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when you say the word
‘alzheimers’

i know you must be thinking of
the tangles and the plaques that reside in the brain,
the tau and the beta-amyloid that cause such a disease.

but when you say the word
‘alzheimers’

i think of my grandmother,
how when her frontal lobe disintegrated,
she’d curse at eight year old me,
and she’d eat goldfish for every meal.

and when you say the word
‘alzheimers’

i think of my grandmother,
how she’d move from house to house,
not knowing which one would be home.

and when you say the word
‘alzheimers’

i think of my grandmother,
the way she forgot who her husband was.
the way she forgot how to use the restroom.
the way she forgot us.

i think of my grandmother,
all the times she didn’t know how to think at all.

i think of my grandmother,
how the last thing she could do before she died,
was sing the same song she learned when she was five.

so when you say the word
‘alzheimers’



i hope you think of everyone’s
grandmother
mother
wife
daughter
son
husband
father
grandfather
that this disease inflicts.
i hope you think of the smiles that fade
because life doesn’t quite seem like anything at all.
i hope you think beyond the plaques and the tangles,
and you think of the people, the lives of the people behind it.

so when you say the word
‘alzheimers’
do not shake your head in sympathy.

when you say the word
ALZHEIMERS
i hope you take the anecdotes,
to untangle those tangles
and to clear the plaque
because it’s more than just that.
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Chapter 1

General introduction



14 | Chapter 1

Dementia is a neurodegenerative disease, characterized by cognitive decline, 
currently with no cure. Dementia presently affects 50 million people worldwide, 
and this number is estimated to triple by 2050 (1). The most common cause of 
dementia is Alzheimer’s disease (AD). There is a prolonged preclinical stage of AD 
that allows for the possibility to assess which risk factors are present and which 
biomarkers may be targets for early disease modification and treatment (2). The two 
defining features of AD include amyloid-beta plaques and neurofibrillary tangles. 
However, most patients with AD show mixed pathology, multiple types of brain 
changes contributing to the clinical syndrome of dementia (3). Specifically, the most 
common form of mixed pathology is with vascular pathology. Vascular pathology 
can be observed via magnetic resonance imaging (MRI) measures, such as white 
matter hyperintensities (WMH) and lacunes (4). WMH are hyperintense regions on 
T2-weighted MRI sequences or as isointense or hypointense regions on T1-weighted 
sequences (4). Previous studies have suggested a relationship between both vascular 
and AD pathologies (5-8); however, most studies have been done using expensive 
and invasive methods such as positron emission topography (PET) or cerebrospinal 
fluid (CSF) for assessment of AD pathology.

Recent advancements assessing AD pathology in blood plasma have made 
measuring Alzheimer’s pathology much more accessible. Highly-sensitive blood 
biomarker assays are now available to assess amyloid-beta and phosphorylated 
tau (p-tau), as well as other AD-related pathology, such as neurodegeneration 
and astrocyte activation, assessed via neurofilament light (NfL) and glial fibrillary 
acidic protein (GFAP), respectively (9). The ability to assess AD pathology in blood 
plasma allows for large-scale studies to assess the relations between AD pathology 
in vivo with other relevant biological processes, such as vascular pathology. As the 
relationship between AD pathology and vascular pathology has been hampered 
by the invasiveness and costs associated with CSF and PET measurements, one of 
the aims of the current study was to explore the association between these two 
pathologies within blood plasma.

Dementia and depression: mapping the psychosocial to the biological
Dementia is a multifaceted disease that is influenced by a wide range of factors, not 
only amyloid-beta and vascular pathology. For example, studies have shown one of 
the main contributors to dementia is depression (10-12). However, the mechanistic 
relationship between depression and dementia is still not yet fully understood 
(13). One explanation for this association could be that depression and dementia 
share biological mechanisms (14), such as through neurodegeneration (15), AD 
pathophysiology (16-18), neurotoxicity (19), or vascular pathology (20). 
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One of the leading hypotheses regarding the relationship between depression and 
dementia is the neurotoxicity hypothesis (21). This hypothesis stipulates that chronic 
stress in depression leads to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) 
axis and then downstream increases of cortisol. Hypercortisolemia has been related 
to depression (22), as well as neurodegeneration (23), specifically in the hippocampus 
(24). Further, the hippocampus is a heterogeneous structure, consisting of multiple 
subfields that show a differential response to stress. Specifically within the cornu 
ammonis (CA) 3 and the dentate gyrus, studies have shown neurogenesis inhibition 
post-stress exposure compared to other subfields within the hippocampus (25). 

The second hypothesis regarding the relation between depression and dementia is 
the vascular hypothesis. The vascular depression hypothesis states that the relation 
between depression and dementia could be due to shared vascular risk factors. 
Small vessel changes in the brain due to vascular pathology, specifically in mood-
regulating areas, could explain the link with depression (20). In line with the vascular 
hypothesis, the association of depression with subsequent vascular dementia is 
larger than that with Alzheimer’s disease (26).

Another explanation could be that late-life depression is a reaction to AD-related 
pathophysiology during the prolonged preclinical stage of dementia, termed the 
amyloid hypothesis for depression (17). Increased levels of cortical amyloid-beta 
have been found in those with major depressive disorder (27). Further, a systematic 
review and meta-analysis found an association between plasma amyloid-beta levels 
and depression (28). 

Alongside depression, other psychosocial factors have also been linked to dementia, 
such as low social support (29), anxiety (30), and early-life adversity (31), possibly 
through hippocampal loss as mediator (32-34). However, studies assessing these 
other psychosocial factors have been more scarce. Therefore, another aim of this 
thesis was to explore the associations between psychosocial factors, with multiple 
biological mechanisms that overlap with dementia (i.e., vascular pathology, 
neurotoxicity, AD pathophysiology, and hippocampal [subfield] atrophy).

Precision medicine and dementia
The emerging field of precision medicine, which aims to take into account individual 
differences across biological and psychosocial systems, has potential for improving 
dementia prevention (35). With a better understanding of an individual’s risk profile, 
tailored methods for prevention and treatment could be created and utilized  
for dementia. 
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While multiple biological and psychosocial factors have been linked to dementia, 
these factors are primarily studied in isolation. However, complex relationships 
exist between these factors (36). With the recent advancements in data-driven 
statistical methodologies, the potential to create a holistic etiological picture of the 
biopsychosocial risk factors for dementia becomes increasingly possible. One way 
to assess biomarker profiles is to use a multisystem approach that allows for the 
possibility to assess the complex interactions that may exist between biomarkers 
(37, 38). One framework that encompasses multiple systems of biomarkers (e.g., 
cardiovascular, metabolic, inflammatory, and stress) is allostatic load (AL). AL refers to 
the damaging physiological responses to stress that the body performs throughout 
our lifetime (39). While these responses on the short-term are adaptive (termed 
‘allostasis’), chronic stress can lead to dysregulation across multiple biomarker 
systems. Further, by using a multisystem approach, one can assess if one biomarker 
system (e.g., metabolic) may be more of a driving system for disease risk than another 
(e.g., cardiovascular) or if some biomarkers systems co-exist more frequently in 
tandem. Lastly, by understanding possible multisystem risk profiles, clinicians could 
then further assess a patient’s possible risk as well as implement more personalized 
prevention techniques (35). 

Another novel statistical technique that could aid in precision medicine for dementia 
is machine learning. Thus far, prognostic models for dementia have shown poor 
calibration and performance when externally validated (40, 41). This could be due 
to complex interrelationships between predictors or nonlinear relationships and 
interactions that ‘traditional’ statistical methods, such as logistic or Cox regression, 
are unable to take into account. With the rise of more advanced statistical modeling 
techniques for disease prediction, these complex relationships could then be used 
instead to increase a model’s predictive performance (42).

General objective
The aim of this thesis was to investigate the biological underpinnings of dementia 
by assessing the relations between amyloid-beta and vascular pathology, as well 
as with psychosocial factors, such as depression. We further aimed to investigate 
a biopsychosocial approach to classifying at-risk individuals by incorporating both 
biological and psychosocial aspects using data-driven profiles and risk prediction 
using machine learning (see Figure 1). 
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Outline of this thesis

The first section focused on the two main biomarkers for dementia: amyloid-beta 
deposition and vascular pathology. In chapter 2, we explored the cross-sectional 
association between amyloid burden and white matter hyperintensities in older 
adults without cognitive impairment using a systematic review and meta-analysis. In 
chapter 3, we explored the association between novel blood plasma markers for AD 
pathophysiology with MRI markers of vascular pathology and neurodegeneration. 
The second section dove into possible psychosocial factors influencing dementia 
risk. In chapter 4, we assessed psychosocial factors such as depressive symptoms, 
anxiety symptoms, early-life and late-life adversity, and social support, in relation 
to hippocampal (subfield) atrophy. In chapter 5 and chapter 6, we attempted to 
elucidate possible mechanisms explaining the relation between depression and 
dementia. We first performed a systematic review and meta-analysis on amyloid-
beta pathology and depression in older adults without dementia in chapter 5. In 
chapter 6, we performed an IPD meta-analysis on 8 Dutch cohorts assessing the 
relation between novel AD plasma biomarkers and depressive symptoms. Finally, 
chapter 7 explored if the neurotoxicity hypothesis or the vascular hypothesis 
explained the relation between depression and dementia. The final section of the 
thesis examined the use of data-driven techniques on moving towards precision 
medicine of dementia by using this biopsychosocial approach. Chapter 8 used a 
data-driven clustering technique to explore if allostatic load risk profiles explained 
the relationship between depression and dementia. Chapter 9 implemented 
machine learning techniques that allow for complex statistical interactions between 
biological and psychosocial factors to assess the 12-year risk for incident dementia 
in individuals without any cognitive impairment.
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Figure 1. Schematic representation of the topics discussed in this thesis. 
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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia, characterized by 
the aggregation of amyloid-beta (Aβ) proteins into plaques. Individuals with AD 
frequently show mixed pathologies, often caused by cerebral small vessel disease 
(CSVD), resulting in lesions such as white matter hyperintensities (WMH). The current 
systematic review and meta-analysis investigated the cross-sectional relationship 
between amyloid burden and WMH in older adults without objective cognitive 
impairment. A systematic search performed in PubMed, Embase, and PsycINFO 
yielded 13 eligible studies. Aβ was assessed using PET, CSF, or plasma measurements. 
Two meta-analyses were performed: one on Cohen’s d metrics and one on correlation 
coefficients. The meta-analyses revealed an overall weighted small-to-medium 
Cohen’s d of 0.55 (95% CI: 0.31–0.78) in CSF, an overall correlation of 0.31 (0.09–0.50) 
in CSF, and a large Cohen’s d of 0.96 (95% CI: 0.66–1.27) in PET. Only two studies 
assessed this relationship in plasma, with an effect size of – 0.20 (95% CI: −0.75 to 
0.34). These findings indicate a relationship between both amyloid and vascular 
pathologies in cognitively normal adults in PET and CSF. Future studies should assess 
the possible relationship of blood amyloid-beta and WMH for broader identification 
of at risk individuals showing mixed pathology in preclinical stages.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by declining 
cognitive functioning and quality of life, accounting for 60-80% of all dementia cases 
(1). The pathogenesis of AD begins two to three decades before the onset of clinical 
symptoms, providing opportunity for prevention and intervention. Further, AD 
pathology rarely occurs in isolation and is typically due to mixed pathology, in which 
brain changes are associated with multiple causes contributing to dementia (2). 

AD pathology includes aggregation of amyloid-beta (Aβ) protein in the brain as 
well as vascular lesions, where blood vessels in the brain and/or brain tissue are 
damaged due to not receiving enough oxygen, blood, or nutrients. Cerebral small 
vessel disease (CSVD) refers to a group of diseases that affect these small cerebral 
blood vessels (3). One marker of CSVD, visualized on magnetic resonance imaging 
(MRI), includes white matter hyperintensities (WMH). WMH are common in healthy 
older adults and are associated with increasing age (4). Additionally, WMH are 
more frequently present in individuals with AD (5) and are also associated with an 
increased risk of AD (6). The severity of WMH increases faster over time in individuals 
with AD compared to healthy older adults (7) and are also associated with worse 
cognitive functioning (8, 9). In individuals with AD, amyloid burden is associated with 
WMH (6, 10, 11). Moreover, AD is associated with increased WMH long before the 
expected onset of symptoms (12), suggesting WMH may play a role in the preclinical 
stage of AD. However, previous literature assessing the association between amyloid 
burden and WMH has shown conflicting results in older adults both with and without 
cognitive impairment. While some studies found that higher amyloid burden was 
related to more WMH (11, 13-17), other studies did not detect such a relationship 
(11, 17-25). While AD pathology and vascular pathology could be independent 
processes, a previous literature review (26) highlighted that a relation may still exist 
and is blurred by differences in methods between studies. Further, there have been 
conflicting results when assessing amyloid in different modalities or within different 
isoforms. For example, van Westen, Lindqvist (11) reported a significant association 
only for plasma Aβ38 and Aβ40, but not for plasma Aβ42 or when using 18F positron 
emission topography (PET). Brickman, Guzman (13) found a significant association 
only when observing amyloid categorically, not continuously. Therefore, a systematic 
review and meta-analysis that explores these methodological differences and their 
impact on the association between amyloid-beta and WMH is warranted.

Three previous systematic reviews (6, 26, 27), one including a meta-analysis (6), 
investigated the cross-sectional association between amyloid and WMH in older 
adults without cognitive impairment. Two reviews found no association between 
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amyloid and WMH in cognitively unimpaired older adults (6, 26). However, one 
review (26) only included studies using PET imaging to assess amyloid burden; 
while the other review (6) only included two studies in the meta-analysis. The most 
recent review (27) included 14 studies that assessed amyloid, and all but two found 
a significant relationship between the two pathologies. Further, only three studies 
solely focused on cognitively unimpaired individuals. By focusing on cognitively 
unimpaired individuals in the current review and multiple modalities of amyloid 
assessment, we can better quantify the relationship between the two leading 
pathologies of AD during its extended preclinical stage. In this current systematic 
review and meta-analysis, we investigated the cross-sectional relationship between 
amyloid burden and WMH in older adults without objective cognitive impairment. 
Systematic evidence for the presence or absence of an association between amyloid 
and WMH in cognitively unimpaired older adults could provide more insight into 
the pathogenesis of AD and its relationship with CSVD in the preclinical stage of AD. 

Methods

This systematic review and meta-analysis was performed following the PRISMA 
guidelines (28) (Supplementary Info 1).

Search and study selection
A search string for studies that investigated the association between amyloid and 
WMH in older adults without cognitive impairment was developed in consultation 
with a librarian (P.W., acknowledgments) for PubMed, and it was subsequently 
translated to Embase and PsycINFO (Supplementary Info 2). On May 7, 2021, the 
MEDLINE, Embase and PsycINFO databases were searched, after which duplicates 
were removed with EndNote (v. 20.2) (29) reference management software. 
Subsequently, two reviewers (E.T. and B.M.) independently screened titles and 
abstracts using the Rayyan app (30) to assess eligibility. Full texts of the remaining 
articles were retrieved and screened against eligibility criteria. Any disagreements 
were resolved by discussion. Snowballing and reverse snowballing were performed 
by scanning the reference lists of the included articles for any other publications of 
interest as well as searching Scopus for other works that cited the included articles. 

An updated search was performed on February 7, 2022 and the same procedures as 
listed above were performed independently by two reviewers (E.T. and M.B.) for the 
additional articles.
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Eligibility criteria
Studies eligible for inclusion reported a cross-sectional association between amyloid 
burden—measured by PET imaging, cerebrospinal fluid (CSF), or blood plasma 
assays—and WMH, as measured by MRI or CT scan. Studies had an observational 
cross-sectional or longitudinal design with reported baseline characteristics and 
associations. Clinical trials were excluded. Only articles reporting associations in older 
adults without objective cognitive impairment were included. Therefore, studies on 
individuals who reported subjective cognitive impairment may have been included. 
No criteria for age of the participants, language, or publication date were set.

Studies reporting only spatial (e.g., only deep or periventricular) measurements 
of WMH on MRI, as our focus was on total WMH volume, or only longitudinal 
associations were excluded. Moreover, studies were excluded if they included only 
participants with the same amyloid status or if there was insufficient information to 
calculate an effect size. If the same study cohort was used in multiple articles, the 
study with the largest sample size was included.

Data extraction and risk of bias assessment
Information about the size of the cohort, participant demographics and 
characteristics, measurements, amyloid method (PET, CSF, or plasma), amyloid 
isoforms (Aβ40 and Aβ42), metrics (continuous or categorical), WMH assessment, and 
associations between amyloid and WMH were extracted from the selected articles. 

The risk of bias assessment was performed using an adjusted version of the 
Newcastle-Ottawa Quality Assessment Scale for Cohort Studies (Supplementary Info 
3), where the included studies were rated with stars based on nine criteria within the 
following sections: quality of participant selection, comparability of cohorts based 
on the design or analysis, and quality of outcome assessment.

Statistical analysis
Statistical analysis was performed using R version 4.0.3 (31). The outcomes of the 
individual studies were transformed into Cohen’s d using means and standard 
deviations, point-biserial correlations, and Cohen’s f using the esc package in R 
(32), if the data was available. If correlation coefficients were reported, they were 
included in a separate meta-analysis. Effect sizes were reversed if amyloid burden 
was measured by CSF or blood plasma, as lower amyloid levels in CSF or plasma 
represent a higher amyloid burden in the brain (33, 34). Therefore, all studies with a 
positive effect size (i.e., Cohen’s d or correlation) represent a relation between more 
WMH with higher amyloid burden. A random-effects model was used to calculate the 
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pooled estimates from the Cohen’s d and correlation coefficients separately using the 
meta and metafor packages (35, 36). We chose a random-effects model over a fixed-
effects model because in the presence of heterogeneity, a random-effects meta-
analysis weights the studies relatively more equally than a fixed-effect analysis (37).

As some studies had multiple amyloid metrics from the same subjects (i.e., reporting 
both Aβ40 and Aβ42, reporting continuous and categorical scales, reporting both 
adjusted and unadjusted results), some analyses were not included in the calculation 
of the pooled estimate for the overall meta-analysis to avoid those studies getting 
weighted multiple times in the meta-analysis. Preference was given to continuous 
data, the isoform Aβ42, and analyses adjusted for covariates. 

Heterogeneity was tested using Cochran’s Q test and I2 statistic. Moderate 
heterogeneity was rated as 30-60%, substantial heterogeneity as 50-90%, and 
considerable heterogeneity as more than 75% based on the Cochrane Handbook 
(38). The risk of publication bias was assessed by visual inspection of funnel plots 
and the Egger’s t-test. To explore heterogeneity, subgroup analyses were performed 
based on amyloid assessment method (PET, CSF, or plasma), covariate adjustment, 
amyloid classification (continuous or categorical), and WMH assessment (Fazekas 
score or volumetric). As APOE e4 genotype can influence the relation between AD 
pathology and WMH (26), we also performed a meta-regression on prevalence of 
APOE e4 genotype per study. The statistical significance threshold was set at p < 0.05.

Results

Search results
A total of 1287 articles were found after duplicate removal, of which 43 full-text 
articles were assessed for eligibility (Figure 1). After full-text screening, 13 studies 
were included in the meta-analysis (13-16, 20-25, 39-41) (Figure 1). 

The demographics of the subjects of the included studies are shown in Table 1. The 
included studies consisted of a total of 2649 participants, with a mean age ranging 
from 59-85 years, the percentage of females ranging from 13-65%, and a mean 
education ranging from 14-18 years, if reported. Six studies (46.2%) reported APOE ε4 
allele positivity, with a range of 21-34% of participants having at least one APOE ε4 
allele. Six studies (46.2%) measured amyloid with PET imaging, two studies (15.4%) 
measured amyloid in plasma, and five studies (38.5%) measured amyloid in CSF. In 
the studies that used PET imaging, half of the studies used the 11C-PiB PET tracer 
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and the other half used a 18F PET tracer. Most of the studies looked globally with the 
cerebellar cortex as reference. All CSF studies used an ELISA assay. For plasma, one 
study assessed amyloid via endothelial-derived exosomes, and the other used the 
Luminex xMAP assay. Nine of the 13 studies (69.2%) assessed WMH volumes using 
automated procedures. Three (42.9%) of the seven studies using CSF or blood plasma 
measured only Aβ42, while four studies (57.1%) measured both Aβ40 and Aβ42. 
Eleven studies (84.6%) reported a continuous scale for amyloid burden, two studies 
(15.4%) reported only a categorical scale, and one study (7.7%) reported both. For 
the categorical studies, Kaffashian, Tzourio (22) used tertiles to assess amyloid-beta 

Figure 1. PRISMA flow chart of the original literature search.
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levels and Kandel, Avants (14) reported that 31% of the sample was amyloid-positive. 
All studies determined WMH on MRI, except for one study (7.7%) that used a CT scan. 
Moreover, five studies (38.5%) separated participants into groups based on their 
WMH burden, while the other studies (61.5%) used WMH burden as a continuous 
outcome. While three studies (23.1%) used the Fazekas score for WMH assessment, 
the other 10 studies (76.9%) used volumes. Covariates (e.g., age, sex/gender, 
education, or other factors) were controlled for in eight studies (61.5%). Five studies 
(38.5%) reported correlation coefficients, whereas the rest of the studies reported 
metrics that could be converted into a Cohen’s d.

Table 1. Characteristics of the participants of the included studies in the meta-analysis.

Study Cohort Cohort origin Sample 
size

Age (Mean ± 
SD in years)

Sex/gender 
distribution 
(% women)

Education (Mean ± SD 
in years)

APOE ε4 
positive, 
%

Vascular burden

Abner, Elahi (39) Sander-Browns Center 
on Aging of University of 
Kentucky, Memory and 
Aging Center of University 
of California

Memory clinic 42 73.5 ± 1.6 52% 18 ± 1 - 52% deemed having CSVD based on Fazekas

Brickman, Guzman (13) Washington Heights 
Inwood Columbia Aging 
Program (WHICAP)

Population 14 82.5 ± 3.3 43% - - Participants had an average of 1.8 vascular risk 
factors (i.e., diabetes, hypertension, or heart 
disease)

Gokcal, Horn (40) Massachusetts General 
Hospital

Research center 38 70 ± 7.1 13% - - All participants had CAA, 64% having 
hypertension

Hedden, Mormino (20) Harvard Aging Brain Study Population 109 73.5 ± 5.8 - - - -
Jonsson, Zetterberg (21) Leukoaraiosis and disability 

in the elderly (LADIS) 
project

Hospital 53 74 ± 4.8 47% - - -

Kaffashian, Tzourio (22) Three-City Dijon Study Population 1693 72.4 ± 4.1 61% 60% high school or less 21% 77% had hypertension, 8% had diabetes, 6% had 
prior cardiovascular disease

Kandel, Avants (14) Alzheimer’s Disease 
Neuroimaging Initiative 
(ADNI)

Population 158 73.5 ± 6.1 52% 16 ± 3 30% -

Kester, Goos (41) Amsterdam Dementia 
Cohort

Memory 
clinic

337 59 ± 9 42% - 34% 26% had hypertension, 10% had diabetes, 3% 
had myocardial infarction

Osborn, Liu (15) Vanderbilt Memory & 
Aging Project

Population 77 72 ± 7 29% 17 ± 2 29% 48% on anti-hypertensives, 13% had diabetes

Schreiner, Kirchner (23) Hospital for Psychogeriatric 
Medicine at University of 
Zurich

Hospital 27 70.3 ± 5.7 41% 16 ± 2 30% Vascular risk factors were low (no uncontrolled 
hypertension/hyperlipidemia, no diabetes, no 
smoking)

Skoog, Kern (16) Individuals living in 
Gothenburg

Population 30 85.4 ± 0.1 53% - - 13% had a stroke

van Waalwijk van Doorn, 
Ghafoorian (24)

Biomarkers for Alzheimer’s 
and Parkinson’s Disease 
(BiomarkAPD) project

Hospital 52 61.1 ± 8.9 65% - - -

Yi, Won (25) Keimyoung University 
Dongsan Medical Center

Memory clinic 19 62.5 ± 5.5 63% 14 ± 3 21% -

Note: CSVD = cerebral small vessel disease; CAA = cerebral amyloid angiopathy.
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Risk of bias within and across studies
Studies scored between four and nine stars on the risk of bias assessment  
(Table 2). Regarding selection criteria, four studies lost stars as their sample was 
not representative of an older community-dwelling adult without dementia (30.8%). 
Moreover, five studies (38.5%) did not adjust for any covariates (e.g., age, sex/gender, 
education, or other). One study (7.7%) did not measure WMH via MRI; therefore, it lost 
a star regarding ascertainment of the outcome. One study (7.7%) used median cut-
offs for amyloid assessment, losing a star regarding the exposure. One study scored 
all nine stars. The funnel plot to assess publication bias was not fully symmetric 

Table 1. Characteristics of the participants of the included studies in the meta-analysis.

Study Cohort Cohort origin Sample 
size

Age (Mean ± 
SD in years)

Sex/gender 
distribution 
(% women)

Education (Mean ± SD 
in years)

APOE ε4 
positive, 
%

Vascular burden

Abner, Elahi (39) Sander-Browns Center 
on Aging of University of 
Kentucky, Memory and 
Aging Center of University 
of California

Memory clinic 42 73.5 ± 1.6 52% 18 ± 1 - 52% deemed having CSVD based on Fazekas

Brickman, Guzman (13) Washington Heights 
Inwood Columbia Aging 
Program (WHICAP)

Population 14 82.5 ± 3.3 43% - - Participants had an average of 1.8 vascular risk 
factors (i.e., diabetes, hypertension, or heart 
disease)

Gokcal, Horn (40) Massachusetts General 
Hospital

Research center 38 70 ± 7.1 13% - - All participants had CAA, 64% having 
hypertension

Hedden, Mormino (20) Harvard Aging Brain Study Population 109 73.5 ± 5.8 - - - -
Jonsson, Zetterberg (21) Leukoaraiosis and disability 

in the elderly (LADIS) 
project

Hospital 53 74 ± 4.8 47% - - -

Kaffashian, Tzourio (22) Three-City Dijon Study Population 1693 72.4 ± 4.1 61% 60% high school or less 21% 77% had hypertension, 8% had diabetes, 6% had 
prior cardiovascular disease

Kandel, Avants (14) Alzheimer’s Disease 
Neuroimaging Initiative 
(ADNI)

Population 158 73.5 ± 6.1 52% 16 ± 3 30% -

Kester, Goos (41) Amsterdam Dementia 
Cohort

Memory 
clinic

337 59 ± 9 42% - 34% 26% had hypertension, 10% had diabetes, 3% 
had myocardial infarction

Osborn, Liu (15) Vanderbilt Memory & 
Aging Project

Population 77 72 ± 7 29% 17 ± 2 29% 48% on anti-hypertensives, 13% had diabetes

Schreiner, Kirchner (23) Hospital for Psychogeriatric 
Medicine at University of 
Zurich

Hospital 27 70.3 ± 5.7 41% 16 ± 2 30% Vascular risk factors were low (no uncontrolled 
hypertension/hyperlipidemia, no diabetes, no 
smoking)

Skoog, Kern (16) Individuals living in 
Gothenburg

Population 30 85.4 ± 0.1 53% - - 13% had a stroke

van Waalwijk van Doorn, 
Ghafoorian (24)

Biomarkers for Alzheimer’s 
and Parkinson’s Disease 
(BiomarkAPD) project

Hospital 52 61.1 ± 8.9 65% - - -

Yi, Won (25) Keimyoung University 
Dongsan Medical Center

Memory clinic 19 62.5 ± 5.5 63% 14 ± 3 21% -

Note: CSVD = cerebral small vessel disease; CAA = cerebral amyloid angiopathy.
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with Cohen’s d metrics as four dots lie outside the funnel. However, there was a 
symmetrical funnel plot for the studies reporting correlation coefficients (Figure 2). 
The Egger’s t statistic did not confirm a publication bias (Cohen’s d: bias = 1.95,  
SE = 1.37, t(6) = 1.42, p = 0.20; correlation coefficient: bias = 1.60, SE = 1.08,  
t(3) = 1.48, p = 0.24).

Meta-analysis
The study characteristics and effect sizes (Cohen’s d and correlation coefficients) of 
the included studies are shown in Table 3. The meta-analysis of the eight studies 
resulted in an overall weighted Cohen’s d of 0.45 (95% CI: 0.07-0.82, p = 0.02). An 
overall weighted correlation coefficient on the four other studies was 0.17 (95%  
CI: 0.03-0.31, p = 0.02) (Figure 3). There was substantial heterogeneity in the pooled 
estimate for Cohen’s d (Q(7) = 50.83, p < 0.001, I2 = 86.2%) (42). However, there 
was little to no heterogeneity for the studies reporting correlation coefficients  
(Q(4) = 3.40, p = 0.49, I2 = 0.0%).

Table 2. Risk of bias assessment using the adjusted Newcastle-Ottawa Quality Assessment Scale Cohort Studies.

Selection Comparability Outcome Overall (max. 9)

Study Representative Selection Exposure Age Sex/gender Education Other factors Outcome Same method

Abner, Elahi (39) - * * - - - - * * 4

Brickman, Guzman (13) * * * - - - - * * 5

Gokcal, Horn (40) - * * * * - * * * 7

Hedden, Mormino (20) * * * * - - - * * 6

Jonsson, Zetterberg (21) * * * - - - - * * 5

Kaffashian, Tzourio (22) * * - * * * * * 7

Kandel, Avants (14) * * * * * * - * * 8

Kester, Goos (41) - * * * * - - * * 6

Osborn, Liu (15) * * * * * * * * * 9

Schreiner, Kirchner (23) * * * - - - - * * 5

Skoog, Kern (16) * * * - - - - - * 4

van Waalwijk van Doorn, Ghafoorian (24) * * * * * - * * * 8

Yi, Won (25) - * * * * - - * * 6

Note: In Gokcal et al. (2022), presence of intracerebral hemorrhage was also included as a confounder. In 
Kaffashian et al. (2014), adjustments were also done for prior cardiovascular disease, diabetes mellitus, 
body mass index, hypertension, low-density and high-density lipoprotein cholesterol, triglycerides, uric 
acid, serum creatinine, and APOE ε2 and ε4 allele presence. In Osborn et al. (2018), models were also 
adjusted for race/ethnicity, intracranial volume, cognitive diagnosis, a modified Framingham Stroke 
Risk Profile, and APOE ε4 allele presence. In van Waalwijk van Doorn et al. (2021), models were also 
corrected for research center. 



35|The cross-sectional association between amyloid burden and white matter hyperintensities

2

Six out of the 13 studies reported information regarding the prevalence of APOE e4 
genotype. There were too little studies reporting APOE e4 genotype in the correlation 
coefficient meta-analysis to perform a meta-regression. However, for the meta-analysis 
on Cohen’s d studies, a meta-regression on those studies did not reveal that the 
prevalence of an APOE e4 allele had an impact on the meta-analysis (p = 0.05). 

Subgroup analyses
To explore heterogeneity, subgroup analyses were performed. When assessing a 
difference across methods for amyloid burden, there was a significant subgroup 
difference in the Cohen’s d studies (Q(2) = 13.97, p < 0.001). The meta-analysis of the 
three studies in CSF resulted in an overall weighted effect size of 0.55 (95% CI: 0.31-0.78, 
p < 0.001) (Figure 4). For the three PET studies, an overall weighted effect size of 0.96 
(95% CI: 0.66-1.27, p < 0.001) was found. For the two plasma studies, an effect size of 
-0.20 (95% CI: -0.75-0.34, p = 0.47) was found. There was substantial heterogeneity in 
the plasma studies (Q(1) = 3.27, p = 0.07, I2 = 69.5%) (42). There was no heterogeneity 
found in the CSF studies (Q(2) = 0.79, p = 0.64, I2 = 0%) or in the PET studies (Q(2) = 0.88, 
p = 0.64, I2 = 0%).

