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Abstract
Beaconless geocast protocols are routing protocols used to
send messages in mobile ad-hoc wireless networks, in which
the only information available to each node is its own
location. Messages get routed in a distributed manner: each
node uses local decision rules based on the message source
and destination, and its own location. In this paper we
analyze six different beaconless geocast protocols, focusing
on two relevant 1D scenarios. The selection of protocols
reflects the most relevant types of protocols proposed in the
literature, including those evaluated in previous computer
simulations. We present a formal and structured analysis of
the maximum number of messages that a node can receive,
for each protocol, in each of the two scenarios. This is
a measure of the network load incurred by each protocol.
Our analysis, that for some of the protocols requires an
involved probabilistic analysis, confirms behaviors that had
been observed only through simulations before.

1 Introduction
In mobile ad-hoc wireless networks there is no fixed
infrastructure or global knowledge about the network
topology. Nodes communicate on a peer-to-peer basis,
using only local information. Thus messages between
nodes that are not within range of each other must be
sent through other nodes acting as relay stations. An
important particular case of ad-hoc wireless networks
are wireless sensor networks, in which a (usually large)
number of autonomous sensor nodes collaborate to
collectively gather information about a certain area.

∗School of Information Technologies, University of Sydney,
joachim.gudmundsson@gmail.com
†Mathematics and Computer Science Dept., TU Eindhoven,

i.kostitsyna@tue.nl, supported in part by the Netherlands
Organisation for Scientific Research (NWO) under project no.
639.023.208 and by F.R.S.-FNRS.
‡Dept. of Information and Computing Science, Universiteit

Utrecht, m.loffler@uu.nl, supported by the Netherlands Or-
ganisation for Scientific Research (NWO) under project no.
639.021.123 and 614.001.504.
§Johann Bernoulli Institute, Groningen University,

tobias.muller@rug.nl, partially supported by the Nether-
lands Organisation for Scientific Research (NWO) under project
no. 639.032.529 and 612.001.409
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Nodes are typically mobile devices whose location
and availability may change frequently, resulting in a
highly dynamic environment in which routing must be
done on-the-fly. Typically, messages are not sent to a
particular network address, but to some or all nodes
within a geographic region. This is called geocasting.
The main pieces of information used to send a message
are the location of the source node, and that of the
destination region (also referred to as geocast region),
which is usually included in the actual message.1

Many geocast protocols have been proposed. In
general, existing protocols can be divided into two
groups: those that assume that each node also knows
the location of its 1-hop neighbors (i.e., all nodes within
range) and those that don’t. In practice, the locations
of neighbors can be obtained by regularly exchanging
beacon messages in the neighborhood. Beacons imply
a significant message overhead, which prevents these
methods from scaling even to medium-size networks [3]:
the problem is that in dense environments the number
of messages received by each individual node, and thus
the workload to decide whether and how to react to
those messages, becomes prohibitive. For this reason,
in this paper we are interested in the second group, the
so-called beaconless geocast protocols.

Probably the most straightforward beaconless geo-
cast protocol is simple flooding: each message is broad-
casted to all neighbors, who in turn broadcast it to all
their neighbors, and so on. Even though it is effective,
the resulting message overhead is clearly unaffordable.
From there on, there have been many improvements
proposed. The ultimate goal is to reduce the message
overhead as much as possible while still guaranteeing
delivery. In the last few decades, many different geo-
cast protocols have been proposed. Several of the most
important protocols are the subject of this paper, and
will be described in detail in the next section. For a
thorough review of all existing beaconless geocast pro-

1Some works use the term ‘packet’ to denote the indivisible
unit of information sent between the nodes. In this paper we
use the term ‘message’ instead as we are interested in counting
the number of transmissions and not the higher level aspects of
protocols.
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tocols we refer the reader to the surveys by Maihöfer [5]
and Rührup [6].

Given the importance of geocast protocols and the
many options available, there have been a few compar-
ative studies that assessed the efficiency and efficacy of
different methods under different scenarios, using low-
level computer simulations. Maihöfer [5] presents sim-
ulations for four geocast protocols (flooding, two vari-
ants of flooding restricted to a forwarding zone, and a
greedy-based protocol) for sparse networks with 100–
1000 nodes that move randomly within a square region,
and use random circular geocast regions as destinations.
The results are analyzed in terms of total number of
messages transmitted (network load) and success rate.
As expected, the experiments show that flooding has
the highest success rate, but does not scale well, while
the other methods are much better in terms of network
load, but suffer from lower success rate. Hall [1] eval-
uated four methods (M heuristic, T heuristic, CD and
CD-P, and several combinations of them) in 14 differ-
ent scenarios, many of them based on realistic training
applications. The parameters studied were success rate
and average latency. The simulation was done using
a high fidelity simulator capable of modeling realistic
MAC and queuing behavior, allowing to reflect the ef-
fects of high network load in the different protocols. The
main conclusion in [1] is that CD-P performs best in
terms of both success rate and latency. Interestingly,
the experiments also show that for restricted flooding
heuristics, an increase in the redundancy parameters
does not always lead to higher success rate due to more
collisions and medium contention.

In contrast with previous comparisons, in this paper
we are interested in analyzing the behavior of beacon-
less geocast protocols from a theoretical perspective. To
that end, we present a structured overview of six differ-
ent protocols that represent the main existing protocols
in the literature, and identify important quality criteria
to analyze them mathematically.

The protocols analyzed are simple flooding, M
heuristic [2], T heuristic [2], CD [1], CD-P [1], and
delay-based protocols (that include, as particular cases,
protocols like BLR [3], GeRaF [8] and GeDiR [7]).
This selection of protocols reflects the main different
types of beaconless geocast protocols, and includes those
evaluated in previous computer simulations [1, 5].2

Several criteria can be taken into account when
comparing the behavior of different protocols. The
success rate measures the fraction of sent messages that

2Note that, in practice, protocols are often combined: a
message is forwarded if at least one protocol requires it to do so.
This increases success rates, at the cost of a higher total number
of messages in the system.

actually reach the target. For those that arrive, the hop
count indicates how many steps (forwards) are needed.
In this paper we only focus on what we consider to
be the most significant measure within this context:
the maximum number of messages that a node receives
(RecMess). This parameter measures the work or
energy consumption for a node, as well as the overall
network load and therefore, its congestion. We note
that network load is directly related to success rate,
thus indirectly this aspect is also being considered, as
done in previous comparisons [1, 5]; we do consider the
theoretical success probability of the protocols (in case
of no collisions) separately. We also note that, in most
situations, RecMess is larger than the number of sent
messages, because for intermediate nodes, the sending
of a message occurs only as a consequence of receiving
one before.

The behavior of a geocast protocol, in general, must
be analyzed in the context of a particular geometric set-
ting (i.e., a certain configuration of nodes and radio ob-
stacles). In this paper, we focus on two fundamental ge-
ometric scenarios in 1D: unbounded range and bounded
range. Even though it is clear that the full complexity
of these protocols can only be appreciated in two dimen-
sions, we show that the 1D scenarios considered, despite
their apparent simplicity, already pose interesting chal-
lenges, and expose many of the essential differences be-
tween the protocols studied. Moreover, understanding
1D situations is useful for many 2D scenarios as well, in
which there are local situations that behave essentially
as one-dimensional (see Fig. 1).

