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Chapter 1 - Introduction 

How did you become the person you are today? The person you are today has been 

shaped, in part, by your environment and life experiences. Did you feel safe and 

supported? Did your parents have access to sufficient financial resources? What is your 

socio-cultural background? Traces of these childhood experiences can be found not 

only in childhood photo albums but also in magnetic resonance images of the 

developing brain. 

Brain plasticity refers to the inherent ability of the brain to adapt its structure and 

function. It is highest in the developing brain and is driven by interactions between 

genes and the environment. The intricate interplay among genes, the environment, and 

the brain forms the foundation for the variations observed between individuals. 

Studying images of the developing brain aids researchers in gaining a deeper 

understanding of human development. 
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1 Studying brain development 

Over the past decades developmental cognitive neuroscience emerged as an 

interdisciplinary scientific field to study environmental and biological influences on 

brain development (Blakemore et al., 2011). Technological advances enabled a rapid 

expansion of this field. Imaging the structure and functioning of the brain became 

possible in larger groups and younger children. This led to the initiation of multiple 

longitudinal studies investigating brain development using magnetic resonance 

imaging (MRI) (Bjork et al., 2017; Braams et al., 2015; Brown et al., 2015; Evans, 
2006; Giedd et al., 1999; Herting et al., 2014; Schumann et al., 2010; Tamnes et al., 

2013; van Soelen et al., 2012a; Wendelken et al., 2017; White et al., 2013; Yap et al., 

2011). These cohorts provide rich datasets that can yield important insights on the 

concept of inter-individual differences in development. This PhD thesis will focus on 

one of these cohorts, the YOUth study (Onland-Moret et al., 2020). But before we dive 

into the cohort specifics, I will introduce some of the main concepts that will help you 

to understand my research.   

2 Prior studies 

2.1 Typical brain development 

At the macroscopic level, the brain grows rapidly during pregnancy and the first 

postnatal years with a steep increase in brain volume, cortical surface area and 
cortical folding (Dubois et al., 2021). During childhood and adolescence, the brain 

undergoes considerable developmental changes, including growth of subcortical 
volumes (Mills et al., 2021), a thinning of the cortex (Teeuw et al., 2019), an increase 

followed by a decrease in cortical surface area and continued growth of volume of the 

white matter connections (Frangou et al., 2022; Giedd et al., 1999; Koenis et al., 2015; 

Tamnes et al., 2017). Mapping neurodevelopmental trajectories is important as these 
trajectories help to explain inter-individual differences later in life, for example 

differences in cognitive functioning (Schnack et al., 2015) or psychiatric vulnerability 
(Paus et al., 2008).  
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2.2. Genetic influences on brain development 

Brain structure is for a substantial part heritable (Brouwer et al., 2010, 2012; den 

Braber et al., 2013; Hulshoff Pol et al., 2012; Koenis et al., 2015; Lenroot et al., 2009; 
Lenroot & Giedd, 2008; Panizzon et al., 2009; Peper et al., 2009; Schmitt et al., 2014; 

van Soelen et al., 2011). Heritability is an estimate of the proportion of variation in a 

population that can be explained by genetic variation. Heritability is depending on 

the brain region and on the type of brain measure. For example, cortical surface area 

and cortical thickness are thought to have different sources of genetic influences 

(Panizzon et al., 2009). Importantly, the heritability of structural brain measures also 

depends on age and thus changes throughout development (Lenroot et al., 2009; 

Lenroot & Giedd, 2008; Schmitt et al., 2014). The speed and rate of brain development 

is also heritable (Brouwer et al., 2017, 2020; van Soelen et al., 2012b), with limited 
genetic overlap between variants involved in cross-sectional structural brain 

measures compared to the change in structural brain measures (Brouwer et al., 

2022). Less studies focused on heritability of brain function, but available studies 

suggest lower heritability for brain function compared to brain structure (Jansen et 

al., 2015). Still, there are plenty examples of studies showing considerable 

heritability for resting-state and task-based functional MRI (Achterberg et al., 2018; 

Adhikari et al., 2018; Blokland et al., 2008; Teeuw et al., 2019).  

2.3 The importance of the environment 

Throughout development genetic and environmental factors interact. Sensitive 
periods of development involve complex experience-expectant learning mechanisms 

and encompass periods of heightened neuroplasticity (Garbard-Durnam & 
McLaughlin, 2020). Neuroplasticity is the ability of the brain to respond to stimuli by 

reorganizing the structure and connectivity of the brain. Neuroplasticity can be 

described as a double-edged sword (Brunson et al., 2003), positive experiences during 

sensitive periods of development can have long-lasting positive effects while negative 

experiences can have adverse effects on developmental outcomes. Adverse childhood 

experiences (ACEs), such as maltreatment, parental divorce, exposure to violence or 

substance abuse in the family, are a risk factor for developing mental health problems 

1 
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later in life (Green et al., 2010; Kessler et al., 2010; McLaughlin, 2016). ACEs are 
associated with decreased life expectancy, for example via the effects of ACEs on toxic 

stress, increased adult health risk behavior, increased suicidality or socioeconomic 

inequality (Felitti et al., 1998; Hughes et al., 2017; Kalmakis & Chandler, 2015; 

Merrick et al., 2019). ACEs are also associated with aberrant brain structure and 

function (Calem et al., 2017; Cassiers et al., 2018; Daniels et al., 2013; Hart & Rubia, 

2012; Kraaijenvanger et al., 2020; Lim et al., 2020; McCrory et al., 2010; McLaughlin 

et al., 2019; Paquola et al., 2016; Teicher & Samson, 2016). The effect of ACEs on the 

brain and on outcomes later in life is thought to depend on the timing of the ACE in 

relation to sensitive periods of brain development (Andersen et al., 2008; Gee & 
Casey, 2015; Heim & Binder, 2012; Kuhn et al., 2016; Tottenham & Sheridan, 

2009). Thus, there are clear interrelations between ACEs, (mental) health outcomes 

and brain development.  

2.4 Mechanisms of risk and resilience 

Because of the high prevalence of ACEs in society, it is important to better 

understand mechanisms that confer risk or resilience in individuals previously 

exposed to childhood adversity. Different neurobiological theories explain the relation 

between ACEs and adverse outcomes later in life. The theory of latent vulnerability 

(Figure 1) argues that vulnerability for psychiatric outcomes in adults exposed to 

childhood adversity arises from neurocognitive calibrations to neglectful or 

maltreating environments (McCrory & Viding, 2015).  

These neurocognitive calibrations can increase the occurrence (stress generation) or 

the impact (stress susceptibility) of new stressful experiences (Goemans et al., 2023). 

Furthermore, altered social functioning in individuals previously exposed to 

childhood adversity may results in less social support (social thinning) (McCrory et 

al., 2022). For example, aberrant facial emotion processing is one of the most 

consistent neuroimaging findings in the childhood maltreatment literature (Hein & 

Monk, 2017). Also on a behavioral level childhood adversity is related to aberrant 

emotion recognition (Assed et al., 2020; Bérubé et al., 2023). Unfortunately, atypical 
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emotion recognition could hinder meaningful social interactions with others later in 
life (Trentacosta & Fine, 2010). 

 

Figure 1. Schematic illustration of the theory of latent vulnerability. According to the 

theory of latent vulnerability, adverse early environments result in neurocognitive alterations 
through gene-environment interactions. The changes in response to the environment may help 

the child early in life but may prove maladaptive in normative environments. The maladaptive 

nature of the neurocognitive adaptations results in increased risk for mental health problems 
later in life. Inter-individual differences in mental health outcomes in individuals exposed to 

childhood adversity are explained by genetic factors as well as exposure to adverse or protective 

environmental factors in emerging adulthood. This illustration is adapted and slightly 
simplified from McCrory et al., (2017).  

Importantly, we also know that social support can enhance resilience after childhood 

adversity (van Harmelen et al., 2017, 2021). The resilience framework approaches 

resilience as a dynamic process of adaptation resulting in a quick recovery of mental 

health after a stressful life event (Kalisch et al., 2017). Resilience is best explained 

as a complex, dynamic network of biological, psychological and social factors that help 

explain why some individuals do better than expected after childhood adversity 
(Ioannidis et al., 2020; Kalisch et al., 2019). Understanding neurobiological 

1 
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mechanisms of risk and resilience can ultimately help to prevent negative outcomes 
after childhood adversity. 

3 This thesis  

3.1 The YOUth cohort study 

The YOUth (Youth Of Utrecht) study is an ongoing longitudinal cohort study that 

comprises two independent cohorts: YOUth Baby & Child and YOUth Child & 

Adolescent. Together these cohorts provide a complete overview of development from 

20 weeks of gestational age to adolescence. The aim of the YOUth study is to map 

variation in typical neurocognitive development and investigate why some children 
develop problematic behavior while others show resilient functioning (Onland-Moret 

et al., 2020). In this thesis, I will use the data collected in over 1000 children 

participating in the YOUth: Child & Adolescent cohort. More specific, I will use MRI 

data, neurocognitive measures, social competence measures and assessments of 

adverse childhood experiences.  

3.2 Techniques 

The YOUth MRI protocol comprises different types of MRI scans (Figure 2). Each 

type of scan provides other information about the developing brain. Structural T1-

weighted images have high spatial resolution and can be used to estimate anatomical 

brain measures, such as (sub)cortical volume, cortical thickness, and cortical surface 
area. Diffusion-weighted images (DWI) can be used to map the integrity of white 
matter connections between brain regions. Resting-state functional MRI (rs-fMRI) 

scans are used to study brain function without an explicit task. Task-based functional 

MRI (fMRI) scans are acquired during a task and are used to elicit specific task-

related functional activity. The YOUth study specifically focuses on self-regulation 

and social competence. Therefore, two fMRI tasks were chosen to match these 

themes: the inhibition task as a proxy of self-regulation and the emotion task as a 

proxy of social competence.  
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Figure 2. Scan types collected in YOUth in order of acquisition. 1) Original T1-weighted 
scan (left), with subcortical and cortical brain tissue segmentation (middle) and the cortical 

regions of interest (right). 2) Diffusion unweighted volume after preprocessing (left); the 

intersection of the white matter regions (colored) and the skeleton plotted on the FA map 
(middle); the reconstructed fiber tracts used to create the connectivity maps (right). 3) One 

dynamic volume of the fMRI scan (left) and a schematic representation of how functional 

connectivity is computed (right). 4) One dynamic volume of the fMRI scan (left) and task-related 
activity during the face-processing in the emotion task (right). Reproduced from (Buimer et al., 

2020).  

3.3 Reliability of brain measures 

Studying subtle inter-individual differences in the development of brain structure 

and function requires reliable brain measures. One way to assess reliability is by 
using a test-retest design. Therefore, as part of the quality control procedure in the 

1 
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YOUth study, 17 young adults were scanned twice. To assess reliability of the YOUth 
MRI protocol, I compared structural and functional brain measures derived from the 

same subjects between the two scan sessions.   

3.4 Sharing MRI data 

YOUth is designed to facilitate data sharing with internal and external researchers 

guided by the FAIR (Findable, Accessible, Interoperable and Reusable) data 

principles (Wilkinson et al., 2016; Zondergeld et al., 2020). However, brain scans also 

contain privacy-sensitive facial characteristics. For these reasons, more and more 

open-access datasets contain MRI scans that were subjected to some type of de-

identification method. I studied the impact of these methods on subsequent 

processing of the MRI scans in different age groups.   

4. Aim and outline 

The aim of this thesis is to study sources of inter-individual variation in brain 

structure and function in pre-adolescence. Each chapter focuses on a different source 

of variation. One source of variation in any type of measure is noise. Chapter 2 

focuses on the test-retest reliability of structural and functional brain measures 

derived from the YOUth MRI protocol. Chapter 3 answers the question to what 

extent de-identification methods can introduce noise. After I mapped noise as 

potential source of variation in neuroimaging data, I move on to factors that are 
important for brain development. I specifically focus on the social environment and 

pre-adolescent brain structure and function. In Chapter 4 I show the association 

between anatomical brain measures and adverse childhood experiences. Chapter 5 

closes with the interrelations between the ability to label emotions on facial 

expressions, neural activity during the processing of emotional faces and social 

competence. Chapter 6 summarizes the significance of the main findings in this 

thesis and discusses future directions.  
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Abstract  

The YOUth cohort study is a unique longitudinal study on brain development in the 

general population. As part of the YOUth study, 2000 children will be included 

between 8, 9 or 10 years of age and planned to return every three years during 

adolescence. Every three years magnetic resonance imaging (MRI) brain scans are 

collected, including structural T1-weighted imaging, diffusion-weighted imaging 

(DWI), resting-state functional MRI and task-based functional MRI. Here, we provide 

a comprehensive report of the MR acquisition in YOUth Child & Adolescent including 
the test-retest reliability of brain measures derived from each type of scan. To 

measure test-retest reliability, 17 adults were scanned twice with a week between 

sessions using the full YOUth MRI protocol. Intraclass correlation coefficients were 

calculated to quantify reliability. Global brain measures derived from structural T1-

weighted and DWI scans were reliable. Resting-state functional connectivity was 

moderately reliable, as well as functional brain measures for both the inhibition task 

(stop versus go) and the emotion task (face versus house). Our results complement 

previous studies by presenting reliability results of regional brain measures collected 

with different MRI modalities. YOUth facilitates data sharing and aims for reliable 
and high-quality data. Here we show that using the state-of-the art YOUth MRI 

protocol brain measures can be estimated reliably.  
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1. Introduction 

To quantify and understand atypical brain development, we need to first understand 

typical brain development. In the past two decades multiple longitudinal magnetic 

resonance imaging (MRI) studies investigating brain development have been 

initiated around the world (Bjork et al., 2017; Braams et al., 2015; Brown et al., 2015; 

Evans, 2006; Giedd et al., 1999; Herting et al., 2014; Schumann et al., 2010; Tamnes 

et al., 2013; van Soelen et al., 2012a; Wendelken et al., 2017; White et al., 2013; Yap 

et al., 2011). These cohorts provide rich datasets that can yield important insights on 
the concept of optimal brain development and individual developmental trajectories.  

Studying subtle inter-individual differences in the development of brain structure 

and function requires reliable brain measures. One way to assess reliability is by 

using a test-retest design, in which subjects are scanned repeatedly in a short time 

period. Although, a between-scan interval of a month or less seems appropriate, this 

data is rarely collected in children and the shortest time intervals found in fMRI test-

retest literature are between 3 to 6 months (Herting et al., 2018). Short time intervals 

ensure that changes related to plasticity or development are negligible and therefore 

intra-individual variation between these scan sessions can be regarded as noise. Test-
retest reliability can be quantified with the intraclass correlation coefficient (ICC) 

(Bartko & Carpenter, 1976; McGraw & Wong, 1996; Shrout & Fleiss, 1979), a widely-

used statistic in both structural and functional MRI studies.  

YOUth (Youth of Utrecht) is an ongoing longitudinal cohort study that comprises two 

independent cohorts: YOUth Baby & Child and YOUth Child & Adolescent. Together 

these cohorts should provide a complete overview of development from 20 weeks of 

gestational age to adolescence. The aim of the YOUth study is to map variation in 

typical neurocognitive development and investigate why some children develop 

problematic behavior and others show resilience. To this end, an extensive dataset is 
collected, including MRI, eye tracking, parent-child observations, computer tasks, 

cognitive measurements and questionnaires on behavior, personality, health, 

lifestyle, parenting, child development, use of (social) media and more. Furthermore, 

blood samples, buccal swabs, saliva and hair samples are collected. More information 

2 
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about the study design and a full overview of the collected data can be found at the 
website: www.uu.nl/en/research/youth-cohort-study (Onland-Moret et al., 2020). The 

current paper focuses on the MRI data collected in the YOUth Child & Adolescent 

cohort.  

The YOUth MRI protocol comprises different types of MRI scans, i.e. structural T1-

weighted images, diffusion-weighted images (DWI), resting-state functional MRI (rs-

fMRI) scans and task-based functional MRI (fMRI) scans. YOUth specifically focuses 

on self-regulation and social competence. Therefore, two fMRI tasks were chosen to 

match these themes: the inhibition task as a proxy of self-regulation and the emotion 

task as a proxy of social competence.  

YOUth is designed to facilitate data sharing with internal and external researchers 

guided by the FAIR (Findable, Accessible, Interoperable and Reusable) data 

principles (Wilkinson et al., 2016). In this paper we provide a transparent report of 

the collected MRI data. The aim of this paper is two-fold: First, to describe the full 

YOUth MRI protocol including its state-of-the-art MRI acquisition protocol. Second, 

to quantify the test-retest reliability of the included MRI acquisitions. To assess test-

retest reliability of the YOUth MRI protocol, we included a sample of 17 healthy adult 

volunteers. 

2. Materials and methods  

2.1 YOUth child & adolescent 

2.1.1 Sample and recruitment  

YOUth Child & Adolescent aims to include a total of 2000 children from the general 

population and their parents or caregivers. Children are recruited mostly at primary 

schools in the province of Utrecht, the Netherlands. At the first measurement 

children are 8, 9 or 10 years old. Follow-up measurements are planned every three 
years during adolescence.  
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2.1.2 In- and exclusion criteria 

All children in the specified age categories can be included as long as they are 

physically and mentally capable to participate. Furthermore, we exclude children if 

they or their parents do not master the Dutch language enough to give informed 

consent or participate in the different subparts of the study. Atypically developing 

children are not excluded but also not specifically selected. Children that do not meet 

MR safety criteria (absence of specific metal implants including most braces) were 

still welcome to participate in the other parts of the study.  

2.2 The YOUth MRI protocol 

2.2.1 Mock procedure 

Prior to scanning, children undergo a practice session in a mock scanner. 

Implementing a mock procedure mimicking the actual experience in the scanner has 

been shown to decrease scanner-related distress in children (Durston et al., 2009). 

For YOUth, an older MR scanner model, no longer operational, is reconstructed to be 

used as a mock scanner to make the experience as authentic as possible. Print-outs 

of T1-weighted scans with severe motion artefacts and negligible motion artefacts are 

shown to explain the importance of not moving in the scanner at the level of the child. 
During the simulation, children are positioned in a mock scanner with headphones 

on. To familiarize them to the noise of the different MRI sequences sound recordings 

of these sequences are played, while they practice the inhibition task that they will 
perform in the real scanner. Following the scanner simulation, the child, the parent 

or guardian and the research assistant rate the level of excitement and anxiety of the 

child in anticipation of the MRI scans. This is done using a Visual Analogue Scale 

where the rater indicates on two questions how excited the child feels and how tensed 

the child feels. These measurements are used as a proxy of scanner-related distress. 

If any of the three raters estimate high scanner-related distress, the MRI visit may 
be canceled. This procedure is repeated just before commencing the MRI session. 

Furthermore, the MRI session can be canceled at any time if the child or the 

parent/guardian indicates that the child does not feel comfortable continuing. 

2 
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2.2.2 Acquisition 

Scans are acquired on a Philips Ingenia 3.0T CX scanner with a 60 centimeter bore 

(Philips Medical Systems, Best, The Netherlands), using a 32-channel SENSE head-

coil and operated using software version R530. First, a structural T1-weighted 3D 

gradient echo scan is acquired, followed by a diffusion-weighted multi-shell multi-

band echo planar (EPI) acquisition including two short DWI scans with a reversed 

phase encoding readout to correct for susceptibility artefacts. Next, multi-band EPI 

acquisitions are acquired during resting-state, the inhibition task and the emotion 
task. During the acquisition, the structural T1-weighted scan is visually checked for 

motion artefacts. If the MR operator regards the scan as unusable due to severe 

motion artefact, the scan is repeated after emphasizing the instructions to lie still. 

Prior to the fMRI scans, a short EPI acquisition scan of one dynamic is acquired. MR 

operators use this scan to visually check the reconstruction for (shimming) artefacts 

or for replacement of the head outside of the field of view. If rescanning is needed, 

this can come at the expense of the last acquisition as we always ensure that the 

ethically approved maximal time in the MR scanner is not exceeded.    

The main acquisition parameters are listed in Table 1. See Online Supplementary 
materials, for the complete set of acquisition parameters. An illustration of the scan 

types collected in YOUth can be found in Figure 1.  
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Table 1. Acquisition parameters YOUth MRI protocol. 

Parameters Structural 

T1-weighted 

DWI EPI 

resting 
state 

 

inhibition 
task 

 

emotion 
task 

Acquisition time (m:s) 10:02 8:05 8:07 9:22 6:40 

Scan orientation sagittal transversal transversal transversal transversal 

TR (ms) 10 3500 1000 1000 1000 

TE (ms) 4.6 99 25 25 25 

Flip angle (degrees) 8 90 65 65 65 

Number of slices * 66 51 51 51 

Slice thickness (mm) * 2.0 2.5 2.5 2.5 

Field of view (mm) 240x240x200 224x224 220x220 220x220 220x220 

Acquisition matrix 304x304 112x112 88x88 88x88 88x88 

Reconstructed voxel size 

(mm3) 
0.75x0.75x0.80 2.0x2.0x2.0 2.5x2.5x2.5 2.5x2.5x2.5 2.5x2.5x2.5 

Multiband acceleration 

factor 
Off 3 3 3 3 

Parallel imaging factor 
1.70 (AP) 

1.40 (RL) 
1.30 (AP) 1.80 (AP) 1.80 (AP) 1.80 (AP) 

Diffusion directions  

 

105 

 

  

b-values (s/mm2) 
[directions] 

500 [15] 
1000 [30] 

2000 [60] 
every 10th 

scan is a 
B0-scan 

Abbreviations: m = minutes; s = seconds; TR = repetition time; TE = echo time; ms = 
milliseconds; mm = millimeter; AP = anterior-posterior axis; RL = right-left axis; *3D 
acquisition.  

2 
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Figure 1. Scan types collected in YOUth in order of acquisition. 1) Original T1-weighted 
scan (left), with subcortical and cortical brain tissue segmentation (middle) and the cortical 

regions of interest (right). 2) Diffusion unweighted volume after preprocessing (left); the 

intersection of the white matter regions (colored) and the skeleton plotted on the FA map 
(middle); the reconstructed fiber tracts used to create the connectivity maps (right). 3) One 

dynamic volume of the fMRI scan (left) and a schematic representation of how functional 

connectivity is computed (right). 4) One dynamic volume of the fMRI scan (left) and task-related 
activity during the face-processing in the emotion task (right). 
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2.2.3 Stimulus presentation 

During the scan session, stimuli for fMRI acquisitions are presented using an MRI-

compatible 23-inch LCD screen with a resolution of 1080 by 1920 pixels 

(BOLDscreen, Cambridge Research Systems). During the rs-fMRI acquisition, lights 

inside the scanner room are turned off and participants are instructed to look at a 

white fixation cross on a grey screen.  

2.2.4 Inhibition task 

The stop-signal anticipation task for functional MRI (Zandbelt & Vink, 2010) aims to 

measure performance and brain activation during actual stopping as well as during 

the anticipation of stopping. Subjects are presented with three parallel horizontal 

lines. On each trial, a bar moves at a constant speed from the lower line towards the 

upper line, reaching the middle line in 800 milliseconds. The main task is to stop the 

bar as close to the middle line as possible, by pressing a button with the right thumb 

(i.e. Go trial). Stop trials are identical to Go trials, except that the bar stops moving 

automatically before reaching the middle line, indicating that a response has to be 
suppressed (i.e. stop-signal). The probability that such a stop-signal will appear is 

manipulated across trials and can be anticipated based on three different cues; '0' 

indicating 0% chance, '*' 22 percent and '**' 33 percent chance the bar will stop on its 

own. Task difficulty is adjusted to performance in a stepwise fashion, with a varying 

delay between the stop-signal and the target (i.e. the stop-line) depending on the 

success of the previous trial, thereby keeping the number of failed and successful 

trials comparable between subjects and sessions.  

2.2.5 Emotion task 

The emotion task is aimed at activating face processing areas in the brain. 

Participants are required to passively view pictures of faces (happy, fearful, or 

neutral expression) and pictures of houses. The pictures are presented in a 

pseudorandom order with blocks of face images interspersed with blocks of house 

images. The stimuli are taken from the Radboud Faces Database (Langner et al., 

2010). Stimuli are presented in blocks of 18 seconds, with four blocks for each of the 

2 
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four stimulus types. Rest periods are modeled as implicit baseline. Because of the 
short duration of the task, this block-design combined with passive viewing was 

chosen to ensure a strong contrast between conditions, without noise from behavioral 

responses. Behavioral data on emotion labeling in the children is measured in 

another part of YOUth (outside the scanner) during a computer task. To ensure that 

participants stay awake, they are instructed to press a button in between the block 

in response to a cue (red circle).  

For more information on both fMRI tasks and their usage in the YOUth cohort study, 

see: www.uu.nl/en/research/youth-cohort-study.  

2.3 The YOUth MRI protocol - Quality control 

In the YOUth study, all children are scanned on the same scanner, with the 

acquisition parameters kept as stable as possible over the course of the study. 
Scanner soft- and firmware are only updated when it concerns essential updates with 

minimal impact on the acquisition. Scanner performance is monitored systematically 

throughout the YOUth study.  

2.3.1 Monitoring scanner performance using human data 

Collected MRI-scans of the children are processed immediately after data collection 

for quality control purposes, on a local server with scripted pipelines. Functional MRI 

scans are processed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). The structural 
T1-weighted scans are processed using the CAT toolbox (http://www.neuro.uni-

jena.de/cat/). DWI scans are processed using the SQUAD- tool running on FSL 

(Andersson & Sotiropoulos, 2016; Bastiani et al., 2019). Quality control (QC) 

measures are generated automatically after each scanning session and results are 

accessible through a web-portal on the local intranet for in-house viewing purposes. 

These reports consist of different slices generated from the T1-weighted scans to 

allow for a visual check, with additional statistics like noise- and inhomogeneity-

contrast ratios from the CAT toolbox. A single researcher, experienced in quality 

control, visually checks these reports and this results in a list of scans that are 

http://www.uu.nl/en/research/youth-cohort-study
http://www.fil.ion.ucl.ac.uk/spm/
http://www.neuro.uni-jena.de/cat/).
http://www.neuro.uni-jena.de/cat/).
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deemed unusable due to inhomogeneity and movement artefacts. In the future, we 
will also perform a QC on the outer surface reconstruction of the FreeSurfer output 

to have more information about which scans are unusable. We do not plan to provide 

quality information at the ROI-level as there is no golden standard for this type of 

QC yet and depending on the research question different processing software or 

parcellation atlases can be used. For DWI scans the reports are generated using 

QUAD (part of FSL’s EDDY QC) and include information on the amount of spatial 

distortion and artefacts in the scans (Bastiani et al., 2019). For fMRI-scans statistics 

on movement and signal-to-noise ratio (SNR) are generated, including signal maps 

for visual inspection. Reports are checked manually after each scanning session and 
a qualitative assessment is saved as meta-data to the local XNAT storage server 

(Marcus et al., 2007a) together with the raw data. An example of a QC report, 

generated for each participant, is added in the Supplement. 

2.3.2 Monitoring scanner performance using phantom data 

Every other week a proton (demi water) spherical phantom (Philips sphere A fluid, 

doped with CuSO4 1 ml + SH2O 60mg; acetate 2.5 ml; ethanol 5.0 ml; H3PO4 4.4ml; 

total contents 524ml) fixed in a standard placeholder is used to acquire a series of 
scans. These scans include a B0 map to determine the uniformity of the main 

magnetic field based on two gradient echo images with varying echo time; a B1 map 

to determine the uniformity of the excitation field based on two gradient echo images 

with varying repetition time; a 3D gradient echo scan with, and without, the use of 

gradients and RF excitation; and a dynamic fast field EPI scan (2000 dynamics and 

30 dummy scans). After each measurement, data is processed automatically. The 
output is accessible through a local server and results are inspected to monitor 

changes over time as well as temporary changes.  

2.3.3 Example of data on scanner stability in YOUth 

Signal-to-fluctuation-noise ratio (SFNR) is an important measure for estimating the 

presence of unwanted scanner-related variance in fMRI data (Bennett & Miller, 2010; 
Murphy et al., 2007) that can e.g. be used as covariate to calibrate multicenter studies 
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(Friedman et al., 2006). A stable scanner would have a high and stable SNR and 
SFNR. Figure 2 shows the SFNR calculated from resting-state human data (top row). 

The human data is derived from the rs-fMRI data collected in the YOUth cohort. The 

average human data is smoothed by filtering it with a 100-point gaussian window. 

Figure 2 also shows the SFNR (middle row) and the SNR (bottom row) derived from 

the dynamic fast field EPI scan in the phantom data (Friedman & Glover, 2006; 

Weisskoff, 1996).  

 

Figure 2. Monitoring scanner performance with human and phantom data using 

dynamic EPI scans. Data on scanner stability over the course of the study. The solid 

horizontal line indicates the mean of the signal and the dotted line indicates a threshold of ±3 

standard deviations from the mean.  

  



  29 

2.4 The reliability study – Sample and recruitment of adults 

To assess the test-retest reliability of the YOUth MRI protocol, we recruited healthy 

adult volunteers under the premise of MRI protocol development approved by the 
Medical Ethical Committee. All participants gave written informed consent prior to 

participation. Test-retest data was collected in adults, in the absence of ethical 

approval to include YOUth participants for this purpose. Participants were scanned 

twice with the MRI protocol used in the YOUth children’s cohort study described 

above. The scan-rescan interval was between 6 and 8 days. The test-retest sample 

consisted of 17 volunteers (7 male and 10 female) with a mean age of 23 years old 

(range: 19 to 31 years old). The participants, most of which were university students, 

were not given any restrictions regarding food or drink intake.  

2.5 The reliability study - MRI processing 

All scans were visually checked before starting the analyses. If a scan was excluded 

from analysis, both test and retest scans of the subject were excluded. Only those 
scans were excluded that had such obvious artefacts or anatomical anomalies that 

they would have been removed in regular practice. This resulted in sample sizes of 

15 or 16 subjects depending on the type of scan. For the reliability-analyses of the T1-

weighted scans, one male was excluded due to a structural anomaly. For the analyses 

of the DWI scans, one female was excluded due to motion artefacts and one female 

due to extensive spatial distortions. For the analysis of the resting-state MRI data, 

one female was excluded due to motion artefacts and one male due to an anatomical 
anomaly. For the task-based fMRI analyses, one male was excluded due to a local 

artefact and one female was excluded due to missing data.     

2.5.1 Processing of structural T1-weighted scans 

The T1-weighted test-retest scans were processed using FreeSurfer version 6.0 

(freesurfer.net) for automatic brain segmentation and parcellation (Fischl et al., 

2002). Global and regional brain measures of subcortical volume, cortical volume, 

cortical thickness and cortical surface area were extracted. The ROIs established 
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according to the Desikan-Killiany atlas were used for further analysis (Desikan et 
al., 2006). Besides atlas-based measures of cortical thickness, vertex-wise cortical 

thickness measures were extracted to include a measure that is independent of a 

parcellation atlas. For the vertex-wise analysis, cortical thickness of each scan was 

resampled to an average brain created with FreeSurfer by averaging the first scan of 

each participant in the test-retest dataset. After resampling, the cortical surface was 

smoothed with a 3D Gaussian kernel (FWHM = 10 mm). 

2.5.2 Processing of DWI scans 

FSL (version 6.01) in combination with MRtrix (version 3.0) was used to preprocess 

the DWI scans as described in detail here: B.A.T.M.A.N.: https://osf.io/fkyht/). 

