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Abstract: In this work, we study the effective behavior of a two-dimensional variational model within finite
crystal plasticity for high-contrast bilayered composites. Precisely, we consider materials arranged into peri-
odically alternating thin horizontal strips of an elastically rigid component and a softer one with one active
slip system. The energies arising from these modeling assumptions are of integral form, featuring linear
growth andnon-convex differential constraints.We approach this non-standard homogenization problemvia
Gamma-convergence. A crucial first step in the asymptotic analysis is the characterization of rigidity proper-
ties of limits of admissible deformations in the space BV of functions of bounded variation. In particular, we
prove that, under suitable assumptions, the two-dimensional body may split horizontally into finitely many
pieces, each of which undergoes shear deformation and global rotation. This allows us to identify a potential
candidate for the homogenized limit energy, which we show to be a lower bound on the Gamma-limit. In the
framework of non-simple materials, we present a complete Gamma-convergence result, including an explicit
homogenization formula, for a regularized model with an anisotropic penalization in the layer direction.
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non-simple materials

MSC 2010: Primary 49J45; secondary 74Q05, 74C15, 26B30
||
Communicated by: Ugo Gianazza

1 Introduction
Metamaterials are artificially engineered composites whose heterogeneities are optimized to improve struc-
tural performances.Due to their specialmechanical properties, arising as a result of complexmicrostructures,
metamaterials play a key role in industrial applications and are an increasingly active field of research. Two
natural questions when dealing with composite materials are how the effective material response is influ-
enced by the geometric distribution of its components, andhow themechanical properties of the components
impact the overall macroscopic behavior of the metamaterial.

In what follows, we investigate these questions for a special class of metamaterials with two character-
istic features that are of relevance in a number of applications: (i) the material consists of two components
arranged in a highly anisotropicway into periodically alternating layers, and (ii) the (elasto)plastic properties
of the two components exhibit strong differences, in the sense that one is rigid, while the other one is con-
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siderably softer, allowing for large (elasto)plastic deformations. The analysis of variational models for such
layered high-contrast materials was initiated in [12]. There, the authors derive a macroscopic description for
a two-dimensional model in the context of geometrically nonlinear but rigid elasticity, assuming that the
softer component can be deformed along a single active slip system with linear self-hardening.

These results havebeenextended to general dimensions, to energydensitieswith p-growth (1 < p < +∞),
and to the case with non-trivial elastic energies, which allows treating very stiff (but not necessarily rigid)
layers, see [11, 13].

In this paper, we carry the ideas of [12] forward to a model for plastic composites without linear hard-
ening, in the spirit of [18]. This change turns the variational problem in [12], having quadratic growth
(cf. also [15, 16]), into one with energy densities that grow merely linearly.

The main novelty lies in the fact that the homogenization analysis must be performed in the class BV
of functions of bounded variation (see [2]) to account for concentration phenomena. This gives rise to con-
ceptual mathematical difficulties: on the one hand, the standard convolution techniques commonly used for
density arguments in BV or SBV cannot be directly applied because they do not preserve the intrinsic con-
straints of the problem; on the other hand, constraint-preserving approximations in this weaker setting of
BV are rather challenging, as one needs to simultaneously regularize the absolutely continuous part of the
distributional derivative of the functions and accommodate their jump sets.

To state our results precisely, we first introduce the relevant model with its main modeling hypotheses.
Throughout the article, we analyze two versions of the model, namely with and without regularization.

Let e1 and e2 be the standard unit vectors inℝ2, and let x = (x1, x2) denote a generic point inℝ2. Unless
specified otherwise, Ω ⊂ ℝ2 is an x1-connected, bounded domain with Lipschitz boundary, that is, an open
set whose slices in the x1-direction are (possibly empty) open intervals (see Section 2.4 for the precise defi-
nition). For such a domain Ω, we set

aΩ := inf
x∈Ω

x2 and bΩ := sup
x∈Ω

x2, (1.1)

as well as
cΩ := inf

x∈Ω
x1 and dΩ := sup

x∈Ω
x1. (1.2)

Assume that Ω is the reference configuration of a body with heterogeneities in the form of periodically
alternating thin horizontal layers. To describe the bilayered structure mathematically, consider the period-
icity cell Y := [0, 1)2, which we subdivide into Y = Ysoft ∪ Yrig with Ysoft := [0, 1) × [0, λ) for λ ∈ (0, 1) and
Yrig := Y \ Ysoft. All sets are extendedbyperiodicity toℝ2. The (small) parameter ε > 0describes the thickness
of a pair (one rigid, one softer) of fine layers, and can be viewed as the intrinsic length scale of the system.
The collections of all rigid and soft layers in Ω can be expressed as εYrig ∩ Ω and εYsoft ∩ Ω, respectively. For
an illustration of the geometrical assumptions, see Figure 1.

Following the classical theory of elastoplasticity at finite strains (see, e.g., [31] for an overview), we
assume that the gradient of any deformation u : Ω → ℝ2 decomposes into the product of an elastic strain,
Fel, and a plastic one, Fpl. In the literature, different models of finite plasticity have been proposed (see,
e.g., [3, 22, 29, 30, 37]), as well as alternative descriptions via the theory of structured deformations (see
[6, 9, 10, 24] and the references therein). Here, we adopt the classical model by Lee on finite crystal plasticity
introduced in [33–35], according to which the deformation gradients satisfy

∇u = FelFpl. (1.3)

In addition, we suppose that the elastic behavior of the body is purely rigid, meaning that

Fel ∈ SO(2) almost everywhere in Ω, (1.4)

and that the plastic part satisfies
Fpl = 𝕀 + γs ⊗ m, (1.5)

where s ∈ ℝ2 with |s| = 1 is the slip direction of the slip system, m = s⊥ is the normal to the slip plane, and
the map γ measures the amount of slip. Denoting byMs the set

Ms := {F ∈ ℝ2×2 : det F = 1 and |Fs| = 1},
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Ω ⊂ ℝ2 ε

Yrig

Ysoft

Y = [0, 1)2 reference cell

λs = e1
→

Figure 1: A bilayered x1-connected domain Ω.

the multiplicative decomposition (1.3) (under assumptions (1.4) and (1.5)) is equivalent to ∇u ∈Ms almost
everywhere in Ω. Whereas the material is free to glide along the slip system in the softer phase, it is required
that γ vanishes on the layers consisting of a rigid material, i.e., γ = 0 in εYrig ∩ Ω.

Collecting the previous modeling assumptions, we define, for ε > 0, the class Aε of admissible layered
deformations by

Aε := {u ∈ W1,1(Ω;ℝ2) : ∇u ∈Ms a.e. in Ω, ∇u ∈ SO(2) a.e. in εYrig ∩ Ω}
= {u ∈ W1,1(Ω;ℝ2) : ∇u = R(𝕀 + γs ⊗ m) a.e. in Ω, R ∈ L∞(Ω; SO(2)) and γ ∈ L1(Ω)

with γ = 0 a.e. in εYrig ∩ Ω}. (1.6)

The elastoplastic energy of a deformation u ∈ L10(Ω;ℝ2) := {u ∈ L1(Ω;ℝ2) : ∫Ω u dx = 0}, given by

Eε(u) =
{{{
{{{
{

∫
Ω

|γ|dx for u ∈ Aε,

∞ otherwise in L10(Ω;ℝ2),
(1.7)

represents the internal energy contribution of the system during a single incremental step in a time-discrete
variational description. This way of modeling excludes preexistent plastic distortions, and can be considered
a reasonable assumption for the first time step of a deformation process. The elastoplastic energy can be
complemented with terms modeling the work done by external body or surface forces.

The limit behavior of sequences (uε)ε of low energy states for (Eε)ε gives information about the macro-
scopic material response of the layered composites. In the following, we focus the analysis of this asymp-
totic behavior on the s = e1 case, when the slip direction is parallel to the orientation of the layers, cf. also
Figure 1. Note that different slip directions can be treated similarly, but the arguments are technically more
involved. In fact, for s ∉ {e1, e2}, small-scale laminate microstructures on the softer layers need to be taken
into account, which requires an extra relaxation step. We refer to [18] for the relaxation mechanism and
to [12] for the strategy of how to apply it to layered structures.

An important first step towards identifying the limit behavior of the energies (Eε)ε (in the sense of
Γ-convergence) is the proof of a general statement of asymptotic rigidity for layered structures in the context
of functions of bounded variation. The following result characterizes the weak∗ limits in BV of deformations
whose gradients coincide pointwise with rotations on the rigid layers of the material. Note that no additional
constraints are imposed on the softer components at this point.

Theorem 1.1 (Asymptotic rigidity of layered structures in BV). Let Ω ⊂ ℝ2 be an x1-connected domain, and
assume that (uε)ε ⊂ W1,1(Ω;ℝ2) is a sequence satisfying

∇uε ∈ SO(2) a.e. in εYrig ∩ Ω for all ε, (1.8)
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and that uε
∗
⇀ u in BV(Ω;ℝ2) for some u ∈ BV(Ω;ℝ2) as ε → 0. Then,

u(x) = R(x2)x + ψ(x2) for L2-a.e. x ∈ Ω, (1.9)

where R ∈ BV(aΩ , bΩ; SO(2)) and ψ ∈ BV(aΩ , bΩ;ℝ2) (cf. (1.1)).
Conversely, any function u ∈BV(Ω;ℝ2)as in (1.9) canbeattainedasweak∗-limit inBV(Ω;ℝ2)of a sequence

(uε)ε ⊂ W1,1(Ω;ℝ2) satisfying (1.8).

To prove the first part of Theorem 1.1, we adapt the arguments in [12] to the BV-setting. The second assertion
follows from a tailored one-dimensional density result in BV, which involves approximating functions that
are constant on the rigid layers (see Lemma 3.3 below). Up to minor adaptations, analogous statements hold
in higher dimensions. We refer to Remark 3.4 for the specific assumptions on the geometry of the set Ω under
which a higher-dimensional counterpart of Theorem 1.1 can be proved.

In view of Remark 5.1 below, a natural potential candidate for the limiting behavior of (Eε)ε in the
sense of Γ-convergence (see [8, 20] for an introduction, as well as the references therein) is the functional
E : L10(Ω;ℝ2)→ [0,∞], given by

E(u) =
{{{
{{{
{

∫
Ω

|ψ ⋅ Re1|dx + |Dsu|(Ω) if u ∈ A,

∞ otherwise,
(1.10)

where

A := {u ∈ BV(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω with R ∈ BV(aΩ , bΩ; SO(2)),
ψ ∈ BV(aΩ , bΩ;ℝ2), and det∇u = 1 a.e. in Ω}, (1.11)

and |Dsu|, along with other basic properties of BV functions, is introduced in Section 2.2.
The next theorem states that E provides indeed a lower bound for our homogenization problem.

Theorem 1.2 (Lower bound on the Γ-limit of (Eε)ε). Let Ω ⊂ ℝ2 be an x1-connected domain, and let Eε and E
be the functionals introduced in (1.7) and (1.10), respectively. Then, every sequence (uε)ε ⊂ L10(Ω;ℝ2) with
uniformly bounded energies, supε Eε(uε) <∞, has a subsequence that converges weakly∗ inBV(Ω;ℝ2) to some
u ∈ A ∩ L10(Ω;ℝ2). Additionally,

Γ(L1)-lim inf
ε→0

Eε ≥ E. (1.12)

The proof of the first assertion is given in Proposition 4.3. It relies on Theorem 1.1 in combination with
a technical argument about the weak continuity properties of Jacobian determinants (see Lemma 4.2). In
Section 5 and in the Appendix, we exhibit two different proofs of (1.12): A first one relying on the properties
of the admissible layered deformations, and an alternative one exploiting a Reshetnyak’s lower semicontinu-
ity theorem (see, e.g., [2, Theorem 2.38]). The identification of E as the Γ-limit of the sequence (Eε)ε, though,
remains an open problem. Indeed, verifying the optimality of the lower bound in Theorem 1.2 is rather chal-
lenging, as it requires to approximate elements of A by means of sequences in Aε at least in the sense of
the strict convergence in BV. We refer to Remark 5.2 for a detailed discussion of the main difficulties. Even if
the requirement on the convergence of the energies is dropped, recovering the jumps of maps in the effective
domain of E under consideration of the non-standard differential inclusions in Aε is by itself another chal-
lenging problem. Solving this problem requires delicate geometrical constructions, which are currently not
available for all elements inA.

Yet, there are two subclasses of physically relevant deformations in A for which we can find suitable
approximations by sequences of admissible layered deformations. The precise statement is given in Theo-
rem 1.3 below.

The first of these two subclasses is A ∩ SBV<(Ω;ℝ2) (we refer to Section 2.3 for the definition of
SBV<(Ω;ℝ2)) whose jump sets are given by a union of finitely many lines. Heuristically, this subclass
describes deformations that break Ω horizontally into a finite number of pieces, which may get sheared
and rotated individually.
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Ω1

Ω2

Ω3

(b) u‖ ∈ A‖(a) u< ∈ A ∩ SBV<(Ω;ℝ2)

R1

R2

R3

u<(Ω1)

u<(Ω2)

u<(Ω3)
R

u‖(Ω1)

u‖(Ω2)

u‖(Ω3)

Figure 2: A typical deformation of a reference configuration Ω = Ω1 ∪ Ω2 ∪ Ω3 through maps in (a)A ∩ SBV<(Ω;ℝ2) and (b)A‖.

The second subclass is
A‖ := {u ∈ BV(Ω;ℝ2) : u(x) = Rx + ϑ(x2)Re1 + c for a.e. x ∈ Ω with

R ∈ SO(2), ϑ ∈ BV(aΩ , bΩ), and c ∈ ℝ2}. (1.13)

In comparisonwithA, functions inA‖ satisfy two additional constraints, namely the fact that the rotation
R is constant and that the jumps of functions in A‖ are parallel to Re1. With the notation A‖, we intend to
highlight the second feature. The intuition behind maps inA‖ are non-trivial macroscopic deformations that
(up to a global rotation) may make the material break along finite or infinitely many horizontal lines, induce
sliding of the pieces relative to each other, and cause horizontal shearing within each individual piece. For
an illustration of the two subclasses, see Figure 2.

Theorem 1.3 (Approximation of maps in (A ∩ SBV<) ∪A‖). Let Ω ⊂ ℝ2 be an x1-connected domain and let
u ∈ (A ∩ SBV<(Ω;ℝ2)) ∪A‖. Then, there exists a sequence (uε)ε ⊂ W1,1(Ω;ℝ2) such that uε ∈ Aε for every ε,
and uε

∗
⇀ u in BV(Ω;ℝ2).

As a first step towards proving Theorem 1.3, we establish an admissible piecewise affine approximation for
limiting deformations with a single jump line (see Lemma 4.5). The construction relies on the characteriza-
tion of rank-one connections inMe1 proved in [12, Lemma 3.1], with transition lines stretching over the full
width of Ω to avoid triple junctions (see Remark 4.6). In Propositions 4.7 and 4.9, we extend the arguments
toA ∩ SBV<(Ω;ℝ2) andA‖, respectively.