For each scenario we analyze worst- and expected-
case performance for each protocol. The results ob-
tained corroborate many of the findings previously ob-
tained by simulations, and provide new insights into the
difficulties of the 2-dimensional case where, in addition,
escaping from local optima is necessary and requires
combining different techniques. In fact, we note that
1D settings have been used before to understand the
behavior of the CD and CD-P heuristics [1]. A sum-
mary of our results is presented in Figure 2.

2 Geocast protocols
We begin by describing the basic geocast framework
operating at each node, following [1]. Each message
is assumed to contain a unique ID, the location of the
sender, and the destination (geocast region). When
a node receives a message, it checks if it has already
received a message with the same ID. If not, it creates
a new record for the ID, and enqueues the message
for potential later retransmission (possibly after storing
some extra information about the message). When a
message reaches the head of the transmission queue
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Figure 1: Even though the 1D sce-
nario serves as a first step towards
the general question, it is already
relevant in, e.g., narrow passages,
where the local geometry is essen-
tially 1-dimensional.

Protocol Unbounded reach Bounded reach (r)
Lower bound Ω(k) Ω(k)
Flooding nk O(rk)
M-heuristic Mk min{Mk, 2rk}
T-heuristic

[
d n

2T
ek, d n

T
ek
]

O( rk
T

)

CD
{

Θ(k2 log(dn/ke+ 1)) , if k ≤ n

Θ(nk) , if k > n
O(k3/2)

CD-P Θ(k log n) Θ(k)
Delay-based min{2k, n(1 + k − log n)} O( nk

r
)

Figure 2: Summary of the results for RecMess for the two settings and different
protocols studied. The results for CD and CD-P hold with high probability (when n
and/or k tend to infinity).

and is ready to be transmitted, a heuristic check is
performed. If passed, the message is transmitted,
otherwise discarded. The different protocols mostly
differ on the heuristic check performed. In general
terms, this check is a combination of local decision
rules. Often, one of these rules is a location predicate to
control the region where each message must travel (e.g.,
to guarantee that messages are only forwarded within a
certain zone that contains the geocast region).

In the remaining of the paper we focus on the
following beaconless geocast protocol, which can be
categorized as: simple flooding, restricted flooding,
distance-based, and delay-based.

Simple flooding. The simple flooding protocol
works as follows. When a node receives a message, first
it checks if it has been broadcasted before. If not, then
the message is broadcasted, and its ID stored in order
to make sure it will not be broadcasted again.

This strategy is simple and robust, but it is non-
scalable, as it produces an excessive and unnecessary
network load. In the following, we describe several
heuristics intended to reduce such flood load. Never-
theless, it is interesting to consider simple flooding not
only for comparison purposes, but also because it is used
as a building block in other protocols (e.g.,[4]).

2.1 Restricted flooding In order to reduce the
number of unnecessary transmissions of the same mes-
sage, one can limit retransmissions in several ways [1].
The following two heuristics apply two different ap-
proaches for this: a direct limit in the number of re-
transmissions, or an implicit limit, by only making “far
away” nodes retransmit already heard messages.

M heuristic [2]. The MinTrans (M) heuristic
explicitly controls redundancy through a parameter M :
A node broadcasts a received message if and only if
the number of transmissions received for that ID is less
than M . The redundant propagation allowed by the
parameter M helps against problems such as message

collisions and getting out from local optima.
T heuristic [2]. The Threshold (T) heuristic uses

location information for spreading the geocast propaga-
tion outward: A node retransmits a received message if
and only if the closest among all transmitters of mes-
sages with the same ID is at least a distance T from
it.

2.2 Distance-based heuristics. The previous
heuristics are likely to have delivery failures in the
presence of obstacles. The following protocols were
designed to help solving this problem.

CD heuristic [1]. The Center-Distance (CD)
heuristic relies on proximity: A node retransmits a re-
ceived message if and only if its distance to the center of
the geocast region is less than that of all originators of
transmissions received for the message ID. This heuris-
tic reduces some of the scalability problems of a previous
method, Ko and Vaidya’s “Scheme 2” [4], which consid-
ered only the distance of the first transmitter heard of
the same message instead of that of all of them.

CD-P heuristic [1]. This protocol uses priority
queues in order to further reduce the scalability prob-
lems of the CD heuristic. It works as follows: Each time
the node can transmit, it transmits any message that
has not been transmitted at all yet (if any) or it retrans-
mits, among all heard messages, the one whose trans-
mission would give the largest reduction in distance to
the center of the geocast region.

2.3 Delay-based heuristics Some strategies to fur-
ther reduce redundancy combine distances with retrans-
mission delay.

BLR heuristic [3]. In the Beacon-Less Routing
(BLR) protocol, each node determines when to retrans-
mit a received message based on a dynamic forwarding
delay function valued in [0,MD], for MD a constant rep-
resenting the maximum delay. The node retransmits the
package after such delay, unless some other node does
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it before, in which case the retransmission is canceled.
Three delay functions have been suggested in [3], based
on the following parameters: r (transmission range), p
(progress towards destination of the orthogonal projec-
tion of the current node onto the line connecting the
previous node to the destination), and d (distance from
current node to the source-destination line):

delay1 = MD r − p
r

,delay2 = MD p

r
, and

delay3 = MD e
√
p2+d2

e
.

GeRaF heuristic [8]. Based on distance, the Ge-
ometric Random Forwarding (GeRaF) protocol divides
logically the area around the destination of a message
m into nm areas A1, . . . ,Anm , where in A1 are all nodes
closest to the destination, and so on. Once m is trans-
mitted, up to nm phases start, during which all nodes
listen during a fixed amount of time. In the first phase,
nodes in region A1 get to reply. If only one node replies,
then that one will forward the message. If there are
more, some collision resolution scheme must be used. If
there is no reply, then it is the turn to reply for nodes
in region A2. This process continues until some node in
the non-empty region closest to destination replies.

Greedy routing (beaconless version). Greedy
routing consists in forwarding the message to the neigh-
bor of the current node that is closest to the geocast re-
gion. Even though it does not guarantee delivery, greedy
routing strategies are often used as building block of
geocast protocols. For this reason we also consider
greedy routing in our analysis. One example is Geo-
graphic Distance Routing (GeDiR) [7]. GeDir requires
to know the position of all neighbors of a node. How-
ever, it can be made beaconless by using a delay func-
tion based on the following parameters: r (transmission
range), d (distance from previous node to destinations),
and x (distance from current node to destination).

delay4 = MD x+ r − d
2r .

This strategy tries to get out of local minima by sending
the message to the best positioned neighbor, even if it
is not closer to destination than the sender.

All protocols described in this section include a rule
that states what to do if a node receives a message
already in its queue. One option, like in BLR, is to
always cancel the transmission of a message received
twice. Another option also used in practice is to cancel
only if the sender of the duplicate message is closer to
the destination than the current node.

1 n+ 10 2

k messages, r=2

1 n+ 10

k messages

2

Figure 3: Illustration of the scenarios. Left: with unbounded
reach, the k messages arrive immediately to all nodes, but
that does not prevent intermediate nodes from forwarding
the messages. Right: with range r = 2, the messages
sent from node 0 only reach up to node 2, so forwards are
necessary to reach the target, n + 1.

