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STABLE HOMOLOGY ISOMORPHISMS FOR THE

PARTITION AND JONES ANNULAR ALGEBRAS

GUY BOYDE

Abstract. We show that the homology of the Jones annular al-

gebras is isomorphic to that of the cyclic groups below a line of

gradient 1

2
. We also show that the homology of the partition alge-

bras is isomorphic to that of the symmetric groups below a line of

gradient 1, strengthening a result of Boyd-Hepworth-Patzt. Both

isomorphisms hold in a range exceeding the stability range of the

algebras in question. Along the way, we prove the usual odd-strand

and invertible parameter results for the Jones annular algebras.

1. Introduction

To say that a family of augmented R-algebras

A1
ι1−→ A2

ι2−→ A3
ι3−→ A4

ι4−→ · · ·

exhibits homological stability is to say that the maps

TorAn

∗ (1,1) → TorAn+1

∗ (1,1)

induced on homology by ιn are isomorphisms in a range of degrees
which increases with n. Here 1 is the trivial module obtained as the
quotient of A by the augmentation ideal.
Various authors have proven stability results for Temperley-Lieb al-

gebras [BH20; BH21; Sro22], Brauer algebras [BHP21], Iwahori-Hecke
algebras of types A and B [Hep22; Mos22], and, most recently, parti-
tion algebras [BHP23]. In many of these cases, the homology is stably
identified with that of an algebra whose homology is known to be sta-
ble, and the authors show that these identifications actually hold in
all degrees under the assumption that some defining parameter is in-
vertible. For the Temperley-Lieb algebras [Sro22] and Brauer algebras
[Boy22], these global identifications have been shown to hold indepen-
dently of the parameter when the number of strands is odd. In parallel,
Patzt [Pat20] has studied representation stability for these algebras.
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2 GUY BOYDE

Often, in the existing literature, one is not proving homological sta-
bility for the algebras An directly, but rather proving a stable isomor-
phism to some family Bn whose homology is known to be stable, and
then getting stability for the An as a corollary. This paper is intended
to advertise the virtues of approaching such questions by fixing n and
attempting to resolve Bn over An, forgetting altogether that An and
Bn each belong to family.

1.1. Results: Partition algebras. The partition algebras Pn(δ) (Def-
inition 3.2) originate independently in work of Jones [Jon94b] and Mar-
tin [Mar94]. Boyd, Hepworth, and Patzt [BHP23] have proven an op-
timal homology stability range for the partition algebras: the map

TorPn−1(δ)
q (1,1) → TorPn(δ)

q (1,1)

is an isomorphism for q ≤ n−1
2
. They accomplish this by showing that

the homology of the partition algebras is naturally isomorphic to that
of the symmetric groups in this range. Our result is as follows.

Theorem 1.1. The natural map

TorPn(δ)
q (1,1) → TorRΣn

q (1,1) =: Hq(Σn;R)

is an isomorphism for q ≤ n− 3, and a surjection for q = n− 2.

The point is that although the partition algebras and the symmetric
groups are both known to have best-possible stability ranges given by a
line of gradient 1

2
, the isomorphism between their homologies actually

holds in a larger range, below a line of gradient 1.

1.2. Results: Jones annular algebras. The second family that we
will study is the Jones annular algebras [Jon94a] (Definition 4.1). We
will write n for the set {1, 2, . . . , n}
Let R be a commutative ring with unit, and let δ ∈ R. Informally,

the Jones annular algebra Jn(δ) has a basis consisting of partitions of
the set n ∪ n′ = {1, 2, . . . , n, 1′, 2′ . . . , n′} into parts of cardinality 2,
such that these partitions can be represented by non-intersecting edges
when the vertices are embedded in the ends of the cylinder. In other
words, it is the ‘cylindrical’ or ‘annular’ version of the Temperley-Lieb
algebra.
Recalling the definition of the Brauer algebra Brn(δ) ([Bra37], but

see [BHP21] for a definition that suits us better), and the Temperley-
Lieb algebra TLn(δ) ([TL71], see [BH20]), there are inclusions:

TLn(δ) ⊂ Jn(δ) ⊂ Brn(δ) ⊂ Pn(δ).
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All of these algebras are cellular in the sense of Graham and Lehrer
[GL96; Xi99], but we will not make much explicit use of this.
There is one important subtlety in the definition of Jn(δ): pictorial

representatives which differ ‘by a Dehn twist’ correspond to the same
basis element. That is, unlike the Temperley-Lieb algebra, a single
basis element (i.e. a single pairing on the vertices) can be represented
by multiple non-isotopic pictures. If this were not so then Jn(δ) would
be infinite dimensional, and would not be a subalgebra of the partition
algebra. This makes it a slight abuse of terminology to call the basis
elements annular diagrams, but we will do so nonetheless.

Example 1.2. Here are two non-isotopic pictorial representatives of a
single basis element J11(δ) - they differ only by a Dehn twist. The
connections are coloured only to more clearly indicate which is which -
this has no meaning in the algebra. The cylinder is drawn as a pasting
diagram (the dotted lines to be identified).

α = =

Example 1.3. Here is a sample multiplication in J11(δ). Let α be the
diagram from the previous example, and let

β =

Then αβ is computed by forming the ‘composed diagram’

α ◦ β =

and (just like in the Temperley-Lieb algebra) replacing each loop ap-
pearing in the middle with a factor of δ ∈ R. This gives:
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αβ = δ· = δ· ∈ J11(δ),

where we simplify the result as in the Temperley-Lieb algebra, but with
an additional Dehn twist.