Problems in finite crystal plasticity without additional regularizations are generally known to be chal-
lenging because of the oscillations ofminimizing sequences arising as a byproduct of relaxationmechanisms
in the slip systems. This phenomenon is one of the main reasons why a full relaxation theory in finite crystal
plasticity is still missing (see [17, Remark 3.2]). In our setting, it hampers the full characterization of weak
limits of sequenceswithuniformlyboundedenergies. Theobservation that regularizations canhelpovercome
the above compensated-compactness issue (see also Remark 6.2) motivates the introduction of a penalized
version of our problem. After a higher-order penalization of the energy in the layer direction, we obtain the
following Γ-convergence result. The attained limit deformations are given by the classA‖.

Theorem 1.4 (Γ-convergence of the regularized energies). Let Ω ⊂ ℝ2 be an x1-connected domain andAε the
set introduced in (1.6). Fix p > 2 and δ > 0. For each ε > 0, let Eδε : L10(Ω;ℝ2)→ [0,∞] be the functional
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defined by

Eδε (u) :=
{{{
{{{
{

∫
Ω

|γ|dx + δ‖∂1u‖pW1,p(Ω;ℝ2) for u ∈ Aε,

∞ otherwise.
(1.14)

Then, the family (Eδε )ε Γ-converges with respect to the strong L1-topology to the functional Eδ : L10(Ω;ℝ2) →
[0,∞] given by

Eδ(u) :=
{{{
{{{
{

∫
Ω

|ϑ(x2)|dx + |Dsu|(Ω) + δ|Ω| for u ∈ A‖,

∞ otherwise,

where ϑ denotes the approximate differential of ϑ (cf. Section 2.2).

The penalization in (1.14) can be viewed in the spirit of non-simple materials [39, 40]. Working with stored
energy densities that depend on the Hessian of the deformations has proved successful in overcoming lack of
compactness in a variety of applications; see, e.g., [5, 21, 27, 36, 38]. Very recently, there has been an effort
towards weakening higher-order regularizations: It is shown in [7] that the full norm of the Hessian can be
replaced by a control of its minors (gradient polyconvexity) in the context of lockingmaterials; for solid-solid
phase transitions, an anisotropic second-order penalization is considered in [23]. Along these lines, we intro-
duce the regularized energies in (1.13) that penalize the variation of deformations only in the layer direction.
This is enough to deduce that the limiting rotation (as ε → 0) is global and that it determines the direction of
the limiting jump. In Section 6 and in the Appendix, we provide two alternative proofs of this result: A first
one relying on Alberti’s rank-one theorem (see Section 2.2) in combination with the approximation result in
Theorem 1.3, and a second one based on separate regularizations of the regular and the singular part of the
limiting maps, and inspired by [19, Lemma 3.2].

This paper is organized as follows. In Section 2.1, we collect a few preliminaries, including some back-
ground on (special) functions of bounded variation. Section 3 is devoted to the analysis of asymptotic rigidity
for layered structures in the setting of BV-functions. A characterization of limits of admissible layered defor-
mations is provided in Section 4. Eventually, Sections 5 and 6 contain the proof of a lower bound for the
homogenization problem without regularization (Theorem 1.2) and the full Γ-convergence analysis of the
regularized problem (Theorem 1.4), respectively.

2 Preliminaries

2.1 Notation

In this section, unless mentioned otherwise, Ω is a bounded domain in ℝN with N ∈ ℕ. Throughout the rest
of the paper, we assume mostly that N = 2.

We represent by LN the N-dimensional Lebesgue measure and byHN−1 the (N − 1)-dimensional Haus-
dorff measure. Whenever we write “a.e. in Ω”, we mean “almost everywhere in Ω” with respect to LN⌊Ω. To
simplify the notation, we often omit the expression “a.e. in Ω” in mathematical relations involving Lebesgue
measurable functions. Given a Lebesguemeasurable set B ⊂ ℝN , we also use the shorter notation |B| = LN(B)
for the Lebesguemeasure of B, while the characteristic function of B inℝN is denoted by𝟙B and takes values0
and 1.

The set SO(N) := {R ∈ ℝN×N : RRT = 𝕀, det R = 1}, where 𝕀 is the identity matrix in ℝN×N , consists of all
proper rotations. We recall that for N = 2, R ∈ SO(2) if and only if there is θ ∈ [−π, π) such that

R = [cos θ − sin θ
sin θ cos θ

] .
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For two vectors a, b ∈ ℝd, a ⊗ b := abT stands for their tensor product. If a = (a1, a2)T ∈ ℝ2, we set a⊥ :=
(−a2, a1)T .

We use the standard notation for spaces of vector-valued functions; namely, Lpμ(Ω;ℝd) with p ∈ [1,∞]
and a positive measure μ for Lp-spaces, W1,p(Ω;ℝd) with p ∈ [1,∞] for Sobolev spaces, C(Ω;ℝd) for the
space of continuous functions, C∞(Ω;ℝd) and C∞c (Ω;ℝd) for the spaces of smooth functions without and
with compact support, and C0,α(Ω;ℝd) with α ∈ [0, 1] for Hölder spaces. We denote by C0(Ω;ℝd) the space
of continuous functions that vanish on the boundary of Ω. Moreover,M(Ω;ℝd) is the space of finite vector-
valued Radon measures. In the case of scalar-valued functions and measures, we omit the codomain; for
instance, we write L1(Ω) instead of L1(Ω;ℝ).

The duality pairing between C0(Ω;ℝd) andM(Ω;ℝd) is represented by

⟨μ, ζ⟩ := ∫
Ω

ζ dμ,

and μ ⊗ ν denotes the product measure of two measures μ and ν.
Throughout thismanuscript, ε stands for a small (positive) parameter, and is usually thought of as taking

values on a positive sequence converging to zero.

2.2 Functions of bounded variation

Weadopt the standardnotations for the spaceBV(Ω;ℝd)of vector-valued functions of boundedvariation, and
refer the reader to [2] for a thorough treatment of this space. Here, we only recall some of its basic properties.

A function u ∈ L1(Ω;ℝd) is called a function of bounded variation, written u ∈ BV(Ω;ℝd), if its distribu-
tional derivative Du satisfies Du ∈M(Ω;ℝd×N). The space BV(Ω;ℝd) is a Banach space when endowed with
the norm ‖u‖BV(Ω;ℝd) := ‖u‖L1(Ω;ℝd) + |Du|(Ω), where |Du| ∈M(Ω) is the total variation of Du.

Let Dau and Dsu denote the absolutely continuous and the singular part of the Radon–Nikodym decom-
position of Du with respect to LN⌊Ω, and let Dju and Dcu be the jump and Cantor parts of Du. The following
chain of equalities holds:

Du = Dau + Dsu = ∇uLN⌊Ω + Dsu = ∇uLN⌊Ω + Dju + Dcu
= ∇uLN⌊Ω + (u+ − u−) ⊗ νuHN−1⌊Ju + Dcu, (2.1)

where ∇u is the approximate differential of u (that is, the density of Dau), u+ and u− are the approximate
one-sided limits at the jump points, Ju is the jump set of u, and νu is the normal to Ju (cf. [2, Chapter 3]).

Following [2, p. 186],we canexploit thepolar decompositionof ameasure and the fact that all parts of the
derivative of u in (2.1) are mutually singular to write Du = gu|Du| with a map gu ∈ L1|Du|(Ω;ℝd×N) satisfying
|gu| = 1 for |Du|-a.e. x ∈ Ω and

Dau = gu|Dau|, Dsu = gu|Dsu|, Dju = gu|Dju|, Dcu = gu|Dcu|.

Note that

gu(x) =
∇u(x)
|∇u(x)|

for LN -a.e. x ∈ Ω such that |∇u(x)| ̸= 0,

gu(x) =
u(x+) − u(x−)
|u(x+) − u(x−)|

⊗ νu(x) forHN−1-a.e. x ∈ Ju , (2.2)

gu(x) = ḡu(x) ⊗ nu(x) for |Dcu|-a.e. x ∈ Ω with suitable Borel maps ḡu : Ω → ℝd , nu : Ω → ℝN . (2.3)

The last equality relies on Alberti’s rank-one theorem (see [1]).
Let u ∈ BV(Ω;ℝd) and (uj)j∈ℕ ⊂ BV(Ω;ℝd) be a sequence. One says that (uj)j∈ℕ weakly* converges to

u in BV(Ω;ℝd), written uj
∗
⇀ u in BV(Ω;ℝd), if uj → u in L1(Ω;ℝd) and Duj

∗
⇀ Du in M(Ω;ℝd×N). The

sequence (uj)j∈ℕ is said to converge strictly to u in BV(Ω;ℝd), written uj
∗
→ u in BV(Ω;ℝd), if uj → u
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in L1(Ω;ℝd) and |Duj|(Ω)→ |Du|(Ω). We recall that strict convergence in BV(Ω;ℝd) implies weak∗ con-
vergence in BV(Ω;ℝd). Moreover, from every bounded sequence in BV(Ω;ℝd) one can extract a weakly*
convergent subsequence (see [2, Theorem 3.23]).

In the one-dimensional setting, i.e., for φ ∈ BV(a, b;ℝd)with Ω = (a, b) ⊂ ℝN and N = 1, we write φ in
place of ∇φ to denote the approximate differential of φ. Accordingly, we use the notation Du = φL1 + Dsφ
for the decomposition of the distributional derivative of φ with respect to the Lebesgue measure.

A function φ ∈ BV(a, b;ℝd) is called a jump or Cantor function if Dφ = Djφ or Dφ = Dcφ, respectively.
We denote the sets of all jump and Cantor functions by BV j(a, b;ℝd) and BVc(a, b;ℝd), respectively. As
shown in [2, Corollary 3.33], it is a special property of the one-dimensional setting that

BV(a, b;ℝd) = W1,1(a, b;ℝd) + BV j(a, b;ℝd) + BVc(a, b;ℝd). (2.4)

In this paper, two-dimensional functions of the form

u(x) = R(x2)x + ψ(x2) (2.5)

with x = (x1, x2) ∈ Q := (c, d) × (a, b) ⊂ ℝ2, where R ∈ BV(a, b; SO(2)) and ψ ∈ BV(a, b;ℝ2), play a funda-
mental role. Maps u as in (2.5) satisfy u ∈ BV(Ω;ℝ2). Denoting by D1u := Du ⊗ e1 and D2u := Du ⊗ e2, the
first and second columns of Du, respectively, we have for all ζ ∈ C0(Ω) that

⟨D1u, ζ⟩ = ∫
Ω

ζ(x)R(x2)e1 dx1 dx2,

⟨D2u, ζ⟩ = ∫
Ω

ζ(x)(R(x2)e2 + R(x2)x + ψ(x2))dx1 dx2 + ∫
Ω

ζ(x)x1 dx1 dDsR(x2)e1

+ ∫
Ω

ζ(x)x2 dx1 dDsR(x2)e2 + ∫
Ω

ζ(x)dx1 dDsψ(x2).

Hence, Du = Dau + Dsu with

Dau = (R + (Rx + ψ) ⊗ e2)L2⌊Ω,

Dsu = ((xTL1⌊(c, d)⊗DsRT)T + L1⌊(c, d)⊗Dsψ) ⊗ e2, (2.6)

where L1⌊(c, d)⊗DsRT and L1⌊(c, d)⊗Dsψ denote the restrictions to the Borel σ-algebra on Ω = Q of the
product measures between L1⌊(c, d) and DsRT and Dsψ, respectively.

We observe further that there exists θ ∈ BV(a, b; [−π, π]) such that

R = [cos θ − sin θ
sin θ cos θ

] and R = θ [− sin θ − cos θ
cos θ − sin θ

] , (2.7)

where the representation of R follows from the chain rule in BV; see, e.g., [2, Theorem 3.96].

2.3 Special functions of bounded variation

A function u ∈ BV(Ω;ℝd) is said to be a special function of bounded variation, written u ∈ SBV(Ω;ℝd), if the
Cantor part of its distributional derivative satisfies

Dcu = 0.

In particular, it holds for every u ∈ SBV(Ω;ℝd) that

Du = ∇uLN⌊Ω + (u+ − u−) ⊗ νuHN−1⌊Ju .

The space SBV(Ω;ℝd) is a proper subspace of BV(Ω;ℝd) (cf. [2, Corollary 4.3]).
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Next, we recall the definition of the space SBV∞(Ω;ℝd) of special functions of bounded variation with
bounded gradient and jump length, which is given by

SBV∞(Ω;ℝd) := {u ∈ SBV(Ω;ℝd) : ∇u ∈ L∞(Ω;ℝd×N) andHN−1(Ju) < +∞}. (2.8)

Dropping the L∞-bound on the gradient in (2.8) gives a larger subspace of SBV(Ω;ℝd), which we call
SBV<(Ω;ℝd); precisely,

SBV<(Ω;ℝd) := {u ∈ SBV(Ω;ℝd) : HN−1(Ju) < +∞}.

By [14, Lemma 1.11], every element u in SBV(Ω;ℝd) satisfying ∇u = 0 a.e. in Ω can be expressed with the
help of a Caccioppoli partition {Ei}i∈I ofΩwith index set I ⊂ ℕ (see, e.g., [2, Definition 4.16]) as u = ∑i∈I ai𝟙Ei
with suitable ai ∈ ℝd.

Finally, we introduce the space

PC(a, b;ℝd) = SBV∞(a, b;ℝd) ∩ {u ∈ BV(a, b;ℝd) : u = 0}
= SBV<(a, b;ℝd) ∩ {u ∈ BV(a, b;ℝd) : u = 0}, (2.9)

containing piecewise constant one-dimensional functions with values inℝd.

2.4 Geometry of the domain

In this subsection, we specify our main assumptions on the geometry of Ω, which, as mentioned in the
Introduction, will mostly be a bounded Lipschitz domain in ℝ2. Let us first recall from [13, Section 3] the
definitions of locally one-dimensional and one-dimensional functions.

Definition 2.1 (Locally one-dimensional functions in the e2-direction). LetΩ ⊂ ℝ2 be an open set. A function
f : Ω → ℝd is locally one-dimensional in the e2-direction if for every x ∈ Ω, there exists an open cuboidQx ⊂ Ω,
containing x and with sides parallel to the standard coordinate axes, such that for all y = (y1, y2) and all
z = (z1, z2) ∈ Qx,

f(y) = f(z) if y2 = z2. (2.10)

We say that f is (globally) one-dimensional in the e2-direction if (2.10) holds for every y, z ∈ Ω.

Analogous arguments to those in [13, Section 3] show that a function f ∈ BV(Ω;ℝd) satisfying D1f = 0
is locally one-dimensional in the e2-direction. The following geometrical requirement is the counterpart
of [13, Definitions 3.6 and 3.7] in our setting.

Definition 2.2 (x1-connectedness). We say that an open set Ω ⊂ ℝ2 is x1-connected if for every t ∈ ℝ, the set
{x2 = t} ∩ Ω is a (possibly empty) interval.

In what follows, we always assume that the set Ω ⊂ ℝ2 is an x1-connected domain. Under this geometri-
cal assumption, the notions of locally and globally one-dimensional functions in the e2-direction coincide.
We refer to [13, Section 3] for an extended discussion on the topic, as well as for some explicit geometrical
examples.