Preprocessing included gradient direction correction (Leemans & Jones, 2009), eddy 

current (Andersson & Sotiropoulos, 2016) and susceptibility corrections (Andersson 

et al., 2003) as well as a correction for Gibbs ringing (Perrone et al., 2015). No 

correction for signal drift was needed because dynamic stabilization was applied in 

the acquisition. The results were visually checked and a QC check was performed 

(using squad, part of FSL). Tract-Based Spatial Statistics (TBSS) were used with the 

default settings to create a skeletonized version of the fractional anisotropy (FA) and 
mean diffusivity (MD) values computed from the single tensors (computed using 

FSL’s DTIFit) that were fitted to the preprocessed multi-shell diffusion data. Global 

FA and MD values were computed for all skeleton voxels. In addition, average FA 

and MD values were computed over skeleton voxels from 48 regions of interest (ROIs) 

selected from the ICBM-DTI-81 white matter (WM) labels atlas (Mori & van Zijl, 

2007) similar to (Svatkova et al., 2015). 

Connectivity maps were constructed using MRtrix to perform test-retest analysis of 

the structural network analysis. Here the gray matter (GM) ROIs of the Desikan-

Killiany atlas from the FreeSurfer output (generated while processing the T1-
weighted scans) were used to define the nodes of the network. Fiber orientation 

distributions were estimated by deconvolution of the diffusion signal using 8th order 

spherical harmonics. The response function was obtained using the multi-shell-multi-

tissue constrained spherical deconvolution algorithm. For each dataset 5,000,000 

https://osf.io/fkyht/
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streamlines were generated within a seeding area covering the whole brain using 
deterministic tracking and a FOD-amplitude threshold of 0.05. The number of 

streamlines was then filtered down to 1,000,000 so that streamline densities better 

matched the fiber orientation distributions. Connectivity maps were generated by 

assigning streamlines to the closest node (ROI) found within a 2 mm radius of the 

streamlines’ endpoints. Streamlines were stored only if they connected two different 

nodes. Connectivity maps were created based on the number of streamlines and their 

mean FA for each edge (connection between nodes). Only edges with at least four 

streamlines in 60% of the subjects were included in the analysis (de Reus & van den 

Heuvel, 2013). For these connectivity maps characteristic path length, global 
efficiency, mean local efficiency and mean strength were calculated (Dimitriadis et 

al., 2017). 

2.5.3 Processing of rs-fMRI scans 

Processing of rs-fMRI scans was performed using the CONN toolbox version 18a 

(Whitfield-Gabrieli & Nieto-Castanon, 2012) and SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2015b (The MathWorks Inc., 

Massachusetts, United States). The structural T1-weighted MRI scans were 
segmented into cerebrospinal fluid (CSF), GM and WM tissue maps, and registered 

to MNI-152 space using unified segmentation. The WM and CSF tissue maps were 

threshold at >50% and binarized to create tissue masks. The WM masks were eroded 

by two voxels to reduce the number of voxels at the white-gray matter tissue 

interface. The CSF tissue masks were constrained to contain only voxels inside the 

lateral ventricles. Motion correction was performed by realigning the volumes of the 
rs-fMRI scans to the mean functional volume using a rigid-body transformation in a 

two-stage approach. The transformation parameters were used to compute frame-

wise displacement as an approximation of in-scanner head motion (Power et al., 
2012). No slice-timing correction was performed to avoid temporal interpolation of 

the BOLD signal. Slice-timing correction provides little benefit with fast/short TR or 

multiband EPI sequences such as used in the current study (TR = 1 sec, multiband 

factor = 3), and has no effect on the reliability of functional connectivity estimates 

(Parker et al., 2017; Parker & Razlighi, 2019). The realigned rs-fMRI scans were co-
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registered with the structural scans using a rigid-body transformation. The 
structural scans, tissue maps, and rs-fMRI scans were transformed into MNI-152 

space and resampled to a 2.0 mm isotropic resolution in a single concatenated 

transformation step to minimize data-loss as a result of resampling. No spatial 

smoothing was applied. 

Correction for confounding effects was performed using linear regression of the top 

ten principal components from the BOLD signal of WM and (ventricular) CSF maps 

(Behzadi et al., 2007; Chai et al., 2012), 24 head motion parameters (Friston et al., 

1996; Yan et al., 2013), and scrubbing of a subject-dependent number of frames 

(Power et al., 2012). Scrubbing of frames with high motion (FD > 0.30 mm) or 
unusually large whole-brain BOLD signal changes (DVARS Z-score > 3.0) was 

performed by including a regressor for each of the flagged frames, the preceding 

frame, and the two following frames (Power et al., 2012). Linear regression was 

performed on the individual voxels of the brain after quadratic detrending of the 

BOLD time series to reduce the effects of scanner drift, followed by temporal 

bandpass filtering at the frequency range of 0.008 to 0.080 Hz (Waheed et al., 2016). 

All resting-state functional MRI scans were processed independently from each other. 

2.5.4 Processing of task-based fMRI scans 

Functional MRI scans were processed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2015b (The MathWorks Inc., 

Massachusetts, United States). Preprocessing involved realignment, slice timing 

correction, spatial normalization to MNI-152 space, and smoothing (8 mm full width 
at half maximum) to correct for inter‐individual differences. Functional images were 

then submitted to a general linear model.  

For both tasks two contrasts were created. For the inhibition task these were: 1) 

successful stops versus go trials with a stop-signal probability of zero percent, 2) 

successful stops versus go trials with a stop-signal probability of 20 and 33 percent 

(from here on referred to as >0% stop-signal probability). For the face processing task, 
we also created two contrasts: 1) images of faces versus rest, 2) images of faces versus 

http://www.fil.ion.ucl.ac.uk/spm/
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images of houses. Six realignment parameters were added as regressors of no interest 
to correct for head motion. All data were high‐pass filtered with a cut‐off of 128 

seconds to control for low‐frequency drifts. These analyses produced four (two 

contrasts per task) t-maps for each participant.  

2.6 The reliability study – Statistical analysis 

Test-retest reliability was quantified with ICCs and their 95% confidence intervals 

calculated with the irr package version 0.84.1 in R (https://www.r-project.org/). ICCs 
were computed using a single measure, absolute-agreement, 2-way random-effects 

model. Average ICCs were always computed after Fisher’s Z transformation of the 

individual correlations. Percentage difference (PD) was calculated for each individual 

and the subsequent mean was calculated from the absolute values of the individual 

PDs.  

2.6.1 Reliability of structural T1-weighted MRI 

Global brain measures of cortical and cerebellar volume, cortical thickness and 
cortical surface area were used to compute mean absolute PDs and ICCs. Next, ICCs 

were calculated on atlas-based brain measures of subcortical volume, cortical volume, 

cortical surface area and cortical thickness. Additionally, ICCs were calculated for 

vertex-wise cortical thickness measures after resampling and smoothing.   

2.6.2 Reliability of DWI  

For each of the 48 WM ROIs, mean absolute PDs and were computed for FA and MD. 

To determine if there is a relation between certain QC characteristics and reliability 
of FA and MD, the mean absolute PDs were correlated with SNR (part of the QUAD 

results), average motion and mean displacement obtained from the QC data. For 

network analysis, ICCs for FA and the number of streamlines were calculated for 

each included edge. In addition, ICCs were calculated for the mean characteristic 

path length, global efficiency, mean local efficiency and mean strength (Dimitriadis 

et al., 2017). 
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2.6.3 Reliability of resting-state fMRI 

The spatially-averaged BOLD signal was obtained from the unsmoothed and 

denoised time series for components of major resting-state networks defined in the 

networks atlas provided by the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 

2012; https://web.conn-toolbox.org/; Supplementary Figure S1). Functional 

connectivity estimates were computed using full Pearson correlation between the 

BOLD signal of two regions. Fisher r-to-Z transformation of the functional 

connectivity estimates was performed prior to statistical analysis. Test-retest 
reliability of the Z-transformed functional connectivity estimates was assessed using 

the ICC as described before. For mean functional connectivity within and between 

resting-state networks, the ICCs were computed for the averaged Z-transformed 

functional connectivity estimates across all connections within or between the 

resting-state network(s). 

2.6.4 Reliability of task-based fMRI 

2.6.4.1 Behavioral reliability 

For the stop-signal task behavioral ICCs were calculated for response times and 

accuracy. During the emotion task no behavioral data was collected.  

2.6.4.2 Imaging reliability  

ICCs were computed for each voxel of the brain using the unthresholded t-maps 

resulting from the statistical analysis in the processing phase. This voxel-wise 
analysis yielded a 3D matrix of Fisher transformed ICC values. An ROI-analysis was 
subsequently conducted using the automated anatomical labelling (AAL) template 

(Tzourio-Mazoyer et al., 2002), generating mean activation levels per AAL region. As 

these tasks were designed to elicit activation in specific regions of the brain, statistics 

for selected regions are reported. For the inhibition task, these are bilateral ROIs 

based on previous research (Vink et al., 2014; Zandbelt et al., 2013), spanning the 

putamen, motor cortex, and frontal and parietal lobe. As the face/house task is aimed 

at activating face processing areas in the brain, we report the reliability of occipital, 

https://web.conn-toolbox.org/
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parietal and temporal regions of interest (Passarotti et al., 2003). In addition to 
statistics for specific ROIs, the mean of ICC values for all voxels across the whole 

brain are also reported per contrast. 

2.7 The reliability study - Post-hoc analysis: Sample size estimations 

To better understand the implications of our results for future studies, we did a post-

hoc analysis, modelling samples size as a function of effect size Cohen’s D. Power was 

set at 80% (beta=0.2) and the alpha level was set at 0.05. We assumed normally 

distributed brain measures. Cohen’s D was varied between 0 and 0.5. For each scan 

type we used the main ICC findings as estimates of reliability, and computed sample 

size as (z(1-alpha/2) + z(1-beta))2/(ICC*Cohen’s D)2.  

3. Results  

3.1 Reliability of structural T1-weighted MRI 

The test-retest reliability of global structural brain measures was high (Table 2). 

Especially cortical and cerebellar GM volume, intracranial volume and total cortical 

surface area were highly replicable as indicated by a comparable mean and standard 
deviation between the two scan sessions, a small mean absolute PD (< 1.43%) and an 

excellent ICC (> 0.98). Global measures of cerebellar WM were highly reliable (mean 

absolute PD < 3.35%; ICC > 0.90). Average cortical thickness could be reliably 

measured as well (mean absolute PD < 1.25%; ICC > 0.74) 

Figure 3 shows regional test-retest ICCs for subcortical and cortical brain measures. 

The ICCs for each region are also listed in Online Supplementary Table S1. Regional 

test-retest ICCs of subcortical volumes were high with an average of 0.95 (ICCs 

ranging from 0.84 to 0.99) over all regions in both hemispheres. Regional test-retest 

ICCs for cortical volumes were high with an average of 0.96 (ICCs ranging from 0.65 
to 1). Regional test-retest ICCs for cortical surface area were high with an average of 

0.98 (ICCs ranging from 0.53 to 1) with the lowest ICC in the left frontal pole. 
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Regional test-retest ICCs for cortical thickness were good with an average of 0.84 
(ICCs ranging from 0.07 to 0.97) with the lowest values in the right hemisphere for 

the rostral middle frontal gyrus (ICC = 0.07), frontal pole (ICC = 0.48) and medial 

orbitofrontal gyrus (ICC = 0.51). Vertex-wise cortical thickness ICCs were high with 

an average ICC over all vertices of 0.88. 

Taking a closer look at the low ICC in the right rostral middle frontal gyrus, we 

identified three participants with a large change in cortical thickness between the 

two scan sessions (0.16, -0.10 and -0.25 mm). We did not find artefacts in the raw 

scan nor segmentation errors. The vertex-wise analysis confirmed lower reliability in 

this region suggesting a regional effect unrelated to the parcellation atlas. We did not 
find evidence for an anterior-posterior gradient in vertex-wise reliability and did not 

find a pattern when looking at scan date or time. Focusing on the participant with 

the biggest change between sessions (-0.25 mm), recalculating the ICC without this 

participant increased the ICC in this region to 0.37 suggesting that the low ICC 

cannot be explained by a single outlier.  
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Table 2. Test-retest statistics of global brain measures.  

Global brain measure  

(mm, mm2 or mm3) 

Mean (SD) 

Test 

Mean (SD) 

Retest 
Mean absolute PD ICC [95% CI] 

 ml ml %  

Intracranial volume  1484 (258) 1494 (262) 1.11 (1.82) 0.99 [0.98 to 1.00] 

Brain without ventricles 1159 (124) 1158 (126) 0.67 (0.31) 1.00 [0.99 to 1.00] 

Left cortical GM 250.6 (21.4) 249.9 (22.6) 1.09 (1.08) 0.98 [0.96 to 0.99] 

Right cortical GM 252.6 (22.3) 251.9 (22.9) 1.43 (1.37) 0.98 [0.93 to 0.99] 

Left cortical WM 227.4 (34.2) 227.8 (35.1) 0.73 (0.69) 1.00 [0.99 to 1.00] 

Right cortical WM 228.4 (35.5) 228.8 (36.2) 0.79 (0.72) 1.00 [0.99 to 1.00] 

Left cerebellum GM 55.82 (5.28) 55.82 (5.20) 0.94 (0.72) 0.99 [0.98 to 1.00] 

Right cerebellum GM 54.79 (5.44) 54.78 (5.44) 0.72 (0.55) 1.00 [0.99 to 1.00] 

Left cerebellum WM 15.25 (1.48) 15.15 (1.66) 3.28 (3.20) 0.90 [0.74 to 0.96] 

Right cerebellum WM 14.48 (1.58) 14.42 (1.85) 3.35 (3.12) 0.93 [0.80 to 0.97] 

 cm2 cm2 %  

Left total surface area 894.2 (95.3) 893.6 (95.6) 0.45 (0.43) 1.00 [0.99 to 1.00] 

Right total surface area 895.3 (96.5) 894.9 (97.1) 0.42 (0.27) 1.00 [1.00 to 1.00] 

 mm mm %  

Left average thickness 2.493 (0.056) 2.487 (0.062) 0.88 (0.75) 0.89 [0.72 to 0.96] 

Right average thickness 2.521 (0.052) 2.514 (0.620) 1.25 (1.10) 0.74 [0.41 to 0.90] 

Abbreviations: ml = milliliter; cm = centimeter; mm = millimeter; SD = standard deviation; PD 
= percentage difference; ICC = intraclass correlation; CI = confidence interval; GM = gray 
matter; WM = white matter. 
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Figure 3. Test-retest ICCs of subcortical and cortical brain measures. The first row 
shows the ICCs of subcortical volumes on two coronal slices. The slice on the left cuts through 

the caudate nucleus, thalamus, putamen, pallidum, amygdala and hippocampus. The slice on 

the right cuts more anterior through the caudate nucleus, putamen and nucleus accumbens. 
The second, third and fourth row show ICCs of cortical volume, cortical surface area and cortical 

thickness respectively. The last row shows vertex-wise cortical thickness ICCs. The ICCs of 

cortical measures are shown on the surface from an outer and medial view with the left 
hemisphere on the left and the right hemisphere on the right. To visualize the regional test-

retest reliability, a model brain was created using the first scan of each participant (Peper et 

al., 2009; supporting information) and segmented and parcellated with FreeSurfer. For each 
region or vertex, the ICC was recoded to an RGB color-code using colormap jet in MATLAB. 

 



  39 

3.2 Reliability of DWI 

3.2.1 FA and MD 

The test-retest reliability and 95% confidence interval of global skeleton FA and MD 

was 0.94 (ICCs ranging from 0.83 to 0.98) and 0.87 (ICCs ranging from 0.65 to 0.95), 

respectively. The mean absolute PD for global FA was 0.86% and for global MD 

1.33%. For the ROI-based test-retest analysis, the mean ICC for FA was 0.84 with 

values ranging from 0.51 (found in the pontine crossing tract (a part of MCP)) to 0.97 

(left anterior corona radiata). The mean ICC for MD found in the test-retest analysis 

was 0.74, ranging from 0.09 (right cerebral peduncle) to 0.95 (fornix (column and body 

of fornix)). See Online Supplementary Table S2 for details. 

3.2.2 Relation between scan quality and FA/MD 

A significant Pearson correlation (0.60, p = .02) was found between the PD computed 

for SNR and the PD computed for global FA. For global MD the association was not 

significant (-0.35, p = .19). For relative motion, a significant negative correlation was 

found between the PD for relative motion and the PD for global FA (-0.51, p = .05) 

but not for MD (0.15, p = .59). No correlation was found between the PD computed 

for mean voxel displacement and the PD for FA (-0.12, p = .67) or MD (-0.33, p = .23). 
Online Supplementary Table S2 for test-retest results of ROIs from the JHU Atlas. 

3.2.3 DWI network analysis 

The ICCs computed on global network metrics with the connection-weight based on 

the number of streamlines and for connections weighted using FA are shown in Table 

3. A total of 1053 edges were included in the connectivity maps. The mean ICC across 

edges was 0.52 for the number of streamlines, and 0.39 for the mean FA. Figure 4 

shows the distribution of ICC's of the 1053 edges Figure 5 shows the ICCs for the 
mean FA (upper-left triangle) and for the number of streamlines (lower-right 

triangle) for each individual edge.  
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Table 3. Test-retest ICCs for global network metrics.  

Network metric Mean (SD) ICC [95% CI] 

Test Retest 

# Streamlines 

CPL 1238 (215) 1195 (289) 0.39 [-0.11 to 0.73] 

GE 0.0515 (0.007) 0.0528 (0.009) 0.88 [0.71 to 0.96] 
MLE 0.0662 (0.009) 0.0686 (0.012) 0.81 [0.56 to 0.93] 

MS 1.023 (0.130) 1.047 (0.164) 0.91 [0.76 to 0.97] 

FA 

CPL 2669 (471) 2745 (527) 0.64 [0.24 to 0.86] 

GE 0.0679 (0.008) 0.0680 (0.007) 0.58 [0.14 to 0.83] 
MLE 0.0799 (0.009) 0.0796 (0.009) 0.60 [0.18 to 0.84] 

MS 1.494 (0.177) 0.1498 (0.163) 0.69 [0.33 to 0.88] 

Abbreviations: CPL = characteristic path length; GE =global efficiency; MLE = mean local 
efficiency; MS = mean strength; SD = standard deviation; ICC = intraclass correlation; CI = 
confidence interval; FA = fractional anisotropy. 

 

Figure 4. Histogram of the test-retest ICC's of the 1053 included edges. The bin size of 

the histogram is 0.05. 
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Figure 5. Test-retest ICCs for each individual edge. The upper-left triangle shows the 

results for the connections weighted with mean FA while the lower-right triangle shows the 

results for the connections weighted with the number of streamlines. Edges that are colored 
black were excluded for containing too few streamlines in too many subjects.  

 

 

2 



 42  

3.3 Reliability of resting-state fMRI 

Group-mean functional connectivity was highly consistent between scan sessions as 

indicated by a high correlation between average connectivity at the first and second 
time point (Pearson’s r = 0.95) with typical higher functional connectivity within 

resting-state networks and highest functional connectivity between contralateral 

homotopic regions (Figure 6A; Online Supplementary Table S3). Test-retest 

reliability of functional connectivity between regions of cortical resting-state 

networks was moderate (mean ICC = 0.36; ICCs ranging from -0.41 to 0.85; Figure 

6B; Online Supplementary Table S4), with moderate to high test-retest reliability of 

average functional connectivity within cerebral cortical resting-state networks (ICCs 

ranging from 0.38 to 0.61; Table 4). 

 

Figure 6. Group-mean functional connectivity (A) and test-retest reliability (B) of 
functional connectivity for connections between regions of cortical resting-state 

networks. Abbreviations: DMN = default mode network; SMN = sensorimotor network; VN = 
visual network; SN = salience network; DAN = dorsal attention network; FPN = frontoparietal 

network; LN = language network; CBN = cerebellar network; TP1 = estimates from test session; 

TP2 = estimates from retest session. 
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Table 4. Test-retest reliability of functional connectivity estimates within cortical 
resting-state networks. 

Resting-state 
network 

Mean FC-Z 
(SD) 

Test 

Mean FC-Z 
(SD) 

Retest 

Mean change FC-Z (SD) ICC [95% CI] 

Default mode +0.66 (0.23) +0.67 (0.25) +0.01 (0.23) 0.61 [0.16 to 0.85] 

Sensorimotor +1.02 (0.39) +0.95 (0.37) –0.06 (0.27) 0.38 [–0.15 to 0.74] 

Visual +0.76 (0.41) +0.79 (0.38) +0.03 (0.29) 0.51 [0.02 to 0.80] 

Salience +0.55 (0.29) +0.46 (0.30) –0.09 (0.24) 0.57 [0.10 to 0.83] 

Dorsal attention +0.39 (0.29) +0.43 (0.29) +0.04 (0.25) 0.48 [–0.03 to 0.79] 

Frontoparietal +0.58 (0.26) +0.65 (0.26) +0.07 (0.24) 0.41 [–0.11 to 0.76] 

Language +0.70 (0.29) +0.59 (0.27) –0.10 (0.23) 0.52 [0.02 to 0.81] 

Cerebellar +0.65 (0.26) +0.60 (0.12) –0.05 (0.28) –0.01++ [–0.50 to 0.49] 

Abbreviations: FC-Z = r-to-Z-transformed functional connectivity; SD = standard deviation; ICC 
= intraclass correlation; CI = confidence interval, ++ = lowest ICC. 

3.4 Reliability of task-based fMRI 

3.4.1 Behavioral reliability inhibition task  

Only the inhibition task had behavioral measurements in addition to the fMRI data. 

The ICC for the reaction time, accuracy and response slowing measurements had an 

average ICC of 0.85 (Table 5). A paired-samples t-test was performed on each 
measure to test for possible learning effects between the two sessions. At the second 

session, subjects were slower in their incorrect responses, and an increase of the stop 

probability slope indicates that they slowed down more with increasing stop-signal 

probability. 
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Table 5. ICC values for behavioral measurements. 

Contrast ICC [95% CI] M1 M2 SD1 SD2 t sig 

RT correct Go 0.95 [0.85 to 0.98] 851 856 36 35 -1.91 0.76 

RT incorrect Stop 0.92 [0.77 to 0.97] 829 836 38 34 -2.39 0.03 

Stop accuracy 0.71++ [0.31 to 0.90] 0.59 0.59 0.4 0.3 0.77 0.46 

Stop signal delay 0.82 [0.53 to 0.94] 211 209 28 26 0.56 0.58 

Stop probability slope 0.91 [0.74 to 0.97] 91 119 61 64 -2.56 0.02 

Abbreviations: ICC = intraclass correlation; CI = confidence interval, ++ = lowest ICC. 

3.4.2 Imaging reliability inhibition task 

Overall ICCs for the first contrast – stop versus go-trials with 0% stop-signal 

probability – averaged at 0.52. ICCs for the second contrast - stop versus go-trials 

with >0% stop-signal probability - were slightly lower, with an average of 0.44. The 

mean ICC of all voxels across the brain was 0.39 (range -0.76 to 0.92, median 0.47) 

for the first contrast, 0.37 (range -0.77 to 0.89, median 0.42) for the second. ROI ICCs 
can be found in Table 6. 
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Table 6. AAL ROI ICC statistics for the inhibition task. 

AAL ROI 

Stops versus go trials 

Stop-signal probability = 0 

Stops versus go trials 

Stop-signal probability > 0 

ICC [95% CI] ICC [95% CI] 

Precentral gyrus 0.50 [-0.02 to 0.81] 0.49 [-0.03 to 0.80] 

Superior frontal gyrus 0.54 [0.04 to 0.82] 0.48 [-0.04 to 0.80] 

Middle frontal gyrus 0.60 [0.13 to 0.85] 0.48 [-0.04 to 0.80] 

Inferior frontal gyrus 0.60 [0.13 to 0.85] 0.46 [-0.07 to 0.79] 

Superior Temporal lobe 0.51 [0.00 to 0.81] 0.48 [-0.04 to 0.80] 

Supplementary motor area 0.55 [0.05 to 0.83] 0.51 [0.00 to 0.81] 

Paracentral Lobule 0.56 [0.07 to 0.83] 0.33 [-0.22 to 0.72] 

Rolandic Operculum 0.50 [-0.02 to 0.81] 0.47 [-0.06 to 0.79] 

Putamen 0.31++ [-0.24 to 0.71] 0.23++ [-0.32 to 0.66] 

Abbreviations: ICC = intraclass correlation; CI = confidence interval, ++ = lowest ICC for each 
contrast. 

3.4.3 Imaging reliability face processing task  

For the contrast of face versus rest, the average ICC in the selected AAL regions was 

0.54. For the contrast of face versus house, the average ICC in the selected AAL 

regions was 0.64. The mean ICC of all voxels across the brain was 0.34 (range -0.76 
to 0.91, median 0.38) for the first contrast, 0.38 (range -0.55 to 0.96, median 0.43) for 

the second. ROI ICCs can be found in Table 7. 
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Table 7. AAL ROI ICC statistics for faces task. 

AAL ROI 
Faces versus rest Faces versus houses 

ICC [95% CI] ICC [95% CI] 

Occipital (superior) 0.41++ [-0.13 to 0.76] 0.65 [0.21 to 0.87] 

Occipital (middle) 0.53 [0.02 to 0.82] 0.63 [0.17 to 0.86] 

Occipital (inferior) 0.65 [0.21 to 0.87] 0.77 [0.42 to 0.92] 

Fusiform gyrus 0.47 [-0.06 to 0.79] 0.68 [0.26 to 0.88] 

Inferior temporal gyrus 0.55 [0.05 to 0.83] 0.61 [0.14 to 0.85] 

Superior parietal lobe 0.54 [0.04 to 0.82] 0.65 [0.21 to 0.87] 

Inferior parietal lobe 0.58 [0.10 to 0.84] 0.43++ [-0.11 to 0.77] 

Abbreviations: ICC = intraclass correlation; CI = confidence interval, ++ = lowest ICC for each 
contrast. 

3.5 Post-hoc analysis: Sample size estimations 

Figure S2 in shows the relationship between the reported ICCs and the sample size 

needed in future studies to detect an effect of interest with 80% power and an alpha 

level of 0.05.  

4. Discussion 

The YOUth MRI protocol was designed to study typical brain development 

longitudinally in children from 8 and up. In this paper we provide a detailed 

description of the MRI acquisition in YOUth and include the test-retest reliability of 

data collected with this protocol. Global structural brain measures could be estimated 

with high reliability. Regional structural and functional brain measures in ROIs or 

specific networks were within the ranges found in literature (outlined below per scan 

type).  
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4.1 Structural T1-weighted MRI 

Regional test-retest ICCs had an average of 0.95 for subcortical volume, 0.96 for 

cortical volume and 0.98 for cortical surface area. Regional test-retest ICCs for 
cortical thickness were lower with an average of 0.84 including lower ICCs for specific 

regions, mostly in the right hemisphere. Vertex-wise cortical thickness ICCs were, on 

average, higher with an average ICC over all vertices of 0.88. For most regions, 

vertex-wise ICCs are comparable to those based on the parcellated region. However, 

in some regions the vertex-wise ICCs are on average higher than the atlas-based ICC. 

This difference can be explained by the fact that the between-subject variation for 

vertex-wise cortical thickness measures is higher than for atlas-based cortical 

thickness measures in these regions. Our results are in line with other studies that 

found higher reliability for cortical volume, compared to cortical thickness (Iscan et 
al., 2015; Liem et al., 2015; Wonderlick et al., 2009). One study also found lower 

reliability for vertex-wise cortical thickness in the right rostral middle frontal area 

(Wonderlick et al., 2009). In this study we wanted to have an honest and unbiased 

estimate of the noise in our brain measures. Therefore, we processed the T1-weighted 

scans and rescans separately using FreeSurfer’s cross-sectional pipeline. This way, 

the reliability measures are valid for data obtained from only one measurement too. 

However, when processing YOUth data, using FreeSurfer’s longitudinal pipeline 

(Reuter et al., 2012) can improve reliability (Jovicich et al., 2013; Morey et al., 2010). 

4.2 DWI 

Reliable measures of global FA and MD were found. For the ROI-based analysis, the 

average ICC for FA was 0.84. The average ROI-based ICC for MD was 0.74. Another 
study also found FA to be more reliable than MD (Duan et al., 2015). At the network 

level, global network metrics were on average more reliable than metrics at the nodal 

level, as has been reported before (Dimitriadis et al., 2017). Global network metrics 

(characteristic path length, global efficiency, mean local efficiency and mean 

strength) were moderately reliable when weighted by FA, with ICCs between 0.58 

and 0.69. The same network metrics were highly reliable when weighted by the 

number of streamlines, with ICCs between 0.81 and 0.91, with the exception of 
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characteristic path length that was unreliable, ICC=0.39, comparable to what was 
found in another study (Cheng et al., 2012). Reliability was lower at the nodal level, 

with a mean ICC across edges of 0.52 for the number of streamlines, and 0.39 for the 

mean FA. Numerous methodological choices exist for DWI data, which makes it 

difficult to directly compare our findings to literature (for an extensive review see: 

Welton et al., 2015).  

4.3 Resting-state fMRI 

Group-mean functional connectivity was consistent between scan sessions with 

higher functional connectivity within resting-state networks and highest functional 

connectivity between contralateral homotopic regions typically observed for cortical 

resting-state networks. Test-retest reliability of functional connectivity between 

regions of cortical resting-state networks was moderate with an average ICC over all 
networks of 0.36, partially due to poor reliability within the cerebellar network. When 

looking at only cerebral cortical resting-state networks, ICCs were in the range of 

0.38 to 0.61. A recent meta-analysis reported an average reliability of 0.29 for 

functional connectivity on edge-level based on 25 studies (Noble et al., 2019).  

4.4 Task-based fMRI 

The inhibition task had highly reliable behavioral measurements with an average 

ICC of 0.85. MRI measures during this task had an average ICC over the ROIs of 

0.44 and 0.52 for the two task contrasts. MRI measures during the emotion task had 

an average ICC over the ROIs of 0.54 or 0.64. The contrast between faces and houses 
generated a more reliable response than the contrast of faces versus rest. These 

results are in line with ICC values of pre-defined ROIs in other task-based fMRI 
studies. A meta-analysis of 13 fMRI studies between 2001 and 2009 reported ICCs 

values in a range from 0.16 to 0.88, with an average reliability of 0.50 (Bennett & 

Miller, 2010). Similar to our results, reliability generally tends to be best for occipital 

regions (Koolschijn et al., 2011; Vetter et al., 2015, 2017) and fair to poor for frontal 

and subcortical regions (Herting et al., 2018). Whole-brain average ICCs were lower 

than ROI ICCs for both tasks, suggesting that the task contrasts more accurately 



  49 

modulate activity in the targeted ROIs than in other areas. Voxel-wise calculations 
are a stringent measure of reliability and indicate whether the level of activity in all 

voxels is consistent between test and retest (Bennett & Miller, 2010). 

4.5 Factors that determine reliability 

In literature, ICCs for functional MRI measures are generally deemed lower 

compared to structural MRI measures. Our findings are in line with other studies 

that show that structural MRI brain measures can be measured more reliably than 

fMRI brain measures. ICC is related to statistical power and therefore the threshold 

of an acceptable ICC depends on the included sample size and the size of the effect of 

interest. In MRI research, noise may arise from subject- and MRI-related factors, and 

their interaction. Effective processing methods can ensure that the effect of noise on 

the brain measures are kept to a minimum. The impact of methodological choices is 
reviewed for studies on structural (Mills & Tamnes, 2014; Vijayakumar et al., 2018) 

and functional brain development (Bennett & Miller, 2010; Herting et al., 2018; 

Telzer et al., 2018). In-depth investigation of the origin of the noise in our data is 

beyond the scope of this paper. However, based on the literature we can speculate on 

possible sources of the noise.  

