., 2014). The samples were 
oven-dried (105 ◦C), left for cooling in a desiccator, and weighed for 
subsequent analyses (Yan et al., 2021). 

2.4. Aggregate size separation 

Soil samples (300 g each) with a 15% gravimetric water content were 
used to separate aggregates (Yan et al., 2022). Briefly, samples were 
broken apart < 8 mm manually, and were then sieved through mesh 
sizes (0.25 mm and 2 mm) on the Vibratory Sieve Shaker machine 
(ZD-ZDS, China) at 600 rpm for 5 min. Subsequently, the > 2 mm (large 
macroaggregates), 0.25–2 mm (small macroaggregates) and < 0.25 mm 
(microaggregates) were obtained. The detailed operations were con
ducted according to Yan et al. (2022). Optimal-moisture sieving was 
used as it reduces microbial disturbance, minimizes aggregate abrasion, 
and avoids water-soluble C and N losses (Dorodnikov et al., 2009; Yan 
et al., 2022). The aggregate stability as indicated by mean weight 
diameter (MWD) was calculated according to Meng et al. (2014). 

2.5. Laboratory incubation 

Both bulk soil and aggregates (> 2, 0.25–2, and < 0.25 mm) were 
used for laboratory incubation to determine SOC mineralization. In 
brief, fresh samples (20 g) were pre-incubated for 5 days at 70% water 
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holding capacity in constant 15 ◦C temperature (corresponding to the 
wheat season temperature) within a thermostatic incubator (BIC-300). 
Subsequently, an alkali traps (5 ml, 1 M NaOH) were placed in a closed 
bottle containing a soil sample and used to absorb the evolved CO2 at a 
regular interval during the incubation (Zang et al., 2020). Further yet, 
three empty bottles (controls/blanks) were used to eliminate the effects 
of CO2 in the atmosphere during incubation. The NaOH was periodically 
changed after 1, 3, 5, 7, 14, 21, 30, 40, 60, and 90 days of incubation and 
the solution was transferred to a conical flask with 2–3 washing of the 
vial with distilled water. The excess amounts of carbonates were 
removed by adding a few drops of 1 M BaCl2 to saturate the solution, 
where Na2CO3 was converted into BaCO3. The remaining (un-reacted) 
amount of NaOH was titrated with with 0.1 M HCl in the presence of 
phenolphthalein indicator, and finally the specific mineralization is 
expressed as mg CO2 kg-1 SOC. 

2.6. Analysis of soil physicochemical parameters 

The SOC and TN concentrations of both bulk soil and aggregates (>
2, 0.25–2, and < 0.25 mm) were measured following the protocol by Bao 
(2000). The chloroform fumigation-extraction method was utilized to 
measure soil microbial biomass C (MBC) and microbial biomass N 
(MBN) (Vance et al., 1987). The SOC and TN stocks for a corresponding 
soil layer were calculated using the following formula:  

Cstock = SOC × BDi × Hi                                                                 (1)  

Nstock = TN × BDi × Hi                                                                  (2) 

Where CStock and NStock indicate the SOC and TN stocks (kg m− 2), 
respectively; BDi and Hi mean the soil bulk density (kg m− 3) and the 
thickness (m) in the corresponding soil layer, respectively. 

Soil microbial biomass carbon (MBC) and nitrogen (MBN) were 
analyzed from samples in the incubation beakers by using the 
chloroform-fumigation-extraction method (Vance et al., 1987). Soil field 
moisture content was adjusted to 50% of their water-holding capacity 
(WHC) before microbial analysis. Then, 5 g soil with oven-dry weight 
was transferred separately into Petri-dishes within a desiccator. 
Sub-samples were fumigated with ethanol-free chloroform (CHCl3) for 
24 h at 25 ◦C. Samples were extracted for MBC and MBN by adding 20 ml 
of 0.05 M K2SO4, shaking for 30 min at 300 rpm, and then filtered 
through a 0.45 µm millipore filter. Three 5 g nonfumigated soil 
sub-samples were processed in the same manner. Finally, the MBC and 
MBN were analyzed using a wet combustion-based C/N analyzer (Shi
madzu Inc.,). 