Table 2. Risk of bias assessment using the adjusted Newcastle-Ottawa Quality Assessment Scale Cohort Studies.

Selection Comparability Outcome Overall (max. 9)

Study Representative Selection Exposure Age Sex/gender Education Other factors Outcome Same method

Abner, Elahi (39) - * * - - - - * * 4

Brickman, Guzman (13) * * * - - - - * * 5

Gokcal, Horn (40) - * * * * - * * * 7

Hedden, Mormino (20) * * * * - - - * * 6

Jonsson, Zetterberg (21) * * * - - - - * * 5

Kaffashian, Tzourio (22) * * - * * * * * 7

Kandel, Avants (14) * * * * * * - * * 8

Kester, Goos (41) - * * * * - - * * 6

Osborn, Liu (15) * * * * * * * * * 9

Schreiner, Kirchner (23) * * * - - - - * * 5

Skoog, Kern (16) * * * - - - - - * 4

van Waalwijk van Doorn, Ghafoorian (24) * * * * * - * * * 8

Yi, Won (25) - * * * * - - * * 6

Note: In Gokcal et al. (2022), presence of intracerebral hemorrhage was also included as a confounder. In 
Kaffashian et al. (2014), adjustments were also done for prior cardiovascular disease, diabetes mellitus, 
body mass index, hypertension, low-density and high-density lipoprotein cholesterol, triglycerides, uric 
acid, serum creatinine, and APOE ε2 and ε4 allele presence. In Osborn et al. (2018), models were also 
adjusted for race/ethnicity, intracranial volume, cognitive diagnosis, a modified Framingham Stroke 
Risk Profile, and APOE ε4 allele presence. In van Waalwijk van Doorn et al. (2021), models were also 
corrected for research center. 
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Figure 2. Funnel plot of the 8 studies converted to Cohen’s d and the 5 studies using correlation 
coefficients.
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Figure 3. Forest plot of the two meta-analyses for a total of 13 studies of the relationship between 
amyloid and WMH in cognitively normal older adults. The effect sizes of the individual studies are 
represented by the squares, of which the size is proportional to the weight of the study. The diamond 
represents the pooled estimate. The effect sizes of analyses using continuous data, Aβ42, and adjusted 
for covariates were used for the meta-analysis, when a study reported multiple analyses.
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For the studies reporting correlation coefficients, there was not a subgroup difference 
between studies using PET or CSF (Q(1) = 2.58, p = 0.11). The overall weighted 
correlation coefficient for CSF studies was 0.31 (95% CI: 0.09; 0.50, p = 0.01). The 
overall weighted correlation coefficient for PET studies was 0.09 (95% CI: -0.07; 0.25, 
p = 0.28) (Figure 4). Neither PET nor CSF studies showed heterogeneity.

The studies that adjusted for covariates showed more variance compared to studies 
that did not adjust for covariates (Supplementary Figure 1). The confidence interval of 
the pooled effect size as well as the heterogeneity of the studies using a categorical 
scale were greater than studies using a continuous scale (Supplementary Figure 2); 
however, this subgroup analysis could only be performed in the Cohen’s d meta-
analysis. This pattern was also seen for studies using the Fazekas score compared 

Table 3. Study characteristics and effect sizes.

Study N Amyloid 
scale

Amyloid method WMH assessment Covariate controlled Cohen’s d±SE or 
correlation coefficient

Abner, Elahi (39) 42 Continuous Plasma, endothelial-derived exosomes, ELISA assay Fazekas score No -0.24 ± 0.31 (Aβ40)
-0.57 ± 0.31 (Aβ42)

Brickman, Guzman (13) 14 Continuous
Categorical

18F PET in either frontal, temporal, parietal, posterior 
cingulate, or occipital cortices

Volumetric, automated No 0.74 ± 0.55

2.31 ± 0.69
Gokcal, Horn (40) 38 Continuous 11C-PiB PET, globally with cerebellar cortex as 

reference
Volumetric, automated Age, sex, presence of intracerebral hemorrhage 0.72 ± 0.35

Hedden, Mormino (20) 109 Continuous 11C-PiB PET, only in the frontal, lateral parietal and 
temporal, retrosplenial cortices

Volumetric, automated Age 0.06 ± 0.10

Jonsson, Zetterberg (21) 53 Continuous CSF, MSD Multi-Array (Aβ40) & Luminex xMAP (Aβ42) Volumetric, automated No 0.05 ± 0.19 (Aβ40)
0.64 ± 0.19 (Aβ42)

Kaffashian, Tzourio (22) 1693 Categorical Plasma, Luminex xMap Volumetric, automated Age and sex 0.02 ± 0.06 (Aβ40)
0.01 ± 0.06 (Aβ42)
-0.08 ± 0.06 (Aβ42/40)

Kandel, Avants (14) 158 Categorical 18F PET, globally with cerebellar cortex as reference Volumetric, automated Age, sex/gender, education 1.05 ± 0.18
Kester, Goos (41) 337 Continuous CSF, ELISA Fazekas score Age, sex, medial temporal lobe atrophy 0.67 ± 0.20 (Aβ42)
Osborn, Liu (15) 77 Continuous CSF, ELISA Volumetric, automated 

then confirmed 
manually

Age, sex, race/ethnicity, education, intracranial 
volume, cognitive
diagnosis, APOE4, vascular risk factors

0.45 ± 0.16 (Aβ42)

Schreiner, Kirchner (23) 27 Continuous 11C-PiB PET, posterior cingulate and precuneus Volumetric, automated No 0.12 ± 0.19
Skoog, Kern (16) 30 Continuous CSF, ELISA Volumetric, via CT scan No 0.46 ± 0.15 (Aβ40)

0.39 ± 0.16 (Aβ42)
van Waalwijk van Doorn, 
Ghafoorian (24)

52 Continuous CSF, ELISA Volumetric, automated 
with a ML algorithm 
then checked manually

Age, sex, and research center 0.26 ± 0.13 (Aβ42)

Yi, Won (25) 19 Continuous 18F PET, globally with cerebellar cortex as reference Fazekas score Age and sex 0.23 ± 0.22

Note: WMH = white matter hyperintensities. ELISA = enzyme-linked immunosorbent assay.  
PiB = Pittsburgh compound B. PET = positron emission tomography. SUVR = standardized uptake value 
ratio. CSF = cerebrospinal fluid. Aβ = amyloid-beta. 
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to studies assessing WMH volumes (Supplementary Figure 3). This pattern could 
be explained by less studies in the subgroups with wider confidence intervals and 
larger heterogeneity.

Nonetheless, no significant subgroup differences were found when the studies were 
stratified by covariate adjustment (Cohen’s d: 3 vs. 5 study groups, Q(1) = 0.44, p = 
0.51; correlation coefficients: 2 vs. 3 study groups, Q(1) = 0.65, p = 0.42), amyloid scale 
(Cohen’s d: 2 vs. 6 study groups, Q(1) = 0.03, p = 0.87), or WMH assessment (Cohen’s 
d: 6 vs. 2 study groups, Q(1) = 0.55, p = 0.46).

Table 3. Study characteristics and effect sizes.

Study N Amyloid 
scale

Amyloid method WMH assessment Covariate controlled Cohen’s d±SE or 
correlation coefficient

Abner, Elahi (39) 42 Continuous Plasma, endothelial-derived exosomes, ELISA assay Fazekas score No -0.24 ± 0.31 (Aβ40)
-0.57 ± 0.31 (Aβ42)

Brickman, Guzman (13) 14 Continuous
Categorical

18F PET in either frontal, temporal, parietal, posterior 
cingulate, or occipital cortices

Volumetric, automated No 0.74 ± 0.55

2.31 ± 0.69
Gokcal, Horn (40) 38 Continuous 11C-PiB PET, globally with cerebellar cortex as 

reference
Volumetric, automated Age, sex, presence of intracerebral hemorrhage 0.72 ± 0.35

Hedden, Mormino (20) 109 Continuous 11C-PiB PET, only in the frontal, lateral parietal and 
temporal, retrosplenial cortices

Volumetric, automated Age 0.06 ± 0.10

Jonsson, Zetterberg (21) 53 Continuous CSF, MSD Multi-Array (Aβ40) & Luminex xMAP (Aβ42) Volumetric, automated No 0.05 ± 0.19 (Aβ40)
0.64 ± 0.19 (Aβ42)

Kaffashian, Tzourio (22) 1693 Categorical Plasma, Luminex xMap Volumetric, automated Age and sex 0.02 ± 0.06 (Aβ40)
0.01 ± 0.06 (Aβ42)
-0.08 ± 0.06 (Aβ42/40)

Kandel, Avants (14) 158 Categorical 18F PET, globally with cerebellar cortex as reference Volumetric, automated Age, sex/gender, education 1.05 ± 0.18
Kester, Goos (41) 337 Continuous CSF, ELISA Fazekas score Age, sex, medial temporal lobe atrophy 0.67 ± 0.20 (Aβ42)
Osborn, Liu (15) 77 Continuous CSF, ELISA Volumetric, automated 

then confirmed 
manually

Age, sex, race/ethnicity, education, intracranial 
volume, cognitive
diagnosis, APOE4, vascular risk factors

0.45 ± 0.16 (Aβ42)

Schreiner, Kirchner (23) 27 Continuous 11C-PiB PET, posterior cingulate and precuneus Volumetric, automated No 0.12 ± 0.19
Skoog, Kern (16) 30 Continuous CSF, ELISA Volumetric, via CT scan No 0.46 ± 0.15 (Aβ40)

0.39 ± 0.16 (Aβ42)
van Waalwijk van Doorn, 
Ghafoorian (24)

52 Continuous CSF, ELISA Volumetric, automated 
with a ML algorithm 
then checked manually

Age, sex, and research center 0.26 ± 0.13 (Aβ42)

Yi, Won (25) 19 Continuous 18F PET, globally with cerebellar cortex as reference Fazekas score Age and sex 0.23 ± 0.22

Note: WMH = white matter hyperintensities. ELISA = enzyme-linked immunosorbent assay.  
PiB = Pittsburgh compound B. PET = positron emission tomography. SUVR = standardized uptake value 
ratio. CSF = cerebrospinal fluid. Aβ = amyloid-beta. 
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As WMH are more common in women (43), we also performed a sensitivity analysis 
removing Hedden, Mormino (20), as they did not report the sex distribution in the 
analytical sample on WMH. However, our meta-analysis on correlation coefficients 
remained similar (0.26; 95% CI: 0.08-0.42). Further, we performed a sensitivity analysis 
removing the studies that did not adjust for age (13, 16, 21, 23, 39). Results remained 
similar in the overall Cohen’s d (Cohen’s d: 0.45, 95% CI: 0.07-0.82). However, in the 
overall correlation meta-analysis, there was only a trend towards significance (r: 0.14, 
95% CI: -0.02-0.29). 

Figure 4. Forest plot of the subgroup meta-analyses based on amyloid assessment method (PET, CSF, 
or plasma) for a total of 13 studies. The effect sizes of the individual studies are represented by the 
squares, of which the size is proportional to the weight of the study. The diamond represents the pooled 
estimate. The horizontal lines represent the 95% confidence intervals of the individual effect sizes. The 
effect sizes of analyses using continuous data, Aβ42, and adjusted for covariates were used for the meta-
analysis, when a study reported multiple analyses.
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Discussion

This systematic review and meta-analysis included 13 studies that explored the 
cross-sectional association between amyloid burden in CSF, PET, and plasma and 
WMH in older adults without objective cognitive impairment. The meta-analysis 
using Cohen’s d yielded an overall effect size of 0.45, which is considered small- to 
medium-sized (44). The meta-analysis on correlation coefficients yielded a pooled 
correlation of 0.17. When stratified by amyloid assessment method, a Cohen’s d 
of 0.55 for the CSF studies and 0.96 was found for the PET studies and a pooled 
correlation of 0.31 was found for the CSF studies. No association was found for 
the plasma studies. Almost half of the studies did not adjust for covariates which 
increased the risk of bias regarding comparability. The funnel plot and Egger’s t-test 
did not reveal evidence for publication bias. Moreover, subgroup analysis revealed 
that the overall substantial heterogeneity (42) in the Cohen’s d meta-analysis was 
driven by amyloid burden assessment method. However, substantial heterogeneity 
remained in the plasma studies. 

Although many of the included studies did not find evidence for an association 
between amyloid burden and WMH, this meta-analysis revealed the presence of a 
small-to-medium sized cross-sectional relationship between the two pathologies 
which is also in line with the findings of a recent systematic review (27). Among 
the included studies, one reported a negative association and the remaining 12 
reported a positive association. However, 8 of the 13 studies reported non-significant 
associations. By reducing the variance of the individual studies and increasing power, 
this meta-analysis was able to reach more precision, whereas most of the individual 
studies could not. Further, our findings are in line with a recent study of more than 
500 individuals that also found an association between WMH and amyloid-beta 
burden in cognitively unimpaired individuals (45). These findings suggest a possible 
role in the prevention of CSVD in delaying AD and pathological aging.

In the meta-analysis on correlation coefficients, studies measuring amyloid in 
CSF showed a significantly higher association with WMH than amyloid measured 
with PET imaging or in plasma. Amyloid in CSF is a more sensitive marker for early 
disease stages of AD than amyloid PET imaging (46)—the current meta-analysis 
only included cognitively unimpaired older adults, which may explain this subgroup 
difference. Low but present amyloid burden may not have been accurately detected 
with PET imaging, resulting in only detecting a relationship of WMH with amyloid 
pathology using CSF in cognitively unimpaired older adults. This hypothesis might 
also explain why Roseborough, Ramirez (26) did not find a cross-sectional association 



42 | Chapter 2

between amyloid burden and WMH in cognitively unimpaired older adults, as they 
only included studies assessing amyloid burden with PET in their systematic review. 
This could also explain the discrepancy in results between PET and CSF modalities. 
However, this was only seen in the meta-analysis using correlation coefficients. 
For the meta-analysis on studies where Cohen’s d could be calculated, PET studies 
showed a slightly higher effect size. This could have been due to the large effect size 
from Kandel, Avants (14), which may be explained by their categorical classification 
of amyloid burden. Lastly, while the largest included study that used plasma 
assessment (22) did not find a cross-sectional association, a longitudinal association 
was found. With the development of more sensitive assays for plasma Aβ since this 
study was performed, future studies should assess if plasma amyloid burden may be 
a more prognostic marker for vascular burden.

Further, substantial heterogeneity was found within the studies using plasma 
assessment in the Cohen’s d meta-analysis. This may be due to differing performance 
between plasma amyloid assays (47) leading to different results. In addition, while 
plasma and CSF amyloid have shown positive correlations amongst varying assays 
(34, 47), some differences have been seen in the relationship between plasma 
amyloid and AD and plasma amyloid and vascular disease. For example, one study 
reported higher plasma amyloid in association with vascular risk factors and lower 
plasma amyloid across the continuum of subjective cognitive decline, mild cognitive 
impairment, and AD, whereas consistent results were seen with CSF (34). However, as 
there were only two studies that assessed amyloid in plasma, we could not perform 
further subgroup analysis. As assessing amyloid burden through plasma is a relatively 
new modality, further studies need to be done to fully understand the relationship 
between plasma amyloid burden and WMH. 

Some studies could not be included in the meta-analysis due to insufficient 
information for effect size calculation. Although, these studies also reported higher 
WMH associated with amyloid burden in PET (19, 48, 49) and CSF (11, 49-51). 
However, some studies found no association (18, 52, 53). As a previous study found 
that 18F predominantly labels vascular amyloid (54), we reason that the null finding 
in Koncz, Thalamuthu (52) could be due to that they combined 11C and 18F PET 
tracers in their methodology. Further, Dupont, Bocti (18) measured amyloid with 
11C PET, possibly explaining the null finding. Methodological discrepancies could 
also explain the null finding in Marchant, Reed (53), as they characterized vascular 
burden by not only WMH but also by infarct presence. Studies that only reported 
spatial WMH also confirmed our findings on PET (55, 56) and CSF (55). However, one 
study assessing plasma amyloid burden did find an association with periventricular 
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and subcortical WMH (57); whereas, in our meta-analysis no association was found 
for amyloid burden in plasma and WMH. Longitudinal studies also reported similar 
findings (7, 58), where baseline Aβ42 predicted WMH (58) as well as baseline WMH 
predicting amyloid PET (7).

There are some limitations of the current review and meta-analysis. Only one 
article (24) included participants with subjective cognitive decline, thus no 
subgroup analysis could be performed based on cognitive status. Moreover, only 
a small number of studies could be analyzed in some subgroup analyses (amyloid 
assessment scale, covariate adjustment, and WMH assessment), giving less precise 
estimates of the effect sizes and less power for determining significant subgroup 
differences. There is also a possibility that the association of amyloid burden on 
WMH is mediated by other vascular factors, such as hypertension. However, as we 
focused on cross-sectional studies, mediation analyses would have limitations and 
none of the included studies assessed possible mediation through other factors. 
Further, as we chose to focus on cross-sectional associations to reduce complexity 
and heterogeneity, future research should explore the longitudinal relationship 
between amyloid burden and WMHs to assess their temporal relationship as well 
as any additive effects. Due to some studies reporting multiple metrics, such as 
continuous and categorical data, some subjective decisions methodologically were 
made for the meta-analysis which could have introduced some bias. There was some 
discrepancy for Aβ40 and Aβ42 in Abner, Elahi (39) and Jonsson, Zetterberg (21), 
with stronger associations found for Aβ42. This difference is in line with previous 
studies showing stronger associations with Aβ42 than Aβ40 with cognitive decline 
and later dementia. However, most studies that reported multiple metrics showed 
similar directional associations between them. Of note, most of the included studies 
did not report education level of the participants or included those mostly highly 
educated. Further, only one study (15) reported the ethnicity of participants, which 
was 93% White. This is of importance as these findings are not generalizable due to 
the homogeneity of included individuals regarding education and ethnicity. As most 
research has traditionally focused on White participants with high education, future 
studies should include historically marginalized individuals to ensure generalizability. 
This systematic review and meta-analysis also was not registered on PROSPERO as 
data extraction had already been performed. However, one of the key reasons for 
review registration is to prevent duplication, and no current protocols in PROSPERO 
were on the same topic as the current review. Lastly, the current study did not have 
an age restriction, and as WMH are common with aging, the age range could have 
obscured the relation between amyloid burden and WMH.
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A suggestion for future studies is to further investigate the nature of the relationship 
between amyloid burden and WMH and to determine the underlying mechanisms of 
how vascular damages to small cerebral vessels may affect amyloid burden in early 
stages of AD, or vice versa. Future research should also examine other pathologies of 
AD (e.g., tau and neurodegeneration) and their association with CSVD neuroimaging 
markers (e.g., WMH, lacunes, cerebral microbleeds, enlarged perivascular spaces). 
Since it is hypothesized that the impairment of the glymphatic system, which 
includes perivascular spaces, plays a role in amyloid burden (59), a future direction 
could be to investigate the relationship between enlarged perivascular spaces and 
amyloid burden. To increase the number of possible included studies, we decided 
to only include studies that reported total WMH volume. However, we realize that 
this choice could have introduced bias into the study towards the null. Previous 
studies have highlighted region-specific associations between parietal WMH and 
amyloid-beta burden (60-62). We assume if we would have differentiated between 
spatial regions of WMH that we would have a higher effect estimate. Interestingly, 
previous studies have found that the spatial topography of WMH matches the 
deposition of cortical amyloid. Future studies could also assess if parietal WMH hold 
stronger associations with CSF and plasma amyloid burden. Moreover, examining 
the longitudinal association between amyloid and WMH could provide more insight 
in the progression of amyloid burden and WMH over time and their mechanistic 
pathways in the development of AD (63-65).

In conclusion, this meta-analysis demonstrated a small to medium-sized cross-
sectional association between amyloid burden and WMH in CSF and PET in older 
adults without objective cognitive impairment. As the number of individuals 
suffering from dementia is expected to increase over the next decades, studying 
the preclinical stage of AD is of great importance for prevention and potential 
intervention. The current study highlights the possible use of CSF and PET to assess 
comorbid amyloid and vascular pathology during the preclinical stage of AD. While 
no association was found between amyloid burden in blood and WMH, future studies 
should still consider estimating a possible relation for broader implementation using 
a cost-effective assessment for amyloid burden. The continued study of the mixed 
pathologies across the continuum from healthy aging to dementia may provide more 
insight in the development of the disease and the origins of its heterogeneity. 
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SUPPLEMENTARY MATERIAL

Supplemental Info 1: PRISMA Checklist

Section and Topic Item # Checklist item Location where 
itemis reported

TITLE
Title 1 Identify the report as a systematic review. Title page
ABSTRACT
Abstract 2 See the PRISMA 2020 for Abstracts checklist. 1
INTRODUCTION
Rationale 3 Describe the rationale for the review in the 

context of existing knowledge.
2-4

Objectives 4 Provide an explicit statement of the objective(s) 
or question(s) the review addresses.

3-4

METHODS
Eligibility criteria 5 Specify the inclusion and exclusion criteria for 

the review and how studies were grouped for 
the syntheses.

4-5

Information sources 6 Specify all databases, registers, websites, 
organisations, reference lists and other sources 
searched or consulted to identify studies. 
Specify the date when each source was last 
searched or consulted.

4

Search strategy 7 Present the full search strategies for all 
databases, registers and websites, including any 
filters and limits used.

Supplement

Selection process 8 Specify the methods used to decide whether a 
study met the inclusion criteria of the review, 
including how many reviewers screened each 
record and each report retrieved, whether they 
worked independently, and if applicable, details 
of automation tools used in the process.

4

Data collection process 9 Specify the methods used to collect data from 
reports, including how many reviewers collected 
data from each report, whether they worked 
independently, any processes for obtaining or 
confirming data from study investigators, and if 
applicable, details of automation tools used in 
the process.

5-6

Data items 10a List and define all outcomes for which data were 
sought. Specify whether all results that were 
compatible with each outcome domain in each 
study were sought (e.g. for all measures, time 
points, analyses), and if not, the methods used 
to decide which results to collect.

5-6

10b List and define all other variables for which data 
were sought (e.g. participant and intervention 
characteristics, funding sources). Describe any 
assumptions made about any missing or unclear 
information.

5
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Section and Topic Item # Checklist item Location where 

itemis reported
Study risk of bias 
assessment

11 Specify the methods used to assess risk of bias 
in the included studies, including details of the 
tool(s) used, how many reviewers assessed each 
study and whether they worked independently, 
and if applicable, details of automation tools 
used in the process.

5

Effect measures 12 Specify for each outcome the effect measure(s) 
(e.g. risk ratio, mean difference) used in the 
synthesis or presentation of results.

5-6

Synthesis methods 13a Describe the processes used to decide which 
studies were eligible for each synthesis (e.g. 
tabulating the study intervention characteristics 
and comparing against the planned groups for 
each synthesis (item #5)).

4-5

13b Describe any methods required to prepare 
the data for presentation or synthesis, such as 
handling of missing summary statistics, or data 
conversions.

5-6

13c Describe any methods used to tabulate or 
visually display results of individual studies and 
syntheses.

5-6

13d Describe any methods used to synthesize results 
and provide a rationale for the choice(s). If meta-
analysis was performed, describe the model(s), 
method(s) to identify the presence and extent 
of statistical heterogeneity, and software 
package(s) used.

6

13e Describe any methods used to explore possible 
causes of heterogeneity among study results 
(e.g. subgroup analysis, meta-regression).

6

13f Describe any sensitivity analyses conducted to 
assess robustness of the synthesized results.

9-10

Reporting bias 
assessment

14 Describe any methods used to assess risk of bias 
due to missing results in a synthesis (arising 
from reporting biases).

8

Certainty assessment 15 Describe any methods used to assess certainty 
(or confidence) in the body of evidence for an 
outcome.

8-10

Supplemental Info 1: Continued
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PRISMA 2020 Checklist

Section and Topic Item # Checklist item Location where 
itemis reported

RESULTS
Study selection 16a Describe the results of the search and selection 

process, from the number of records identified 
in the search to the number of studies included 
in the review, ideally using a flow diagram.

7, Fig 1

16b Cite studies that might appear to meet the 
inclusion criteria, but which were excluded, 
and explain why they were excluded.

7, Fig 1

Study characteristics 17 Cite each included study and present its 
characteristics.

7-8

Risk of bias in studies 18 Present assessments of risk of bias for each 
included study.

8

Results of individual 
studies

19 For all outcomes, present, for each study: (a) 
summary statistics for each group (where 
appropriate) and (b) an effect estimate and its 
precision (e.g. confidence/credible interval), 
ideally using structured tables or plots.

24, 27

Results of syntheses 20a For each synthesis, briefly summarise the 
characteristics and risk of bias among 
contributing studies.

22-23

20b Present results of all statistical syntheses 
conducted. If meta-analysis was done, present 
for each the summary estimate and its 
precision (e.g. confidence/credible interval) 
and measures of statistical heterogeneity. If 
comparing groups, describe the direction of 
the effect.

8

20c Present results of all investigations of possible 
causes of heterogeneity among study results.

9-10

20d Present results of all sensitivity analyses 
conducted to assess the robustness of the 
synthesized results.

9-10

Reporting biases 21 Present assessments of risk of bias due to 
missing results (arising from reporting biases) 
for each synthesis assessed.

8

Certainty of evidence 22 Present assessments of certainty (or 
confidence) in the body of evidence for each 
outcome assessed.

8

DISCUSSION
Discussion 23a Provide a general interpretation of the results 

in the context of other evidence.
10-13

23b Discuss any limitations of the evidence 
included in the review.

13-14

23c Discuss any limitations of the review  
processes used.

13-14

23d Discuss implications of the results for practice, 
policy, and future research.

15

PRISMA 2020 Checklist: Continued
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PRISMA 2020 Checklist: Continued

Section and Topic Item # Checklist item Location where 
itemis reported

OTHER INFORMATION
Registration and 
protocol

24a Provide registration information for the  
review, including register name and 
registration number, or state that the review 
was not registered.

14

24b Indicate where the review protocol can  
be accessed, or state that a protocol was  
not prepared.

14

24c Describe and explain any amendments to 
information provided at registration or in  
the protocol.

NA

Support 25 Describe sources of financial or non-financial 
support for the review, and the role of the 
funders or sponsors in the review.

16

Competing interests 26 Declare any competing interests of review 
authors.

16

Availability of data, 
code and other 
materials

27 Report which of the following are publicly 
available and where they can be found: 
template data collection forms; data extracted 
from included studies; data used for all 
analyses; analytic code; any other materials 
used in the review.

24

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 
statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. Doi: 10.1136/
bmj.n71

For more information, visit: http://www.prisma-statement.org/
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Supplementary Info 2: Search strategies for Pubmed, Embase and 
PsycINFO
Pubmed

((“Amyloid”[Mesh] OR “Plaque, Amyloid”[Mesh] OR amyloid*[Title/Abstract] OR 
AB[Title/Abstract] OR AB40[Title/Abstract] OR AB42[Title/Abstract] OR AB 40[Title/
Abstract] OR AB 42[Title/Abstract] OR BA[Title/Abstract] OR BA40[Title/Abstract] 
OR BA42[Title/Abstract] OR BA 40[Title/Abstract] OR BA 42[Title/Abstract] OR B 
amyloid[Title/Abstract] OR Abeta[Title/Abstract] OR Abeta40[Title/Abstract] OR 
Abeta42[Title/Abstract] OR abeta 40[Title/Abstract] OR abeta 42[Title/Abstract] OR 
PIB[Title/Abstract] OR Pittsburgh compound B [Title/Abstract] OR flutemetamol[Title/
Abstract] OR florbetapir[Title/Abstract] OR florbetaben[Title/Abstract] OR senile 
plaque*[Title/Abstract]) 

AND 

(“Positron-Emission Tomography”[Mesh] OR PET[Title/Abstract] OR Positron emission 
tomograph*[Title/Abstract] OR “Cerebrospinal Fluid”[Mesh] OR CSF[Title/Abstract] 
OR cerebrospinal fluid*[Title/Abstract] OR cerebro spinal fluid*[Title/Abstract] OR 
plasma[Title/Abstract] OR plasmas[Title/Abstract] OR athologylogy*[Title/Abstract] 
OR amyloid athology*[Title/Abstract] OR “Neuropathology”[Mesh])) 

AND 

(“Leukoaraiosis”[Mesh] OR white matter athologylogy*[Title/Abstract] OR white 
matter hyper athology*[Title/Abstract] OR WMH[Title/Abstract] OR white matter 
lesion*[Title/Abstract] OR WML[Title/Abstract] OR white matter change*[Title/
Abstract] OR white matter athol*[Title/Abstract] OR white matter signal 
abnormalit*[Title/Abstract])

Embase 

((amyloid*:ti,ab,kw OR ab:ti,ab,kw OR ab40:ti,ab,kw OR ab42:ti,ab,kw OR ‘ab 
40’:ti,ab,kw OR ‘ab 42’:ti,ab,kw OR ba:ti,ab,kw OR ba40:ti,ab,kw OR ba42:ti,ab,kw 
OR ‘ba 40’:ti,ab,kw OR ‘ba 42’:ti,ab,kw OR ‘b amyloid’:ti,ab,kw OR abeta:ti,ab,kw OR 
abeta40:ti,ab,kw OR abeta42:ti,ab,kw OR ‘abeta 40’:ti,ab,kw OR ‘abeta 42’:ti,ab,kw 
OR pib:ti,ab,kw OR ‘pittsburgh compound b’:ti,ab,kw OR flutemetamol:ti,ab,kw OR 
florbetapir:ti,ab,kw OR florbetaben:ti,ab,kw OR ‘senile plaque*’:ti,ab,kw OR ‘amyloid’/
exp OR ‘amyloid plaque’/exp) 
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AND 

(pet:ti,ab,kw OR ‘positron emission tomograph*’:ti,ab,kw OR csf:ti,ab,kw OR 
plasma:ti,ab,kw OR plasmas:ti,ab,kw OR athologylogy*:ti,ab,kw OR ‘amyloid 
athology*’:ti,ab,kw OR ‘positron emission tomography’/de OR ‘cerebrospinal fluid’/
exp OR ‘neuropathology’/exp)) 

AND 

(‘white matter athologylogy*’:ti,ab,kw OR ‘white matter hyper athology*’:ti,ab,kw OR 
wmh:ti,ab,kw OR ‘white matter lesion*’:ti,ab,kw OR ‘white matter change*’:ti,ab,kw 
OR ‘white matter athol*’:ti,ab,kw OR ‘white matter signal abnormalit*’:ti,ab,kw OR 
wml:ti,ab,kw OR ‘leukoaraiosis’/exp OR ‘white matter lesion’/exp)

PsycINFO

((Amyloid or “Plaque, Amyloid”).mh. or amyloid*.ti,ab. Or AB.ti,ab. Or AB40.ti,ab. Or 
AB42.ti,ab. Or “AB 40”.ti,ab. Or “AB 42”.ti,ab. Or BA.ti,ab. Or BA40.ti,ab. Or BA42.ti,ab. 
Or “BA 40”.ti,ab. Or “BA 42”.ti,ab. Or “B amyloid”.ti,ab. Or Abeta.ti,ab. Or Abeta40.ti,ab. 
Or Abeta42.ti,ab. Or “abeta 40”.ti,ab. Or “abeta 42”.ti,ab. Or PIB.ti,ab. Or “Pittsburgh 
compound B”.ti,ab. Or flutemetamol.ti,ab. Or florbetapir.ti,ab. Or florbetaben.ti,ab. 
Or “senile plaque*”.ti,ab.) 

and 

(“Positron-Emission Tomography”.mp. or PET.ti,ab. Or “Positron emission tomograph*”.
ti,ab. Or “Cerebrospinal Fluid”.mp. or CSF.ti,ab. Or “cerebrospinal fluid*”.ti,ab. Or 
“cerebro spinal fluid*”.ti,ab. Or plasma.ti,ab. Or plasmas.ti,ab. Or athologylogy*.ti,ab. 
Or “amyloid athology*”.ti,ab. Or Neuropathology.mp.) 

and 

(Leukoaraiosis.mp. or “white matter athologylogy*”.ti,ab. Or “white matter hyper 
athology*”.ti,ab. Or WMH.ti,ab. Or “white matter lesion*”.ti,ab. Or WML.ti,ab. Or 
“white matter change*”.ti,ab. Or “white matter athol*”.ti,ab. Or “white matter signal 
abnormalit*”.ti,ab.)