3 The 1D scenarios
In this paper we study two fundamental scenarios for a
set of nodes in 1D, where the leftmost of n + 2 nodes
sends k messages to the rightmost node (i.e., the geocast
region only contains the rightmost node). For simplicity,
nodes are evenly spread at unit distance along the line.
The two scenarios considered are nodes with unbounded
range and nodes with bounded communication range
(see Fig. 3). Each message contains the position of its
last (re)sender and its destination. Each node stores all
received messages in a queue that is managed in one
way or another depending on the protocol used.

The n intermediate nodes form a dense bottleneck,
a situation that can easily arise in practice (even for
nodes in 2D). Once the transmissions start, collisions
may happen. In order to cope with this problem, we
assume fair medium access, i.e., the transmission is
done in rounds, and in each round each node that has
some message to transmit has the same probability to
transmit it.

For each of the two settings and each protocol
studied, we analyze the maximum number of messages
that a node can receive, denoted RecMess.

4 Analysis: unbounded reach
In the unbounded reach scenario, all nodes are within
the communication range of each other. This setting
recreates a rather frequent situation where many mes-
sages must go through a high-density area. In this sce-
nario we consider n nodes on a line with integer coor-
dinates {1, . . . , n}, all within range of each other. We
assume that, initially, all the nodes have the same k
messages in their queues that were all received from the
same node at coordinate 0, and are all directed to a
node at coordinate n + 1. An example of the behav-
ior of all protocols studied on an example sequence of
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random probes is shown in Figure 4.

4.1 Simple flooding. Under this protocol, all the
nodes will receive and retransmit all the messages:
RecMess = nk.

4.2 M heuristic. In the unbounded reach scenario
this protocol guarantees that there are never more than
M copies of each messages transmitted. Therefore,
every node can receive every message at most M times,
leading to RecMess = Mk.

4.3 T heuristic. Due to the unit-distance distribu-
tion of the nodes and assuming T ∈ N, when a node
transmits a message, then this message is deleted from
the queues of its T left and its T right neighbors. Thus:
d n2T ek ≤ RecMess ≤ d nT ek.

4.4 CD heuristic. The number of messages received
in the CD heuristic depends heavily on the order in
which the nodes are chosen. In the best case, the last
node is chosen consecutively k times, and every node
receives only k messages, since all the nodes delete the
message as soon as they hear it from a node farther
ahead. In the worst case, the nodes are chosen from left
to right, and all nodes receive all messages n times, as
bad as in simple flooding. So, k ≤ RecMess ≤ nk.

However, assuming fair medium access, which dic-
tates a uniform distribution for the chosen node at each
time step on the set of all nodes with non-empty queues,
we can use probabilistic analysis to make a more precise
prediction of the number of received messages in prac-
tice. We can show that if k is significantly smaller than
n, the number of messages depends only logarithmically
on n, at the cost of a quadratic dependence on k.

Theorem 4.1. In the unbounded reach scenario under
the CD heuristic, with high probability,

RecMess ∈

{
Θ(k2 log(dn/ke+ 1)) , if k ≤ n ,
Θ(kn) , if k > n .

To prove the theorem, we model the problem as an
initially empty n×k grid of squares (n columns of height
k), as shown in Fig. 4. At each time step a random
column is selected among those columns that are not
yet completely full. Having chosen a column, we fill the
highest empty square in that column, together with all
the squares to its left. 3

We are interested in the (random) time T when all
squares have become filled. Note that this is the same

3Clearly, this formulation is equivalent to starting with a full
grid, and removing squares (messages) when a random non-empty
column gets chosen.

as asking for the time when the n-th column has been
hit k times. What makes it tricky to analyze is that
while initially we have chance 1/n of hitting the n-th
column, this probability will increase as time goes on
and more columns get filled. We consider the case where
the number of columns n or the number of rows k goes
to infinity (or both).

In order to prove Theorem 4.1, we prove the follow-
ing, more specific, result.

Theorem 4.2. There exist constants 0 < cL < cU <∞
such that:

1. If k = k(n) ≤ n/1000 then

P
(
cL · k2 log

(n
k

)
≤ T ≤ cU · k2 log

(n
k

))
→ 1,

as n→∞;
2. If k = k(n) ≥ n/1000 then

P (cL · kn ≤ T ≤ cU · kn)→ 1,

as n→∞.
3. If n is constant then

P (cL · kn ≤ T ≤ cU · kn)→ 1,

as k →∞.

The random variable S. We will first consider
the time S until at least one column becomes full. Of
course S ≤ T . What simplifies the analysis of S as
opposed to T is that until time S in each time step we
are choosing a column uniformly at random from all n
columns.

Lemma 4.1. For all k ≤ n and all t we have that:

P(S < t) ≤
(

2e2t

k2

)k
.

Proof. Let X1, X2, . . . denote the indices of the columns
taken in each time step. Since we are only interested in
S we can and will just pretend that nothing changes
in the way we choose columns after one or more have
filled up. In other words, from now on in this proof we
suppose we are given an infinite sequence X1, X2, . . . of
random variables (column indices) that are chosen in-
dependently and uniformly at random from {1, . . . , n}.

We now make the following crucial observation :
There is a full column at time t if and only if there is
a sequence t1 < · · · < tk of length k such that tk ≤ t
and Xt1 ≥ Xt2 ≥ · · · ≥ Xtk . That is, the sequence
X1, . . . , Xt must contain a non-increasing subsequence
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1 1 1 1 1 1
2 2 2 2 2 2
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4 4 4 4 4 4
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2

3 3 3 3
3
3

4 4 4 4
4
4

T (t = 3)

1 1 1 1 1
2 2

2
2 2 2

3 3
3
3 3 3

4 4
4
4 4 4

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

1 1 1 1
2
2 2

2 2 2
3
3 3

3 3 3
4
4 4

4 4 4

2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

2 2 2 2 23
3 3 3 3 34
4 4 4 4 4

2 2 2 23
3 3

3
3 34

4 4
4
4 4

3 3 3 3 3 3
4 4 4 4 4 4M (m = 3)
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34 4 4 4 4
4

13 3
3

4 4 4
4 4

4

14 4 4 4 4
4
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4

1 1 1 1 1
2 2

2
2 2 2

3 3
3
3 3 3

4 4
4
4 4 4

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

1 1 1 1
2
2 2

2 2 2
3
3 3

3 3 3
4
4 4

4 4 4

Flooding
1 1 1
2
2 2

2
2
2

3
3 3

3
3
3

4
4 4

4
4
4

1 12 2 2
2
2
23 3 3

3
3
34 4 4

4
4
4

12 2 2 2 2
23 3 3 3 3
34 4 4 4 4
4

12 2 2 2
23

3
3 3 3

34
4
4 4 4

4

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

BLR
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

23 3 3 3 3
34 4 4 4 4
4

2
3

4 4 4 4 4

4

2
3

4 4

4

34 4
4

34 4
4

Figure 4: The different protocols run on an example data set with k = 4 and n = 6. Each row shows the first 7 steps of a
different protocol. At each step, a matrix is shown. Columns represent the queues of the nodes, which all start containing
the same four messages in the same order. A shaded column indicates the node that is about to forward a message in that
step. The same random order is chosen everywhere except for BLR.

of length k.4 To complete the proof, we give a very
crude upper bound on the probability that there exists
such a non-increasing subsequence in X1, . . . , Xt. We
will use the first moment method, i.e., we will just
count—or rather bound—the expected number of all
such subsequences.