The dissolved organic C (DOC) and total dissolved N (TDN) were 
extracted by shaking 5 g of soil in deionized water (20 ml) mixture at 
300 rpm for 30 min and centrifuging at 5000 rpm for 10 min (Haynes, 
2005). The supernatants were filtered through a 0.45 µm millipore filter. 
Finally, the TOC analyzer (TOC-L CPN, Shimadzu, Japan) was utilized to 
measure the DOC and TDN. 

2.7. Enzyme activity assays 

Enzyme activities of β-1, 4-glucosidase (BG), β-1, 4-N-acetylglucosa
minidase (NAG), and Leucine aminopeptidase (LAP) were determined 
via 4-methylumbelliferone (MUF) and 7-amino-4-methylcoumarin 
(AMC) (Razavi et al., 2016; Ma et al., 2022). Briefly, fresh soil (1 g) 
was added to the 50 ml distilled water in a glass bottle shaken for 
half-hour. Afterwards, suspension (50 μl), buffer (50 μl), combined with 
corresponding substrates (100 μl, 400 μmol g-1) were dispensed into a 
96-well microplate reader. Fluorescence values were read via a 
Thermo1510, MULTISKAN Sky fluorometer (Ex. 360 nm; Em. 450 nm; 
142 Thermo Fisher Scientific, USA) after incubation and calculated in 
μmol g-1 h-1 (Chu et al., 2022). 

Considering that NAG and LAP display similar functions, the 
following equation was used to normalize the enzyme activities (Jia 

et al., 2022): 

N − acq =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(NAG • LAP)2

√
(3)  

Where N-acq represents the N-acquisition enzyme activity, NAG and 
LAP refer to the β-1, 4-N-acetylglucosaminidase and Leucine amino
peptidase, respectively. 

2.8. Soil quality index 

All soil metric datas were calculated to transform into dimensionless 
scores ranging from 0 to 1 to acquire the soil quality index (SQI) for 
three cropping systems as follows: 

SL =
x − L
H − L

(4)  

SL = 1 −
x − L
H − L

(5)  

Where SL indicated the linear score (0− 1), x stands for the measured 
value of the index; H and L referred to the highest and lowest values of 
the index, respectively. Specifically, if a parameter was a positive indi
cator and benefited soil quality (e.g., SOC), then it was normalized by 
Eq. (4). Otherwise, the parameter was normalized by Eq. (5) (e.g., 
mineralization). The SQI score was assessed via an SQI-length approach 
based on the length of a chord diagram calculated according to the 
transformed soil metrics (Kuzyakov et al., 2020): 

SQI− length = 0.5 ×
∑n

1
× S2

Lsin
2Π
n

(6)  

Where SQI-length indicates the SQI score, and n represents the number of 
soil metrics applied for the SQI-length. 

2.9. Statistical analysis 

The normality and homogeneity of variance were checked by the 
Shapiro-Wilk test (p > 0.05) and Levene test (p > 0.05) before statistical 
analysis, respectively. One-way analysis of variance (ANOVA) together 
with Fisher’s Least Significant Difference test (p < 0.05) was performed 
via SPSS version 25.0 (IBM SPSS Software Inc., Armonk, NY, USA) to 
identify the effect of cropping systems on soil metrics. The Pearson’s 
correlations between SQI and other parameters were calculated via the 
R package “GGally” (Version 4.0.3). Also, the partial least squares path 
modeling (PLS-PM) was used to explore the statistical relationship 
among soil physicochemical properties, SQI, and SOC stock (Latan et al., 
2017). 

3. Results 

3.1. Effect of cropping systems on bulk soil biochemical metrics 

Diversified cropping altered nearly all measured soil metrics, espe
cially in the topsoil across six-year cropping strategies (Figs. 1 and 6). In 
the topsoil, the SOC stock increased by 9% under diversified cropping 
relative to wheat/maize (p < 0.05), while fallow and wheat/maize dis
played comparable SOC stock in the topsoil (Fig. 1). Further, the MWD, 
MBC, DOC, BG, and TN stock were higher and SOC mineralization was 
lower under diversified cropping relative to wheat/maize (p < 0.05; 
Fig. 1). Here fallow increased the BG, but decreased the MBC relative to 
wheat/maize (p < 0.05; Fig. 1). In the subsoil, however, there were few 
changes in measured soil metrics among the three cropping systems, 
whilst diversified cropping increased the BG and TN stock relative to 
wheat/maize (p < 0.05; Fig. 1). Overall, diversified cropping changed 
nearly all measured soil properties in the topsoil and exhibited minor 
effects in the subsoil. 
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3.2. Effect of cropping systems on aggregate-scale biochemical metrics 