Supplementary Info 3: Adjusted version of the Newcastle-Ottawa Quality Assessment 
Scale Cohort StudiesNote: A study can be awarded a maximum of one star for each 
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numbered item within the Selection and Outcome categories. A maximum of two 
stars can be given for Comparability. Total maximum number of stars is nine. 

Selection 
1. Representativeness of the exposed cohort (amyloid positive/WMH presence) 

a. �truly representative of  the  average  older adult without 
dementia  in  the  community  (i.e.,  community-based  cohort and mix of 
nondemented individuals with and without subjective complaints) *

b. �somewhat representative of  the  average  older adult without dementia in the 
community (e.g., if a certain selection is made which makes the individuals 
‘more’ cognitively normal, e.g., only nondemented individuals without subjective 
complaints) *

c. �selected group of users, e.g., volunteers, memory clinic visitors, only individuals 
at higher risk (only subjective complaints, only depressive symptoms, only APOE 
e4 carriers) 

d. no description of the derivation of the cohort 

2. Selection of the non-exposed cohort (amyloid negative/no WMH) 
a. drawn from the same community as the exposed cohort *
b. drawn from a different source 
c. no description of the derivation of the non-exposed cohort 

3. Ascertainment of exposure 
a. continuous measurement *
b. categorized based on established or published cut-offs *
c. �categorized based on non-established cut-offs (e.g., z-score cut-off, mean split, 

median split) 
d. no description 
 

Comparability 
1. Comparability of cohorts on the basis of the design or analysis 
•	 study controls for age *
•	 study controls for sex/gender *
•	 study controls for education *
•	 study controls for any additional factor *
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Outcome (WMH) 
1. Ascertainment of outcome 
	 (48) Via MRI scan *
c. no description 

2. �Same method of assessment for cases (amyloid positive) and controls  
(amyloid negative) 

a. yes *
b. no 

Supplementary Figure 1. Forest plot of the subgroup meta-analysis for a total of 13 studies including 
analyses unadjusted and adjusted for covariates. The effect sizes of the individual studies are represented 
by the squares, of which the size is proportional to the weight of the study. The diamond represents  
the pooled estimate. The horizontal lines represent the 95% confidence intervals of the individual  
effect sizes. 
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Supplementary Figure 2. Forest plot of the subgroup meta-analysis based on amyloid assessment 
scale for a total of 8 studies. The effect sizes of the individual studies are represented by the squares, of 
which the size  is proportional to  the  weight of the study.  The diamond represents the pooled 
estimate. The horizontal lines represent the 95% confidence intervals of the individual effect sizes. 

Supplementary Figure 3. Forest plot of the subgroup meta-analysis based on WMH assessment 
(volumes or Fazekas score) for a total of 8 study groups. The effect sizes of the individual studies are 
represented by the squares, of which the size is proportional to the weight of the study. The diamond 
represents the pooled estimate. The horizontal lines represent the 95% confidence intervals of the 
individual effect sizes. 
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Abstract

Background: Two of the main causes for dementia are Alzheimer’s disease (AD) and 
vascular pathology, with most patients showing mixed pathology. Plasma biomarkers 
for AD-related pathology have recently emerged, including amyloid-beta (Aβ), 
phosphorylated (p-)tau, neurofilament light (NfL), and glial fibrillary acidic protein 
(GFAP). There is a current gap in the literature if there is an association between these 
plasma biomarkers with vascular pathology and neurodegeneration. We investigated 
this association in individuals with manifest arterial disease and without dementia.

Methods: Data from 594 individuals (mean (SD) age: 64 (8) years; 17% female) were 
included from the SMART-MR Study, a prospective cohort study of individuals with a 
history of vascular disease. AD-related plasma markers (Aβ42/40, ptau-181, NfL, and 
GFAP) were assessed using Single Molecular Array assays (Quanterix). Vascular and 
neurodegenerative MRI markers included WMH volume, presence of infarcts (yes/
no), total brain volume (TBV), and hippocampal volume (HV) assessed on 1.5T MRI. 
Linear regressions were performed for each standardized plasma marker with WMH 
volume, TBV, and HV as separate outcomes, correcting for age, sex, education, and 
intracranial volume. Logistic regressions were performed for the presence of lacunar 
and cortical infarcts. 

Results: Higher ptau-181 was associated with larger WMH volume (b per SD 
increase=0.16, 95% CI=0.06; 0.26, p=0.015). Higher NfL (b=-5.63, 95% CI=-8.95; -2.31, 
p=0.015) was associated with lower TBV and the presence of infarcts (OR=1.42, 95% 
CI=1.13; 1.78, p=0.039). Higher GFAP levels were associated with cortical infarcts 
(OR=1.45, 95% CI=1.09; 1.92, p=0.010). No other associations were found.

Conclusions: These findings highlight the role of mixed AD and vascular pathology 
in individuals with manifest vascular disease.
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Introduction

Two of the main causes of dementia are Alzheimer’s disease (AD) and vascular 
pathology (1). The presence of AD pathology, i.e. amyloid-beta (Aβ) plaques and 
neurofibrillary tangles, can be established using cerebrospinal fluid (CSF) or position 
emission topography (PET). Vascular pathology is typically assessed via MRI measures, 
such as white matter hyperintensities (WMHs) and lacunes (2). Most patients with 
cognitive decline and dementia have mixed pathology (3), as well as hippocampal 
and global brain atrophy (4). The relationship between AD pathology with vascular 
pathology and neurodegeneration is not yet well known and has been hampered by 
the invasiveness and costs associated with CSF and PET measurements (5-8). 

Recent advancements in the development of high-sensitivity plasma assays have 
allowed for the assessment of biomarkers for Aβ and phosphorylated tau (p-tau) 
pathology, as well as neurodegeneration (neurofilament light; NfL) and astrocyte 
activation (glial fibrillary acidic protein; GFAP) in large-scale studies (9). Previous 
studies have highlighted a possible relation between these AD-related plasma 
biomarkers, specifically p-tau181, NfL, and GFAP with vascular pathology on 
MRI (10-15). However, other studies found no association (16-18). Regarding 
neurodegeneration on MRI, most studies have found that higher levels of p-tau181 
and NfL are associated with greater atrophy, either globally (19, 20) or specifically in 
the hippocampus (10, 16, 18, 19, 21-23). 

However, few studies focused on patients with vascular disease. Neurodegeneration 
(24) and WMH are common in vascular patients, and many patients show mixed AD 
and vascular pathology (25, 26). By focusing on a population with vascular disease, 
it is possible to shed light on the role of AD pathology in the neurodegeneration 
and WMH seen in vascular patients. We took as a starting point the SMART-MR 
cohort, a population all with manifest vascular disease. We aimed to examine if 
blood-based biomarkers (i.e., Aβ42/40, p-tau181, NfL, and GFAP) were associated 
with MRI measures of cerebrovascular disease and neurodegeneration in individuals 
with manifest vascular disease and without dementia diagnosis. We hypothesized 
that NfL, as a general marker of neurodegeneration, would be related to global 
and hippocampal atrophy, while p-tau181, Aβ42/40, and GFAP, as more specifically 
related to amyloid pathology, would be related to vascular pathology based on 
previous studies in non-vascular populations. 
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Methods

Design of study and sample
Data were obtained from the Second Manifestations of ARTerial disease-Magnetic 
Resonance (SMART-MR) study. The SMART-MR study is a prospective cohort study 
which aimed to investigate brain MRI changes in patients independently living with 
symptomatic atherosclerotic disease (27, 28). All patients that were recently referred to 
the University Medical Center Utrecht in the Netherlands with manifest cerebrovascular 
disease, coronary artery disease, peripheral arterial disease, or an abdominal aortic 
aneurysm and without any MRI contraindications were invited to participate between 
May 2001 and December 2005. For this study, we used cross-sectional data from the 
second wave of the SMART-MR study (n=754) (27, 29). A further selection was done for 
biomarker assessment, particularly being 50 years or older, having a brain MRI scan, 
and available cognitive measurements (n=594). MRI brain scans, physical examinations, 
blood sampling, and questionnaires were all performed during a one-day visit at the 
hospital. Written informed consent was obtained from all participants. A local ethics 
committee approved the SMART-MR study.

This study was reported in accordance to the STROBE (Strengthening the Reporting 
of Observational Studies in Epidemiology) checklist (Supplemental Methods).

Plasma assessment
Briefly, participants underwent venipuncture under overnight-fasting conditions. 
Plasma was then centrifuged for 10 minutes at 1,800 x g within 2 hours. Then, in 
polypropylene tubes, plasma was aliquoted in 0.5-mL aliquots and stored at -80⁰C 
until use. Aβ40, Aβ42, NfL, and GFAP were all assessed using the Neurology 4-plex E 
kit (Quanterix) (30). P-tau181 was assessed using the V2 Advantage kit (Quanterix). 
Measurements were performed according to manufacturer’s instructions, using 
automated sample dilution on board of the Simoa HD-X analyzer. The Neurology 
4-plex E kit was ran in singlicates, and the P-tau181 V2 kit was ran in duplicates. We 
calculated Aβ42/40, to adjust for between-person differences in production rates and 
to correct for pre-analytical sample handling effects (31). All plasma markers were 
z-score standardized for analysis.

MRI protocol
Brain MRI was performed using a 1.5 Tesla whole-body system (Gyroscan ACS-NT, 
Philips Medical System, Best, The Netherlands) (29). A transversal T1-weighted 
gradient-echo (repetition time (TR)/echo time (TE): 235/2 ms), T2-weighted (TR/TE: 
2200/11 ms), fluid-attenuated inversion recovery (FLAIR) (TR/TE/inversion time (TI): 
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6000/100/2000 ms), and T1-weighted inversion recovery (IR) (TR/TE/TI: 2900/22/410 
ms) sequences were acquired with a voxel size of 1.0 x 1.0 x 4.0 mm3 as part of the 
protocol (29). For measurement of hippocampal volume, a sagittal T1-weighted 3D 
fast field-echo sequence was obtained (TR/TE: 7/3.2 ms) (32).

Brain segmentation
WMH and brain volumes were segmented using an automated segmentation 
program on the T1-weighted gradient-echo, the IR sequence, and the FLAIR 
sequences. More details regarding the probabilistic segmentation technique can 
be found here (33, 34). The hippocampus was manually outlined by two trained 
investigators, blinded to all clinical information (32). The hippocampus proper, 
subiculum, fimbria, alveus, and dentate gyrus were all included on an average of 
40 slices (35). TBV was defined as the sum of both gray and white matter, WMH, and 
infarct volumes. Total intracranial volume (ICV) was the sum of both TBV as well as 
the volumes of sulcal and ventricular CSF. Hippocampal volume was the sum of both 
right and left hippocampi, which were defined by multiplying the total number of 
voxels by the volume of a voxel (i.e., 1.0 x 0.94 x 0.94 mm). 

Infarcts and WMH
Infarcts were rated visually by both an investigator and a neuroradiologist. Both were 
blinded to any clinical characteristics and re-evaluated in a consensus meeting(36). 
WMHs were defined as periventricular and deep lesions and were summed to 
represent the total volume of WMHs using a fully automated technique and visually 
checked (29, 36). 

Infarcts were described as focal hyperintensities on T2-weighted images more than 
3mm in diameter and presumed of vascular origin (37). If the T2 hyperintensities 
were within white matter, they also had to be hypointense on T1-weighted and FLAIR 
images to be differentiated from WMHs. They were then characterized as lacunar 
or cortical infarcts. According to the Standards for Reporting Vascular Changes on 
Neuroimaging criteria (2), lacunar infarcts were defined as focal lesions between 3 
and 15mm. Cortical infarcts were defined as being an area of tissue necrosis 4mm 
or larger in cortical or cortico-subcortical areas(38). Presence of any infarct was 
categorized as a dichotomous outcome (i.e., yes/no). Lacunar and cortical infarcts 
were also categorized as any or none.

Covariates
Age, sex, education, smoking status, and alcohol use were given based on self-report. 
Education was categorized into less than high school education, at least some high 
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school education, or college/university education based on the Dutch education 
system. Smoking status was categorized as never, former, or current smoker. Alcohol 
use was categorized as <1 drinks per week, 1-10 drinks per week, 11-20 drinks per 
week, and >20 drinks per week. Diabetes mellitus was defined as a (self-)reported 
history of diabetes, registered use of glucose-lowering medication (i.e., insulin or oral 
antidiabetic drugs), or a glucose level of seven mmol/L or higher. Hypertension was 
defined as self-reported use of antihypertensive medication, a mean systolic blood 
pressure of more than 140 mmHg, or a mean diastolic blood pressure of more than 
90 mmHg. 

Data analysis
To address missing values (max: 10% missing on hippocampal volume), multiple 
imputation was performed using the mice package in R. Both outcomes and predictors 
were imputed if needed, using covariate information as predictors in the imputation 
(39). We chose 10 imputed datasets, as a complete case analysis would be on 90% of 
the original sample size (40). Pooled results are shown. Kruskal-Wallis tests were done 
to assess possible differences between sexes in plasma marker levels, and Pearson 
correlations were performed to assess the relationship between the plasma marker 
levels, brain volumes, and age. Linear regressions were performed to estimate the 
association between each standardized plasma marker and log-transformed WMH 
volume, TBV, and HV, with age, sex, education, and intracranial volume as covariates. 
Logistic regressions were performed for the presence of infarcts (yes vs no), corrected 
for age, sex, and education. An additional model was performed correcting for further 
cardiovascular risk factors (i.e., diabetes mellitus, hypertension, smoking status, and 
alcohol use). A sensitivity analysis was performed assessing the difference between 
lacunar and cortical infarcts by performing logistic regressions separately on cortical 
and lacunar infarcts. Another sensitivity analysis was done on the models of Aβ42/40 
by adding 1/Aβ40 and Aβ42 as main effects, as suggested by previous work on the 
complexities of using a ratio in regression analyses (41). We also report individual 
associations of Aβ40 and Aβ42 on all outcomes. Assumptions for both linear and 
logistic regressions were checked and met; therefore, no plasma markers were log-
transformed. As there was moderate correlation between our outcomes, we used the 
Hommel method (42) for multiple comparison adjustment (43).
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Results

The characteristics of the study population are shown in Table 1. The mean age of 
the study population was 64 ± 8 years. Around 17% of the individuals were women 
and 10% had an education level of a college/university degree. Eight percent met 
Petersen criteria(44) for mild cognitive impairment. A Pearson correlation matrix on 
age, the AD plasma markers, and the MRI markers can be found in Supplementary 
Figure 1. Kruskal-Wallis tests showed no sex differences in Aβ42/40 and p-tau181. 
Higher levels of NfL and GFAP were seen in women compared to men.

Table 1. Baseline characteristics of the study population.

Study sample (n=594)

Demographics Mean (SD) or n (%)

     Age (years) 64 (8)

     Sex, women 101 (17%)

     Education, college/university 57 (10%)

     Current smoker 127 (21%)

     Alcoholic drinks per week 1.14 (0.97)

     Diabetes mellitus 131 (22%)

     Hypertension 401 (68%)

     Petersen criteria 48 (8%)

Plasma levels (pg/ml)

     Aβ40 113.19 (30.64)*

     Aβ42 6.79 (1.94)*

     Aβ42/40 0.06 (0.01)*

     P-tau181 1.37 (0.79)*

     NfL 13.82 (9.56)*

     GFAP 86.33 (53.98)*

MRI markers

     White matter lesion volume, ml 1.24 (2.50)*

     Hippocampal volume, ml 5.98 (0.75)

     Total brain volume, ml 1137.43 (105.14)

     Infarct presence 206 (35%)

     Lacunar infarct presence 137 (23%)

     Cortical infarct presence 83 (14%)

Model 1

Note: 1% missing on education, 1% missing on smoking, 1% missing on alcohol use, 1% missing 
on diabetes, 1% missing on hypertension, 3% missing on Petersen criteria, and 10% missing on 
hippocampal volume. * shown as median (IQR).
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All plasma markers were non-normally distributed. The respective median (10%-90% 
range) for Aβ42/40, p-tau181, GFAP, and NfL were 0.06 (0.05-0.07), 1.37 (0.85-2.54), 
86.33 (47.28-151.97), and 13.82 (7.86-28.59) (shown in pg/mL). For the MRI markers, 
only WMH volume was non-normally distributed. The mean (SD) for hippocampal 
volume and TBV were 5.98 mL (0.75) and 1137 mL (105), respectively. The median (10-
90% range) for WMH volume was 1.24 (0.29-8.12) mL. Thirty-five percent of our study 
population had at least one infarct, with 23% having at least one lacunar infarct and 
14% having at least one cortical infarct.

Associations with MRI markers of vascular pathology
Linear regression analysis showed that higher plasma p-tau181 was associated with 
higher WMH volume (b per standard deviation increase: 0.16, 95% CI: 0.06; 0.26, p 
= 0.015), which remained after further correction (Table 2). Higher NfL showed a 
trend towards higher WMH volume, but it did not survive correction for multiple 
comparisons. No other biomarkers were associated with WMH, also when adding 1/
Aβ40 and Aβ42 as main effects or assessed individually (Table S1). 

Regarding infarcts, higher plasma NfL was associated with higher odds of having an 
infarct (OR: 1.42, 95% CI: 1.13; 1.78, p = 0.039); however, this did not remain after further 
covariate adjustment (Table 3). When looking specifically at lacunar infarcts, higher 
plasma NfL was associated with higher odds of a lacunar infarct (OR: 1.36, 95% CI: 
1.06; 1.73, p = 0.014). Regarding cortical infarcts, both higher plasma NfL and GFAP 
were associated with higher odds of having a cortical infarct (respectively OR: 1.58, 
95% CI: 1.20; 2.08, p = 0.001 and OR: 1.45, 95% CI: 1.09; 1.92, p = 0.010) (Table 3). No 
other plasma markers were associated with the presence of infarcts (Table 3; Table S2).

Associations with MRI markers of neurodegeneration
Higher plasma NfL was associated with lower TBV (b: -5.63, 95% CI: -8.95; -2.31,  
p = 0.015), which remained after further covariate adjustment (Table 2). There 
were no associations between plasma markers and hippocampal volume, albeit an 
association was found for higher Aβ40 and lower hippocampal volume (Table S1).
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Table 2. Associations between the plasma AD markers and MRI markers of vascular disease and neurodegeneration.

Plasma levels 
(per SD increase)

WMH volume, B (95% CI), 
adjusted p-value

TBV, B (95% CI), adjusted 
p-value

HV, B (95% CI), adjusted 
p-value

Model 1

Aβ42/40 -0.03 (-0.13; 0.06), p = 0.827 -1.39 (-4.00; 1.23), p = 0.827 0.01 (-0.04; 0.07), p = 0.827

P-tau181 0.16 (0.06; 0.26), p = 0.015 -2.21 (-5.05; 0.63), p = 0.750 -0.02 (-0.07; 0.05), p = 0.827

NfL 0.17 (0.06; 0.29), p = 0.052 -5.63 (-8.95; -2.31), p = 0.015 -0.05 (-0.12; 0.02), p = 0.781

GFAP 0.07 (-0.04; 0.18), p = 0.827 -1.14 (-4.31; 2.04), p = 0.827 -0.04 (-0.11; 0.03), p = 0.827

Model 2

Aβ42/40 -0.04 (-0.13; 0.05), p = 0.785 -1.26 (-3.81; 1.29), p = 0.785 0.01 (-0.04; 0.07), p = 0.785

P-tau181 0.15 (0.06; 0.25), p = 0.028 -1.76 (-4.54; 1.01), p = 0.785 -0.01 (-0.07; 0.05), p = 0.785

NfL 0.17 (0.05; 0.29), p = 0.052 -5.50 (-8.75; -2.24), p = 0.016 -0.05 (-0.12; 0.02), p = 0.785

GFAP 0.09 (-0.03; 0.20), p = 0.738 -2.07 (-5.23; 1.09), p = 0.785 -0.05 (-0.12; 0.02), p = 0.738

Note: Model 1 is adjusted for age, sex, education, and intracranial volume. Model 2 adds diabetes mellitus, 
hypertension, smoking status, and alcohol use. WMH volume is log-transformed. P-values are adjusted using 

the Hommel method.

Table 3. Associations between the plasma AD markers and infarcts.

Plasma levels 
(per SD increase)

Infarcts,OR (95% CI), 
adjusted p-value

Lacunar infarcts, OR (95% 
CI), p-value

Cortical infarcts, OR (95% 
CI), p-value

Model 1

Aβ42/40 1.18 (0.86; 1.63), p = 0.827 1.30 (0.84; 2.02), p = 0.240 1.04 (0.85; 1.26), p = 0.723

P-tau181 1.16 (0.96; 1.40), p = 0.729 1.22 (1.00; 1.50), p = 0.055 1.17 (0.92; 1.50), p = 0.202

NfL 1.42 (1.13; 1.78), p = 0.039 1.36 (1.06; 1.73), p = 0.014 1.58 (1.20; 2.08), p = 0.001

GFAP 0.98 (0.79; 1.21), p = 0.827 0.86 (0.68; 1.10), p = 0.224 1.45 (1.09; 1.92), p = 0.010

Model 2

Aβ42/40 1.17 (0.83; 1.64), p = 0.785 1.27 (0.82; 1.95), p = 0.288 1.01 (0.84; 1.23), p = 0.883

P-tau181 1.13 (0.93; 1.37), p = 0.785 1.19 (0.97; 1.47), p = 0.101 1.13 (0.88; 1.45), p = 0.342

NfL 1.41 (1.12; 1.79), p = 0.052 1.36 (1.05; 1.74), p = 0.018 1.54 (1.16; 2.03), p = 0.003

GFAP 1.03 (0.82; 1.30), p = 0.785 0.87 (0.68; 1.13), p = 0.297 1.56 (1.16; 2.10), p = 0.003

Note: Model 1 is adjusted for age, sex, and education. Model 2 adds diabetes mellitus, hypertension, smoking 
status, and alcohol use. P-values are adjusted using the Hommel method.
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Discussion

In a sample of individuals with manifest vascular disease and WMH, we found that 
higher NfL was associated with infarcts and global brain atrophy, higher p-tau181 
was associated with more WMH volume, and GFAP was related to the presence of  
one or more cortical infarcts. None of the biomarkers were associated with 
hippocampal volume. 

Higher levels of plasma NfL were associated with infarcts, which is in line with previous 
literature (12). As NfL has been linked to axonal damage (45), the relationship between 
NfL and infarcts could be explained by persisting axonal damage due to vascular 
pathology (46). Additionally, we found an association between higher NfL and lower 
TBV, which is in line with a previous longitudinal study (20). However, we did not find 
an association of plasma NfL with hippocampal atrophy, whereas some studies found 
an association (18, 22, 23, 47). Further, in this cohort, memory has not been associated 
with hippocampal volume (48). Hippocampal atrophy in vascular patients may have 
a different pathological mechanism than global atrophy and may not show a clear 
relation to memory decline. As this is the first study to our knowledge focusing on 
plasma AD biomarkers and brain volume in individuals with vascular disease, this 
needs to be validated in other studies of a similar population. We did not find an 
association after correction for multiple comparisons between NfL and WMH, which 
is in line with a former study on a vascular population (17). In contrast, studies in MCI 
and AD populations have reported such an association (13, 14, 49, 50). This apparent 
contradiction may be explained by being in a later stage of cognitive impairment or 
may be due to a loss of power in the current study, as our findings were approaching 
significance. As studies assessing NfL and MRI markers of vascular disease are scarce, 
further studies need to be performed to replicate this result.

However, higher p-tau181 was associated with more WMH volume, which is in line 
with previous studies (10, 11). One study found that amyloid PET pathology was 
associated with WMH in the general population, with cerebral amyloid angiopathy 
(CAA) possibly explaining this role (51). As p-tau181 in plasma is associated with 
amyloid PET positivity (52), CAA could explain the relation between AD-specific 
biomarkers and WMH. Surprisingly, we did not find an association with p-tau181 
and hippocampal volume, even though many previous studies have found an 
association (10, 16, 19, 21, 22). However, two studies also found a null association 
(53, 54). Hippocampal atrophy in this vascular population may be independent to 
AD-specific neuronal loss and solely of vascular origin. 
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Additionally, GFAP was associated with cortical infarcts. This is in line with a previous 
study on serum GFAP that found an association of GFAP with infarcts, but not 
with subcortical vascular pathology such as WMHs (46). The specificity to cortical 
infarcts was also reflected in a previous study, highlighting that the site of injury 
may determine if GFAP is released into the blood (55). However, as this is the first 
study to our knowledge assessing GFAP in plasma with brain infarcts, future research 
should validate these findings. Aβ and p-tau181 were not associated with infarcts, 
which is in line with a previous study (5). Infarcts may not have a direct relationship 
to AD pathology, possibly due to the anatomical location of infarcts compared  
to WMH (56). 

The current study had important strengths. We assessed multiple plasma markers 
using an ultrasensitive Simoa assay. Further, we used multiple imputation to account 
for missing data, corrected for multiple covariates, and also used a strict correction 
for multiple comparisons to prevent any Type I errors. However, the study also had 
limitations. The study population was relatively young and healthy, as the included 
participants were a subsample of the SMART-MR study that participated in the first 
follow-up assessment. Further, participants were predominantly White and male; 
thus, the generalizability to other populations is low. Other studies have highlighted 
that plasma p-tau181 and NfL may not accurately represent brain amyloidosis in 
African American adults compared to White individuals (57). Future studies need 
to be done on marginally underrepresented individuals to assess any differences 
regarding plasma AD biomarkers and vascular pathology in these populations. 
Additionally, we did not have information on microbleeds, so we unfortunately could 
not assess the relation between the plasma AD markers on cerebral microbleeds. 

Plasma biomarkers that have been associated with AD pathophysiology are related to 
MRI markers of vascular pathology and neurodegeneration in patients with manifest 
vascular disease. The current study suggests a relationship between AD and vascular 
pathology in individuals with manifest vascular disease, highlighting the role of 
mixed pathology in these individuals. Future longitudinal studies should explore 
if individuals with both of these pathologies are at an increased risk of dementia. 

Acknowledgements
We would like to gratefully acknowledge the SMART participants. We would like to 
acknowledge the SMART research nurses, as well as R. van Petersen (data manager), 
B. G. F. Dinther (vascular manager), and the members of the Utrecht Cardiovascular 
Cohort-Second Manifestations of ARTerial disease-Study Group (UCC-SMART-Study 
Group): M.J. Cramer, H.M. Nathoe and M.G. van der Meer (co-PI), Department of 



72 | Chapter 3

Cardiology; G.J. de Borst and M. Teraa (co-PI), Department of Vascular Surgery; M.L. 
Bots and M. van Smeden, Julius Center for Health Sciences and Primary Care; M.H. 
Emmelot-Vonk, Department of Geriatrics; P.A. de Jong, Department of Radiology; 
A.T. Lely, Department of Gynaecology and Obstetrics; N.P. van der Kaaij, Department 
of Cardiothoracic Surgery; L.J. Kappelle and Y.M. Ruigrok, Department of Neurology; 
M.C. Verhaar, Department of Nephrology & Hypertension; J.A.N. Dorresteijn (co-PI) 
and F.L.J. Visseren (PI), Department of Vascular Medicine, UMC Utrecht. 

Sources of funding
The Netherlands Consortium of Dementia Cohorts (NCDC) receives funding in the 
context of Deltaplan Dementie from ZonMW Memorabel (projectnr 73305095005) 
and Alzheimer Nederland. The chair of W.M. van der Flier is supported by the Pasman 
stichting. WF is recipient of HBC-X, which has received funding from the Dutch Heart 
Foundation under grant agreement 2018-28.

Disclosures
The authors have nothing to disclose.



73|

3

References

1.	 van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CLH, et al. Vascular cognitive 
impairment. Nature Reviews Disease Primers. 2018;4(1):18003.

2.	 Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards 
for research into small vessel disease and its contribution to ageing and neurodegeneration. 
Lancet Neurol. 2013;12(8):822-38.

3.	 Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most 
dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197-204.

4.	 Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray 
matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage. 2004;23(2):708-16.

5.	 Kester MI, Goos JDC, Teunissen CE, Benedictus MR, Bouwman FH, Wattjes MP, et al. Associations 
Between Cerebral Small-Vessel Disease and Alzheimer Disease Pathology as Measured by 
Cerebrospinal Fluid Biomarkers. JAMA Neurology. 2014;71(7):855-62.

6.	 Kim HW, Hong J, Jeon JC. Cerebral Small Vessel Disease and Alzheimer's Disease: A Review. Front 
Neurol. 2020;11:927.

7.	 Hertze J, Palmqvist S, Minthon L, Hansson O. Tau pathology and parietal white matter lesions have 
independent but synergistic effects on early development of Alzheimer's disease. Dement Geriatr 
Cogn Dis Extra. 2013;3(1):113-22.

8.	 Twait EL, Min B, Beran M, Vonk JMJ, Geerlings MI. The cross-sectional association between amyloid 
burden and white matter hyperintensities in older adults without cognitive impairment: A 
systematic review and meta-analysis. Ageing Res Rev. 2023;88:101952.

9.	 Benussi A, Cantoni V, Rivolta J, Archetti S, Micheli A, Ashton N, et al. Classification accuracy of 
blood-based and neurophysiological markers in the differential diagnosis of Alzheimer's disease 
and frontotemporal lobar degeneration. Alzheimers Res Ther. 2022;14(1):155.

10.	 Wang YL, Chen J, Du ZL, Weng H, Zhang Y, Li R, et al. Plasma p-tau181 Level Predicts 
Neurodegeneration and Progression to Alzheimer's Dementia: A Longitudinal Study. Front Neurol. 
2021;12:695696.

11.	 Mielke MM, Frank RD, Dage JL, Jeromin A, Ashton NJ, Blennow K, et al. Comparison of 
Plasma Phosphorylated Tau Species With Amyloid and Tau Positron Emission Tomography, 
Neurodegeneration, Vascular Pathology, and Cognitive Outcomes. JAMA Neurol. 2021;78(9):1108-17.

12.	 Qu Y, Tan CC, Shen XN, Li HQ, Cui M, Tan L, et al. Association of Plasma Neurofilament Light With Small 
Vessel Disease Burden in Nondemented Elderly: A Longitudinal Study. Stroke. 2021;52(3):896-904.

13.	 Elahi FM, Casaletto KB, La Joie R, Walters SM, Harvey D, Wolf A, et al. Plasma biomarkers of astrocytic 
and neuronal dysfunction in early- and late-onset Alzheimer's disease. Alzheimers Dement. 
2020;16(4):681-95.

14.	 Sun Y, Tan L, Xu W, Wang ZT, Hu H, Li JQ, et al. Plasma Neurofilament Light and Longitudinal 
Progression of White Matter Hyperintensity in Elderly Persons Without Dementia. J Alzheimers 
Dis. 2020;75(3):729-37.