Our acquisition parameters were chosen to create an optimal tradeoff between 

acquisition duration and SNR/SFNR (e.g. high field strength, isotropic voxels, 

multiband, scan duration, validated fMRI tasks) and scans were processed using 

widely-used software. Still, MRI remains a very sensitive measurement technique 
that inherently has some degree of instability, which may vary per MRI scanner. 

Consequently, scanner performance is monitored using human and phantom data 

throughout the YOUth study. Variation is amongst others introduced by scanner drift 

due to gradient heating and differences between scan sessions with regard to the 

positioning of participants and variations in shimming (i.e. correcting 

inhomogeneities of main magnetic field). Therefore, reported results are specific to 

our scanner, acquisition, processing software and study sample.  
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Subject movement remains the foremost cause of low reliability of fMRI signals 
(Gorgolewski et al., 2013b). It has been shown before that residual movement 

contamination is left in the fMRI BOLD signal even after motion correction (Power 

et al., 2012). Similarly, our reliability study shows residual variation in DWI scans 

related to SNR even after correcting for motion. Motion can be a problematic source 

of variation in longitudinal research as it can be age-related and heritable 

(Achterberg & van der Meulen, 2019; Savalia et al., 2017; Teeuw et al., 2019; Van 

Dijk et al., 2012). Therefore, it is important to implement a stringent motion 

correction technique and QC. Additionally, QC measures, like SNR and SFNR may 

be included as covariates in DWI and fMRI studies, respectively (Farrell et al., 2007; 
Friedman et al., 2006; Friedman & Glover, 2006). 

For task-based fMRI, additional sources of variation may be introduced by practice 

effects and compliance to the scanner procedure. Variation induced by the latter can 

be reduced by familiarizing participants with the MRI environment before the 

scanning session using a mock scanner as is done within the YOUth cohort. Other 

subject-related noise can occur due to dehydration (Duning et al., 2005; Kempton et 

al., 2009; Nakamura et al., 2014; Streitbürger et al., 2012), or caffeine intake 

(Laurienti et al., 2002). Finally, the type and complexity of the task used with an 

fMRI measurement can greatly affect reliability, with simple motor-movement tasks 

generally being more reliable than tasks requiring complex cognitive strategies 
(Gorgolewski et al., 2013a, 2013b). 

Scan duration can also greatly affect reliability in fMRI (Birn et al., 2013; Shah et al., 

2016; Termenon et al., 2016). A resting-state acquisition duration of approximately 8 

minutes used in the YOUth cohort study is at the minimum recommended duration 

(Birn et al., 2013). However, the high temporal resolution (TR of 1 second) provides 

additional sampling points to still achieve a robust measurement within the limited 

time window. The quality assurance protocol of the YOUth cohort study ensures high 

temporal SNR (Figure 1), and might be further improved by early-stage denoising 

strategies (Adhikari et al., 2018). Denoising strategies to combat the influence of 
random fluctuations due to physiological noise can result in cleaner estimates of 

functional connectivity (Caballero-Gaudes & Reynolds, 2017; Parkes et al., 2018), 
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although no optimal strategy currently exists. In some cases, denoising procedures 
may decrease reliability statistics as reproducible artefacts are also removed (Noble 

et al., 2019). On a whole, fMRI measurements, such as functional connectivity, are 

dynamic and state-dependent (Poldrack et al., 2015). As such, longitudinal changes 

might be due to developmental changes intrinsic to the brain or due to extrinsic 

factors such as mood, sleep quality, or substance use (Poldrack et al., 2015).  

4.6 Relevance of reliability results and the relation to power 

First, the ICCs reported in this study can be useful to researchers that want to adopt 

our acquisition parameters (listed in online Appendix 1). Secondly, it shows how 

different modalities and processing methods relate to each other in terms of 

reliability (e.g. FA in ROIs versus FA on edge-level). Lastly, the results can inform 

researchers that want to apply for data collected in YOUth. Because researchers with 
all types of research questions can apply for data, in this study we aimed to show 

reliability measures for each scan using methods that are well-known and widely-

used in the field. Our reliability results should not be used to refrain from studying 

certain brain measures as all of them can be relevant when studying brain 

development. However, the reliability results can provide guidance when making 

methodological choices. Accounting for exclusions due to MR safety criteria, scanner-

related distress or artefacts, a sample size of 1500 for each type of scan seems 

sufficient to detect an effect size of 0.2 (Figure S2). Furthermore, this analysis shows 

that it is not advised to apply for small subsamples of the MR data in YOUth, 
particularly when one is interested in regional measures of DWI on network-level 

and (rs-)fMRI data.  

4.7 Limitations 

This test-retest study has several limitations. First, the test-retest sample consists of 

adults, while the YOUth study focuses on development in children. Therefore, the 

reliability of brain measures found in this study may be considered an overestimation 

since it does not reflect pediatric data. Consequently, the number of good quality 

pediatrics scans needed to obtain enough power to detect a certain effect is likely 
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higher than estimated in Figure S2. In general, more in-scanner head motion is seen 
in children compared to adults (Poldrack et al., 2002; Satterthwaite et al., 2013; 

Thomas et al., 1999), but not in all studies (Alexander-Bloch et al., 2016; Koolschijn 

et al., 2011). Furthermore, processing pediatric data comes with challenges. For 

example, the processing pipelines used in this study use adult templates as reference 

for spatial normalization, registration and segmentation. Studies show that using 

adult templates for pediatric data rather than age-appropriate templates introduces 

bias in brain measures (Fonov et al., 2011; Poldrack et al., 2002; Wilke et al., 2002, 

2008; Yoon et al., 2009). A second limitation can be that the practice effect (for task-

fMRI) and compliance effect in this short test-retest period cannot be compared to the 
three-year scan interval in YOUth. A third limitation is that the test-retest sample 

size is in conformance with common practice but not big enough to mitigate the effect 

of regional outliers. 

4.8 Conclusion 

It has been shown that neuroimaging studies are often underpowered with the risk 

of false positive results (Button et al., 2013). Statistical power can be boosted by 

increasing reliability and sample size. In YOUth, the large sample size together with 

reasonable to good test-retest reliability increases the probability of finding subtle 

developmental effects. This paper provides a transparent report of the methodology 

used in YOUth from MRI acquisition to monitoring quality and reliability. The 

reliability study shows promising results for the studies that will be done using MRI 
data collected within the YOUth cohort.  

  



  53 

5. Supplementary materials 

Some of the supplementary files were too large to be incorporated here and can be 

downloaded online via this link http://doi.org/10.17605/OSF.IO/M5R3U. For 

Chapter 2, the online supplement includes one file with a printout of all acquisition 

parameters for the human and phantom YOUth MRI protocol and one file with 

supplementary tables S1-S4 listing test-retest reliability in local regions for T1-

weighted, DWI and resting-state functional connectivity measures.  

Figure S1. Atlas of canonical resting-state networks and their spatially distinct 
components provided by the CONN toolbox version 18.a based on ICA decomposition 
of 497 young adults from the Human Connectome Project. 
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Figure S2. Sample size estimations for each type of scan based on the ICCs. The sample 

size (y-axis), needed to detect an effect of interest with 80% power (beta=0.2 and alpha=0.05), is 

modelled for different effect sizes (Cohen’s D, x-axis). For each type of scan the test-retest ICCs 

are used to estimate the amount of error. All legends are ordered from lowest ICC to higher 

ICCs. Top left, for the structural T1-weighted scans the average of the regional ICCs is used for 

cortical thickness, cortical volume, subcortical volume and cortical surface area (ICCs lowest to 

highest: 0.84, 0.95, 0.96 and 0.98). Please note that the last three lines are nearly identical and 

therefore overlap in the plot. Top right, for the diffusion-weighted images the ICCs correspond 

to the average FA and number of streamlines over all edges and the average regional ICC of the 

MD and FA values (ICCs lowest to highest: 0.39, 0.52, 0.74 and 0.84). Bottom left, for the resting-

state fMRI scans the ICCs used for the sample size estimation correspond to the reliability of 

the functional connectivity within cerebral cortical resting-state networks (ICCs lowest to 

highest: 0.38, 0.41, 0.48, 0.51, 0.52, 0.57 and 0.61). Bottom right, for the task-based fMRI the 

average regional ICCs used for the sample size estimation correspond to two contrasts for the 

inhibition task and two contrasts for the emotion task indicated in the legend (ICCs lowest to 

highest: 0.44, 0.52, 0.54 and 0.64).  
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Example of quality control output that is generated in YOUth after each session  

Examples are obtained from different reports and intended just as illustration. 

Participant identifiers and test dates are masked. 

Quality control of T1-weighted scans 
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Quality control of Functional MRI scans 

 

 

 



  57 

Quality control of DWI-scans 
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Including the Eddy quad report: 
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Abstract 

Surface rendering of MRI brain scans may lead to identification of the participant 

through facial characteristics. In this study we evaluate three methods that overwrite 

voxels containing privacy-sensitive information: Face Masking, FreeSurfer defacing 

and FSL defacing. We included structural T1-weighted MRI scans of children, young 

adults and older adults. For the young adults, test-retest data was included with a 

one-week interval. The effects of the de-identification methods were quantified using 

different statistics to capture random variation and systematic noise in measures 
obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing 

impacted brain voxels in some scans especially in younger participants. FreeSurfer 

defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing 

preserved identifiable characteristics around the eyes or mouth in some scans. For 

all de-identification methods regional brain measures of subcortical volume, cortical 

volume, cortical surface area and cortical thickness were on average highly replicable 

when derived from original versus de-identified scans with average regional 

correlations >0.90 for children, young adults and older adults. Small systematic 

biases were found that incidentally resulted in significantly different brain measures 
after de-identification, depending on the studied subsample, de-identification method 

and brain metric. In young adults, test-retest intraclass correlation coefficients 

(ICCs) were comparable for original scans and de-identified scans with average 

regional ICCs>0.90 for (sub)cortical volume and cortical surface area and ICCs>0.80 

for cortical thickness. We conclude that apparent visual differences between de-

identification methods minimally impact reliability of brain measures, although 

small systematic biases can occur.  
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1. Introduction  

Advances in magnetic resonance imaging (MRI) technology enable researchers to 

collect good quality structural MRI scans of the brain. However, brain scans also 

contain privacy-sensitive facial characteristics. The participants’ faces can be 

reconstructed with 3D rendering software that is part of most MRI viewers. Recently, 

this topic received attention from the scientific community as well as popular journals 

after the release of a study in which face recognition software was used to identify 

participants based on their MRI scan (Schwarz et al., 2019). This study complements 
an earlier study that shows how participants can be identified through their 3D 

renders by humans (Prior et al., 2009). In light of the increasing number of world-

wide (public) neuroimaging collaborations (Poline et al., 2012) and technical 

improvements, the question is whether sharing raw anatomical MRI images is still 

in line with privacy regulations (White et al., 2022). From an ethical viewpoint 

sharing identifiable data may compromise the confidentiality participants consented 

to. For these reasons, more and more open-access datasets contain MRI scans that 

were subjected to some type of de-identification method. 

Different efforts can be made to de-identify MRI scans (listed here: open-brain-
consent.readthedocs.io/en/stable/anon_tools.html). First, brain extraction or skull-

stripping removes non-brain tissue. Second, defacing algorithms remove facial and 

dental characteristics. Examples of defacing methods are: fsl_deface (Alfaro-Almagro 

et al., 2018; fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), mri_deface (Bischoff-Grethe et al., 

2007; freesurfer.net/fswiki/mri_deface), pydeface (github.com/poldracklab/pydeface), 

QuickShear (github.com/nipy/quickshear/), mridefacer (github.com/mih/mridefacer/). 
Third, Face Masking (Milchenko & Marcus, 2013; nrg.wustl.edu/software/face-

masking) masks the face and, optional, the ear region and thus preserves more 

anatomical landmarks than defacing methods. An advantage of the latter toolbox is 
that it can be applied to raw DICOM images which limits the number of intermediate 

processing steps. In a recent study a new method is introduced, mri_reface, to replace 

voxels in the face and ear region with a population average (Schwarz et al., 2021). In 

this article we will focus on defacing with FSL, a method developed by and used in 

the UK biobank study (Alfaro-Almagro et al., 2018) defacing with FreeSurfer, for 
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example used in the BRAINS (Job et al., 2017), CamCAN (Taylor et al., 2017), ATLAS 
(Liew et al., 2018) and HID study (Ozyurt et al., 2010) and Face Masking which is 

implemented in XNAT (Marcus et al., 2007a), used in the repositories of OASIS 

(Marcus et al., 2007b), HCP (Marcus et al., 2013) and GSP (Holmes et al., 2015).  

De-identification methods are typically optimized for healthy adults, but different 

results can be expected in other populations for example related to the amount of 

atrophy, i.e., the closeness of the brain to the skull. A recent study investigated the 

effects of different de-identification methods (QuickShear, Face Masking and 

FreeSurfer defacing) in patients with multiple sclerosis, Alzheimer’s Disease (AD) 

and glioblastoma (de Sitter et al., 2020). In this study, we focus on age-related effects 
by including children, young adults and older adults (with and without AD). From an 

ethical perspective, children are an extra sensitive population. Possible age-related 

effects of de-identification procedures on brain measures are also relevant in the light 

of longitudinal studies investigating brain development or ageing.   

An optimal de-identification method (i) prevents participant identification, (ii) leaves 

brain tissue intact and (iii) has a negligible effect on brain measures, i.e. the de-

identified scan should approximately generate the same results as an unmasked 

scan. Previous research shows that these criteria are not always met and even after 

de-identification some participants can still be identified with facial recognition 

software (Abramian & Eklund, 2018; Schwarz et al., 2021). Furthermore, defacing 
can overwrite a small amount of brain voxels in some cases (Alfaro-Almagro et al., 

2018). Lastly, de-identification procedures impact subsequent processing and 

outcome measures (de Sitter et al., 2020; Holmes et al., 2015; Schwarz et al., 2021). 

In this study we focus on the effect of the three de-identification procedures on brain 

measures, but we also describe visual aspects of the methods.  

To evaluate the de-identification techniques, we started with a visual check to rate 

the invasiveness, i.e. whether brain voxels are preserved, and to rate the presence of 

eyes and mouth characteristics after de-identification. Secondly, we assessed whether 

de-identification altered brain measures differently in children, young adults and 
older adults. To this end, we extracted regional subcortical and cortical volumes, 
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cortical surface area and cortical thickness of original scans and de-identified scans. 
Lastly, we quantified how the effect of de-identification techniques on brain measures 

compared to test-retest reliability in young adults.  

2. Materials and methods  

2.1 Samples  

2.1.1 Sample of children  

The children’s data consisted of 25 children from the general population (8 male) with 
a mean age of 9.5 (0.9) years within a range from 8 to 11 years. This data was collected 

as part of the first wave in a large longitudinal study on brain development in 

Utrecht, the Netherlands: The YOUth cohort study (Onland-Moret et al., 2020). The 

subset included in this study is labeled as pilot data. The children’s parents or 

guardians gave written consent. Included MR images were of good quality after 

exclusion of scans with poor contrast or major motion artefacts such as ringing.  

2.1.2 Sample of young adults  

The sample of young adults consisted of 16 volunteers from the general population (6 

male) with a mean age of 23.6 (3.3) years within a range from 19 to 31 years. To 

assess the test-retest reliability of the YOUth MRI protocol, the adults were scanned 

twice using the same acquisition parameters. The scan-rescan interval was between 
6 and 8 days. The adult dataset was acquired in the context of protocol development. 

The adults signed written informed consent. All available scans were of good quality 

without major motion artefacts or other artefacts. 

2.1.3 Sample of older adults 

The elderly sample was selected from the large Alzheimer’s Disease Neuroimaging 

Initiative (ADNI, adni.loni.usc.edu). ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 
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of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). Selected scans were 

of good quality without major motion or dental artefacts based on visual quality 

control in addition to provided quality assessment codes. Furthermore, the subset 

was created to ensure a heterogenous sample with regard to age, sex and patient-

control status. The older adults sample consisted of 43 elderly participants: 22 

participants (7 male) with Alzheimer’s disease with a mean age of 72.6 (7.5) years 

ranging from 56 to 86 and 21 age-matched participants (9 male) without cognitive 
impairment with a mean age of 74.6 (5.9) years ranging from 65 to 85.  

2.2 Acquisition parameters 

The ADNI subset was selected with uniform acquisition parameters, that resembled 

the parameters of the YOUth MRI protocol, used for the acquisition of the child and 

adult data. All acquisition parameters can be found in Table 1.  
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Table 1. Acquisition parameters 

Parameters Children and young adults 
YOUth MRI protocol 

Older adults 
ADNI 2 (Philips: MPRAGE) 

Multicenter No, a single MR scanner Yes 

Type of MR scanner Philips Ingenia Philips Achieva 

Field strength (T) 3.0 3.0 

Head-coil 32-channel SENSE head-coil 8-channel SENSE head-coil 

Scan Structural T1W 3D GRE Structural T1W 3D GRE 

Scan orientation Sagittal Sagittal 

TR (ms) 10 6.8 

TE (ms) 4.6 3.1 

Flip angle (degrees) 8 9 

Field of view (mm) 240 × 240 × 200 256 × 240 × 204 

Acquisition matrix 304 × 304 256 × 240 

Reconstructed voxel size (mm3) 0.75 × 0.75 × 0.80 1.00 × 1.00 × 1.20 

Abbreviations: T=Tesla; T1W=T1-weighted; GRE=gradient echo; TR = repetition time; 
TE = echo time. 

2.3 De-identification methods 

All scans were subjected to three de-identification methods. FreeSurfer defacing was 

applied using version 1.22 of the mri_deface function (Bischoff-Grethe et al., 2007; 

https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface) in FreeSurfer version 6.0 

(Fischl et al., 2002). FSL defacing was applied using version 1.0.0 of the fsl_deface 
function (Alfaro-Almagro et al., 2018) in FSL 6.0.1 (Jenkinson et al., 2012; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The Face Masking toolbox was applied with 

default coarseness and an ear mask using version 12/26/2017 of the mask_face 
function (Milchenko & Marcus, 2013; nrg.wustl.edu/software/face-masking). The 

toolbox is implemented in neuroinformatics platform XNAT (Marcus et al., 2007a), 

but in this article we used the offline toolbox.  
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For Face Masking, we additionally compared different mask settings in children and 
young adults by varying the coarseness of the mask. Furthermore, we investigated 

the effect of switching the ear mask option on or off (-e flag). The coarseness of the 

mask was varied between 0.1 to 1.2 in steps of 0.1 (default value is 1) by adjusting 

the grid step variable (-s flag). The coarseness variable applied to both the face and 

ear mask.  

2.4 Visual inspection 

A visual inspection of the de-identified scans was performed with MRIcroGL (version 

14 July 2017, www.mccauslandcenter.sc.edu/mricrogl/). A 3D rendering was created 

to inspect the effect of de-identification on the face and ear characteristics. Two raters 

rated the fraction of participants in each age group where the eyes or the mouth were 

preserved after de-identification. Next, all 2D axial brain slices were checked and 
coded by three independent raters. The raters rated whether brain tissue was left 

intact or whether more than a few brain voxels were removed or blurred by the de-

identification method. For FSL defacing and Face Masking, the invasiveness of the 

method in the ear area was assessed separately. FreeSurfer defacing currently does 

not provide an option to remove ears.   

Additionally, one rater assessed the invasiveness of different coarseness settings in 

the child sample and the adult sample (first time point). The mask setting that 

resulted in no overlap with brain tissue in any participant (child or adult) was labeled 

“the non-invasive mask”.  

2.5 Visualization of de-identification 

To show the effects of de-identification while preventing participant identification, 
we created average brains (Caspi et al., 2020; Peper et al., 2009). In short, the 

individual scans were registered to Talairach space and corrected for non-uniformity 

followed by a series of linear and nonlinear warpings of the scans (Collins et al., 1995). 

The average child brain was created by averaging the scans of all 25 children. The 

average young adult brain was created using the first scan of each young adult, 16 in 

http://www.mccauslandcenter.sc.edu/mricrogl
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total. The average older brain was created by averaging the scan of all older 
participants, 43 in total. To visualize the effect of de-identification on the brain 

(Figure 1), the average brains were used as input to the masking and defacing tools.  

2.6 MRI processing 

Face Masking was applied to the raw DICOMs, after which they were converted from 

DICOM to NIfTI format (dcm2niix, https://github.com/rordenlab/dcm2niix) together 

with the original DICOM files. Face Masking could not be applied to NIfTI format. 

Both defacing tools accept only NIfTI input and were therefore applied to the original 

scans after conversion to NIfTI. FreeSurfer version 6.0 was used for automatic brain 

segmentation and parcellation (Fischl et al., 2002; freesurfer.net). Global and 

regional brain measures of subcortical volume, cortical volume, cortical surface area 

and cortical thickness were extracted. The Desikan-Killiany atlas was used for 
cortical parcellation (Desikan et al., 2006). No additional quality check procedures 

were performed on the segmentations and parcellations. Besides atlas-based 

measures of cortical thickness, vertex-wise cortical thickness was extracted. For the 

vertex-wise analysis, cortical thickness of each scan was resampled to the average 

brain. After resampling, the cortical surfaces were smoothed with a 3D Gaussian 

kernel (FWHM = 10 mm). 

2.7 Statistical analysis 

We computed several measures to assess the impact of de-identification on brain 

measures: the intraclass correlation coefficient (ICC) of absolute agreement (Bartko 
& Carpenter, 1976; Koo & Li, 2016; McGraw & Wong, 1996; Shrout & Fleiss, 1979) 

is traditionally used in test-retest context and captures random variation as well as 
systematic biases. To disentangle these two types of variation and get a better 

understanding of the effects of de-identification on brain measures, we computed 

Pearson correlation coefficients (Pearson’s r) for coherence, and paired t-tests and 

signed percentage differences (PD) for assessment of systematic bias. As an 

indication of the variance introduced by de-identification we also computed the 
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coefficient of variation (CoV) and absolute PDs. All these statistics were computed for 
the comparisons described below. 

First, we investigated the differences between the original and the de-identified scans 

in children, young adults (first time point) and older adults. The ADNI data was 

analyzed as a whole and in two separate groups based on diagnosis of Alzheimer’s 

disease. Second, the scan-rescan adult data was used to calculate the test-retest 

reliability of brain measures from de-identified scans and compare this to the test-

retest reliability of the original scans. Last, to separate the effect of de-identification 

from test-retest reliability, we calculated the agreement between brain measures 

from the first scan session and the second scan session, masking or defacing only the 
second scan. The test-retest reliability of the original scans in this study was also 

reported elsewhere (Buimer et al., 2020).  

Additionally, the coarseness setting of the non-invasive mask was defined based on 

the visual inspection described above. To compare the mask with default coarseness 

and the non-invasive mask, both with and without ear mask, we computed ICCs 

between brain measures derived from the original scans versus one of the mask 

settings. This additional analysis was done in the child sample and the adult sample 

(first time point), because in older adults invasiveness was less of an issue likely due 

to an increased distance between the skull and the brain.  

All statistics were computed in R (version 3.5.0, 2018-04-23). ICCs and their 95% 
confidence intervals were calculated with the "irr package" (version 0.84). based on a 

single measure, absolute-agreement, 2-way model. Local ICCs were visualized and 
average ICCs are reported over all regions or vertices. When averaging Pearson 

correlations or ICCs, the average was computed after Fisher’s Z transformation of the 

individual values and then transformed back.  

2.8 Visualization of reliability 

For visualization of local reliability, ICCs were color-coded using colormap “jet” in 

MATLAB_R2017b. Next, region- or vertex-wise color-coded cortical ICCs were 

overlaid on the cortical surface of the average brain using FreeSurfer’s tksurfer.  
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3. Results  

3.1 Visual inspection  

Figure 1 shows the effect of the different de-identification methods from an outer and 

sagittal view. The first column shows the original average scans for each age 

category. The 3D renders show facial and ear characteristics in great detail. The 

second column shows that defacing with FreeSurfer removes facial characteristics in 

a confined part of the face only, preserving ear characteristics and in some 

participants sensitive information in the area of the eyes or the mouth. Full 

preservation of the eyes occurred in up to 10% of the participants and full 
preservation of the mouth in up to 27% of the participants, but the inter-rater 

reliability for this assessment was low (Table 2). The third column shows that 

defacing with FSL removes most facial and ear characteristics, but some 

characteristics around the eyes remain. Full preservation of the eyes occurred often 

in children (18%) and only incidentally in young adults and older adults (Table 2). 

The fourth column shows that Face Masking results in blurring of the full face and 

ear area. 
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Figure 1. Visual appearance of scans before and after de-identification. The first 

column shows the original scan before de-identification and the other columns show the visual 
appearance of the scans after different de-identification options. Each row shows the de-

identified average brain of a specific age group. Within each row a sagittal slice is shown on top 

and the 3D render below. To prevent identification, the face renderings shown here are renders 
of the average scans for each sample.  
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Table 2. Presence of eyes and mouth characteristics after de-identification. For each 
sample, the percentage of individuals is given for whom the eyes or mouth was preserved in the 

3D render after de-identification. The percentages are the average of the percentages given by 

two raters. The inter-rater variability was 0.48 based on a one-way model of absolute agreement. 

 Defacing FreeSurfer Defacing FSL Face Masking 

Children – eyes 8% 18% 0% 
Young adults – eyes 0% 6% 0% 

Older adults – eyes 10% 5% 0% 
Children – mouth 4% 4% 0% 

Young adults – mouth 13% 0% 0% 

Older adults – mouth 27% 0% 0% 

 

Defacing with FreeSurfer was not invasive. With this method no brain tissue was 

removed across all scans. Defacing with FSL resulted in the removal of some brain 

tissue in the majority of children and in some young adults. Face Masking resulted 

in blurring of some brain tissue in all children and some young and older adults. Both 

FSL defacing and Face Masking were more invasive in younger participants 
compared to older participants. Furthermore, invasiveness was higher in proximity 

to the ear compared to the face region. Table 3 lists the percentages of scans in which 

brain tissue was affected by de-identification averaged over three ratings.  

3.2 The effects of de-identification on brain measures  

All original and de-identified scans were successfully processed using FreeSurfer. 

Brain measures were altered by de-identification procedures. However, the effect of 

de-identification on brain measures was small, i.e. absolute PDs were on average <5% 

for any age category or de-dentification method. Means, standard deviations and 

corresponding CoVs were comparable before and after de-identification. Figure 2 

shows the signed PDs for global brain measures. For most brain measures the signed 

PDs averaged out to around zero, but for cerebellar white matter volume and 
intracranial volume larger systematic biases were found depending on the age 

category and de-identification method. Systematic biases for average cortical 
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thickness, total cortical surface area and total cortical volume were very small, as 
suggested by the signed PDs (Figure 2) and scatterplots (Figure 3).  

Table 3. Invasiveness of each de-identification method. For each sample, the percentage 

of individuals is given for whom the procedure was too invasive, i.e. brain tissue was blurred or 

removed due to de-identification of the face or ears. The percentages are the average of the 
percentages given by three raters. The inter-rater variability was 0.63 based on a one-way model 

of absolute agreement. * Currently, FreeSurfer does not provide an option to de-identify ears. 

 Defacing FreeSurfer* Defacing FSL Face Masking 

Children – face 0% 85% 100% 

Young adults – face 0% 34% 10% 
Older adults – face 0% 0% 6% 

Children – ears NA 64% 100% 

Young adults – ears NA 12% 56% 
Older adults – ears NA 0% 24% 
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Figure 2. Average signed percentage differences for global brain measures after de-

identification. WM=White matter; GM=Gray matter; AD=Alzheimer’s disease; CN=no 

cognitive impairment. 
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Figure 3. Individual global brain measures derived from original versus de-identified 

scans. AD=Alzheimer’s disease; CN=no cognitive impairment. 
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In children, all correlations were above 0.90 except for the ICC of intracranial volume 
with FSL defacing (Pearson’s r = 0.95; ICC = 0.87). In young adults, all correlations 

for global brain measures were above 0.90 except right hemisphere cortical thickness 

for all de-identification techniques and left hemisphere cortical thickness with FSL 

defacing and Face Masking (Pearson’s r > 0.8; ICCs > 0.8). In older adults, only the 

correlations for the cerebellar white matter were below 0.90 in the left hemisphere 

for all methods (Pearson’s r > 0.5; ICCs > 0.5) and in the right hemisphere only for 

Face Masking (Pearson’s r>0.8; ICCs > 0.8). In addition to the lower correlations in 

the cerebellar white matter in the full group of older adults, lower correlations were 

found for right hemisphere cerebellar gray matter in older adults without Alzheimer’s 
disease (Pearson’s r > 0.5; ICCs > 0.5).  

The correlation between regional brain measures derived from original scans and de-

identified scans was on average higher than 0.90 using Pearson’s r and ICCs. In 

general, similar correlations were found using Pearson’s r or ICCs.  

Regional ICCs for cortical volume were high in children, young adults and older 

adults (Figure S1). Average regional ICCs for cortical surface area in children, young 

adults and older adults were high for each method in each age category (Figure S2). 

Average regional ICCs for cortical thickness in children, young adults and older 

adults were on average also high (ICCs > 0.93) for each method in each age category 

(Figure 4, see Figure 5 for the vertex-wise ICCs). Despite these high ICCs, cortical 
volumes in children were significantly different in more regions than expected by 

chance after Face Masking or FSL defacing, with in general smaller volumes after 

de-identification. In older adults, cortical surface area was significantly different in 

more regions than expected by chance after Face Masking and in the AD subsample 

after both Face Masking and FreeSurfer defacing, with generally larger surface areas 

after de-identification.  

All statistics comparing regional and global brain measures of original versus de-

identified can be found in the Online Supplementary tables S1-S5.  
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Figure 4. ICC of cortical thickness derived from original versus de-identified scans. 

The ICC for each sample (children, young adults and older adults) is plotted on the 

corresponding average scan. Each column shows a different de-identification technique. Within 
each square, the left hemisphere (top) and the right hemisphere (bottom) are shown from an 

outer and medial view. The lowest ICC (0.07) was found in the right frontal pole in young adults 

using FSL defacing. 
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Figure 5. ICC of vertex-wise cortical thickness derived from original versus de-

identified scans. The ICC for each sample (children, young adults and older adults) is plotted 

on the corresponding average scan. Each column shows a different de-identification technique. 
Within each square, the left hemisphere (top) and the right hemisphere (bottom) are shown from 

an outer and medial view. 
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3.3 Face Masking: Varying the coarseness of the mask in children and 
young adults  

In order to better understand the effect of mask invasiveness on reliability of brain 

measures we varied the coarseness settings of the face and ear masks in children and 

young adults. In supplementary Figure S3 we define settings for a non-invasive mask 
based on visual inspection. The non-invasive mask had a coarseness setting (grid step 

value) of 0.6. At this value the brain tissue of all participants was untouched by both 

the face and the ear mask. Figure S4 and S5 show the ICCs for brain measures in 

cortical regions for the non-invasive and default mask (with and without ear mask) 

compared to the original scans in children and young adults respectively. We show 

that different coarseness settings generate similar reliability of brain measures. 

Furthermore, adding or removing the ear mask has minimal effect on reliability. 

3.4 Effect of de-identification on test-retest reliability of brain measures 

Independent of de-identification procedures, global brain measures were highly 

reliable, although reliability for cortical thickness was lower than for the other 

measures. The test-retest reliability for cortical thickness in the original scans was 
0.89 for the left hemisphere and 0.74 for the right hemisphere. The other global brain 

measures had test-retest ICCs above 0.90. Test-retest reliability was similar for scans 

with or without de-identification for regional brain measures. Furthermore, de-

identifying only the second scan did on average not result in different regional test-

retest ICCs. Figure 6 shows the regional test-retest ICCs for cortical brain measures 

with or without de-identification. Figure 7 shows similar cortical test-retest ICCs 

when de-identifying only the second scan.  