An annular diagram having n left-to-right connections may be iden-
tified with an element of the cyclic group Cn. This gives a retraction

RCn → Jn(δ) → RCn,

where the second map is the quotient by the ideal I≤n−1 spanned by
diagrams with fewer than the maximal number n of left-to-right con-
nections.
Our main result for the Jones annular algebras is as follows.

Theorem 1.4. The natural map

TorJn(δ)q (1,1) → TorRCn

q (1,1) =: Hq(Cn;R)

is an isomorphism for q ≤ n
2
− 3, and a surjection for q = n

2
− 2.

The cyclic groups (hence also the Jones annular algebras) cannot
exhibit any kind of homological stability (for example H1(Cn;Z) ∼=
Z/n), but the two families are nonetheless stably isomorphic.
We also prove the following.

Theorem 1.5. If n is odd or δ is invertible, then the map

TorJn(δ)q (1,1) → Hq(Cn;R)

of Theorem 1.4 is an isomorphism for all q.

1.3. Methods. Each of our two main theorems asserts that a certain
map of algebras A → B is a homology isomorphism in a range. Morally,
what we are doing in each case is

• constructing a partial resolution of B as an A-module, and
• using this as input to a change of rings spectral sequence.

In practice, we will make (the usual) more elementary argument (see
the proof of Theorem 2.8) instead of using the change of rings spectral
sequence. The range of degrees in which we succeed in constructing
the resolution will become our stability range.
For a positive integer w we will write w for the set {1, . . . , w}.
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Definition 1.6. Let A be an R-algebra, let I be a twosided ideal of
A, and let w ≥ h ≥ 1. An idempotent (left) cover of I of height h and
width w is a finite collection of left ideals J1, . . . Jw of A, which cover I
in the sense that J1 + · · ·+ Jw = I, and such that for each S ⊂ w with
|S| ≤ h, the intersection

⋂

i∈S

Ji

is either zero or is a principal left ideal generated by an idempotent. If
I is free as an R-module, then an idempotent cover is said to be R-free
if there is a choice of R-basis for I such that each Ji is free on a subset
of this basis.

Our main technical theorem is as follows.

Theorem 1.7. Let A be an augmented R-algebra with trivial module
1. Let I be a twosided ideal of A which is free as an R-module and
acts trivially on 1. Suppose that there exists an R-free idempotent left
cover of I of height h. Then the natural map

TorAq (1,1) → Tor
A�I
q (1,1)

is an isomorphism for q ≤ h− 2, and a surjection for q = h− 1. If h
is equal to the width w of the cover, then this map is an isomorphism
for all q.

This theorem will be proven in Section 2.3; it is essentially the com-
bination of Theorem 2.8 and Proposition 2.5 in the case M = N = 1.
We should emphasise that this theorem is fairly elementary, and almost
certainly already known in some guise. It nonetheless seems to be quite
an effective tool.
The ‘absolute’ version of our approach originates with Sroka’s cellular

Davis complex [Sro22]. Sroka describes this complex as a resolution
of the trivial module 1 over TLn, and Sroka uses this to attack the
homology

TorTLn

∗ (1,1)

directly, showing that it vanishes below a line of gradient 1
2
, and pro-

viding an alternative to the original vanishing proof of Boyd-Hepworth
[BH20], which uses their technique of inductive resolutions to obtain
an optimal vanishing range of slope 1.
This paper began with the observation that Sroka’s complex may be

thought of as a partial resolution of the trivial R-algebra R as an TLn-
module, and the conclusion of his theorem may then be interpreted as
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saying that the map

TorTLn

∗ (1,1) → TorR∗ (1,1)
∼=

{

R ∗ = 0

0 otherwise,

induced on homology by the map of algebras TLn → R, is an isomor-
phism below a line of gradient 1

2
. One is then drawn to ask whether

such an argument can be made to work when the second algebra is not
isomorphic to the trivial module of the first. Theorem 1.7 says that
the answer is yes: the additional input is essentially a change of rings
spectral sequence (though we will use the usual elementary argument
instead). This is what we mean when we say that this paper takes a
‘relative’ point of view.
It is interesting that inductive resolutions give better results for the

Temperley-Lieb algebras, while a relative version of Sroka’s approach
seems to works better on the partition algebras.

Acknowledgements. I would like to thank Richard Hepworth for his
early encouragement. The author’s postdoc is funded by Gijs Heuts’
ERC Starting Grant ‘Chromatic homotopy theory of spaces’.

2. Algebra

In this section we will prove the main technical result, Theorem 1.7.

2.1. The Mayer-Vietoris Complex. Let A be an R-algebra, and let
N ⊂ M be A-modules. Let N1, . . . , Nw be submodules of N such that

N1 + · · ·+Nw = N.