Cropping systems displayed a remarkable effect on the aggregate- 
scale biochemical metrics in the topsoil, especially for large macroag
gregates (> 2 mm) (Fig. 2 and S2). In the topsoil, the SOC, MBC BG, and 
N-acq in large macroaggregates were all increased by 15%, 15%, 32%, 
and 16% in the topsoil under diversified cropping relative to wheat/ 
maize, respectively (p < 0.05; Fig. 2). While fallow decreased the TN 
and N-acq by 14% and 27% in large macroaggregates versus wheat/ 
maize, respectively (p < 0.05; Fig. 2). In the subsoil, diversified crop
ping and fallow increased both the TN and MBN contents in large 
macroaggregates relative to wheat/maize, respectively (p < 0.05; 
Fig. 2). Overall, diversified cropping increased the majority of soil 
metrics within the large macroaggregates in the topsoil but exhibited 
minor effects in the subsoil. 

3.3. Effect of cropping systems on soil quality index 

Diversified cropping changed the soil quality index (SQI) across six- 
year cropping strategies (Figs. 3 and 6). Compared to wheat/maize, 
diversified cropping increased the SQI by 197% in the topsoil, and by 
113% in the subsoil (p < 0.05; Fig. 3). However, there were no signifi
cant differences regarding the SQI between fallow and wheat/maize for 
both soil depths (Fig. 3). Overall, diversified cropping enhanced the SQI 
regardless of soil depth. 

3.4. The relationships between C sequestration, and other biochemical 
metrics at aggregates-scale 

For both soil depths, the PLS-PM indicated that aggregate sizes and 
MBC held an imperative direct effect (0.44 and 0.55), whilst CO2 efflux 
alone exerted a negative direct effect (− 0.39) on C sequestration 
(p < 0.05; Fig. 4a and b). In addition, BG had a significant indirect effect 
by mediating DOC and MBC resulting in C sequestration (Fig. 4a and b). 
Collectively, diversified cropping benefited C sequestration which was 
dominantly driven by MBC at the aggregate-scale. 

3.5. The relationships between soil quality, SOC stock, and other bulk soil 
biochemical metrics 

Pearson correlation analysis displayed a strong correlation between 
soil biochemical metrics and SQI and SOC stock, especially in the topsoil 
(p < 0.05; Fig. 5a). The SOC and TN stocks, MWD, MBC, BG, and DOC 
were positively correlated with SQI, while there was a negative corre
lation between CO2 efflux and SQI (p < 0.05; Fig. 5a). In the subsoil, 
only the N stock and MWD were closely correlated with SQI, along with 
the positive correlation between C and N stock (p < 0.05; Fig. 5a). For 
both soil depths, the PLS-PM showed that SOC stock and MWD had 
strong positive effects (0.71 and 1.02) on SQI (p < 0.05; Fig. 5b). 
Furthermore, the MBC content held a much promotional effect (0.47) 
directly on the SOC stock (p < 0.05; Fig. 5b). Collectively, the MWD and 

Fig. 1. Mean weight diameter (MWD), CO2 efflux, SOC stock, TN stock, microbial biomass C (MBC), microbial biomass N (MBN), dissolved organic C (DOC), total 
dissolved N (TDN), β-1, 4-glucosidase (BG), and nitrogen-acquisition enzyme activity (N-acq) at 0–20 and 20–40 cm soil depths under three cropping systems: winter 
wheat/summer maize (WM), winter wheat/summer maize-early soybean (WMEB), and nature fallow (F). Different lowercase letters denote significant differences 
between cropping systems (p < 0.05). Values are average ( ± SE) of the three replicates (n = 3). 
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SOC stock played pivotal roles in mediating the SQI. 