3 Asymptotic rigidity of layered structures in BV
In this section, we prove Theorem 1.1, which characterizes the asymptotic behavior of deformations of bilay-
ered materials that correspond to rigid body motions on the stiff layers, but do not experience any further
structural constraints on the softer layers. This qualitative result is not just limited to applications in crystal
plasticity, but can be useful for a larger class of layered composites where fracture may occur.

We start by introducing some notation. Assume that Ω ⊂ ℝ2 is an x1-connected domain. For ε > 0, let

Bε := {u ∈ W1,1(Ω;ℝ2) : ∇u ∈ SO(2) in εYrig ∩ Ω} (3.1)
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represent the class of layered deformations with rigid components, and let

B0 := {u ∈ BV(Ω;ℝ2) : there exists (uε)ε ⊂ W1,1(Ω;ℝ2) with uε ∈ Bε for all ε
such that uε

∗
⇀ u in BV(Ω;ℝ2)}

(3.2)

be the associated set of asymptotically attainable deformations.
We aim at proving thatB0 coincides with the set of asymptotically rigid deformations given by

B := {u ∈ BV(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω
with R ∈ BV(aΩ , bΩ; SO(2)) and ψ ∈ BV(aΩ , bΩ;ℝ2)},

(3.3)

cf. (1.1). This identity will be a consequence of Propositions 3.1 and 3.2 below.

Proposition 3.1 (Limiting behavior of maps inBε). Let Ω = (0, 1) × (−1, 1). Then,

B0 ⊂ B, (3.4)

whereB0 andB are the sets introduced in (3.2) and (3.3), respectively.

Proof. The proof is inspired by and generalizes ideas from [12, Proposition 2.1]. Let u ∈ B0. Then, there exists
a sequence (uε)ε ⊂ W1,1(Ω;ℝ2) satisfying ∇uε ∈ SO(2) a.e. in εYrig ∩ Ω for all ε, and uε

∗
⇀ u in BV(Ω;ℝ2).

Fix 0 < ε < 1, and let Iε := {i ∈ ℤ : (ℝ × ε(i − 1, i)) ∩ Ω ̸= 0}. For each i ∈ Iε, we define a strip, Piε, by
setting

Piε := (ℝ × ε[i − 1, i)) ∩ Ω.

Note that if i ∈ ℤ is such that |i| > 1 + ⌈1ε ⌉, then i ̸∈ Iε. Moreover, defining i
+
ε := max Iε and i−ε := min Iε, then

(i) for i−ε < i < i+ε , Piε is the union of two neighboring connected components of εYrig ∩ Ω and εYsoft ∩ Ω,
(ii) we may have εYsoft ∩ P

i−ε
ε = 0 or εYrig ∩ P

i+ε
ε = 0.

From Reshetnyak’s theorem, we infer that on each nonempty rigid layer εYrig ∩ Piε with i ∈ Iε, the gradi-
ent ∇uε is constant and coincides with a rotation Riε ∈ SO(2). Moreover, there exists biε ∈ ℝ2 such that
uε(x) = Riεx + biε in εYrig ∩ Piε.

Using these rotations Riε, we define a piecewise constant function, Σε : (−1, 1)→ ℝ2×2, by setting

Σε(t) = ∑
i∈Iε

Riε𝟙ε[i−1,1)(t) for t ∈ (−1, 1),

where Ri
+
ε
ε := Ri

+
ε −1
ε if εYrig ∩ P

i+ε
ε = 0.We claim that there exist a subsequence of (Σε)ε, whichwe do not relabel,

and a function R ∈ BV(−1, 1; SO(2)) such that

Σε → R in L1(−1, 1;ℝ2×2). (3.5)

To prove (3.5), we first observe that the total variation of the one-dimensional function Σε coincides with
its pointwise variation, and can be calculated to be

|DΣε|(−1, 1) = ∑
i∈Iε\{i−ε }
|Riε − Ri−1ε | = √2 ∑

i∈Iε\{i−ε }
|Riεe1 − Ri−1ε e1|. (3.6)

Next, we show that the right-hand side of (3.6) is uniformly bounded. By linear interpolation in the
x2-direction on the softer layers, it follows for all i ∈ Iε\{i−ε } if εYrig ∩ P

i+ε
ε ̸= 0 and i ∈ Iε\{i±ε } if εYrig ∩ P

i+ε
ε = 0

that

∫

εYsoft∩Piε

|∇uεe2|dx =
1

∫
0

ε(i−1+λ)

∫
ε(i−1)

|∂2uε(x1, x2)|dx2 dx1

≥
1

∫
0

|uε(x1, ε(i − 1 + λ)) − uε(x1, ε(i − 1))|dx1

=
1

∫
0

|(Riεe1 − Ri−1ε e1)x1 + diε|dx1 ≥
1
4 |R

i
εe1 − Ri−1ε e1|, (3.7)
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where diε ∈ ℝ2. The first estimate is a consequence of Jensen’s inequality, and optimization over translations
yields the second one. To be more precise, the last estimate in (3.7) is based on the observation that for any
given a ∈ ℝ2\{0},

min
b∈ℝ2

1

∫
0

|ta + b|dt = min
α, β∈ℝ

1

∫
0

|(t + α)a + βa⊥|dt = |a|min
α∈ℝ

1

∫
0

|t + α|dt = |a|4 .

From (3.6) and (3.7), since (uε)ε ⊂ W1,1(Ω;ℝ2) as a weakly∗ converging sequence is uniformly bounded
in BV(Ω;ℝ2), and recalling that Ri

+
ε
ε = R

i+ε −1
ε if εYrig ∩ P

i+ε
ε = 0, we conclude that

|DΣε|(−1, 1) ≤ 4√2∫
Ω

|∇uε|dx ≤ C. (3.8)

The convergence in (3.5) follows now from the weak∗ relative compactness of bounded sequences in
BV(−1, 1;ℝ2×2) (see Section 2.2), together with the fact that the set of integrable SO(2)-valued functions is
closedwith respect to strong L1-convergence. The latter guarantees that the limit function R ∈BV(−1, 1;ℝ2×2)
takes values only in SO(2).

Next, we show that there is ψ ∈ BV(−1, 1;ℝ2) such that

u(x) = R(x2)x + ψ(x2) (3.9)

for a.e. x ∈ Ω, which implies that u ∈ B and concludes the proof. To this end, we define auxiliary functions
σε, bε ∈ L∞(Ω;ℝ2) for ε > 0 by setting

σε(x) = ∑
i∈Iε
(Riεx)𝟙Piε (x) and bε(x) = ∑

i∈Iε
biε𝟙Piε (x)

for x ∈ Ω, where Ri
+
ε
ε := Ri

+
ε −1
ε and bi

+
ε
ε := bi

+
ε −1
ε if εYrig ∩ P

i+ε
ε = 0. Further, let wε := σε + bε.

By Poincaré’s inequality applied in the x2-direction, we obtain

∫
Ω

|uε − wε|dx = ∑
i∈Iε

εYsoft∩Piε ̸=0

1

∫
0

min{ε(i−1+λ),1}

∫
max{ε(i−1),−1}

|uε − wε|dx2 dx1

≤ ελ ∑
i∈Iε
∫

εYsoft∩Piε

|∂2uε − Riεe2|dx ≤ ελ(‖uε‖W1,1(Ω;ℝ2) + |Ω|) ≤ Cε.

Consequently,
wε → u in L1(Ω;ℝ2). (3.10)

Moreover, for x ∈ Ω,

|σε(x) − R(x2)x| ≤

∑
i∈Iε
(Riε − R(x2))𝟙Piε (x)


|x| ≤ √2|Σε(x2) − R(x2)|,

which, together with (3.5), proves that

σε → σ in L1(Ω;ℝ2), (3.11)

where σ(x) := R(x2)x ∈ BV(Ω;ℝ2).
Finally, exploiting (3.10) and (3.11), we conclude that there exists b ∈ BV(Ω;ℝ2) such that bε → b

in L1(Ω;ℝ2). In view of the one-dimensional character of the stripes Piε, we infer that ∂1b = 0. Eventually,
identifying b with a function ψ ∈ BV(−1, 1;ℝ2) yields (3.9).

Next, we prove that the converse inclusion of (3.4) holds. In the following, let Irig be the projection of Yrig onto
the second component; that is, Irig corresponds to the 1-periodic extension of the interval [λ, 1). Analogously,
we write Isoft for the 1-periodic extension of [0, λ).
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Proposition 3.2 (Approximation of maps inB). Let Ω = (0, 1) × (−1, 1). Then,

B0 ⊃ B. (3.12)

Here,B0 andB are the sets from (3.2) and (3.3), respectively.

Proof. Let u ∈ B, and let R ∈ BV(−1, 1; SO(2)) and ψ ∈ BV(−1, 1;ℝ2) be such that

u(x) = R(x2)x + ψ(x2)

for a.e. x ∈ Ω. Using Lemma 3.3 below, as well as the fact that strict convergence implies weak∗ convergence
in BV, we construct sequences (Rε)ε ⊂ W1,∞(−1, 1; SO(2)) and (ψε)ε ⊂ W1,∞(−1, 1;ℝ2) such that

Rε = 0 on εIrig ∩ (−1, 1) and ψε = 0 on εIrig ∩ (−1, 1), (3.13)

Rε
∗
⇀ R in BV(−1, 1;ℝ2×2) and ψε

∗
⇀ ψ in BV(−1, 1;ℝ2). (3.14)

Define uε(x) := Rε(x2)x + ψε(x2) for x ∈ Ω. Then, uε ∈ W1,∞(Ω;ℝ2) for every ε, with

∇uε(x) = Rε(x2) + Rε(x2)x ⊗ e2 + ψε(x2) ⊗ e2

for a.e. x ∈ Ω. In particular, ∇uε = Rε ∈ SO(2) a.e. in εYrig ∩ Ω by (3.13); hence, uε ∈ Bε. Moreover, we
have supε ‖∇uε‖L1(Ω;ℝ2×2) <∞ and uε → u in L1(Ω;ℝ2) by (3.14), from which we conclude that uε

∗
⇀ u

in BV(Ω;ℝ2). This completes the proof.

The next lemma states a one-dimensional approximation result of BV-maps by Lipschitz functions that are
constant on εIrig, which was an important ingredient in the previous proof.

Lemma 3.3 (One-dimensional approximation by maps constant on εIrig). Let I = (a, b)⊂ℝandw ∈BV(I;ℝd).
Then, there exists a sequence (wε)ε ⊂ W1,∞(I;ℝd) with the following three properties:
(i) wε → w in L1(I;ℝd),
(ii) ∫I |w


ε|dt → |Dw|(I),

(iii) wε = 0 on εIrig ∩ I.
If R ∈ BV(I; SO(2)), then there exists a sequence (Rε)ε ⊂ W1,∞(I; SO(2)) such that Rε

∗
⇀ R in BV(I; SO(2)) and

Rε = 0 on εIrig ∩ I.

Proof. Letw ∈ BV(I;ℝd). By [2, Theorem3.9, Remark 3.22],w can be approximated by a sequence of smooth
functions (vδ)δ ⊂ C∞( ̄I;ℝd) in the sense of strict convergence in BV; that is,

vδ → w in L1(I;ℝd) and ∫
I

|vδ|dt → |Dw|(I) (3.15)

as δ → 0. To obtain property (iii), wewill reparametrize vδ so that it is stopped on the set εIrig and accelerated
otherwise, and eventually apply a diagonalization argument.

We start by introducing for every ε > 0 a Lipschitz function φε : ℝ→ ℝ defined by

φε(t) :=
{{
{{
{

1
λ
(t − iε) + iε if iε ≤ t ≤ iε + λε,

(i + 1)ε if iε + λε ≤ t < ε(i + 1),

for each i ∈ ℤ and t ∈ ε[i, i + 1). For all t ∈ ℝ, we have t ≤ φε(t) ≤ t + ε(1 − λ) and φε(t) = ψ( tε ), where ψ is
the 1-periodic function such that ψ(t) = 1

λ if 0 ≤ t ≤ λ, and ψ(t) = 0 if λ < t < 1. By the Riemann–Lebesgue
lemma on weak convergence of periodically oscillating sequences, it follows that ψ( ⋅ε )

∗
⇀ 1 in L∞(ℝ). Thus,

φε
∗
⇀ φ inW1,∞(ℝ), where φ(t) := t. In particular, φε converges uniformly to φ inℝ.
Next, we define for ε > 0 sufficiently small a Lipschitz function φ̃ε : ̄I → ̄I by setting

φ̃ε(t) :=
{
{
{

φε(t) if a ≤ t ≤ bε ,
b if bε ≤ t ≤ b,
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where bε ∈ (a, b] is such that φε(bε) = b. Note that by the definition of φε, there exists at least one such bε
provided that 0 < ε < b−a1−λ . We claim that bε → b as ε → 0. In fact, extracting a subsequence if necessary, we
have bε → c for some c ∈ [a, b]. Then,

|b − c| = |φε(bε) − φ(c)| ≤ |φε(bε) − φε(c)| + |φε(c) − φ(c)| ≤ 1
λ |bε − c| + |φε(c) − φ(c)|,

from which we infer that b = c by letting ε → 0. Because the limit does not depend on the subsequence,
the whole sequence (bε)ε converges to b. Consequently, we have φ̃ε(t)→ φ(t) = t for all t ∈ ̄I, and since also
‖φ̃ε‖W1,∞(I) = O(1) as ε → 0, we deduce that

φ̃ε
∗
⇀ φ inW1,∞(I) and ‖φ̃ε − φ‖L∞(I) → 0. (3.16)

Finally, we set wε,δ := vδ ∘ φ̃ε ∈ W1,∞(I;ℝd), and observe that

‖wε,δ − w‖L1(I;ℝd) ≤ ‖vδ ∘ φ̃ε − vδ‖L1(I;ℝd) + ‖vδ − w‖L1(I;ℝd) and ∫
I

|wε,δ|dt = ∫
I

|vδ ∘ φ̃ε| φ̃

ε dt.

Hence, by (3.15), (3.16), the boundedness of each vδ and vδ, and a weak-strong convergence argument, it
follows that

lim
δ→0

lim
ε→0
‖wε,δ − w‖L1(I;ℝd) = 0, (3.17)

lim
δ→0

lim
ε→0
∫
I

|wε,δ|dt = limδ→0
∫
I

|vδ ∘ φ|φ
 dt = lim

δ→0
∫
I

|vδ|dt = |Dw|(I). (3.18)

In view of (3.17) and (3.18), we apply Attouch’s diagonalization lemma [4] to find a sequence (wε)ε ⊂
W1,∞(I;ℝd) with wε := wε,δ(ε) satisfying (i) and (ii). We observe further that each wε satisfies (iii) by con-
struction.

To conclude, we address the issue of constraint-preserving approximations for R ∈ BV(I; SO(2)). In
this case, we define θ(t) := arccos (R(t)e1 ⋅ e1) for every t ∈ I. By the regularity of R, it follows directly that
θ ∈ BV(I). Applying to θ the construction described in the first part of the proof, we identify a sequence
(θε)ε ⊂ W1,∞(I), satisfying
(i*) θε → θ in L1(I),
(ii*) ∫I |θ


ε|dt → |Dθ|(I),

(iii*) θε = 0 on εIrig ∩ I.
For every ε > 0, we consider the map

Rε := [
cos(θε) − sin(θε)
sin(θε) cos(θε)

] .