All test-retest statistics can be found in the Supplementary tables S6-S8.  
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Figure 6. Test-retest reliability in young adults using different de-identification 
techniques. The test-retest ICC for each type of brain measure is plotted on the average adult 

scan. The first column shows the test-retest reliability of the original scans. The other columns 

show the test-retest reliability if both scans are subject to a de-identification technique. Within 
each square, the left hemisphere (top) and the right hemisphere (bottom) are shown from an 

outer and medial view. Lowest reliability was found for cortical thickness in the rostral middle 

frontal gyrus of the right hemisphere independent of de-identification procedures. The poor 
reliability in this region was not related to parcellation or segmentation errors and could not be 

explained by a single outlier.    
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Figure 7. Test-retest reliability in young adults de-identifying only the second scan. 

The test-retest ICC for each type of brain measure is plotted on the average adult scan. Each 
column shows the test-retest reliability of the original scan compared to a de-identified second 

scan using different techniques. Within each square, the left hemisphere (top) and the right 

hemisphere (bottom) are shown from an outer and medial view. 
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4. Discussion  

In this study we evaluated three de-identification methods for structural MRI scans: 

Defacing in FreeSurfer, defacing in FSL and the Face Masking toolbox. Our main 

goal was to assess the effect of these methods on the reliability of global and regional 

brain measures. In addition, we aimed to determine the utility of these methods in 

cohort studies investigating development or ageing. To our knowledge this is the first 

study into the effects of de-identification procedures that includes neuroimaging data 

from children.  

We show that using Face Masking and FSL defacing, voxels in the brain are 

overwritten, especially in children and especially in proximity to the ears. Face 

Masking provides the option to decrease the coarseness of the mask. This prevents 

the blurring of brain tissue and results in similar reliability measures. However, 

reducing coarseness may come at the expense of the full covering of facial features. 

The age-dependent effect of these de-identification methods could be related to the 

distance of the skull to the brain, which increases with ageing due to atrophy. 

FreeSurfer defacing did not remove voxels in the brain. Furthermore, FreeSurfer 

defacing and FSL defacing did not succeed in fully removing facial characteristics in 
all participants.  

The obvious visual differences between the methods do not translate to differences in 

the reliability of brain measure estimates. In general, high correlations were found 

between brain measures derived from original scans versus de-identified scans but 

in some regions lower correlations were found independent of the used method. 

Pearson’s correlations were in most cases similar to ICCs. We found some evidence 

for small systematic biases and significantly different brain measures after 

application of de-identification methods. These biases were not equally distributed 

over the age groups, disease-status groups for the ADNI data, and de-identification 
methods. This suggests age-specific biases. Still, these effects were very small.  

The ICCs found in this study are comparable to test-retest ICCs of the original scans 

in young adults, for a direct comparison of ICCs see Figure 8. Theoretically, the 

amount of noise added by defacing or Face Masking should be far less than the 
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amount of noise introduced in the test-retest procedure. Given that brain deviations 
found in imaging studies are generally small, introducing an error that is similar in 

size to test-retest differences is undesirable. However, we argue that the amount of 

added noise is limited based on the finding that ICCs between original first session 

scans and de-identified second session scans were comparable to test-retest ICCs, 

suggesting no additional effect of de-identification on reliability. In a previous study 

we modeled how these test-retest ICCs relate to power and effect of interest (Buimer 

et al., 2020). Based on the ICCs found in the current study, it can be hypothesized 

that as long as all scans are uniformly processed, the sample size needed to detect an 

effect of interest is the same for original and de-identified scans. However, sample 
sizes may be decreased after the necessary visual quality control which could lead to 

more exclusions than usual. Scans might need to be removed when privacy-sensitive 

features are not fully de-identified or when brain tissue is impacted.  

Regional test-retest ICCs of unmasked scans had an average of 0.95 for subcortical 

volume, 0.96 for cortical volume, 0.98 for cortical surface area and 0.84 for cortical 

thickness. Lower reliability for cortical thickness measures compared to cortical 

volume or cortical surface area has been reported before (Iscan et al., 2015; Liem et 

al., 2015; Wonderlick et al., 2009). Brain measures with a high between-subject 

variability naturally generate higher ICCs. Surface area and subcortical volume have 

a higher between-subject variability than cortical thickness. This may explain why 
cortical thickness test-retest ICCs are lower on average, but it does not explain the 

region-specific lower ICCs when comparing atlas-based results with vertex-wise 

results. In our study, the lower average ICC for atlas-based cortical thickness was 
mostly driven by poor reliability in specific frontal regions in the right hemisphere. 

Vertex-wise cortical thickness in these regions was more reliable. Furthermore, lower 
test-retest ICCs were found in areas that are known to be unreliable, such as the 

frontal pole (Desikan et al., 2006).  
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Figure 8. Test-retest ICCs of global brain measures compared to de-identification 

ICCs. This figure allows for direct comparison of the ICCs for global brain measures in young 

adults reported in our study. In grey, test-retest ICC and 95% confidence interval of the original 
scans, i.e. without any de-identification. In purple, ICCs comparing original adult scans to de-

identified adult scans. In blue, test-retest ICCs when both scans are de-identified. In green, test-

retest ICCs when only the second scan is de-identified. The type of de-identification applied is 
indicated by the shape of the data point. GM=gray matter; WM=white matter.  

  

3 



 90  

Our study complements previous work from de Sitter et al., (2020) and Schwarz et 
al., (2021). De Sitter et al., (2020) compared three de-identification methods: 

QuickShear (Schimke & Hale, 2011), Face Masking (Milchenko & Marcus, 2013) and 

FreeSurfer defacing (Bischoff-Grethe et al., 2007). Brain measures of interest and 

corresponding processing pipelines in this study were tailored to the patient groups 

(e.g. BraTumIA for segmentation of glioblastoma) and are therefore hard to compare 

to our populations, except for an analysis using SIENAX on the ADNI data. Schwarz 

et al., (2021) compared four different de-identification methods: FreeSurfer defacing 

(Bischoff-Grethe et al., 2007), FSL defacing (Alfaro-Almagro et al., 2018), pydeface 

(Gulban et al., 2022) and the newly developed method mri_reface (Schwarz et al., 
2021). We add to this literature by including neuroimaging data from children to 

directly compare the effects of defacing on brain images of individuals at different 

ages and by adding a test-retest dataset of subjects scanned one week apart. Both 

earlier studies show that all de-identification methods impacted subsequent image 

processing and highlighted the possible role of altered image registration (de Sitter 

et al., 2020; Schwarz et al., 2021). Accordingly, we noted that de-identification has a 

small effect on the Talairach transformation at the start of the FreeSurfer 

segmentation pipeline, which resulted in altered registration for all de-identification 

methods used. Small effects on registration can have large effects on brain measures 

in areas that are difficult to parcellate. In addition, scan-rescan variability can affect 
registration, resulting in different segmentations and parcellations. Here, we show 

that in general, the effects of repeated scanning (test-retest) were higher than the 

effects of de-identification on brain measures. Similar results were found for within-

scanning-session test-retest reliability in ADNI data (Schwarz et al., 2021). De Sitter 
et al., (2020) and Schwarz et al., (2021) both describe a systematic bias towards lower 

brain volumes. We also found some systematic biases, but these biases were not 

consistent across all age groups, all methods and all regions. The small systematic 

effects did not translate in lower ICCs, which suggests that most study results will 

not be impacted by such a bias because between-subject variation will be similar if 
all scans are processed using the same de-identification method. These biases may be 

more important when studying longitudinal trajectories. Whether these biases would 

influence results and whether within-person effects of de-identification are stable 

over time remains an open question at this point.  
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Neuroimaging results are impacted by methodological choices such as scanner make 
and model, type of acquisition, study sample, processing pipeline and atlas 

(Vijayakumar et al., 2018). In this study we only used high quality data obtained from 

T1-weighted scans acquired on a 3T Philips scanner, and all scans were processed 

with FreeSurfer. Therefore, the reported effects of de-identification could be study-

specific. Other scanners or different quality data may generate different results. With 

regard to pipeline-specific effects, previous studies show the effect of de-identifying 

ADNI data on brain measures using other processing pipelines (de Sitter et al., 2020; 

Schwarz et al., 2021). Furthermore, based on this study we cannot draw conclusions 

about brain measures derived with other software or other types of image 
acquisitions such as T2-weighted scans. Face Masking can be applied on CT scans 

and T1- and T2-weighted MRI scans. Defacing with FSL can be applied on T1- and 

T2-weighted MRI scans. Defacing with FreeSurfer is based on a T1-weighted face 

mask, but in principle it would be possible to use this method on T2-weighted MRI 

scans as well. Another limitation of the current study is that only adult test-retest 

data was included. No ethical approval was granted to collect test-retest data in the 

YOUth cohort. For the ADNI cohort test-retest data (without repositioning the 

participant in the scanner) is available. These test-retest data were compared to the 

effects of de-identification before (Schwarz et al., 2021). Lastly, an important 

limitation is that we were not able to extensively study whether the de-identification 
methods were successful, because we did not have access to photographs of the 

participants. Automated facial recognition methods are probably the best tool to test 

if de-identification was successful. A recent study using automated facial recognition 

showed that defacing data with FreeSurfer reduces the probability of identifying a 
participant from 97% to 10%. Using FSL defacing the probability was reduced even 

further to 3% (Schwarz et al., 2021). Face Masking was not included in this study 

because preliminary evidence suggests that this de-identification technique could be 

reversible (Abramian & Eklund, 2018).  

In conclusion, de-identification methods impact recognizable facial characteristics, 
but the side effect is that brain measures are impacted as well. We show that if de-

identification is a necessity, masking or defacing can be considered, as global brain 
measures can be estimated reliably and in general local brain measures are 
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minimally affected. We also observe that these methods do not de-identify all 
participants beyond recognition which may lead to exclusions of scans. Thus, the 

perfect de-identification method i.e. one that does not impact brain measures and 

does not result in additional exclusion of scans, does not exist yet. This paper 

highlights the importance to further develop de-identification methods, especially for 

neuroimaging data from children.  
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5. Supplementary materials  

Some of the supplementary files were too large to be incorporated here and can be 

downloaded online via this link http://doi.org/10.17605/OSF.IO/M5R3U. For 

Chapter 3, the online supplement includes one file with the supplementary tables 

listing all the results.  

Figure S1. ICC of cortical volume derived from original versus de-identified scans. 
The ICC for each sample (children, young adults and older adults) is plotted on the 

corresponding average scan. Each column shows a different de-identification technique. Within 

each square, the left hemisphere (top) and the right hemisphere (bottom) are shown from an 
outer and medial view. The lowest ICC (0.21) was found in the right frontal pole in children 

using FSL defacing. 
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Figure S2. ICC of cortical surface area derived from original versus de-identified 
scans. The ICC for each sample (children, young adults and older adults) is plotted on the 

corresponding average scan. Each column shows a different de-identification technique. Within 

each square, the left hemisphere (top) and the right hemisphere (bottom) are shown from an 
outer and medial view. The lowest ICC (0.61) was found in the right frontal pole in children 

using FreeSurfer defacing. 
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Abstract 

The impact of adverse childhood experiences (ACEs) differs between individuals and 

depends on the type and timing of the ACE. The aim of this study was to assess the 

relation between various recently occurred ACEs and morphology in the developing 

brain of children between 8-11 years of age. We measured subcortical volumes, 

cortical thickness, cortical surface area and fractional anisotropy in regions of 

interest in brain scans acquired in 1184 children from the YOUth cohort. ACEs were 

based on parent-reports of recent experiences and included: financial problems; 
parental mental health problems; physical health problems in the family; substance 

abuse in the family; trouble with police, justice or child protective services; change in 

household composition; change in housing; bereavement; divorce or conflict in the 

family; exposure to violence in the family and bullying victimization. We ran separate 

linear models for each ACE and each brain measure. Results were adjusted for the 

false discovery rate across regions of interest. ACEs were reported for 83% of children 

in the past year. Children were on average exposed to two ACEs. Substance abuse in 

the household was associated with larger cortical surface area in the left superior 

frontal gyrus, t(781) = 3.724, pFDR = .0077, right superior frontal gyrus, t(781) = 3.409, 
pFDR = .0110, left pars triangularis, t(781) = 3.614, pFDR = .0077, left rostral middle 

frontal gyrus, t(781) = 3.163, pFDR = .0195 and right caudal anterior cingulate gyrus, 

t(781) = 2.918, pFDR = .0348. Household exposure to violence (was associated with 

lower fractional anisotropy in the left and right cingulum bundle hippocampus region 

t(697) = -3.154, pFDR = .0101and t(697) = -3.401, pFDR = .0085, respectively. Lower 

household incomes were more prevalent when parents reported exposure to violence 

and the mean parental education in years was lower when parents reported 

substance abuse in the family. No other significant associations with brain structures 

were found. Longer intervals between adversity and brain measurements and 
longitudinal measurements may reveal whether more evidence for the impact of 

adverse childhood experiences on brain development will emerge later in life. 
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1. Introduction  

A history of adverse childhood experiences (ACEs), such as maltreatment, parental 

divorce, exposure to violence or substance abuse in the family, is a risk factor for 

developing mental health problems later in life (Green et al., 2010; Kessler et al., 

2010; McLaughlin, 2016). ACEs are associated with decreased life expectancy, for 

example via the effects of ACEs on toxic stress, increased adult health risk behavior, 

increased suicidality or socioeconomic inequality (Felitti et al., 1998; Hughes et al., 

2017; Kalmakis & Chandler, 2015; Merrick et al., 2019). These studies also show that 
especially individuals exposed to cumulative adversity are at risk for mental or 

physical health problems later in life.  

Individual differences explain how a child is impacted by ACEs. Many individuals 

exposed to adversity are resilient to negative effects. For example, high psychosocial 

functioning despite a history of childhood maltreatment can be explained by 

neurobiological and genetic factors, but the social environment can serve as a 

protective factor as well (Ioannidis et al., 2020). Even more, volume alterations found 

in older adults exposed to ACEs vary based on their serotonergic genetic vulnerability 

(Ancelin et al., 2021).  

The impact of ACEs also depends on the timing of the ACE in relation to sensitive 

periods of brain development (Andersen et al., 2008; Gee & Casey, 2015; Heim & 

Binder, 2012; Kuhn et al., 2016; Tottenham & Sheridan, 2009). During childhood and 

adolescence, the brain undergoes considerable developmental changes, including a 

thinning of the cortex, an increase followed by a decrease in cortical surface area and 

continued growth of volume of the white matter connections (Frangou et al., 2022; 

Giedd et al., 1999; Tamnes et al., 2017); and these changes have been related to 

cognitive functioning (Schnack et al., 2015). Many psychiatric disorders emerge 

during adolescence (Paus et al., 2008). Studying how ACEs interact with brain 
development is crucial to better understand mechanisms of latent vulnerability 

(McCrory & Viding, 2015) and resilience (Kalisch et al., 2017). 

Neuroimaging studies on childhood adversity started with a strong focus on the 

effects of severe early caregiver adversity, for example in institutionalized children 

4 
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or children exposed to childhood maltreatment. Furthermore, most studies focused 
on the fronto-limbic network (frontal cortex, hippocampus and amygdala) because of 

the well-established role of fronto-limbic regions in the hypothalamic-pituitary-

adrenal (HPA) axis functioning in response to stress (Dahmen et al., 2018), although 

a meta-analysis concluded that there is no evidence for abnormalities in the 

amygdala and only weak evidence for smaller hippocampal volumes in adults that 

experienced childhood adversity (Calem et al., 2017). There are only a few whole-

brain studies on the association between childhood maltreatment and brain 

structure. Taking meta-analyses and reviews together, the most consistent findings 

are in fronto-limbic regions, fronto-striatal regions, fronto-subcortical association 
fibers and the corpus callosum (Calem et al., 2017; Daniels et al., 2013; Hart & Rubia, 

2012; Lim et al., 2020; McCrory et al., 2010; McLaughlin et al., 2019; Paquola et al., 

2016). Still, the spatial overlap between studies is weak, because most studies rely 

on smaller samples or adult samples, as children with experiences of maltreatment 

are difficult to include in large numbers. Furthermore, there is evidence for 

differential structural brain correlates depending on the types of ACE (Cassiers et 

al., 2018). Therefore, studying a variety of ACEs in developmental populations may 

shed light on the effects of ACEs on brain development.  

In the current study, we investigate the effect of ACEs on brain structure in pre-

adolescent children, participating in the first wave of the YOUth cohort study, a 
longitudinal study where each measurement wave covers a narrow period of 

development. The main question of the current study is: Is there an association 

between ACEs and brain structure in pre-adolescent children? Regions of interest 
were selected a priori by integrating studies on structural, functional and 

neurocognitive correlates of childhood adversity. We focused on subcortical volume, 
cortical surface area, cortical thickness and fractional anisotropy (FA). The latter was 

selected as white matter measure because it represents a good measure for integrity 

of the white matter and has shown good test-retest reliability using our acquisition 

protocol (Buimer et al., 2020). We expect that our sample size allows for detection of 
more subtle effects even though the sample is not enriched for children with severe 

adverse experiences. Within the group of children that experienced adversity, we 
expect more pronounced effects in children that were exposed to accumulated ACEs, 
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compared to children exposed to a single ACE. Based on the stress acceleration 
hypothesis (Callaghan & Tottenham, 2016), we hypothesized that brain development 

in children exposed to childhood adversity would be ahead of peers. Based on brain 

development curves in previous studies, we expect that in 8-, 9- and 10-year-olds 

accelerated development would mean thinner cortices (Teeuw et al., 2019), larger 

subcortical volumes (Mills et al., 2021), large cortical surface area (LeWinn et al., 

2017) and larger FA (Koenis et al., 2015). Age- and sex-effects on global brain 

measures are included as well, to provide a full description of the YOUth cohort 

sample for comparison with other cohorts. 

2. Materials and methods  

2.1 Participants  

We included 1184 children that participated in the first wave of the population-based 

longitudinal YOUth cohort study. The cohort rationale, design and procedures are 

described in detail elsewhere (Onland-Moret et al., 2020). In short, participants are 

living in the province of Utrecht (the Netherlands) and its surrounding areas, a 

densely populated region that combines both urban and rural areas. Compared to the 

rest of the Netherlands, inhabitants of the province of Utrecht are relatively highly 

educated. Most children were recruited through their primary school. YOUth 

includes children and their parents. Parents are considered those with parental 
authority over the child. Children are excluded if they are not mentally or physically 

not capable of participating, if they or their parents’ language proficiency in Dutch is 
not sufficient to understand provided information. For the neuroimaging part of the 

study, we excluded children with metal implants including most braces, following 

fairly standard MRI procedures. Participating children were between 7.9 and 11.0 

years old (56% females). All data was collected prior to the COVID-19 pandemic. The 

study was approved by the Medical Research Ethics Committee Utrecht. Children 

participated on a voluntary basis and parents or guardians gave written consent and 

assent. 

4 
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2.2 Data on ACEs 

ACEs were collected using parent reports on life events that occurred in the 

household in the past year, available for 1046 children. From the recent life events 
questionnaire, we selected 9 types of ACEs: financial problems; physical health 

problems in the family; substance abuse in the family; trouble with police, justice or 

child protective services (CPS); change in household composition; change in housing; 

bereavement; divorce or conflict in the family; exposure to violence in the family. In 

addition, two ACEs were gathered from other questionnaires as they were not covered 

in the recent life events survey. First, information on bullying behavior towards the 

child was available for 948 children. From the bullying questionnaire one ACE was 

created by selecting whether children were exposed to any type of frequent bullying 

at least one time a week. Second, information on parental psychiatric diagnoses was 
available for 1056 children. Parental mental health problems were indicated as an 

ACE if one or more parents or guardians were diagnosed with at least one psychiatric 

diagnosis.  

All ACEs were used as binary variables (yes/no). In most cases, information from 

different questionnaire items was combined into a single composite variable. For 

example, change in household composition would be set to yes if at least one new 

member was added to the household, for example cohabitation of a new partner, 

cohabitation of a step brother or sister, birth of a new family member etcetera. As 

these separate items are conceptually very similar, we regard this as a single event 
rather than multiple independent events. Overlap between the separate items of the 

recent life events survey was mapped (Supplementary Figure S1), but not decisive 

when creating the composite variables, because high overlap between items does not 
necessarily implicate a single underlying environmental factor. Overlap was mapped 

by taking the subgroup of children that experienced a specific event and then 

computing the percentage of the children in this subgroup that additionally 

experienced another event. In the same way, we mapped the overlap between the 

final 11 ACEs used in this study (Figure 2C).  



  101 

The prevalence of ACEs was similar in the total group, compared to the subgroups 
that had MR data available. Because we used various data sources for the ACEs, 

sample sizes differed between bullying, recent life events and parental psychiatric 

diagnosis dependent on the overlap of respondents with available MR data. 

2.3 Image acquisition  

The collection of MRI data is closely monitored in the YOUth cohort study. Patterns 

in data quality are monitored over time based on human data and weekly collected 

phantom data. The YOUth MRI protocol, quality control and test-retest reliability 

are described in detail elsewhere (Buimer et al., 2020). In short, anatomical T1-

weighted MRI scans were available for 956 children and diffusion-weighted images 

(DWI) for 895 children. All MR scans were acquired on the same scanner, a Philips 

Ingenia 3.0 T CX scanner with a 60 cm bore (Philips Medical Systems, Best, The 
Netherlands) using a 32- channel SENSE head-coil. A structural T1-weighted 3D 

gradient echo scan was acquired with the following parameters: TR = 10 ms; TE = 4.6 

ms; flip angle = 8o; reconstructed voxel size = 0.75 x 0.75 x 0.80 mm3; parallel imaging 

factor = 1.70 (AP) and 1.40 (RL). Next, a diffusion-weighted multi-shell multi-band 

echo planar (EPI) acquisition is obtained including two short DWI scans with a 

reversed phase encoding readout to correct for susceptibility artefacts. The following 

parameters were used to acquire the DWI scan: TR = 3500 ms; TE = 99 ms; flip angle 

= 90o; reconstructed voxel size = 2.0 x 2.0 x 2.0 mm3; multiband acceleration factor = 

3; parallel imaging factor = 1.3; b-values = 500 [15], 1000 [30], 2000 [60] and every 
10th scan is a diffusion unweighted (b-value = 0) scan. At the start of the study a 

different DWI protocol was used. Therefore, 13% of the included data was acquired 
without reversed phase encoding readout and with the following parameters: TR = 

6827 ms; TE = 101 ms; flip angle = 90o; reconstructed voxel size = 2.5 x 2.5 x 2.5 mm3; 

parallel imaging factor = 2.5; b-values = 1000 [15], 2000 [25], 3000 [35] and every 

10th scan is a diffusion unweighted scan. We corrected for the different protocols in 

our analyses (see below for details).  

4 
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2.4 Image processing 

At the time YOUth provided access to the data for this study, defacing or face 

masking procedures had not yet been implemented. Therefore, T1-weighted scans 
were not subjected to any defacing or face masking procedures that may have a small 

effect on outcome measures (Buimer et al., 2021).  

FreeSurfer 6.0 was used for automatic brain segmentation and parcellation of the T1-

weighted scans (Fischl et al., 2002). Subcortical data was extracted from the output 

of FreeSurfer’s volume-based stream. For the initial registration and nonlinear 

alignment steps we relied on the default MNI305 atlas. Cortical data was extracted 

from the output of FreeSurfer’s cortical surface-based atlas. For registration of the 

individual surfaces to an average sphere we used the default fsaverage. The Desikan-

Killiany atlas was used for cortical parcellation (Desikan et al., 2006). To be able to 
study whether our findings were specific to the ROIs rather than a global effect, we 

also extracted intracranial volume and computed total cortical surface and average 

cortical thickness.  

DWI scans were processed using FSL version 6.0.1 (Jenkinson et al., 2012) in 

combination with MRtrix 3.0 (Tournier et al., 2019). The processing pipeline 

consisted of denoising (Cordero-Grande et al., 2019; Veraart et al., 2016), gradient 

direction corrections (Leemans & Jones, 2009), eddy current corrections (Andersson 

& Sotiropoulos, 2016), susceptibility corrections (Andersson et al., 2003) and 

corrections for Gibbs-ringing artefacts (Kellner et al., 2016). FSL’s EDDY QC 
framework was used to get quality control reports for each individual (QUAD) and at 
the group-level (SQUAD) (Andersson et al., 2003, 2016; Bastiani et al., 2019; Smith 

et al., 2004). QC parameters in the QUAD output include estimates of absolute 

motion, relative motion, translations, rotations, eddy current linear terms, 

susceptibility, B-value outliers, signal-to-noise ratio and contrast-to-noise ratio. Next, 

FSL’s Tract-Based Spatial Statistics (TBSS) was used to skeletonize the fractional 

anisotropy (FA) maps in standard space (Smith et al., 2004, 2006). For the TBSS 

registration and transformation to MNI152 space we used the default adult template, 

FMRIB58_FA. Using the TBSS processing pipeline we also generated a webpage 
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with, for each individual, slices of the FA maps for visual quality control. Lastly, the 
intersection between the skeleton and the regions of the JHU-ICBM-DTI-81 atlas 

(Mori et al., 2008) was used to compute the average FA values for these regions. 

Furthermore, the mean FA over all atlas regions was computed. 

2.5 Quality control 

For the T1-weighted scans, an experienced rater visually assessed image quality for 

each individual based on the original scan and segmentation quality based on the pial 

reconstruction. From the 956 T1-weighted scans a total of 132 scans were excluded 

for various reasons: motion artifacts that affected pial surface reconstruction (N=96), 

inhomogeneity artifacts (N=17), brain anomalies (N=9), FreeSurfer failed (N=5), 

corrupt DICOM files (N=3), dental artifact (N=1) and incorrect field-of-view (N=1). 

This resulted in gray matter estimates for 824 children.  

For the DWI scans, we started off with 895 scans. We used the presence of artefacts 

on the T1-weighted scans as a predictor for the quality of the DWI scans, thereby 

excluding the same children that were excluded in the T1-weighted analysis (N= 123). 

Furthermore, DWI data was incomplete or missing in some cases (N=10) or failed the 

processing pipeline (N=17). Next, based on the visual inspection of the FA map 

snapshots for each individual, we additionally excluded DWI scans that were 

acquired in a different orientation (N=7) or with an incorrect field-of-view (N=2). The 

distribution of the SQUAD QC parameters was as expected. Outliers were visually 

checked once again, but did not lead to exclusions. We performed t-tests for each QC 
parameter using the individual-based QUAD output, to test if image quality differed 

between children without any ACE versus children with at least one ACE. The 

prevalence of differences between the QC parameters in children with versus without 

an ACE were as would be expected by chance, with no consistent patterns of lower 

quality for specific ACE subsets. Therefore, no exclusions were made based on these 

parameters. The results of FSL’s TBSS were visually checked as recommended in the 

user guide (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide). This QC did not 

result in additional exclusions. 
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2.6 Regions of interest 

Regions of interest were selected from the gray matter and white matter atlases 

(Figure 1) based on meta-analyses and reviews described earlier (Calem et al., 2017; 
Daniels et al., 2013; Hart & Rubia, 2012; Lim et al., 2020; McCrory et al., 2010; 

McLaughlin et al., 2019; Paquola et al., 2016). 

2.7 Statistical analyses 

Using R version 4.0.5 (2021-03-31) in R studio version 1.4.1106 each brain measure 

was regressed on each ACE in a separate linear model. All variables were scaled and 

centered to create standardized output that is comparable across cohorts and across 

different brain measures. Apart from each specific ACE, we also tested the relation 

between brain measures and any ACE and accumulated ACEs (sum of ACEs per 

child). Any ACE and accumulated ACE variables were only computed if data was 

available for all ACEs. All analyses were corrected for age and sex. For the DWI 

analyses we also included a dichotomous variable to correct for the DWI acquisition 
protocol. Additionally, to assess regional specificity, we repeated the main analysis 

for the T1-weighted brain measures correcting subcortical volumes for intracranial 

volume, regional cortical thickness for average cortical thickness and regional cortical 

surface area for total cortical surface area.  

We corrected for multiple comparisons by controlling the false discovery rate (FDR) 

(Benjamini & Hochberg, 1995). Throughout this manuscript we will report 
uncorrected p-values (puncorr) and FDR-adjusted p-values (pFDR). FDR-adjusted p-

values were adjusted across T1-weighted or DWI brain measures independently for 
each ACE separately and thus not across all analyses. 

To estimate the robustness of the regression coefficients, we applied non-parametric 

bootstrapping, drawing random samples with replacement from the residuals of the 

regression model and added these to the original fitted values to create 5000 new 

samples. We chose resampling residuals over resampling subjects because of the 

small groups for some ACEs.  
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2.8 Data visualization  

For (sub)cortical surface data visualization, we used the ENIGMA toolbox (Larivière 

et al., 2021). For white matter tract visualization, we used Surfice 
(www.nitrc.org/projects/surfice/). Subcortical and white matter structures were 

overlaid on a reference brain to indicate the orientation of the structures and the 

approximate location in the brain. 

 

Figure 1. Fronto-limbic and fronto-striatal regions-of-interest.  
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3. Results  

3.1 Exposure to ACEs  

On average children were exposed to two ACEs in the last year and up to 9 

accumulated ACEs (Figure 2A). The percentage of children with at least one ACE 

was 83% (Figure 2B). In general, the overlap between different ACEs was as expected 

based on the prevalence in the group as whole, i.e., for most ACE subgroups the co-

occurrence of physical health problems, change in household composition, change in 

housing, bereavement and divorce or conflict in the family was high. Children 

growing up in families with financial problems appear to be disproportionately 
burdened by accumulated ACEs (Figure 2C). 

3.2 Age and sex effects for global brain structure  

For all brain estimates individual differences were large with overlap between 

children of different ages and sexes. Still, age effects were found for all global brain 

estimates and sex effects for all global estimates except average FA (Table 1, Figure 

3). ICV was also positively associated with age t(821) = 3.096, puncorr = .0020, ß = 

14.556, CI95% [5.328, 23.784] and larger for boys t(821) = -17.964, puncorr < 0.0001, ß = 

-145.426, CI95% [-161.317, -129.536]. Total cortical surface area was also positively 

associated with age t(821) = -2.076, puncorr = .0382, ß = 12.025, CI95% [0.656, 23.395] 

and larger for boys t(821) = -18.109, puncorr < .0001, ß = -180.631, CI95% [-200.209, -

161.052]. Total average thickness was negatively associated with age t(821) = -4.580, 
puncorr < .0001, ß = -0.015, CI95% [-0.021, -0.0008] and was on average lower for boys 
compared to girls t(821) = 2.830, puncorr = .0048, ß = 0.015, CI95% [0.005, 0.026]. Average 

FA over the TBSS skeleton was positively associated with age t(732) = 4.732, puncorr < 

.0001, ß = 0.0036, CI95% [0.002, 0.005] and not significantly associated with sex t(732) 

= 0.101, puncorr = .9194, ß = 0.004, CI95% [-0.002, 0.002]. Age effects were modeled in a 

linear fashion only. Age2 did not reach significance in the sample’s narrow age range.  