4. Discussion 

4.1. Diversified cropping increased SOC stock 

The six-year diversified cropping benefited soil C sequestration in the 
topsoil, despite a 40% reduction in the N fertilizer compared to wheat/ 
maize (Figs. 1 and 6). This was partly attributed to the large input of 
senescent roots and nodules of legumes that were responsible for the 
increased SOC stock (Rosenstock et al., 2014; Meena and Lal, 2018; 
Kazmierczak et al., 2020). Moreover, our results indicated that diver
sified cropping increased the TN stock, which might be due to the 
N-enriched legume residues decomposition into soil easily combined 
with biological N2 fixation of soybean, thus resulting in a high potential 
for N sequestration (Diekow et al., 2005; Martin et al., 2019). Such a 
result may increase the microbial C limitation and thus stimulate 

increased C-acquisition enzyme activities (Fig. 1) to decompose crop 
residues in diversified cropping. Alternatively, legume residue as easily 
available substrates for microbes (i.e., lower C/N ratio) offset potential 
priming of existing SOC under diversified cropping (Franke et al., 2008; 
Zhang et al., 2019). 

Further yet, our results showed that diversified cropping had no 
significant effect on SOC stock in the subsoil across six-year (Fig. 1). This 
is because 66% of the soybean roots were distributed in topsoil (Li et al., 
2017), short-term diversified cropping might not favor the majority of 
plant-derived C inputs to subsoil, thus leading to similar SOC stock 
versus wheat/maize. Similar results were also observed by Blanco-
Canqui et al. (2017) who found that legume-based cropping did not 
affect SOC stock in the subsoil over two decades. Further, since the C is 
seldom transported to the subsoil due to the fewer soybean roots 
distributed in the subsoil, which had little effect on the subsoil microbial 
community (Lynch and Wojciechowski, 2015; Li et al., 2017; Moos
hammer et al., 2022), thus leading to comparable MBC content versus 

Fig. 2. Soil organic C(SOC), total nitrogen (TN), microbial biomass C (MBC), microbial biomass N (MBN), dissolved organic carbon (DOC), total dissolved nitrogen 
(TDN), β-1, 4-glucosidase (BG), and nitrogen-acquisition enzyme activity (N-acq) within aggregates at 0–20 and 20–40 cm soil depths under three cropping systems: 
winter wheat/summer maize (WM), winter wheat/summer maize-early soybean (WMEB), and nature fallow (F). Different lowercase letters denote significant dif
ferences between cropping systems (p < 0.05). Values are average ( ± SE) of the three replicates (n = 3). 
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wheat/maize (Fig. 1). Such results indicated that diversified cropping 
unwakened the microbial-driven carbon turnover in the subsoil, thus 
leading to slight changes in C sequestration (Wright et al., 2008; Gentsch 
et al., 2020). 

As macroaggregates are largely formed around fresh residues 
(including roots and exudates), diversified cropping provides more 
diverse and dissolved C input to the soil by creating more resource 

niches for soil microorganisms, which often increases the microbial 
biomass (Fig. 1), microbial functioning and biodiversity (McDaniel 
et al., 2014; Mooshammer et al., 2022). This could simultaneously 
enhance microbial activities and production of microbial-derived bind
ing agents (e.g., glomalin), which are imperative for promoting soil 
aggregation (Bossuyt et al., 2001; Zhou et al., 2020, 2022a). Further yet, 
due to the less physical disturbance to soil aggregates during the three 

Fig. 3. The radar graphs show the relative responses of soil biochemical metrics to the cropping system at 0–20 and 20–40 cm soil depth. The soil quality index (SQI) 
in response to cropping system at 0–20 and 20–40 cm soil depth (c). Different lowercase letters denote significant differences between cropping systems (p < 0.05). 
Values are average ( ± SE) of the three replicates (n = 3). 