The regularity of Rε as well as the property that Rε = 0 on εIrig ∩ I follow by the regularity of θε and by (iii*).
The weak∗ convergence in BV is a consequence of the bound ∫I |R


ε|dt ≤ ∫I |θ


ε|dt, and of the observation that

Rε → R strongly in L1(I; SO(2)) by (i*) and by the Lipschitz regularity of cos( ⋅ ) and sin( ⋅ ).

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. In view of the discussion on locally and globally one-dimensional functions in Sec-
tion 2.4, it suffices to prove the statement on rectangles with sides parallel to the axes. A simple modification
of the proofs of Propositions 3.1 and 3.2 shows that these results hold for any such rectangle. Then, Theo-
rem 1.1 follows by extension and exhaustion arguments in the spirit of [13, Lemma A.2].

Remark 3.4 (The higher-dimensional setting). We point out that the results of Theorem 1.1 continue to hold
for domains Ω ⊂ ℝN , N ∈ ℕ, satisfying the flatness and cross-connectedness assumptions in [13, Defini-
tions 3.6 and 3.7]. We omit the proof here as it follows from that of Theorem 1.1 up to minor adaptations.
Notice in particular that [12, Lemma A1] provides a higher-dimensional version of (3.7). Moreover, the one-
dimensional approximation in Lemma 3.3 for R ∈ BV(I; SO(N)) can be proved by replacing the density argu-
ment leading to (3.15) by its analogue for BV-functions with values on manifolds, see [28, Theorem 1.2].
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In fact, by [28, Theorem 1.2], we find a sequence (Sδ)δ ∈ C∞(I; SO(N)) satisfying (3.15) with ETV(R) in place
of |DR|(I), whereETV(R) stands for a certain total variation of R that takes into account themanifold structure,
andwe refer to [28] for its the precise definition. On the other hand, an appropriate truncation of φ̃ε near t = a
and t = b, whichwe do not relabel, leads to a function φ̃εmapping I into I and satisfying (3.16). In particular,
Rε,δ := Sδ ∘ φ̃ε ∈ W1,∞(I; SO(N)), and a similar diagonalization argument as in Lemma 3.3 yields a sequence
(Rε)ε ⊂ W1,∞(I; SO(N)) that converges to R weakly∗ in BV(I;ℝN×N) and satisfies Rε = 0 on εIrig ∩ I.

We conclude this section by characterizing two special subsets of B (see (3.3)), which will be useful in the
following. Using (2.6), it can be checked that

B ∩W1,1(Ω;ℝ2) = {u ∈ W1,1(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω,
with R ∈ W1,1(aΩ , bΩ; SO(2)) and ψ ∈ W1,1(aΩ , bΩ;ℝ2)} (3.19)

and

B ∩ SBV(Ω;ℝ2) = {u ∈ SBV(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω,
with R ∈ SBV(aΩ , bΩ; SO(2)) and ψ ∈ SBV(aΩ , bΩ;ℝ2)}. (3.20)

By definition, and accounting for the fact that R takes values in SO(2), the jump set of u ∈ B ∩ SBV(Ω;ℝ2)
is related to the jump sets of R and ψ via

Ju = [(cΩ , dΩ) × (JR ∪ Jψ)] ∩ Ω,

cf. (1.2).

4 Asymptotic behavior of admissible layered deformations
In this section, we prove Theorem 1.3, which characterizes the asymptotic behavior of deformations of bilay-
ered materials that coincide with rigid body rotations on the stiffer layers, and are subject to a single slip
constraint on the softer layers. The latter is described with the help of the set

Me1 = {F ∈ ℝ2×2 : det F = 1 and |Fe1| = 1}
= {F ∈ ℝ2×2 : F = R(𝕀 + γe1 ⊗ e2) with R ∈ SO(2) and γ ∈ ℝ}.

(4.1)

As in the previous section,we considerΩ = (0, 1) × (−1, 1) for simplicity. The results for general x1-connected
domains follow as in the proof of Theorem 1.1.

Using the representations ofMe1 in (4.1) and recalling the setsBε introduced in (3.1), the sets of admis-
sible layered deformations defined in (1.6) admit the equivalent representations

Aε = Bε ∩ {u ∈ W1,1(Ω;ℝ2) : ∇u ∈Me1 a.e. in Ω}
= {u ∈ W1,1(Ω;ℝ2) : ∇u = R(𝕀 + γe1 ⊗ e2) with R ∈ L∞(Ω; SO(2)) and

γ ∈ L1(Ω) such that γ = 0 in εYrig ∩ Ω}. (4.2)

In the sequel, according to the context, we will always adopt the most convenient representation.
In analogy withB0 defined in (3.2), we introduce the set

A0 := {u ∈ BV(Ω;ℝ2) : there exists (uε)ε ⊂ W1,1(Ω;ℝ2) with uε ∈ Aε for all ε
such that uε

∗
⇀ u in BV(Ω;ℝ2)}

(4.3)

of asymptotically admissible deformations. We aim at characterizing A0, or suitable subclasses thereof, in
terms of the setA introduced in (1.11). Note that

A = B ∩ {u ∈ BV(Ω;ℝ2) : det∇u = 1 a.e. in Ω}, (4.4)

whereB is givenby (3.3).Moreover, recalling thenotation for the distributional derivative of one-dimensional
BV-functions discussed in Section 2.2, we can equivalently expressA as follows.
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Proposition 4.1. Let Ω = (0, 1) × (−1, 1). Then,A from (1.11) admits the following two alternative representa-
tions:

A = {u ∈ BV(Ω;ℝ2) : ∇u(x) = R(x2)(𝕀 + γ(x2)e1 ⊗ e2) for a.e. x ∈ Ω, with R ∈ BV(−1, 1; SO(2))
such that R = 0 a.e. in (−1, 1), γ ∈ L1(−1, 1), and (Dsu)e1 = 0}

(4.5)

and

A = {u ∈ BV(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω, with R ∈ BV(−1, 1; SO(2))
and ψ ∈ BV(−1, 1;ℝ2) such that ψ ⋅ Re2 = 0 and R = 0 a.e. in (−1, 1)}.

(4.6)

Proof. Let Ã and Â denote the sets on the right-hand side of (4.5) and (4.6), respectively. We will show that
A ⊂ Ã ∩ Â, Â ⊂ A, and Ã ⊂ Â, from which (4.5) and (4.6) follow.

We start by proving thatA ⊂ Ã ∩ Â. Fix u ∈ A. Due to (2.6), we have (Dsu)e1 = 0 and

∇u = R + (Rx + ψ) ⊗ e2 = R(𝕀 + RT(Rx + ψ) ⊗ e2). (4.7)

We first observe that the condition det∇u = 1 becomes

1 + RT(Rx + ψ) ⋅ e2 = 1

or, equivalently,
(Rx + ψ) ⋅ Re2 = 0.

This condition, together with the independence of R, R, and ψ on x1, yields

Re1 ⋅ Re2 = 0 and (x2Re2 + ψ) ⋅ Re2 = 0. (4.8)

Let θ ∈BV(−1, 1; [−π, π]) be as in (2.7). Then, the first condition in (4.8) gives θ = 0; consequently, also
R = 0. Thus, the second equation in (4.8) becomesψ ⋅Re2 = 0, which shows that u ∈ Â. Moreover,ψ ⋅Re2 = 0
is equivalent to RTψ ⋅ e2 = 0; hence, u ∈ Ã with γ := Re1 ⋅ ψ. Thus,A ⊂ Ã ∩ Â.

Next, we observe that if u ∈ Â, then, using (4.7), we have

det∇u = 1 + RT(Rx + ψ) ⋅ e2 = 1 + RTψ ⋅ e2 = 1 + ψ ⋅ Re2 = 1.

Hence, u ∈ A, which shows that Â ⊂ A.
Finally, we prove that Ã ⊂ Â. Let u ∈ Ã. Then, (Du)e1 = (∇u)e1L2⌊Ω + (Dsu)e1 = Re1L2⌊Ω. By this iden-

tity and the Du Bois–Reymond lemma (see [32], for instance), we can find ϕ ∈ BV(−1, 1;ℝ2) such that

u(x) = R(x2)x1e1 + ϕ(x2).

In particular, ∇u(x) = R(x2)e1 ⊗ e1 + (R(x2)x1e1 +ϕ(x2))⊗ e2 = R(x2)e1 ⊗ e1 +ϕ(x2)⊗ e2, considering that
R = 0. Consequently, using the expression for ∇u given by the definition of Ã, together with the indepen-
dence of R, γ, and ϕ on x1, we conclude that

ϕ = Re2 + γRe1.

Finally, set ψ(x2) := ϕ(x2) − R(x2)x2e2 for x2 ∈ (−1, 1). Then, we have ψ ∈ BV(−1, 1;ℝ2), which satisfies
ψ ⋅ Re2 = γRe1 ⋅ Re2 = 0, because R ∈ SO(2) in (−1, 1), and also u(x) = R(x2)x + ψ(x2). Thus, u ∈ Â, which
implies Ã ⊂ Â.

The following lemma onweak continuity of Jacobian determinants for gradients inW1,1(Ω;ℝ2)with suitable
additional properties will be instrumental in the proof of the inclusionA0 ⊂ A.

Lemma 4.2 (Weak continuity properties of Jacobian determinants). Suppose that Ω ⊂ ℝ2 is a bounded Lip-
schitz domain, and let (uε)ε ⊂ W1,1(Ω;ℝ2) be a uniformly bounded sequence satisfying det∇uε = 1 a.e. in Ω
for all ε and

‖∂1uε‖L∞(Ω;ℝ2) ≤ C, (4.9)

where C is a positive constant independent of ε. If uε → u in L1(Ω;ℝ2) for some u ∈ BV(Ω;ℝ2), then det∇u = 1
a.e. in Ω.
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Proof. The claim in Lemma 4.2 would be an immediate consequence of [26, Theorem 2] if in place of (4.9),
we required

(adj∇uε)ε ⊂ L2(Ω;ℝ2×2), (4.10)

which, because of the structure of the adjoint matrix in this two-dimensional setting, is equivalent to
∇uε ∈ L2(Ω;ℝ2×2) for all ε. Even though we are not assuming this here, it is still possible to validate the
arguments of [26, Proof of Theorem 2] in our context, as we detail next.

Since |adj∇uε| = |∇uε|, it can be checked that in order to mimic the proof of [26, Theorem 2] with N = 2,
we are only left to prove the following: If (φj)j∈ℕ is a sequence of standard mollifiers and Ω is an arbitrary
open set compactly contained in Ω, then (det∇uε,j)j∈ℕ converges to det∇uε in L1(Ω) as j →∞ for all ε,
where uε,j := φj ∗ uε.

In Step 4 of the proof of [26, Theorem2], this convergence is a consequence of theVitali–Lebesgue lemma
using (4.10), the bound |det A| ≤ |adj A|2 for all A ∈ ℝ2×2 (see [26, (7)]), and well-known properties of molli-
fiers. Here, similar arguments can be invoked, but instead of the estimate |det A| ≤ |adj A|2 for A ∈ ℝ2×2, we
use the fact that (4.9) yields

|det∇uε,j| = |(∂1uε,j)⊥ ⋅ ∂2uε,j| ≤ C|∂2uε,j| ≤ C|∇uε,j|

a.e. in Ω. Hence, since uε,j → uε in W1,1(Ω;ℝ2) and pointwise a.e. in Ω as j →∞, we conclude that
(det∇uε,j)j∈ℕ converges to det∇uε in L1(Ω) as j →∞ for all ε by the Vitali–Lebesgue lemma.

We obtain from the following proposition that weak∗ limits of sequences inAε belong toA.

Proposition 4.3 (Asymptotic behavior of sequences inAε). Let Ω = (0, 1) × (−1, 1). Then,

A0 ⊂ A, (4.11)

whereA0 andA are the sets introduced in (4.3) and (1.11), respectively.

Proof. The statement follows from the inclusion Aε ⊂ Bε (see (4.2)) and the identity (4.4) in conjunc-
tion with Proposition 3.1 and Lemma 4.2, observing that the condition ∇uε ∈Me1 a.e. in Ω guarantees
|∂1uε| = |∇uεe1| = 1 a.e. in Ω, and hence ‖∂1uε‖L∞(Ω;ℝ2) = 1 for any ε.

The question whether the setA can be further identified as limiting set for sequences inAε, namely, whether
the equality A0 = A is true, cannot be answered at this point. However, as stated in Theorem 1.3, the
inclusions A0 ⊃ A ∩ SBV<(Ω;ℝ2) and A0 ⊃ A‖ hold. Before proving these inclusions, we discuss a further
characterization of some special subsets ofA.

Remark 4.4 (Structure of subsets ofA). Similarly to (3.19) and (3.20), using fine properties of one-dimen-
sional BV-functions, the setsA ∩W1,1(Ω;ℝ2),A ∩ SBV(Ω;ℝ2),A ∩ SBV<(Ω;ℝ2), andA ∩ SBV∞(Ω;ℝ2) can
be characterized as follows.

(a) In view of (2.6) and (4.6), one observes that

A ∩W1,1(Ω;ℝ2) = {u ∈ W1,1(Ω;ℝ2) : u(x) = Rx + θ(x2)Re1 + c for a.e. x ∈ Ω,
with R ∈ SO(2), θ ∈ W1,1(−1, 1), c ∈ ℝ2}

= {u ∈ W1,1(Ω;ℝ2) : ∇u(x) = R(𝕀 + γ(x2)e1 ⊗ e2) for a.e. x ∈ Ω,
with R ∈ SO(2), γ ∈ L1(−1, 1)}.

Additionally, as a consequence of the construction of the recovery sequence in the Γ-convergence homoge-
nization result of [12], we also know that

A ∩W1,1(Ω;ℝ2) = {u ∈ W1,1(Ω;ℝ2) : there exists (uε)ε ⊂ W1,1(Ω;ℝ2) with uε ∈ Aε for all ε
such that uε ⇀ u inW1,1(Ω;ℝ2)}.

To see this, it suffices to follow Step 2 in the proof of [12, Theorem 4.1], replacing the spaces involving square
integrable functions by their counterparts with integrable functions.
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(b) Using (2.6) and (4.6) once more, we have

A ∩ SBV(Ω;ℝ2) = {u ∈ SBV(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω,
with R ∈ SBV(−1, 1; SO(2)) and ψ ∈ SBV(−1, 1;ℝ2)
such that R = 0 and ψ ⋅ Re2 = 0 a.e. in (−1, 1)}.

Note that both JR and Jψ are given by an at most countable union of points in (−1, 1), which implies that
Ju consists of at most countably many segments parallel to e1. It is not possible to conclude that the func-
tions R are piecewise constant according to [2, Definition 4.21], as we have, a priori, no control on H0(JR)
(cf. [2, Example 4.24]).

(c) With (b) and recalling (2.9), it follows that

A ∩ SBV<(Ω;ℝ2) = {u ∈ SBV<(Ω;ℝ2) : u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω,
with R ∈ PC(−1, 1; SO(2)) and ψ ∈ SBV<(−1, 1;ℝ2)
such that ψ ⋅ Re2 = 0 a.e. in (−1, 1)}.