15.	 Shir D, Graff-Radford J, Hofrenning EI, Lesnick TG, Przybelski SA, Lowe VJ, et al. Association of 
plasma glial fibrillary acidic protein (GFAP) with neuroimaging of Alzheimer's disease and vascular 
pathology. Alzheimers Dement (Amst). 2022;14(1):e12291.

16.	 Chong JR, Ashton NJ, Karikari TK, Tanaka T, Saridin FN, Reilhac A, et al. Plasma P-tau181 to Aβ42 
ratio is associated with brain amyloid burden and hippocampal atrophy in an Asian cohort of 
Alzheimer's disease patients with concomitant cerebrovascular disease. Alzheimers Dement. 
2021;17(10):1649-62.



74 | Chapter 3

17.	 Chen CH, Cheng YW, Chen YF, Tang SC, Jeng JS. Plasma neurofilament light chain and glial fibrillary 
acidic protein predict stroke in CADASIL. J Neuroinflammation. 2020;17(1):124.

18.	 Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between Longitudinal 
Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA 
Neurol. 2019;76(7):791-9.

19.	 Chen SD, Huang YY, Shen XN, Guo Y, Tan L, Dong Q, et al. Longitudinal plasma phosphorylated tau 
181 tracks disease progression in Alzheimer's disease. Transl Psychiatry. 2021;11(1):356.

20.	 Benedet AL, Leuzy A, Pascoal TA, Ashton NJ, Mathotaarachchi S, Savard M, et al. Stage-specific 
links between plasma neurofilament light and imaging biomarkers of Alzheimer's disease. Brain. 
2020;143(12):3793-804.

21.	 Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, et al. Blood phosphorylated 
tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling 
study using data from four prospective cohorts. Lancet Neurol. 2020;19(5):422-33.

22.	 Huang Y, Li Y, Xie F, Guo Q. Associations of plasma phosphorylated tau181 and neurofilament light 
chain with brain amyloid burden and cognition in objectively defined subtle cognitive decline 
patients. CNS Neurosci Ther. 2022;28(12):2195-205.

23.	 Barker W, Quinonez C, Greig MT, Behar R, Chirinos C, Rodriguez RA, et al. Utility of Plasma 
Neurofilament Light in the 1Florida Alzheimer's Disease Research Center (ADRC). J Alzheimers 
Dis. 2021;79(1):59-70.

24.	 Tan L, Xing J, Wang Z, Du X, Luo R, Wang J, et al. Study of gray matter atrophy pattern with 
subcortical ischemic vascular disease-vascular cognitive impairment no dementia based on 
structural magnetic resonance imaging. Frontiers in Aging Neuroscience. 2023;15.

25.	 Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer's disease--lessons from 
pathology. BMC Med. 2014;12:206.

26.	 Jellinger KA, Attems J. Prevalence and pathogenic role of cerebrovascular lesions in Alzheimer 
disease. J Neurol Sci. 2005;229-230:37-41.

27.	 Geerlings MI, Appelman AP, Vincken KL, Algra A, Witkamp TD, Mali WP, et al. Brain volumes and 
cerebrovascular lesions on MRI in patients with atherosclerotic disease. The SMART-MR study. 
Atherosclerosis. 2010;210(1):130-6.

28.	 Castelijns MC, Helmink MAG, Hageman SHJ, Asselbergs FW, de Borst GJ, Bots ML, et al. Cohort 
profile: the Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-
SMART) Study-an ongoing prospective cohort study of patients at high cardiovascular risk in the 
Netherlands. BMJ Open. 2023;13(2):e066952.

29.	 Ghaznawi R, Geerlings MI, Jaarsma-Coes M, Hendrikse J, de Bresser J. Association of White Matter 
Hyperintensity Markers on MRI and Long-term Risk of Mortality and Ischemic Stroke: The SMART-
MR Study. Neurology. 2021;96(17):e2172-e83.

30.	 Thijssen EH, Verberk IMW, Kindermans J, Abramian A, Vanbrabant J, Ball AJ, et al. Differential 
diagnostic performance of a panel of plasma biomarkers for different types of dementia. 
Alzheimers Dement (Amst). 2022;14(1):e12285.

31.	 Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the 
use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease. Alzheimers Res 
Ther. 2019;11(1):34.

32.	 Knoops AJG, van der Graaf Y, Appelman APA, Mali WPTM, Geerlings MI. Total Cerebral Blood Flow 
and Hippocampal Volume in Patients with Arterial Disease. the SMART-MR Study. Journal of 
Cerebral Blood Flow & Metabolism. 2009;29(10):1727-33.



75|

3

33.	 Anbeek P, Vincken KL, van Bochove GS, van Osch MJ, van der Grond J. Probabilistic segmentation 
of brain tissue in MR imaging. Neuroimage. 2005;27(4):795-804.

34.	 Ghaznawi R, Zwartbol MH, Zuithoff NP, Bresser J, Hendrikse J, Geerlings MI. Reduced parenchymal 
cerebral blood flow is associated with greater progression of brain atrophy: The SMART-MR study. 
J Cereb Blood Flow Metab. 2021;41(6):1229-39.

35.	 Knoops AJ, Gerritsen L, van der Graaf Y, Mali WP, Geerlings MI. Basal hypothalamic pituitary adrenal 
axis activity and hippocampal volumes: the SMART-Medea study. Biol Psychiatry. 2010;67(12):1191-8.

36.	 Rissanen I, Lucci C, Ghaznawi R, Hendrikse J, Kappelle LJ, Geerlings MI. Association of Ischemic 
Imaging Phenotype With Progression of Brain Atrophy and Cerebrovascular Lesions on MRI: The 
SMART-MR Study. Neurology. 2021;97(11):e1063-e74.

37.	 Ghaznawi R, Vonk JMJ, Zwartbol MHT, Bresser Jd, Rissanen I, Hendrikse J, et al. Low-grade carotid 
artery stenosis is associated with progression of brain atrophy and cognitive decline. The SMART-
MR study. Journal of Cerebral Blood Flow & Metabolism. 2022;43(2):309-18.

38.	 Zwartbol MH, van der Kolk AG, Kuijf HJ, Witkamp TD, Ghaznawi R, Hendrikse J, et al. Intracranial 
vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: The SMART-MR 
study. Journal of Cerebral Blood Flow & Metabolism. 2021;41(6):1219-28.

39.	 Groenwold RH, Donders AR, Roes KC, Harrell FE, Jr., Moons KG. Dealing with missing outcome data 
in randomized trials and observational studies. Am J Epidemiol. 2012;175(3):210-7.

40.	 White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance 
for practice. Stat Med. 2011;30(4):377-99.

41.	 Kronmal RA. Spurious Correlation and the Fallacy of the Ratio Standard Revisited. Journal of the 
Royal Statistical Society: Series A (Statistics in Society). 1993;156(3):379-92.

42.	 Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. 
Biometrika. 1988;75(2):383-6.

43.	 Vickerstaff V, Omar RZ, Ambler G. Methods to adjust for multiple comparisons in the analysis and 
sample size calculation of randomised controlled trials with multiple primary outcomes. BMC 
Medical Research Methodology. 2019;19(1):129.

44.	 Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine. 
2004;256(3):183-94.

45.	 Teunissen CE, Khalil M. Neurofilaments as biomarkers in multiple sclerosis. Mult Scler. 
2012;18(5):552-6.

46.	 Gattringer T, Pinter D, Enzinger C, Seifert-Held T, Kneihsl M, Fandler S, et al. Serum neurofilament 
light is sensitive to active cerebral small vessel disease. Neurology. 2017;89(20):2108-14.

47.	 Chen Y, Therriault J, Luo J, Ba M, Zhang H, Initiative ADN. Neurofilament light as a biomarker of 
axonal degeneration in patients with mild cognitive impairment and Alzheimer's disease. J Integr 
Neurosci. 2021;20(4):861-70.

48.	 Wisse LEM, de Bresser J, Geerlings MI, Reijmer YD, Portegies MLP, Brundel M, et al. Global brain 
atrophy but not hippocampal atrophy is related to type 2 diabetes. Journal of the Neurological 
Sciences. 2014;344(1):32-6.

49.	 Walsh P, Sudre CH, Fiford CM, Ryan NS, Lashley T, Frost C, et al. The age-dependent associations of 
white matter hyperintensities and neurofilament light in early- and late-stage Alzheimer's disease. 
Neurobiol Aging. 2021;97:10-7.

50.	 Chong JR, Hilal S, Ashton NJ, Karikari TK, Reilhac A, Vrooman H, et al. Brain atrophy and white 
matter hyperintensities are independently associated with plasma neurofilament light chain in 
an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease. 
Alzheimers Dement (Amst). 2023;15(1):e12396.



76 | Chapter 3

51.	 Graff-Radford J, Arenaza-Urquijo EM, Knopman DS, Schwarz CG, Brown RD, Rabinstein AA, et al. 
White matter hyperintensities: relationship to amyloid and tau burden. Brain. 2019;142(8):2483-91.

52.	 Shen XN, Huang YY, Chen SD, Guo Y, Tan L, Dong Q, et al. Plasma phosphorylated-tau181 as 
a predictive biomarker for Alzheimer's amyloid, tau and FDG PET status. Transl Psychiatry. 
2021;11(1):585.

53.	 Chatterjee P, Pedrini S, Ashton NJ, Tegg M, Goozee K, Singh AK, et al. Diagnostic and prognostic 
plasma biomarkers for preclinical Alzheimer's disease. Alzheimers Dement. 2022;18(6):1141-54.

54.	 Hu H, Chen KL, Ou YN, Cao XP, Chen SD, Cui M, et al. Neurofilament light chain plasma concentration 
predicts neurodegeneration and clinical progression in nondemented elderly adults. Aging 
(Albany NY). 2019;11(17):6904-14.

55.	 Foerch C, Niessner M, Back T, Bauerle M, De Marchis GM, Ferbert A, et al. Diagnostic Accuracy of 
Plasma Glial Fibrillary Acidic Protein for Differentiating Intracerebral Hemorrhage and Cerebral 
Ischemia in Patients with Symptoms of Acute Stroke. Clinical Chemistry. 2012;58(1):237-45.

56.	 Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular dementia. 
Lancet Neurol. 2002;1(7):426-36.

57.	 Schindler SE, Karikari TK, Ashton NJ, Henson RL, Yarasheski KE, West T, et al. Effect of Race on 
Prediction of Brain Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament 
Light. Neurology. 2022;99(3):e245-e57.



77|

3

Supplemental Info

Supplemental Figure 1. Correlation matrix between age, AD plasma markers, and MRI markers of 
vascular pathology.

Note: Pearson correlation coefficients are shown. Bolded coefficients are significant at p < 0.05.
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Supplemental Table 1. Associations between Aβ40 and Aβ42 and MRI markers of CSVD.

Plasma 
levels (per 
SD increase)

White matter 
hyperintensity volume, B 
(95% CI), p-value

Total brain volume, B (95% 
CI), p-value

Hippocampal volume, B 
(95% CI), p-value

Aβ40 0.12 (0.02; 0.022), p = 0.018 -1.88 (-4.71; 0.96), p = 0.194 -0.11 (-0.17; -0.05), p = 0.001

Aβ42 0.09 (-0.01; 0.18), p = 0.071 -3.61 (-6.26; -0.96), p = 0.008 -0.06 (-0.12; 0.00), p = 0.051

Aβ42/Aβ40* -0.06 (-0.16; 0.03), p = 0.194 -0.45 (-3.16; 2.27), p = 0.747 0.03 (-0.03; 0.09), p =0.271

Model 2

Aβ40 0.12 (0.01; 0.22), p = 0.025 -1.49 (-4.31; 1.33), p = 0.300 -0.11 (-0.18; -0.05), p = 0.001

Aβ42 0.08 (-0.02; 0.17), p = 0.102 -3.46 (-6.08; -0.83), p = 0.010 -0.06 (-0.12; 0.00), p = 0.048

Aβ42/Aβ40* -0.07 (-0.17; 0.02), p = 0.144 -0.36 (-3.01; 2.29), p = 0.791 0.03 (-0.03; 0.09), p = 0.310

Note: Model 1 is adjusted for age, sex, education, and intracranial volume. Model 2 adds diabetes 
mellitus, hypertension, smoking status, and alcohol use. White matter lesion volume is log-transformed. 
* = including 1/Aβ40 and Aβ42 as main effects in the model.

Supplemental Table 2. Associations between Aβ40 and Aβ42 and infarcts.

Plasma levels 
(per SD 
increase)

Number of infarcts,OR 
(95% CI), p-value

Lacunar infarcts, OR (95% 
CI), p-value

Cortical infarcts, OR (95% 
CI), p-value

Model 1
Aβ40 1.00 (0.83; 1.20), p = 0.958 0.93 (0.76; 1.14), p = 0.492 1.16 (0.91; 1.47), p = 0.228
Aβ42 1.05 (0.88; 1.25), p = 0.620 1.05 (0.87; 1.28), p = 0.602 1.23 (0.98; 1.54), p = 0.080
Aβ42/Aβ40* 1.18 (0.84; 1.67), p = 0.344 1.32 (0.80; 2.20), p = 0.279 0.99 (0.77; 1.26), p = 0.909
Model 2
Aβ40 0.96 (0.79; 1.16), p = 0.644 0.87 (0.70; 1.07), p = 0.185 1.12 (0.88; 1.44), p = 0.356
Aβ42 1.01 (0.84; 1.21), p = 0.933 0.99 (0.81; 1.21), p = 0.896 1.21 (0.95; 1.53), p = 0.126
Aβ42/Aβ40* 1.20 (0.79; 1.83), p = 0.384 1.39 (0.80; 2.41), p = 0.242 0.97 (0.77; 1.23), p = 0.814

Note: Model 1 is adjusted for age, sex, and education. Model 2 adds diabetes mellitus, hypertension, 
smoking status, and alcohol use. White matter lesion volume is log-transformed. * = including 1/Aβ40 
and Aβ42 as main effects in the model.
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Cross-sectional study—Report numbers of outcome events or 
summary measures

8-9, 18
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I If relevant, consider translating estimates of relative risk into 
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9-10

Discussion
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Abstract

Specific subfields within the hippocampus have shown vulnerability to chronic 
stress, highlighting the importance of looking regionally within the hippocampus to 
understand the role of psychosocial factors in the development of neurodegenerative 
diseases. A systematic review on psychosocial factors and hippocampal subfield 
volumes was performed and showed inconsistent results, highlighting the need 
for future studies to explore this relationship. The current study aimed to explore 
the association of psychosocial factors with hippocampal (subfield) volumes, using 
high-field 7T MRI. Data were from the Memory Depression and Aging (Medea)-7T 
study, which included 333 participants without dementia. Hippocampal subfields 
were automatically segmented from T2-weighted images using ASHS software. 
Generalized linear models accounting for correlated outcomes were used to assess 
the association between subfields (i.e., entorhinal cortex, subiculum, Cornu Ammonis 
(CA)1, CA2, CA3, dentate gyrus, and tail) and each psychosocial factor (i.e., depressive 
symptoms, anxiety symptoms, childhood maltreatment, recent stressful life 
events, and social support), adjusted for age, sex, and intracranial volume. Neither 
depression nor anxiety was associated with specific hippocampal (subfield) volumes. 
A trend for lower total hippocampal volume was found in those reporting childhood 
maltreatment, and a trend for higher total hippocampal volume was found in those 
who experienced a recent stressful life event. Among subfields, low social support 
was associated with lower volume in the CA3 (B = -0.43, 95% CI: -0.72; -0.15). This 
study suggests possible differential effects among hippocampal (subfield) volumes 
and psychosocial factors. 
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Introduction

The hippocampus is implicated in many neuropsychiatric diseases, such as depression, 
schizophrenia, and dementia, where frequently a smaller hippocampal volume has 
been observed in comparing cases to controls. Based on animal studies, it is thought 
that the hippocampus is sensitive to stress and that the hippocampus mediates the 
stress response and release of glucocorticoids from the hypothalamic-pituitary-adrenal 
(HPA) axis (1). Chronic activation of the HPA axis due to stress or anxiety (2) may lead to 
volume loss in the hippocampus, which has been demonstrated in studies assessing 
stressful events (3, 4) and post-traumatic stress disorder (5, 6).

However, the hippocampus is not a homogeneous structure. It is composed of 
multiple subfields that have shown differential responses to psychosocial factors. 
In previous animals studies, chronic stress has been shown to suppress neuronal 
development in the dentate gyrus (DG) and remodel dendrites in the cornu ammonis 
(CA), specifically in the CA3 (6, 7). Further, neurogenesis inhibition in the DG has been 
related to psychosocial stress (8). This stress-specificity in hippocampal subfields has 
also been recently replicated in human studies as well (9-11). However, regarding 
some psychosocial factors, such as social support, studies have mostly been limited 
to child or adolescent samples (9, 12-16) and focused on total hippocampal volume 
rather than exploring the differential effect within subfields (9, 12-15, 17-20). 
Further, these psychosocial factors, such as low social support (21, 22), depression 
(23, 24), anxiety (25, 26), and childhood maltreatment (27), have been associated 
with an increased risk for incident dementia, which could possibly be mediated by 
hippocampal volumes (28-30).

Therefore, by understanding the role psychosocial factors have on regions of 
the hippocampus in an adult population, we can better understand how these 
factors may contribute to the development of neurodegenerative diseases. Early-
life stress has shown specific decline in the hippocampus (31), as well as stunted 
hippocampal growth during adolescence (32, 33), possibly due to programming 
effects in childhood resulting from an interplay of immune factors and hippocampal 
neurogenesis (34). This highlights a possible importance of timing of stressful 
exposure in its influence on brain structure. Further, two reviews have highlighted 
that type of stressful exposure (e.g., emotional vs. physical abuse) may also have a 
differential effect on neurobiological alterations (35, 36). However, exploring possible 
differences of timing (e.g., early- versus late-life trauma) and type of exposure has 
yet to be assessed with hippocampal subfields.
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To get a current overview of the literature, the first aim of the current study is to 
perform a systematic review of previous studies assessing psychosocial factors on 
hippocampal subfield volume in adults. The second aim is to examine the association 
between psychosocial factors and hippocampal (subfield) atrophy using high-field 7T 
MRI in a large sample. We hypothesized that psychosocial factors such as depression, 
childhood maltreatment, and anxiety would be associated with total hippocampal 
volume based on previous reviews (37, 38). We further hypothesized specific 
associations in the stress-sensitive DG and CA3 areas. Moreover, we hypothesized 
that lower social support would be negatively associated with hippocampal subfield 
volumes with no a-priori hypothesis on a specific subfield due to lack of previous 
research in adults.

Methods

Participants
The Memory Depression and Aging (Medea)-7T study (39) is a cohort study at the 
University Medical Center (UMC) Utrecht with the aim to investigate risk factors 
and structural brain changes using 7T MRI in middle-aged and older adults with 
and without dementia. It is explained in-depth elsewhere (39). In brief, participants 
were recruited from the following settings: participants from the SMART-MR study 
(n = 213) (40), participants from the PREDICT-MR study (n = 50) (41), participants 60 
years or older without dementia from general practices (n = 70) (39), and patients 
with mild cognitive impairment or early Alzheimer’s disease from memory clinics 
at the UMC Utrecht (n = 35) through the Utrecht Vascular Cognitive Impairment 
(VCI) Study group (see Acknowledgements) (39). Between January 2010 and October 
2017, 368 participants underwent cognitive testing and MRI measurements. The 35 
participants with mild cognitive impairment or dementia from the memory clinics 
were excluded. This left 333 individuals for the following analyses.

Psychosocial factors
The following psychosocial factors were focused on in this study: depressive 
symptoms, anxiety symptoms, childhood maltreatment, recent stressful life events, 
and social support. 

Depressive symptoms were assessed with the Patient Health Questionnaire-9 (PHQ-9) 
(42) in the SMART-MR and PREDICT-MR cohorts and the Geriatric Depression Scale-15 
(GDS-15) (43) in the general practices and memory clinics. Elevated depressive 
symptoms (yes/no) were defined as scoring 6 or above on the PHQ-9 (44) or on the 
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GDS-15 (45, 46). We chose a cut-off score of 6 or higher on the GDS-15 as it has been 
highlighted to have a higher sensitivity and specificity in community-based settings, 
as well as an overall higher specificity (45).

Anxiety was measured by the total score on the Beck Anxiety Inventory (BAI) (range: 
0-63) (47) and dichotomized using population cut-offs (48) of 11 and higher being 
classified as elevated anxiety symptomology. 

Childhood maltreatment was measured with a selection of items from the NEMESIS 
Trauma Interview (49) by a sum score of types of childhood maltreatment (i.e., 
emotional neglect, psychological abuse, physical abuse, and/or sexual abuse) that 
occurred before 16 years of age. Emotional neglect was described as not listened to, 
ignored, or unsupported. Psychological abuse was described as yelled at, insulted, 
unjustly punished/treated, threatened, belittled, or blackmailed. Physical abuse 
was defined as being kicked, hit, bitten, or hurt with an object or hot water. Sexual 
abuse was defined as any unwanted sexual experience. Childhood maltreatment was 
dichotomized as experiencing no childhood abuse or one or more type of abuse. 

Recent stressful life events within the last 12 months were assessed via a 
questionnaire, including events such as serious illness to oneself or a close relative, 
job loss, and relational difficulties (50). Stressful events were dichotomized as no 
recent event or one or more. 

Social support was assessed via seven questions regarding perceived current social 
support (e.g. “There are people in my family and circle of friends who cheer me up”), 
on a scale of “incorrect”, “partially correct”, or “totally correct” (51). Scores ranged from 
0-14, with high scores representing more support. Social support was categorized 
into low, medium, and high using a median cut-off. High social support was used as 
the reference.

For the PREDICT-MR and general practices, all psychosocial questionnaires were 
completed at the same time point as MRI collection. For the SMART-MR cohort, 
depression, anxiety, and recent stressful life events were all assessed at the same time 
point as MRI. However, social support and childhood maltreatment were assessed at 
an earlier time point, between 7 and 9 years before MRI collection. 

Demographics
Age and sex were self-reported through questionnaires. 
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MRI assessment
Using a 7T MRI system (Philips Healthcare, Cleveland, OH, USA) with a 32-channel 
receive head coil (Nova Medical, Wilmington, MA, USA), 3D T1-weighted (3D T1-
weighted (TI/TR/TE=1225/4.8/2.2, acquired voxel size = 1.0x1.0x1.0 mm3, reconstructed 
to 0.66x0.66x0.66 mm3) and 3D T2-weighted (TR/TE=3158/301, acquired voxel size = 
0.70x0.70x0.70 mm3, reconstructed to 0.35x0.35x0.35 mm3) images were acquired. T1 
and T2 images were reconstructed for nominal spatial resolution. The scanning duration 
was 10:15 minutes long per acquisition. To partly compensate inhomogeneity in the 
radio frequency field, a flip angle of 120 degrees was performed. To reduce specific 
absorption rate and to optimize image contrast, a 12 to 90 degree tissue-specific 
refocusing pulse angle sweep was done (52). A field of view of 250 x 250 x 190 mm 
for foot-to-head x anterior-to-posterior x right-to-left was used. For more information 
regarding 7T sequence, please refer to (53).

Conventional MR images were obtained using 1.5T (Gyroscan ACS-NT, Philips Medical 
System, Best, the Netherlands) in both the SMART-MR and PREDICT-MR studies. A sagittal 
3D T1-weighted sequence (SMART-MR: TR/TE: 7.0/3.2ms, voxel size = 0.94x0.94x1.00 
mm3 isotropic; PREDICT-MR: TR/TE: 6.9/1.3 ms, voxel size = 0.98x0.98x1.10 mm3 isotropic) 
was acquired for segmentation of intracranial volume (ICV). MR images were collected 
using 3T MRI (Philips Medical Systems, Best, the Netherlands) for the participants from 
the general practices. This protocol included a sagittal 3D T1-weighted sequence (TR/
TE=8.0/4.5, voxel size = 1.00x1.00x1.00 mm3 isotropic). Automatic brain segmentation 
was performed on the 3D T1-weighted sequence of the 1.5 or 3T images by CAT12 
(version 1155), SPM12 (version 6906), and MATLAB (version 8.6). CAT12 segments gray 
matter, white matter, and cerebrospinal fluid. Total ICV was calculated as a sum of white 
and gray matter and CSF volumes. As segmentation on ICV has not yet been validated 
in the Automatic Segmentation of Hippocampal Subfields (ASHS, see next paragraph) 
on 7T, 1.5 or 3T images were used for ICV segmentation. Therefore, all participants 
underwent both a 7T MRI as well as a 1.5 or 3T MRI scan.

For hippocampal subfield segmentation, the ASHS software was used on the 3D 
T2-weighted images (Upenn, PA, USA). ASHS differentiates between the CA1-3, CA4 
and DG, subiculum, entorhinal cortex (ERC), and the hippocampal tail (Figure 1). The 
‘UMC Utrecht 7T ASHS Atlas, compatible with original (slow) ASHS’ was used from the 
ASHS atlases validated for 7T (54). Using frequencies and histograms, segmentations 
were inspected for outliers. Manual, visual inspection was performed on outlier 
segmentations and then removed from the analysis if due to a segmentation error. 
Additionally, a random sample of 5% of all the segmentations were manually inspected 
for segmentation errors.
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Systematic review
On December 13th, 2021, a PubMed search for psychosocial factors and hippocampal 
subfield volumes was performed (see Supplementary Info S1). A total of 1,554 articles 
were screened based on title/abstract. Seventy-eight articles were selected for full-
text screening based on the inclusion criteria of assessing hippocampal subfield 
volume and assessing one or more of the relevant psychosocial factors. Systematic 
reviews or meta-analyses were not included. Articles were then selected for this 
review if 1) participants were 25 years or older (based on brain maturation in early 
adulthood (55)), 2) participants were not cognitively impaired or diagnosed with any 
illness that was not major depressive disorder, an anxiety disorder, or post-traumatic 
stress disorder, 3) involved relevant psychosocial factors (i.e., depression, anxiety, 
childhood maltreatment or trauma, recent stressful life events, or social support), 
and 4) reported a cross-sectional association with hippocampal subfield volume. A 
total of 47 articles were included in this review. 

Figure 1. 3D segmentation of hippocampal subfields using ASHS on a random participant for 
visualization, alongside an axial view of a template brain MRI. Tail = hippocampal tail, CA = Cornu 
ammonis, DG = dentate gyrus, SUB = subiculum, ERC = entorhinal cortex. For segmentation display, 
please see https://www.nitrc.org/projects/ashs.

Data analysis
Multiple imputation was performed using the mice package in R (version 4.0.3) 
to address missing values (ranged from: 2.1% for BAI and 12.6% for the volumes 
of the hippocampal subfields) with 25 imputed datasets. The number of imputed 
datasets was chosen based on the percentage of non-complete cases (56) (e.g., if 
the complete case analysis is on 77% of the original N, then at least 23 imputed 
datasets are needed). Therefore, we chose 25 imputed datasets. Missing data on 
hippocampal subfield volume was due to the following: 11 individuals had no T1 
or T2 available, 18 individuals had movement or signal interference, and 13 had a 
segmentation error. Predictive mean matching was used for continuous variables, 
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polytomous logistic regression for unordered categorical variables, and logistic 
regression imputation for dichotomous variables. Left and right hemispheres of the 
hippocampal subfields were summed and converted into z-scores after imputation. 
The outcomes (i.e., hippocampal subfields) were also used in the prediction process 
for imputation as well as being imputed themselves. See Supplementary Table 1 for 
descriptive statistics of both the complete case and imputed data.

Multiple linear regressions were fit for each psychosocial factor (i.e., depressive 
symptoms, anxiety symptoms, childhood maltreatment, recent stressful life 
events, and social support), adjusted for age, sex, and intracranial volume, on total 
hippocampal volume. Generalized linear models were fit for each psychosocial 
factor, also adjusted for age, sex, and intracranial volume, which included the 
unstructured correlation of each hippocampal subfield per individual (i.e., ‘a 
multivariate approach’), to assess differential effects between subfields. In these 
models, all hippocampal subfields are entered as one outcome, resulting in a 
single model per each psychosocial factor (see Supplementary Code S1). Previous 
literature has shown that multivariate approaches increase the power of the model 
as well as reduce type I error compared to univariate approaches that ignore the 
correlation between outcomes (57). While in univariate analyses, one can adjust 
the p-value, the assumption of independence between outcomes is violated when 
they are correlated. Additionally, an exploratory analysis on types of childhood 
maltreatment was also performed for both outcomes: total hippocampal volume 
and hippocampal subfield volumes. The nlme package in R (version 4.0.3) was used 
for all multivariate models using the gls() function. Estimated marginal means from 
the multivariate models on subfield outcomes were computed using the emmeans 
package in R (see Supplementary Code S1). Pooled results are shown. To correct 
for multiple testing, we defined statistical significance as p < 0.005 to account for 
the ten tests performed (i.e., based on five separate predictors on two outcomes 
[i.e., total hippocampal volume and multivariate hippocampal subfields]). Lastly, 
sensitivity analyses were performed to explore possible differences when assessing 
type of childhood maltreatment, when using continuous data (i.e., BAI sum score, 
sum score on the stressful events questionnaire, and sum score on the social support 
questionnaire), when stratifying by cohort, when using a stricter cut-off of 10 (versus 
six) or higher on the PHQ-9, when including all psychosocial factors in a joint model, 
and when excluding missing data (i.e., a complete case analysis).
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Results

Systematic review results
An overview of the literature review for psychosocial factors and their associations with 
hippocampal subfield volumes are displayed in Table 1. Of the 47 articles, 27 studies 
(57%) reported lower hippocampal subfield volumes in the presence of a psychosocial 
factor, specifically depression (11, 41, 58-70), anxiety (71), or childhood maltreatment 
or post-traumatic stress disorder (PTSD) (58, 66, 72-82). The most often affected 
subfields were the CA3 and DG. Most of the studies used 1.5T or 3T MRI, with four 
studies (9%) using high-field 7T MRI (41, 83-85). Twenty-four studies (51%) reported no 
significant differences in volume (61, 64, 66, 68, 74, 78, 81, 83, 85-100), and four studies 
(9%) found increased volumes, specifically in the left hippocampal amygdala transition 
area (HATA) for sexual abuse (73), the hippocampal tail in those with major depressive 
disorder (MDD) (101), the CA1, CA3, and molecular layer in those with childhood 
maltreatment (11), and in the right subiculum in those with MDD (84). No studies 
assessed recent stressful life events or social support. Most studies assessed differences 
between a clinical population and healthy controls. However, six studies (59, 78, 83, 
85, 87, 99) explored associations between symptomology and subfield volumes in 
MDD patients only. One study found no association between anxiety symptomology 
in those with panic disorder. Additionally, five studies (58, 66, 74, 76, 100)  studied 
symptomology in trauma survivors. Only one study (2%) assessed symptomology in 
community-dwelling adults (97), with no association found between subfield volume 
and depressive symptomology.

Descriptive results from the Medea-7T Study
Of the 333 participants in the current study, 30% were female with an average age of 
68 years (Table 2). Seventeen percent experienced elevated symptoms of depression, 
15% had elevated symptoms of anxiety, 24% experienced any kind of childhood 
maltreatment, 51% had experienced a recent stressful life event, and 24% had low social 
support. All subfields were significantly correlated with one another (Supplementary 
Figure 1). Chi-square tests between each psychosocial factor showed significant 
associations between all psychosocial factors as well (Supplementary Info 2). 

Depression and anxiety
Regarding depressive and anxiety symptomology, no significant associations 
were found for total hippocampal volume or within a specific subfield. However, a 
trend of lower volume in the total hippocampus was seen in those with depressive 
symptoms, and a trend of greater volume in the total hippocampus was seen in those 
with anxiety symptoms. Further, these trends were also seen in specific subfields. 
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Table 1. Overview of literature researching the association between psychosocial factors and 
hippocampal subfield volumes.

Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Abbott, Jones (86) MDD 19 MDD + 20 HC MDD: 65 (8)
HC: 65 (9)

64% 3T CA1, CA2/3, DG, subiculum Van Leemput et al., 
Hippocampus 2009

NA No significant difference between 
MDD and HC.

Aghamohammadi-
Sereshki, Coupland 
(72)

MDD + childhood 
maltreatment

35 MDD + 35 HC HC: 32 (10)
MDD: 35 (9)

66% 4.7T CA1-3, subiculum, DG Manual ICV CA1-3 had a negative correlation with 
childhood maltreatment in those with 
MDD.

Ahmed-Leitao, 
Rosenstein (73)

Childhood 
maltreatment 
+ PTSD + social 
anxiety disorder

26 SAD with 
trauma + 22 SAD 
without trauma + 
17 PTSD + 25 HC

PTSD: 36 (10)
SAD w/ trauma: 36 (9)
SAD w/o trauma: 33 (10)
HC: 31 (7)

47% 3T All Freesurfer ICV Negative correlation was found 
between physical neglect and left 
fimbria. A positive correlation was 
found with sexual abuse and the 
left HATA. Lower left HATA and 
right parasubiculum in PTSD group 
compared to the SAD and control 
groups.

Averill, Satodiya (58) PTSD, BDI 36 PTSD, 32 
combat control 
veterans

21-60 0% 3T Parasubiculum, 
presubiculum, subiculum, 
CA1, CA2/3, CA4, GC/DG, 
HATA, fimbria, molecular 
layer, hippocampal tail

Freesurfer ICV Total hippocampal volume negatively 
correlated with PTSD symptoms and 
BDI. PTSD negatively correlated with 
the HATA. BDI negatively correlated 
with the DG, CA4, HATA, CA2/3, 
molecular layer, and CA1.

Brown, Rutland (83) MDD + depressive 
symptoms

24 MDD + 20 HC MDD: 40 (10)
HC: 40 (13)

58% 7T Subiculum, presubiculum, 
parasubiculum, CA1, CA3, 
CA4, GC of DG, ML DG, HATA, 
fimbria

Freesurfer ICV No differences in subfield volumes 
between groups. Positive associations 
were found for MDD severity and 
right CA1 and right CA3/4, but it did 
not survive multiple comparisons 
adjustment.

Burhanoglu, Dinçer 
(87)

MDD + depressive 
symptoms + 
anxiety symptoms

59 females high-
risk for depression

23 (2) 100% 3T Fissure, tail, subiciulm, 
presubiculum, 
parasubiculum, CA1, CA3, 
CA4, ML, GC ML, fimbria, 
HATA

Freesurfer ICV No difference in subfields between 
those with MDD and those without 
MDD. No association with depressive 
or anxiety symptomology.

Cao, Passos (88) MDD 152 HC + 86 MDD HC: 35 (12)
MDD: 41 (12)

67% 1.5T CA1, CA2/3, CA4, GCL, ML, 
presubiculum, subiculum, 
and tail

Freesurfer ICV No significant difference between 
MDD + HC.

Chalavi, Vissia (74) PTSD + childhood 
maltreatment

16 PTSD + 28 HC HC: 42 (12)
PTSD: 41 (12)

100% 3T CA1, CA2-3, CA4-DG, 
subiculum, presubiculum, 
fimbria

Freesurfer TBV No difference between PTSD and HC 
subfield volumes. Left CA1, CA2-3, 
CA4-DG, and presubiculum were 
negatively correlation with severity of 
childhood traumatizing events.

Chen, Sun (75) PTSD 140 HC and 142 
PTSD

HC: 39 (10); PTSD: 40 (10) 23% 3T CA1, CA3, CA4, DG, fimbria, 
fissure, HTA, molecular 
layer, parasubiculum, 
presubiculum, subiculum 
+ tail

Freesurfer HV Lower subfield volumes associated 
with PTSD in left CA1 and bilateral 
CA3, only if hippocampal volume was 
included as a covariate. 

Choi, Jung (59) MDD, depressive 
symptoms

50 MDD + 50 HC HC: 68 (4)
MDD: 69 (7)

62% 3T CA1, CA2, CA3, CA4, DG, 
subiculum

ASHS ICV Bilateral CA1 and DG and right CA3 
were smaller in the MDD group. 
Depressive symptoms were negatively 
correlated with left DG. 

Doolin, Allers (60) MDD 74 MDD + 37 HC HC: 31 (11)
MDD: 33 (13)

60% 3T CA1-4, subiculum Freesurfer ICV Hippocampal subfield volumes were 
smaller in MDD patients than HC for 
CA1 (left only), CA2/3 (left and right) 
and CA4 (right only).
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Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Abbott, Jones (86) MDD 19 MDD + 20 HC MDD: 65 (8)
HC: 65 (9)

64% 3T CA1, CA2/3, DG, subiculum Van Leemput et al., 
Hippocampus 2009

NA No significant difference between 
MDD and HC.

Aghamohammadi-
Sereshki, Coupland 
(72)

MDD + childhood 
maltreatment

35 MDD + 35 HC HC: 32 (10)
MDD: 35 (9)

66% 4.7T CA1-3, subiculum, DG Manual ICV CA1-3 had a negative correlation with 
childhood maltreatment in those with 
MDD.

Ahmed-Leitao, 
Rosenstein (73)

Childhood 
maltreatment 
+ PTSD + social 
anxiety disorder

26 SAD with 
trauma + 22 SAD 
without trauma + 
17 PTSD + 25 HC

PTSD: 36 (10)
SAD w/ trauma: 36 (9)
SAD w/o trauma: 33 (10)
HC: 31 (7)

47% 3T All Freesurfer ICV Negative correlation was found 
between physical neglect and left 
fimbria. A positive correlation was 
found with sexual abuse and the 
left HATA. Lower left HATA and 
right parasubiculum in PTSD group 
compared to the SAD and control 
groups.

Averill, Satodiya (58) PTSD, BDI 36 PTSD, 32 
combat control 
veterans

21-60 0% 3T Parasubiculum, 
presubiculum, subiculum, 
CA1, CA2/3, CA4, GC/DG, 
HATA, fimbria, molecular 
layer, hippocampal tail

Freesurfer ICV Total hippocampal volume negatively 
correlated with PTSD symptoms and 
BDI. PTSD negatively correlated with 
the HATA. BDI negatively correlated 
with the DG, CA4, HATA, CA2/3, 
molecular layer, and CA1.

Brown, Rutland (83) MDD + depressive 
symptoms

24 MDD + 20 HC MDD: 40 (10)
HC: 40 (13)

58% 7T Subiculum, presubiculum, 
parasubiculum, CA1, CA3, 
CA4, GC of DG, ML DG, HATA, 
fimbria

Freesurfer ICV No differences in subfield volumes 
between groups. Positive associations 
were found for MDD severity and 
right CA1 and right CA3/4, but it did 
not survive multiple comparisons 
adjustment.

Burhanoglu, Dinçer 
(87)

MDD + depressive 
symptoms + 
anxiety symptoms

59 females high-
risk for depression

23 (2) 100% 3T Fissure, tail, subiciulm, 
presubiculum, 
parasubiculum, CA1, CA3, 
CA4, ML, GC ML, fimbria, 
HATA

Freesurfer ICV No difference in subfields between 
those with MDD and those without 
MDD. No association with depressive 
or anxiety symptomology.

Cao, Passos (88) MDD 152 HC + 86 MDD HC: 35 (12)
MDD: 41 (12)

67% 1.5T CA1, CA2/3, CA4, GCL, ML, 
presubiculum, subiculum, 
and tail

Freesurfer ICV No significant difference between 
MDD + HC.

Chalavi, Vissia (74) PTSD + childhood 
maltreatment

16 PTSD + 28 HC HC: 42 (12)
PTSD: 41 (12)

100% 3T CA1, CA2-3, CA4-DG, 
subiculum, presubiculum, 
fimbria

Freesurfer TBV No difference between PTSD and HC 
subfield volumes. Left CA1, CA2-3, 
CA4-DG, and presubiculum were 
negatively correlation with severity of 
childhood traumatizing events.

Chen, Sun (75) PTSD 140 HC and 142 
PTSD

HC: 39 (10); PTSD: 40 (10) 23% 3T CA1, CA3, CA4, DG, fimbria, 
fissure, HTA, molecular 
layer, parasubiculum, 
presubiculum, subiculum 
+ tail

Freesurfer HV Lower subfield volumes associated 
with PTSD in left CA1 and bilateral 
CA3, only if hippocampal volume was 
included as a covariate. 

Choi, Jung (59) MDD, depressive 
symptoms

50 MDD + 50 HC HC: 68 (4)
MDD: 69 (7)

62% 3T CA1, CA2, CA3, CA4, DG, 
subiculum

ASHS ICV Bilateral CA1 and DG and right CA3 
were smaller in the MDD group. 
Depressive symptoms were negatively 
correlated with left DG. 

Doolin, Allers (60) MDD 74 MDD + 37 HC HC: 31 (11)
MDD: 33 (13)

60% 3T CA1-4, subiculum Freesurfer ICV Hippocampal subfield volumes were 
smaller in MDD patients than HC for 
CA1 (left only), CA2/3 (left and right) 
and CA4 (right only).
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Table 1. Continued

Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Frodl, Carballedo (61) MDD + childhood 
maltreatment

43 MDD + 43 HC MDD: 41 (10)
HC: 37 (13)

61% 3T CA1, CA2/3, CA4/DG, 
subiculum, presubiculum

Freesurfer ICV Patients with MDD had significantly 
smaller volumes of CA1, CA2/3, 
CA4/DG, and subiculum compared 
to healthy controls. Childhood 
maltreatment was not associated with 
any volumes.

Frodl, Skokauskas 
(62)

MDD 38 MDD + 44 HC MDD: 41 (11)
HC: 36 (13)

63% 3T CA1, CA2/3, CA4/DG Freesurfer TBV Patients with MDD had significantly 
smaller CA4/DG and CA2/3 volumes 
compared to healthy controls.

Han, Won (119) MDD 105 MDD + 85 HC MDD: 43 (11)
HC: 40 (14)

77% 3T CA1, CA2/3, CA4, granule-
cell molecular layer 
of the DG, subiculum, 
presubiculum, fimbria, 
hippocampal fissure

Freesurfer ICV No differences between MDD and HC.

Han, Kim (63) MDD 102 MDD + 135 HC MDD: 36 (11)
HC: 36 (13)

58% 3T CA1, CA2/3, CA4, GCL, ML, 
presubiculum, subiculum, 
tail

From Iglesias et al. ICV MDD had lower volumes in the 
bilateral CA1, CA4, the granule cell 
layer, the molecular layer, the left 
CA2/3, and right presubiculum and 
subiculum compared to HC.

Han, Won (64) MDD 20 MDD + 21 HC MDD: 42 (14)
HC: 42 (10)

100% 1.5T CA1, CA2-3, CA4/DG, 
subiculum, presubiculum, 
fimbria, fissure

Freesurfer ICV Bilateral subiculum, left CA2-3, and 
left CA4/DG were smaller in MDD than 
in HC.

Hansen, Singh (89) MDD 30 MDD + 67 HC MDD: 38 (16)
HC: 54 (17)

43% 3T Hippocampal tail, 
subiculum, CA1, 
fissure, presubiculum, 
parasubiculum, molecular 
layer, DG, CA3, CA4, fimbria, 
HATA

Freesurfer ICV No significant difference between 
MDD + HC.

Hayes, Hayes (76) PTSD 97 recent war 
veterans

30 (7) 6% 3T CA4/DG, CA1, CA2/3, 
presubiculum, and 
subiculum

Freesurfer ICV CA4/DG was significantly smaller 
in veterans with PTSD compared to 
those without and scaled with PTSD 
symptom severity.

Hu, Zhang (90) MDD 38 MDD + 55 HC HC: 36 (15)
MDD: 36 (12)

54% 3T Subiculum, presubiculum, 
CA1, CA2/3, CA4/DG, 
fimbria, hippocampal fissure

Freesurfer ICV No difference between MDD + HC.

Huang, Coupland 
(65)

MDD 20 MDD and 27 HC HC: 33 (10)
MDD: 35 (11)

62% 4.7T CA1-3, DG, subiculum Manual ICV Total hippocampal volumes were 
smaller in unmedicated MDD 
participants than in controls or 
medicated MDD. Medicated MDD 
+ controls did not differ from one 
another. CA1-3 was smaller in 
unmedicated MDD compared to 
controls. DG volume was also smaller 
in unmedicated MDD compared to 
controls + medicated MDD.

Janiri, Sani (77) Childhood trauma 81 controls No trauma: 45 (16)
Trauma: 46 (12)

57% 3T CA1, CA2/3, CA4/DG, 
presubiculum, subiculum

From Van Leemput 
et al. 2009 
Hippocampus

ICV Childhood trauma was associated with 
bilaterally smaller CA1, presubiculum, 
and subiculum volumes.

Kakeda, Watanabe 
(91)

MDD 40 MDD + 47 HC HC: 41 (11)
MDD: 47 (14)

38% 3T CA1, CA3, CA4, GC of 
DG, fimbria, subiculum, 
presubiculum, 
parasubiculum, ML,  
HATA, tail

Freesurfer ICV No difference between MDD + HC.
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Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Frodl, Carballedo (61) MDD + childhood 
maltreatment

43 MDD + 43 HC MDD: 41 (10)
HC: 37 (13)

61% 3T CA1, CA2/3, CA4/DG, 
subiculum, presubiculum

Freesurfer ICV Patients with MDD had significantly 
smaller volumes of CA1, CA2/3, 
CA4/DG, and subiculum compared 
to healthy controls. Childhood 
maltreatment was not associated with 
any volumes.

Frodl, Skokauskas 
(62)

MDD 38 MDD + 44 HC MDD: 41 (11)
HC: 36 (13)

63% 3T CA1, CA2/3, CA4/DG Freesurfer TBV Patients with MDD had significantly 
smaller CA4/DG and CA2/3 volumes 
compared to healthy controls.

Han, Won (119) MDD 105 MDD + 85 HC MDD: 43 (11)
HC: 40 (14)

77% 3T CA1, CA2/3, CA4, granule-
cell molecular layer 
of the DG, subiculum, 
presubiculum, fimbria, 
hippocampal fissure

Freesurfer ICV No differences between MDD and HC.

Han, Kim (63) MDD 102 MDD + 135 HC MDD: 36 (11)
HC: 36 (13)

58% 3T CA1, CA2/3, CA4, GCL, ML, 
presubiculum, subiculum, 
tail

From Iglesias et al. ICV MDD had lower volumes in the 
bilateral CA1, CA4, the granule cell 
layer, the molecular layer, the left 
CA2/3, and right presubiculum and 
subiculum compared to HC.

Han, Won (64) MDD 20 MDD + 21 HC MDD: 42 (14)
HC: 42 (10)

100% 1.5T CA1, CA2-3, CA4/DG, 
subiculum, presubiculum, 
fimbria, fissure

Freesurfer ICV Bilateral subiculum, left CA2-3, and 
left CA4/DG were smaller in MDD than 
in HC.

Hansen, Singh (89) MDD 30 MDD + 67 HC MDD: 38 (16)
HC: 54 (17)

43% 3T Hippocampal tail, 
subiculum, CA1, 
fissure, presubiculum, 
parasubiculum, molecular 
layer, DG, CA3, CA4, fimbria, 
HATA

Freesurfer ICV No significant difference between 
MDD + HC.

Hayes, Hayes (76) PTSD 97 recent war 
veterans

30 (7) 6% 3T CA4/DG, CA1, CA2/3, 
presubiculum, and 
subiculum

Freesurfer ICV CA4/DG was significantly smaller 
in veterans with PTSD compared to 
those without and scaled with PTSD 
symptom severity.

Hu, Zhang (90) MDD 38 MDD + 55 HC HC: 36 (15)
MDD: 36 (12)

54% 3T Subiculum, presubiculum, 
CA1, CA2/3, CA4/DG, 
fimbria, hippocampal fissure

Freesurfer ICV No difference between MDD + HC.

Huang, Coupland 
(65)

MDD 20 MDD and 27 HC HC: 33 (10)
MDD: 35 (11)

62% 4.7T CA1-3, DG, subiculum Manual ICV Total hippocampal volumes were 
smaller in unmedicated MDD 
participants than in controls or 
medicated MDD. Medicated MDD 
+ controls did not differ from one 
another. CA1-3 was smaller in 
unmedicated MDD compared to 
controls. DG volume was also smaller 
in unmedicated MDD compared to 
controls + medicated MDD.

Janiri, Sani (77) Childhood trauma 81 controls No trauma: 45 (16)
Trauma: 46 (12)

57% 3T CA1, CA2/3, CA4/DG, 
presubiculum, subiculum

From Van Leemput 
et al. 2009 
Hippocampus

ICV Childhood trauma was associated with 
bilaterally smaller CA1, presubiculum, 
and subiculum volumes.

Kakeda, Watanabe 
(91)

MDD 40 MDD + 47 HC HC: 41 (11)
MDD: 47 (14)

38% 3T CA1, CA3, CA4, GC of 
DG, fimbria, subiculum, 
presubiculum, 
parasubiculum, ML,  
HATA, tail

Freesurfer ICV No difference between MDD + HC.
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Table 1. Continued

Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Kraus, Seiger (84) MDD 22 HC + 28 
remitted MDD + 
20 acute MDD

HC: 26 (7)
rMDD: 27 (6)
aMDD: 31 (10)

60% 7T CA1, CA3, CA4, fimbria, 
fissure, granule cell layer 
of the dentate gyrus, 
hippocampus–amygdala 
transition area, molecular 
layer, parasubiculum, 
presubiculum, subiculum, 
and tail

Freesurfer TBV + GM Right hippocampal fissure and 
right HATA were larger in remitted 
MDD compared to HC. Larger right 
subiculum values in both MDD groups 
compared to HC.

Lim, Hong (78) MDD, depressive 
symptoms

30 MDD + 30 HC HC: 72 (5)
MD: 74 (6)

52% 3G CA1 CA2-3, CA4-DG, 
subiculum, presubiculum, 
fimbria, fissure

Freesurfer ICV Bilateral presubiculum, bilateral 
subiculum, left CA1, bilateral CA2-3, 
left CA4-DG, and bilateral fimbria 
smaller in MDD. No significant 
correlations between subfield volumes 
and depressive symptoms in those 
with MDD.

Lindqvist, Mueller 
(92)

MDD 16 MDD + 19 HC HC: 37 (12)
MDD: 34 (7)

63% 4T CA1, CA1/2, CA3/DG, 
subiculum

From Mueller et al., 
2007 Human Brain 
Mapping

ICV No significant differences between 
MDD and control.

Liu, Pantouw (93) MDD 35 MDD + 35 HC HC: 43 (12)
MDD: 43 (11)

69% 1.5T Presubiculum, subiculum, 
CA1, CA2-3, CA4/DG, fimbria, 
hippocampal fissure

Freesurfer ICV MDD patients had smaller volumes 
in left CA2/3 and CA4/DG. However, 
these did not remain significant after 
correction for multiple comparisons.

Luo, Liu (79) PTSD 57 PTSD+ + 11 
PTSD- + 39 HC

PTSD+: 57 (6)
PTSD-: 58 (7)
HC: 56 (6)

58% 3T CA1,
CA2/3, CA4/DG, subiculum, 
presubiculum, and fimbria

Freesurfer ICV PTSD+and PTSD- group had smaller 
CA2-3, CA4/DG, subiculum volumes 
than HC.

Maller, Broadhouse 
(101)

MDD 202 MDD + 68 HC HC: 30 (13)
MDD: 33 (13)

52% 3T CA1, CA2/3, CA4, DG, HATA, 
fimbria, alveus

Freesurfer TBV + THV Larger hippocampal tail in those with 
MDD. Uncorrected, associations were 
also found for the molecular layer, the 
granule cells of the molecular layer, 
the CA2/3 + CA4, and the combine 
alveolus/fimbria, with lower volumes in 
MDD except for higher volumes in the 
fimbria/alveolus.

Mikolas, Tozzi (11) Childhood 
maltreatment and 
MDD

85 MDD and 67 HC 
at two sites

HC, CAMI = 37 (13); MDD, 
CAMI = 40 (9); HC, TCIN 
= 34 (11); MDD, TCIN = 
38 (13)

74% 3T CA1, CA3, CA4, fimbria, 
sum of granular layer 
and dentate gyrus, 
hippocampus-amygdala-
transition-area, hippocampal 
fissure, molecular 
layer, hippocampal 
tail, parasubiculum, 
presubiculum, subiculum

Freesurfer TBV Those with MDD had smaller CA1, 
CA3, CA4, granular layer + dentate 
gyrus, and molecular layer. The whole 
hippocampus was also smaller in those 
with MDD compared to HC. In patients 
with ELA, larger volumes were found 
in the CA1, CA3, and ML compared to 
MDD patients without ELA.

Na, Won (94) MDD 47 MDD + 30 HC MDD: 45 (11)
HC: 44 (13)

100% 3T CA1, CA3, CA4, molecular 
layer, granule cells, 
subiculum, presubiculum, 
parasubiculum, HATA

Freesurfer ICV No differences between MDD and HC 
in subfield volume.

Na, Chang (95) MDD 45 MDD + 72 HC MDD: 42 (12)
HC: 41 (14)

73% 3T CA1, CA2/3, CA4/DG, 
subiculum, presubiculum, 
fimbria, fissure

Freesurfer ICV No differences between MDD and HC 
in subfield volume.

Ota, Sato (96) MDD 36 MDD + 35 HC MDD: 38 (11)
HC: 39 (13)

47% 3T CA, DG, subicul ASHS ICV No difference between MDD + HC.
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Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Kraus, Seiger (84) MDD 22 HC + 28 
remitted MDD + 
20 acute MDD

HC: 26 (7)
rMDD: 27 (6)
aMDD: 31 (10)

60% 7T CA1, CA3, CA4, fimbria, 
fissure, granule cell layer 
of the dentate gyrus, 
hippocampus–amygdala 
transition area, molecular 
layer, parasubiculum, 
presubiculum, subiculum, 
and tail

Freesurfer TBV + GM Right hippocampal fissure and 
right HATA were larger in remitted 
MDD compared to HC. Larger right 
subiculum values in both MDD groups 
compared to HC.

Lim, Hong (78) MDD, depressive 
symptoms

30 MDD + 30 HC HC: 72 (5)
MD: 74 (6)

52% 3G CA1 CA2-3, CA4-DG, 
subiculum, presubiculum, 
fimbria, fissure

Freesurfer ICV Bilateral presubiculum, bilateral 
subiculum, left CA1, bilateral CA2-3, 
left CA4-DG, and bilateral fimbria 
smaller in MDD. No significant 
correlations between subfield volumes 
and depressive symptoms in those 
with MDD.

Lindqvist, Mueller 
(92)

MDD 16 MDD + 19 HC HC: 37 (12)
MDD: 34 (7)

63% 4T CA1, CA1/2, CA3/DG, 
subiculum

From Mueller et al., 
2007 Human Brain 
Mapping

ICV No significant differences between 
MDD and control.

Liu, Pantouw (93) MDD 35 MDD + 35 HC HC: 43 (12)
MDD: 43 (11)

69% 1.5T Presubiculum, subiculum, 
CA1, CA2-3, CA4/DG, fimbria, 
hippocampal fissure

Freesurfer ICV MDD patients had smaller volumes 
in left CA2/3 and CA4/DG. However, 
these did not remain significant after 
correction for multiple comparisons.

Luo, Liu (79) PTSD 57 PTSD+ + 11 
PTSD- + 39 HC

PTSD+: 57 (6)
PTSD-: 58 (7)
HC: 56 (6)

58% 3T CA1,
CA2/3, CA4/DG, subiculum, 
presubiculum, and fimbria

Freesurfer ICV PTSD+and PTSD- group had smaller 
CA2-3, CA4/DG, subiculum volumes 
than HC.

Maller, Broadhouse 
(101)

MDD 202 MDD + 68 HC HC: 30 (13)
MDD: 33 (13)

52% 3T CA1, CA2/3, CA4, DG, HATA, 
fimbria, alveus

Freesurfer TBV + THV Larger hippocampal tail in those with 
MDD. Uncorrected, associations were 
also found for the molecular layer, the 
granule cells of the molecular layer, 
the CA2/3 + CA4, and the combine 
alveolus/fimbria, with lower volumes in 
MDD except for higher volumes in the 
fimbria/alveolus.

Mikolas, Tozzi (11) Childhood 
maltreatment and 
MDD

85 MDD and 67 HC 
at two sites

HC, CAMI = 37 (13); MDD, 
CAMI = 40 (9); HC, TCIN 
= 34 (11); MDD, TCIN = 
38 (13)

74% 3T CA1, CA3, CA4, fimbria, 
sum of granular layer 
and dentate gyrus, 
hippocampus-amygdala-
transition-area, hippocampal 
fissure, molecular 
layer, hippocampal 
tail, parasubiculum, 
presubiculum, subiculum

Freesurfer TBV Those with MDD had smaller CA1, 
CA3, CA4, granular layer + dentate 
gyrus, and molecular layer. The whole 
hippocampus was also smaller in those 
with MDD compared to HC. In patients 
with ELA, larger volumes were found 
in the CA1, CA3, and ML compared to 
MDD patients without ELA.

Na, Won (94) MDD 47 MDD + 30 HC MDD: 45 (11)
HC: 44 (13)

100% 3T CA1, CA3, CA4, molecular 
layer, granule cells, 
subiculum, presubiculum, 
parasubiculum, HATA

Freesurfer ICV No differences between MDD and HC 
in subfield volume.

Na, Chang (95) MDD 45 MDD + 72 HC MDD: 42 (12)
HC: 41 (14)

73% 3T CA1, CA2/3, CA4/DG, 
subiculum, presubiculum, 
fimbria, fissure

Freesurfer ICV No differences between MDD and HC 
in subfield volume.

Ota, Sato (96) MDD 36 MDD + 35 HC MDD: 38 (11)
HC: 39 (13)

47% 3T CA, DG, subicul ASHS ICV No difference between MDD + HC.
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Table 1. Continued

Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Postel, Mary (66) PTSD + trauma 
exposure + 
depressive 
symptoms

53 trauma-
exposed with 
PTSD + 39 trauma-
exposed without 
PTSD + 80 HC

PTSD+ = 37 (9)
PTSD- = 36 (7)
Non-exposed = 32 (12)

53% 3T CA1, CA2-3/DG, subiculum, 
tail

ASHS ICV Smaller volumes of the CA1 and the 
CA2-3/DG were found in the PTSD 
group compared to those without 
PTSD but trauma-exposed. There were 
no differences between those exposed 
to trauma and those unexposed. CA2-
3/DG region was negatively associated 
with depressive symptoms.

Szymkowicz, 
McLaren (97)

Depressive 
symptoms

48 community-
dwelling adults

69 (7) 70% 3T CA1, CA2-3, subiculum Freesurfer ICV No main effects of depressive 
symptoms of hippocampal subfield 
volume.

Su, Faluyi (67) MDD 5 MDD+ 13 HC MDD: 73 (5
HC: 68 (6)

61% 3T CA1, CA2, CA3/DG, 
subiculum

Manual N/A MDD had smaller volumes in the CA1 
and subiculum.

Takaishi, Asami (71) Panic disorder + 
symptoms

38 PD + 38 HC PD: 39 (10)
HC: 38 (10)

66% 1.5T Presubiculum, CA1, CA2/3, 
fimbria, subiculum, CA4/DG

Freesurfer ICV PD had smaller right CA2/3 than HC. 
No association between subfields and 
symptom severity.

Tannous, Godlewska 
(85)

CTQ, BDI, HAM-D, 
STAI

46 HC + 71 MDD HC = 32 (11), MDD = 32 
(10)

55% 7T All Freesurfer ICV No group differences in any subfields. 
No association between any subfield 
and CTQ score, illness duration, or 
mood rating scale.

Taylor, Deng (98) MDD 59 MDD + 21 HC 66 (6) 62% 3T CA1-3,, CA4/DG, subiculum ASHS ICV No differences between MDD + HC.

Travis, Coupland (68) MDD 15 MDD and 15 HC HC = 33 (10); MDD = 
36 (9)

63% 4.7T CA1-3, DG Manual ICV No difference between MDD and HC 
in hippocampal volume. MDD patients 
showed smaller DG volumes compared 
to HC. Duration of depression 
negatively correlated with total HV and 
CA1-3 and DG subfields.

Travis, Coupland (99) MDD 14 MDD + 14 HC HC: 33 (10)
MDD: 36 (9)

73% 4.7T CA1-3, DG, subiculum From Malykhin 
et al., 2010 
Neuroimage

ICV No significant differences between 
MDD and controls. No significant 
correlations between depressive 
symptoms and hippocampal subfield 
volume.

Treadway, Waskom 
(69)

MDD 51 HC + 52 MDD HC: 37 (13)
MDD: 41 (13)

52% 1.5T CA1, CA2/3, CA4/DG, 
stratum, subiculum

Multiple 
Automatically 
Generated 
Templates for 
different Brains 
(MAGeT Brain)

ICV DG was associated with a significant 
reduction in volume as the number of 
episodes increased in all subjects. In 
MDD, significant reductions were seen 
across all subfields. 

Wang, Neylan (80) PTSD 17 PTSD + 19 HC 41 (12) 0% 4T Entorhinal cotex, subiculum, 
CA1, CA3/DG

From Mueller et 
al., 2007 Neurobiol 
Aging

ICV CA3/DG was smaller in PTSD than in 
the controls.

Weis, Webb (100) PTSD 215 trauma 
survivors

33.1 (10.8) 55% 3T Hippocampal tail, 
subiculum, CA1, 
hippocampal fissure, 
presubiculum, 
parasubiculum, molecular 
layer, granule cell layer of 
the dentate gyrus, CA3, 
CA4, fimbria, hippocampal-
amygdaloid trainsition area, 
and whole hippocampus

Freesurfer TBV There was no relationship found cross-
sectionally or longitudinally on PTSD 
symptoms and subfield volumes.
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Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Postel, Mary (66) PTSD + trauma 
exposure + 
depressive 
symptoms

53 trauma-
exposed with 
PTSD + 39 trauma-
exposed without 
PTSD + 80 HC

PTSD+ = 37 (9)
PTSD- = 36 (7)
Non-exposed = 32 (12)

53% 3T CA1, CA2-3/DG, subiculum, 
tail

ASHS ICV Smaller volumes of the CA1 and the 
CA2-3/DG were found in the PTSD 
group compared to those without 
PTSD but trauma-exposed. There were 
no differences between those exposed 
to trauma and those unexposed. CA2-
3/DG region was negatively associated 
with depressive symptoms.

Szymkowicz, 
McLaren (97)

Depressive 
symptoms

48 community-
dwelling adults

69 (7) 70% 3T CA1, CA2-3, subiculum Freesurfer ICV No main effects of depressive 
symptoms of hippocampal subfield 
volume.

Su, Faluyi (67) MDD 5 MDD+ 13 HC MDD: 73 (5
HC: 68 (6)

61% 3T CA1, CA2, CA3/DG, 
subiculum

Manual N/A MDD had smaller volumes in the CA1 
and subiculum.

Takaishi, Asami (71) Panic disorder + 
symptoms

38 PD + 38 HC PD: 39 (10)
HC: 38 (10)

66% 1.5T Presubiculum, CA1, CA2/3, 
fimbria, subiculum, CA4/DG

Freesurfer ICV PD had smaller right CA2/3 than HC. 
No association between subfields and 
symptom severity.