First we choose the k time steps t1, . . . , tk on which
a non-increasing subsequence is to occur. This can be
done in (

t

k

)
≤
(
et

k

)k
,

ways (using a standard bound on binomial coefficients).
Assuming that we know the time steps t1, . . . , tk

on which a non-increasing subsequence is to be formed,
we wish to count the number of ways we can choose
values for Xt1 , . . . , Xtk to make them non-increasing.
To specify a non-increasing sequence of length k with
elements ∈ {1, . . . , n} it is enough to specify how many
times each number is hit. That is, we have a1, . . . , an ∈
{0, . . . , k} such that a1 + · · · + an = k, where ai is the
number of times we use number i in the sequence. The
sequence will start with an times the number n, followed

4This is loosely connected to the famous longest increasing
subsequence problem for random permutations. Also there we
need a permutation of length const× n2 before we can expect to
find an increasing subsequence of length n.

by an−1 times the number n−1, and so on. The number
of ways of choosing values for Xt1 , . . . , Xtk is thus:(

k + n− 1
k

)
≤
(
e(n+ k)

k

)k
≤
(

2en
k

)k
.

Next, we remark that for any given t1, . . . , tk and
a1, . . . , ak the probability that Xt1 , . . . , Xtk take the
values specified (implicitly) by a1, . . . , an simply equals
n−k.

Putting it all together we find that

P(S < t) ≤ (et/k)k · (2en/k)k · n−k = (2e2t/k2)k,

as required. �

Lemma 4.2. There exists a universal constant c > 0
such that for all k ≥ n and all t ≤ cnk:

P(S < t) ≤
(

16t
nk

)k/2
.

Proof. The argument is similar to that in the proof of
Lemma 4.1, except that now we do not choose the times
t1, . . . , tk. Instead we observe that if there exists a non-
increasing subsequence that corresponds to a1, . . . , an
(as above, with a1 + · · · + an = k, and ai ∈ {0, . . . , k}
the number of times we use i in the sequence) then one
can construct (possibly another) such sequence by first
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waiting until the first time tn when we will have seen
an occurrences of n, then waiting until the first time
tn−1 > tn such that we have seen an−1 occurrences of
n− 1 in the interval (tn, tn−1] and so on. The sequence
we obtain via this procedure will be the first to occur
among all sequences corresponding to the same vector
a = (a1, . . . , an). For a given such vector a we can
therefore compute the probability that a subsequence
corresponding to a occurs before time t as follows:

(4.1) P


there exists a
subsequence

corresponding
to a in X1, . . . , Xt

 = P (Y ≤ t) ,

where Y = Y1 + · · · + Yk is a sum of i.i.d. geometri-
cally distributed random variables with common success
probability p = 1/n. To see this, think of first “listening
to the n-th column” until it has been selected an times,
then “listening to the (n − 1)-st column”, and so on.
At each time step the desired column is selected with
probability 1/n, independently of the previous history
of the process.

In the full version we provide a generalized Chernoff
bound on geometric series, which gives us

P (Y ≤ t) ≤ exp [−(kt/E(Y )) ·H(E(Y )/t)]
≤ exp [−(t/n) ·H(nk/t)] .

(Here H(x) := x ln x − x + 1, and we have used
E(Y ) = nk.) Now notice that H(x) ≥ 1

2 · x ln x for
all x sufficiently large. That is, for all x ≥ x0 with
x0 a suitable constant—for instance, taking x0 := e2

is sufficient. Thus, we can choose c such that (t/n) ·
H(nk/t) ≥ (k/2) ln(nk/t) for all t ≤ cnk.

The number of sequences a is at most(
n+ k − 1

k

)
≤
(

2k
k

)
≤ 4k.

Putting these bounds together we find that, for t ≤ cnk:

P(S < t) ≤ 4k
(
t

nk

)k/2
=
(

16t
nk

)k/2
,

as required. �

Combining Lemmas 4.1 and 4.2 we see that:

Corollary 4.1. There exists a universal constant c >
0 such that P(S < cnk)→ 0 as n→∞ for any sequence
k = k(n) satisfying k ≥ n/1000.

Lemma 4.3. There exists an absolute constant C > 0
such that for all n, k and all t ≥ Ck2 we have

P(S > t) ≤ e−t.

Proof Sketch. We can assume that without loss of gen-
erality k < n/1000 (otherwise, if k ≥ n/1000 then
S ≤ 1000k2 is deterministically true since in every time
step a square gets filled and there are nk ≤ 1000k2

squares in total). First we wait until the first time one
of the last bn/kc columns are hit, then we wait until the
next time after that the next bn/kc columns are hit, and
so on. The probability that at time time t, we have not
had k successes in the above process equals the proba-
bility that X > t where X is the sum of k independent
geo(p) random variables with p = bn/kc/n = Θ(1/k).
We can thus apply a generalized Chernoff bound (see
full version for details). Note that E(X) = Θ(k2) and
that H(x) = x ln x− x+ 1 ≥ x for all x ≥ x0 (where x0
is of course a suitable constant, x0 := e2 will do). Thus,
we can indeed choose C > 0 such that t/E(X) ≥ x0 for
all t ≥ Ck2, giving

P(S > t) ≤ P(X > t) ≤ e−E(X)·H(t/E(X)) ≤ e−t,

for all k, n, t satisfying the conditions of the lemma. �

Upper bound. We will consider a modification
of the process that will certainly take at least as long
as the original version (and is easier to analyze). We
distinguish different “phases” of the process. In the first
phase, starting from the empty k × n grid, we throw
columns until at least one column with index ≥ n/2 is
full. While doing this, we ignore the height constraint
on columns with index ≤ n/2. That is, columns with
index ≤ n/2 are allowed to have height ≥ k and we will
still select columns uniformly from all n columns. As
soon as a column with index > n/2 obtains height k,
the first phase ends. We now throw away the left half of
the grid, and empty the right half. So we now have an
empty (k/2)×n grid. We now repeat the about modified
process, i.e. randomly select columns and ignore the
height constraints of the left half until we get some
full column in the right half (which corresponds to the
rightmost quarter of the original grid) and repeat. We
keep going on until we start a phase starts when the
number of remaining columns is ≤ 1000k. In the last
phase we simply carry out the process as usual, waiting
until all the last column is filled. (Observe that there
will be Θ(log(n/k)) phases in total.)

Proof of the upper bound. Let C as provided by
Lemma 4.3. Notice that if we restrict attention to
the right half of the columns that have not yet been
filled at the start of the phase (i.e. in phase i these
are columns with indices n2−(i+1) + 1, . . . , n) then the
number of times this set of columns is hit in a period
of t time steps since the start of the phase behaves
like a Bi(t, 1

2 ) random variable (lets call it X) and
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the probability that the phase lasts longer than t is
precisely the probability that Sk,n2−(i+1) > X. We see
that for all i ≤ I (where I := dlog(n/1000k)e is the
least i such that n2−i ≤ 1000k) and all t ≥ 100Ck2:

(4.2)

P(phase i takes longer than t)
≤ P(Bi(t, 1

2) < t/100)

+ P(Sk,n2−(i+1) > t/100)
≤ e−(t/2)·H(2/100) + e−t/100

≤ 2e−t/100,

where we’ve applied the vanilla Chernoff bound and
Lemma 4.3. and that 1

2H(2/100) > 1/100.
We distinguish two cases. First, we suppose that

k ≥
√
n. In that case (4.2) gives that

P(phase i takes longer that 100Ck2) = exp[−Ω(n)].