 



  107 

 

Figure 2. Descriptive statistics for the exposure to ACEs. 
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Figure 3. Effects of age and sex on global brain measures. Red dots indicate brain 

measures in girls and blue dots indicate brain measures in boys. Lines show the relation 

modeled linearly between brain measures and age (for girls in red, boys in blue and in black for 
the group as whole). Fractional anisotropy measures were corrected for the different acquisition 

protocols. 
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3.3 The association between ACEs and brain structure 

When focusing only on the standardized effect sizes (ß) and ignoring statistical 

significance, we observe a pattern of larger subcortical volume and larger cortical 
surface area in children exposed to ACEs. For fractional anisotropy and cortical 

thickness, results were more mixed. The results for all analyses, sorted by FDR-

adjusted Ivalues and with color-coded effect sizes, can be found in the supplementary 

tables S1-S5. For most ACEs, none of the ROIs reached significance (pFDR < .05), 

except for children growing up in a family where substance abuse is an issue and 

children that grow up in an environment where the parents report exposure to 

violence.  

Substance abuse in the household was associated with larger cortical surface area in 

the left superior frontal gyrus, t(781) = 3.724, pFDR = .0077, puncorr = .0002, ß = -.118, 
CI95% [.056, -.181], right superior frontal gyrus, t(781) = 3.409, pFDR = .0110, puncorr = 

.0007, ß = -.109, CI95% [.046, .172], left pars triangularis, t(781) = 3.614, pFDR = .0077, 

puncorr = .0003, ß = -.121, CI95% [.055, .187], left rostral middle frontal gyrus, t(781) = 

3.163, pFDR = .0195, puncorr = .0016, ß = -.101, CI95% [.038, .164], and right caudal 

anterior cingulate gyrus, t(781) = 2.918, pFDR = .0348, puncorr = .0036, ß = -.100, CI95% 

[.033, .168]. After correction for total cortical surface area, effects were attenuated 

and no longer significant. Effects in the same direction were found in non-significant 

ROI’s. Together, this suggests a more global effect on (frontal) cortical surface area. 

Figure 4 shows the effect sizes and scatter plots for the association between substance 
abuse in the household and cortical surface area.  
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Figure 4. Associations between substance abuse in the household and cortical surface 
area.  
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Household exposure to violence was associated with lower fractional anisotropy in 
the left cingulum bundle hippocampus region, t(697) = -3.154, pFDR = .0101, puncorr = 

.0017, ß = -.102, CI95% [-.166, -.039], and in the right cingulum bundle hippocampus 

region, t(697) = -3.401, pFDR = .0085, puncorr = .0007, ß = -.121, CI95% [-.191, -.051]. The 

direction of effect in other ROIs was mixed. Figure 5 shows the effect sizes and scatter 

plots for the association between exposure to violence and FA. 

The main results were robust as suggested by comparable means and confidence 

intervals for the bootstrapping of each regression coefficient. Histograms followed a 

normal distribution (supplementary figures S2-S8 and supplementary table S6-S12). 

Bootstrapping confidence intervals for all regression coefficients are reported in the 
supplementary material.  

 

Figure 5. Associations between exposure to violence and fractional anisotropy. 
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3.4 Post-hoc description of sample subsets 

In deviation of our data request (specified in advance of the study) and after the data 

were seen, we wanted to investigate whether our results could be related to attrition 
bias and whether our main effects could be explained by other environmental factors. 

The supplementary material provides the methods related to this section. Household 

income was analyzed in the same way as in a previous study on socioeconomic status 

in, among others, the YOUth cohort (Fakkel et al., 2020). Sample characteristics can 

be found in Table 1. First, children with data on T1-weighted brain measures and 

recent life events were compared to children with missing data for either the T1-

weighted brain measures or the life events survey. Children with missing data scored 

on average two points higher on the CBCL total problems score (Table S13). The same 

was found for children with missing DWI data or life events data and, additionally, 
the percentage of fathers with another self-reported ethnicity than Dutch was higher 

in this group with missing data (Table S14). Second, subsamples with and without 

ACEs were compared for the ACEs and brain scans relevant for our main effects. We 

found that parents’ educational attainment in years was shorter for children with 

versus without exposure to substance abuse in the family (Supplementary tables S15) 

and lower household incomes were more prevalent when parents reported exposure 

to violence (Supplementary table S16). 
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Table 1. Sample characteristics.  

 All available data 

Sex (% girls) N=955 

 56 

Mean age in years (SD) N=955 

 9.54 (0.86) 

Mean CBCL total problem score (SD) N=1055 

 22.92 (16.49) 

Self-reported ethnicity mother (%) N=1212 

Dutch 91 

Dutch and another ethnicity 2 

Another ethnicity 7 

Self-reported ethnicity father (%) N=955 

Dutch 93 

Dutch and another ethnicity 2 

Another ethnicity 5 

Mean education in years mother (SD) N=1212 

 15.12 (2.00) 

Mean education in years father (SD) N=955 

 14.86 (2.50) 

Gross monthly household income (%) N=1133 

< €1.250 2 

€1.250 - €2.000 6 

€2.000 - €3.000 8 

€3.000 - €4.000 18 

> €4.000 66 

Number of children at home (%) N=1232 

0 or 1 12 

2 53 

3 or more 35 
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4. Discussion 

This study explored the association between various adverse childhood experiences 

(ACEs) and brain morphometry in selected ROIs during pre-adolescence in a cohort 

of over 1000 children between 7 and 11 years old. We found an association between 

substance abuse in the household and larger cortical surface area in frontal regions 

(Figure 4). Furthermore, we found evidence for an association between exposure to 

violence and lower fractional anisotropy in the bilateral cingulum bundle in the 

hippocampus region (Figure 5).  

This study contributes to previous work by providing specific ACEs that could be 

worth further investigation: substance abuse in the family and exposure to violence. 

Growing up in a family with substance abuse problems was associated with a larger 

cortical surface area in the bilateral superior frontal gyrus, the left pars triangularis, 

the left rostral middle frontal gyrus and the right caudal anterior cingulate gyrus. A 

previous study in pre-adolescent children found an association between growing up 

in a family with substance abuse problems and larger cortical surface area in frontal 

regions (Lees et al., 2021). In that same study, thinner cortices were also found and 

we did not replicate that finding. For white matter we found an association between 
family exposure to violence and lower fractional anisotropy in the bilateral cingulum 

bundle hippocampus region. The cingulum is the tract that connects the frontal cortex 

with the parahippocampal gyrus in the temporal lobe. Exposure to violence has in 

the past been associated with lower quantitative anisotropy in the hippocampal 

cingulum (Bell et al., 2021) and lower mean diffusivity but not difference in fractional 

anisotropy in the hippocampal cingulum (Fani et al., 2021).  

In general, we found small effects and no evidence for significant differences in most 

ACEs. There are several explanations to be considered. One, there is discussion as to 

what qualifies as an ACE. We rely on parent-report and do not know to what extent 
children were impacted by the ACEs. Two, only ACEs within one year before the first 

wave were measured. Thus, effects of ACEs that occurred before that time and may 

have influenced brain development could not be included in the analysis. Effects of 

recent ACEs on brain morphology may emerge later in development. Three, the 
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effects of ACEs on the brain could be too small to detect with our current method. 
Rather than running separate analyses for each brain measure and each ACE, 

integrating features from brain measures or ACEs to create latent variables may be 

a better approach to detect small effects. We will discuss these points below. 

There is a lack of consensus which experiences qualify as ACEs. Childhood adversity 

has been defined as “experiences that are likely to require significant adaptation by 

an average child and that represent a deviation from the expectable environment” 

(McLaughlin, 2016). Also, ACEs have been defined as “childhood events, varying in 

severity and often chronic, occurring in a child’s family or social environment that 

cause harm or distress, thereby disrupting the child’s physical or psychological health 
and development” (Kalmakis & Chandler, 2014). An extensive body of research shows 

that experiences of maltreatment, sexual abuse and neglect impact the brain (Hart 

& Rubia, 2012; McLaughlin et al., 2019; Teicher & Samson, 2016). However, in our 

study no data experiences of maltreatment, sexual abuse or neglect were available. 

Therefore, we focused on other types of ACEs. Our broad definition of ACEs results 

in only 17% of the children that were not exposed to any type of ACE and thus may 

not have fully captured the expected complexity and dimensionality of adversity. 

Because we did not assess the impact or severity of the ACE and did not include 

measures of functioning, it remains unclear how children experienced these events 

and whether the experiences are so disruptive that brain development or (future) 
functioning could be affected.  

Another explanation for the small effects is that we study recent experiences, 

disregarding prenatal early life stress and ACEs that occurred more than a year ago. 

Effects of recent ACEs on brain structure may emerge later in development or even 

adulthood (Tottenham & Sheridan, 2009). It is possible that ACEs may impact brain 

structure over time, but effects on brain functioning may be easier to detect shortly 

after the experience. There are numerous studies that find a relation between ACEs 

and brain functioning during childhood or adolescence (Brieant et al., 2021; Cassiers 

et al., 2018; Hart & Rubia, 2012; Kraaijenvanger et al., 2020; Teicher & Samson, 
2016). For the effects that we found, it is plausible that they refer to an adverse family 

environment throughout childhood rather than a single event that occurred in the 

4 
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last year. For example, substance abuse problems in the family could have been 
present throughout childhood or even throughout pregnancy. No information on 

duration and severity of the ACEs was available and prenatal exposure to alcohol or 

drugs was not included in this study. In the same way, exposure to violence could be 

an indication of an adverse family environment in general or neighborhood 

disadvantage. To get a general idea of the broader social environment, we tested for 

difference in parental education, parental ethnicity, household income, child’s 

psychopathology and number of children in the household. We found that lower 

household incomes were more prevalent when parents reported exposure to violence 

and shorter parental education was related to substance abuse in the household.  

A last point to consider is that there are different methodological approaches to deal 

with the small effect sizes when studying the relationship between childhood 

adversity and brain structure. In our study we opted for a broad approach to include 

regions beyond the traditionally studied fronto-limbic structures and to study each 

ACE separately. Our approach is similar to a recent study in 398 older adults that 

also included a large number of ROIs and different types of ACEs (10). In this study 

a similar pattern of subtle effects of ACEs on brain morphology was found. Another 

approach is to integrate brain measures (atlas-based or voxel-/vertex-wise) using 

multivariate techniques, e.g. non-negative matrix factorization (Anderson et al., 

2014), independent component analysis, canonical correlation analysis or partial 
least squares approaches (Sui et al., 2012). Principal component analysis was used in 

a study on the effects of brain structure and adverse lifetime experiences in adults 

(Gheorghe et al., 2021). Another approach would be to improve the way that childhood 
adversity is measured, for example using extensive interviews to assess different 

ACEs and their impact (Ansell et al., 2012). However, this approach is often not 
feasible in population-based cohorts. On the whole, statistical power remains a 

challenge when studying the effect of many ACEs on many brain morphology 

estimates in population cohorts.  

For the main effects it remains unresolved if they are environmental, genetic or both. 
Neural effects in response to adversity could be adaptive in the short-term, but in the 

long-term these adaptations may contribute to risk or resilience. Lockdown 
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restrictions during the COVID-19 pandemic can be seen as another example of an 
environmental stressor to some (Achterberg et al., 2021; Creswell et al., 2021; Luijten 

et al., 2021; Panchal et al., 2021; van der Laan et al., 2021). All children in our study 

were measured before the onset of the pandemic, but pandemic-related ACEs may 

impact the follow-up data collected in the YOUh cohort study. Importantly, 

accelerated or delayed brain development could also be driven by genetic factors 

(Brouwer et al., 2021, 2022) and the environment that parents can provide for their 

children is also influenced by genetics (Hart et al., 2021; Kong et al., 2018).  

Three limitations of this study were not yet discussed. One, MRI data were processed 

using adult templates while the use of age appropriate templates could have 
improved the registrations (Yoon et al., 2009). Two, the group of children with 

missing MRI data scored slightly higher on the CBCL total problem scale and missing 

DWI data was more prevalent when children had a father with another self-reported 

ethnicity than Dutch. Three, the described cohort is homogenous with regard to self-

reported ethnicity and on average participants have high socioeconomic status, and 

thus the sample is not representative of the general Dutch population (Fakkel et al., 

2020) and results cannot readily be generalized to other parts of the world.   

A better understanding of the impact of adversity on neural development is important 

given current pressing societal issues (Sheridan & McLaughlin, 2022). Early 

detection of children that are at risk for negative outcomes later in life can help policy 
makers, health care professionals, families and schools to break with childhoods 

characterized by accumulated ACEs. Developmental neuroscience can play a crucial 

role to inform these interventions with regard to sensitive periods of development.  
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5. Supplementary materials 

Some of the supplementary files were too large to be incorporated here and can be 

downloaded online via this link http://doi.org/10.17605/OSF.IO/M5R3U. For 

Chapter 4, the online supplement includes one file with the supplementary tables S1 

to S5 listing all the results from the main analyses. 

 

 

Figure S1. Overlap between scores on items of the recent life events questionnaire.   

 

 

 

 

http://doi.org/10.17605/OSF.IO/M5R3U
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Figure S2. Bootstrap distribution for family exposure to violence and fractional 
anisotropy in the left cingulum bundle hippocampus region   

  

Table S6 Bootstrap results for family exposure to violence and fractional anisotropy 
in the left cingulum bundle hippocampus region compared to main results    

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE -.10 [-.17, -.04] -.10 (0.03) [-.17, -.04] 

Age .05 [-.01, .12] .05 (0.03) [-.01, .12] 

Sex -.09 [-.16, -.03] -.09 (0.03) [-.16, -.03] 

DWI Acquisition -.49 [-.56, -.43] -.49 (0.03) [-.55, -.44] 

4 
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Figure S3. Bootstrap distribution for family exposure to violence and fractional 
anisotropy in the right cingulum bundle hippocampus region   

 

Table S7 Bootstrap results for family exposure to violence and fractional anisotropy 
in the right cingulum bundle hippocampus region compared to main results    

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE -.12 [-.19, -.05] -.12 (0.03) [-.19, -.05] 

Age .07 [.00, .14] .07 (0.04) [.00, .14] 

Sex -.04 [-.11, .03] -.04 (0.04) [-.10, .04] 

DWI Acquisition -.30 [-.37, -.23] -.30 (0.03) [-.37, -.24] 
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Figure S4. Bootstrap distribution for substance abuse in the household and cortical 
surface area in the left superior frontal gyrus  

 

Table S8 Bootstrap results for substance abuse in the household and cortical surface 
area in the left superior frontal gyrus compared to main results    

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE .12 [.06, .18] .12 (0.03) [.06, .18] 

Age .09 [.02, .15] .09 (0.03) [.02, .15] 

Sex -.43 [-.50, -.37] -.44 (0.03) [-.49, -.38] 
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Figure S5. Bootstrap distribution for substance abuse in the household and cortical 
surface area in the left pars triangularis  

 

Table S9 Bootstrap results for substance abuse in the household and cortical surface 
area in the left pars triangularis compared to main results    

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE .12 [.06, .19] .12 (0.03) [.06, .19] 

Age .07 [.01, .14] .07 (0.03) [.01, .14] 

Sex -.32 [-.39, -.26] -.32 (0.03) [-.38, -.26] 
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Figure S6. Bootstrap distribution for substance abuse in the household and cortical 
surface area in the right superior frontal gyrus  

 

Table S10 Bootstrap results for substance abuse in the household and cortical surface 
area in the right superior frontal gyrus compared to main results    

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE .11 [.05, .17] .11 (0.03) [.05, .17] 

Age .06 [-.00, .12] .06 (0.03) [.00, .12] 

Sex -.43 [-.49, -.37] -.43 (0.03) [-.48, -.37] 

4 
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Figure S7. Bootstrap distribution for substance abuse in the household and cortical 
surface area in the left rostral middle frontal gyrus  

 

Table S11 Bootstrap results for substance abuse in the household and cortical surface 
area in the left rostral middle frontal gyrus compared to main results  

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE .10 [.04, .16] .10 (0.03) [.04, .16] 

Age .09 [.03, .15] .09 (0.03) [.03, .15] 

Sex -.43 [-.49, -.36] -.43 (0.03) [-.48, -.37] 
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Figure S8. Bootstrap distribution for substance abuse in the household and cortical 
surface area in the right caudal anterior cingulate gyrus  

 

Table S12 Bootstrap results for substance abuse in the household and cortical surface 
area in the right caudal anterior cingulate gyrus compared to main results  

 Beta [95% CI] Bootstrapping mean (SD) [95% CI] 

ACE .10 [.03, .17] .10 (0.03) [.04, .17] 

Age .07 [.00, .14] .07 (0.03) [.01, .14] 

Sex -.25 [-.32, -.18] -.25 (0.03) [-.32, -.18] 
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Supplementary method – Post-hoc analyses 

Definitions 

We used mother to indicate one parent or guardian (mostly female). We used father 
to indicate the second parent or guardian (mostly male). The primary participating 
parent is the parent or guardian that fills in the surveys when the report from only 
one parent is sufficient. The primary participating parents was the female parent in 
most cases. 

CBCL total problem score 

One parent filled out the CBCL to report on problem behavior of their participating 
child. The 118 specific problem items of the CBCL (0-to-2 scale) were summed for 
each child. Three additional open-ended questions allowed the respondent to fill out 
additional problems. We decided not to include these open-ended items in our sum 
score as most answers were overlapping with the specific problems and selecting valid 
problems from the answers was not feasible given our large sample size.  

Parental self-reported ethnicity 

Self-reported ethnicity was based on the question “What is your ethnic background 
(multiple answers possible)?”. Multiple choice options were as followed: 

1. Dutch 
2. European Union (excluding the Netherlands) 
3. Turkish 
4. European but not part of the European Union 
5. Moroccan 
6. African (excluding Morocco) 
7. Surinamese 
8. Antillean (from the former Netherlands Antilles, including Aruba, Bonaire, 

Curaçao, Saba, Sint Eustatius and Sint Maarten) 
9. Latin American (excluding Suriname and the former Netherlands Antilles) 
10. Indonesian 
11. Asian (excluding Indonesia and Japan) 
12. Other countries outside Europe (United States, Canada, Japan, Oceania) 

The multiple-choice options in our study were based on the former categorization by 
the Statistics Netherlands (CBS) based on countries that share specific migration 
history with the Netherlands and a distinction between ‘western’ and ‘non-western’ 
migration. From 2022 CBS uses a new classification system replacing the ‘western’ 
and ‘non-western’ main categories (https://www.cbs.nl/en-

https://www.cbs.nl/en-gb/longread/statistische-trends/2022/new-classification-of-population-by-origin
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gb/longread/statistische-trends/2022/new-classification-of-population-by-
origin). Given the small prevalence of parents with a migration background in our 
cohort and to not be bound by the categorization system above, we decided to indicate 
if parents had at least one other self-reported ethnicity in addition to or instead of 
Dutch.  

Parental education level  

Educational attainment was calculated by conversing the highest completed 
education to education in years to facilitate international comparison:  

• Primary education (BAO) – 6 years 
• Special primary education (SBAO) – 6 years 
• Education abroad comparable to primary education in the Dutch school 

system – 6 years 
• (Secondary) Special education ((V)SO) – 10 years 
• Practical education (PRO) – 10 years 
• Secondary vocational education ‘basis/kader’ (VMBO-BK) – 10 years 
• Secondary vocational education ‘theoretische leergang’ (VMBO-TL) – 10 years 
• Higher general secondary education (HAVO) – 11 years 
• Higher secondary education (VWO) – 12 years 
• Secondary vocational education (MBO) – 14 years 
• Education abroad comparable to practical or secondary vocational education 

in the Dutch school system – 12 years 
• Applied university (HBO) – 15 years 
• Education abroad comparable to applied university in the Dutch school 

system – 15 years 
• University education (WO) – 17 years 
• Education abroad comparable to higher vocational education or university in 

the Dutch school system – 17 years 

Monthly household income 

Similar to the study by Fakkel et al. (2020), monthly household income was based on 
the answer of the primary participating parent on the question: “Can you make an 
estimation of [if single] your gross income or [if not single] the total gross household 
income?”. Options “prefer not to say” and “can’t estimate” were not included in the 
tables and percentages.   

Number of children at home 

Both parents were asked about the composition of their household. We assumed that 
the answers of the primary participating parent were most indicative of the number 

4 

https://www.cbs.nl/en-gb/longread/statistische-trends/2022/new-classification-of-population-by-origin
https://www.cbs.nl/en-gb/longread/statistische-trends/2022/new-classification-of-population-by-origin
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of children that the participating child grows up around. Therefore, we created a sum 
score based on the answers of the participating parent.  

Who do you live with? (multiple answers possible): 

• Indicate the number of biological children 
• Indicate the number of foster children 
• Indicate the number of adopted children 
• Indicate the number of stepchildren 

Next, the sum scores were classified to 0 or 1; 2; over 3 children at the home of the 
participating parent.  

Statistics 

To compare the main sample versus the subsets (Table S13 and S14) and the children 
with versus without ACEs (Table S15 and Table S16), we used Chi-squared tests for 
the categorical variables and the Mann-Whitney U test (non-parametric because of 
skewness) for the CBCL and the education in years. We used an alpha level of .05 to 
test for significance. 
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Table S13 Responders versus non-responders for T1 and life events data 

 T1 and life events survey available 

 Yes No - missing 

Sex (% girls) N=785 N=170 

 56 56 

Mean age in years (SD) N=785 N=170 

 9.56 (0.85) 9.44 (0.89) 

Mean CBCL total problems (SD)* N=642 N=413 

 22.17 (16.42) 24.10 (16.54) 

Self-reported ethnicity mother (%) N=740 N=472 

Dutch 92 90 

Dutch and another ethnicity 2 3 

Another ethnicity 6 7 

Self-reported ethnicity father (%) N=592 N=363 

Dutch 94 91 

Dutch and another ethnicity 2 2 

Another ethnicity 3 6 

Mean education in years mother (SD) N=740 N=472 

 15.21 (1.92) 14.97 (2.11) 

Mean education in years father (SD) N=592 N=363 

 14.91 (2.47) 14.76 (2.54) 

Gross monthly household income (%)                                               N=690                                       N=443 

 < €1.200 2 1 

€1.200 - €2.000 5 7 

€2.000 - €3.200 9 7 

€3.200 - €4.000 17 20 

> €4.200 68 64 

Number of children at home (%) N=750 N=472 

0 or 1 11 13 

2 54 51 

3 or more 35 35 

* significant Mann-Whitney U test. 

  

4 
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Table S14 Responders versus non-responders for DWI and life events data 

 DWI and life events survey available 

 Yes No - missing 

Sex (% girls) N=702 N=253 

 57 55 

Mean age in years (SD) N=702 N=253 

 9.55 (0.85) 9.49 (0.88) 

Mean CBCL total problems (SD)* N=578 N=477 

 22.17 (16.70) 23.84 (16.20) 

Self-reported ethnicity mother (%) N=660 N=552 

Dutch 91 90 

Dutch and another ethnicity 2 3 

Another ethnicity 7 7 

Self-reported ethnicity father (%)** N=531 N=424 

Dutch 95 91 

Dutch and another ethnicity 2 2 

Another ethnicity 3 6 

Mean education in years mother (SD) N=660 N=552 

 15.21 (1.93) 15.00 (2.08) 

Mean education in years father (SD) N=531 N=424 

 14.98 (2.41) 14.71 (2.60) 

Gross monthly household income (%)   N=617              N=548 

 < €1.200 1 2 

€1.200 - €2.000 5 7 

€2.000 - €3.200 8 8 

€3.200 - €4.000 17 20 

> €4.200 69 64 

Number of children at home (%) N=669 N=563 

0 or 1 11 13 

2 54 52 

3 or more 35 34 

* significant Mann-Whitney U test. ** significant 𝜒2 test. 
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Table S15 Demographics for children with and without experiences of substance 
abuse in the household 

 Substance abuse in the household 

 Yes No 

Sex (% girls) N=15 N=770 

 53 56 

Mean age in years (SD) N=15 N=770 

 9.52 (0.84) 9.56 (0.85) 

Mean CBCL total problems (SD) N=10 N=632 

 17.20 (7.19) 22.24 (16.51) 

Self-reported ethnicity mother (%) N=14 N=726 

Dutch 86 92 

Dutch and another ethnicity 7 2 

Another ethnicity 7 6 

Self-reported ethnicity father (%) N=13 N=579 

Dutch 100 94 

Dutch and another ethnicity 0 2 

Another ethnicity 0 3 

Mean education in years mother (SD)* N=14 N=726 

 14.07 (2.23) 15.23 (1.91) 

Mean education in years father (SD)* N=13 N=579 

 13.38 (2.96) 14.95 (2.45) 

Gross monthly household income (%) N=1 N=679 

< €1.200 9 1 

€1.200 - €2.000 0 5 

€2.000 - €3.200 9 9 

€3.200 - €4.000 27 17 

> €4.200 55 68 

Number of children at home (%) N=14 N=736 

0 or 1 14 11 

2 64 54 

3 or more 21 35 

* significant Mann-Whitney U test. 
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Table S16 Demographics for children with and without family exposure to violence 

 Exposure to violence 

 Yes No 

Sex (% girls) N=80 N=622 

 66 56 

Mean age in years (SD) N=80 N=622 

 9.54 (0.86) 9.55 (0.85) 

Mean CBCL total problems (SD) N=68 N=510 

 24.06 (20.98) 21.91 (16.05) 

Self-reported ethnicity mother (%) N=76 N=584 

Dutch 86 92 

Dutch and another ethnicity 4 2 

Another ethnicity 11 6 

Self-reported ethnicity father (%) N=67 N=464 

Dutch 93 95 

Dutch and another ethnicity 4 2 

Another ethnicity 3 3 

Mean education in years mother (SD) N=76 N=584 

 15.28 (2.03) 15.20 (1.92) 

Mean education in years father (SD) N=67 N=464 

 14.75 (2.78) 15.01 (2.36) 

Gross monthly household income (%) *   N=69           N=548 

 < €1.200 6 1 

€1.200 - €2.000 6 5 

€2.000 - €3.200 4 9 

€3.200 - €4.000 16 17 

> €4.200 68 69 

Number of children at home (%) N=76 N=593 

0 or 1 18 10 

2 58 53 

3 or more 24 37 

* significant 𝜒2 test. 
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Abstract 

Identification of facial expressions is important to navigate social interactions. 

Deficits in behavioral emotion labeling are associated with less favorable 

developmental outcomes. Furthermore, functional MRI studies show that aberrant 

neural processing of facial emotions is a risk factor for psychiatric outcomes later in 

life. While it is presumed that behavioral emotion labeling, neural processing of 

emotional faces and social competence are related, this has rarely been studied. Here, 

we investigate interrelations between these three aspects, as well as associations 
with age and sex, in a cohort of 1055 children between 8 and 11 years old participating 

in the Dutch YOUth study, using a multistep linear modelling statistical approach. 

Behavioral emotion labeling was measured using labeling of basic emotions on 

pictures of facial expressions (accuracy and median response time during correct 

trials); neural processing of emotional faces was based on a passive-watching task 

with alternating blocks of images of houses or faces (happy, fearful, and neutral 

expressions) during fMRI; social competence included questions on perspective 

taking, empathic concern, peer problems and prosocial behavior. Parents reported 

higher social competence for girls on all subscales. For the subscales prosocial 
behavior and perspective taking older children scored higher. We replicate recent 

studies that an advantage in emotion labeling accuracy and reaction time is present 

in older as compared to younger children and in girls compared to boys. These age- 

and sex-differences were not reflected in the fMRI signal when comparing emotional 

versus neutral faces. During fMRI, emotional faces elicited more activity than neutral 

faces, and happy faces elicited more activity than fearful faces in boys and girls. 

However, we did not find evidence for the hypothesized links between social 

competence and behavioral emotion labeling, and with neural activity. To conclude, 

age- and sex-related variation in emotion labeling and social competence exists in 
pre-adolescence, but neural activity, behavioral emotion labeling and social 

competence may reflect separate constructs to navigating social interactions in a 

typically developing population.   
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1. Introduction  

Social competence can be defined as the ability to engage in meaningful interactions 

with others (Junge et al., 2020). Emotion reasoning helps to navigate these social 

interactions. Emotion reasoning is the ability to make reasonably accurate inferences 

and predictions about the emotion states of other people (Ruba & Pollak, 2020). 

Emotion labelling is considered one of the building blocks of emotion reasoning (Ruba 

& Pollak, 2020). In this manuscript we will use the term emotion labeling rather than 

the traditional term emotion recognition that is now considered less favorable 
(Barrett et al., 2019; Hoemann et al., 2020; Ruba & Pollak, 2020). Emotion labeling 

is correlated with higher social competence and less behavioral problems in childhood 

and adolescence (Trentacosta & Fine, 2010). Individuals differ in their ability to 

accurately label emotions on facial expressions and in the speed at which emotion 

labeling occurs. Accuracy and speed of emotion labeling are partly heritable 

(Swagerman et al., 2016), but also influenced by environmental factors (Assed et al., 

2020; Bérubé et al., 2023). 

During development, the age and sex of a child is an important contributor to inter-

individual variation in emotion labeling skills. Developmental trajectories of emotion 
labeling start early in life. Newborns are not able to differentially process emotional 

faces, but this ability rapidly develops in the first year of life and continues to improve 

during childhood (Bayet & Nelson, 2019). The ability to accurately label happy faces 

is thought to develop first, while for example the identification of fearful emotions 

has a more protracted developmental trajectory (Bayet & Nelson, 2019; Durand et 
al., 2007). Older children are faster and more accurate in emotion labeling (Herba & 

Phillips, 2004). The effect of age decreases after the first year of life, but age effects 
on emotion labeling accuracy and reaction time continue to exist throughout pre-

adolescence (Gur et al., 2012; Verpaalen et al., 2019). Regarding sex effects, most 
studies report a female advantage in emotion labeling skills (McClure, 2000).  

Age- and sex-related variation in emotion labeling skills (accuracy and reaction time) 

may also reflect underlying developmental processes in the brain. Functional MRI 

(fMRI) can be used to study the neural processing of emotional faces. The neural basis 

5 
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of facial-emotion processing requires different levels of specialization, as faces convey 
a range of hierarchically embedded information (Adolphs, 2002; Bayet & Nelson, 

2019). Developmental studies suggest that separate processes underlie the 

perception of emotional faces and the processing of other facial information such as 

identity, even though these processes can affect each other (Bayet & Nelson, 2019). 

Facial emotion processing engages visual, emotional, and higher-cognitive processing 

pathways. A meta-analysis including 105 fMRI studies on the processing of emotional 

faces showed that emotional faces elicited activity in several visual, limbic, 

temporoparietal and prefrontal areas; the putamen; and the cerebellum (Fusar-Poli 

et al., 2009). Neural activity in the visual cortex and cerebellum was observed 
independent of emotional valence. Happy, fearful, and sad faces specifically activated 

the amygdala. Disgusted and angry faces specifically activated the insula (Fusar-Poli 

et al., 2009).  