Tannous, Godlewska 
(85)

CTQ, BDI, HAM-D, 
STAI

46 HC + 71 MDD HC = 32 (11), MDD = 32 
(10)

55% 7T All Freesurfer ICV No group differences in any subfields. 
No association between any subfield 
and CTQ score, illness duration, or 
mood rating scale.

Taylor, Deng (98) MDD 59 MDD + 21 HC 66 (6) 62% 3T CA1-3,, CA4/DG, subiculum ASHS ICV No differences between MDD + HC.

Travis, Coupland (68) MDD 15 MDD and 15 HC HC = 33 (10); MDD = 
36 (9)

63% 4.7T CA1-3, DG Manual ICV No difference between MDD and HC 
in hippocampal volume. MDD patients 
showed smaller DG volumes compared 
to HC. Duration of depression 
negatively correlated with total HV and 
CA1-3 and DG subfields.

Travis, Coupland (99) MDD 14 MDD + 14 HC HC: 33 (10)
MDD: 36 (9)

73% 4.7T CA1-3, DG, subiculum From Malykhin 
et al., 2010 
Neuroimage

ICV No significant differences between 
MDD and controls. No significant 
correlations between depressive 
symptoms and hippocampal subfield 
volume.

Treadway, Waskom 
(69)

MDD 51 HC + 52 MDD HC: 37 (13)
MDD: 41 (13)

52% 1.5T CA1, CA2/3, CA4/DG, 
stratum, subiculum

Multiple 
Automatically 
Generated 
Templates for 
different Brains 
(MAGeT Brain)

ICV DG was associated with a significant 
reduction in volume as the number of 
episodes increased in all subjects. In 
MDD, significant reductions were seen 
across all subfields. 

Wang, Neylan (80) PTSD 17 PTSD + 19 HC 41 (12) 0% 4T Entorhinal cotex, subiculum, 
CA1, CA3/DG

From Mueller et 
al., 2007 Neurobiol 
Aging

ICV CA3/DG was smaller in PTSD than in 
the controls.

Weis, Webb (100) PTSD 215 trauma 
survivors

33.1 (10.8) 55% 3T Hippocampal tail, 
subiculum, CA1, 
hippocampal fissure, 
presubiculum, 
parasubiculum, molecular 
layer, granule cell layer of 
the dentate gyrus, CA3, 
CA4, fimbria, hippocampal-
amygdaloid trainsition area, 
and whole hippocampus

Freesurfer TBV There was no relationship found cross-
sectionally or longitudinally on PTSD 
symptoms and subfield volumes.
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Table 1. Continued

Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Wisse, Biessels (41) Major depressive 
episodes

47 participants 
from GP attendees, 
no MDE = 34, ever 
MDE = 13.

60 (10) 62% 7T Subiculum, CA1, CA2, 
CA,3, DG+CA4, total 
hippocampus, ERC

Manual ICV All subfields except the CA3 were 
significantly smaller in the ever  
MDE group.

Yuan, Rubin-Falcone 
(81)

MDD + childhood 
maltreatment

44 HC + 17 abused 
MDD + 24 non-
abused MDD

HC: 33 (12)
MDD: 35 (11)

59% 3T CA1, CA3, DG, subiculum, 
parasubiculum

Freesurfer ICV No differences in subfields between 
MDD + HC. Smaller volumes of the 
left CA1 were found in those abused 
with MDD compared to those without 
abuse.

Zhang, Lu (82) PTSD 145 survivors of a 
major earthquake 
and 56 HC

PTSD: 43 (10); TC: 44 (9); 
HC 40 (12)

67% 3T CA1, CA2/3, CA4, molecular 
+ granule layers of the 
DG, molecular layer, 
subiculum, presubiculum, 
parasubiculum, fimbria, 
fissure, and HATA

Freesurfer ICV The total hippocampus was smaller 
in both PTSD and trauma-exposed 
groups compared to HC. Smaller 
volumes were also found in the 
CA3, CA4, DG, subiculum, and 
presubiculum. 

Zhou, Wu (70) MDD 44 MDD + 45 HC MDD: 35 (12)
HC: 33 (11)

59% 3T CA1, CA3, CA4, fimbria,  
GC + ML DG, HATA,  
fissure, tail, ML, 
parasubiculum, 
presubiculum,  
and subiculum

Freesurfer ICV MDD had smaller left CA1, CA4, GC ML 
DG, HATA, and ML, and right GC ML 
DG, and subiculum.
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Author Psychosocial 
factor

Design and study 
population

Age (years) Sex, female 
(%)

MRI field 
strength

Subfields Segmentation 
method

ICV/TBV
covariate

Results

Wisse, Biessels (41) Major depressive 
episodes

47 participants 
from GP attendees, 
no MDE = 34, ever 
MDE = 13.

60 (10) 62% 7T Subiculum, CA1, CA2, 
CA,3, DG+CA4, total 
hippocampus, ERC

Manual ICV All subfields except the CA3 were 
significantly smaller in the ever  
MDE group.

Yuan, Rubin-Falcone 
(81)

MDD + childhood 
maltreatment

44 HC + 17 abused 
MDD + 24 non-
abused MDD

HC: 33 (12)
MDD: 35 (11)

59% 3T CA1, CA3, DG, subiculum, 
parasubiculum

Freesurfer ICV No differences in subfields between 
MDD + HC. Smaller volumes of the 
left CA1 were found in those abused 
with MDD compared to those without 
abuse.

Zhang, Lu (82) PTSD 145 survivors of a 
major earthquake 
and 56 HC

PTSD: 43 (10); TC: 44 (9); 
HC 40 (12)

67% 3T CA1, CA2/3, CA4, molecular 
+ granule layers of the 
DG, molecular layer, 
subiculum, presubiculum, 
parasubiculum, fimbria, 
fissure, and HATA

Freesurfer ICV The total hippocampus was smaller 
in both PTSD and trauma-exposed 
groups compared to HC. Smaller 
volumes were also found in the 
CA3, CA4, DG, subiculum, and 
presubiculum. 

Zhou, Wu (70) MDD 44 MDD + 45 HC MDD: 35 (12)
HC: 33 (11)

59% 3T CA1, CA3, CA4, fimbria,  
GC + ML DG, HATA,  
fissure, tail, ML, 
parasubiculum, 
presubiculum,  
and subiculum

Freesurfer ICV MDD had smaller left CA1, CA4, GC ML 
DG, HATA, and ML, and right GC ML 
DG, and subiculum.

Note: MDD = Major Depressive Disorder, HC = healthy control, CA = Cornu Ammonis, PTSD = post-
traumatic stress disorder, SAD = social anxiety disorder, ICV = intracranial volume, HATA = hippocampal 
amygdala transition area, BDI = Beck Depression Inventory, GC = granule cell, DG = dentate gyrus, ML = 
molecular layer, TBV = total brain volume, HV = hippocampal volume, ASHS = Automatic Segmentation 
of Hippocampal Subfields, GM = gray matter, CTQ = Childhood Trauma Questionnaire, HAM-D = Hamiltor 
Depression Rating Scale, STAI = State Trait Anxiety Inventory, MDE = mild depressive episode, ERC = 
entorhinal cortex
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Figure 2. Age-, sex-, and intracranial volume-adjusted means (z-transformed) for each hippocampal 
subfield and total hippocampal volume per psychosocial factor.

One-sided standard error bars are shown. P-values less than < 0.05 are indicated with two asterisks (**), 
and p-values less than < 0.001 are indicated with three asterisks (***).

CA = Cornu ammonis, ERC = entorhinal cortex, SUB = subiculum, DG = dentage gyrus,  
HV = hippocampal volume.
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Lower volumes in the CA1 were observed in those with depressive symptomology, 
and higher volumes in the almost all subfields but the hippocampal tail were 
seen in those with anxiety symptoms (Figure 2, Table 3, Supplementary Table 2, 
Supplementary Table 3). 

Table 2. Baseline characteristics (n = 333).

Mean ± SD or n (%) % missing

Demographics

Age, mean ± SD, years 68 ±9 0%

Sex, female, n (%) 101 (30%) 0%

College/university education, n (%) 129 (39%) 1%

Psychosocial factors

Elevated levels of depressive symptoms, n (%) 55 (17%) 0%

Elevated levels of anxiety symptoms, n (%) 51 (15%) 2%

Any childhood maltreatment, n (%) 80 (24%) 3%

     Any emotional abuse 55 (17%) 3%

     Any physical abuse 32 (10%) 3%

     Any psychological abuse 44 (13%) 3%

     Any sexual abuse 34 (10%) 3%

One or more recent life events, n (%) 171 (51%) 2%

Social support, n (%) 4%

     Low social support 80 (24%) 4%

     Moderate social support 76 (23%) 4%

     High social support 177 (53%) 4%

Brain volumes

Intracranial volume, cm3,mean ± SD 1511 ± 144 4%

Entorhinal cortex, mm3, mean ± SD 840 ± 166 13%

Subiculum, mm3, mean ± SD 1171 ± 177 13%

Cornu ammonis 1, mm3, mean ± SD 2986 ± 353 13%

Cornu ammonis 2, mm3, mean ± SD 120 ± 21 13%

Cornu ammonis 3, mm3, mean ± SD 198 ± 47 13%

Dentate gyrus, mm3, mean ± SD 1591 ± 224 13%

Hippocampal tail, mm3, mean ± SD 291 ± 67 13%

Total hippocampus, mm3, mean ± SD 6353 ± 730 13%
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Any type of childhood maltreatment
For those who experienced any childhood maltreatment, a trend of lower volumes 
was seen in the total hippocampus and in almost all subfields but the CA3 (Figure 2, 
Table 3, Supplementary Table 2). 

Recent stressful event
For those who experienced a recent stressful event, a trend of greater volumes in 
the total hippocampus and all subfields was observed, but it did not reach statistical 
significance (Figure 2, Table 3, Supplementary Table 2).

Social support
There were no associations with moderate vs. low social support or high vs. low 
social support with the total hippocampus. However, lower volumes were seen in 
the CA3 in those with low social support compared to those with high social support 
(B per standard deviation = -0.43; 95% CI: -0.72; -0.15, p = 0.003) (Figure 2, Table 3, 
Supplementary Table 2).

Sensitivity analyses
When we explored specific types of childhood maltreatment, no significant 
associations were found with hippocampal (subfield) volume and any type of 
childhood maltreatment (Table 3, Supplementary Figure 2). There were trends of 
higher hippocampal (subfield) volumes in those who reported physical abuse and 
lower (subfield) volumes in those who reported sexual abuse. Additionally, a trend 
was also observed in those who reported sexual abuse and higher volumes in the 
CA3 (Table 3, Supplementary Figure 2). However, the observations within type of 
adversity should be interpreted with caution due to small sample size.

Due to differences in timing of the social support and childhood maltreatment 
questionnaires in the SMART-MR cohort as well as differences in 1.5 or 3T used 
for ICV segmentation between cohorts, analyses were repeated in a sensitivity 
analysis stratifying by cohort. Similar results were found for all subfields and total 
hippocampus in all three cohorts.

Sensitivity analyses on continuous psychosocial variables (i.e., BAI sum score, sum 
score of the recent stressful events questionnaire, and sum score of the social support 
questionnaire) were in line with the dichotomous results.

Sensitivity analyses when using a cut-off of 10 or higher on the PHQ-9 resulted in 
similar results for both hippocampal subfield volume as well as total hippocampal 
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volume compared to using the cut-off of 6 or higher. A stronger association was 
found for total hippocampal volume and high depressive symptomology; however, 
it was still not significant.

When putting all psychosocial factors into a joint model, an association was found 
in the CA1 for depressive symptoms (B=-0.34, 95% CI: -0.65; -0.03, p=0.03). The 
negative association of low vs. high social support remained with the CA3 (B=-0.44, 
95% CI: -0.73; -0.16, p=0.003) when controlling for all other psychosocial factors 
(Supplementary Table 3). 

Table 3. Associations of each psychosocial factor on standardized volumes of each hippocampal subfield. 

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV
Estimate

(95% CI), Cohen’s 
d

Estimate
(95% CI), Cohen’s 

d

Estimate (95% CI), 
Cohen’s d

Estimate
(95% CI), Cohen’s 

d

Estimate
(95% CI), Cohen’s d

Estimate
(95% CI), Cohen’s d

Estimate
(95% CI), Cohen’s d

Estimate
(95% CI), Cohen’s d

Depressive symptoms -0.23
[-0.52; 0.05]

0.17
[-0.14; 0.48]

-0.07
[-0.38; 0.23]

0.18
[-0.13; 0.48]

0.06
[-0.25; 0.37]

0.11
[-0.18; 0.40]

-0.05
[-0.37; 0.26]

-0.09
[-0.37; 0.19]

-0.23 0.16 -0.07 0.16 0.06 0.11 -0.05 -0.09

Anxiety symptoms 0.17
[-0.12; 0.46]

0.27
[-0.06; 0.60]

0.06
[-0.25; 0.37]

0.10
[-0.22; 0.42]

0.13
[-0.19; 0.45]

0.17
[-0.13; 0.47]

-0.16
[-0.50; 0.18]

0.16
[-0.15; 0.47]

0.17 0.24 0.05 0.09 0.12 0.16 -0.14 0.16

Childhood maltreatment -0.17
[-0.41; 0.07]

-0.21
[-0.47; 0.04]

-0.20
[-0.45; 0.05]

-0.11
[-0.37; 0.14]

0.04
[-0.22; 0.31]

-0.07
[-0.30; 0.17]

-0.24
[-0.50; 0.02]

-0.19
[-0.43; 0.04]

-0.17 -0.20 -0.19 -0.10 0.04 -0.07 -0.22 -0.19

     �Emotional abuse -0.12
[-0.41; 0.16]

-0.12
[-0.42; 0.19]

-0.05
[-0.35; 0.25]

0.00
[-0.32; 0.31]

-0.02
[-0.33; 0.30]

-0.03
[-0.31; 0.26]

-0.23
[-0.55; 0.08]

-0.10
[-0.39; 0.18]

-0.12 -0.11 -0.05 -0.00 -0.01 -0.02 -0.21 -0.10

     �Physical abuse 0.28
[-0.10; 0.65]

-0.16
[-0.60; 0.27]

0.25
[-0.15; 0.66]

0.32
[-0.12; 0.77]

0.18
[-0.22; 0.59]

0.30
[-0.08; 0.67]

0.44
[-0.01; 0.88]

0.35
[-0.03; 0.72]

0.27 -0.15 0.24 0.29 0.16 0.29 0.39 0.33

     �Psychological abuse -0.15
[-0.47; 0.18]

-0.06
[-0.42; 0.30]

0.01
[-0.35; 0.36]

0.18
[-0.18; 0.54]

0.01
[-0.35; 0.36]

-0.13
[-0.46; 0.20]

0.09
[-0.28; 0.46]

-0.10
[-0.43; 0.24]

-0.14 -0.06 0.01 0.16 0.01 -0.12 0.08 -0.09

     Sexual abuse -0.23
[-0.59; 0.12]

-0.12
[-0.53; 0.29]

-0.27
[-0.65; 0.10]

-0.21
[-0.63; 0.20]

0.37
[-0.04; 0.79]

-0.11
[-0.47; 0.25]

-0.38
[-0.77; 0.00]

-0.23
[-0.58; 0.12]

-0.23 -0.11 -0.26 -0.19 0.33 -0.11 -0.35 -0.22

Recent life events 0.19
[-0.01; 0.40]

0.17
[-0.07; 0.40]

0.12
[-0.09; 0.33]

0.18
[-0.05; 0.42]

0.04
[-0.18; 0.27]

0.15
[-0.06; 0.36]

0.22
[-0.02; 0.45]

0.18
[-0.03; 0.38]

0.20 0.15 0.12 0.17 0.04 0.15 0.20 0.18

Moderate vs. high social support -0.07 
[-0.33; 0.18]

0.15
[-0.14; 0.45]

-0.02
[-0.30; 0.25]

0.10
[-0.19; 0.40]

-0.23
[-0.52; 0.06]

-0.05
[-0.31; 0.21]

0.00
[-0.29; 0.29]

-0.05
[-0.31; 0.20]

-0.08 0.15 -0.02 0.10 -0.22 -0.05 0.00 -0.05

Low vs. high social support 0.05
[-0.21; 0.31]

0.03
[-0.26; 0.31]

0.00
[-0.27; 0.27]

0.09
[-0.20; 0.37]

-0.43[-0.72; -0.15] 0.00
[-0.27; 0.27]

0.07
[-0.22; 0.37]

0.01
[-0.25; 0.27]

0.05 0.02 -0.00 0.08 -0.40 0.00 0.07 0.01

Note: Generalized linear models, adjusting for age, sex, and intracranial volume. CA = Cornu Ammonis, 
ERC = entorhinal cortex, SUB = subiculum, DG = dentate gyrus, HV = hippocampal volume.
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Table 3. Associations of each psychosocial factor on standardized volumes of each hippocampal subfield. 

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV
Estimate

(95% CI), Cohen’s 
d

Estimate
(95% CI), Cohen’s 

d

Estimate (95% CI), 
Cohen’s d

Estimate
(95% CI), Cohen’s 

d

Estimate
(95% CI), Cohen’s d

Estimate
(95% CI), Cohen’s d

Estimate
(95% CI), Cohen’s d

Estimate
(95% CI), Cohen’s d

Depressive symptoms -0.23
[-0.52; 0.05]

0.17
[-0.14; 0.48]

-0.07
[-0.38; 0.23]

0.18
[-0.13; 0.48]

0.06
[-0.25; 0.37]

0.11
[-0.18; 0.40]

-0.05
[-0.37; 0.26]

-0.09
[-0.37; 0.19]

-0.23 0.16 -0.07 0.16 0.06 0.11 -0.05 -0.09

Anxiety symptoms 0.17
[-0.12; 0.46]

0.27
[-0.06; 0.60]

0.06
[-0.25; 0.37]

0.10
[-0.22; 0.42]

0.13
[-0.19; 0.45]

0.17
[-0.13; 0.47]

-0.16
[-0.50; 0.18]

0.16
[-0.15; 0.47]

0.17 0.24 0.05 0.09 0.12 0.16 -0.14 0.16

Childhood maltreatment -0.17
[-0.41; 0.07]

-0.21
[-0.47; 0.04]

-0.20
[-0.45; 0.05]

-0.11
[-0.37; 0.14]

0.04
[-0.22; 0.31]

-0.07
[-0.30; 0.17]

-0.24
[-0.50; 0.02]

-0.19
[-0.43; 0.04]

-0.17 -0.20 -0.19 -0.10 0.04 -0.07 -0.22 -0.19

     �Emotional abuse -0.12
[-0.41; 0.16]

-0.12
[-0.42; 0.19]

-0.05
[-0.35; 0.25]

0.00
[-0.32; 0.31]

-0.02
[-0.33; 0.30]

-0.03
[-0.31; 0.26]

-0.23
[-0.55; 0.08]

-0.10
[-0.39; 0.18]

-0.12 -0.11 -0.05 -0.00 -0.01 -0.02 -0.21 -0.10

     �Physical abuse 0.28
[-0.10; 0.65]

-0.16
[-0.60; 0.27]

0.25
[-0.15; 0.66]

0.32
[-0.12; 0.77]

0.18
[-0.22; 0.59]

0.30
[-0.08; 0.67]

0.44
[-0.01; 0.88]

0.35
[-0.03; 0.72]

0.27 -0.15 0.24 0.29 0.16 0.29 0.39 0.33

     �Psychological abuse -0.15
[-0.47; 0.18]

-0.06
[-0.42; 0.30]

0.01
[-0.35; 0.36]

0.18
[-0.18; 0.54]

0.01
[-0.35; 0.36]

-0.13
[-0.46; 0.20]

0.09
[-0.28; 0.46]

-0.10
[-0.43; 0.24]

-0.14 -0.06 0.01 0.16 0.01 -0.12 0.08 -0.09

     Sexual abuse -0.23
[-0.59; 0.12]

-0.12
[-0.53; 0.29]

-0.27
[-0.65; 0.10]

-0.21
[-0.63; 0.20]

0.37
[-0.04; 0.79]

-0.11
[-0.47; 0.25]

-0.38
[-0.77; 0.00]

-0.23
[-0.58; 0.12]

-0.23 -0.11 -0.26 -0.19 0.33 -0.11 -0.35 -0.22

Recent life events 0.19
[-0.01; 0.40]

0.17
[-0.07; 0.40]

0.12
[-0.09; 0.33]

0.18
[-0.05; 0.42]

0.04
[-0.18; 0.27]

0.15
[-0.06; 0.36]

0.22
[-0.02; 0.45]

0.18
[-0.03; 0.38]

0.20 0.15 0.12 0.17 0.04 0.15 0.20 0.18

Moderate vs. high social support -0.07 
[-0.33; 0.18]

0.15
[-0.14; 0.45]

-0.02
[-0.30; 0.25]

0.10
[-0.19; 0.40]

-0.23
[-0.52; 0.06]

-0.05
[-0.31; 0.21]

0.00
[-0.29; 0.29]

-0.05
[-0.31; 0.20]

-0.08 0.15 -0.02 0.10 -0.22 -0.05 0.00 -0.05

Low vs. high social support 0.05
[-0.21; 0.31]

0.03
[-0.26; 0.31]

0.00
[-0.27; 0.27]

0.09
[-0.20; 0.37]

-0.43[-0.72; -0.15] 0.00
[-0.27; 0.27]

0.07
[-0.22; 0.37]

0.01
[-0.25; 0.27]

0.05 0.02 -0.00 0.08 -0.40 0.00 0.07 0.01

Note: Generalized linear models, adjusting for age, sex, and intracranial volume. CA = Cornu Ammonis, 
ERC = entorhinal cortex, SUB = subiculum, DG = dentate gyrus, HV = hippocampal volume.

Lastly, when performing a complete case analysis, all associations found in the 
imputed analysis remained (Supplementary Table 4).

Discussion

In our review, we found that most studies found lower volumes in association with 
the presence of a psychosocial factor, specifically depression, anxiety, and childhood 
maltreatment. Regarding hippocampal subfields, the most affected regions were the 
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CA3 and DG. However, some studies found no association or increased association. 
No found studies assessed recent stressful life events or social support. This 
highlighted a gap in the literature assessing social support as well as differences in 
timing of exposure (early-life versus late-life) in adults. In our original study using 
7T brain MRI, specific psychosocial factors were associated with total hippocampal 
(subfield) volume. There was no association between specific hippocampal (subfield) 
volumes and depression or anxiety. There was a trend towards lower hippocampal 
(subfield) volumes in those reporting childhood maltreatment and a trend towards 
higher hippocampal volumes in those who experienced recent stressful life events. 
Psychosocial factors were generally not associated with volumetric differences within 
hippocampal subfields, except for low social support which was associated with 
lower volumes in the CA3 compared to high social support. 

No association between hippocampal (subfield) volumes were found for depression 
or anxiety. These null findings are in line with a previous study observing null effects 
for depressive symptomology (17). However, in those with MDD diagnosis, a recent 
meta-analysis has highlighted lower global hippocampal volume (102). Possibly, 
subclinical depression may not be severe enough for hippocampal atrophy. This 
is in line with our sensitivity analysis on a stricter cut-off on the PHQ-9 (i.e., 10 or 
higher), which found a stronger association with lower total hippocampal volume 
and high depressive symptomology compared to using a lower cut-off of six. Further, 
no association was found for anxiety symptomology and total hippocampal volume, 
which is in line with other studies as well (17, 19, 103). Although, there was a trend 
towards higher hippocampal volume in those with anxiety symptoms, which is in 
agreement with a previous study that also found a nominal positive association 
(104). To note, this trend was driven by the entorhinal cortex, which is the major 
input and output structure to the hippocampus.

The current study found a trend towards a difference in early- versus late-life 
stressful events and total hippocampal volume. A trend towards lower hippocampal 
volume was observed in those who reported childhood maltreatment. This is in 
line with previous literature on clinical PTSD (82), as well as on previous childhood 
maltreatment (19). Further, this highlights a possible role of programming effects. 
Epigenetic programming (i.e., when an environmental stimulus that occurs during 
development has an impact on DNA methylation and other epigenetic markers) has 
been hypothesized to explain the link between childhood maltreatment and risk for 
adult pathophysiology (105). Programming effects can also occur via the HPA axis 
(106), as studies have shown that stress in early life can impair the neuroendocrine 
homeostasis in the HPA axis in the long-term (107). Please see (108) for a review 
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on early-life stress and programming effects. In contrast, a trend towards higher 
volumes in the hippocampus were seen in those who experienced a recent stressful 
event, which is in line with a previous study (109). However, other studies found a 
negative association (110) or no association (110, 111). Discrepancy in the literature 
could be due to the severity of the life event or timing of the life event, as one 
study (110) did not find an association with midlife events or total life events, only 
with increasing severity. Some studies have postulated that stress exposure may 
have a biphasic effect on the hippocampus, with acute increases in volume due to 
metabolic activity followed by later atrophy (112). These studies highlight a possible 
timing effect, as well as a possible difference in the severity of stress exposure, with 
hippocampal volume and should be investigated further. 

Previous literature, specifically in animal models, has shown that the hippocampus is 
heterogeneous regarding stress sensitivity. The CA3 and DG show specific sensitivity 
to stress through dendrite remodeling and neurogenesis inhibition as a response to 
chronic stress. The current study highlights that social support may play a protective 
role of these sensitive regions as higher volumes were found in the CA3 in association 
with high social support, even when correcting for other psychosocial factors. 
This finding in the CA3 could reflect possible protective effects of social support 
on episodic memory (113), which the CA3 is responsible for. While little research 
has been conducted on specific subfield volume, some studies have explored total 
hippocampal volume with social support. Previous studies have been mixed, with 
some studies reporting no association (114) and one study also finding a positive 
association with total volume (115). However, no other differences in subfields were 
found for other psychosocial factors. This is in line with a previous study looking at 
symptomology rather than specific clinical diagnosis, with finding no differences 
associated with depressive symptomology in community-dwelling adults (97). This 
could highlight that hippocampal subfields are not sensitive enough to differential 
volumetric associations when looking at symptomology only. However, volumetric 
differences could be visualized with trends based on psychosocial factor. 

To assess differences regarding type of childhood maltreatment, we performed a 
sensitivity analysis based on maltreatment type. Trends regarding specific differences 
were found in those who experienced physical abuse as well as in those who 
experienced sexual abuse. A previous meta-analysis (116) on childhood maltreatment 
and adulthood inflammation also found significant increases in inflammation 
specifically in physical and sexual abuse. A trend towards higher volumes were found 
in almost all hippocampal subfields in those who reported physical abuse. This trend 
of increased volume may reflect signatures of resiliency in later life. A trend towards 
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lower volumes in the total hippocampus is in line with previous research on atrophy 
associated with childhood sexual abuse (117). Surprisingly, we also observed a trend 
between reporting sexual abuse and higher CA3 volume. A previous study found 
increased volumes in those reporting sexual abuse, specifically in the HATA (73). 
Reporting sexual abuse may lead to a resiliency later in life in subfields related to 
emotional processing, reflected by increased volumes in these specific subfields. 
These types of maltreatment may have specific biological consequences and require 
further investigation. 

Strengths of the current study include using high-field 7T MRI, as well as using the 
validated and readily available ASHS software for segmentation of subfields in the 
hippocampus. Previous studies have mostly used 1.5 or 3T MRI (Table 1), which may 
make differentiation between subfields more difficult for assessment and more prone to 
noise. Missing data was handled using multiple imputation to avoid loss of power, and 
multivariate models were used to account for correlation between the subfields and to 
reduce the possibility for false positives when performing multiple tests. The current 
study consisted of 333 participants, larger than previous studies assessing psychosocial 
factors and subfield volumes (Table 1). However, our standard errors were large, with 
many volumes showing trends towards significance. Future studies with larger sample 
sizes should be performed to increase power and validate findings within subfields.

A limitation Is that the current study is cross-sectional; thus, we were unable to 
look longitudinally on the effect of psychosocial factors on hippocampal subfield 
volumes. Future studies should consider longitudinal assessment of psychosocial 
factors and hippocampal volumes during the aging process to explore their effect 
in detail on neurodegeneration. Additionally, we only correct for a minimal number 
of confounders (i.e., age, sex, and ICV) for consistency due to studying multiple 
psychosocial factors that have varying confounders. However, we did perform a 
sensitivity analysis of a joint model using all psychosocial factors to assess their 
impact on one another. There could be residual confounding in the current study 
and future studies should include possible confounders per psychosocial factors 
for validation. Most participants originated from the SMART-MR study, where all 
individuals have a history of vascular disease; therefore, these results may not be 
generalizable to other populations. It is also critical to note that these participants 
mostly came from a White, Western background. Studies have shown that marginally 
underrepresented populations also experience a disproportionately larger amount 
of maltreatment (118). Future studies need to be done to assess the effect of 
psychosocial factors on hippocampal subfields in these populations. Further, there 
were some differences between cohorts regarding study protocol. Specifically, social 
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support and childhood maltreatment were assessed at an earlier time point in the 
SMART-MR cohort, as well as differences in MRI strength between studies for ICV 
segmentation, which could have affected the current findings. However, sensitivity 
analyses when stratifying by cohort led to similar results. Lastly, our finding in the 
CA3 subfield should be interpreted with caution, as the CA3 is one of the smallest 
subfields within the hippocampus and therefore prone to measurement error, 
possibly including portions of the CA2, CA3, or DG. More studies assessing social 
support and hippocampal subfield volume are warranted for validation of our 
finding on CA3 volume.

Conclusively, the current study highlights that hippocampal (subfield) volumes may 
differ based on the psychosocial factor. Consistency between subfield volumes or 
differential effects also may depend on the psychosocial factor. As the hippocampus 
is involved in both emotional and memory processing, understanding the effects 
of psychosocial factors on hippocampal decline is crucial in the prevention of 
neurodegenerative diseases. 
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Supplementary Info S1.

(“hippocamp*”[Title/Abstract] OR “Parahippocampal Gyrus”[MeSH Terms] OR “ca2 
region, hippocampal”[MeSH Terms] OR “ca1 region, hippocampal”[MeSH Terms] 
OR “ca3 region, hippocampal”[MeSH Terms] OR “Hippocampus”[MeSH Terms]) 
AND (“subfield*”[Title/Abstract] OR “subregion*”[Title/Abstract]) AND (“depressive 
disorder”[MeSH Terms] OR (“depressive disorder”[MeSH Terms] OR “depression”[MeSH 
Terms]) OR “depression”[Title/Abstract] OR “depressive”[Title/Abstract] OR 
“depressed”[Title/Abstract] OR (“anxiety”[Title/Abstract] OR “anxious”[Title/Abstract] 
OR “Anxiety Disorders”[MeSH Terms]) OR (“stress”[Title/Abstract] OR “adversity”[Title/
Abstract] OR “maltreatment”[Title/Abstract] OR “trauma”[Title/Abstract] OR 
“abuse”[Title/Abstract] OR “psychosocial”[Title/Abstract] OR “social support”[Title/
Abstract] OR “support”[Title/Abstract] OR “social network”[Title/Abstract] OR 
“events”[Title/Abstract]))

Supplementary Info 2. Chi-square tests between each psychosocial 
factor.
Depressive symptoms were associated with anxiety symptoms (F(1)=4091; p<0.001), 
social support (F(2)=265; p<0.001), childhood maltreatment (F(1)=548; p<0.001), and 
recent stressful experiences (F(1)=80; p<0.001). Anxiety symptoms were associated 
with social support (F(2)=100; p<0.001), childhood maltreatment (F(1)=531; p<0.001), 
and recent stressful experiences (F(1)=186; p<-0.001).

Social support was associated with childhood maltreatment (F(2)=260; p<0.001) 
and recent stressful experiences (F(2)=83; p<0.001). Childhood maltreatment was 
associated with recent stressful experiences (F(1)=39; p<0.001).