In this situation, we have a ‘Mayer-Vietoris’ chain complex of left
A-modules C∗, which we will now describe. It is essentially the ‘con-
centrated in a single degree’ version of the double complex on the (e.g.
singular) chains of a topological covering, but approached from a purely
algebraic point of view.
We will be interested in this complex in the case that Ni = Ji is an

idempotent cover of an ideal N = I of M = A. It is essentially an
abstract version of Sroka’s cellular Davis complex [Sro22, Definition 8].
We set

Cp :=
⊕

S⊂w
|S|=p

⋂

i∈S

Ni

for p = 1, . . . , w, with C0 := M , and (the augmentation) C−1 := M�N .
We adopt the convention that Cp = 0 for p > w.
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The differential dp : Cp → Cp−1 is defined as follows. For p = 0 it is

just the projection M → M�N . For p = 1 it is the direct sum of the
inclusions. For p ≥ 2, we define dp on the summand

⋂

i∈S Ni to be the
map

⋂

i∈S

Ni →
⊕

j∈S

⋂

i∈S\{j}

Ni,

x 7→
∑

j∈S

(−1)#(S,j)ι(S,j)(x),

where #(S, j) is the number of elements of S which are less than j,
and ι(S,j) is the inclusion

⋂

i∈S Ni →
⋂

i∈S\{j}Ni.
Although we presented C0 and d1 as special cases, they are not.

One may think of C0 as the intersection of none of the Ji, and under
this convention the definition of d1 coincides with the definition of the
higher differentials.

Lemma 2.1. The Mayer-Vietoris complex associated to a cover is a
chain complex. That is, the differential satisfies d2 = 0.

The proof is standard, and exactly parallels Sroka’s proof that his
cellular Davis complex is a chain complex [Sro22, Lemma 9].

Proof. Since the Ni are all contained in N , d−1 ◦ d0 = 0.
For p ≥ 1, it suffices to argue that the restiction of dp−1 ◦ dp to each

summand
⋂

i∈S Ni (with |S| = p) of Cp is zero.
Fixing such a set S, let x ∈

⋂

i∈S Ni ⊂ Cp. We compute:

dp−1 ◦ dp(x) = dp−1(
∑

j∈S

(−1)#(S,j)ι(S,j)(x))

=
∑

i∈S\{j}

∑

j∈S

(−1)#(S\{j},i)+#(S,j)ι(S\{j},i)ι(S,j)(x)

=
∑

i 6=j∈S

(−1)#(S\{j},i)+#(S,j)ι(S\{j},i)ι(S,j)(x)

We have

ι(S\{j},i)ι(S,j) = ι(S\{i},j)ι(S,i),

so it suffices to show that

(−1)#(S\{j},i)+#(S,j) = −(−1)#(S\{i},j)+#(S,i).

This holds because i < j implies that #(S \ {i}, j) = #(S, j) − 1,
and #(S \ {j}, i) = #(S, i), and this completes the proof. �
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Lemma 2.2. If N is free as an R-module on some basis B, such that
the Ni are free R-modules on subsets of B, then the Mayer-Vietoris
complex is acyclic.

Again, the proof runs exactly parallel to Sroka’s proof that his cel-
lular Davis complex is acyclic [Sro22, Theorem 10].

Proof. By construction, d0 : M → M�N is a surjection, so the Mayer-
Vietoris complex is exact in degree −1. Exactness in degree 0 follows
from the assumption that N1+· · ·+Nw = N . We may therefore restrict
attention to p ≥ 1.
Write Bi ⊂ B for the basis of Ni. Then each intersection

⋂

i∈S Ni is
free on the corresponding intersection

⋂

i∈S Bi.
For each v ∈ B, and S ⊂ w, let χv(S) be defined as follows.

• If v ∈
⋂

i∈S Bi, then χv(S) ∼= R is the submodule of
⋂

i∈S Ni

generated by v.
• If v 6∈

⋂

i∈S Bi, then χv(S) = 0.

It is then tautological that for each S ⊂ w we have
⋂

i∈S

Ni =
⊕

v∈B

χv(S),

so we get a decomposition of Cp as an R-module:

Cp =
⊕

S⊂w
|S|=p

⋂

i∈S

Ni =
⊕

S⊂w
|S|=p

⊕

v∈B

χv(S) =
⊕

v∈B

⊕

S⊂w
|S|=p

χv(S) =
⊕

v∈B

Cv
p ,

where we define Cv
∗ to be the chain complex with Cv

p :=
⊕

S⊂w
|S|=p

χv(S).

The boundary map dp is a linear combination of inclusions, so it
automatically respects this decomposition. That is, as chain complexes
in R-modules we have

C∗ =
⊕

v∈B

Cv
∗ ,

in degrees ≥ 1, and in degree zero
⊕

v∈B C
v
∗ = N = Im(d1) ⊂ M , so it

suffices to establish that each Cv
∗ is acyclic.

Let S(v) be the subset of w consisting of those i such that v ∈ Bi.
Then, notice that Cv

∗ is exactly the augmented chain complex (over
R, shifted up by one degree) of the simplex ∆|S(v)|−1. This complex is
acyclic, so we are done. �

Lemma 2.3. Let X be a right A-module. Let J be a left ideal of A
which is generated by idempotents and acts trivially on X. Then we
have X ⊗A J = 0.
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Proof. It suffices to show that x⊗αe = 0 for e an idempotent generator
of J , x ∈ X and α ∈ A. We have x ⊗ αe = x ⊗ αe2 = x · (αe) ⊗ e,
which is zero since the action is trivial, as required. �

A principal left ideal generated by an idempotent is a projective left
A-module (this is standard, but see for example [Boy22, Lemma 3.1]).
We therefore have:

Lemma 2.4. Let A be an R-algebra, and let I be a twosided ideal of
A, with an idempotent cover of height h. The truncation C≤h

∗ in degree
h of the Mayer-Vietoris complex associated to the cover is a projective

complex over A�I, with C0 = A.

Lemmas 2.4, 2.2 and 2.3 combine to give the following proposition.