Emotion labeling abnormalities impact developmental outcomes: emotion-specific 

differences in labeling accuracy were associated with internalizing and externalizing 

problems in preschoolers participating in the Generation R cohort (Székely et al., 

2014). Even more, reviews show that emotion labeling abnormalities are associated 

with a wide variety of neuropsychiatric conditions, such as autism spectrum disorder 

(Harms et al., 2010), mood disorders, anxiety disorders or attention deficit 

hyperactivity disorder (Collin et al., 2013). The relation between emotion labeling 
abnormalities and psychiatric vulnerability co-exists with atypical neural processing 

of emotions. Aberrant neural processing of emotional faces is one of the most 

consistent neuroimaging findings in the childhood maltreatment literature (Hein & 
Monk, 2017) and is related to various psychiatric conditions (Delvecchio et al., 2013; 

Etkin & Wager, 2007; Harms et al., 2010; Mitchell et al., 2014; Stuhrmann et al., 
2011). So far, behavioral emotion labeling, neural processing of emotional faces and 

social competence are mostly studied in isolation and the interrelations between 

these three aspects requires further investigation. Investigating interrelations 

between these three factors may help further the understanding of mechanisms 
underlying social behavior.   
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In this study we aim to investigate age- and sex-related differences in the behavioral 
emotion labeling and neural processing of facial expressions of emotions in pre-

adolescence. Furthermore, we are interested in the link between inter-individual 

differences in emotion labeling accuracy and reaction time, neural facial-emotion 

processing, and social competence. We hypothesize 1) that older children are faster 

and more accurate when labeling emotions and that there is a female advantage; 2) 

that shorter emotion labeling reaction time and higher accuracy is related to higher 

social competence; 3) that variation in neural processing of emotional faces can be 

partly explained by age, sex and emotion labeling skills, with older children, girls and 

children with superior emotion labeling skills showing different activation patterns; 
4) that social competence correlates with brain activation patterns in response to 

emotional versus neutral faces.    

2. Materials and methods  

2.1 Participants  

The YOUth cohort study is a longitudinal population-based study on brain 

development with a specific focus on social competence and self-regulation (Onland-

Moret et al., 2020). In the current study we included data from the first wave of 

YOUth: Child & Adolescent, in which 1332 children between 7.9 and 11.0 years old 

participated (57% female). The YOUth cohort study was conducted in Utrecht, a 
province of the Netherlands, with on average highly educated inhabitants with high 

incomes (Fakkel et al., 2020; Buimer et al., 2022). All data included here was collected 
prior to the COVID-19 pandemic. This study was approved by the Medical Research 

Ethics Committee Utrecht. Children participated on a voluntary basis and 

parents/guardians gave written consent and assent. Figure 1 shows the available 

data for the domains relevant to the current study. 
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2.2 Social competence data 

Social competence was defined using the subscales perspective taking and empathic 

concern of the Interpersonal Reactivity Index (IRI, self-report, Davis, 1983) and the 
subscales prosocial behaviour and peer problems of the Strengths and Difficulties 

Questionnaire (SDQ, parent-report, Goodman, 1997, 2001). Together the subscales of 

the two questionnaires tap different aspects of social competence (Junge et al., 2020). 

Each of the four subscales contains 5 items, which were summed to get total subscale 

scores for each child.  

 

Figure 1 Venn diagram of the available data. Labels specify the data domains of interest 

for this study and the total number of participants with data for the domain. Colors of the labels 
correspond to the colors of the three circles. Area of the circles and the overlapping spheres are 

proportional, and numbers indicate absolute numbers of children. Figure adapted from web 

application DeepVenn (Hulsen, 2020).   
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2.3 Behavioral emotion labeling 

The Penn Computerized Neurobehavioral Battery (CNB) is developed by the 

University of Pennsylvania to capture specific cognitive domains that link to brain 
function (Gur et al., 2010). Within YOUth: Child & Adolescent, a subset of the web-

based CNB was collected, including the 40-item Emotion Recognition Test (ER-40). 

In the ER-40, the child labels the emotion on presented images of facial expressions 

in a multiple-choice format: happy, sad, anger, fear or neutral. The multiple-choice 

options were presented in the children’s native language, Dutch. From the ER-40, we 

used accuracy (the number of correct responses) and reaction time (the median 

response times computed over the trials with correct identifications). We did not 

observe irregularities in the data due to non-compliance (for example, continuously 

picking the same answer). One participant had a response time for fearful facial 
expressions of 11.6 seconds. The participant with this extreme outlier was removed 

from the dataset because the median response time for fearful faces was based on 

only this one correct trial resulting in a response time 13 standard deviations from 

the mean of 2.5 seconds. Other outliers were not as extreme or based on more than 

one trial. As we were interested in inter-individual variation, we did not remove these 

other outliers. Boxplots of reaction times in relation to correct responses with and 

without the outlier can be found in Supplementary figure S1.  

2.4 Neuroimaging data  

2.4.1 Stimuli presentation 

The face/house task is a passive viewing task in which children are presented with 
pictures of faces in a semi-random order (happy, fearful or neutral expression) and 

pictures of houses. Stimuli are presented in blocks of 18 seconds, with four blocks of 

houses and four blocks of faces. Within each block, stimuli are presented for 1 second 

followed by a 1 second fixation cross. Between blocks there is a period of rest. To 

ensure that the children remain focused, they are instructed to press a button when 

a red circle appears in the center of the screen, after each rest period. No other 

behavioral data is collected during the scan. We used stimuli from the Radboud Faces 
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Database (Langer et al., 2010). The stimuli were presented on an MRI-compatible 23-
inch LCD screen with a resolution of 1080 by 1920 pixels (BOLDscreen, Cambridge 

Research Systems).  

2.4.2 Neuroimaging acquisition  

In the YOUth cohort study, the collection of MRI data is monitored closely over time 

based on human data and weekly collected phantom data. The YOUth MRI protocol, 

quality control and test-retest reliability are described in detail elsewhere (Buimer et 

al., 2020). All data was acquired on the same Philips Ingenia CX 3.0 T MRI scanner. 
Whole-brain, T2*-weighted echo planar images were acquired with the following 

parameters: TR = 1000 ms; TE = 25 ms; flip angle 65°; 2.5 mm × 2.5 mm in-plane 

resolution; 2.5 mm slice thickness; 51 slices per volume; SENSE factor 1.8 (anterior–

posterior); multiband factor 3. Data was acquired in a single run of 389 dynamic 

scans. For anatomical reference a structural T1-weighted 3D gradient echo scan was 

acquired with the following parameters: TR = 10 ms; TE = 4.6 ms; flip angle = 8o°; 

voxel size = 0.75 mm x 0.75 mm x 0.80 mm; parallel imaging factor = 1.70 (AP) and 

1.40 (RL). 

2.4.3 Preprocessing  

Preprocessing and subsequent processing of fMRI scans were done using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2020b (The MathWorks Inc., 

Massachusetts, United States). The steps described here are identical to those used 
in previous studies that included YOUth fMRI data (Buimer et al., 2020; Pas et al., 

2021). In short, preprocessing consisted of realignment, slice timing correction, 
spatial normalization to MNI-152 space, and smoothing (8 mm full width at half 

maximum) to correct for inter-individual differences in functional anatomy.  

2.4.4 Individual analyses 

Task activity was estimated using a general linear model (GLM) including factors for 

happy faces, fearful faces, neutral faces, and houses. The six realignment parameters 

were added to the design matrix to model residual effect of head motion. All data were 

http://www.fil.ion.ucl.ac.uk/spm/
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high-pass filtered with a cut-off of 128 seconds to remove low-frequency drifts. We 
used a global signal threshold of 80% to avoid including brain areas with low signal. 

Participants exhibiting significant signal drops within the brain mask, leading to 

holes in the mask, were excluded from the analysis (Pas et al., 2021). After the GLM, 

we defined four contrasts: 1) faces > houses; 2) happy faces > neutral faces; 3) fearful 

faces > neutral faces; 4) fearful faces > happy faces. The first-level analyses produced 

four contrast maps for each participant.  

2.4.5 Group analyses 

In the second-level analyses, task activation maps were thresholded at pFWE < .05 and 

a cluster extent threshold based on p < .001 which corresponds to a z-value of 3.1 

(based on Eklund et al., 2016). The threshold for significance was converted into a 

voxel size threshold (k) based on the SPM file of each contrast using the SPM Cluster 

Size Threshold Estimation tool: 

https://github.com/CyclotronResearchCentre/SPM_ClusterSizeThreshold  

This resulted in a cluster size threshold of 21 voxels for contrast 1 (faces > houses); 

27 voxels for contrast 2 and 4 (happy faces > neutral faces and fearful faces > happy 

faces); 28 voxels for contrast 3 (fearful faces > neutral faces). Because we found 
widespread and very large clusters (even with our stringent thresholds), we included 

a watershed procedure to subdivide clusters based on local minima and maxima. The 

peaks and local minima were used to define borders and to split the cluster into 
separate segments (Figure 2). Individual contrast maps were masked with the 

different segments and the average of the β-values for the voxels within a mask were 

extracted for subsequent analyses.  

5 
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Figure 2 Example of the watershed procedure. As input, we use a contrast map (in this 
example Faces > Houses) thresholded with pFWE < .05 and a cluster extent threshold based on p 

< .001 which corresponds to a z-value of 3.1. The watershed procedure then finds local peaks 

and minima and creates binary masks of the segmentations. The segmentation masks can be 
used as regions-of-interest in subsequent analyses.   

2.5 Statistical analyses  

All statistical analyses were conducted in R version 4.0.5 (2021-03-31). The effect of 

age and sex on social competence was tested with separate linear models for each 

social competence subscale. The threshold for significance was adjusted to p < .0125 

based on Bonferroni correction for the four subscales.  

For the emotion labeling data, we started with an analysis of variance (ANOVA) to 

test if the median response time on correct trials was on average different for 
different types of emotions. Tukey's test was used as post-hoc analysis to test for 
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differences in group means. Next, we investigated the effect of age and sex on ER 
skills (accuracy and response time) using separate linear models for the different 

emotions. The threshold for significance was adjusted to p < .005 based on a 

Bonferroni correction for the 10 analyses (5 contrasts for both accuracy and speed). 

Additionally, we reran these analyses after adding the 4 social competence subscales 

using the same Bonferroni corrected threshold for significance.  

For the fMRI analyses, the average β-values in individual segments were the 

dependent variables in linear regression models. As independent variables we started 

off with only age and sex. Next, we added emotion labeling skills: response time and 

accuracy for happy emotions as predictors for active subclusters in the happy versus 
neutral contrast; response time and accuracy for fearful emotions as predictors for 

active subclusters in the fearful versus neutral contrast; response time and accuracy 

independent of emotional valence as predictors for the faces versus houses contrast. 

We controlled the number of false positives by adjusting the p-values over the 

different subclusters for the false discovery rate (FDR) within each contrast and using 

a threshold of pFDR < .05 (Benjamini & Hochberg, 1995). Lastly, we ran these analyses 

again with the four social competence subscales as predictors in addition to age and 

sex, instead of emotion labeling skills, again using FDR-adjusted p-values for 

determining significance.  

2.6 Addressing non-normality with residual-based permutations 

In the case when dependent variables were not normally distributed, we ran the 
linear models as usual to get effect sizes, standard errors and the t-statistic of the 

variable of interest but determined significance by computing p-values through 

residual-based permutations (Buzkova, 2016). For each variable of interest, a 

separate model was fitted leaving this variable out of the equation, which acted as 

the null model in this analysis. Next, residuals of this null model were used to create 

new observations with the same sample size as the original sample. First, we 

computed the fitted values for each observation and added permuted residuals. The 

effect of the variable of interest (left out in the null-model) was tested in the permuted 
sample by fitting the full linear model including the variable of interest, providing a 
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t-statistic for this variable. This procedure was repeated 10.000 times resulting in a 
distribution of ti-statistics for the variable of interest. Finally, the p-value was 

calculated by assessing the probability of the t-statistic of the original model (torig) 

given the ti distribution:  

ppermutated=(1+sum(abs(ti)>=abs(torig)))/(10000+1)  

This procedure is repeated for each variable of interest. Illustrative examples of this 

procedure can be found in Figure S3 and Figure S4.     

3. Results  

3.1 Social competence 

3.1.1 Variation 

For the Strengths and Difficulties Questionnaire (SDQ) scores ranged from 1 to 10 

for prosocial behavior and 0 to 9 for peer problems (theoretical range for both 

subscales is from 0 to 10). As can be expected in a typically developing sample, the 

SDQ subscales were skewed towards typical socio-emotional behavior with a mean 

and standard deviation of 8.49 (1.69) for prosocial behavior and 1.07 (1.56) for peer 

problems. For the Interpersonal Reactivity Index (IRI) both subscales (perspective 

taking and emphatic concern) ranged from 0 to 28 covering the full range of possible 

scores. The data was normally distributed with a mean and standard deviation of 

14.37 (4.96) for perspective taking and 18.44 (4.40) for emphatic concern.  
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Figure 3. Effects of age and sex on social competence subscales. Red dots indicate social 

competence scores for girls and blue dots indicate scores for boys. Lines show the relation 
modeled linearly between social competence score and age (for girls in red, boys in blue and in 

black for the group as whole). Peer problems and prosocial behavior are subscales from the for 

the Strengths and Difficulties Questionnaire (SDQ). Empathic concern and perspective taking 
are subscales from the Interpersonal Reactivity Index (IRI).  
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3.1.2 The effects of age and sex  

Better social competence was found for girls compared to boys for all subscales and 

age effects were found for two subscales (Figure 3). From the SDQ, prosocial behavior 

increased with age t(933) = 2.731, β = 0.175, standard error = 0.064, ppermutated = .0066 

and was higher for girls t(933) = 5.096, β = 0.557, standard error = 0.109, ppermutated = 

.0001. No age effects were found for peer problems and higher scores were reported 

for boys compared to girls t(933) = -4.314, β = -0.443, standard error = 0.103, ppermutated 

= .0002. From the IRI, perspective taking increased with age t(933) = 3.983, β = 0.751, 
standard error = 0.188, ppermutated = .0001 and was higher for girls t(933) = 4.645, β = 

1.488, standard error = 0.320, ppermutated = .0001. No age effects were found for 

empathic concern and lower scores were reported for boys compared to girls t(933) = 

4.252, β = 1.211, standard error = 0.285, ppermutated = .0001. Reported results survived 

Bonferroni correction based on the four subscales (p < .0125).  

3.2 Emotion labeling skills 

3.2.1 Accuracy and response time  

Children were highly accurate when labeling happy, fearful, and neutral facial 

expressions in all trials, while some angry and sad faces proved more difficult on 
average (Supplementary figure S1). There was a significant difference in median 

response time on correct trials between the different emotions, F(4)=66.93, p < .001. 

The Tukey post-hoc test revealed that children were faster on correct trials for happy 
faces compared to each of the other emotions (all p < .001), with no statistical 

differences between the other emotions (Figure 4). The analysis was repeated on log-

transformed data for a better approximation of normality, and this did not alter the 

results. The relation between the median response time on correct trials and the 

number of correct trials for each child can be found in Supplementary figure S2.  
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Figure 4. Response time on correct trials for the different emotions. Boxplot of the 

quartiles of the median response times on correct trials for different facial expressions of 
emotion. Each color represents a different facial expression stimuli. Black dots are individual 

data points outside the interquartile range.  

3.2.2 The effects of age and sex  

As the distribution of the emotion labeling data violated assumptions of normality, 

we tested for significance with residuals-based permutations (Buzkova, 2016). For 

more information on this procedure, see the supplementary materials and Figure S3.  

In general, older children and girls had an advantage and were significantly more 

accurate and faster on accurate trials when labeling most of the emotions (Table 1). 
The accuracy when labeling sad, angry, fearful, and neutral emotions was 

significantly higher in older children. For happy emotions, we found a trend-level 
effect of age on accuracy in the same direction, but the effect did not survive 

Bonferroni correction (p = .0404). There was a statistically significant advantage for 

older children in the reaction time for correctly labeling all emotions. Furthermore, 

girls were more accurate when labeling happy, sad, and fearful facial expressions, 

and faster in the correct trials for happy and angry facial expressions. See 

supplementary table S1 for all the statistics.    
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Table 1. The effect of age and sex on emotion labeling accuracy and speed. The results 
of linear models with age and sex as independent variables and number of correct responses or 

median reaction time in milliseconds based on correct trials only as dependent variables. Each 

row shows the results of a separate linear model for a specific emotion. The subscript orig 
indicates that the statistics are computed from the original linear model (ßorig, SEorig, torig) while 

the subscript permutated indicates that the p-values are computed from the residual-based 

permutations (ppermutated).     

 Model Age Sex 

 Df ßorig SEorig torig ppermutated ßorig SEorig torig ppermutated 

Accuracy          

Happy 1054 0.05 0.02 2.05 .0404 0.12 0.04 3.06 .0023* 

Sad 1054 0.18 0.06 3.23 .001* 0.37 0.10 3.80 <.0001* 

Angry 1054 0.28 0.05 5.64 <.001* 0.15 0.09 1.73 .0839 

Fearful 1054 0.29 0.06 5.12 <.001* 0.32 0.10 3.33 .0011* 

Neutral 1054 0.23 0.06 3.98 <.001* -0.10 0.10 -1.01 .3219 

Reaction time          

Happy 1054 -150 14 -
10.77 <.0001* -96 24 -4.00 .0002* 

Sad 1050 -145 26 -5.62 <.0001* -97 45 -2.17 .0296 

Angry 1051 -181 28 -6.41 <.0001* -156 49 -3.20 .0022* 

Fearful 1054 -213 28 -7.51 <.0001* -67 49 -1.37 .1684 

Neutral 1043 -253 31 -8.11 <.0001* 18 54 0.33 .7465 

* = survives Bonferroni correction for the total number of analyses in the table, i.e., p < .005.  
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3.2.3 The relation with social competence 

Again, residuals-based permutations were used to determine significance (Buzkova, 

2016). See supplementary methods and Figure S4. None of the four subscales of social 

competence were significant predictors of emotion labeling accuracy or speed for any 

of the emotions in linear models corrected for age and sex (see Supplementary table 

S2). 

3.3 The neural processing of emotional faces 

3.3.1 Task activation 

Whole brain analyses showed wide-spread task activation (Figure 5). We found more 

activation during faces versus houses in the bilateral middle temporal gyrus, 

bilateral amygdala, left supramarginal gyrus, bilateral precuneus, and left precentral 

gyrus. Higher activity in houses versus faces was found in the bilateral fusiform gyrus 

and right superior occipital gyrus. See Table 2 for an overview of activation clusters. 

Higher activity in happy faces versus neutral faces was found in the bilateral occipital 

pole, right inferior occipital gyrus, left posterior orbital gyrus, left amygdala, left 

anterior insula, left middle cingulate gyrus, left middle frontal gyrus, and left 

superior frontal gyrus (Table 3). Higher activity in fearful faces versus neutral faces 
was found in the bilateral occipital fusiform gyrus, left inferior occipital gyrus, 

bilateral entorhinal area, right temporal pole, and bilateral thalamus (Table 4). 

Happy faces elicited more activation than fearful faces in the bilateral occipital pole, 
right inferior occipital gyrus, left anterior insula, left putamen, and left middle frontal 

gyrus (Table 5).    
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Figure 5. Task activation. Axial slices of the task activity (left hemisphere on the left side). 
The render on the right shows a transparent overview of the activity in both hemispheres and 

the location of the axial slices. The activity for each contrast is thresholded at pFWE < .05 and a 

cluster extent threshold based on p < .001 which corresponds to a z-value of 3.1. 

 

 

 



  151 

Table 2. Task activation: Faces versus houses. Main clusters (in bold) and subclusters of 
the Faces > Houses (positive and negative). The X-, Y-, Z-coordinates depict the location of the 

maximum in MNI space. Cluster size reflects the number of voxels that are part of the main 

cluster. The activity is thresholded at pFWE < .05 and a cluster extent threshold based on p < 
.001 which corresponds to a z-value of 3.1.  

Regions per contrast Side Cluster size X Y Z tmax Direction 

Middle temporal gyrus R 2422 60 -60 12 20.89 Positive 

Amygdala L  -16 -4 -16 15.95 Positive 

Amygdala R  20 -4 -16 16.71 Positive 

Middle temporal gyrus L 311 -60 -60 12 16.97 Positive 

Supramarginal gyrus L  -64 -24 28 8.49 Positive 

Precuneus L/R 193 4 -56 36 13.16 Positive 

Precentral gyrus L 48 -24 -12 68 6.42 Positive 

Fusiform gyrus R 4679 28 -48 -12 66.34 Negative 

Fusiform gyrus L  -28 -52 -12 62.75 Negative 

Superior occipital gyrus R  32 -88 16 57.80 Negative 
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Table 3. Task activation: Happy versus Neutral faces. Main clusters (in bold) and 
subclusters of the Happy > Neutral (positive) contrast. The X-, Y-, Z-coordinates depict the 

location of the maximum in MNI space. Cluster size reflects the number of voxels that are part 

of the main cluster. The activity is thresholded at pFWE < .05 and a cluster extent threshold based 
on p < .001 which corresponds to a z-value of 3.1.  

Regions per contrast Side Cluster size X Y Z tmax Direction 

Occipital pole R 7094 20 -96 4 25.18 Positive 

Inferior occipital gyrus R  28 -92 4 24.93 Positive 

Occipital pole L  24 -96 4 23.95 Positive 

Posterior orbital gyrus L 298 -32 20 -12 8.01 Positive 

Amygdala L  -20 -4 -16 7.63 Positive 

Anterior insula L  -32 16 8 7.56 Positive 

Middle cingulate gyrus L 29 0 -8 36 5.45 Positive 

Middle frontal gyrus L 38 -24 0 52 5.25 Positive 

Superior frontal gyrus L  -20 8 68 4.82 Positive 

Middle frontal gyrus L 28 -32 48 24 5.00 Positive 
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Table 4. Task activation: Fearful versus Neutral faces. Main clusters (in bold) and 
subclusters of the Fearful > Neutral (positive) contrast. The X-, Y-, Z-coordinates depict the 

location of the maximum in MNI space. Cluster size reflects the number of voxels that are part 

of the main cluster. The activity is thresholded at pFWE < .05 and a cluster extent threshold based 
on p < .001 which corresponds to a z-value of 3.1.  

Regions per contrast Side Cluster size X Y Z tmax Direction 

Occipital fusiform 
gyrus L 1294 -24 -88 -12 15.25 Positive 

Inferior occipital gyrus L  -24 -96 -4 15.16 Positive 

Occipital fusiform gyrus R  24 -88 -12 14.96 Positive 

Entorhinal area R 62 20 0 -20 6.75 Positive 

Temporal pole R  52 12 -24 5.72 Positive 

Entorhinal area L 37 -28 0 -20 6.53 Positive 

Thalamus proper L 37 -12 -32 0 6.28 Positive 

Thalamus proper R 42 20 -32 0 6.26 Positive 
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Table 5. Task activation: Fearful versus Happy faces. Main clusters (in bold) and 
subclusters of the Fearful > Happy (negative). The X-, Y-, Z-coordinates depict the location of 

the maximum in MNI space. Cluster size reflects the number of voxels that are part of the main 

cluster. The activity is thresholded at pFWE < .05 and a cluster extent threshold based on p < 
.001 which corresponds to a z-value of 3.1.   

Regions per contrast Side Cluster size X Y Z tmax Direction 

Occipital pole R 6404 20 -96 4 16.16 Negative 

Inferior occipital gyrus R  28 -92 4 14.17 Negative 

Occipital pole L  16 -
100 0 13.44 Negative 

Anterior insula L 190 -32 16 4 8.35 Negative 

Putamen L  -24 0 0 5.21 Negative 

Middle frontal gyrus L 152 -40 36 32 7.17 Negative 

Inspired by Miller at al., 2016, we additionally visualized the percentage of children 

passing simple voxel-wise activation thresholding (t > 1.96) for each contrast. Despite 

the widespread and strong activation patterns for all contrasts, only the activation in 

the bilateral fusiform gyrus extending to the superior occipital gyrus was robust and 

this cluster was significantly activated in over 50% of the participants for the faces > 

houses (negative) contrast (Supplementary Figure S5). This suggests that this 

contrast elicits the most robust brain activation across individuals in our study. 

Next, the large clusters were split up in subclusters based on the local peaks of the 
whole brain activation using a watershed procedure (Figure 6). We ended up with 34 

subclusters for faces > houses; 10 subclusters for houses > faces; 49 subclusters for 

happy faces > neutral faces; 15 subclusters for fearful faces > neutral faces; 50 

subclusters for happy faces > fearful faces. These subclusters were then used for 
subsequent analyses.    
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Figure 6. Cluster segmentations after the watershed procedure. Axial slices of the 

cluster segmentation masks (left hemisphere on the left side) based on the brain activity in each 

contrast thresholded at pFWE < .05 and a cluster extent threshold based on p < .001 which 
corresponds to a z-value of 3.1. The render on the right shows a transparent overview of the 

segmentations in both hemispheres and the location of the axial slices. Blue masks are based 

on negative contrast maps and red masks on positive contrast maps.  
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3.3.2 The effects of age and sex 

We did not find age or sex effects to explain individual differences in activation 

patterns in the contrasts happy versus neutral (positive), fearful versus neutral 

(positive) and happy versus fearful (negative) (Supplementary tables S3 to S5). We 

did find a positive correlation between age and brain activity in the faces > houses 

contrast (i.e., larger contrast in older children; Figure 7, Supplementary table S6). 

This effect was significant for 4 subclusters extracted from faces > houses (positive) 

in the left superior temporal gyrus, t(749) = 3.251, pFDR = .0193, puncorr = .0012, β = 
0.038 (SE = 0.012), the left medial frontal gyrus, t(749) = 3.415, pFDR = .0193, puncorr = 

.0007, β = 0.078 (SE = 0.023), the left planum polare, t(749) = 3.225, pFDR = 

.0193, puncorr = .0013, β = 0.051 (SE = 0.016), and the left superior frontal gyrus 

(medial segment), t(749) = 2.823, pFDR = .0494, puncorr = .0049, β = 0.072 (SE = 0.026). 

Furthermore, we also found a positive correlation between age and brain activity in 

1 subcluster extracted from faces > houses (negative) indicating less deactivation (i.e., 

higher activation) in older children for faces compared to houses in the bilateral 

posterior cingulate gyrus in older children, t(749) = 2.777, pFDR = 0.0494, puncorr = 

.0056, β = 0.041 (SE = 0.015). Additionally, we found a larger contrast for faces > 
houses (positive) for girls in the right supplementary motor cortex, t(749) = 

3.309, pFDR = .0431, puncorr = .0010, β = 0.088 (SE = 0.026). No age effect was found in 

this subcluster. 

3.3.3 The relation with social competence 

None of the four subscales of social competence were significant predictors of brain 
activity in any of the contrasts in linear models corrected for age and sex 

(Supplementary tables S10-S12). 
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Figure 7. Age and sex effects on activity during faces versus houses. An axial slice shows 

the location of the subcluster (left hemisphere on the left side). In the plot individual β-weights 

from the second-level analysis, averaged over the ROI, are plotted against age in years. The 
solid red lines indicate that the contrast between faces > houses (positive) increases with age as 

group-average higher activity in faces than houses. The solid blue line indicates a large contrast 

in younger children with as group-average higher activity in the faces > houses (negative) 
contrast. The rightest plot in the bottom row shows the significant effect of sex with a larger 

contrast for faces > houses (positive) in girls and no age effect in this subcluster. The dot-dash 

line is based on the girls only and the dashed line is based on the boys only.  

3.4 The behavioral labeling and the neural processing of emotional 
faces 

The ability to accurately label happy faces and the response time when correctly 
labeling happy faces did not significantly relate to brain activity in the happy versus 

neutral faces contrast (Supplementary table S7). Similarly, emotion labeling skills 

for fearful faces did not relate to brain activity during the processing of fearful versus 

neutral faces (Supplementary table S8). As a post-hoc analysis, we wondered if the 

most robust contrast (faces versus houses), would relate to response time during 

correct trials and accuracy in the emotion labeling task (independent of emotional 

valence). Again, we did not find significant associations between brain activity during 
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faces versus houses and emotion labeling skills at a behavioral level (Supplementary 
table S9).  

4. Discussion 

In this study, we tested whether inter-individual variation in behavioral facial 

emotion labeling and neural facial-emotion processing in pre-adolescence could be 

explained by age, sex, and social competence. To this end we used data from 1054 

children between 8- and 11-years-old participating in the YOUth cohort study. We 

found effects of age and sex on social competence, ER and neural face versus house 
processing, but no effects on neural differentiation between emotional expression nor 

interrelations between the different factors.  

4.1 Social competence 

We used four subscales to assess social competence (Junge et al., 2020). From the 

Interpersonal Reactivity Index (Davis, 1983) we used the subscales perspective 

taking (IRI-pt) and empathic concern (IRI-ec) and from the Strengths and Difficulties 

Questionnaire (Goodman, 1997, 2001) we used the subscales peer problems (SDQ-pp) 

and prosocial behavior (SDQ-ps). The subscales were distributed as can be expected 

in a population-based study. Social competence was higher for girls than boys, 

consisted with literature (Maurice-Stam et al., 2018; Murris et al., 2003; Overgaauw 

et al., 2017). Furthermore, IRI-pt and SDQ-ps increased with age. Previous work 
shows age group differences between early adolescence and late adolescence for the 

IRI-pt but not the IRI-ec (Hawk et al., 2013). This may suggest that perspective 

taking (grouped under cognitive empathy) may have a protracted developmental 

trajectory compared to empathic concern (grouped under affective empathy). For 

prosocial behavior measures with the SDQ increases with age have also been reported 

before (Marzocchi et al., 2004).      
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4.2 Behavioral emotion labeling  

We assessed ER using the Penn CNB, a neurocognitive test battery with good validity 

and reliability (Swagerman et al., 2016). Accuracy reached a ceiling effect in pre-
adolescence, especially for happy faces, neutral and fearful faces, leaving less room 

for inter-individual variation. Still, we show that in pre-adolescence there is an 

advantage in emotion labeling accuracy and response time for older children 

compared to younger children. Furthermore, girls were more accurate than boys in 

labeling happy, sad, and fearful expressions, and faster than boys in correct trials for 

happy and angry expressions. These associations are consistent with previous work 

using the Penn ER task a population with a wider age range 8 to 21 (Gur et al., 2012). 

Furthermore, our findings are in line with age and sex effects found for ER accuracy, 

reaction time was not included, in 8- to 12-year-old children using the Radboud Faces 
Database (Verpaalen et al., 2019). It remains unclear if the age- and sex-effects on 

emotion labeling speed are domain-specific or reflect improvements in general 

cognitive ability or processing speed (Swagerman et al., 2016).  

We did not find an association between ER accuracy or speed and any of the social 

competence subscales in models corrected for age and sex, contradicting previous 

studies. Previous work showed negative associations between ER accuracy and the 

SDQ-pp or total problem scores and positive associations between ER accuracy and 

SDQ-ps in young children (Burley et al., 2022), children with attention deficit 

hyperactivity disorder (Staff et al., 2022), children with neurodevelopmental 
disorders (Löytömäki et al., 2022), children with disruptive behavior (Hunnikin et al., 

2020) and adopted children (Paine et al., 2023). For the IRI subscales, previous 

studies are less consistent. In a study on healthy adults, IRI-ec was negatively 
associated with accuracy in the Penn ER task (Beals et al., 2022), while in two other 

studies on adults IRI-ec was positively associated with ER accuracy (Israelashvili et 

al., 2020). Taken together, previous studies show that in young children, vulnerable 

populations and atypical developing children ER skills may be predictive of social 

competence. Here, we show that in typical development in pre-adolescence ER skills 

do not predict social competence. 
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4.3 Neural facial emotion processing 

The fMRI task resulted in wide-spread activation for the faces > houses (positive and 

negative) contrast, the happy faces > neutral faces (positive) contrast, the fearful 
faces > neutral faces (positive) contrast and the fearful faces > happy faces (negative) 

contrast. Emotion faces elicited more activity than neutral faces and happy faces 

elicited more activity than fearful faces. When comparing our results to results in a 

meta-analysis including 105 fMRI studies on the neural processing of emotional faces 

(Fusar-Poli et al., 2009), we found some differences. The activation in the current 

study is much more widespread compared to the activation maps in the meta-

analysis. There are three possible explanations for this widespread activity. One, the 

meta-analysis pools data from 1600 participants, but our sample size of 753 

participants with fMRI data is roughly 20 times larger than the studies included in 
the meta-analysis. Large sample sizes can result in large clusters spanning multiple 

regions (Woo et al., 2014), something we controlled for with stringent statistical 

thresholding. Two, it is suggested that in this age range brain activity is more diffuse 

while maturation results in more focal activation patterns (Durston et al., 2006), even 

though this interpretation has also been criticized (Brown et al., 2006; Poldrack, 

2010). Three, we found large inter-individual variation in the first-level contrast 

maps which may result in widespread second-level activation patterns.  