Fig. 4. (a) Directed graph of the partial least 
squares path model. Each circle represents an 
observed variable. Path coefficients are calcu
lated after 1000 bootstraps and reflected in the 
width of the arrow, with red and blue indicating 
positive and negative effects, respectively. The 
“* ” showed that coefficients differ significantly 
(p < 0.05). The model was assessed using the 
Goodness of Fit (GoF) statistic, and the GoF 
value was 0.80. (b) Total effect represented the 
relative importance of soil biochemical metrics 
on C stock at the aggregate-scale.   
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crop harvests over two years (Jin et al., 2021), thus soil aggregate sta
bility was larger under diversified cropping versus wheat/maize. Here 
SOC is physically occluded by increased aggregate stability hindering 
microbial degradation, thus enhancing SOC stock (Fig. 1). This was 
further supported by the higher MBC content (Fig. 1) and the positive 
correlation between MBC, MWD, and SOC stock (Fig. 5). Such results 
compare well with those obtained by Kumar et al. (2018) who docu
mented that legume-based cropping systems improved SOC content by 
increasing microbial biomass that promoted soil aggregation. The 
PLS-PM further confirmed that the MBC displayed a positive effect on 
SOC stock (Fig. 5b). Furthermore, diversified cropping decreased the 
SOC mineralization (Fig. 1), which was due to the higher soil aggregate 
stability as indicated by the increased MWD (Haynes and Francis, 1993). 
The physical protection of large macroaggregates reduced microbial 
accessibility to the SOC (Six et al., 2000), and thus promoted C 
sequestration as evidenced by the negative correlation between CO2 
efflux and SOC stock (Fig. 5a). 

In our study, the SOC and TN stocks under natural fallow were 
comparable to the wheat/maize (Fig. 1). Nature fallow reduced frequent 
soil disturbance by intensive tillage, which could increase aggregate 
stability, thus benefiting SOC stock (Jiang and Xie, 2009). Nevertheless, 
the minimal diversity of residue input could be responsible for the lower 
microbial biomass (Fig. 1) and turnover rate, which might not result in 
higher MWD physically protecting SOC and TN content (Nielsen and 
Calderon, 2011; Kumar et al., 2018). These two opposing effects might 
in part counteract each other and resulted in similar SOC stock as 
wheat/maize. 

4.2. Diversified cropping increased soil C sequestration at the aggregate- 
scale 

The higher proportion of large macroaggregate (> 2 mm) and its C 
concentration were essential for C stabilization and long-term 

sequestration (Six et al., 2002; Kumar et al., 2019). In our study, 
diversified cropping increased the SOC content within > 2 mm aggre
gates relative to wheat/maize (Figs. 2 and S2). Here, the MBC was 
higher in large macroaggregates under diversified cropping (Fig. 2), 
which is supported by the fact that larger pores favor microorganisms 
proliferation (Tisdall and Oades, 1982; Chenu et al., 2001). Further, 
increased enzyme activities could catalytically degrade the higher labile 
substrates in > 2 mm aggregates (Fig. 2), which were utilized by mi
croorganisms to build up their biomass in large macroaggregates rather 
microaggregates under diversified cropping (Liang et al., 2017; Wang 
et al., 2017). Such a result could likely contribute to increasing C 
sequestration in large macroaggregates after a long-term microbial 
turnover (Mooshammer et al., 2022). Moreover, the PLS-PM further 
demonstrated that aggregate sizes and MBC displayed promotional ef
fects on soil C sequestration (Fig. 4a) where the MBC held 
evidence-based greatest benefits on C sequestration (Fig. 4b). Further 
yet, the SOC stock was mainly dominated by the > 2 mm SOC stock 
(Fig. S2). These results reinforce that the increased SOC stock was driven 
by the SOC content in large macroaggregates (Novelli et al., 2011). In 
our study, there were virtually no significant differences regarding SOC 
concentration within small macroaggregates and microaggregates under 
three cropping systems (Fig. 2). In the scenario of legume-based diver
sified cropping, the more diverse and dissolved C undergoes microbial 
metabolic decomposition to form larger soil particles and large macro
aggregates and has little effect on smaller aggregates relatively (Six 
et al., 2000; Six and Paustian, 2014). Such a result could explain why the 
legume-based diversified cropping had a greater impact on the large 
macroaggregate. Taken together, the increased MBC content in > 2 mm 
aggregates is responsible for the C sequestration at the aggregate-scale, 
thus contributing to the increased SOC stock in the topsoil under 
diversified cropping, even reducing N fertilizer application. 