Proposition 2.5. Let A be an R-algebra, let I be a twosided ideal of
A, and let J1, . . . Jw be an R-free idempotent left cover of I of height
h ≤ w. The truncation C≤h

∗ of the Mayer-Vietoris complex associated

to J1, . . . , Jw is an (h− 1)-connected projective complex over A�I, with
C0 = A, and with the additional property that X ⊗A Cp = 0 for p ≥ 1
for any right A-module X on which I acts trivially. If h = w then
C≤h

∗ = C∗ is actually acyclic. �

In the wild, we will recognise principal idempotent ideals as retracts,
in the following manner.

Lemma 2.6. If J is a left ideal of an R-algebra A which is a retract
of A via a right multiplication map A

·e
−→ J for some element e ∈ J ,

then J is the principal left ideal generated by e, and e is idempotent.

Proof. Since ·e is a retraction of the inclusion J → A, we have x ·e = x
for all x ∈ J . This gives that J is principal and generated by e.
In particular, since e is itself in J , we have e · e = e, that is, e is
idempotent. �

2.2. The spectral sequence argument.

Proposition 2.7. Let M be a left A-module, and let N be a right
A-module. Suppose that there exists an (h − 1)-connected projective
complex C∗ of left A-modules over M , with N ⊗A Cp = 0 for p ≥ 1.
Then

TorAq (N,M) = 0

for 0 < q ≤ h− 2, and N ⊗A M ∼= N ⊗A C0.

Proof. Let C∗ be such an (h− 1)-connected projective complex of left
A-modules over M , regarded as augmented by setting C−1 = M . This
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means that Cp is projective for p ≥ 0. Let P∗ be an (unaugmented)
right projective resolution of N over A. The double complex P∗ ⊗A C∗

gives two spectral sequences converging to the same target. Write IEr
p,q

for the spectral sequence obtained by first taking homology in the C∗-
direction, and write IIEr

p,q for the spectral sequence obtained by first
taking homology in the P∗-direction.
The Pq are projective, so taking homology in the C∗-direction gives

IE1
p,q

∼= Pq ⊗Hp(C∗),

which by assumption vanishes for p ≤ h − 1, hence vanishes in total
degree p+q ≤ h−1. The E∞ page of the other spectral sequence, IIEr

p,q

must vanish in the same range. We now examine the consequences of
this vanishing for the IIE1 page. This page takes the form

IIE1
p,q

∼= TorAq (N,Cp),

since P∗ is a projective resolution of N .
In the q = 0 row, we have IIE1

p,0
∼= N ⊗A Cp, which by assumption

is 0 for p ≥ 1. Since N⊗A is right exact, the tensor product of N with
any quotient of Cp is still trivial. Thus, the exact sequence

0 → C1�Im(C2)
→ C0 → M → 0

obtained by truncating C∗ implies that the map C0 → M becomes an
isomorphismN⊗AC0 → N⊗AM , which is to say that the d1-differential
E1

0,0 → E1
−1,0 is an isomorphism. This establishes the second claim, and

shows that both groups vanish on the IIE2-page.
For q > 0, since the Cp are projective for p ≥ 0, the E1-page IIE1

p,q
∼=

TorAq (N,Cp) vanishes outside of the p = −1 column. In this column,
we have

IIE1
−1,q

∼= TorAq (N,C−1) = TorAq (N,M).

For degree reasons, then, IIE collapses at the r = 2 page, which
has TorAq (N,M) in the (−1, q) position for q > 0. Since the E∞-page
vanishes in total degree ≤ h− 1, the result follows. �

2.3. The stable isomorphism.

Theorem 2.8. Let N be a left A-module, and let M be a right A-
module. Let I be a twosided ideal of A which acts trivially on M and
N . Suppose that there exists an (h − 1)-connected projective complex

C∗ of left A-modules over A�I, with C0 = A and N ⊗A Cp = 0 for
p ≥ 1. Then the natural map

TorAq (N,M) → Tor
A�I
q (N,M)
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is an isomorphism for q ≤ h− 2 and a surjection for q = h− 1.

Proof. We will argue that TorAq (N,M) and Tor
A�I
q (N,M) are the ho-

mology of the same chain complex.
Let P∗ be a free A-resolution of N . Then TorA∗ (N,M) is the homol-

ogy of P∗ ⊗A M . Since I acts trivially on M and N , we may write

P∗ ⊗A M ∼= P∗ ⊗A
A�I ⊗A�I

M.

Then, since P∗ is free over A, the tensor product P∗⊗A
A�I is free over

A�I. By Proposition 2.7, we have TorAq (N,A�I) = 0 for 0 < q ≤ h− 2,

which is to say that the homology of P∗ ⊗A
A�I vanishes in degrees

0 < q ≤ h− 2.
By the same proposition,

TorA0 (N,A�I) := N ⊗A
A�I

∼= N ⊗A C0
∼= N,

since C0 = A by assumption.

Thus, P∗⊗A
A�I is a free (h−2)-connected complex over N , so P∗⊗A

A�I ⊗A�I
M computes Tor

A�I
q (N,M) for q ≤ h − 2, and in dimension

h − 1 we get a surjection Hh−1(P∗ ⊗A
A�I ⊗A�I

M) → Tor
A�I
h−1(N,M).

This completes the proof. �

We are now ready to prove our main algebraic result.