(4.12)

Here, both JR and Jψ are finite sets of points in (−1, 1), and Ju is given by a finite union of segments parallel
to e1. Alternatively, one can expressA ∩ SBV<(Ω;ℝ2)with the help of a finite Caccioppoli partition of Ω into
finitely many horizontal strips; precisely,

A ∩ SBV<(Ω;ℝ2) = {u ∈ SBV<(Ω;ℝ2) : ∇u|Ei = Ri(𝕀 + γie1 ⊗ e2), with {Ei}ni=1 a partition of Ω
such that Ei = (ℝ × Ii) ∩ Ω with Ii ⊂ (−1, 1) for i = 1, . . . , n,
Ri ∈ SO(2) and γi ∈ L1(Ei) with ∂1γi = 0 for i = 1, . . . , n,
and Ju = ⋃ni=1(∂Ei) ∩ Ω}

(4.13)

or

A ∩ SBV<(Ω;ℝ2) = {u ∈ SBV<(Ω;ℝ2) : u = ∑ni=1 gi𝟙Ei , where {Ei}ni=1 is a partition of Ω such that,
for each i = 1, . . . , n, Ei = (ℝ × Ii) ∩ Ω with Ii ⊂ (−1, 1),
and gi ∈ W1,1(Ei;ℝ2) is such that ∇gi = Ri(𝕀 + γie1 ⊗ e2)
for some Ri ∈ SO(2) and γi ∈ L1(Ei) with ∂1γi = 0}.

(4.14)

The same equality as (4.12) holds replacing SBV< by SBV∞. Analogously, (4.13) holds if we replace SBV<
by SBV∞ and take γi ∈ L∞(Ei). Also, (4.14) holds if we replace SBV< by SBV∞ and take gi ∈ W1,∞(Ei;ℝ2)
and γi ∈ L∞(Ei).

In the following lemma, we construct an admissible piecewise affine approximation for basic limit defor-
mations in A ∩ SBV∞(Ω;ℝ2) with a non-trivial jump along the horizontal line at x2 = 0. Based on this
construction, we will then establish the inclusionA0 ⊃ A ∩ SBV<(Ω;ℝ2) in Proposition 4.7 below.

Lemma 4.5 (Approximation of maps inA ∩ SBV∞ with a single jump). Let Ω = (0, 1) × (−1, 1), and suppose
that u ∈ A ∩ SBV∞(Ω;ℝ2) is such that u(x) = R(x2)x + ψ(x2) for a.e. x ∈ Ω, where

R(t) :=
{
{
{

R+ if t ∈ [0, 1),
R− if t ∈ (−1, 0),

and ψ(t) :=
{
{
{

ψ+ if t ∈ [0, 1),
ψ− if t ∈ (−1, 0),

for t ∈ (−1, 1),

with some R± ∈ SO(2) and ψ± ∈ ℝ2. Then, there exists a sequence (uε)ε ⊂ W1,1(Ω;ℝ2) with ∫Ω uε dx = ∫Ω u dx
and uε ∈ Aε for all ε, and such that uε

∗
⇀ u in BV(Ω;ℝ2).

Proof. We start by observing that for u as in the statement of the lemma, there holds

Du = RL2⌊Ω + [(R+ − R−)e1x1 + (ψ+ − ψ−)] ⊗ e2H1⌊((0, 1) × {0}). (4.15)

Let S ∈ SO(2) be such that
(i) S ̸= R±,
(ii) Se1 and R+e1 are linearly independent,
(iii) θ± ∈ (−π, π) \ {0} is the rotation angle of STR±, cf. (2.7).
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0

ελ
4

ελ
2

3ελ
4

ελ

0 1

R−(𝕀 + μ−ε e1 ⊗ e2)
S(𝕀 + μ̃−ε e1 ⊗ e2)

S(𝕀 + γ−ε e1 ⊗ e2)

S(𝕀 + μ̃+ε e1 ⊗ e2)
R+(𝕀 + μ+ε e1 ⊗ e2)

R+(𝕀 + γ+ε e1 ⊗ e2)

R+

R−

Figure 3: Construction of Vε.

Due to (ii), there exist α, β ∈ ℝ such that

ψ+ − ψ− = αR+e1 + βSe1. (4.16)

For each ε > 0, set

γ+ε :=
4α
ελ

, γ−ε :=
4β
ελ

, μ±ε := ±
4
ελ
+ tan( θ

±

2 ), μ̃±ε := ±
4
ελ
− tan( θ

±

2 ),
(4.17)

and let Vε ∈ L1(Ω;ℝ2×2) be the function defined by

Vε(x) =

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

R+ if x ∈ (0, 1) × (ελ, 1),
R+(𝕀 + γ+ε e1 ⊗ e2) if x ∈ (0, 1) × (3ελ4 , ελ),
R+(𝕀 + μ+ε e1 ⊗ e2) if x1 ∈ (0, 1) and x2 ∈ (− ελ4 x1 +

3ελ
4 , 3ελ4 ),

S(𝕀 + μ̃+ε e1 ⊗ e2) if x1 ∈ (0, 1) and x2 ∈ ( ελ2 , −
ελ
4 x1 +

3ελ
4 ),

S(𝕀 + γ−ε e1 ⊗ e2) if x ∈ (0, 1) × ( ελ4 ,
ελ
2 ),

S(𝕀 + μ̃−ε e1 ⊗ e2) if x1 ∈ (0, 1) and x2 ∈ ( ελ4 x1,
ελ
4 ),

R−(𝕀 + μ−ε e1 ⊗ e2) if x ∈ (0, 1) and x2 ∈ (0, ελ4 x1),
R− if x ∈ (0, 1) × (−1, 0),

(4.18)

see Figure 3.
By construction, each function Vε takes values only in Me1 , and its piecewise definition is chosen

such that neighboring matrices in Figure 3 are rank-one-connected along their separating lines according
to [12, Lemma 3.1]. Hence, there exists a Lipschitz function uε ∈ W1,∞(Ω;ℝ2) such that∇uε = Vε. By adding
a suitable constant, we may assume that

∫
Ω

uε dx = ∫
Ω

u dx.

In view of the Poincaré–Wirtinger inequality and (4.18), (uε)ε is a uniformly bounded sequence in
W1,1(Ω;ℝ2) satisfying uε ∈ Aε for all ε (cf. (4.2)).

To prove that uε
∗
⇀ u in BV(Ω;ℝ2), it suffices to show that

Duε
∗
⇀ Du inM(Ω;ℝ2×2), (4.19)

or, equivalently, in view of (4.15), that for every φ ∈ C0(Ω;ℝ2),

lim
ε→0
∫
Ω

∇uε(x)φ(x)dx = ∫
Ω

R(x2)φ(x)dx +
1

∫
0

[(R+ − R−)e1x1 + (ψ+ − ψ−)] ⊗ e2φ(x1, 0)dx1. (4.20)

Clearly,

lim
ε→0

∫
(0,1)×[(−1,0)∪(ελ,1)]

∇uε(x)φ(x)dx = limε→0 ∫
(0,1)×[(−1,0)∪(ελ,1)]

R(x2)φ(x)dx = ∫
Ω

R(x2)φ(x)dx. (4.21)
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Moreover, using (4.17), a change of variables, and Lebesgue’s dominated convergence theorem together
with the continuity and boundedness of φ, we have

lim
ε→0

∫

(0,1)×(0, ελ4 x1)

∇uε(x)φ(x)dx = limε→0

1

∫
0

ελ
4 x1

∫
0

R−(𝕀 + tan ( θ−2 )e1 ⊗ e2 −
4
ελ e1 ⊗ e2)φ(x)dx2 dx1

= lim
ε→0

1

∫
0

x1

∫
0

R−( ελ4 𝕀 +
ελ
4 tan ( θ−2 )e1 ⊗ e2 − e1 ⊗ e2)φ(x1,

ελ
4 z)dz dx1

= −
1

∫
0

x1

∫
0

R−e1 ⊗ e2φ(x1, 0)dz dx1 = −
1

∫
0

x1R−e1 ⊗ e2φ(x1, 0)dx1. (4.22)

Similarly,

lim
ε→0

∫

(0,1)×( ελ4 x1 ,
ελ
4 )

∇uε(x)φ(x)dx = limε→0

1

∫
0

1

∫
x1

S( ελ4 𝕀 −
ελ
4 tan ( θ−2 )e1 ⊗ e2 − e1 ⊗ e2)φ(x1,

ελ
4 z)dz dx1

=
1

∫
0

(x1 − 1)Se1 ⊗ e2φ(x1, 0)dx1, (4.23)

lim
ε→0

∫

(0,1)×( ελ4 ,
ελ
2 )

∇uε(x)φ(x)dx = limε→0

1

∫
0

2

∫
1

S( ελ4 𝕀 + βe1 ⊗ e2)φ(x1,
ελ
4 z)dz dx1

=
1

∫
0

βSe1 ⊗ e2φ(x1, 0)dx1, (4.24)

lim
ε→0

∫

(0,1)×( ελ2 ,−
ελ
4 x1+

3ελ
4 )

∇uε(x)φ(x)dx = limε→0

1

∫
0

3−x1

∫
2

S( ελ4 𝕀 −
ελ
4 tan ( θ+2 )e1 ⊗ e2 + e1 ⊗ e2)φ(x1,

ελ
4 z)dz dx1

=
1

∫
0

(1 − x1)Se1 ⊗ e2φ(x1, 0)dx1, (4.25)

lim
ε→0

∫

(0,1)×(− ελ4 x1+
3ελ
4 , 3ελ4 )

∇uε(x)φ(x)dx = limε→0

1

∫
0

3

∫
3−x1

R+( ελ4 𝕀 +
ελ
4 tan ( θ+2 )e1 ⊗ e2 + e1 ⊗ e2)φ(x1,

ελ
4 z)dz dx1

=
1

∫
0

x1R+e1 ⊗ e2φ(x1, 0)dx1, (4.26)

lim
ε→0

∫

(0,1)×( 3ελ4 ,ελ)

∇uε(x)φ(x)dx = limε→0

1

∫
0

4

∫
3

R+( ελ4 𝕀 + αe1 ⊗ e2)φ(x1,
ελ
4 z)dz dx1

=
1

∫
0

αR+e1 ⊗ e2φ(x1, 0)dx1. (4.27)

Combining (4.21)–(4.27) and (4.16), we finally obtain (4.20).

Remark 4.6 (On the construction in Lemma 4.5). Notice that the main idea of the construction in the proof
of Lemma 4.5 for dealing with jumps is to use piecewise affine functions that are as simple as possible to
accommodate them. Since triple junctions where two of the three angles add up to π are not compatible
(compare with [12, Lemma 3.1]), we work with inclined interfaces that stretch over the full width of Ω.
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Let u ∈ A ∩ SBV∞(Ω;ℝ2)beas inLemma4.5, andassume that eitherR+ ̸= ±R− orR+ = R−. In these cases,
we can simplify the construction of (uε)ε in the previous proof. We focus here on stating the counterparts of
Figure 3 and (4.17), and omit the detailed calculations, which are very similar to (4.21)–(4.27). Note further
that these constructions are not just simpler, but also energetically more favorable, see Remark 5.2 below for
more details.
(i) If R+ ̸= ±R−, we may replace the construction depicted in Figure 3 by:

0

hρε

hρε + ρελ

ελ

0 1

R−(𝕀 + γ̃−ε e1 ⊗ e2)

R−(𝕀 + γ−ε e1 ⊗ e2)

R+(𝕀 + γ+ε e1 ⊗ e2)

R+(𝕀 + γ̃+ε e1 ⊗ e2)

R+

R−

ψ+ − ψ− = αR+e1 + βR−e1

θ ∈ (−π, π) \ {0} rotation angle of (R−)TR+

ρ ∈ (0, 1), hρε :=
ελ−ρελ

2

γ+ε := 1
ρελ + tan(

θ
2 ), γ−ε := 1

ρελ − tan(
θ
2 )

γ̃+ε satisfies α = limε→0 γ̃+ε (ελ − h
ρ
ε − ρελ)

γ̃−ε satisfies β − 1 = limε→0 γ̃−ε h
ρ
ε

Figure 4: Alternative construction of Vε if R+ ̸= ±R−.

(ii) If R is constant, i.e., R+ = R−, and ψ+ − ψ− is not parallel to Re1, the construction in Figure 3 can be
replaced by:

0

ρελ

ελ − hρε

ελ

0 1

hρε
R(𝕀 + γ+ε e1 ⊗ e2)

S(𝕀 + γ−ε e1 ⊗ e2)

R(𝕀 + γ+ε e1 ⊗ e2)

R(𝕀 + γ̃εe1 ⊗ e2)

R

R

S ∈ SO(2) : Re1 and Se1 are linearly independent

θ ∈ (−π, π) \ {0} rotation angle of RTS

ψ+ − ψ− = αRe1 + βSe1 , β ̸= 0, ι := sign(β)

ρ := ι
2β+ι ∈ (0, 1), hρε :=

ελ−ρελ
2

γ+ε := ι 1
ρελ + tan(

θ
2 ), γ−ε := ι 1

ρελ − tan(
θ
2 )

γ̃ε satisfies α − ι = limε→0 γ̃εh
ρ
ε

Figure 5: Alternative construction of Vε if R is constant and ψ+ − ψ− is not parallel to Re1.

(iii) If R is constant, i.e., R+ = R−, and ψ+ − ψ− is parallel to Re1, then we can use the following construction
in place of Figure 3:

0

ελ

0 1

R(𝕀 + α
ελ e1 ⊗ e2)

R

R

ψ+ − ψ− = αRe1

α = ι|ψ+ − ψ−|, ι := sign((ψ+ − ψ−) ⋅ Re1)

Figure 6: Alternative construction of Vε if R is constant and ψ+ − ψ− is parallel to Re1.
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Note that in case (i), the slope ρ of the interfaces can attain any value between 0 and 1, while in (ii), ρ is
determined by the value of β. In terms of the energies, the construction in case (iii) provides an optimal
approximation, which will be detailed in Section 6.

We proceed by extending Lemma 4.5 to arbitrary functions u ∈ A ∩ SBV<(Ω;ℝ2).

Proposition 4.7. LetΩ = (0, 1) × (−1, 1). Then, for every function u ∈ A∩SBV<(Ω;ℝ2), there exists a sequence
(uε)ε ⊂ W1,1(Ω;ℝ2)with∫Ω uε dx = ∫Ω u dx and uε ∈ Aε for all ε, and such that uε

∗
⇀ u inBV(Ω;ℝ2) or, in other

words,
A ∩ SBV<(Ω;ℝ2) ⊂ A0,

cf. (4.3).