Apart from more widespread activation in our study compared to the meta-analysis, 

the regions with peak voxels differed between our study and the meta-analysis. For 
the faces > houses (positive) contrast the activation patterns were most consistent 

with previous literature. Here, we found peak activation in the bilateral middle 

temporal gyrus, bilateral amygdala, left supramarginal gyrus, bilateral precuneus 
and left precentral gyrus. This resembles the activation pattern found when faces 

independent of emotional valence were contrasted with a fixation cross (Fusar-Poli 

et al., 2009). Importantly, in this meta-analysis fusiform gyrus activity was found for 

the same contrast, but in our study bilateral fusiform gyrus activity was higher in 

response to houses as compared to faces. The different directionality in the fusiform 

gyrus may be explained by the inclusion of different age categories. Older 

participants showed greater neural response when processing emotional faces than 
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younger participants in a meta-analysis (Fusar-Poli et al., 2009). Alternatively, the 
use of different task stimuli could explain the different results: pictures of faces were 

contrasted to pictures of houses in the YOUth study (Langer et al., 2010) and pictures 

of faces were contrasted to a fixation of a crosshair on the screen (Fusar-Poli et al., 

2009).  

For subsequent analyses we segmented the large clusters in subclusters with the aim 

of detecting the true signal seeds. Then, we investigated if age, sex, or social 

competence subscales were associated with the neural processing of emotional faces. 

Contrary to our expectations, no effects of age and sex were found for emotional 

versus neutral faces. There are no previous studies of this magnitude in 8-, 9- and 10-
year-olds. Potentially, our brain-wide approach prevented us to pick up subtle effects  

(Marek et al., 2022), especially as fMRI data in general and for this task are only 

moderately reliable due to the state-dependent nature of brain function and other 

sources of variations such as noise (Buimer et al., 2020). Another explanation could 

be that the task design (passive-watching) did not elicit sufficient region-specific 

brain activity. Still, activity in four subclusters, that were more active during faces 

compared to houses, was positively associated with age with an increased contrast in 

older children in the left superior temporal gyrus, the left medial frontal gyrus, the 

left planum polare, and the medial segment of the left superior frontal gyrus. The 

activity in one subcluster that was more active during houses compared to faces was 
positively associated with age with a decreased contrast in older children in the 

bilateral posterior cingulate gyrus. Sex effects were found in one subcluster faces > 

houses (positive) with an increased contrast for girls in the right supplementary 
motor cortex.  

We did not find an association between neural processing and any of the social 

competence subscales. Previous studies did find associations between neural 

processing and the social competence subscales IRI-ec and IRI-pt, although not 

always. In adolescents, the IRI-pt was associated with seed-based functional 

connectivity with a negative association for most regions (Tremblay et al., 2022). 
Within the default mode network connectivity was positively associated with IRI-ec and 

IRI-pt in adolescence (Winters et al., 2021). In adults, activity in the bilateral 
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superior medial frontal cortex (a node within the DMN) was positively associated 
with the IRI-pt and negatively with the IRI-ec (Oliveira-Silva et al., 2018). A study 

in adults using a false-belief task found positive associations between the IRI-pt and 

medial prefrontal cortex activity (False-Belief > False-Photograph), but no effect for 

the IRI-ec (Dodell-Feder et al., 2014). In young adults, functional brain activity in 

response to familiar versus unfamiliar faces was not related to the empathic concern 

subscale of the Interpersonal Reactivity Index (IRI-ec) (Heckendorf et al., 2016). No 

associations between neural activity during prosocial choices for friends and the IRI-

ec or the IRI-pt were found in a study during mid-adolescence (Schreuders et al., 

2019). Overall, in one of the largest studies to date in older children between 8 and 

11 years of age we show no relation between neural processing of emotional faces 

contradicting smaller studies with different designs (resting-state functional 
connectivity or task-based fMRI with different tasks).  

4.4 Association between behavioral emotion labeling and neural facial 
emotion processing 

The Penn CNB was developed to capture different neurocognitive domains and its 

tests were previously validated with functional neuroimaging (Gur et al., 2010, 2012; 

Roalf et al., 2016). Still, in this study we did not find an association between 

behavioral ER skills and the neural processing of emotional faces. One possible 

explanation is that variation in performance on the Penn task does rely on more than 

emotional processing brain networks, as motor speed, processing speed and cognitive 

ability play a role as well (Swagerman et al., 2016). In the same way, the passive 

watching task elicited widespread activity and may not have been able to selectively 
target the facial emotion processing network. Alternatively, labeling of facial 

emotions and processing of facial emotions have distinct neural underpinnings. In 
the same way, the social competence subscales included in this study may tap on 

different aspects of social behavior that are unrelated to ER or neural facial emotion 

processing.  
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4.5 Conclusion  

We tested for interrelations between three factors thought to predict social 

functioning: social competence, facial emotion labeling accuracy and response time 
and neural processing of emotional faces. In large cohort of typically developing pre-

adolescents, we show an advantage for girls and older children consistent with 

literature for social competence and facial emotion labeling, but no relation between 

the two factors. Furthermore, we show strong and widespread brain activity in 

response to faces (happy faces > fearful faces > neutral faces) and houses, but no 

association between the task contrasts and social competence or behavioral emotion 

labeling. To conclude, age- and sex-related variation in emotion labeling skills and 

social competence exists in pre-adolescence, but neural activity in response to faces, 

behavioral emotion labeling and social competence may reflect separate constructs to 
navigating social interactions in a typically developing population.   
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5. Supplementary materials 

Some of the supplementary files were too large to be incorporated here and can be 

downloaded online via this link http://doi.org/10.17605/OSF.IO/M5R3U. For 

Chapter 5, the online supplement includes one file with the supplementary tables S1 

to S12 listing all the results from the main analyses.  

Figure S1. Reaction for correct trials versus number of correct trials. We 

removed one participant from the final dataset because of the slow response time (14 

seconds, i.e., 13 standard deviations from the mean) based on only one correct trial.  

http://doi.org/10.17605/OSF.IO/M5R3U
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Figure S2. Accuracy for emotion labeling for each trial 

 

Figure S3. Results of residual-based permutations for the effects of age and sex on 
accuracy when labelling fearful faces. 
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Figure S4. Results of residual-based permutations for the effects of social competence 
subscales on accuracy when labelling fearful faces. 
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Figure S5. Overlap in first-level activation patterns across individuals for faces > 

houses (negative). The percentage of children passing simple voxel-wise activation 
thresholding (t > 1.96). Faces > houses (negative) was the only contrast where we found voxels 

that were significantly activated in at least half of the sample.  
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Chapter 6 - Summary and conclusion 

Summary 

The aim of this thesis was to study sources of inter-individual variation in brain 
structure and function in pre-adolescence. To do so, I used data from 1000 children 

(8-, 9- and 10-year-olds) participating in the first wave of the YOUth: Child & 

Adolescent cohort. The first article contains a full description of the YOUth MRI 

protocol including test-retest reliability of brain measures derived with this protocol 

(Chapter 2). In the second article different de-identification (defacing) procedures 

for anatomical MRI data are compared (Chapter 3). In the third article, I 

investigated associations between anatomical brain measures and adverse childhood 

experiences (ACEs) (Chapter 4). For the last article, I used functional neuroimaging 

data to investigate interrelations between different factors related to social cognition: 
behavioral emotion labeling, neural processing of emotional faces and social 

competence (Chapter 5).  

In Chapter 2 I showed the YOUth MRI protocol and the efforts that were made to 

collect good quality MR data. The information shared in this chapter, such as the 

state-of-the-art acquisition parameters, extensive quality control procedures and 

reliability measures, can be useful to the neuroimaging community by aiding to 

increase the reproducibility and harmonization across developmental neuroimaging 

studies. The test-retest study using the YOUth MRI protocol in young adults, indeed 
showed that test-retest reliability was comparable to literature for brain measures 
derived from all MRI modalities: structural T1-weighted imaging, diffusion-weighted 

imaging (DWI), resting-state functional MRI and task-based functional MRI. Global 

brain measures derived from structural T1-weighted and DWI scans were highly 

reliable. Resting-state functional connectivity and task-based functional brain 

measures for both the inhibition task (stop versus go) and the emotion task (face 

versus house) were moderately reliable.  
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Chapter 3 answers the question to what extent de-identification methods can 
introduce noise. De-identification methods remove or blur identifiable facial 

characteristics on anatomical MRI scans. Implementing de-identification methods 

enables researchers to share data while protecting participants privacy. I show that 

de-identification methods introduce some variability in outcome measures, but the 

reproducibility was comparable to test-retest reliability and no large systematic 

effects were found. Furthermore, I show that some de-identification methods do not 

work well on child brain scans. Thus, de-identification methods can be implemented, 

but some methods require visual quality assurance especially in developmental 

cohorts. 

In Chapter 4 I show the association between anatomical brain measures and adverse 

childhood experiences (ACEs). I used a broad definition of adversity resulting in 

ACEs being highly prevalent: 83% of the children experienced at least one ACE. I 

show aberrant brain structure in regions of interest for 2 out of 11 ACEs: Substance 

abuse in the household was associated with larger cortical surface area in frontal 

regions and exposure to violence was associated with lower fractional anisotropy in 

the bilateral cingulum bundle in the hippocampus region. Exposure to violence could 

be an indicator of neighborhood disadvantage as it is made up of parental reports on 

theft and robbery (high prevalence) and rape, abuse, and domestic violence (low 

prevalence). Figure 1 shows a summary of the main findings in this chapter.  
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Figure 1. Summary of main findings in Chapter 4. 

In Chapter 5 I tested whether three proxies of social functioning were interrelated: 

social competence, behavioral emotion labeling and neural facial emotion processing. 

Surprisingly, I did not find evidence for interrelations between these three factors. 
Still, interesting effects of age and sex were found. Emotion labeling skills were better 

in girls than in boys and in older than in younger children. Furthermore, higher social 

competence on all subscales was reported for girls compared to boys and higher 

prosocial behavior and perspective taking was reported in older children. Neural 

processing of facial emotions resulted in strong and widespread activity. The 

strongest brain activity was found in response to happy faces (more than the brain 

response to fearful or neutral faces).  

General discussion 

Reliability of brain measures 

From 2014 to 2016 a healthy researcher was scanned over 100 times (Poldrack et al., 
2015). With this sensational experiment he showed that even in the same subject, 
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you will never get the same brain measures. Even though, researchers have reported 
test-retest reliability of brain-derived measures for a long time, it was never so clear 

how dynamic brain function is. Apart from variation related to the scanner or 

movement, for functional connectivity we now differentiate between “State” and 

“Trait” components (Geerligs et al., 2015). In Chapter 2, I show that functional brain 

measures have lower test-retest reliability than structural brain measures (Buimer 

et al., 2020). This is explained by the dynamic nature of fMRI rather than the quality 

of the acquisition, as the reliability reported in this study is comparable or even on 

the higher end of reliability reported in previous studies (Bennett & Miller, 2010). 

Transparency about test-retest reliability and related difficulties with cross-study 
replication is important as society more and more asks for individual predictions from 

neuroimaging data. It is suggested that thousands individuals are needed to detect a 

reproducible association between the brain and cognitive or mental health 

phenotypes (Marek et al., 2022). In the supplementary materials of Chapter 2, I did 

my own power analysis and showed that an effect with an effect size of 0.1 can be 

reliably detected with regional T1-weighted brain measures in 1000 individuals, 

while fMRI-based ROI-measures need a much larger sample size to detect such an 

effect (Buimer et al., 2020). When studying small effects, there are two paths to 

reliability (Gratton et al., 2022): ensure that high quality data is collected or increase 

the sample size. The latter is facilitated by data sharing and harmonizing data 
collection across the globe. In my opinion, the Enhancing NeuroImaging Genetics 

through Meta-Analysis (ENIGMA) Consortium is a perfect example of the power of 

world-wide multicenter collaboration to unravel the genetic and brain correlates of 

various phenotypes though data pooling (Thompson et al., 2014).  

Open science 

I strongly believe that complex scientific questions can only be answered by sharing 
data, publications, methods etc. Open science is an umbrella term for changes in 

technological architecture, access to knowledge, accessibility of knowledge creation, 

impact measurement and collaborative research (Fecher & Friesike, 2014). 

Ultimately, open science as movement aims to improve integrity, equity, 

collaboration and impact (Figure 2). In Chapter 2, I describe the YOUth MRI 
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protocol and test-retest reliability of brain measures derived with this protocol 
(Buimer et al., 2020). The protocol and quality control measures are described in 

detail, so the methods can be replicated by others. Furthermore, as YOUth 

encourages and facilitates extensive and appropriate use of its data by bona fide 

researchers, this chapter increases transparency for researchers wanting to request 

data. Different aspects should be weighted when sharing data (Veldkamp & Kemner, 

2023). It is crucial to safeguard the connection between science and society and the 

trust volunteers have in researchers. As facial identification from anatomical MRI 

data is possible nowadays (Schwarz et al., 2019), de-identification procedures are 

necessary. Luckily, de-identification methods make data sharing safer (Schwarz et 
al., 2021). In Chapter 3, I show that de-identification methods minimally affect 

subsequent processing (Buimer et al., 2021) in line with another study (Schwarz et 

al., 2021). The different interacting factors that play a role in development ask for 

interdisciplinary collaboration and team science (Zanolie et al., 2022). Still, I show 

that this does not have to come at the cost of the privacy of participants involved in 

the research. 

 

Figure 2 Adapted from an image by WIM ontwerpers for the TU Delft.  
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Late childhood 

Currently, policy makers prioritize the first 1000 days of life to promote positive 

development. The emphasize on this period of development stems from the rapid 

brain growth during this time (Dubois et al., 2021) and the long-lasting effects of 

severe adverse factors, such as malnutrition, in this period (Schwarzenberg et al., 

2018). Still, developmental neuroscience studies in the past decade underlined the 

importance to look past this period (Graf et al., 2021). The brain undergoes significant 

maturation during (pre-)adolescence (Mills et al., 2021; Teeuw et al., 2019; Frangou 
et al., 2022; Giedd et al., 1999; Koenis et al., 2015; Tamnes et al., 2017). Region-

specific periods of heightened plasticity, provide opportunities as well as 

vulnerabilities (Fuhrmann et al., 2015). As an example, the effect of household 

dysfunction on outcomes later in life is much higher during mid-childhood and early 

adolescence compared to children exposed to this factor earlier in life (Andersen, 

2021). The heightened neuroplasticity during adolescence co-exists with the 

emergence of mental health problems (Paus et al., 2008), again underlining the 

importance of studying brain development in late childhood and adolescence.  

Figure 3. Summary of age- and sex-effects in Chapter 4. 



  175 

The transition from childhood to adulthood may be especially important for social 
development (Blakemore, 2012). The children in our cohort are one the verge of big 

changes. They are preparing for high school, while their levels of reproductive 

hormones are rapidly increasing (Koenis et al., 2013) and some of them (mostly girls) 

are starting puberty (Pas et al., 2021). A previous study in the same cohort showed 

that despite the narrow age-range (8-11 years old), there is a positive association 

between behavioral inhibition and age (Pas et al., 2021). In my PhD thesis, I also find 

robust age effects. I find age- and sex-effects for emotion labeling and social 

competence subscales. Furthermore, the reported age- and sex-effects on brain 

structure underline the importance of this period of development. The age- and sex-
effects found in this study (summarized in Figure 3 and 4) provide fundamental 

information on the stage of (brain) development in pre-adolescence and complements 

previous research in larger age ranges or with smaller sample sizes. 

 

Figure 4. Summary of age- and sex-effects in Chapter 5. 
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While the YOUth cohort study collected data throughout the pandemic and 
thereafter, all data included in this thesis was collected prior to the COVID-19 

pandemic. Therefore, the potential effect of the COVID-19 pandemic on social 

development in young people (Crone & Achterberg, 2022) was not assessed in this 

thesis. For an overview report of the effects of the pandemic and related restrictions 

on young people, see the report by The Netherlands Youth Institute in collaboration 

with a large group of scientists, stakeholders, organizations, and youth (van den Berg 

et al., 2023). In short, the report suggests that on average quality of life decreased 

during the pandemic and emotional problems increased. Friendship support 

diminished the negative effects. School closure impacted motivation to learn and 
resulted in feelings of loneliness as children missed their classmates. Furthermore, 

tension at home increased. Some individuals may be disproportionally affected by the 

pandemic and related restrictions (Pierce et al., 2020), such as children from 

racial/ethnic minorities (Morales et al., 2020), children from families dealing with 

socioeconomic hardship (Green et al., 2023), children with pre-existing mental health 

vulnerability (Zijlmans et al., 2022) and children with ACEs (Stinson et al., 2021). 
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Adverse childhood experiences 

Almost half of the Dutch children between 9 and 13 years of age report adverse 

childhood experiences and these experiences are associated with lower quality of life 

in childhood (Vink et al., 2019). In adulthood, adverse childhood experiences are 

associated with mental health and other problems (Felitti et al., 1998; Hughes et al., 

2017; Kalmakis & Chandler, 2015; Merrick et al., 2019). I show aberrant brain 

structure for two adverse childhood experiences. Follow-up data is needed to 

establish long-term effects and compare whether the impact of ACEs differs across 
windows of development. The effect of ACEs may differ depending on the 

developmental timing of the experience. Importantly, the timing (opening and 

closing) of sensitive periods of brain development can also change in response to 

environmental factors (Gabard-Durnam et al., 2020).  

Facial emotion processing 

Aberrant facial emotion processing is associated with a wide range of mental health 

problems (Collin et al., 2013) and more prevalent in children exposed to childhood 
adversity (Assed et al., 2020; Bérubé et al., 2023). Therefore, facial emotion 

processing is an interesting concept for research on the relation between childhood 

adversity and mental health problems. Furthermore, facial emotion processing is 

important for meaningful social connections. In Chapter 5 we show that seemingly 

overlapping concepts are not interrelated as expected. Emotion labeling, facial 

emotion processing and social competence were not associated with each other. This 

is a noteworthy finding as theoretical frameworks often rely on these concepts being 
naturally linked together. Still, we show that emotion labeling and social competence 

both improve with age. These findings in typically developing children provide 
starting points for future research in children with externalizing or internalizing 

symptoms or children exposed to ACEs. 
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Methodological considerations and future directions 

What are the benefits of developmental cohort studies? 

Cohort studies are a powerful research design. One, cohort data often have large 

sample sizes, which is important as effects of interest have small effect sizes in 

developmental cognitive neuroscience (Dick et al., 2021). Two, the longitudinal design 
in cohort studies allows for investigation of both inter-individual and intra-individual 

variation, which is particularly important when studying mechanisms underlying 

dynamic processes such as brain development (Crone & Elzinga, 2015). Three, cohort 

studies provide a wealth of data that better capture individual complexity.  

Why do we need representative samples? 

In my opinion, the largest challenge for cohort studies is including a representative 

group. Behavioral studies (Henrich et al., 2010) and neuroscience studies (Chiao & 
Cheon, 2010) are dominated by western, educated, industrialized, rich and 

democratic (WEIRD) people. Furthermore, historically marginalized groups (i.e., 

Black, Indigenous, and People of Color (BIPOC), individuals with bi-or multi-cultural 

origin, individuals from low socioeconomic status, individuals from the LHBTQIA+ 

community, and individuals with disabilities or functional impairment) are 

underrepresented due to exclusion bias, sampling bias or attrition bias (Green et al., 

2022). This is problematic for multiple reasons. Results from research funded with 

public money apply only to a selective group. During the COVID-19 pandemic, 

policies world-wide were partly informed by mental health surveys that were not 
representative and thus may have failed to capture the severity of the crisis (Pierce 
et al., 2020). Furthermore, my own work in Chapter 4 shows that adverse childhood 

experiences can be less prevalent in cohorts than in the society, thereby reducing the 

power to detect an effect.  

This raises the question whether study designs in which characteristics of interest 

(experiencing adversity, experiencing racism, psychopathology, atypical behavior 

etc.,) are specifically targeted are more fitting when investigating mechanisms of risk 
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and resilience. Representative sampling may enhance our understanding of 
fundamental neural processes, as exemplified by earlier brain maturation, and more 

reliable developmental trajectories in a sample weighted for socioeconomic status, 

race/ethnicity, and sex compared to the initial sample (LeWinn et al., 2017). In the 

YOUth cohort study, as in other cohorts, an effort has been put in to recruit a 

representative sample by specifically targeting less represented children. Still, 

children with a high socio-economic status are overrepresented (Fakkel et al., 2020). 

Scientists need to make an ongoing effort to establish a sustainable connection with 

society (Green et al., 2022). Science communication, co-creation, transparency, and 

diversity are key in making science more inclusive.   

What is normative? 

Within developmental neuroimaging and throughout my dissertation, you may 

stumble across words like typical development, atypical development, optimal 

development, normative development, normative environments, and adverse 

environments. Some of these words may hold a value judgment, for example the use 

of normative development is criticized (Poldrack, 2010). Poldrack (2010) argues that 

adult-like brain activity or structure is taken as the norm while developmental 
neuroimaging should be descriptive rather than normative. Furthermore, although 

brain charts of typical development are very useful when investigating 

psychopathology (Bethlehem et al., 2022; Brouwer et al., 2022; Tamnes et al., 2017), 

it is important to emphasize that there is a large heterogeneity in individual 

developmental trajectories (Becht et al., 2020, 2021; Drakulich et al., 2021; Foulkes 

& Blakemore, 2018; Mills et al., 2021). Lastly, what is defined as a normative or 
adverse environment depends on socio-cultural norms, although there are also 

universal agreements on basic needs during childhood (Kolhatkar & Berkowitz, 2014; 

Raman & Hodes, 2012).  

Can we study environmental factors without genetics? 

This thesis focuses on associations between the brain and environmental factors. 
Still, these associations may as well be driven by genetic factors or gene-environment 
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interactions. Genetic factors are known to impact all outcome measures in this 
dissertation, thus anatomical brain measures (Brouwer et al., 2010, 2012; den Braber 

et al., 2013; Hulshoff Pol et al., 2012; Koenis et al., 2015; Lenroot et al., 2009; Lenroot 

& Giedd, 2008; Panizzon et al., 2009; Peper et al., 2009; Schmitt et al., 2014; van 

Soelen et al., 2011), task-based functional MRI measures (Achterberg et al., 2018; 

Blokland et al., 2008) and emotion labeling skills (Swagerman et al., 2016). In the 

same way, the predictors used in this dissertation are also influenced by genetic 

factors and therefore gene-environment interactions are at play. The environment 

that parents can provide for their children is influenced by genetics (Hart et al., 2021; 

Kong et al., 2018). Even more, childhood adversity is associated with genetic 
predispositions (Warrier et al., 2021). Lastly, social competence is partly heritable (St 

Pourcain et al., 2015; Knafo-Noam et al., 2015; Warrier et al., 2018; van der Meulen 

et al., 2020). Adding genetic information and longitudinal data in future research 

designs helps to interpret the main effects in terms of mechanisms or even 

directionality of the effects. Still, gene-environment interactions are difficult to map. 

Capturing complexity 

The more we learn about the human brain, the more complex it turns out to be. 
Traditional approaches to study the brain focused on the idea that individual brain 

regions support cognition and behavior, while the brain may be best represented as 

a multi-scale network (e.g., Betzel & Bassett, 2017; Friston, 2002; McIntosh, 2000). 

This shift towards more complex methods and models is not unique to developmental 

cognitive neuroscience. For example, research in biological psychiatry was long 

focused on discovering single genes responsible for psychiatric disorders, while the 
pathogenesis of psychiatric disorders is much more complex and orchestrated by 

many genetic and environmental factors. The phenotype side of the equation also 

turned out to be more complex than previously thought. For example, the 
symptomatic overlap between mental health diagnoses is large.  

Regarding conceptualizing childhood adversity, I show that different experiences 

have a differential effect on brain structure and that simply summing them does not 

suffice. Traditionally, ACEs have been lumped together while more recently 
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dimensional models, such as the dimensional model of adversity and psychopathology 
(McLaughlin & Sheridan, 2016), are used to study differential effects of specific ACEs 

or dimensions of ACEs on outcomes late in life. Others point out problems with these 

so-called specificity models and suggest a topological approach focused on factors that 

influence the way events are experienced by the child rather than the type or category 

of the event (Smith & Pollak 2021).  

To be able to detect the weak associations between brain and phenotype, 

neuroimaging studies benefit from increasing sample sizes and signal-to-noise ratios 

as described earlier. Still, the variance explained remains small. One approach to 

battle this is to integrate brain measures (atlas-based or voxel-/vertex-wise) using 
multivariate techniques, e.g. non-negative matrix factorization (Anderson et al., 

2014), independent component analysis, canonical correlation analysis or partial 

least squares approaches (Sui et al., 2012). Principal component analysis was used in 

a study on the effects of brain structure and adverse lifetime experiences in adults 

(Gheorghe et al., 2021). Therefore, an important future direction will be to use 

advanced computational modelling to integrate individual data from different 

timepoints and from different modalities (structural neuroimaging, functional 

neuroimaging, health information, surveys, genetics). Machine learning approaches 

are a promising avenue to make individual predictions and to overcome the observed 

heterogeneity in psychiatry (Schnack, 2019) as well as developmental cognitive 
neuroscience (Fair et al., 2021; Scheinost et al., 2023). Integrating multimodal 

neuroimaging data can help to increase the predictive value of machine learning 

algorithms (Tulay et al., 2018).  

Shift to resilience 

In recent years a lot of progress has been made in the field of resilience research. 

While resilience was long defined as a trait, current resilience frameworks focus on 
resilience as a dynamic and partly malleable construct (Ioannidis et al., 2020; Kalisch 

et al., 2019). Multisystem models of resilience argue that resilience arises from 

complex interrelations across cultural, social, psychological and neurobiological 

systems (Masten & Cichetti, 2010; Masten et al., 2021). New studies focus on the 

6 
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neurobiology of resilient functioning (Ioannidis et al., 2020; Moreno-López et al., 
2020; González-García et al., 2023). Furthermore, more studies now confirm the 

importance of social support as a buffer between the effects of childhood adversity on 

mental health later in life (van Harmelen et al., 2017, 2021). This work will in the 

future provide clear guidance to better support children growing up in adverse 

environments and adolescents suffering from mental health problems related to 

childhood adversity (Cicchetti & Toth, 2015).  

Concluding remarks 

The aim of this thesis was to study sources of inter-individual variation in brain 

structure and function in pre-adolescence. This thesis focused on several factors that 

contribute to this variation, including test-retest variability, biological factors such 

as age and sex, socioemotional skills, and childhood experiences. In 8-, 9- and 10-

year-olds participating in the YOUth cohort study (N>1000), I showed age- and sex-

effects for social competence, emotion labeling and global anatomical brain measures. 

Furthermore, I found evidence for associations between two adverse childhood 

experiences and local brain structure. Overall, associations between inter-individual 

differences in brain characteristics and behavioral or environmental 
phenotypes were low, despite the relatively large sample size. The inherently 

complex associations between the social environment and the developing brain ask 

for interdisciplinary collaborations, embracing diversity in all aspects, and pooling 

data to enhance statistical power. Understanding how childhood experiences convey 
risk for mental health problems later in life can help to identify malleable factors that 

could ultimately support children growing up. 
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A1 - Nederlandse wetenschappelijke 
samenvatting 

Algemene introductie 

Hersenontwikkeling wordt gedreven door interacties tussen genen en de omgeving. 

De wisselwerking tussen hersenontwikkeling, genen en omgeving vormt de basis voor 

de variaties die worden waargenomen tussen individuen. Het bestuderen van 

hersenscans van het ontwikkelende brein stelt onderzoekers in staat om een dieper 
inzicht te krijgen in de factoren die jou maken tot wie je bent. De pre-adolescentie is 

een interessante periode van de ontwikkeling. Bij een deel van de kinderen beginnen 

tijdens de pre-adolescentie puberteitshormonen een rol te spelen (Koenis et al., 2013; 

Pas et al., 2021). Daarnaast ontwikkelen kinderen zich op sociaal vlak (Blakemore, 

2012; Junge et al., 2020). Psychosociale klachten ontstaan ook vaak tijdens de (pre-

)adolescentie of verergeren in die periode (Paus et al., 2008). Al deze ontwikkelingen 

gaan samen met veranderingen in de structuur van de hersenen. 

Op verschillende plekken in de wereld zijn de afgelopen jaren studies gestart die 

hersenontwikkeling in kaart brengen in grote groepen kinderen. Deze cohort studies 
laten zien dat de hersenen snel groeien tijdens de zwangerschap en de eerste jaren 

na de geboorte (Dubois et al., 2021). Tijdens de kindertijd en de adolescentie groeien 

de subcorticale gebieden (Mills et al., 2021), wordt de hersenschors dunner (Teeuw et 

al., 2019), en laat de oppervlakte van de hersenschors eerst groei zien gevolgd door 

krimp terwijl het volume van de witte stof door blijft groeien (Frangou et al., 2022; 

Giedd et al., 1999; Koenis et al., 2015; Tamnes et al., 2017). Door trajecten van 

hersenontwikkeling in kaart te brengen, kan gezocht worden naar waarom 

individuen in het latere leven verschillen, bijvoorbeeld op het gebied van cognitie 

(Schnack et al., 2015) of kwetsbaarheid voor psychiatrische aandoeningen (Paus et 
al., 2008).  
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Ingrijpende jeugdervaringen blijken een belangrijke risico-factor te zijn voor 
psychosociale problemen tijdens de volwassenheid (Green et al., 2010; Kessler et al., 

2010; McLaughlin, 2016). Aan de andere kant kan de sociale omgeving ook een 

beschermende werking hebben (van Harmelen et al., 2017, 2021). De omgeving 

waarin een kind opgroeit biedt dus aanknopingspunten voor het beter begrijpen van 

mechanismen van psychische kwetsbaarheid. 

Dit proefschrift 

Dit proefschrift richt zich op verschillen tussen individuen in de structuur en functie 
van de hersenen in de pre-adolescentie. Het proefschrift bestaat uit meerdere 

deelstudies die verschillende onderwerpen behandelen.  

Om naar subtiele verschillen in hersenmaten tussen kinderen te kunnen kijken, is 

het belangrijk om eerst te onderzoeken hoe betrouwbaar deze hersenmaten zijn. Deze 

betrouwbaarheid kan onderzocht worden door bij een groep mensen twee keer 

dezelfde hersenscan te maken. Vervolgens kan dan gekwantificeerd worden wat het 

verschil is tussen de hersenmaten verworven tijdens de eerste en de tweede sessie 

(test-hertest betrouwbaarheid). De eerste twee deelstudies staan in het teken van 

deze test-hertest betrouwbaarheid en zijn tevens belangrijk in het kader van het 
delen van onderzoekdata met andere wetenschappers om de wetenschap vooruit te 

helpen (open science). Transparantie over het onderzoeksprotocol, waarborging van 

de privacy van deelnemers en goede kwaliteit van de data staan in deze deelstudies 

centraal. 