Proof of Theorem 1.7. Combine Theorem 2.8 and Proposition 2.5. �

3. Partition algebras

We will think of the partition algebras Pn(δ) in more or less the
same way as Boyd-Hepworth-Patzt [BHP23, Definition 2.1]. We will
use slightly different notation for our vertex set, inspired by Xi’s paper
[Xi99]. Xi proves that the partition algebras have a cellular structure,
and our approach is sometimes motivated by this, but we will not need
to make it explicit.
We write N0 for the set of non-negative integers, and N for the set

of positive integers.

Definition 3.1. Consider the set N×N0. We will write (x, y) ∈ N×N0

as x, together with a superscript consisting of y instances of the symbol
′

For example, (3, 2) is written 3′′, (1, 0) is written 1, and (5, 4) is written
5′′′′. For a subset S of N×N0, let S

′ be the set {(x, y + 1)|(x, y) ∈ S};
in our notation, this is the set {x′|x ∈ S}.
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For a fixed n, we write n for the subset {1, 2, . . . , n} of N×N0, so that
n′ = {1′, 2′, . . . , n′} is in bijection with n via the map which ‘primes
each element’.

With this notation in hand, we define the partition algebras as fol-
lows.

Definition 3.2. Let R be a commutative ring with unit, let δ ∈ R,
and let n ≥ 1. The partition algebra Pn(δ) is the free R-module on the
set of partitions ρ of

n ∪ n′ = {1, 2, . . . , n, 1′, 2′, . . . , n′}.

The multiplication is defined on partitions, then extended bilinearly,
as follows. For partitions µ and ν of n ∪ n′, let ν ′ be the partition of
(n ∪ n′)′ = n′ ∪ n′′ corresponding to ν under the priming-unpriming
correspondence of Definition 3.1. Let the composed partition

µ ∗ ν

be the finest partition of n∪n′∪n′′ whose restriction to n∪n′ is coarser
than µ and whose restriction to n′ ∪ n′′ is coarser than ν ′. Let j ∈ N0

be the number of parts of µ ◦ ν ′ containing only elements of n′, and let
µ ∗ ν be the partition of n ∪ n′ obtained by restricting µ ◦ ν ′ to n ∪ n′′

and then ‘unpriming’ n′′. The product µν in the partition algebra is
then defined to be

µν = δj · µ ∗ ν ∈ Pn(δ).

We will feel free to call µ ∗ ν the underlying partition of the product
µν, since it is well defined even if δj = 0.

In this section we will construct an idempotent left cover of height
n−1 for the the ideal I≤n−1 of the partition algebra Pn(δ). Recall that
I≤n−1 is the R-span of partitions having at most n− 1 (i.e. fewer than
the maximal number n) parts containing both primed and unprimed
elements.

Definition 3.3. For i in n let Ki be the left ideal of Pn(δ) spanned by
partitions where the vertex i′ on the right is a singleton. For distinct
elements i < j in n, let Li,j be the left ideal spanned by diagrams
where the vertices i′ and j′ on the right belong to the same part of the
partition.

Lemma 3.4. The ideals Ki and Li,j cover I≤n−1.

Proof. It suffices to argue that

(1) each Ki or Li,j is contained in I≤n−1, and
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(2) any partition with fewer than n parts containing both primed
and unprimed elements belongs to some Ki or to some Li,j .

For the first point, simply note that the a partition belonging to Ki

or Li,j has at most n−1 parts that contain both primed and unprimed
elements, so the partition itself belongs to I≤n−1. For the second point,
suppose that a partition ρ has fewer than n parts with both primed
and unprimed elements. The restriction q of ρ to the primed vertices
n′ must have fewer than n parts which lie in a part of ρ also containing
unprimed vertices. Thus, either two primed vertices must lie in the
same part of q, or if all parts of q are singletons, then one of them must
also be a singleton in ρ. In the first case, ρ is contained in some Li,j,
and in the second case ρ is contained in some Ki. This completes the
proof. �

Unsurprisingly, we will be concerned with iterated intersections of
these ideals. The following lemma is immediate. Write n2

< for the
subset of n × n consisting of pairs (i, j) with i < j (i.e. the indexing
set for the ideals Li,j).

Lemma 3.5. Let S ⊂ n, and let T ⊂ n2
<. The intersection

⋂

i∈S

Ki ∩
⋂

(i,j)∈T

Li,j

is the R-span of those partitions for which

• i′ is a singleton whenever i ∈ S, and
• i′ and j′ lie in the same part of the partition whenever (i, j) ∈ T

In particular, the intersection is zero if and only if there exists (i, j) ∈ T
so that either i ∈ S or j ∈ S. �

Lemma 3.6. Let S ⊂ n, and let T ⊂ n2
<. Let

J =
⋂

i∈S

Ki ∩
⋂

(i,j)∈T

Li,j ,

and let a ∈ n \ S be such that S ∪ {a} is a proper subset of n. Choose
b ∈ n \ (S ∪ {a}), and let µ be the partition of n ∪ n′ whose parts are

• the singleton {a′},
• the triple {a, b, b′}
• the pair {i, i′} for each i ∈ n \ {a, b}.

Then either Ka ∩ J = 0 or J · µ ⊂ Ka ∩ J .

Of course, µ depends on a and b, but we take the liberty of omitting
this from the notation.
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Proof. Assume Ka ∩ J 6= 0, and let ρ ∈ J be a partition. We must
show that ρµ ∈ Ka ∩ J .
If i ∈ S then, since ρ ∈ J , i′ is a singleton in ρ. By construction, i is

not equal to a or b, so i′ is still a singleton in (the underlying partition
of) ρµ. It follows that ρµ is in Ki.
If (i, j) ∈ T then, since ρ ∈ J , i′ and j′ lie in the same part of ρ.