Hence, we see that if we write K := 100Ck2I + 1000k2

(= Θ(k2 log(n/k)) then assuming k ≥
√
n we have

P(the process takes longer than K to complete)
≤ logn · e−Ω(n) = o(1).

It remains to consider the case when k ≤
√
n. Note that

in this case we have I →∞. Let Li denote the duration
of phase i. By Lemma 4.1 we have that

(4.3) E(Li) ≥
k2

4e2 · P(Li ≥
k2

4e2 ) ≥ k2

4e2 ·
1
2 = Ω(k2).

On the other hand, applying Lemma 4.3 and a standard
formula for the expectation of non-negative random
variables we have that

(4.4)

E(Li) =
∫∞

0 P(Li > t)dt
=

∫∞
0 P(Li > t)dt

≤ 100Ck2 + 2
∫∞

100Ck2 e
−t/100d t

≤ 100Ck2 + 2
∫∞

0 e−t/100d t
= O(k2).

(Here it is important to note that the constants hidden
inside the Ω, O notation in (4.3) and (4.4) are universal.
That is, the same constants work for all n, k in the range
considered.) Similarly to (4.4) we also have that:

E(L2
i ) =

∫∞
0 P(L2

i > t)dt
=

∫∞
0 P(Li >

√
t)dt

≤ 104C2k4 + 2
∫

104C2k4 e
−
√
t/10d t

= O(k2),

where the multiplicative constant hidden inside the
O(k4) is universal.

Writing L :=
∑I
i=1 Li, we have that E(L) = Θ(Ik2)

and VarL = O(Ik4). Thus, we can apply Chebyschev’s
inequality to see that

P(L ≤ E(L)/2) ≤ 4 VarL
(E(L))2 = O(1/I) = o(1),

Since I = Θ(log(n/k)) tends to infinity under the
assumption that k ≤

√
n. As L is the time until the

process completes, this completes the proof of the upper
bound. �

Lower bound. Again we will modify the process,
this time so as to obtain a process that will terminate
quicker (and is easier to analyze). We will choose
constants 0 < α, β, γ, δ, ε < 1 satisfying some additional
demands (which include α � β, β < γ2) that will be
specified as we go along with the proof.

• We divide time into “rounds” (periods) of length
t = δk2.

• We divide the columns into groups. Group i
consists of ni := nαi consecutive columns. (Group
1 contains columns 1, . . . , n1, group two columns
n1 + 1, . . . n1 +n2 and so on.) We shall be choosing
α small enough so that in fact

∑
ni < n. That

the sum is strictly less than n which will not be a
problem for our argument.5

• At the start of each round, the columns of groups
1, . . . , i will already have been “filled”, while none
of the columns in groups i+1, . . . will be full. (The
first round is round 0.) At the end of the period we
will fill one or more additional groups of columns
completely, according to the following rules:

– If at the start of the current round group i is
the last filled group as above, and during the
round in some group i + j a non-increasing
sequence of length kγj gets created only tak-
ing into account what happened in the current
period to the columns in that group, then we
fill all columns up to and including that entire
group, and move on to the next period. (We
do not drop any more columns during the rest
of round. That is, as soon as non-increasing
sequence of length kγj gets created in group
i+ j the round ends.)

– Otherwise, if by the end of a round no group
obtained a non-increasing sequence of the
desired length (among the selections in that

5We are ignoring rounding for now. This can be settled by
noting we can assume n, k and α, β, γ, δ are all powers of two
(for n, k this can be shown using the monotonicity of T in n, k –
worsening the constant cL a bit.)
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period), then we fill up group i, and move on
to the next period.

• The process terminates once a group with index
≥ I := ε log(n/k) has been filled.

This process works because in a round when groups
1, . . . , i have been filled but group i + 1 has not, then
in group i+ j the longest non-increasing sequence that
could possibly exist in that group (now taking in to
account all periods) is no longer than∑

0≤k≤i kγ
i+j−k =

∑i+j−1
`=j kγ`

≤ kγj/(1− γ).

Thus, even if all the longest non-increasing sequences
of the groups i+ 1, i+ 2, . . . can be combined into one
non-increasing sequence, then this sequence would still
have length at most

∞∑
j=1

kγj/(1− γ) = γk

(1− γ)2 .

This also gives that even if in the current round some
group achieves the goal we have set for it (namely a
sequence of length kγj for group i+ j) then the longest
sequence will still be no longer than kγ(1+1/(1−γ)2) <
k (provided we chose the constants γ sufficiently small
– which we can assume without loss of generality). In
particular we never fill columns completely, except at
the end of a round when we fill one or more entire groups
of columns.

Next, we need a bound on the probability that
group i + j “fires” in the period when groups 1, . . . , i
have been filled by group i+ 1 has not.

Lemma 4.4. Provided α, β, γ, δ, ε are chosen appropri-
ately, and i, j are such that i + j ≤ I (the number of
groups) the following holds. Consider the situation in
which we start a round in which groups 1, . . . , i have
been filled and group i+ 1, i+ 2, . . . not. Let Ei,j be the
event that group i+ j achieves a sequence of length kγj
during this period. Then

P(Ei,j) ≤ 10−j .

Moreover, if k ≥
√
n then we even have

P(Ei,j) = exp[−Ω(n1/4)],

for all 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ I − i.

Proof. Note that if Ei,j holds then one of the following
two possibilities must have occurred. Either (a) group j
has received ≥ k2βj columns (in the current period), or

(b) it has received less than k2βj columns but nonethe-
less a sequence of length kγj was created. By Lemma 4.1
(applied with k′ = max(kγj , 1), t′ := k2βj , n′ := nαj)
we see that

(4.5)
P((b)) ≤

(
2e2t′

k′2

)k′
=

(
2e2βj

γ2j

)max(kγj ,1)

≤ 2e2(β/γ2)j .

To deal with the probability that (a) holds we distin-
guish two further possibilities: (a-1) we have k2βj ≥ 1,
or (a-2) we have kβj < 1. We find that under assump-
tion (a-1) we can apply the vanilla Chernoff bound to
obtain

(4.6)

P((a)) = P(Bi(δk2, αj) ≥ k2βj)
≤ exp[−δk2αjH((β/α)j)]
≤ exp[−δk2βj ln((β/α)j)/2]
≤ (α/β)j/2.

where in the third line we have used that H(x) ≥ 1
2x ln x

for x ≥ x0 with x0 sufficiently large and that we can
choose α, β such that β/α ≥ x0. Under the assumption
(a-2) we see that

(4.7)

P((a)) = P(Bi(δk2, αj) ≥ 1)
≤ δk2αj

= (δk2βj) · (α/β)j
≤ (α/β)j ,

using assumption (a-2) for the third line.
Combining the above bounds we see that, provided

α, β, γ were chosen appropriately, we have

P(Ei,j) ≤ 2e2(β/γ2)j + (α/β)j/2 < 10−j ,

the last inequality again holding if we chose—as we may
assume we have—α, β, γ appropriately.

We now consider the situation where k ≥
√
n.

Note that in this case, having chosen the constants
appropriately,

kγj ≥
√
nγ2I ≥

√
nγ4ε log(n) = Ω(n1/4).

Thus, the second line of (4.5) give in fact that

P((b)) = exp
[
−Ω

(
n1/4

)]
Similarly, having chosen the constants correctly, we have

k2βj > nβI ≥ n1+ε log(β) = Ω(
√
n).