We also acknowledge some limitations in our study. First, the dy
namics of soil C pools depend on the balance of plant C input and 

Fig. 5. (a) The Pearson correlation between SQI and other bulk soil biochemical metrics at 0–20 cm and 20–40 cm soil depths. The “*, **, and ***” indicate sig
nificant differences between the parameters at p < 0.05, p < 0.01, p < 0.001 level. (b) Directed graph of the partial least squares path model. Each circle represented 
an observed variable. Path coefficients were calculated after 1000 bootstraps and reflected in the width of the arrow, with red and blue indicating positive and 
negative effects, respectively. The “*” showed that coefficients differ significantly (p < 0.05). The model was assessed using the Goodness of Fit (GoF) statistic, and 
the GoF value was 0.85. 
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microbial decomposition (Wang et al., 2021). Only considering changes 
in microbial C pool, metabolic activities, and enzyme activities under 
diversified cropping versus wheat-maize in our study cannot fully 
explain the changes in soil C pools. Second, since the recognized 
importance of the contribution of microbial necromass to soil C 
sequestration (Liang et al., 2019). Further research is required to 
investigate the effect of diversified cropping on microbial necromass 
when considering the microbial mechanisms regulating the SOC dy
namics, which is paramount for a sustainable agroecosystem. 

4.3. Diversified cropping enhanced the soil quality index 

Diversified cropping benefited soil quality, which was mainly driven 
by an increased SOC stock and MWD as supported by the PLS-PM (Figs. 3 
and 5). Stabilization of soil aggregation in the legume-based diversified 
cropping is characterized by an increased proportion of large macro
aggregates (Fig. 2, Fig. S1) and stimulation of microbial biomass as 
larger pores favor microorganisms to proliferate (Tisdall and Oades, 
1982; Bruns and Couradeau, 2014). Such a result combined with stim
ulated microbial functioning and biodiversity via diverse fresh residues 
improved soil functions (e.g., soil aggregation and nutrient cycling) and 
related ecosystem services, as well as consequently soil quality (Gupta 
and Germida, 2015; Nunes et al., 2018; Sánchez et al., 2022). These 
findings concur well with results obtained by Feng et al. (2020) and 
Williams et al. (2020), who reported that diversified cropping is crucial 
for enhancing soil quality due to increased aggregate stability providing 
water infiltration and retention, biodiversity, and C sequestration. 

Improved soil aggregation benefits the spatial and temporal distribution 
of air, water, and solute flow, thus affecting root and microbial respi
ration, penetration, and seedling emergence. These improvements 
further benefit soil microbial activities and stimulate the 
microbial-derived by-product (Blankinship et al., 2016; Zhou et al., 
2022b). Furthermore, the increased soil aggregation physically stabi
lizes SOC in the long term under diversified cropping (Yan et al., 2022). 
Consequently, diversified cropping improved soil quality via enhancing 
biochemical metrics, SOC stock, and aggregate stability. 

5. Conclusion 

The six-year diversified cropping increased the SOC stock (~9%) and 
nearly all soil biochemical metrics relative to wheat/maize in the 
topsoil. The SOC, microbial biomass C, C-acquisition enzyme activity, 
and dissolved organic C concentrations within > 2 mm aggregates all 
increased in the topsoil under diversified cropping versus wheat/maize. 
The partial least squares path model suggested that microbial biomass C 
was the main driver for C sequestration regardless of bulk- and 
aggregate-scale. Moreover, diversified cropping enhanced the soil 
quality index due to increased aggregate stability benefiting soil mi
crobial proliferation and C sequestration. The SOC stock and soil quality 
index under natural fallow were comparable to wheat/maize, and might 
not be wise for agriculture management at the expense of crop pro
duction. Overall, our results illustrate the mechanism of soybean in
clusion in SOC stock and soil quality improvement in wheat-maize 
cropping system, while also suggesting the potential for reducing N 

Fig. 6. Graphical abstract illustrating diversified cropping stimulating soil quality and carbon sequestration. The wheat/maize-soybean cropping system increased 
the soil C stock by 9% relative to wheat/maize. Alternatively, diversified cropping improved soil quality, which was mainly driven by aggregates and soil organic C. 
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inputs in intensive high-yield cropping systems. Therefore, we advo
cated that legume-based diversified cropping was expected to create 
win-win scenarios for enhancing soil quality and advancing sustainable 
intensification in agroecosystems. 
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