If either i = a or j = a then by Lemma 3.5 we have Ka ∩ J = 0,
which contradicts our initial assumption, so in fact neither i nor j can
be equal to a. This means that i and i′ lie in the same part of µ, and
likewise for j and j′. It follows that i′ and j′ lie in the same part of ρµ.
It follows that ρµ is in Li,j .
Lastly, a′ is a singleton in µ, hence also in ρµ, so ρµ ∈ Ka. In

total, we have shown that ρµ ∈
⋂

i∈S∪{a} Ki ∩
⋂

(i,j)∈T Li,j = Ka ∩ J , as
required. �

Lemma 3.7. Let S ⊂ n, and let T ⊂ n2
<. Let

J =
⋂

i∈S

Ki ∩
⋂

(i,j)∈T

Li,j ,

and let a ∈ n\S be such that S ∪{a} is a proper subset of n. If Ka∩J
is nonzero, then right multiplication by the element µ constructed in
Lemma 3.6 gives a retraction of the inclusion of Ka ∩ J into J.

Proof. We must take a partition ρ ∈ Ka ∩ J and show that ρµ = ρ.
Every unprimed vertex lies in the same part of µ as some primed

vertex, so for any partition ρ the product ρµ produces no factors of δ,
and is again a partition. We must argue that this partition is ρ.
Let A be the part of ρ containing a′, and let B be the part of ρ

containing b′. It then follows from the definition of µ that ρµ has
parts:

• the singleton {a′}
• (A \ {a′}) ∪B
• the parts of ρ other than A and B.

In other words, µ operates on ρ by removing a′ from its part and
merging the remainder with the part containing b′.
It follows that if a′ is already a singleton in ρ, then ρµ = ρ. �

Lemma 3.8. Let S ⊂ n, and let T ⊂ n2
<. Let

J =
⋂

i∈S

Ki ∩
⋂

(i,j)∈T

Li,j ,

and let (a, b) ∈ n2
< \ T . Let ν be the partition of n∪ n′ whose parts are

• the quadruple {a, b, a′, b′}, and
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• the pair {i, i′} for each i ∈ n \ {a, b}.

Then either La,b ∩ J = 0 or J · ν ⊂ La,b ∩ J .

Proof. Assume La,b ∩ J 6= 0, and let ρ ∈ J be a partition. We must
show that ρν ∈ La,b ∩ J .
If i ∈ S then i′ is a singleton in ρ. By Lemma 3.5, the assumption

La,b ∩ J 6= 0 gives that a and b are not in S, so i is not equal to a or
b, so {i, i′} is a part of ν, and i′ is again a singleton in ρν. This gives
that ρν ∈ Ki, as required.
If (i, j) ∈ T then i′ and j′ lie in the same part of ρ. For each k ∈ n,

k and k′ lie in the same part of ν, so i′ and j′ lie in the same part of
ρν, so ρν ∈ Li,j , as required.
Lastly, a′, b′ lie in the same part of ν, hence also in the same part

of ρν, so ρν ∈ La,b. In total, we have shown that ρν ∈ La,b ∩ J , as
required. �

Lemma 3.9. Let S ⊂ n, and let T ⊂ n2
<. Let

J =
⋂

i∈S

Ki ∩
⋂

(i,j)∈T

Li,j ,

and let (a, b) ∈ n2
< \ T . If La,b ∩ J is nonzero, then right multiplication

by the element ν constructed in Lemma 3.8 gives a retraction of left
Pn(δ)-modules La,b ∩ J → J .

Proof. We must take a partition ρ ∈ La,b and show that ρν = ρ.
Again, every unprimed vertex lies in the same part of ν as some

primed vertex, so the product ρν produces no factors of δ, and is again
a partition. We must argue that this partition is ρ.
For any ρ, the product ρν is the partition obtained from ρ by merging

the part containing a with the part containing b. In particular, if a and
b are already in the same part of ρ (i.e. if ρ ∈ La,b) then ρν = ρ. �

Lemma 3.10. Unless S = n, the left ideal

J =
⋂

i∈S

Ki ∩
⋂

(i,j)∈T

Li,j

is (zero or) principal and generated by an idempotent.

Proof. By inductive application of Lemmas 3.7 and 3.9, either J is zero,
or J is a retract of Pn(δ). The retraction map is a composite of maps
given by right multiplication by certain elements of Pn(δ), so is itself
given by right multiplication by the product of those elements. This
product element ρ must be lie in J because ρ = 1 · ρ lies in Im(·ρ) ⊂ J .
The result then follows from Lemma 2.6. �
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We are now ready to prove the main result on Pn(δ). Recall from
the introduction of [BHP21] that we have

Pn(δ)�I≤n−1
∼= RΣn,

the group algebra of the symmetric group.

Proof of Theorem 1.1. By Lemma 3.4, these ideals do indeed form an
R-free cover of I≤n−1. By Lemma 3.10, an intersection of at most n−1
ideals from among theKi and Li,j is either zero or principal idempotent,
so this is indeed a principal idempotent cover of height n−1. Certainly
I≤n−1 acts trivially on 1, so the result follows by Theorem 1.7. �

4. Jones annular algebras

Again, we will use the ‘priming’ convention of Definition 3.1 for ver-
tex labelling.