Thus, the case (a-2) does not apply, and the third line
of (4.6) gives that

P((a)) = exp[−Ω(
√
n)].

This shows that indeed P(Ei,j) = exp[−Ω(n1/4)] in the
case when k ≥

√
n. �
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This last lemma is all we need to prove part 1 of
Theorem 4.2, for the case when k ≥

√
n.

Proof of Theorem 4.2. First assume k ≥
√
n. By the

previous lemma, the probabilty that during any round
of the process some group “fires” is at most

P( fires ) ≤
∑
i+j≤I

P(Ei,j)

= O
(
(logn)2) · exp[−Ω(n1/4)] = o(1).

This means that, with probability 1 − o(1), there will
be a total of I = Θ (log(n/k)) rounds and in each
round we spend the full amount of time δk2. So indeed,
with probability 1−o(1), the process does not complete
before δk2I = Ω(k2 log(n/k)).

In the rest of the proof we will thus be assuming
that k ≤

√
n. Note that this in particular implies

that I = Θ(log(n/k)) → ∞. We will denote Ji be the
number of groups that get filled in in round i.

Appealing to Lemma 4.4, we see that sequence
J1, J2, . . . is stochastically dominated by an i.i.d. se-
quence J ′1, J ′2, . . . where P(J ′1 = j) = 10−j for j ≥ 2 and
P(J ′1 = 1) = 89

90 . It is easily checked that E(J ′1)2 < ∞.
Let us set I ′ := εI for some suitable chosen 0 < ε < 1.
By the law of large number (which holds for i.i.d. se-
quence with a finite second moment) we have that

P(J ′1 + · · ·+ J ′I′ > 2I ′E(J ′1)) = o(1).

Thus, choosing ε appropriately (namely so that
2εE(J ′1) < 1), we we have

P(J1 + · · ·+ JI′ > I) ≤ P(J ′1 + · · ·+ J ′I′ > I) = o(1).

In other words, with probability 1 − o(1), there are at
least I ′ rounds.

Now let Yi be a {0, 1}-valued variable that equals
one if in round i no group fired. Observe that

P(Yi = 1) ≥ 1−
I−i∑
j=1

P(Ei,j) ≥ 1−
∞∑
j=1

10−j = 8
9 .

Observe that Y1, Y2, . . . stochastically dominates an
i.i.d sequence Y ′1 , Y

′
2 , . . . of Bernoulli( 8

9 ) random vari-
ables. Again by the law of large numbers we have that

P(Y1 + · · ·+ YI′ >
4
9I
′) ≥ P(Y ′1 + · · ·+ Y ′I′ >

4
9I
′)

= 1− o(1).

So this shows that with probability 1− o(1) there were
ate least 4

9I
′ = Ω(log(n/k)) rounds in which no group

fired, which means the round lasted the full amount
of δk2 time. Hence, with probability 1 − o(1), at

time δk2I ′ = Ω(k2 log(n/k)) the process has not yet
completed.

Finally, to prove parts 2 and 3 of Theorem 4.2, note
that in each step of the process at least one square of
the grid gets filled. Thus T ≤ nk (with probability
one). Since T ≥ S the lower bound in 2 follows
immediately from Corollary 4.1 and the lower bound
in 3 from Lemma 4.1. �

4.5 CD-P heuristic. Similarly to the CD heuristic,
the difference between the best and worst case is large:
we again have k ≤ RecMess ≤ nk.

For this protocol, however, the number of messages
reduces more quickly than in the case of CD. We show
that the difference is significant and speeds up the
process by roughly a factor k.

Theorem 4.3. In the unbounded reach scenario under
the CD-P heuristic, with high probability, RecMess ∈
Θ(k logn).

Under the CD-P heuristic nodes prioritize messages
in the queue by the distance to their senders. Thus,
when a node i is chosen to send a message, it will choose
a message that is currently present in the maximum
number of nodes. Then, all the nodes that are further
away from the destination, i.e., all the nodes with
coordinates less than i will delete this message from
their queues. We will show that, with high probability,
it takes Θ(k logn) steps until all nodes have empty
queues.

To do so we represent the number of nodes in which
a message is present as random variables and will bound
them from above by continuous random variables with
a simpler distribution at every iteration of the protocol.

We let Rt = (Rt1, Rt2, . . . , Rtk) where Rti denotes the
number of nodes that contain message i at time t. Thus,
at time t = 0 we have R0 = (n, . . . , n). One iteration
of the CD-P protocol corresponds to the largest value
in R being randomly reduced. In other words, we
find an index i such that Rti = maxj=1,...,k R

t
j ; we set

Rt+1
j := Rtj for all j 6= i; and we choose Rt+1

i uniformly
at random from {0, . . . , Rti − 1}.

We let T denote the first t for which Rt1 = · · · =
Rtk = 0. We shall always assume that n ≥ 2, because if
n = 1 then trivially T = n.

We start by making the observation that the (dis-
tribution of the) completion time would be the same if
we changed the process as follows: first we repeatedly
keep setting Rt+1

1 to a random value in {0, . . . Rt1 − 1}
until we reach a situation where Rt1 = 0; next we do the
same for R2, then for R3 and so on. The reason that
this gives the same (distribution of the) completion time
is that for every time step t of the original process, ev-
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ery Rti that is nonzero is sure to become the maximum
value in some future round t′ ≥ t.

Let us thus write Z for the (random number) of
rounds it takes for Rt1 to reach zero, starting from
R0

1 = n. Then T=d Z1 + · · · + Zk, where Z1, . . . , Zk
are i.i.d. distributed like Z.

Let U1, U2, . . . be i.i.d. uniform on [0, 1] and let us
denote

Zupper := min{t : n · U1 · · · · · Ut < 1},
Zlower := min{t : n · U1 · · · · · Ut < t+ 1}.

We have:

Lemma 4.5. We have Zlower ≤st Z ≤st Zupper.

Proof. For notational convenience we write Vi :=
nU1 . . . Ui,Wi := Vi − i. We start with the (stochas-
tic) upper bound. It is enough to show that Ri1 ≤st Vi
for all i, since that will prove that

(4.8) P(Z > t) = P(Rbtc1 ≥ 1)
≤ P(Vbtc ≥ 1) = P(Zupper > t).

We will use induction to prove Ri1 ≤st Vi for all
i. Clearly R0

1 = n = V0 so the base case holds.
Let us thus suppose that Ri1 ≤st Vi for some i. By
Strassen’s theorem, there is a coupling for (Ri1, Vi) so
that Ri1 ≤ Vi with probability one. If under this
coupling, we condition on the event that Vi = x,Ri1 = `
(where necessarily ` ≤ bxc), then Vi+1 = ViUi+1 is
chosen uniformly at random on the interval [0, x], while
Ri+1

1 is chosen uniformly from the set {0, . . . , ` − 1}.
Thus, for all 0 ≤ y ≤ x we have

P(Vi+1 ≥ y|Vi = x,Ri1 = `) = x− y
x

= 1− y

x
,

and

P
(
Ri+1

1 ≥ y|Vi = x,Ri1 = `
)

= (`− 1)− dye
`

= 1− dye+ 1
`

≤ 1− y

x
.