Supplementary Code S1.
### Generalized linear model for depressive symptoms (depsymptoms) in one 
imputed dataset (dataset_imp1), adjusting for age (age), sex (sex), and intracranial 
volume (ICV), allowing for unstructured correlation between the hippocampal 
subfields (variable) per individual (id)

dep_imp1 <- gls(value ~  -1 + variable + variable:factor(depsymptoms) + 
variable:age + variable:sex + variable:ICV, data = dataset_imp1, method=”ML”, 
correlation=corSymm(form = ~ 1 | id), weights = varIdent(form= ~1 | variable))

### Compute estimated marginal means based on the model (dep_imp1) 
for each subfield, for those with and without high depressive symptomology 
(variable:factor(depsymptoms)), adjusted for age, sex, and intracranial volume
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em.dep <- emmeans(dep_imp1, ~variable:factor(depsymptoms), mode = “df.error”)

See also the following GitHub tutorial: https://etwait.github.io/correlated-outcomes/.

Supplementary Table 1. Baseline characteristics between the complete-case analysis and the ten 
pooled, imputed datasets (n = 333).

Complete-case Imputed % missing

Demographics

Age, mean ± SD, years 68 ±9 - 0%

Sex, female, % 30% - 0%

College/university education, % 39% 39% 1%

Psychosocial factors

Elevated levels of depressive symptoms, % 17% 17% 0%

Elevated levels of anxiety symptoms, % 15% 15% 2%

Any childhood maltreatment, % 24% 24% 3%

     Any emotional abuse 15% 17% 3%

     Any physical abuse 8% 10% 3%

     Any psychological abuse 12% 13% 3%

     Any sexual abuse 9% 10% 3%

One or more recent life events, % 53% 51% 2%

Social support, % 4%

     Low social support 24% 24% 4%

     Medium social support 23% 23% 4%

     High social support 54% 53% 4%

Brain volumes

Intracranial volume, cm3,mean ± SD 1513 ± 141 1511 ± 144 4%

Entorhinal cortex, mm3, mean ± SD 842 ± 152 840 ± 166 14%

Subiculum, mm3, mean ± SD 1170 ± 167 1171 ± 177 14%

Cornu ammonis 1, mm3, mean ± SD 2985 ± 349 2986 ± 353 14%

Cornu ammonis 2, mm3, mean ± SD 120 ± 22 120 ± 21 14%

Cornu ammonis 3, mm3, mean ± SD 198 ± 46 198 ± 47 14%

Dentate gyrus, mm3, mean ± SD 1589 ± 218 1591 ± 224 14%

Hippocampal tail, mm3, mean ± SD 291 ± 68 291 ± 67 14%

Total hippocampus, mm3, mean ± SD 6350 ± 714 6353 ± 730 14%
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Supplementary Table 2. Standardized means and standard errors per psychosocial factor (exposed 
and unexposed).

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV

Depressive symptoms

     Yes -0.210
(0.132)

0.148
(0.145)

-0.046
(0.142)

0.173
(0.140)

0.099
(0.146)

0.128 
(0.134)

-0.004 
(0.145)

-0.054 
(0.132)

     No 0.022
(0.062)

-0.023 
(0.066)

0.029 
(0.064)

-0.004 
(0.066)

0.036 
(0.068)

0.018 
(0.062)

0.050 
(0.067)

0.034 
(0.062)

Anxiety symptoms

     Yes 0.122 
(0.135)

0.231
(0.153)

0.064 
(0.145)

0.107 
(0.149)

0.156 
(0.150)

0.178 
(0.138)

-0.092 
(0.156)

0.153 
(0.144)

     No -0.045 
(0.061)

-0.039 
(0.066)

0.006 
(0.064)

0.010 
(0.066)

0.025 
(0.067)

0.008 
(0.063)

0.068 
(0.068)

-0.008 
(0.062)

Childhood maltreatment

     Yes -0.137 
(0.103)

-0.145 
(0.110)

-0.125 
(0.108)

-0.054 
(0.110)

0.078 
(0.113)

-0.011 
(0.102)

-0.128 
(0.111)

-0.122 
(0.105)

     No 0.033 
(0.066)

0.069 
(0.071)

0.075 
(0.069)

0.060 
(0.071)

0.033 
(0.073)

0.056 
(0.067)

0.111 
(0.072)

0.070 
(0.065)

Emotional abuse

     Yes -0.118 
(0.132)

-0.090 
(0.141)

-0.024
(0.137)

0.023 
(0.144)

0.032 
(0.145)

0.016 
(0.133)

-0.151 
(0.146)

-0.066 
(0.133)

     No 0.005 
(0.062)

0.028 
(0.067)

0.025 
(0.065)

0.027 
(0.067)

0.049 
(0.069)

0.041 
(0.063)

0.084 
(0.068)

0.038 
(0.063)

Physical abuse

     Yes 0.230 
(0.182)

-0.141 
(0.209)

0.244 
(0.196)

0.317 
(0.215)

0.210 
(0.196)

0.303
(0.181)

0.431 
(0.214)

0.329 
(0.181)

     No -0.046 
(0.059)

0.023 
(0.064)

-0.010 
(0.062)

-0.007 
(0.063)

0.028 
(0.065)

0.006 
(0.060)

-0.004 
(0.064)

-0.017 
(0.060)

Psychological abuse

     Yes -0.143 
(0.152)

-0.047 
(0.171)

0.021 
(0.166)

0.180 
(0.171)

0.052 
(0.167)

-0.073 
(0.155)

0.118 
(0.174)

-0.065 
(0.158)

     No 0.004 
(0.061)

0.015 
(0.065)

0.015 
(0.064)

0.000 
(0.065)

0.045 
(0.067)

0.055 
(0.062)

0.028 
(0.067)

0.033 
(0.062)

Sexual abuse

     Yes -0.225 
(0.169)

-0.102 
(0.197)

-0.228 
(0.179)

-0.164 
(0.198)

0.377 
(0.197)

-0.061 
(0.171)

-0.299 
(0.186)

-0.183
(0.167)

     No 0.009 
(0.059)

0.020 
(0.064)

0.047 
(0.062)

0.050 
(0.064)

0.004 
(0.066)

0.049 
(0.060)

0.084 
(0.064)

0.044 
(0.061)

Recent life-threatening event

     Yes 0.077 
(0.075)

0.088 
(0.084)

0.074 
(0.079)

0.116 
(0.084)

0.068 
(0.085)

0.111 
(0.077)

0.147 
(0.085)

0.107 
(0.078)

     No -0.116 
(0.078)

-0.079
(0.086)

-0.046 
(0.081)

-0.068 
(0.085)

0.023 
(0.086)

-0.042 
(0.080)

-0.071 
(0.086)

-0.069 
(0.075)

Social support

     High -0.012 
(0.073)

-0.033 
(0.078)

0.022 
(0.077)

-0.014 
(0.079)

0.189 
(0.080)

0.047 
(0.074)

0.025 
(0.081)

0.027 
(0.074)



124 | Chapter 4

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV

Moderate -0.086 
(0.112)

0.122 
(0.127)

-0.003 
(0.120)

0.088 
(0.127)

-0.042 
(0.126)

-0.003 
(0.114)

0.026 
(0.126)

-0.025 
(0.111)

     Low 0.039 
(0.112)

-0.007 
(0.124)

0.019 
(0.117)

0.071 
(0.122)

-0.243 
(0.123)

0.049 
(0.117)

0.100 
(0.128)

0.040 
(0.114)

Note: The estimates are age, sex, and ICV-adjusted means for those with the given psychosocial 
factor and those without (z-standardized volumes of the hippocampus). CA = Cornu Ammonis; ERC = 
entorhinal cortex; SUB = subiculum; DG = dentate gyrus; HV = hippocampal volume.

Supplementary Table 3. Joint model associations for each psychosocial factor on standardized volumes 
of each hippocampal subfield. 

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV

Estimate
(95% CI)

Estimate
(95% CI)

Estimate 
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Depressive 
symptoms 

-0.34(-
0.65; 
-0.03)

0.11
(-0.23; 
0.46)

-0.10
(-0.43; 
0.24)

0.19
(-0.14; 
0.53)

-0.04
(-0.40; 
0.31)

0.06
(-0.25; 
0.37)

0.04
( -0.30; 
0.39)

-0.16
(-0.47; 
0.15)

Anxiety 
symptoms

0.30
(-0.01; 
0.62)

0.25
(-0.12; 
0.62)

0.11
(-0.23; 
0.46)

0.02
(-0.34; 
0.38)

0.15
(-0.21; 
0.51)

0.14
(-0.18; 
0.47)

-0.17
(-0.55; 
0.20)

0.23
(-0.11; 
0.57)

Childhood 
maltreatment

-0.18
(-0.43; 
0.06)

-0.25
(-0.51; 
0.00)

-0.21
(-0.47; 
0.04)

-0.15
(-0.41; 
0.11)

0.06
(-0.21; 
0.33)

-0.10
(-0.34; 
0.14)

-0.25
(-0.51; 
0.01)

-0.21
(-0.45; 
0.03)

Recent life 
events

0.19
(-0.01; 
0.40)

0.17
(-0.07; 
0.40)

0.12
(-0.09; 
0.34)

0.19
(-0.05; 
0.42)

0.03
(-0.20; 
0.26)

0.14
(-0.07; 
0.36)

0.24
(0.00; 
0.47)

0.17
(-0.03; 
0.38)

Moderate vs. 
high social 
support

-0.08
(-0.34; 
0.17)

0.17
(-0.12; 
0.46)

-0.03
(-0.31; 
0.25)

0.12
(-0.17; 
0.41)

-0.23
(-0.52; 
0.07)

-0.04 
(-0.30; 
0.23)

0.00
(-0.29; 
0.29)

-0.06
(-0.31; 
0.20)

Low vs. high 
social support

0.04
(-0.22; 
0.29)

0.05
(-0.23; 
0.33)

0.01
(-0.27; 
0.28)

0.11 
(-0.18; 
0.40)

-0.44(-
0.73; 
-0.16)

0.01
(-0.26; 
0.28)

0.11
(-0.19; 
0.40)

0.01
(-0.25; 
0.27)

Note: Generalized linear models, adjusting for all psychosocial factors, age, sex, and intracranial volume. 
CA = Cornu Ammonis, ERC = entorhinal cortex, SUB = subiculum, DG = dentate gyrus, HV = hippocampal 
volume. P-value threshold is set to p<0.01.

Supplementary Table 2. Continued
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Supplementary Table 4. Complete case analysis on the associations between psychosocial factors and 
standardized hippocampal (subfield) volumes.

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV

Estimate
(95% CI)

Estimate
(95% CI)

Estimate 
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Depressive symptoms -0.19
(-0.50; 0.11)

0.17
(-0.16; 0.50)

-0.05
(-0.37; 0.27)

0.25
(-0.07; 0.57)

0.09
(-0.25; 0.42)

0.16
(-0.15; 0.47)

-0.06
(-0.39; 0.27)

-0.05
(-0.36; 0.26)

Anxiety symptoms 0.20
(-0.11; 0.52)

0.33
(-0.01; 0.67)

0.09
(-0.24; 0.42)

0.21
(-0.12; 0.53)

0.14
(-0.21; 0.49)

0.25
(-0.07; 0.57)

-0.14
(-0.48; 0.20)

0.20 
(-0.11; 0.51)

Childhood maltreatment -0.19
(-0.44; 0.06)

-0.17
(-0.44; 0.10)

-0.20
(-0.46; 0.06)

-0.04
(-0.30; 0.23)

0.05
(-0.23; 0.33)

-0.04
(-0.29; 0.22)

-0.23
(-0.51; 0.04)

-0.17
(-0.42; 0.08)

     Emotional abuse -0.10
(-0.41; 0.21)

-0.12
(-0.46; 0.21)

-0.05
(-0.38; 0.28)

0.06
(-0.27; 0.38)

0.04
(-0.30; 0.39)

0.03
(-0.29; 0.35)

-0.24
(-0.57; 0.09)

-0.07
(-0.38; 0.25)

     Physical abuse 0.28
(-0.12; 0.68)

-0.09
(-0.52; 0.34)

0.33
(-0.09; 0.75)

0.37
(-0.04; 0.78)

0.13
(-0.31; 0.57)

0.39
(-0.01; 0.80)

0.46
(0.04; 0.88)

0.40
(-0.01; 0.80)

     Psychological abuse -0.08
(-0.45; 0.28)

-0.01
(-0.41; 0.38)

0.02
(-0.37; 0.40)

0.27
(-0.10; 0.65)

0.08
(-0.32; 0.48)

-0.07
(-0.44; 0.30)

0.14
(-0.25; 0.52)

-0.03 
(-0.40; 0.34)

     Sexual abuse -0.34
(-0.70; 0.03)

-0.11
(-0.51; 0.29)

-0.30
(-0.68; 0.09)

-0.16
(-0.54; 0.23)

0.36
(-0.04; 0.77)

-0.15
(-0.53; 0.23)

-0.34
(-0.73; 0.05)

-0.29
(-0.66; 0.08)

Recent life events 0.19
(-0.02; 0.40)

0.14
(-0.09; 0.37)

0.13
(-0.10; 0.35)

0.20
(-0.03; 0.42)

0.02
(-0.22; 0.26)

0.14
(-0.08; 0.35)

0.24
(0.01; 0.47)

0.19
(-0.02; 0.41)

Moderate vs. high social support -0.11
(-0.38; 0.17)

0.13
(-0.16; 0.42)

-0.10
(-0.38; 0.19)

-0.04
(-0.32; 0.24)

-0.34
(-0.64; -0.05)

-0.10
(-0.38; 0.18)

-0.06
(-0.35; 0.23)

-0.13
(-0.41; 0.14)

Low vs. high social support 0.06
(-0.21; 0.33)

0.05
(-0.24; 0.33)

-0.01
(-0.30; 0.27)

0.09
(-0.19; 0.37)

-0.43(-0.72; 
-0.14)

-0.02
(-0.30; 0.26)

0.06
(-0.23; 0.35)

0.00
(-0.27; 0.27)
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Supplementary Table 4. Complete case analysis on the associations between psychosocial factors and 
standardized hippocampal (subfield) volumes.

CA 1 ERC SUB CA 2 CA 3 DG Tail Total HV

Estimate
(95% CI)

Estimate
(95% CI)

Estimate 
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Estimate
(95% CI)

Depressive symptoms -0.19
(-0.50; 0.11)

0.17
(-0.16; 0.50)

-0.05
(-0.37; 0.27)

0.25
(-0.07; 0.57)

0.09
(-0.25; 0.42)

0.16
(-0.15; 0.47)

-0.06
(-0.39; 0.27)

-0.05
(-0.36; 0.26)

Anxiety symptoms 0.20
(-0.11; 0.52)

0.33
(-0.01; 0.67)

0.09
(-0.24; 0.42)

0.21
(-0.12; 0.53)

0.14
(-0.21; 0.49)

0.25
(-0.07; 0.57)

-0.14
(-0.48; 0.20)

0.20 
(-0.11; 0.51)

Childhood maltreatment -0.19
(-0.44; 0.06)

-0.17
(-0.44; 0.10)

-0.20
(-0.46; 0.06)

-0.04
(-0.30; 0.23)

0.05
(-0.23; 0.33)

-0.04
(-0.29; 0.22)

-0.23
(-0.51; 0.04)

-0.17
(-0.42; 0.08)

     Emotional abuse -0.10
(-0.41; 0.21)

-0.12
(-0.46; 0.21)

-0.05
(-0.38; 0.28)

0.06
(-0.27; 0.38)

0.04
(-0.30; 0.39)

0.03
(-0.29; 0.35)

-0.24
(-0.57; 0.09)

-0.07
(-0.38; 0.25)

     Physical abuse 0.28
(-0.12; 0.68)

-0.09
(-0.52; 0.34)

0.33
(-0.09; 0.75)

0.37
(-0.04; 0.78)

0.13
(-0.31; 0.57)

0.39
(-0.01; 0.80)

0.46
(0.04; 0.88)

0.40
(-0.01; 0.80)

     Psychological abuse -0.08
(-0.45; 0.28)

-0.01
(-0.41; 0.38)

0.02
(-0.37; 0.40)

0.27
(-0.10; 0.65)

0.08
(-0.32; 0.48)

-0.07
(-0.44; 0.30)

0.14
(-0.25; 0.52)

-0.03 
(-0.40; 0.34)

     Sexual abuse -0.34
(-0.70; 0.03)

-0.11
(-0.51; 0.29)

-0.30
(-0.68; 0.09)

-0.16
(-0.54; 0.23)

0.36
(-0.04; 0.77)

-0.15
(-0.53; 0.23)

-0.34
(-0.73; 0.05)

-0.29
(-0.66; 0.08)

Recent life events 0.19
(-0.02; 0.40)

0.14
(-0.09; 0.37)

0.13
(-0.10; 0.35)

0.20
(-0.03; 0.42)

0.02
(-0.22; 0.26)

0.14
(-0.08; 0.35)

0.24
(0.01; 0.47)

0.19
(-0.02; 0.41)

Moderate vs. high social support -0.11
(-0.38; 0.17)

0.13
(-0.16; 0.42)

-0.10
(-0.38; 0.19)

-0.04
(-0.32; 0.24)

-0.34
(-0.64; -0.05)

-0.10
(-0.38; 0.18)

-0.06
(-0.35; 0.23)

-0.13
(-0.41; 0.14)

Low vs. high social support 0.06
(-0.21; 0.33)

0.05
(-0.24; 0.33)

-0.01
(-0.30; 0.27)

0.09
(-0.19; 0.37)

-0.43(-0.72; 
-0.14)

-0.02
(-0.30; 0.26)

0.06
(-0.23; 0.35)

0.00
(-0.27; 0.27)
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Supplementary Figure 1. A correlation matrix of the hippocampal subfields.

Note: All correlations are significant, p < 0.001.

CA = Cornu Ammonis; ERC = entorhinal cortex; SUB = subiculum; DG = dentate gyrus; HV = 
hippocampal volume.
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Supplementary Figure 2. Age-, sex-, and intracranial volume-adjusted means (z-transformed) for each 
hippocampal subfield and total hippocampal volume per type of childhood maltreatment.

CA1 = Cornu ammonis 1, ERC = entorhinal cortex, SUB = subiculum, CA2 = cornu ammonis 2,  
CA3 = cornu ammonis 3, DG = dentage gyrus, HV = hippocampal volume.
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Abstract  

Several lines of evidence have indicated that depression might be a prodromal 
symptom of Alzheimer’s disease (AD). This systematic review and meta-analysis 
investigated the cross-sectional association between amyloid-beta, one of the key 
pathologies defining AD, and depression or depressive symptoms in older adults 
without cognitive impairment. A systematic search in PubMed yielded 612 peer-
reviewed articles. After full-text screening, eight PET studies, eight CSF studies, 
and four plasma studies were included. No association between amyloid-beta and 
depression or depressive symptoms were found using positron emission topography 
(PET) (Cohen’s d: 0.23; 95% CI: -0.07; 0.52), cerebrospinal fluid (CSF) (0.20; 95% CI: 
-0.03; 0.43), or plasma (-0.08; 95% CI: -0.37; 0.21). This meta-analysis showed no 
conclusive evidence of a cross-sectional association between amyloid-beta burden 
and depression. Amyloid burden and late-life depression may be independent 
characteristics of the extended preclinical stage of AD.
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Introduction

Depression is one of the leading mental disorders seen in older individuals, which can 
lead to decreased quality of life, disability, and higher comorbidity from other medical 
conditions (1). A recent meta-analysis found a pooled prevalence of 7% of major 
depression in later life (2). Further, late-life depression is associated with an increased 
risk of all-cause dementia and Alzheimer’s disease (3-5). The main pathological 
hallmark of AD is amyloid-β (Aβ) peptide aggregation which forms amyloid plaques (6, 
7). In clinical practice, Aβ positron-emission tomography (PET) scans and measurement 
of Aβ in CSF are validated methods for identifying AD pathophysiology (8, 9). Plasma 
Aβ level has also demonstrated potential clinical importance in detecting brain Aβ 
burden (9). Alongside being attributed to AD, plasma and CSF Aβ levels have also been 
highlighted in individuals with depression in several studies, defining the amyloid 
hypothesis for depression. However, the results have been inconsistent.

A previous systematic review and meta-analysis by Nascimento, Silva (10) on 12 
studies reported significantly lower Aβ42 levels and higher Aβ40/Aβ42 ratio (i.e., 
higher Aβ burden) in plasma, but no significant differences in CSF Aβ42 were found. 
However, some studies not included in the review reported contradictory results. 
For example, a cross-sectional study assessing the correlation of plasma Aβ42 and 
depressive symptoms in the Korean elderly found higher plasma Aβ42 levels in 
the elderly with depressive symptoms compared to those without depressive 
symptoms (11). Additionally, a longitudinal study comparing individuals diagnosed 
with depression and healthy controls found significantly lower CSF Aβ42 levels at 
baseline in the individuals with depression (12). Further, this study did not assess how 
cognitive impairment may have impacted results, as several included studies included 
individuals with mild cognitive impairment (MCI).

Further, the previous meta-analysis (10) did not include PET studies. Compared to 
the previous review, more recent studies that measured Aβ burden are expected to 
be included with an updated search to be able to assess the relationship between 
Aβ burden and depression, as assessed by PET, CSF, or plasma. By including more 
studies, it allows for more statistical power to capture the association between Aβ 
and depression or depressive symptoms.

In this systematic review and meta-analysis, we aim to examine the cross-sectional 
association of Aβ burden (measured by PET, CSF, or plasma) with depression or 
depressive symptoms in cognitively unimpaired older adults to assess possible 
biological mechanisms of depression in the extended preclinical period of AD.
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Methods

This systematic review and meta-analysis was conducted and reported following 
the PRISMA guidelines (13). The review was not registered on PROSPERO as data 
collection had already been performed.

Search and study selection
A search string including the terms depression, amyloid, method of amyloid 
measurement (i.e., PET, CSF, or plasma), and their synonyms (Supplementary Info 1) 
was developed for PubMed, focusing on older adults without cognitive impairment. 
The original search was performed on May 14, 2021, and duplicate results from our 
search were removed with EndNote (v. 20.2) (The EndNote Team, 2013) reference 
management software. Subsequently, two reviewers (E.T. and M.K.) independently 
screened titles and abstracts using the Rayyan app (14) to assess eligibility. On May 
18, 2022, an updated search was performed by two reviewers (E.T. and J.W.) using 
the same screening strategies listed above. Full texts of the remaining articles were 
retrieved and screened against eligibility criteria. Any disagreements were resolved 
by discussion between the two reviewers (E.T. and J.W.). Snowballing and reverse 
snowballing were performed by scanning the reference lists of the included articles 
for any other publications of interest as well as searching Scopus for other works that 
cited the included articles.

Eligibility criteria
Studies reporting an association between Aβ burden (measured by either PET, CSF, 
or plasma) and depression diagnosis (determined by a clinical depression diagnosis 
from medical history or based on established depression evaluation criteria) or 
depressive symptoms (assessed with a depressive symptom questionnaire) were 
eligible for inclusion. Eligible studies i) presented observational cross-sectional 
associations or ii) were longitudinal in design but reported baseline characteristics 
and associations. Only articles reporting associations in non-demented older adults 
(i.e., mean age of study population ≥ 50 years old) were included. There were no 
criteria for the language or publication date of the study. In addition, studies with 
insufficient information for calculating an effect size were excluded. If multiple 
articles used the same cohort to investigate the association, the study containing 
the largest number of study participants was included.

Data extraction and risk of bias assessment
Information extracted from the selected articles was the cohort, size of the study 
sample, baseline characteristics, Aβ measurement (PET, CSF, or plasma), Aβ burden 
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classification (continuous or categorical), depression assessment criteria (clinical 
diagnosis or depressive symptoms), covariate adjustment (whether the study 
controlled for age, gender, education, or other factors), and the effect size between 
Aβ and depression or depressive symptoms.

The risk of bias was assessed using an adjusted version of the Newcastle-Ottawa 
Quality Assessment Scale for Cohort Studies (Supplementary Info 2), in which the 
included studies were rated with stars based on nine criteria divided into three 
sections: the quality of the study population selection, the comparability of cohorts 
based on the study design or analysis, and the quality of outcome assessment.

Statistical analyses
Statistical analyses were performed using R version 4.0.5 (Rstudio, 2022). Based 
on means and standard deviations between those with and without depression or 
depressive symptoms or through correlations between Aβ burden and depression 
or depressive symptoms, these metrics from each study were transformed into 
standardized mean differences (i.e., Cohen’s d) using the esc package in R (15). 
Notably, lower CSF or plasma amyloid levels indicate a higher brain amyloid 
burden (16, 17); therefore, effect sizes were reversed if studies measured Aβ via CSF 
or plasma. By reversing the effect size in such cases, a positive Cohen’s d would 
represent an association between higher Aβ burden and depression or depressive 
symptoms. Considering the possible heterogeneity between studies, such as 
depression assessment criteria, it might not be reasonable to assume a common 
effect across included studies. Therefore, the pooled estimate was calculated using 
a random-effects model (18). 

Several studies reported multiple Aβ metrics from the same subjects (e.g., reporting 
both Aβ40, Aβ42, and their ratio, continuous and categorical scales of Aβ burden, 
depression assessed based on clinical diagnosis and depressive symptoms, and both 
adjusted and unadjusted associations). To prevent including one study multiple 
times in the meta-analysis, a prioritization was made to include only one effect 
size from each study. We chose a continuous scale of Aβ, depression assessment 
based on clinical diagnosis, Aβ42/40 ratio, and analyses adjusted for covariates as 
our prioritization criteria for the meta-analysis, to produce a more clinically relevant 
result and reduce possible heterogeneity. Therefore, no studies were included twice.

Cochran’s Q test and I2 statistics were used to test heterogeneity. Based on the 
Cochrane Handbook (19), 30-60%, 50-90%, and more than 75% were rated, 
respectively, as moderate, substantial, or considerable heterogeneity. To assess the 
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risk of publication bias, visual inspection of funnel plots and Egger’s t-test were 
performed. Subgroup analyses were done to explore biological and methodological 
heterogeneity. Subgroups were stratified according to: adjusted/unadjusted 
for covariates, depression assessment (based on clinical diagnosis/depressive 
symptoms), PET tracer (18F or 11C), and cohort origin (general population/clinical 
settings). Meta-regression was performed to assess if sex/gender distribution or 
prevalence of APOE e4 allele genotype affected the results. For all tests, a p-value < 
0.05 was considered statistically significant.

Results

Search results
Following the removal of duplicates, 612 articles were retrieved, of which 57 articles 
were assessed full-text for eligibility (Figure 1). After the full-text screening, our 
meta-analysis included 18 studies (11, 20-36) (Figure 1).

The demographics of the participants from each study are presented in Table 1. 
There was a total of 8614 study participants from the 18 included studies, with a 
sample size varying from 28 to 4492, a mean age ranging from 67 to 76 years, the 
percentage of female participants ranging from 26 to 100%, a mean education 
ranging from three to 17 years, a prevalence of an APOE e4 allele ranging from 12 to 
34%, if reported. Prevalence of a clinical diagnosis or high depressive symptomology 
ranged from three to 17% in the studies. All of the studies used depression as the 
outcome. The origin of the study cohort varied from general population to clinical 
settings, such as hospitals or memory clinics. Eight (44%) studies measured amyloid 
in the brain with amyloid PET, eight (44%) studies measured amyloid in CSF, and four 
(22%) studies measured amyloid in plasma. Two studies (11%) reported multiple 
amyloid measurement methods (i.e., one reported both CSF and PET, one reported 
both plasma and PET). Of all the 18 studies, 11 studies (61%) used a clinical diagnosis 
of depression, six studies (33%) used a depressive symptom questionnaire, and one 
study (6%) assessed both (Table 2). Only one (6%) of the 18 studies assessed Aβ 
categorically. Nine (50%) studies controlled for one or more covariates, such as age, 
sex/gender, and education. Of the eight PET studies, six studies (75%) used a 18F 
tracer and two (25%) studies used a 11C tracer. Of the eight CSF studies, five (63%) 
studies reported only Aβ42, two (25%) studies reported both Aβ42 and Aβ40, and 
one (13%) study reported the Aβ42/40 ratio. Of the four plasma studies, two (50%) 
studies reported both Aβ42 and Aβ40, one study (25%) reported Aβ42, Aβ40, and 
the ratio, and one study (25%) reported only Aβ42.
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Figure 1. PRISMA flow chart of the original literature search.

The adjusted Newcastle-Ottawa Quality Assessment Scale for cohort studies was 
used to evaluate the risk of bias, and the included studies scored between four and 
nine stars on the assessment (Table 3). Regarding selection criteria, six (33%) studies 
lost stars as their sample was not representative of community-dwelling older adults 
without cognitive impairment. Eight (50%) studies did not adjust for any covariates. 
All studies ascertained Aβ burden and depression continuously or categorically 
based on validated cut-off values; the same method to ascertain Aβ burden and 
depression or depressive symptoms was implemented for depressed cases and 
healthy controls in each study. Thus, risk of bias based on the ascertainment of 
outcome was assumed low. Four studies (22%) scored all nine stars. The Egger’s t 
statistic for the PET studies (bias = 1.44, SE = 1.45, t(6) = 1.00, p = 0.36), CSF studies 
(bias = -1.12, SE = 1.36, t(6), = -0.82, p = 0.44), and plasma studies (bias = -2.88,  
SE = 2.46, t(2), p = 0.36) suggested that significant publication bias was unlikely (19).
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Table 1. Characteristics of the participants of the included studies in the meta-analysis.

Study (Year, Country) Cohort origin Sample 
size

Age (Mean ± 
SD in years)

Sex/gender 
(% women)

Education  
(Mean ± SD in years)

APOE e4 allele 
presence (%)

Prevalence of depression diagnosis or 
high depressive symptoms (%)

PET studies

Almdahl, Agartz (20) (2022, USA) Memory clinic 241 74 ± 6 47% 17 ± 3 27% 40%

Babulal, Roe (31) (2020, USA) Research center 301 70 ± 8 57% 16 ± 2 33% 13%

Byun, Choe (32) (2016, South Korea) Hospital 42 70 ± 6 52% 11 ± 5 12% 36%

Kumar, Kepe (22) (2011, USA) Population 39 67 ± 7 56% 16 ± 3 - 51%

Lewis, Bernstein (23) (2022, USA) Hospital 4492 71 ± 5 59% - - 3% GDS > 5

Moriguchi, Takahata (24) (2021, Japan) Hospital 40 72 ± 7 75% 13 ± 2 - 50%

Wang, Kim (29) (2021, South Korea) Hospital 235 70 ± 9 71% 13 ± 4 23% 50%

Wu, Hsiao (30) (2014, Taiwan) Population 36 69 ± 6 81% 8 ± 4 19% 69%

CSF studies

Almdahl, Agartz (20) (2022, USA) Hospital 241 74 ± 6 47% 17 ± 3 27% 40%

Diniz, Teixeira (33) (2014, Brazil) Hospital 41 70 ± 4 35% 13 ± 5 - 39%

Gudmundsson, Skoog (35) (2007, Sweden) Populations 84 73 ± 3 100% - - 17%

Hertze, Minthon (36) (2010, Sweden) Memory clinic 66 69 ± 13 62% - 27% 42%

Krell-Roesch, Rakusa (21) (2022, USA) Population 699 72 ± 7 43% 14 ± 2 26% 7% BDI > 13

Pomara, Bruno (25) (2012, USA) Population 47 67 ± 6 47% 17 ± 3 34% 60%

Reis, Brandão (26) (2012, Brazil) Population 28 71 ± 6 89% 5 ± 4 - 71%

Siafarikas, Kirsebom (27) (2021, Norway) Hospital 60 67 ± 7 83% 13 ± 3 - 32%

Plasma studies

Byun, Choe (32) (2016, South Korea) Hospital 42 70 ± 6 52% 11 ± 5 12% 36%

Direk, Schrijvers (34) (2013, Netherlands) Population 980 72 ± 7 59% 4 ± 2 - 7%, CES-D > 16

Moon, Kang (11) (2011, South Korea) Population 123 76 ± 7 26% 3 ± 3 - 47%

Sun, Chiu (28) (2009, USA) Population 1060 75 ± 9 76% - 24% 34%

Note: GDS = Geriatric Depression Scale, BDI = Beck Depression Inventory, CES-D = Center for Epidemiologic 
Studies Depression Scale
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Table 1. Characteristics of the participants of the included studies in the meta-analysis.