Definition 4.1. Consider a cylinder C = S1 × [0, 1]. Embed the un-
primed vertices n, equally spaced, around S1 × {0} ⊂ C, and embed
the primed vertices n′ around S1 × {1} ⊂ C. Precisely, regarding S1

as the complex unit circle, we embed j at (ei
2πj

n , 0), and j′ at (ei
2πj

n , 1).
This naturally identifies the unprimed vertices with a copy of the cyclic
group Cn, and likewise for the primed vertices.
Let R be a ring and let δ ∈ R. Recall (from e.g. [BHP21]) that the

Brauer algebra Brn(δ) is the subalgebra of the partition algebra Pn(δ)
which has a basis consisting of partitions of n∪ n′ such that each part
has cardinality 2.
Let ρ be such a partition. Say that a graphical representative of ρ

on the annulus is a choice, for each part of ρ, of an embedded curve
in C connecting the two vertices of the part. Say that ρ admits an
annular representative or that ρ is an annular diagram if there exists
a graphical representative of ρ on the annulus for which no two of the
embedded curves intersect.
The Jones annular algebra Jn(δ) is then the subalgebra of Brn(δ)

spanned by partitions which admit annular representatives.

For the sake of fluidity we will feel at liberty to think of the vertices
as being labelled either by the cyclic group Cn or by n.
By the cyclic interval [a, b] in the cyclic group Cn we mean the

set {a, a + 1, a + 2, . . . , b}. Open cyclic intervals are defined similarly.
Graham and Lehrer [GL96, Proposition 6.14] give a useful description
of the canonical basis of Jn(δ), which we will now describe.
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Definition 4.2. An annular link state is a partition p of Cn
∼= n into

parts of cardinality 1 and 2, such that the defect parts are precisely
those of cardinality 1, and if {i, j} is a part of p, then:

• No part of p having cardinality 2 consists of one element from
the cyclic interval (i, j) and one from (j, i). In other words,
(i, j) and (j, i) are unions of parts of p.

• Either all defect parts of p (equivalently, all singletons) are con-
tained in (i, j), or all defect parts of p are contained in (j, i).

The t defect vertices may be ordered via the correspondence Cn
∼= n,

and we may speak of the i-th defect vertex for i ∈ t. Write M(t) for
the set of annular link states with t defects.

The next proposition is essentially [GL96, Proposition 6.14].

Proposition 4.3. For 0 ≤ t ≤ n, σ ∈ Ct, and annular link states
p and q having t defects, there is a unique annular diagram Cσ

p,q on
n ∪ n′ = Cn ∪ C ′

n such that:

• the restriction of Cσ
p,q to n ∼= Cn is p,

• the restriction of Cσ
p,q to n′ ∼= C ′

n is identified with q under the
priming-unpriming correspondence, and

• the i-th defect vertex of q and the σ(i)-th vertex of p are con-
nected by an edge in Cσ

p,q.

Furthermore, the resulting map
∐

0≤t≤n

M(t)× Ct ×M(t) → Jn(δ)

(p, q, σ) → Cσ
p,q

is an injection onto the R-basis of annular diagrams. �

Henceforth, we will typically write Cn ∪ C ′
n for the set of vertices,

remembering the ordering given by Cn
∼= n only when necessary.

Definition 4.4. For i ∈ Cn, let Ji be the left ideal of Jn(δ) spanned by
diagrams where the vertices i′ and (i + 1)′ on the right are connected
by an edge.

Recall that the twosided ideal I≤n−1 is the R-span of the diagrams
with fewer than the maximal number n of left-to-right connections.

Lemma 4.5. The ideals Ji cover I≤n−1.

Proof. Any diagram x with fewer than n left-to-right connections must
have a primed vertex i′ not connected to an unprimed vertex. This ver-
tex must therefore be connected to some other vertex j′, so by Propo-
sition 4.3, and the definition of annular link states (Definition 4.2), at
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least one of the cyclic intervals (i′, j′) or (j′, i′) consists entirely of ver-
tices with right-to-right connections. Without loss of generality, sup-
pose that (i′, j′) consists entirely of vertices with right-to-right connec-
tions. Choose such a right-to-right connection, and call its ends i′1 and
j′1 (choosing which end receives which name so that (i′1, j

′
1) ⊂ (i′, j′)).

If (i′1, j
′
1) is empty, then i′1 and j′1 must be adjacent. If not, then (as a

subset of (i′, j′)) it must consist entirely of vertices with right-to-right
connections, and we may choose one of these and repeat. At each stage,
the cyclic interval becomes smaller, so we eventually reach a connection
between two adjacent vertices, say k′ and (k + 1)′, whence x ∈ Jk. �

Let T ⊂ Cn. Borrowing terminology from [Sro22], we will say that
T is innermost if there do not exist distinct elements i 6= j in T such
that i = j + 1 or j = i + 1. As in that paper, the point is that the
innermost sets are precisely those T for which there exists an annular
diagram where i′ and (i+ 1)′ are connected for every i ∈ T .

Lemma 4.6. Let T ⊂ Cn. The intersection
⋂

i∈T

Ji

is the R-span of those partitions which have an edge between vertices i′

and (i + 1)′ whenever i ∈ T . This intersection is nonzero if and only
if T is innermost.