Summing over `, this simplifies to
(4.9)
P(Vi+1 ≥ y|Vi = x)
=
∑
`

P
(
Vi+1 ≥ y|Vi = x,Ri1 = `

)
P
(
Ri1 = `|Vi = x

)
= 1− y

x
,

and similarly

(4.10) P(Ri+1
1 ≥ y|Vi = x) ≤ 1− y

x
.

Hence

(4.11)

P(Vi+1 ≥ y) =
n∫
y

P(Vi+1 ≥ y|Vi = x)fVi(x)dx

≥
n∫
y

P(Ri+1
1 ≥ y|Vi = x)fVi

(x)dx

= P(Ri+1
1 ≥ y),

so that the upper bound is proved.
For the lower bound, we remark it is sufficient to

show Wi ≤st R
i
1 for all i, by an argument analogous

to (4.8). Again we use induction. The details are similar
to the previous case and left for out for space reasons;
refer to the full version for a complete proof. �

Corollary 4.2. P(Z1 > t) ≤ n(1/2)t.

Proof. This follows by Markov’s inequality since
E (nU1 . . . Ut) = n(1/2)t. �

Corollary 4.3. There exists a universal constant c >
0 such that

P (Z < c logn) ≤ 1
logn (for all n ≥ 2)

(Note that the distribution of Z implicitly depends on
n.)

The proof of this corollary makes use of the obser-
vation that if U is uniform on [0, 1] and W := ln(1/U)
then EW = VarW = 1. For completeness we spell out
the straightforward computations.

Lemma 4.6. Let U be uniform on [0, 1] and let W :=
ln(1/U). Then EW = VarW = 1.

Proof. We have that

EW =
1∫

0

− ln udu = [−u ln u+ u]10 = 1,

and

EW 2 =
1∫

0

ln2 udu =
[
u ln2 u− 2u ln u+ 2u

]1
0 = 2.

So indeed VarW = EW 2 − (EW )2 = 1. �

Proof of Corollary 4.3. Since P(Z = 0) = 0, we can
assume that n ≥ n0 for some sufficiently large constant
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n0 (at the price of possibly having to lower the universal
constant c a bit). We put t := b lnn

1000c and we note that

P [nU1 . . . Ut < t+ 1]
= P [ln(1/U1) + · · ·+ ln(1/Ut) > lnn− ln(t+ 1)] .

Writing S := ln(1/U1) + · · ·+ ln(1/Ut) for convenience,
we see that ES = VarS = t by Lemma 4.6 above, and
hence

P [S > lnn− ln(t+ 1)]
= P [S − ES > lnn− ln(t+ 1)− ES]
≤ P [S − ES > lnn− t− ES]

≤ t

(lnn− 2t)2

≤ 1
lnn,

having used t ≥ ln(t+1) in the second line; Chebyschev
in the third line; and that n is sufficiently large in the
fourth line. �

Corollary 4.4. There exist universal constants
c, C > 0 such that, if n → ∞ and k = k(n) satisfies
1 ≤ k = o(logn) then

P(ck logn < T < Ck logn)→ 1.

Proof. For the upper bound, we notice that

P(T > Ck logn) ≤ kP(Z > C logn)
≤ kn(1/2)C logn → 0,

using Corollary 4.2 and where the limit follows assuming
C is sufficiently large. For the lower bound, we argue
similarly noting that

P(T < ck logn) ≤ kP(Z1 < c logn) ≤ k

logn → 0,

using Corollary 4.3 (assuming c was chosen smaller
than the constant provided there) and using that k =
o(logn). �

This last corollary proves our main result in the case
when n → ∞ and k is either constant or does not go
to infinity too fast. To complete the proof of the main
result, it now suffices to consider the case when k →∞
and n = n(k) ≥ 2 is arbitrary. Before we tackle this
case we need one more observation.

Corollary 4.5. There exist universal constants
c, C > 0 such that

c logn ≤ EZ ≤ C logn,
c log2 n ≤ EZ2 ≤ C log2 n,

(for all n ≥ 2)

(Again we remind the reader that Z depends implicitly
on n.)

Proof. It follows from Corollary 4.3 that

EZ ≥ c logn · P(Z ≥ c logn) = Ω(logn),

if c is as in Corollary 4.3. The same argument also gives
EZ2 ≥ (EZ)2 = Ω(log2 n).

By a standard formula for the expectation of non-
negative random variables, we have

EZ =
∫∞

0 P(Z ≥ t)dt
≤ C logn+

∫∞
C logn n(1/2)tdt

= O(logn),

provided C is chosen sufficiently large. Similarly

EZ2 =
∫∞

0 P(Z ≥
√
t)dt

≤ C log2 n+
∫∞
C log2 n

n(1/2)
√
tdt

= O(log2 n),

using the substitution z := ln(2)
√
t in the third line,

and that z ≤ ez/2 for all sufficiently large z in the third
line. �

Corollary 4.6. There exist universal constants c, C
such that, if k →∞ and n = n(k) ≥ 2 is arbitrary then

P(ck logn ≤ T ≤ Ck logn)→ 1.

Proof. Since T = Z1 + · · · + Zk, the previous corollary
shows that ET = kEZ = Θ(k logn) and VarT =
kVarZ = Θ(k log2 n). It follows that

P(|T − ET | > 1
2ET ) ≤ 4 VarT

(ET )2 = O( 1
k

) = o(1),

using Chebyschev and Corollary 4.5. To conclude, we
observe that, provided we chose c small enough and C
big enough, we have {T < ck logn}, {T > Ck logn} ⊆
{|T − ET | > 1

2ET}. �

Proof of Theorem 4.3. We remark that Corollaries 4.4
and 4.6 together prove the theorem, taking the min-
imum of the two c’s and the maximum of the to Cs
provided by these corollaries for the full result. �

4.6 Delay-based heuristic. We assume that the
delay is chosen such that it increases by exactly one
time step per node; that is, MD = r. The nodes delete
messages from their queues when they receive them for
the second time. Thus, every message is retransmitted
only once, no matter which delay function is used.
Therefore, RecMess = k.

In the variant in which the nodes delete messages
from their queues only when they receive a duplicate
from a node that is closer to the destination, we get:

RecMess =
{

2k if k < logn ,
n+ n(k − logn) if k ≥ logn .
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5 Analysis: bounded reach
In the bounded reach scenario each node can communi-
cate with r neighbors to its left and r to its right, for
r a parameter. This scenario generalizes the previous
one, allowing to evaluate the effect that node density
(indirectly related to r) has on the different protocols.
An example of the behavior of all protocols is shown in
Figure 5.

5.1 Simple flooding. Under this protocol, every
node will receive each message from at most 2r of its
neighbors: RecMess = O(rk).

5.2 M heuristic. If 2r ≤ M this protocol is equiv-
alent to the previous one. If 2r > M it is equivalent
to the M heuristic for the unbounded reach scenario.
Therefore RecMess = O(min(M, 2r)k).

5.3 T heuristic. If T ≥ r, no message will ever be
forwarded. If T < r, then each node u can receive a
message from at most 2r nodes. Each time it receives
one, at least T and at most 2T of the nodes within
reach of u delete the message from their queues. Thus:
RecMess = O( rkT ).

5.4 CD heuristic. For the CD heuristic, in the best
case, each message is transmitted only by the node
closest to the target. Then each node receives each
message only twice: once from the left and once from
the right. In the worst case, messages are retransmitted
by the node farthest from the target, causing all nodes
to retransmit every message. However, because of
the bounded reach, the flooding effect is somewhat
mitigated: each node has only 2r neighbors and receives
each message 2r times. So, 2k ≤ RecMess ≤ 2rk.
As before, we can make a more precise probabilistic
statement assuming fair medium access. The proofs of
the following theorem and the next one are deferred to
the next section.