Proof. In view of Remark 4.4 (c), it holds that Ju = ⋃ℓi=1(0, 1) × {ai} for some ℓ ∈ ℕ and ai ∈ (−1, 1) with
a1 < a2 < ⋅ ⋅ ⋅ < aℓ, and setting a0 := −1 and aℓ+1 := 1, gives

Du =
ℓ

∑
i=0
Ri(𝕀 + γe1 ⊗ e2)L2⌊((0, 1) × (ai , ai+1))

+
ℓ

∑
i=1
[(Ri − Ri−1)x1e1 + (Riaie2 + ψ+i − Ri−1aie2 − ψ

−
i )] ⊗ e2H

1⌊((0, 1) × {ai}), (4.28)

where γ ∈ L1(−1, 1), and Ri ∈ SO(2) and ψ±i ∈ ℝ2 for i = 0, . . . , ℓ.
Wenowperforma similar construction as in Lemma4.5 in a convenient softer layernear each ai, account-

ing for the possibility that one or more of the jump lines may not intersect εYsoft ∩ Ω, and replacing R+ by Ri,
R− by Ri−1, ψ+ by Riaie2 + ψ+i , and ψ− by Ri−1aie2 + ψ

−
i .

To be precise, fix ε > 0 and i ∈ {1, . . . , ℓ}. Let Si ∈ SO(2) be such that
(i) Si ̸∈ {Ri−1, Ri},
(ii) Sie1 and Rie1 are linearly independent,
(iii) θ−i , θ

+
i ∈ (−π, π) \ {0} are the rotation angles of S

T
i Ri−1 and S

T
i Ri, respectively.

By (ii), there exist αi, βi ∈ ℝ such that

Riaie2 + ψ+i − Ri−1aie2 − ψ
−
i = αiRie1 + βiSie1. (4.29)

Moreover, we set

γ+ε,i :=
4αi
ελ

, γε,i :=
4βi
ελ

, μ±ε,i := ±
4
ελ
+ tan(

θ±i
2 ), μ̃±ε,i := ±

4
ελ
− tan(

θ±i
2 ),

and let κiε ∈ ℤ be the unique integer such that ai ∈ ε[κiε , κiε + 1). Observing that ai ̸= aj for i, j ∈ {1, . . . , ℓ}
with i ̸= j and ai ∈ (−1, 1) for all i ∈ {1, . . . , ℓ}, we may assume that the sets {ε[κiε , κiε + 1)}i=1,...,ℓ are pair-
wise disjoint, and that ⋃ℓi=1 ε[κiε , κiε + 1] ⊂ (−1, 1) (this is true for sufficiently small ε > 0). Finally, with
κ0ε := −λ − 1

ε and κ
ℓ+1
ε := 1

ε , let Vε ∈ L
1(Ω;ℝ2×2) be the function defined by

Vε(x) :=

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

Ri(𝕀+ γλ𝟙εYsofte1⊗ e2) if x ∈ (0, 1)× (ελ+ εκiε , εκi+1ε ) for some i ∈ {0, . . . , ℓ},
Ri(𝕀+ γ+ε,ie1⊗ e2) if x ∈ (0, 1)× (3ελ4 + εκ

i
ε , ελ+ εκiε) for some i ∈ {1, . . . , ℓ},

Ri(𝕀+μ+ε,ie1⊗ e2) if x1 ∈ (0, 1) and x2 ∈ (− ελ4 x1+
3ελ
4 + εκ

i
ε , 3ελ4 + εκ

i
ε) for some i ∈ {1, . . . , ℓ},

Si(𝕀+ μ̃+ε,ie1⊗ e2) if x1 ∈ (0, 1) and x2 ∈ ( ελ2 + εκ
i
ε , − ελ4 x1+

3ελ
4 + εκ

i
ε) for some i ∈ {1, . . . , ℓ},

Si(𝕀+ γε,ie1⊗ e2) if x ∈ (0, 1)× ( ελ4 + εκ
i
ε , ελ2 + εκ

i
ε) for some i ∈ {1, . . . , ℓ},

Si(𝕀+ μ̃−ε,ie1⊗ e2) if x1 ∈ (0, 1) and x2 ∈ ( ελ4 x1+ εκ
i
ε , ελ4 + εκ

i
ε) for some i ∈ {1, . . . , ℓ},

Ri−1(𝕀+μ−ε,ie1⊗ e2) if x1 ∈ (0, 1) and x2 ∈ (εκiε , ελ4 x1+ εκ
i
ε) for some i ∈ {1, . . . , ℓ}.

As in the proof of Lemma 4.5, invoking [12, Lemma 3.1] on rank-one connections inMe1 , we find that Vε
is a gradient field, meaning that there is uε ∈ W1,∞(Ω;ℝ2) such that ∇uε = Vε. Adding a suitable constant
allows us to assume that ∫Ω uε dx = ∫Ω u dx. By construction, (uε)ε is a uniformly bounded sequence in
W1,1(Ω;ℝ2) such that uε ∈ Aε for all ε (see (4.2)). To prove that uε

∗
⇀ u in BV(Ω;ℝ2), it suffices to show that

Duε
∗
⇀ Du inM(Ω;ℝ2×2). (4.30)
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The proof of (4.30) follows along the lines of (4.19). For this reason, we only highlight the main dif-
ferences. First, note that the conditions εκ0ε = −ελ − 1 = −ελ + a0, εκℓ+1ε = 1 = aℓ+1, and εκiε ≤ ai ≤ ε(κiε + 1)
yield

lim
ε→0

εκiε = ai for all i ∈ {0, . . . , ℓ + 1}.

Hence,𝟙(0,1)×(ελ+εκiε ,εκi+1ε ) → 𝟙(0,1)×(ai ,ai+1) and γ𝟙(0,1)×(ελ+εκiε ,εκi+1ε ) → γ𝟙(0,1)×(ai ,ai+1) in L1(Ω) for i ∈ {0, . . . , ℓ}.
On the other hand, by the Riemann–Lebesgue lemma, we have 𝟙εYsoft

∗
⇀ λ in L∞(ℝ2); thus,

lim
ε→0

∫

(0,1)×(ελ+εκiε ,εκi+1ε )

∇uε(x)φ(x)dx = limε→0∫
Ω

Ri(𝕀 + γλ𝟙εYsofte1 ⊗ e2)𝟙(0,1)×(ελ+εκiε ,εκi+1ε )φ(x)dx

= ∫
(0,1)×(ai ,ai+1)

Ri(𝕀 + γ(x2)e1 ⊗ e2)φ(x)dx

for all i ∈ {0, . . . , ℓ} and φ ∈ C0(Ω). Arguing as in (4.22) with the change of variables z = 4
ελ (x2 − εκ

i
ε) leads

to
lim
ε→0

∫

(0,1)×(εκiε , ελ4 x1+εκ
i
ε)

∇uε(x)φ(x)dx

= lim
ε→0

1

∫
0

ελ
4 x1+εκ

i
ε

∫

εκiε

Ri−1(𝕀 + tan (
θ−i
2 )e1 ⊗ e2 −

4
ελ e1 ⊗ e2)φ(x)dx2 dx1

= lim
ε→0

1

∫
0

x1

∫
0

Ri−1( ελ4 𝕀 +
ελ
4 tan ( θ

−
i
2 )e1 ⊗ e2 − e1 ⊗ e2)φ(x1,

ελ
4 z + εκ

i
ε)dz dx1

= −
1

∫
0

x1

∫
0

Ri−1e1 ⊗ e2φ(x1, ai)dz dx1 = −
1

∫
0

Ri−1x1e1 ⊗ e2φ(x1, ai)dx1

for all i ∈ {1, . . . , ℓ} and φ ∈ C0(Ω). Similarly, one can calculate the counterparts to (4.23)–(4.27) in the
present setting. In view of (4.28) and (4.29), we deduce (4.30), which ends the proof.

Remark 4.8 (On the construction in Proposition 4.7). We observe that the sequence of Lipschitz functions
(uε)ε constructed in Proposition 4.7 to approximate a given u ∈ A ∩ SBV<(Ω;ℝ2) is such that

lim
ε→0
∫
Ω

|∇uε|dx ∼ |Du|(Ω) + 2ℓ.

In other words, the asymptotic behavior of the total variation of (uε)ε incorporates a positive term that is pro-
portional to the number of jumps of the limit function. This fact prevents us from bootstrapping the argument
in Proposition 4.7 to generalize it to an arbitrary function inA ∩ SBV(Ω;ℝ2).

An analogous statement to Proposition 4.7 holds inA‖.

Proposition 4.9. Let Ω = (0, 1) × (−1, 1). If u ∈ A‖, then there exists a sequence (uε)ε ⊂ W1,1(Ω;ℝ2) such that
uε ∈ Aε for all ε and uε

∗
⇀ u in BV(Ω;ℝ2); that is,

A‖ ⊂ A0.

Proof. Let u ∈ A‖. Based on (1.13) and (2.4), we can split u into u = v + w, where

v(x) := Rx + ϑa(x2)Re1 + c and w(x) := ϑs(x2)Re1 for x ∈ Ω, (4.31)

with R ∈ SO(2), c ∈ ℝ2, ϑa ∈ W1,1(−1, 1), and ϑs ∈ BV(−1, 1) such that ϑs = 0. By construction, we have that
v ∈ W1,1(Ω;ℝ2) with ∇v(x) = R(𝕀 + ϑa(x2)e1 ⊗ e2).

For every ε > 0, let vε ∈ W1,1(Ω;ℝ2) be the function satisfying ∫Ω vε dx = ∫Ω v dx and

∇vε(x) = R(𝕀 +
ϑa(x2)
λ
𝟙εYsoft (x)e1 ⊗ e2). (4.32)
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By the Riemann–Lebesgue lemma,
vε ⇀ v inW1,1(Ω;ℝ2×2). (4.33)

On the other hand, applying Lemma 3.3 to ϑs, we can find a sequence (ϑε)ε ⊂ W1,∞(−1, 1) such that
ϑε
∗
→ ϑs in BV(−1, 1) and ϑε = 0 on εIrig ∩ (−1, 1). Then, setting wε(x) := ϑε(x2)Re1 + ∫Ω(w − ϑε(x2)Re1)dx

yields
∇wε(x) = ϑε(x2)Re1 ⊗ e2 = ϑε(x2)𝟙εYsoftRe1 ⊗ e2 (4.34)

and
wε
∗
→ w in BV(Ω;ℝ2). (4.35)

We define the maps uε := vε + wε inW1,1(Ω;ℝ2) for every ε, and infer from (4.32) and (4.34) that

∇uε = R(𝕀 + γεe1 ⊗ e2),

where γε(x) := ( ϑ

a(x2)
λ + ϑ


ε(x2))𝟙εYsoft (x) is a function in L1(Ω) satisfying γε = 0 in εYrig ∩ Ω. In particular,

uε ∈ Aε for all ε.
Combining (4.33) and (4.35) shows that uε

∗
⇀ v + w = u in BV(Ω;ℝ2), which finishes the proof.

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. In view of the discussion in Section 2.4, it suffices to prove the statement on a rectan-
gle of the form (cΩ , dΩ) × (aΩ , bΩ), where we recall (1.1) and (1.2). A simple modification of the proofs of
Propositions 4.3, 4.7, and 4.9 shows that these results hold for any such rectangles, fromwhich Theorem 1.3
follows.

5 A lower bound on the homogenized energy
In this section, we present partial results for the homogenization problem for layered composites with rigid
components discussed in the Introduction. More precisely, we establish a lower bound estimate on the
asymptotic behavior of the sequence of energies (Eε)ε (see (1.7)), and highlight the main difficulties in the
construction of matching upper bounds. Note that the following analysis is restricted to the case s = e1.

As a start, we first give alternative representations for the involved energies, which will be useful in
the sequel.

Remark 5.1 (Equivalent formulations for Eε and E). In view of the definition of Aε (see (1.6)), it is straight-
forward to check that the functional Eε in (1.7) satisfies

Eε(u) =
{{{
{{{
{

∫
Ω

√|∂2u|2 − 1dx if u ∈ Aε,

∞ otherwise,
=
{{{
{{{
{

∫
Ω

√|∇u|2 − 2det∇u dx if u ∈ Aε,

∞ otherwise,

for u ∈ L10(Ω;ℝ2). Similarly, according to Proposition 4.1, the functional E from (1.10) can be expressed as

E(u) =
{{{
{{{
{

∫
Ω

|γ|dx + |Dsu|(Ω) if u ∈ A,

∞ otherwise,

for u ∈ L10(Ω;ℝ2).

We can now provide a bound from below on Γ-lim infε→0 Eε and prove Theorem 1.2.

Proof of Theorem 1.2. For clarity, we subdivide the proof into two steps. In the first one, we establish the
compactness property. In the second step, we prove (1.12) using the weak∗ lower semicontinuity of the
total variation of a measure. We refer to the Appendix for an alternative proof of (1.12), which is based on
a Reshetnyak’s lower semicontinuity result, and highlights a different feature of the representation ofA.
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Step 1: Compactness. Assume that (uε)ε ⊂ L10(Ω;ℝ2) is such that supε Eε(uε) <∞. Then, we have uε ∈ Aε
and supε‖∇uε‖L1(Ω;ℝ2×2) <∞. Hence, using the Poincaré–Wirtinger inequality, there exist a subsequence
(uεj )j∈ℕ and u ∈ L10(Ω;ℝ2) ∩ BV(Ω;ℝ2) such that uεj

∗
⇀ u in BV(Ω;ℝ2). By Proposition 4.3, we conclude that

u ∈ L10(Ω;ℝ2) ∩A.

Step 2: Lower bound. Let (uε)ε ⊂ L10(Ω;ℝ2) and u ∈ L10(Ω;ℝ2) be such that uε → u in L1(Ω;ℝ2). We want to
show that

lim inf
ε→0

Eε(uε) ≥ E(u). (5.1)

To prove (5.1), onemay assumewithout loss of generality that the limit inferior on the right-hand side of (5.1)
is actually a limit and that this limit is finite. Then, uε ∈ Aε and Eε(uε) < C for all ε, where C > 0 is a constant
independent of ε. Hence, by Step 1, uε

∗
⇀ u in BV(Ω;ℝ2) and u ∈ A.

By the definition ofAε and (4.1),
∇uε = Rε + γεRεe1 ⊗ e2

with Rε ∈ L∞(Ω; SO(2)) and γε ∈ L1(Ω). Since |γεRεe1 ⊗ e2| = |γε| due to |Rεe1| = 1, the estimate

Eε(uε) = ∫
Ω

|γε|dx < C

implies that (γεRεe1 ⊗ e2)ε is uniformly bounded in L1(Ω;ℝ2×2). Hence, after extracting a subsequence if
necessary (not relabeled),

(γεRεe1 ⊗ e2)L2⌊Ω ∗⇀ ν inM(Ω;ℝ2×2)

for some ν ∈M(Ω;ℝ2×2). Note further that the convergence ∇uεL2⌊Ω ∗⇀ Du inM(Ω;ℝ2×2) along with (4.5)
yields also Rε

∗
⇀ R in L∞(Ω;ℝ2×2), where R ∈ L∞(Ω; SO(2)) satisfies in particular that (∇u)e1 = Re1. Hence,

we have
ν = Du − RL2⌊Ω = (∇u − R)L2⌊Ω + Dsu = (γRe1 ⊗ e2)L2⌊Ω + Dsu,

where the last equality follows again from (4.5), and by the lower semicontinuity of the total variation,

lim inf
ε→0

Eε(uε) = lim inf
ε→0
∫
Ω

|γε|dx = lim inf
ε→0
∫
Ω

|γεRεe1 ⊗ e2|dx

≥ |ν|(Ω) = ∫
Ω

|γRe1 ⊗ e2|dx + |Dsu|(Ω) = ∫
Ω

|γ|dx + |Dsu|(Ω) = E(u).