Nadat de betrouwbaarheid van de hersenmaten is onderzocht, focussen de laatste 

twee deelstudies op de relatie tussen de hersenen en de sociale omgeving. Hiervoor is 

data gebruikt van 1000 kinderen (8-, 9- en 10-jarigen) die deel hebben genomen aan 

het YOUth-onderzoek (Onland et al., 2020) in de periode van 2016 tot begin 2020. 

Eerst is onderzocht of er een verband is tussen ingrijpende jeugdervaringen en de 
structuur van de hersenen. Dit is belangrijk, gegeven de eerder besproken link tussen 

ingrijpende jeugdervaringen en mentale problemen tijdens de volwassenheid. 

Daarna is gekeken of de neurale verwerking van foto’s van gezichten met een 
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emotionele expressie (neutraal, blij of bang) samenhangt met sociaal functioneren en 
het identificeren van emoties op gezichten. Dit is belangrijk, omdat een beter begrip 

van mechanismen van sociaal functioneren kan helpen om kinderen te ondersteunen 

die hier moeite mee ervaren. 

Test-hertest betrouwbaarheid 

De eerste deelstudie in dit proefschrift (Buimer et al., 2020; Hoofdstuk 2) beschrijft 

het MRI-protocol gebruikt in het YOUth-onderzoek en de test-hertest 

betrouwbaarheid van hersenmaten die verkregen kunnen worden met dit protocol. 
Dit onderzoek laat zien dat verschillende MRI-scans een verschillende test-hertest 

betrouwbaarheid hebben en anatomische hersenmaten betrouwbaarder gemeten 

kunnen worden dan functionele hersenmaten. Variatie tussen beide metingen kan 

bijvoorbeeld ontstaan door meetruis of beweging tijdens het maken van de 

hersenscan. Bij het meten van hersenactiviteit spelen meer factoren mee dan bij 

anatomie, zoals of de deelnemer zich tijdens beide sessies even goed kan 

concentreren. De tweede deelstudie (Buimer et al., 2021; Hoofdstuk 3) evalueert de-

identificatiemethoden voor MRI-scans (het verwijderen van tot de persoon 

herleidbare kenmerken op anatomische scans) en vindt minimale effecten van deze 
technieken op de uitkomstmaten.  

Ingrijpende jeugdervaringen en de structuur van de hersenen 

In de derde deelstudie (Buimer et al., 2022; Hoofdstuk 4) wordt het verband tussen 

ingrijpende jeugdervaringen en hersenstructuur onderzocht. Dit onderzoek laat zien 

dat kinderen die opgroeien in een gezin waar alcohol of drugsproblematiek speelt, 

een grotere oppervlakte van de hersenschors hebben in frontale gebieden. Dit is in 
overeenstemming met een grote Amerikaanse studie van een cohort van dezelfde 

leeftijd (Lees et al., 2021). Daarnaast laat ik zien, dat blootstelling aan geweld of 

criminaliteit in het gezin dan wel de buurt waarin het kind opgroeit, samenhangt met 

een lagere witte stof integriteit in een gedeelte van het cingulum.  
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Figuur 1. Samenvatting van de hoofdeffecten in het onderzoek naar de 
relatie tussen ingrijpende jeugdervaringen en hersenstructuur. 

Een belangrijke kanttekening bij dit onderzoek is dat de effecten klein waren en voor 

veel ingrijpende jeugdervaringen geen effect is gevonden. Daarnaast is niet 

onderzocht of de verschillen in de anatomie van de hersenen bij kinderen met deze 

ingrijpende jeugdervaringen samenhangen met hun functioneren. In de toekomst zou 

het interessant zijn om te kijken naar de relatie tussen deze neurobiologische 

correlaten en de kwetsbaarheid voor psychopathologie in het latere leven. Een 

interessante nieuwe richting is om te focussen op verschillen tussen mensen in hun 
mate van veerkrachtig functioneren na ingrijpende jeugdervaringen. Zo wordt er nu 

onderzoek gedaan naar de neurobiologische correlaten van veerkrachtig functioneren 

na jeugdtrauma (González-García et al., 2023).  
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Sociale cognitie en hersenactiviteit  

De vierde deelstudie (Hoofdstuk 5) onderzoekt de onderlinge relatie van factoren 

onderliggend aan sociale cognitie. Deze factoren waren: 1) het correct en snel 

identificeren van emoties, 2) hersenactiviteit tijdens het verwerken van emoties op 

gezichten en 3) sociale vaardigheid. In tegenstelling tot mijn verwachting vond ik 

geen bewijs voor een sterk verband tussen deze factoren.  

Effecten van leeftijd en geslacht op primaire uitkomstmaten 

De statistische modellen in Hoofdstuk 4 en Hoofdstuk 5 zijn telkens gecorrigeerd 

voor leeftijd en geslacht. Maar wat voor leeftijds- en geslachtseffecten zijn er eigenlijk 

geobserveerd in deze studies?  

In Hoofdstuk 4 laat ik zien dat er veel variatie is in de hersenstructuur tussen 

kinderen onderling en dat effecten van leeftijd en geslacht hier een grote rol in spelen 

(Figuur 2). Leeftijd associeert positief met de volgende globale hersenmaten: 

intracraniaal volume, de oppervlakte van de hersenschors en witte stof integriteit. 
Een negatief verband met leeftijd werd gevonden voor corticale dikte. Wanneer 

jongens en meisjes met elkaar worden vergeleken valt op dat jongens een groter 

intracraniaal volume hebben, een grotere corticale oppervlakte en een dunnere cortex 

dan meisjes. Er werd geen effect van geslacht gevonden op globale witte stof 

integriteit.  
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Figuur 2. Samenvatting van de effecten van leeftijd en geslacht op globale maten van 
hersenstructuur. 

In Hoofdstuk 5 laat ik de effecten van leeftijd en geslacht op de identificatie van 

emoties en sociale vaardigheid zien (Figuur 3). Meisjes en oudere kinderen waren 

over het algemeen sneller en accurater in het correct identificeren van een emotie. 

Ook lieten meisjes betere sociale vaardigheden zien op elke gemeten subschaal. Een 

positieve verband met leeftijd werd gevonden voor de subschalen die meten hoe goed 
een kind het perspectief van een ander in kan nemen en hoeveel prosociaal gedrag 

het kind vertoont. De effecten van leeftijd en geslacht op hersenactiviteit waren 

echter minimaal. 

Voor het sociaal functioneren en het identificeren van emoties spelen leeftijds- en 

geslachtseffecten dus een grote rol bij kinderen tussen de 8 en 11 jaar oud. Ook 

variatie in de anatomie van de hersenen wordt deels verklaard door leeftijd en 

geslacht. Longitudinale data is nodig om uit te wijzen of de gevonden effecten van 

leeftijd en geslacht te verklaren zijn door (hersen)ontwikkeling.  
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Figuur 3. Samenvatting van de effecten van leeftijd en geslacht op identificatie van 
emoties op gezichten en sociale vaardigheid. 

Slotopmerking 

Dit proefschrift benadrukt de complexiteit van ontwikkelingsneurowetenschap. Dit 

vakgebied vraagt om grote steekproeven en geavanceerde statistische methodes om 

kleine effecten te kunnen detecteren. Grote cohort studies wereldwijd bieden een 
schat aan informatie over het opgroeiende kind. Het veilig delen van data wordt 

steeds meer de norm. Uitdagingen voor de toekomst zijn het zorgen voor een 

deelnemerspopulatie die een goede weerspiegeling is van de maatschappij. Het 

onderzoeken van neurobiologische mechanismen die ervaringen tijdens de jeugd 

linken aan psychosociaal functioneren biedt in de toekomst mogelijk 

aanknopingspunten om opgroeiende kinderen beter te ondersteunen. 
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A2 - Open science statement 

Availability of publications  

All published articles in my PhD thesis are open-access and thus publicly available 
via the DOI-links on the chapter title pages. The last chapter is not published yet but 

will be submitted to an open access journal as well.  

Availability of data and code 

The YOUth cohort study encourages and facilitates bona fide use of its data. 

Researchers who wish to use YOUth data, can request the data for free: 

https://www.uu.nl/en/research/youth-cohort-study/data-access. Please note that 
anatomical T1-weighted MRI data will be subjected to a de-identification method. 

The raw test-retest data of young adults is not available, but the processed data can 

be requested via the UMC Utrecht: https://www.umcutrecht.nl/en/data-request-form-

umc-utrecht. Requests for MRI scans of the data from older adults can be submitted 

here: http://adni.loni.usc.edu/data-samples/access-data/. Scripts and short README 

files will be available on my osf page: http://doi.org/10.17605/OSF.IO/M5R3U  

Usage of open access tools and resources 

I gratefully used many open access tools and resources in this PhD thesis. Some 

examples: 1) Illustrations from Katerina Limpitsouni’s undraw.co; 2) Paul Tol’s color 

palette for improved accessibility from https://personal.sron.nl/~pault/; 3) Coding 

using R and RStudio https://www.r-project.org; 4) Processing of neuroimaging data 

using FreeSurfer http://freesurfer.net and SPM https://www.fil.ion.ucl.ac.uk/spm/; 5) 

Visualizing neuroimaging data using the ENIGMA toolbox https://enigma-

toolbox.readthedocs.io, MRIcroGL & Surf Ice https://www.nitrc.org/projects/mricrogl 
& https://www.nitrc.org/projects/surfice/.  

https://www.uu.nl/en/research/youth-cohort-study/data-access
https://www.umcutrecht.nl/en/data-request-form-umc-utrecht
https://www.umcutrecht.nl/en/data-request-form-umc-utrecht
http://adni.loni.usc.edu/data-samples/access-data/
http://doi.org/10.17605/OSF.IO/M5R3U
file://///Users/buimereel/Documents/PhD_work/Final_comittee/undraw.co
https://personal.sron.nl/~pault/
https://www.r-project.org/
http://freesurfer.net/
https://www.fil.ion.ucl.ac.uk/spm/
https://enigma-toolbox.readthedocs.io/
https://enigma-toolbox.readthedocs.io/
https://www.nitrc.org/projects/mricrogl
https://www.nitrc.org/projects/surfice/
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A4 - Societal publications 

Voor volwassenen 

In juli 2022 heb ik een week lang mijn leven als onderzoeker en mijn onderzoek 
mogen delen via sociale media via het @NL_wetenschap account van de 

Universiteiten van Nederland. Een live interview op NPO-radio 1 over deze ervaring 

en over mijn promotieonderzoek vind je hier.  

In dit interview geef ik meer achtergrondinformatie over de verzameling van 

hersenscans in het YOUth-onderzoek.  

Een infographic met de eerste resultaten van de COVID-19 deelstudie van het 

YOUth-onderzoek is hier te vinden.  

Een onlineversie van het volledige proefschrift is hier terug te vinden.    

Voor kinderen en tieners 

Wil je weten hoe het is om hersenonderzoeker te zijn? Je ziet in deze vlog waarom ik 

mijn werk zo leuk vind en wat voor onderzoek ik doe. Deze video is opgenomen voor 

het programma Slimme Gasten van het Wetenschapsknooppunt Universiteit 

Utrecht. 

Informatie over het maken van hersenfoto’s vind je in deze speciale uitgave van New 
Scientist NL voor jongeren over het Consortium on Individual Development! 

 

Wist je dat ik een samenvatting van mijn proefschrift heb gemaakt speciaal 

voor jongeren? Kijk snel op de volgende bladzijde of klik hier! 

A 

https://www.nporadio1.nl/fragmenten/de-nacht-van/b5a5649d-f9b3-4ca8-8eb4-486d49726639/2022-07-14-de-twitterende-wetenschapper-hersenonderzoeker-elizabeth-buimer
https://youthonderzoek.nl/2019/06/24/elizabeth-buimer-over-mri/
https://youthonderzoek.nl/wp-content/uploads/sites/169/2021/03/YOUth_COVID19_rnd123_v2_13march21_NL.pdf
https://doi.org/10.33540/1936
https://www.youtube.com/watch?v=fIsqSepsPnQ
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Hoi, ik ben Elizabeth en ik ben hersenwetenschapper. 

Ik heb onderzoek gedaan naar de hersenen van kinderen en tieners. De 

resultaten van dit onderzoek heb ik opgeschreven in een proefschrift, dat 

is een werkstuk maar dan met wat meer pagina’s (er staan resultaten van 

vier jaar onderzoek in). Dat proefschrift heb ik nodig om te promoveren. 

Promoveren betekent dat ik de titel doctor mag gebruiken. Proefschriften 

worden geschreven in wetenschappelijke taal en zijn daardoor niet 

zo makkelijk te begrijpen. Daarom heb ik deze samenvatting voor jou 

geschreven. Ik vind het namelijk belangrijk dat iedereen kan snappen hoe 

ik mijn onderzoek naar hersenen heb gedaan en wat het heeft opgeleverd. 

Het onderzoek dat ik de afgelopen vier jaar deed hoort bij een heel 

groot onderzoek, namelijk het YOUth-onderzoek. Mijn onderzoek is een 

klein stukje van dat hele grote onderzoek. Misschien ken je het YOUth-

onderzoek omdat je mee hebt gedaan. Bij het YOUth-onderzoek worden 

duizenden baby’s en jongeren een paar jaar gevolgd om te onderzoeken 

wat er gebeurt als zij opgroeien. 

Het YOUth-onderzoek
Jongeren die meedoen aan het YOUth-onderzoek doen tijdens een onder-

zoeksdag verschillende testjes. Ze krijgen bijvoorbeeld vragen over hun 

jeugd en er worden hersenfoto’s gemaakt met een MRI-scanner. Met die 

hersenfoto’s kan je zien uit welke structuren de hersenen zijn opgebouwd. 

En met de MRI-scanner kan je ook de activiteit van de hersenen onderzoe-

ken. Meer informatie hierover vind je verderop in deze samenvatting. De 

gegevens die via YOUth bij jongeren zijn verzameld, heb ik gebruikt voor 

mijn onderzoek.  

Hersenfoto’s zijn interessant, omdat de hersenen van ieder mens uniek zijn. 

Net zoals jouw vingerafdrukken uniek zijn. Er zijn veel verschillende dingen 

die allemaal een klein beetje bepalen hoe jouw hersenen eruitzien en hoe 

jouw hersenen werken. Dat zijn bijvoorbeeld dingen zoals je leeftijd, of je 

een jongen of meisje bent, het gezin waarin je opgroeit en je erfelijk mate-

riaal (DNA). Zo ontstaan verschillen tussen de hersenen van jongeren. 

jongen / meisje

DNA

leeftijd

14 jaar

Elizabeth
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Laten we eens kijken naar één deelnemer, bijvoorbeeld Lisa (die naam heb 

ik verzonnen, want ik mag de namen van deelnemers aan het onderzoek 

niet zomaar delen). In het plaatje zie je dat Lisa grotere hersenen heeft dan 

een gemiddeld meisje van haar leeftijd. Haar stip ligt namelijk boven de 

rode lijn. Dat komt omdat hersenvolume niet alleen wordt bepaald door 

hoe oud je bent of doordat je een jongen of meisje bent. Ook wat je mee-

maakt in je jeugd en erfelijke factoren bepalen hoe groot je hersenen zijn. 
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Elke stip is een YOUth deelnemer

Elke lijn is een gemiddelde trend

jongens
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Hoe ouder, hoe groter de hersenen
Als je groeit veranderen je hersenen met je mee. De hersenen van een 

baby zien er anders uit dan de hersenen van een puber. Al voor je geboor-

te, dus in de buik, beginnen je hersenen te groeien. En tijdens je kindertijd 

en puberteit blijven ze doorgroeien. In het plaatje met de roze en blauwe 

stipjes zie je de hersenvolumes – dus hoe groot de hersenen zijn - van de 

deelnemers aan het YOUth-onderzoek. Je ziet dat er veel verschil is tussen 

de jongeren. Sommige jongeren hebben een hersenvolume tot wel 2.000 

milliliter (dat is zo groot als twee melkpakken), terwijl andere jongeren 

een hersenvolume hebben van zo’n 1.200 milliliter (iets meer dan één pak 

melk). In dit plaatje zie je ook dat oudere kinderen grotere hersenvolumes 

hebben. 
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DNA: 
instructieboekje voor je 
hersenen
Ik heb je net uitgelegd dat er verschillende dingen 

zijn die allemaal een beetje bepalen hoe je herse-

nen eruitzien. Een van die dingen is je DNA. In je 

DNA liggen alle erfelijke eigenschappen opge-

slagen die jouw vader en moeder aan jou hebben 

doorgegeven. Of je blond of donker haar hebt 

bijvoorbeeld. In jouw DNA vind je ook een soort 

instructieboekje waarin staat hoe je hersenen ge-

bouwd moeten worden. Dit unieke instructieboekje 

wordt gemaakt door informatie te combineren uit 

het instructieboekje van je vader én je moeder. 

Je hersenen zijn een soort fotoalbum
Ook jeugdervaringen en de omgeving waarin je opgroeit hebben invloed 

op hersenen in de groei. Je kan je vast veel momenten van vroeger goed 

herinneren zonder dat je daarvoor in je fotoalbum hoeft te kijken. Dat komt 

omdat ze zijn opgeslagen in je hersenen. Je hersenen zijn dus veranderd 

door al jouw eigen ervaringen. Die verandering in je hersenen is wel heel 

klein. Maar als een ervaring heel belangrijk was of heel lang heeft geduurd 

– bijvoorbeeld als je ouders zijn gescheiden of als er iemand in je omgeving 

heel ziek is geweest – dan is het effect op je hersenen iets groter. Daardoor 

zijn die veranderingen makkelijker te meten door wetenschappers. Als je 

als kind lange tijd veel stress hebt gehad of iets naars hebt meemaakt, kan 

het zijn dat je hersenen zich daaraan aanpassen. De ontwikkeling van je 

hersenen verloopt dan misschien wel anders dan bij je leeftijdsgenoten. 

Deze veranderingen in de hersenen kunnen positieve effecten hebben. 

Iemand kan bijvoorbeeld door die ervaringen misschien wel beter omgaan 

met stress, omdat de hersenen eraan gewend zijn. Maar, je raadt het al, de 

veranderingen in de hersenen kunnen helaas ook negatieve effecten heb-

ben. Zo kan iemand bijvoorbeeld gevoeliger worden voor stress. 

Hoe worden hersenfoto’s gemaakt?  
MRI is een techniek waarmee de binnenkant van je lichaam wordt gefoto-

grafeerd. Een MRI-scanner is een tunnel met daarin sterke magneten. De 

kleinste bouwstenen van het menselijk lichaam zijn ook een beetje mag-

netisch en reageren op de magneten in de MRI-scanner met een signaal. 

Dat signaal wordt opgevangen door antennes die verstopt zitten in een 

helm. Tijdens het scannen ligt iemand in de magneettunnel met de helm 

op en dan wordt er een foto van de hersenen (hersenscan) gemaakt. Bij het 

YOUth-onderzoek maken we verschillende soorten MRI-scans. 
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2

Hoe sterk zijn de verbindingen 
tussen hersengebieden?

Welke gebieden zijn actief tijdens 
het herkennen van emotie?

 Hersenactiviteit scan 
Een hersenactiviteit scan is eigenlijk meer een filmpje dan een foto van 
de hersenen. De jongere die in de MRI-scanner ligt, krijgt verschillende 
plaatjes te zien. In dit onderzoek zijn het plaatjes van gezichten en van 
huizen. Daarna meten we of een hersengebied actiever is bij het kijken 
naar gezichten dan tijdens het kijken naar huizen. Ook kunnen we 
kijken of de hersenen anders reageren op een bang gezicht dan op een 
vrolijk gezicht door de hersenactiviteit met elkaar te vergelijken.

3
       Anatomische scan
Een anatomische scan is een hele scherpe foto waarop de bouw van 
de hersenen (de anatomie) gedetailleerd te zien is. Hieronder zie je 
een voorbeeld van zo’n foto. De grijze stof aan de buitenkant van de 
hersenen noemen we de hersenschors. De witte stof verbindt de ver-
schillende hersenschors gebieden met elkaar. Rechts op het plaatje 
zie je hoe de hersenscan eruitziet nadat we een computerprogramma 
hebben gebruikt dat de hersenen indeelt in kleine gebieden (elke kleur 
is een gebied). Daarna meten we hoe groot elk gebied is. Bijvoorbeeld 
om te onderzoeken of bepaalde gebieden bij een jongere groter zijn 
dan gemiddeld.

1

 Witte stof scan
Een witte stof scan kun je gebruiken om te bepalen hoe sterk de 
hersengebieden met elkaar verbonden zijn. De witte stof bestaat uit 
verbindingskabels tussen hersengebieden. Sterke kabels maken het 
makkelijker voor hersengebieden om met elkaar te kunnen praten en 
onderling samen te werken. Zoals je ziet op de foto hieronder is bij 
een witte stof scan, de witte stof juist donkergrijs en de hersenschors 
wit. Rechts zie je hoe we de scan weer opdelen in verschillende 
verbindingskabels die elk een eigen kleur krijgen. Daarna meten we 
hoe sterk de verbindingskabels zijn. 

Hoe groot zijn de hersengebieden?

Ik gebruik voor mijn onderzoek drie soorten scans: 
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Onderzoeksvragen
In mijn proefschrift zoek ik naar een verklaring voor de verschillen in de 

bouw en activiteit van de hersenen tussen jongeren. In mijn onderzoek 

probeer ik antwoord te geven op twee vragen: 

1. Is er een verband tussen de bouw van de hersenen en negatieve jeugd-

 ervaringen? Om deze vraag te beantwoorden heb ik gebruik gemaakt 

van anatomische scans en witte stof scans.

2. Is de hersenactiviteit anders in jongeren die snel emoties op gezichten 

kunnen herkennen (bang of blij)? Om deze vraag te beantwoorden heb 

ik gebruik gemaakt van hersenactiviteit scans.

De belangrijkste onderzoeksresultaten

Vraag 1: Is er een verband tussen de bouw van de hersenen en negatieve 

jeugdervaringen? 

De hersenen van jongeren die kortgeleden een nare levenservaring hebben 

meegemaakt (zoals pesten of een scheiding) lijken heel erg op die van 

jongeren zonder deze ervaringen. De invloed van nare levenservaringen op 

hersenstructuur lijkt dus mee te vallen. Het kan ook zijn dat de deel-

nemers aan het YOUth-onderzoek sommige hele nare levenservaringen 

niet hebben meegemaakt, of dat we die niet hebben kunnen meten. 

Daarom is het goed om hier nog verder onderzoek naar te doen. 

Vraag 2: Is de hersenactiviteit anders bij jongeren die snel emoties in 

gezichten herkennen?

Jongeren die snel kunnen herkennen of iemand bang of blij is, hebben geen 

andere activiteit in hersengebieden die zorgen voor het verwerken van 

emoties in gezichten. Opvallend was dat oudere kinderen het makkelijker 

vinden om emoties te herkennen dan jongere kinderen. Tot slot, was een 

leuk resultaat dat de hersenactiviteit groter is tijdens het kijken naar blije 

gezichten dan naar bange gezichten. De hersenen van jongeren worden dus 

helemaal wakker van blije gezichten. 

11

Toekomst
Is het je opgevallen dat ik in mijn resultaten wel heel vaak schrijf ‘het kan 

zijn dat…’ en ‘misschien’. Dat betekent dat mijn onderzoek nog niet klaar is 

en dat ik – of andere onderzoekers – nog verder zullen gaan met dit onder-

zoek. 

Onderzoek naar hersenontwikkeling kan helpen bij het ondersteunen van 

jongeren die tegen problemen aanlopen tijdens het opgroeien. Daarom 

is het fijn dat er zoveel deelnemers mee hebben gedaan aan YOUth. Zo 

helpen we samen de wetenschap een stukje verder!

Mijn proefschrift is nu af, maar ik ben nog lang niet klaar met hersenonder-

zoek. Tegenwoordig werk ik bij de Universiteit Leiden. Daar ga ik verder 

onderzoek doen naar de invloed van de sociale omgeving op hersenontwik-

keling. Ook wil ik graag onderzoeken of de hersenen van jongens en meis-

jes anders reageren op positieve en negatieve gebeurtenissen in de jeugd.

Heb je vragen over deze samenvatting van mijn proefschrift? Dan mag je 

me altijd een mail sturen: e.e.l.buimer@fsw.leidenuniv.nl 

1

2
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nemers aan het YOUth-onderzoek sommige hele nare levenservaringen 

niet hebben meegemaakt, of dat we die niet hebben kunnen meten. 

Daarom is het goed om hier nog verder onderzoek naar te doen. 

Vraag 2: Is de hersenactiviteit anders bij jongeren die snel emoties in 

gezichten herkennen?

Jongeren die snel kunnen herkennen of iemand bang of blij is, hebben geen 

andere activiteit in hersengebieden die zorgen voor het verwerken van 

emoties in gezichten. Opvallend was dat oudere kinderen het makkelijker 

vinden om emoties te herkennen dan jongere kinderen. Tot slot, was een 

leuk resultaat dat de hersenactiviteit groter is tijdens het kijken naar blije 

gezichten dan naar bange gezichten. De hersenen van jongeren worden dus 

helemaal wakker van blije gezichten. 
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Toekomst
Is het je opgevallen dat ik in mijn resultaten wel heel vaak schrijf ‘het kan 

zijn dat…’ en ‘misschien’. Dat betekent dat mijn onderzoek nog niet klaar is 

en dat ik – of andere onderzoekers – nog verder zullen gaan met dit onder-

zoek. 

Onderzoek naar hersenontwikkeling kan helpen bij het ondersteunen van 

jongeren die tegen problemen aanlopen tijdens het opgroeien. Daarom 

is het fijn dat er zoveel deelnemers mee hebben gedaan aan YOUth. Zo 

helpen we samen de wetenschap een stukje verder!

Mijn proefschrift is nu af, maar ik ben nog lang niet klaar met hersenonder-

zoek. Tegenwoordig werk ik bij de Universiteit Leiden. Daar ga ik verder 

onderzoek doen naar de invloed van de sociale omgeving op hersenontwik-

keling. Ook wil ik graag onderzoeken of de hersenen van jongens en meis-

jes anders reageren op positieve en negatieve gebeurtenissen in de jeugd.

Heb je vragen over deze samenvatting van mijn proefschrift? Dan mag je 

me altijd een mail sturen: e.e.l.buimer@fsw.leidenuniv.nl 

1

2
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toegangsdeuren naar een academische loopbaan. Toen ik voor je werkte als 
onderzoeksassistent leerde je me dat ik niet alles meteen hoefde te kunnen, zolang ik 

er maar plezier in had. Ik vind je een ontzettend warm persoon en ik dank je voor je 

hulp op verschillende momenten in mijn carrière. Hugo, aan het begin van mijn 

promotietraject vroeg ik of je mijn peet-dagelijks-begeleider wilde zijn. Rachel was zo 
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consistent in haar begeleiding dat je die rol nooit echt hebt hoeven waarnemen maar 
we hebben gelukkig veel samen kunnen werken. Ik heb onze persoonlijke en 

inhoudelijke gesprekken altijd erg gewaardeerd. Ik heb veel van je geleerd qua 

vaardigheden en manier van nadenken over dingen. Ik hoop dat je verder gaat met 

cello spelen. Wie weet kunnen we in de toekomst nog samenwerken want elk project 

kan wel wat machine learning gebruiken. René, bedankt voor de gezellige lunch en 

koffie momentjes. Fijn dat Pascal en ik op jouw hulp konden rekenen voor YOUth 

MRI.  

Pascal, bedankt dat je paranimf bent bij de verdediging van dit proefschrift. We 

waren een goed team binnen YOUth MRI. Gelukkig ging het nooit te lang over werk. 
Liever praten we bij over de nieuwste aflevering van Succession. Ik vond het erg mooi 

om de belangrijke events in jouw leven van de zijlijn mee te mogen maken (vaak 

ondersteund met beeldmateriaal).  

Sonja, bedankt voor je gezelligheid en energie. Ik heb veel bewondering voor je 

stressbestendigheid en durf. Knap hoe je je carrière en leven hebt weten in te richten. 

Leuk dat we samen nog in Rome zijn geweest en hebben geproost op jouw promotie 

op de trap van het academiegebouw. Jalmar, wat was het fijn om jou in het lab te 

hebben met jouw rust, kennis en gezelligheid. Janneke, bedankt voor al je 

behulpzaamheid en zorgvuldigheid tijdens mijn promotietraject, met name bij de 

voltooiing ervan. Jeanette, bedankt voor hoe je iedereen welkom hebt laten voelen 
binnen Hilleke’s groep. Zimbo, bedankt voor al het werk dat je hebt gedaan om onze 

(legacy) data veilig te stellen. Yumas, bedankt dat je zo’n goede admin was op onze 

superclusters.  

Graag bedank ik de leden van de leescommissie voor hun tijd om het proefschrift te 

lezen en beoordelen:  Prof. dr. Durston, Prof. dr. Lucres Nauta-Jansen, Prof. 

dr. Kenemans, Prof. dr. Ramsey en Prof. dr. Kemner. 

Big thanks to all the researchers that I had the pleasure of working with during my 

PhD, such as Xiao, Nikita, Daniël, Mosi, Karis, Merel, Martijn, Natascha, 

Bram, Gijs, Ties, Marissa, Anika, Carlijn, Caroline, Roy etc. Also thanks to the 
amazing interns: Vera, Eva en Julia.  
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Bij zo’n groot onderzoek als het YOUth-onderzoek zijn heel veel mensen betrokken. 
Om te beginnen, alle mensen die hebben gewerkt bij het KinderKennisCentrum. 

In het speciaal wil ik hiervan bedanken Lilli en Coosje voor Parijs en zoveel meer, 

Marije voor je enthousiaste reacties op mijn communicatie ideeën en je geduldige 

hulp bij de uitvoering ervan, Gwen en Femke voor de fantastische manier waarop 

jullie de KKC praktijken soepel lieten lopen, Ron voor je vriendelijkheid en dat je 

altijd klaar stond voor onderzoekers. En natuurlijk wil ik ook bedanken: Jacobine, 

Dienke, Juliëtte, Jolien, Liset, Leon, Elysia, Alice, Djoya, Lesley, Mark en 

Danny. Als laatste wil ik hier Chantal bedanken. Wat mij betreft heb je wetenschap 

echt heel erg vooruit gebracht door binnen het YOUth-onderzoek team science en open 

science principes centraal te stellen. Je gaf altijd veel ruimte aan jonge onderzoekers 

en deelde het podium altijd met het YOUth-team.  

De inzet van heel veel medewerkers van het Team Radiologie van het UMC 

Utrecht waren essentieel bij het verzamelen van MRI-data binnen het YOUth-

onderzoek. In het bijzonder wil ik hier Guus bedanken voor zijn betrokkenheid. Ook 

wil ik de medewerkers bedanken die hielpen met het veiligstellen van de MRI-data 

en dan vooral Gerard. 

Van het WKZ wil ik Sabine, Sanne en Anouk hartelijk bedanken.   

Het geweldige SYNC lab wil ik bedanken voor de fijne sfeer op congressen en tijdens 

samenkomsten van CID. In het bijzonder wil ik Eveline bedanken voor het feit dat 
ze altijd klaar staat om met jonge onderzoekers mee te denken. Michelle en 

Suzanne wil ik bedanken voor het meedenken in mijn zoektocht naar een nieuwe 
baan.  

Christopher, it was a pleasure to find another researcher that was equally excited 

about privacy, structural MRI and defacing.  

I want to thank my new academic family for their support the past year and for 

making me really excited about the future, Anne-Laura, Maxi, Geert-Jan and 

Pauline. I am also very happy to have met the extended academic family, Rogier, 
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