Proof. The first claim is immediate. For the second claim, there exists
an annular link state q with an arc between i′ and (i + 1)′ for each
i ∈ T provided that no distinct elements i 6= j in T have i = j + 1
or j = i+ 1 (both of the conditions of Definition 4.2 holding trivially,
since the open cyclic interval (i, i + 1) is empty). If such a q exists,
then by Proposition 4.3 there exists a diagram whose right link state

is q (for example, C
1Ct
q,q ). �

For T a subset of Cn, say that the moral support of T is the set
MS(T ) = T ∪ (T + 1) ⊂ Cn. For S a subset of Cn, and b ∈ S, say that
b is locally (cyclically) minimal in S if b ∈ S, but b− 1 6∈ S.
The following lemma is immediate.

Lemma 4.7. Let T ⊂ Cn. If MS(T ) is a proper subset of Cn, then
there exists a ∈ Cn so that a + 2 is locally minimal in the complement
Cn \MS(T ). �

Lemma 4.8. Let T ⊂ Cn be innermost. Suppose that a ∈ Cn is such
that a + 2 is locally minimal in the complement of the moral support
MS(T ). Let ω be the annular diagram where:
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• a + 2 is connected to a+ 1,
• a is connected to (a+ 2)′,
• (a+ 1)′ is connected to a′,
• for i ∈ (a+ 2, a) = Cn \ [a, a+ 2], i is connected to i′.

Then (
⋂

i∈T\{a} Ji) · ω ⊂
⋂

i∈T Ji.

The picture is the same as the key one in Sroka’s paper [Sro22]. If
a = 3 in J8, then:

ω =
a′ (a+ 1)′

(a+ 2)′

Proof. Let ρ be a diagram in
⋂

i∈T\{a} Ji. We must show that ρω ∈
⋂

i∈T Ji.
First, since ω has an edge connecting (a+1)′ and a′, ρω also has an

edge connecting these vertices, and hence ρω is in Ja.
Suppose now that j ∈ T \ a. Neither j = a + 1 nor j + 1 = a can

hold, since this would contradict the assumption that T was innermost.
Thus, since j is not in the set {a − 1, a, a + 1}, and a + 2 lies in the
complement of T , so in particular a+ 2 6= j, we have that j and j + 1
are both in the open cyclic interval (a + 2, a). Thus, j is connected to
j′ in ω, and likewise j+1 is connected to (j+1)′. Since j′ and (j+1)′

are assumed to be connected in ρ, it now follows that they are still
connected in ρω. Thus ρω is in Jj.
Since j was chosen arbitrarily from T \a, and we have already estab-

lished that ρω ∈ Ja, it follows that ρω is contained in the intersection
⋂

i∈T Ji, as required. �

Lemma 4.9. Let T ⊂ Cn be innermost. Suppose that a ∈ Cn is such
that a + 2 is locally minimal in the complement of the moral support
MS(T ). The map

·ω :
⋂

i∈T\{a}

Ji →
⋂

i∈T

Ji

constructed in Lemma 4.8 is a retraction of the inclusion of
⋂

i∈T Ji

into
⋂

i∈T\{a} Ji.

Proof. Suppose ρ ∈
⋂

i∈T Ji. We must show ρω = ρ.
In particular, we have that ρ ∈ Ja, so a′ and (a+1)′ are connected in

ρ. First, the product ρω produces no factors of δ: the only left-to-left
connection in ω is the one between (a+2) and a+1, so there can only
be a loop if (a + 2)′ and (a + 1)′ are connected in ρ. They cannot be,
because (a+1)′ is connected to a′ in ρ. It follows that ρω is a partition
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with no prefactor, and we will now argue that this partition is equal to
ρ.
Since a′ and (a + 1)′ are connected in ρ, (a + 2)′ is connected to

(a + 2)′′ in the composed partition ρ ◦ ω (c.f. Definition 3.2). More
generally, this means that i′ is connected to i′′ for i not equal to a or
a + 1. It follows that for such i, i′ is connected to the same vertex in
ρω as it was in ρ, and since (a + 1)′ and a′ are connected in ω, they
are also connected in ρω. This establishes that ρω has all of the right-
to-right and left-to-right connections from ρ, and it is automatic that
the product retains all left-to-left connections from ρ. Thus, ρω = ρ,
as required. �

Lemma 4.10. Suppose that T ⊂ Cn is innermost. Unless n is even
and T consists either of all of the odd or all of the even elements of
Cn, the ideal

⋂

i∈T

Ji

is a principal ideal generated by an idempotent. If δ is invertible, then
⋂

i∈T Ji is principal idempotent for any innermost T .

Proof. If T is innermost, then the moral support MS(T ) is a proper
subset of Cn unless n is even and T consists either of all of the odd or
all of the even elements of Cn. The result then follows by combining
Lemma 4.7, Lemma 4.9 and Lemma 2.6. The case of invertible δ is left
to the reader. �

We are now ready to prove the main result on Jn(δ). Recall from
the introduction that we have

Jn(δ)�I≤n−1
∼= RCn,

the group algebra of the cyclic group Cn.

Proof of Theorems 1.4 and 1.5. By Lemma 4.5, the ideals Ji form an
R-free cover of I≤n−1. By Lemma 4.10, an intersection of at most n

2
−1

ideals from among the Ji is either zero or principal idempotent, so this
is indeed a principal idempotent cover of height n

2
− 1. Theorem 1.4

then follows by Theorem 1.7.
If n is odd or δ is invertible, then Lemma 4.10 gives that any intersec-

tion of ideals from among the Ji is either zero or principal idempotent,
so Theorem 1.5 follows by applying Theorem 1.7 for arbitrarily large
finite h. �
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