Remark 5.2 (Discussion regarding optimality of the lower bound). (a) The lower bound (1.12) is optimal in
A ∩W1,1(Ω;ℝ2) ∩ L10(Ω;ℝ2) and, more generally (cf. also Remark 4.4), in the setA‖ ∩ L10(Ω;ℝ2) introduced
in (1.13). Precisely, we have

Γ(L1)-lim
ε→0

Eε(u) = E(u) (5.2)

for all u ∈ A‖ ∩ L10(Ω;ℝ2). In view of (1.12), the proof of (5.2) is directly related to the ability to construct
a recovery sequence. We detail two alternative constructions for u ∈ A‖ in Section 6 below. For illustration,
we treat here the simpler special case where u ∈ A ∩W1,1(Ω;ℝ2) ∩ L10(Ω;ℝ2).

If u ∈ A ∩W1,1(Ω;ℝ2) ∩ L10(Ω;ℝ2), then ∇u = R(𝕀 + γe1 ⊗ e2) for some R ∈ SO(2) and γ ∈ L1(Ω) such
that ∂1γ = 0 (see Remark 4.4 (a)). As in the proof of Proposition 4.9, we take (uε)ε ⊂ W1,1(Ω;ℝ2) ∩ L10(Ω;ℝ2)
such that∇uε = R(𝕀 + γλ𝟙εYsofte1 ⊗ e2) for all ε. Then, by the Riemann–Lebesgue lemma, uε

∗
⇀ u in BV(Ω;ℝ2)

and limε→0 Eε(uε) = E(u).
(b) The question whether (5.2) holds for a larger class than A‖ is open at this point. We observe that the

gradient-based constructions in Lemma 4.5, Remark 4.6 (i)–(ii), and Proposition 4.7 yield upper bounds on
the Γ- lim sup, which, however, do notmatch the lower bound of Theorem1.2. This indicates that, in general,
a more tailored approach will be necessary.

(c) The upper bounds on the Γ- lim sup of (Eε)ε resulting from Lemma4.5, Remark 4.6 (i)–(ii), and Propo-
sition 4.7 can be quantified. As previously mentioned, the constructions in Remark 4.6 (iii) and Proposi-
tion 4.9 are even recovery sequences. This is not the case for the general construction in Lemma 4.5 and for
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those highlighted in Remark 4.6 (i)–(ii). In the following, we suppose that u ∈ A ∩ SBV∞(Ω;ℝ2) ∩ L10(Ω;ℝ2)
has a single jump as in the statement of Lemma 4.5; i.e.,

u(x) = 𝟙(0,1)×(0,1)(x)(R+x + ψ+) + 𝟙(0,1)×(−1,0)(x)(R−x + ψ−)

with R± ∈ SO(2) and ψ± ∈ ℝ2. Then,

E(u) =
1

∫
0

|(R+ − R−)e1x1 + (ψ+ − ψ−)|dx1,

which can be estimated from above by

E(u) ≤ |R+e1 − R−e1|
1

∫
0

x1 dx1 + |ψ+ − ψ−| ≤ 1 + |ψ+ − ψ−|. (5.3)

For the sequence (uε)ε constructed in Lemma 4.5 (and Lemma 4.7), we obtain, recalling (4.16), that

lim
ε→0

Eε(uε) = |α| + |β| + 2 > |α| + |β| + 1 ≥ E(u).

Regarding the construction of (uε)ε in Remark 4.6 (i), it follows that

lim
ε→0

Eε(uε) = |α| + |β − 1| + 1.

This limit is strictly greater than E(u) as we will show next. If |β − 1| > |β| (i.e., if β < 1
2 ), this is an immediate

consequence of (5.3). For 1
2 ≤ β < 1, we use that ψ

+ − ψ− = αR+e1 + βR−e1 yields

E(u) ≤
1

∫
0

|x1 + α|dx1 +
β

∫
0

(β − x1)dx1 +
1

∫
β

(x1 − β)dx1 ≤ 1 + |α| + β(β − 1) < 1 + |α| + |β − 1|.

If β ≥ 1, we note that limε→0 Eε(uε) = |α| + β, and subdivide the estimate of E(u) into three cases. Recalling
the assumption R+ ̸= ±R−, we set c := R+e1 ⋅ R−e1 ∈ (−1, 1) to obtain

E(u) =
1

∫
0

√(x1 + α)2 + (β − x1)2 + 2c(x1 + α)(β − x1) dx1.

Then, we have for α ≥ 0 that

E(u) <
1

∫
0

√(x1 + α)2 + (β − x1)2 + 2(x1 + α)(β − x1) dx1 = |α + β| ≤ |α| + β,

for α ≤ −1 that

E(u) <
1

∫
0

√(x1 + α)2 + (β − x1)2 − 2(x1 + α)(β − x1) dx1 =
1

∫
0

(−2x1 − α + β)dx1

= −1 − α + β < −α + β = |α| + β,

and for −1 < α < 0 that

E(u) <
−α

∫
0

(−2x1 − α + β)dx1 +
1

∫
−α

|α + β|dx1 = α + β + α2 < −α + β = |α| + β.

Summing up, we have shown that in the context of Remark 4.6 (i),

lim
ε→0

Eε(uε) > E(u).
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Finally, we consider the sequence (uε)ε constructed in Remark 4.6 (ii). Then,

lim
ε→0

Eε(uε) = |α − ι| + |β| + 1,

and since R+ = R− in this case,
E(u) = √α2 + β2 + 2αβRe1 ⋅ Se1.

Using the fact that Re1 ⋅ Se1 ∈ (−1, 1), it can be checked that, also here, we have

lim
ε→0

Eε(uε) > E(u).

6 Homogenization of the regularized problem
This section is devoted to the proof of our main Γ-convergence result, Theorem 1.4. We first provide an
alternative characterization of the class A‖ of restricted asymptotically admissible deformations introduced
in (1.13).

Lemma 6.1. Let Ω = (0, 1) × (−1, 1). Then,A‖ as in (1.13) admits the representation

A‖ = {u ∈ BV(Ω;ℝ2) : ∇u = R(𝕀 + γe1 ⊗ e2) with R ∈ SO(2), γ ∈ L1(Ω) such that ∂1γ = 0,
Dsu = (ϱ ⊗ e2)|Dsu| with ϱ ∈ L1|Dsu|(Ω;ℝ

2) such that
|ϱ| = 1 and ϱ||Re1 for |Dsu|-a.e. in Ω}. (6.1)

Proof. Let Ã‖ denote the set on the right-hand side of (6.1). Arguing as in the beginning of the proof of
Proposition 4.9 (precisely, with the notation of (1.13), we set γ(x) = ϑa(x2) for x ∈ Ω, and observe that
(Dsu)e2 = L1⌊(0, 1) ⊗ DsϑsRe1) and exploiting the polar decomposition of measures (cf. (2.2) and (2.3))
gives rise to A‖ ⊂ Ã‖. Conversely, the inclusion Ã‖ ⊂ A, which follows from (4.5), along with (4.6) yields
that Ã‖ ⊂ A‖.

We are now in a position to prove the Γ-convergence of the energies (Eεδ)ε in (1.14) as ε → 0. We refer to the
Appendix for an alternative proof of Theorem 1.4, in which we explore the representation of A‖ in (6.1) to
construct a recovery sequence.

Proof of Theorem 1.4. As before in the proofs of Theorems 1.1 and 1.3, one may assume without loss of
generality that Ω = (0, 1) × (−1, 1). We proceed in three steps.

Step 1: Compactness. Let (uε)ε ⊂ W1,1(Ω;ℝ2) ∩ L10(Ω;ℝ2) be a sequence such that Eδε (uε) ≤ C for all ε > 0.
Then, because uε ∈ Aε for all ε,

∇uε = Rε(𝕀 + γεe1 ⊗ e2) ∈ L1(Ω;ℝ2×2), (6.2)

and ‖γε‖L1(Ω) ≤ C for every ε > 0. Additionally, since each map Rε takes value in the set of proper rotations,
it holds that ‖Rε‖2L∞(Ω;ℝ2×2) = 2 for all ε > 0. Consequently, along with the Poincaré–Wirtinger inequality,

‖uε‖W1,1(Ω;ℝ2) ≤ C.

We further know that
‖∂1uε‖

p
W1,p(Ω;ℝ2) = ‖Rεe1‖

p
W1,p(Ω;ℝ2) ≤

C
δ

for any ε. Thus, after extracting subsequences if necessary, one canfind u ∈ BV(Ω;ℝ2) and R̂ ∈ W1,p(Ω;ℝ2×2)
such that

uε
∗
⇀ u in BV(Ω;ℝ2), (6.3)

Rε ⇀ R̂ inW1,p(Ω;ℝ2×2). (6.4)

Recalling the compact embeddingW1,p(Ω) →→ C0,α(Ω) for some 0 < α < 1 − 2
p , it follows even that

R̂ ∈ W1,p(Ω; SO(2)) ∩ C0,α(Ω;ℝ2×2)



E. Davoli, R. Ferreira and C. Kreisbeck, Homogenization problems in BV | 467

and
Rε → R̂ in L∞(Ω;ℝ2×2). (6.5)

As a consequence of Proposition 4.3, it holds that u ∈ A. In view of (4.5) in Proposition 4.1, this implies for
the singular part of Du that

(Dsu)e1 = 0, (6.6)

while one obtains for the absolutely continuous part of Du that

∇u(x) = R(x2)(𝕀 + γ(x2)e1 ⊗ e2) (6.7)

for a.e. x ∈ Ω with R ∈ BV(−1, 1; SO(2)) such that R = 0 and γ ∈ L1(−1, 1) with ∂1γ = 0; note that R and
γ can be identified with elements in BV(Ω; SO(2)) and L1(Ω), respectively, via constant extension in the
x1-direction.

We observe that on the one hand, (∇uε)e1 = Rεe1 ⇀ R̂e1 inW1,p(Ω;ℝ2) by (6.4), and on the other hand,
(∇uε)e1L2⌊Ω ∗⇀ (Du)e1 = Re1L2⌊Ω inM(Ω;ℝ2) by (6.3), (6.7), and (6.6). Hence, a comparison of the limit
objects yields R = R̂ ∈ W1,p(Ω; SO(2)). Since the absolutely continuous part of DR vanishes, R has to be
constant, meaning R ∈ SO(2).

Due to Alberti’s rank-one theorem (cf. Section 2.2), it follows from (6.6) that

Dsu = (ϱ ⊗ e2)|Dsu|, (6.8)

where ϱ ∈ L|Dsu|(Ω;ℝ2) with |ϱ| = 1 for |Dsu|-a.e. in Ω.
To conclude that u ∈ A‖, in view of Lemma 6.1, it remains to show that

ϱ||Re1 |Dsu|-a.e. in Ω. (6.9)

To prove (6.9), we first observe that for every ε, the identity (∇uε)e2 = Rεe2 + γεRεe1, which follows from
uε ∈ Aε, yields

∫
Ω

[(∇uε)e2 ⋅ Rεe2 − 1]φ dx = 0 (6.10)

for all φ ∈ C∞c (Ω). Thus, by (6.3) and (6.5) in combination with a weak-strong convergence argument, taking
the limit ε → 0 in (6.10) leads to

∫
Ω

φ dx = ∫
Ω

φRe2 ⋅ d((Du)e2) = ∫
Ω

φRe2 ⋅ (∇u)e2 dx + ∫
Ω

φRe2 ⋅ d((Dsu)e2)

for every φ ∈ C∞c (Ω). Next, we plug in the identities (∇u)e2 = Re2 + γRe1 and (Dsu)e2 = ϱ|Dsu| (see (6.8)) to
derive that

0 = ∫
Ω

φRe2 ⋅ d((Dsu)e2) = ∫
Ω

φRe2 ⋅ ϱ d|Dsu|

for every φ ∈ C∞c (Ω), which completes the proof of (6.9).

Step 2: Lower bound. Let (uε) ⊂ L10(Ω;ℝ2) and u ∈ L10(Ω;ℝ2) be such that uε → u in L1(Ω;ℝ2). We want to
show that

Eδ(u) ≤ lim inf
ε→0

Eδε (uε). (6.11)

To prove (6.11), we proceed as in the proof of (5.1), observing in addition that

lim inf
ε→0

δ‖∂1uε‖
p
W1,p(Ω;ℝ2) = lim inf

ε→0
δ‖Rεe1‖

p
W1,p(Ω;ℝ2) ≥ δ‖Re1‖

p
W1,p(Ω;ℝ2) = δ|Ω|

due to (6.2) and (6.4) with R ∈ SO(2).

Step 3: Upper bound. Let u ∈ L10(Ω;ℝ2) ∩A‖.Wewant to show that there is a sequence (uε) ⊂ L10(Ω;ℝ2) such
that uε → u in L1(Ω;ℝ2), and

Eδ(u) ≥ lim sup
ε→0

Eδε (uε). (6.12)
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Let (uε)ε ⊂ W1,1(Ω;ℝ2) ∩ L10(Ω;ℝ2) be the sequence constructed in the proof of Proposition 4.9, that is,
uε ∈ Aε for every ε with

∇uε(x) = R(𝕀 + (
ϑa(x2)
λ
+ ϑε(x2))𝟙εYsoft (x)e1 ⊗ e2),

where (ϑε)ε ⊂ W1,∞(−1, 1) satisfies

lim
ε→0

1

∫
−1

|ϑε|dx2 = |Dsϑs|(−1, 1) = |Dsu|(Ω),

and uε
∗
⇀ u in BV(Ω;ℝ2). Recalling that ϑ = ϑa + ϑs = ϑa, we have

lim sup
ε→0

Eδε (uε) ≤ limε→0(∫
Ω

|ϑa(x2)|
λ
𝟙εYsoft (x)dx +

1

∫
−1

|ϑε(x2)|dx2 + δ‖Re1‖
p
W1,p(Ω;ℝ2))

= ∫
Ω

|ϑ(x2)|dx + |Dsu|(Ω) + δ|Ω| = Eδ(u),

which proves (6.12) and completes the proof of the theorem.

Remark 6.2 (On compensated compactness). We point out that if uε ∈ Aε, with ∇uε = Rε(𝕀 + γεe1 ⊗ e2) for
Rε ∈ L∞(Ω; SO(2)) and γε ∈ L1(Ω) with γε = 0 on εYrig ∩ Ω, is such that uε

∗
⇀ u in BV(Ω;ℝ2), and if in addi-

tion,
Rε → R in C(Ω;ℝ2×2),

then a weak-strong convergence argument implies that

γεL2⌊Ω = [(∇uε)e2 ⋅ Rεe1]L2⌊Ω ∗⇀ (Du)e2 ⋅ Re1 inM(Ω).