Theorem 5.1. In the bounded reach scenario under the
CD heuristic, w.h.p., RecMess ∈ O(k3/2).

Consider as before an n × k table, where columns
represent message queues of the nodes, and rows repre-
sent the messages that are in the queues. All messages
start in the leftmost r columns. Whenever a node re-
transmits a message, it gets deleted from all nodes to
its left and added to the r − 1 nodes to its right. So,
each message is always present in exactly r consecutive
nodes (except at the end of the process), that we will
refer to as a train of r messages.

In CD, when a node gets to retransmit, it picks the
message with the lowest id. This means that the trains

of messages are always ordered by id: the lower the id,
the closer the train is to the destination. Notice that
the trains cannot “overtake” each other. Thus, when a
node chooses a message to retransmit, it retransmits the
message that corresponds to the train most ahead of the
others. On the contrary, in the CD-P protocol, when a
node sends a message, it chooses it from the train that
is most behind.

From this we can already see that the average speed
at which the trains progress towards the destination is
smaller than r/2 nodes per move for CD, and greater
than r/2 nodes per move for CD-P. If a train of messages
does not overlap with the other trains, its expected
progress during the next move is r/2 nodes. If a train
does overlap with other trains, if it is chosen to progress
under the CD heuristic, it moves by less than r/2 nodes,
and under CD-P heuristic, by more than r/2 nodes.Lower bound. In the best case any algorithm will
need at least kn

r steps, as a message cannot progress by
more than r nodes at a time.

Upper bounds. We first prove Theorem 5.2, since
it is simpler. Then we focus on Theorem 5.1.

Proof of Theorem 5.2. The expected progress for a
train of r messages at each move is greater than r

2 .
Therefore, after 2kn

r steps, the expected number of mes-
sages left in the queues will be 0. The total num-
ber of messages sent is O(knr ), and every node re-
ceives a fraction O( rn ) of all the messages, therefore,
RecMess = O(knr ·

r
n ) = O(k). �

5.5 CD-P heuristic. As before, the best and worst
cases are the same as for the CD heuristic, that is,
2k ≤ RecMess ≤ 2rk.

However, we can prove that with high probability
and for r � n, the actual number of messages received
in this scenario is only a constant factor larger than the
best case; that is, linear in k.

Theorem 5.2. In the bounded reach scenario under the
CD-P heuristic, w.h.p., RecMess ∈ Θ(k).

Proof. The expected progress for a train of r messages
is trickier to calculate. In the case where all the trains
overlap, it is

E(prog.) =
k−1∑

1

(Ri+1 −Ri)2

2(r +Rk −R1) + r2

2(r +Rk −R1)

= f(R1, R2, . . . , Rk) ,

where R1 ≤ R2 ≤ · · · ≤ Rk, and Ri is the furthest node
from the destination that still has message i, or, in other
words, the tail of the train. Finding the minimum of this
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Figure 5: The different protocols run on the same data as Figure 4, but with bounded radius r = 3.
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Figure 6: CD vs CD-P in bounded reach scenario.

function, we get:

∂f

∂R1
= − R2 −R1

r +Rk −R1
+
k−1∑

1

(Ri+1 −Ri)2

2(r +Rk −R1)2

+ r2

2(r +Rk −R1)2 = 0 ,

∂f

∂Ri
= Ri −Ri−1

r +Rk −R1
− Ri+1 −Ri
r +Rk −R1

= 0 for 1 < i < k,

∂f

∂Rk
= Rk −Rk−1

r +Rk −R1
−
k−1∑

1

(Ri+1 −Ri)2

2(r +Rk −R1)2

− r2

2(r +Rk −R1)2 = 0 .

From the middle equations we get that Ri = Ri−1+Ri+1
2

when the expected shift is minimized. Thus, the

expected shift is

E(prog.) ≥
k−1∑

1

(Rk−R1
k−1 )2

2(r +Rk −R1) + r2

2(r +Rk −R1)

= (Rk −R1)2

2(k − 1)(r +Rk −R1) + r2

2(r +Rk −R1) .

Let Rk − R1 = x, and E(progress) = f(x). Again find
the minimum of the function:

d f
dx = x

(k − 1)(r + x) −
x2

2(k − 1)(r + x)2

− r2

2(r + x)2 = 0 .

We get equality

x2 + 2xr + r2 − kr2 = 0

from which we get that the expected shift is minimized
when x = r(

√
k − 1). Thus,

E(prog.) > r√
k + 1

.

If the trains of messages do not overlap, the ex-
pected progress per move is even higher. Therefore,
after (√k+1)kn

r = O(k
3/2n
r ) steps, the expected num-

ber of messages left in the queues will be 0. The total
number of messages sent is O(k

3/2n
r ), and every node

receives a fraction O( rn ) of all the messages, therefore,
RecMess = O(k

3/2n
r · rn ) = O(k3/2). �
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Figure 7: Scenarios of increasing complexity. (i) 1D scenario.
(ii) 2D scenario; non-uniform ranges. (iii) Regular obstacles;
visibility. (iv) Irregular obstacles; combining visibility and
non-uniform ranges.

5.6 Delay-based heuristic. Since all messages get
deleted from the queue when heard by a node for the
second time, RecMess = O(nkr ).

6 Discussion
Beaconless geocast protocols are used in practice in
2D scenarios. They differ from the 1D ones in a
few but important characteristics, most notably that
obstacles (like buildings, which cannot be traversed
by the transmission signal) need to be surrounded,
and that local optimization strategies fail to guarantee
delivery. Therefore, combinations of different strategies
need to be used in order to achieve delivery guarantees
and, at the same time, keep the network load within
reasonable bounds. The network load analysis in this
cases is difficult, and almost only experimental results
exist. This motivated studying the 1D case. We have
shown that the rigorous analysis of geocast protocols
even in simple 1D scenarios can be interesting—and
challenging. Indeed, all protocols give rise to different
load bounds, with CD and CD-P being particularly
subtle to analyze due to the fact that an involved
probabilistic analysis is required.

Our theoretical analysis confirms behaviors that
had been observed before only through simulations.
The different expression for RecMess, summarized in
Figure 2, make evident the differences between flooding
and the restricted flooding (M- and T-heuristics) and
delay-based protocols, as well as the advantage of

CD over them for small values of k. Moreover, our
analysis gives theoretical support to the performance
claims of CD-P: Hall [1] showed through simulations
that CD-P scales better and improves its efficiency
over CD considerably. Our results indeed corroborate
this. In the unbounded reach scenario, CD has serious
scalability problems when the number of messages (k)
approaches the number of nodes (n), making it behave
like flooding, while CD-P’s dependence on k remains
always linear, and, more importantly, only logarithmic
on n. For the bounded reach scenario, CD again shows
an overhead in k (this time of only O(

√
k)), while CD-P

achieves the optimal asymptotic performance of Θ(k).
The results in this paper are a first step towards an-

alyzing geocast protocols in generic geometric settings.
This paper has focused on two relatively simple scenar-
ios. Between these basic scenarios and the final intrica-
cies of real-world situations, several abstractions of the
geocast problem of varying complexity can be imagined,
which are definitely worth studying next (see Figure 7).
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