However, if continuity and uniform convergence of Rε fail, the limit representation above may no longer be
true in general, even if R ∈ C(Ω; SO(2)). To see this, let us consider the basic construction in Remark 4.6 (ii).
In this case,

γεL2⌊Ω ∗⇀ (α + β)H1⌊((0, 1) × {0}) inM(Ω), (6.13)

whereas
(Du)e2 ⋅ Re1 = [(ψ+ − ψ−) ⋅ Re1]H1⌊((0, 1) × {0}). (6.14)

Recalling that ψ+ − ψ− = αRe1 + βSe1, the quantities in (6.13) and (6.14) can only match if Re1||Se1, which
contradicts the assumption that Re1 and Se1 are linearly independent.

The role of the higher-order regularization in (1.14) is exactly that it helps overcome the issue discussed
above. In fact, it guarantees the desired compactness properties for sequences of deformations with equi-
bounded energies.

A Appendix
In this appendix, we start by presenting an alternative proof of Step 2 in the proof of Theorem 1.2. As we
mentioned before, this alternative argument is based on a Reshetnyak’s lower semicontinuity result, and
highlights a different feature of the representation ofA.

Alternative proof of Step 2 in Theorem 1.2. As before, let (uε)ε ⊂ L10(Ω;ℝ2) and u ∈ L10(Ω;ℝ2) be such that
uε → u in L1(Ω;ℝ2). We want to show that (5.1) holds, for which we may assume without loss of generality
that the limit inferior on the right-hand side of (5.1) is actually a limit and that this limit is finite. Then, uε ∈ Aε
and Eε(uε) < C for all ε, where C > 0 is a constant independent of ε. Hence, by Step 1, uε

∗
⇀ u in BV(Ω;ℝ2)

and u ∈ A.
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Next, we observe that the map ℝ2×2 ∋ F → √|F|2 − 2det F is convex (see [18]) and one-homogeneous.
Consequently, it follows from Remark 5.1 and Reshetnyak’s lower semicontinuity theorem (see [2, Theo-
rem 2.38]), under consideration of our notation for the polar decomposition Du = gu|Du| introduced in
Section 2.2, that

lim inf
ε→0

Eε(uε) = lim inf
ε→0
∫
Ω

√|∇uε|2 − 2det∇uε dx ≥ ∫
Ω

√|gu|2 − 2det gu d|Du|. (A.1)

Since∇u = R(𝕀 + γe1 ⊗ e2)with R ∈ BV(Ω; SO(2)) and (Dsu)e1 = 0 (see (4.5)), we have |∇u|2 − 2det∇u = |γ|2
for L2-a.e. in Ω and det gu = 0 for |Dsu|-a.e. in Ω. Thus,

∫
Ω

√|gu|2 − 2det gu d|Du| = ∫
Ω

√|∇u|2 − 2det∇u dx + ∫
Ω

√|gu|2 − 2det gu d|Dsu|

= ∫
Ω

|γ|dx + |Dsu|(Ω) = E(u), (A.2)

where we also used that the relation |gu| = 1 holds |Dsu|-a.e. in Ω.
From (A.1) and (A.2), we deduce (5.1).

To conclude, we present an alternative construction for the recovery sequence in Step 3 of the proof of Theo-
rem 1.4 based on the representation ofA‖ in (6.1).

Alternative proof of Theorem 1.4. Asbefore,wemayassumewithout loss of generality thatΩ = (0, 1)×(−1, 1).
Moreover, the compactness property and lower bound can be studied exactly as in the proof of Theorem 1.4
above. We are then left to show that given u ∈ L10(Ω;ℝ2) ∩A‖, there exists a sequence (uε)ε ⊂ L10(Ω;ℝ2)
satisfying uε → u in L1(Ω;ℝ2) and (6.12). We will proceed in three steps, building up complexity.

Step1. Weassumefirst that u ∈ L10(Ω;ℝ2) ∩A‖ is an SBV-functionwith a single, constant jump line at x2 = 0.
This case can be treated as highlighted in Remark 4.6 (iii). Let R ∈ SO(2), γ ∈ L1(Ω) with ∂1γ = 0, and

ψ+, ψ− ∈ ℝ2 with (ψ+ − ψ−)||Re1 be such that

Du = R(𝕀 + γe1 ⊗ e2)L2⌊Ω + (ψ+ − ψ−) ⊗ e2H1⌊((0, 1) × {0}).

Note that setting ι := sign((ψ+ − ψ−) ⋅ Re1) ∈ {±1}, we have ψ+ − ψ− = ι|ψ+ − ψ−|Re1 and

|Du|(Ω) = |Dau|(Ω)| + |Dsu|(Ω)| = |Dau|(Ω) + |Dju|(Ω) = ∫
Ω

|R(𝕀 + γe1 ⊗ e2)|dx + |ψ+ − ψ−|.

For each ε > 0, set τε := ι |D
ju|(Ω)
λε = ι

|ψ+−ψ−|
λε . Arguing as, for instance, in the proof of Lemma 4.5, we can find

uε ∈ L10(Ω;ℝ2) ∩Aε such that

∇uε =
{
{
{

R(𝕀 + τεe1 ⊗ e2) if x ∈ (0, 1) × (0, λε),
R(𝕀 + γλ𝟙εYsoft∩Ωe1 ⊗ e2) otherwise,

and uε
∗
⇀ u in BV(Ω;ℝ2). Next, we show that this construction yields convergence of energies. Indeed, we

have

lim
ε→0

Eδε (uε) = limε→0( ∫
(0,1)×(0,λε)

|τε|dx + ∫
Ω\(0,1)×(0,λε)


γ
λ
𝟙εYsoft dx + δ‖Re1‖

p
W1,p(Ω;ℝ2))

= |ψ+ − ψ−| + ∫
Ω

|γ|dx + δ|Ω| = |Dsu|(Ω) + ∫
Ω

|γ|dx + δ|Ω| = Eδ(u).

Step 2. We assume next that u ∈ L10(Ω;ℝ2) ∩A‖ is an SBV-function with a finite number of horizontal jump
lines and with constant upper and lower approximate limits on each jump line.

In this setting, ∇u = R(𝕀 + γe1 ⊗ e2) with R ∈ SO(2) and γ ∈ L1(Ω) with ∂1γ = 0, Ju = ⋃ℓi=1(0, 1) × {ai}
with ℓ ∈ ℕ and −1 < a1 < a2 < ⋅ ⋅ ⋅ < aℓ < 1, Dju = ∑ℓi=1(ψ+i − ψ

−
i ) ⊗ e2H

1⌊((0, 1) × {ai}) with ψ±i ∈ ℝ2 satis-
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fying (ψ+i − ψ
−
i )||Re1 for all i ∈ {1, . . . , ℓ}, and Dcu = 0. Hence,

Du = R(𝕀 + γe1 ⊗ e2)L2⌊Ω +
ℓ

∑
i=1
(ψ+i − ψ

−
i ) ⊗ e2H

1⌊((0, 1) × {ai}) (A.3)

and

|Dsu|(Ω) =
ℓ

∑
i=1
|ψ+i − ψ

−
i |.

As in the proof of Proposition 4.7, the idea is to perform a construction similar to that in Step 1 around
each jump line but accounting for the possibility that one or more of the jump lines may not intersect
εYsoft ∩ Ω.

Fix i ∈ {1, . . . , ℓ} and ε > 0, and let κiε ∈ ℤ be the integer such that ai ∈ ε[κiε , κiε + 1). Since ai ̸= aj if i ̸= j,
we may assume that the sets {ε[κiε , κiε + 1)}i are pairwise disjoint for all ε > 0 (this is true for all ε > 0 suffi-
ciently small). Then, we take uε ∈ L10(Ω;ℝ2) ∩Aε such that

∇uε =
{
{
{

R(𝕀 + τiεe1 ⊗ e2) in (0, 1) × ε(κiε , κiε + λ),
R(𝕀 + γλ𝟙εYsoft∩Ωe1 ⊗ e2) otherwise,

where τiε = ιi
|ψ+

i −ψ
−
i |

λε with ιi := sign((ψ+i − ψ
−
i ) ⋅ Re1) ∈ {±1}. As in the proof of Proposition 4.7, we obtain that

lim
ε→0
∫
Ω

∇uεφ dx =
ℓ

∑
i=1

1

∫
0

ιi|ψ+i − ψ
−
i |(Re1 ⊗ e2)φ(x1, ai)dx1 + ∫

Ω

R(𝕀 + γe1 ⊗ e2)φ dx (A.4)

for all φ ∈ C0(Ω). Recalling (A.3) and the equalities ψ+i − ψ
−
i = ιi|ψ

+
i − ψ
−
i |Re1 for i ∈ {1, . . . , ℓ}, (A.4) shows

that Duε
∗
⇀ Du inM(Ω;ℝ2×2). Hence, uε

∗
⇀ u in BV(Ω;ℝ2).

Finally, proceeding exactly as in Step 1, we conclude that this construction also yields convergence of
the energies. This ends Step 2.

Step 3. We consider now the general case u ∈ L10(Ω;ℝ2) ∩A‖.
Similarly to the beginning of the proof of Proposition 4.9 (see (4.31)), we can write

u(x) = x1Re1 + ϕa(x2) + ϕs(x2), x ∈ Ω,

where
ϕa(x2) := x2Re2 + ϑa(x2)Re1 + c and ϕs(x2) := ϑs(x2)Re1.

Note that ϕa ∈ W1,1(−1, 1;ℝ2) and ϕs ∈ BV(−1, 1;ℝ2) is the sum of a jump function and a Cantor function;
in particular, ϑ = ϑa and Dϕs = Dsϕs (see (2.4)). Moreover,

∇u = Re1 ⊗ e1 + ∇ϕa ⊗ e2 = R(𝕀 + ϑae1 ⊗ e2) = R(𝕀 + ϑe1 ⊗ e2),
Dsu = L1⌊(0, 1)⊗Dϕs ,

|Dsu|⌊Ω = L1⌊(0, 1)⊗|Dϕs|. (A.5)

By Lemma 6.1, there exists ϱ ∈ L1|Dsu|(−1, 1;ℝ2) with |ϱ| = 1 such that

Dsu = (ϱ ⊗ e2)|Dsu| and ϱ = (ϱ ⋅ Re1)Re1. (A.6)

Let ϱh ∈ C∞([−1, 1]) be such that

lim
h→∞
∫
Ω

|ϱh(x2) − ϱ(x2)|d|Dsu|(x) = 0. (A.7)

Since |ϱ| = 1, we can choose such a sequence so that |ϱh| ≤ 1.
Due to the properties of good representatives (see [2, (3.24)]) and [19, Lemma 3.2], for each n ∈ ℕ, there

exists a piecewise constant function ϕn ∈ BV(−1, 1;ℝ2), of the form

ϕn =
ℓn
∑
i=0
bni χAni ,



E. Davoli, R. Ferreira and C. Kreisbeck, Homogenization problems in BV | 471

where ℓn ∈ ℕ, (bni )
ℓn
i=0 ⊂ ℝ

2, and (Ani )
ℓn
i=0 is a partition of (−1, 1) into intervals with sup A

n
i = inf A

n
i+1, satisfy-

ing

Jϕn =
ℓn
⋃
i=1
{ani } with ani := sup A

n
i−1,

lim
n→∞
‖ϕn − ϕs‖L1(−1,1;ℝ2) = 0, (A.8)

lim
n→∞
|Dϕn|(−1, 1) = lim

n→∞
|Djϕn|(−1, 1) = |Dϕs|(−1, 1) = |Dsu|(Ω). (A.9)

Indeed, (A.8) and (A.9) mean that (ϕn)n∈ℕ converges strictly to ϕs in BV(−1, 1;ℝ2), which implies that

|Dϕn|
∗
⇀ |Dϕs| inM(−1, 1), (A.10)

see [2, Proposition 3.5].
Finally, for n ∈ ℕ, we define

un(x) := x1Re1 + ϕa(x2) + ϕn(x2) + cn , x ∈ Ω,

where cn ∈ ℝ2 are constants chosen so that ∫Ω un dx = 0. Note that cn → 0 as n →∞ by (A.8). Moreover,
for each n ∈ ℕ, the map un ∈ L10(Ω;ℝ2) has the same structure as in Step 2 apart from the condition
(u+n − u−n)||Re1 on Jun , which a priori is not satisfied. Choosing ιni := ϱh(a

n
i ) ⋅ Re1, we can invoke Step 2

up to, and including, (A.4) to construct a sequence (un,hε )ε ⊂ L10(Ω;ℝ2) ∩W1,1(Ω;ℝ2) that satisfies for all
φ ∈ C0(Ω),

lim
ε→0
∫
Ω

∇un,hε φ dx =
ℓn
∑
i=1

1

∫
0

(ϱh(ani ) ⋅ Re1)|b
n
i − b

n
i−1|(Re1 ⊗ e2)φ(x1, a

n
i )dx1

+ ∫
Ω

R(𝕀 + ϑa(x2)e1 ⊗ e2)φ dx.
(A.11)

We conclude from (A.5), (A.6), (A.7), (A.8), (A.10), and the Lebesgue dominated convergence theorem that

lim
h→∞

lim
n→∞

ℓn
∑
i=1

1

∫
0

(ϱh(ani ) ⋅ Re1)|b
n
i − b

n
i−1|(Re1 ⊗ e2)φ(x1, a

n
i )dx1

= lim
h→∞

lim
n→∞

1

∫
0

1

∫
−1

(ϱh(x2) ⋅ Re1)(Re1 ⊗ e2)φ(x1, x2)d|Dϕn|(x2)dx1

= lim
h→∞

1

∫
0

1

∫
−1

(ϱh(x2) ⋅ Re1)(Re1 ⊗ e2)φ(x1, x2)d|Dϕs|(x2)dx1

= ∫
Ω

(ϱ(x2) ⋅ Re1)(Re1 ⊗ e2)φ d|Dsu|

= ∫
Ω

(ϱ(x2) ⊗ e2)φ d|Dsu|

= ∫
Ω

φ dDsu. (A.12)

Recalling that |ϱh(ani ) ⋅ Re1| ≤ 1, we can further argue as in Steps 1 and 2 regarding the convergence of
the energies to get

lim sup
ε→0

Eδε (u
n,h
ε ) ≤ Eδ(un) = ∫

Ω

|ϑa(x2)|dx + |Dsϕn|(−1, 1) + δ|Ω|

= ∫
Ω

|ϑ(x2)|dx + |Djϕn|(−1, 1) + δ|Ω|. (A.13)
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Letting n →∞ and h →∞ in (A.11) and (A.13), from (A.12), (A.9), and (A.5), we conclude that for
all φ ∈ C0(Ω),

lim
h→∞

lim
n→∞

lim
ε→0
∫
Ω

∇un,hε φ dx = ∫
Ω

φ dDu, (A.14)

lim sup
h→∞

lim sup
n→∞

lim
ε→0

Eδε (u
n,h
ε ) ≤ ∫

Ω

|ϑ(x2)|dx + |Dsu|(Ω) + δ|Ω| = Eδ(u). (A.15)

Owing to the separability of C0(Ω) and (A.14)–(A.15), we can use a diagonalization argument as that
in [25, proof of Proposition 1.11 (p. 449)] to find sequences (hε)ε and (nε)ε such that hε , nε →∞ as ε → 0
and ũε := unε ,hεε ∈ L10(Ω;ℝ2) ∩W1,1(Ω;ℝ2) has all the desired properties.
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