Study (Year, Country) Cohort origin Sample 
size

Age (Mean ± 
SD in years)

Sex/gender 
(% women)

Education  
(Mean ± SD in years)

APOE e4 allele 
presence (%)

Prevalence of depression diagnosis or 
high depressive symptoms (%)

PET studies

Almdahl, Agartz (20) (2022, USA) Memory clinic 241 74 ± 6 47% 17 ± 3 27% 40%

Babulal, Roe (31) (2020, USA) Research center 301 70 ± 8 57% 16 ± 2 33% 13%

Byun, Choe (32) (2016, South Korea) Hospital 42 70 ± 6 52% 11 ± 5 12% 36%

Kumar, Kepe (22) (2011, USA) Population 39 67 ± 7 56% 16 ± 3 - 51%

Lewis, Bernstein (23) (2022, USA) Hospital 4492 71 ± 5 59% - - 3% GDS > 5

Moriguchi, Takahata (24) (2021, Japan) Hospital 40 72 ± 7 75% 13 ± 2 - 50%

Wang, Kim (29) (2021, South Korea) Hospital 235 70 ± 9 71% 13 ± 4 23% 50%

Wu, Hsiao (30) (2014, Taiwan) Population 36 69 ± 6 81% 8 ± 4 19% 69%

CSF studies

Almdahl, Agartz (20) (2022, USA) Hospital 241 74 ± 6 47% 17 ± 3 27% 40%

Diniz, Teixeira (33) (2014, Brazil) Hospital 41 70 ± 4 35% 13 ± 5 - 39%

Gudmundsson, Skoog (35) (2007, Sweden) Populations 84 73 ± 3 100% - - 17%

Hertze, Minthon (36) (2010, Sweden) Memory clinic 66 69 ± 13 62% - 27% 42%

Krell-Roesch, Rakusa (21) (2022, USA) Population 699 72 ± 7 43% 14 ± 2 26% 7% BDI > 13

Pomara, Bruno (25) (2012, USA) Population 47 67 ± 6 47% 17 ± 3 34% 60%

Reis, Brandão (26) (2012, Brazil) Population 28 71 ± 6 89% 5 ± 4 - 71%

Siafarikas, Kirsebom (27) (2021, Norway) Hospital 60 67 ± 7 83% 13 ± 3 - 32%

Plasma studies

Byun, Choe (32) (2016, South Korea) Hospital 42 70 ± 6 52% 11 ± 5 12% 36%

Direk, Schrijvers (34) (2013, Netherlands) Population 980 72 ± 7 59% 4 ± 2 - 7%, CES-D > 16

Moon, Kang (11) (2011, South Korea) Population 123 76 ± 7 26% 3 ± 3 - 47%

Sun, Chiu (28) (2009, USA) Population 1060 75 ± 9 76% - 24% 34%

Note: GDS = Geriatric Depression Scale, BDI = Beck Depression Inventory, CES-D = Center for Epidemiologic 
Studies Depression Scale
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Table 2. Extracted data used in the meta-analyses from the included studies.

Study (Year) N Amyloid-
beta scale

Measurement 
method

Clinical diagnosis/ depressive 
symptoms (criteria)

Covariate-adjustment Cohen’s d ± SE

PET studies
Almdahl, Agartz (20) (2022) 241 Continuous 18F-Florbetapir Clinical diagnosis (Medical history 

+ NPI)
No 0.93 ± 0.19 (SUVR)

Babulal, Roe (31) (2020) 301 Categorical 18F-Florbetapir Clinical diagnosis (NACC Form D1) Age, gender, race, education, APOE e4 -0.15 ± 0.24 (SUVR)
Byun, Choe (32) (2016) 42 Continuous 11C-PiB Clinical diagnosis (DSM-IV) No 0.19 ± 0.32 (SUVR)
Kumar, Kepe (22) (2011) 39 Continuous 18F-FDDNP Clinical diagnosis (DSM-IV) No 0.87 ± 0.34 (DVR)
Lewis, Bernstein (23) (2022) 4492 Continuous 18F-Florbetapir Depressive symptoms (GDS) Race, ethnicity, gender, age, employment, housing situation, marital 

status, education level, heavy alcohol use, any smoking use, medical 
morbidity score, hours of exercise per week, hours of sleep per night, 
history of neurological disease

0.04 ± 0.08 (SUVR)

Moriguchi, Takahata (24) (2021) 40 Continuous 11C-PiB Clinical diagnosis (DSM-IV) Age -0.20 ± 0.32 (SUVR)
Wang, Kim (29) (2021) 235 Continuous 18F-Flutemetamol Depressive symptoms (HAMD) Age, handedness, education -0.11 ± 0.13 (SUVR)
Wu, Hsiao (30) (2014) 36 Continuous 18F-Florbetapir Clinical diagnosis (DSM-IV) No 0.48 ± 0.37 (SUVR)
CSF studies
Almdahl, Agartz (20) (2022) 241 Continuous ELISA, Roche Clinical diagnosis (Medical history 

+ NPI)
No 0.40 ± 0.16 (Aβ42)

Diniz, Teixeira (33) (2014) 41 Continuous INNO-BIA Clinical diagnosis (DSM-IV) No -0.08 ± 0.32 (Aβ42)
Gudmundsson, Skoog (35) (2007) 84 Continuous ELISA, Innotest Clinical diagnosis (DSM-III) Age -0.75 ± 0.33 (Aβ42)

Depressive symptoms (MADRS) -0.39 ± 0.22 (Aβ42)
Hertze, Minthon (36) (2010) 66 Continuous xMAP Clinical diagnosis (DSM-IV) No 0.38 ± 0.25 (Aβ42)

1.10 ± 0.27 (Aβ40)
Krell-Roesch, Rakusa (21) (2022) 699 Continuous Elecsys Depressive symptoms (BDI-II) Age, sex, education, APOE e4 0.28 ± 0.12 (Aβ42)
Pomara, Bruno (25) (2012) 47 Continuous Meso Scale 

Discovery
Clinical diagnosis (DSM-IV) No 0.75 ± 0.31 (Aβ42)

0.56 ± 0.30 (Aβ40)
Reis, Brandão (26) (2012) 28 Continuous ELISA, Innotest Clinical diagnosis (DSM-IV) No 0.15 ± 0.42 (Aβ42)
Siafarikas, Kirsebom (27) (2021) 60 Continuous Meso Scale 

Discovery
Clinical diagnosis (ICD-10) No 0.09 ± 0.18 (Aβ42/Aβ40)

Plasma studies
Byun, Choe (32) (2016) 42 Continuous INNO-BIA Clinical diagnosis (DSM-IV) No -0.42 ± 0.33 (Aβ42)

-0.14 ± 0.32 (Aβ40)
-0.25 ± 0.32 (Aβ40/Aβ42)

Direk, Schrijvers (34) (2013) 980 Continuous ELISA, 
EUROIMMUN

Depressive symptoms (CES-D) Age, gender, education, MMSE score, plasma creatinine
levels, antidepressant use

-0.06 ± 0.07 (Aβ42)
-0.16 ± 0.09 (Aβ40)

Moon, Kang (11) (2011) 123 Continuous ELISA, Biosource Depressive symptoms (GDS) No -0.37 ± 0.18 (Aβ42)
Age, sex, education -0.38 ± 0.18 (Aβ42)

Sun, Chiu (28) (2009) 1060 Continuous ELISA Depressive symptoms (CES-D) Age, race, gender, education, creatinine, cardiovascular disease, APOE e4 0.25 ± 0.07 (Aβ42)
-0.13 ± 0.21 (Aβ40)
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Table 2. Extracted data used in the meta-analyses from the included studies.

Study (Year) N Amyloid-
beta scale

Measurement 
method

Clinical diagnosis/ depressive 
symptoms (criteria)

Covariate-adjustment Cohen’s d ± SE

PET studies
Almdahl, Agartz (20) (2022) 241 Continuous 18F-Florbetapir Clinical diagnosis (Medical history 

+ NPI)
No 0.93 ± 0.19 (SUVR)

Babulal, Roe (31) (2020) 301 Categorical 18F-Florbetapir Clinical diagnosis (NACC Form D1) Age, gender, race, education, APOE e4 -0.15 ± 0.24 (SUVR)
Byun, Choe (32) (2016) 42 Continuous 11C-PiB Clinical diagnosis (DSM-IV) No 0.19 ± 0.32 (SUVR)
Kumar, Kepe (22) (2011) 39 Continuous 18F-FDDNP Clinical diagnosis (DSM-IV) No 0.87 ± 0.34 (DVR)
Lewis, Bernstein (23) (2022) 4492 Continuous 18F-Florbetapir Depressive symptoms (GDS) Race, ethnicity, gender, age, employment, housing situation, marital 

status, education level, heavy alcohol use, any smoking use, medical 
morbidity score, hours of exercise per week, hours of sleep per night, 
history of neurological disease

0.04 ± 0.08 (SUVR)

Moriguchi, Takahata (24) (2021) 40 Continuous 11C-PiB Clinical diagnosis (DSM-IV) Age -0.20 ± 0.32 (SUVR)
Wang, Kim (29) (2021) 235 Continuous 18F-Flutemetamol Depressive symptoms (HAMD) Age, handedness, education -0.11 ± 0.13 (SUVR)
Wu, Hsiao (30) (2014) 36 Continuous 18F-Florbetapir Clinical diagnosis (DSM-IV) No 0.48 ± 0.37 (SUVR)
CSF studies
Almdahl, Agartz (20) (2022) 241 Continuous ELISA, Roche Clinical diagnosis (Medical history 

+ NPI)
No 0.40 ± 0.16 (Aβ42)

Diniz, Teixeira (33) (2014) 41 Continuous INNO-BIA Clinical diagnosis (DSM-IV) No -0.08 ± 0.32 (Aβ42)
Gudmundsson, Skoog (35) (2007) 84 Continuous ELISA, Innotest Clinical diagnosis (DSM-III) Age -0.75 ± 0.33 (Aβ42)

Depressive symptoms (MADRS) -0.39 ± 0.22 (Aβ42)
Hertze, Minthon (36) (2010) 66 Continuous xMAP Clinical diagnosis (DSM-IV) No 0.38 ± 0.25 (Aβ42)

1.10 ± 0.27 (Aβ40)
Krell-Roesch, Rakusa (21) (2022) 699 Continuous Elecsys Depressive symptoms (BDI-II) Age, sex, education, APOE e4 0.28 ± 0.12 (Aβ42)
Pomara, Bruno (25) (2012) 47 Continuous Meso Scale 

Discovery
Clinical diagnosis (DSM-IV) No 0.75 ± 0.31 (Aβ42)

0.56 ± 0.30 (Aβ40)
Reis, Brandão (26) (2012) 28 Continuous ELISA, Innotest Clinical diagnosis (DSM-IV) No 0.15 ± 0.42 (Aβ42)
Siafarikas, Kirsebom (27) (2021) 60 Continuous Meso Scale 

Discovery
Clinical diagnosis (ICD-10) No 0.09 ± 0.18 (Aβ42/Aβ40)

Plasma studies
Byun, Choe (32) (2016) 42 Continuous INNO-BIA Clinical diagnosis (DSM-IV) No -0.42 ± 0.33 (Aβ42)

-0.14 ± 0.32 (Aβ40)
-0.25 ± 0.32 (Aβ40/Aβ42)

Direk, Schrijvers (34) (2013) 980 Continuous ELISA, 
EUROIMMUN

Depressive symptoms (CES-D) Age, gender, education, MMSE score, plasma creatinine
levels, antidepressant use

-0.06 ± 0.07 (Aβ42)
-0.16 ± 0.09 (Aβ40)

Moon, Kang (11) (2011) 123 Continuous ELISA, Biosource Depressive symptoms (GDS) No -0.37 ± 0.18 (Aβ42)
Age, sex, education -0.38 ± 0.18 (Aβ42)

Sun, Chiu (28) (2009) 1060 Continuous ELISA Depressive symptoms (CES-D) Age, race, gender, education, creatinine, cardiovascular disease, APOE e4 0.25 ± 0.07 (Aβ42)
-0.13 ± 0.21 (Aβ40)
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The characteristics and effect sizes (Cohen’s d ± standard error) of each included 
study are shown in Table 3. The meta-analysis of the eight PET studies resulted in an 
insignificant effect size of 0.23 (95% CI: -0.07; 0.52, p = 0.13) (Figure 2). For the eight 
CSF studies, no association was found between Aβ and depression or depressive 
symptoms (0.20, 95% CI: -0.03; 0.43, p = 0.10). Lastly, for the four plasma studies, no 
association was found between Aβ burden and depression or depressive symptoms 
(-0.08, 95% CI: -0.37; 0.21, p = 0.59). There was no statistically significant difference 
between the effect sizes based on how Aβ was assessed (Q(2) = 2.78, p = 0.25). 
However, there was substantial heterogeneity in the PET (I2 = 77%), CSF (I2 = 53%), 
and plasma subgroups (I2 = 83%).

There was a statistically significant subgroup difference between the PET studies 
that controlled for covariates and the ones that did not (4 vs. 4 study groups, Q(1) 
= 13.46, p < 0.001). In the studies that did not adjust for covariates, an association 
was found between Aβ and depression or depressive symptoms (0.68; 95% CI: 0.32; 
1.03, p < 0.001). Whereas in the covariate-adjusted studies, a null association was 
found between Aβ and depression or depressive symptoms (Supplementary Figure 
1). When assessing differences between PET tracer, clinical diagnosis or depressive 
symptom questionnaire, or population-based study versus clinical settings, no 
subgroup differences were found in the PET studies. There was only one study that 
reported Aβ burden categorically based on an established cut-off value. Leaving 
out this study did not substantially change the effect size. The meta-regression did 
not reveal that sex/gender distribution or prevalence of APOE e4 allele genotype 
influenced the meta-analysis results for the PET studies.

There were no significant differences between the CSF studies based on covariate 
adjustment, clinical depression diagnosis versus depressive symptom questionnaire, 
or population-based versus clinical settings. When removing the one study that only 
assessed women, a significant association between Aβ burden in CSF and depression 
or depressive symptoms was found (0.29; 95% CI: 0.13; 0.43, p < 0.001). Further, the 
heterogeneity lessened (I2 = 0%) (Supplementary Figure 2). The meta-regression on 
prevalence of APOE e4 allele did not show an effect on the meta-analysis of CSF 
studies. However, meta-regression reveled that sex/gender did influence the effect 
size (QM(1) = 3.98, p = 0.05). Further, the R2 was 45%, meaning that 45% of the 
heterogeneity of the meta-analysis on CSF studies could be explained by differences 
in the sex/gender distribution of the participants. The expected effect size for men 
was 0.80 (95% CI: 0.19; 1.41), whereas for women it was -1.00 (95% CI: -1.98; -0.02). 
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Figure 2. Meta-analyses on the association between amyloid-beta and depression or depressive 
symptoms using PET, CSF, and plasma.

Note: The effect sizes of the individual studies are represented by the squares, of which the size  is 
proportional to the weight of the study. The diamond represents the pooled estimate. The horizontal 
lines represent the 95% confidence intervals of the individual effect sizes. A positive Cohen’s d represents 
an association between higher Aβ burden and depression or depressive symptoms. The effect sizes of 
studies assessing Aβ via cerebrospinal fluid or plasma were flipped.

No significant subgroup differences were found between the plasma studies that 
controlled for covariates or did not, assessed depression by clinical diagnosis or 
symptom questionnaire, or was performed in a clinical setting or in the general 
population. Meta-regression on APOE e4 allele could not be performed in the plasma 
studies as only two plasma studies reported the prevalence of APOE e4 allele in the 
study. Meta-regression revealed that sex/gender also influenced the effect size of 
the plasma studies (QM(1) = 16.26, p < 0.001) and accounted for the majority of 
the heterogeneity. However, the opposite was found in plasma; where the expected 
effect size for men was -0.89 (95% CI: -1.35; -0.42) and the expected effect size for 
women was 1.46 (95% CI: 0.75; 2.17).
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Table 3. Risk of bias assessment using the adjusted Newcastle-Ottawa Quality Assessment Scale  
Cohort Studies.

Selection Comparability Outcome Overall  score 
(max. 9)

Study Representative Selection Exposure Age Sex/gender Education Other factors Outcome Same method

Almdahl, Agartz (20) * * * - - - - * * 5

Babulal, Roe (31) * * * * * * * * * 9

Byun, Choe (32) * * * - - - - * * 5

Diniz, Teixeira (33) * * * - - - - * * 5

Direk, Schrijvers (34) * * * * * * * * * 9

Gudmundsson, Skoog (35) * * * * * - - * * 7

Hertze, Minthon (36) * * * - - - - * * 5

Krell-Roesch, Rakusa (21) * * * * * * * * * 9

Kumar, Kepe (22) - * * * * * - * * 7

Lewis, Bernstein (23) - * * * * * * * * 8

Moon, Kang (11) * * * * * * - * * 8

Moriguchi, Takahata (24) * * * * - - - * * 6

Pomara, Bruno (25) - * * - - - - * * 4

Reis, Brandão (26) - * * - - - - * * 4

Siafarikas, Kirsebom (27) * * * - - - - * * 5

Sun, Chiu (28) - * * * * * * * * 8

Wang, Kim (29) * * * * * * * * * 9

Wu, Hsiao (30) - * * - - - - * * 4
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Table 3. Risk of bias assessment using the adjusted Newcastle-Ottawa Quality Assessment Scale  
Cohort Studies.

Selection Comparability Outcome Overall  score 
(max. 9)

Study Representative Selection Exposure Age Sex/gender Education Other factors Outcome Same method

Almdahl, Agartz (20) * * * - - - - * * 5

Babulal, Roe (31) * * * * * * * * * 9

Byun, Choe (32) * * * - - - - * * 5

Diniz, Teixeira (33) * * * - - - - * * 5

Direk, Schrijvers (34) * * * * * * * * * 9

Gudmundsson, Skoog (35) * * * * * - - * * 7

Hertze, Minthon (36) * * * - - - - * * 5

Krell-Roesch, Rakusa (21) * * * * * * * * * 9

Kumar, Kepe (22) - * * * * * - * * 7

Lewis, Bernstein (23) - * * * * * * * * 8

Moon, Kang (11) * * * * * * - * * 8

Moriguchi, Takahata (24) * * * * - - - * * 6

Pomara, Bruno (25) - * * - - - - * * 4

Reis, Brandão (26) - * * - - - - * * 4

Siafarikas, Kirsebom (27) * * * - - - - * * 5

Sun, Chiu (28) - * * * * * * * * 8

Wang, Kim (29) * * * * * * * * * 9

Wu, Hsiao (30) - * * - - - - * * 4

Discussion

This systematic review and meta-analysis aimed to explore if depression or depressive 
symptoms are associated with Aβ burden assessed via PET, CSF, or plasma in older adults 
without cognitive impairment. No association was found between Aβ and depression 
or depressive symptoms in the PET, CSF, or plasma studies. The Egger’s t-test suggested 
there was no publication bias. However, there was substantial heterogeneity in the PET, 
CSF, and plasma studies (19). Meta-regression revealed that sex/gender distribution in 
the included studies influenced the effect size in both the CSF and plasma studies and 
contributed to the heterogeneity. 

Two previous systematic reviews have been conducted on Aβ and depression (10, 37), 
with one including a meta-analysis on CSF and plasma studies (10). While Nascimento, 
Silva (10) also did not find an association between CSF levels of Aβ and depression, there 
was an association between plasma levels of Aβ and depression. However, the included 
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studies in the meta-analysis of Nascimento, Silva (10) included studies assessing serum 
levels of Aβ, rather than plasma levels. Plasma Aβ levels have been found to be more 
stable under storage conditions than in serum (38), which was also the reason the current 
study focused on only plasma assessment of Aβ. The only study that was included both 
in the current meta-analysis and in the meta-analysis of Nascimento, Silva (10) is Sun, 
Chiu (28) which was the only included plasma study that found a significant association 
between Aβ and depressive symptoms. To note, this study was the oldest study of the 
included plasma studies, and as plasma assays have improved exponentially in the last 
years for Aβ assessment, it will be of interest to elucidate the possible role of plasma Aβ 
and depression using the newer, more sensitive plasma assays.

Due to the low number of studies assessing a longitudinal relationship between Aβ and 
depression and depressive symptoms, these studies were not included in the systematic 
review and meta-analysis. While there was a trend towards higher levels of Aβ deposition 
on PET and depression and depressive symptoms, the current meta-analysis did not find 
a significant relationship. One longitudinal study did find an association between an 
increase in depressive symptoms and a higher rate of increase in Aβ deposition on PET 
(39). A similar pattern was seen in a longitudinal study on plasma Aβ40/42, where no 
baseline association was found with depressive symptoms, but a longitudinal association 
was found with plasma Aβ40/42 and depressive symptoms nine years later (40). There is a 
possibility that early in the preclinical phase of dementia, Aβ burden as well as prodromal 
depressive symptoms may not be high enough for a relationship to be established. 
Future studies should include both repeated measures of Aβ and depressive symptoms 
to assess their temporal trajectory during the extended preclinical phase of AD.

Further, some articles could not be included due to insufficient information to calculate 
an effect size. These studies also did not find an association between Aβ and depression 
or depressive symptoms (41-43). However, two studies that looked regionally found 
higher levels of amyloid deposition based on PET imaging in either the temporal, 
parietal, and occipital areas in those who have a late-life depression diagnosis compared 
to non-depressed controls (44) or in just the medial temporal region in those with 
depressive symptoms (45). The current meta-analysis focused only on total rather than 
regional levels of amyloid in PET. It is possible that depression or depressive symptoms 
is associated first with amyloid deposition in temporal regions, which is why our current 
meta-analysis on PET studies found a null result. Future studies should elucidate this 
possible region-specific association between depression or depressive symptoms and 
amyloid accumulation.
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This systematic review and meta-analysis had some limitations. Of note, only four studies 
reported the ethnicity of study participants, and participants were mostly Caucasian. 
This is of importance as the limited ethnicities could restrict the generalizability of our 
findings. However, this study also had many strengths. We assessed multiple methods 
to assess Aβ burden, used a random-effects meta-analysis, and performed multiple 
subgroup analyses to elucidate the heterogeneity in the meta-analyses.

In conclusion, this meta-analysis demonstrated no evidence of an association between 
depression or depressive symptoms and Aβ in PET, CSF, or plasma in older adults without 
cognitive impairment. It is possible that late-life depressive symptoms are independent 
to amyloid accumulation or that they may interact with one another later in the disease 
progression. More longitudinal studies with repeated measurements are needed to 
discover if depression is a reaction to the development of cognitive decline symptoms 
in late-life or driven by biological mechanisms shared by both depression and AD, such 
as inflammation.
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Supplemental Info

Supplementary Info 1
(“Depression”[MeSH Terms] OR “Depressive Disorder”[MeSH Terms] OR 
“depress*”[Title/Abstract] OR “Depression”[Title/Abstract] OR “Depressions”[Title/
Abstract] OR “Depressive”[Title/Abstract] OR “Depressed”[Title/Abstract] OR “affective 
disorder”[Title/Abstract] OR “Dysphoria”[Title/Abstract] OR “Dysthymia”[Title/
Abstract] OR “depressed mood”[Title/Abstract] OR “mood disorder”[Title/Abstract] 
OR “depressive symptoms”[Title/Abstract]) AND ((“Amyloid”[MeSH Terms] OR “plaque, 
amyloid”[MeSH Terms] OR “amyloid*”[Title/Abstract] OR “AB”[Title/Abstract] OR 
“Abeta40”[Title/Abstract] OR “Abeta42”[Title/Abstract] OR “abeta 40”[Title/Abstract] 
OR “abeta 42”[Title/Abstract] OR “ath”[Title/Abstract] OR “betaA40”[Title/Abstract] 
OR “betaA42”[Title/Abstract] OR “ath 40”[Title/Abstract] OR “ath 42”[Title/Abstract] 
OR “beta amyloid”[Title/Abstract] OR “Abeta”[Title/Abstract] OR “Abeta40”[Title/
Abstract] OR “Abeta42”[Title/Abstract] OR “abeta 40”[Title/Abstract] OR “abeta 
42”[Title/Abstract] OR “PIB”[Title/Abstract] OR “athology compound b”[Title/
Abstract] OR “flutemetamol”[Title/Abstract] OR “florbetapir”[Title/Abstract] OR 
“florbetaben”[Title/Abstract] OR “senile plaque*”[Title/Abstract]) AND (“Positron-
Emission Tomography”[MeSH Terms] OR “PET”[Title/Abstract] OR “positron 
emission tomograph*”[Title/Abstract] OR “Cerebrospinal Fluid”[MeSH Terms] OR 
“CSF”[Title/Abstract] OR “cerebrospinal fluid*”[Title/Abstract] OR “cerebro spinal 
fluid*”[Title/Abstract] OR “plasma”[Title/Abstract] OR “plasmas”[Title/Abstract] 
OR “athologylogy*”[Title/Abstract] OR “amyloid athology*”[Title/Abstract] OR 
“Neuropathology”[MeSH Terms]))

Supplementary Info 2
Adjusted version of the Newcastle-Ottawa Quality Assessment Scale for Cohort 
StudiesNote: A study can be awarded a maximum of one star for each numbered 
item within the Selection and Outcome categories. A maximum of two stars can be 
given for Comparability. Total maximum number of stars is nine.

 Selection criteria
1) Representativeness of the exposed cohort (depressed, cognitively unimpaired)
a) �truly representative of the average older adult without dementia in the community 

(i.e., community-based cohort, can include individuals with MCI or subjective 
cognitive decline as well) *

b) �somewhat representative of the average older adult without dementia in the 
community (e.g., inclusion criteria regarding only individuals without MCI) *
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c) �selected group of users, e.g., volunteers, memory clinic visitors, only individuals at 
higher risk (e.g., only subjective complaints, only APOE e4 carriers)

d) no description of the derivation of the cohort

2) Selection of the non-exposed cohort (non-depressed)
a) drawn from the same community as the exposed cohort *
b) drawn from a different source
c) no description of the derivation of the non-exposed cohort

3) Ascertainment of exposure
a) clinical interview *
b) established depressive symptom questionnaire *
c) �categorized based on established or published cut-offs for a symptom 

questionnaire *
d) �categorized based on non-established cut-offs (e.g., z-score cut-off, mean split, 

median split)
e) no description

 Comparability
1) Comparability of cohorts regarding the design or analysis
a) study controls for age *
b) study controls for sex/gender *
c) study controls for education *
d) study controls for any additional factor *

 Outcome (Amyloid)
1) Ascertainment of outcome
a) via PET scan *
b) via CSF *
c) via plasma *
d) no description

2)Same method of assessment for cases (depressed) and controls (non-depressed)
a) yes *
b) no
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Figure 1. Subgroup analysis on PET studies that either adjusted for covariates or did not.

Supplementary Figure 2. Sensitivity analysis on CSF studies when removing one cohort that consisted 
only of women (Gudmundsson et al.).

Table 1. Continued
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Abstract

Background: Depressive symptoms are associated with an increased risk of 
Alzheimer’s disease (AD). There has been a recent emergence in plasma biomarkers 
for AD pathophysiology, such as amyloid-beta (Aβ) and phosphorylated tau (p-tau), 
as well as for axonal damage (neurofilament light, NfL) and astrocytic activation (glial 
fibrillary acidic protein, GFAP). Hypothesizing that depressive symptoms may occur 
along the AD process, we investigated associations between plasma biomarkers of 
AD with depressive symptoms in individuals without dementia.

Methods: A two-stage meta-analysis was performed on 2 clinic-based and 6 
population-based cohorts (N=7210) as part of the Netherlands Consortium of 
Dementia Cohorts. Plasma markers (Aβ42/40, p-tau181, NfL, and GFAP) were 
measured using Single Molecular Array (Simoa; Quanterix) assays. Depressive 
symptoms were measured with validated questionnaires. We estimated the cross-
sectional association of each standardized plasma marker (determinants) with 
standardized depressive symptoms (outcome) using linear regressions, correcting for 
age, sex, education, and APOE ε4 allele presence, as well as subgrouping by sex and 
APOE ε4 allele. Effect estimates were entered into a random-effects meta-analysis. 

Results: Mean age of participants was 71 years. The prevalence of clinically-relevant 
depressive symptoms ranged from 1% to 22%. None of the plasma markers were 
associated with depressive symptoms in the meta-analyses. However, NfL was associated 
with depressive symptoms only in APOE ε4 carriers (β 0.11; 95% CI: 0.05-0.17).

Conclusions: Late-life depressive symptoms did not show an association to plasma 
biomarkers of AD pathology. However, in APOE ε4 allele carriers, a more profound 
role of neurodegeneration was suggested with depressive symptoms. 
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Introduction

Depression has been coined as one of the main risk factors for Alzheimer’s disease (AD) 
dementia (1-4). One longitudinal study in older adults found that with every increasing 
point on a depressive symptom scale, the risk of AD increased by 19% (5). Another 
study found that high levels of depressive symptoms were associated with a 50% 
increased risk of dementia (6). However, the mechanistic relationship between the two 
is not yet fully understood. Some studies have highlighted depression as a possible 
risk factor while others suggest that depression may in fact be an early manifestation 
of underlying AD (7, 8). These hypotheses may coexist and are not mutually exclusive. 
Late-life depressive symptoms and AD may have a common biological cause (9, 10), 
where depressive symptoms may indicate preclinical AD pathology (7, 11, 12). Studying 
AD-related biomarkers associated with depressive symptoms may help entangle the 
pathophysiology of depressive symptoms in late-life. 

Biomarkers related to AD pathology are amyloid-beta (Aβ) plaques and 
phosphorylated tau (p-tau) (13). These pathologies have thus far mostly been 
detected using position emission tomography (PET) scans (14) or in cerebrospinal 
fluid (CSF) obtained through a lumbar puncture (15). These methods are costly and 
invasive, hampering their wider application to the general population. Two other 
developing biomarkers, neurofilament light (NfL) (reflecting axonal damage) and 
glial fibrillary acidic protein (GFAP) (reflecting astrocyte activation), have also been 
suggested as biomarkers for AD-related pathological changes and can be assessed 
in CSF (16-18). 

However, studies exploring the association of these biomarkers in plasma rather than 
PET or CSF with late-life depressive symptoms are scarce. Regarding Aβ, studies have 
consistently found an association between Aβ and depressive symptoms (19-21). 
Thus far, no studies on plasma p-tau181 and depression have been done, only in 
tau PET (22, 23) and CSF p-tau181 (24, 25). Regarding the non-specific biomarkers, 
studies thus far have focused on the clinical stage of depression, with high levels of 
serum GFAP (26) and plasma NfL (27) found in those with major depressive disorder. 
Previous studies have highlighted the need for assessing the relationship between 
plasma AD pathophysiology and depression using ultrasensitive immunoassays (28), 
such as Simoa, that have higher reliability of measuring both Aβ and tau levels, which 
occur in exponentially smaller quantities in plasma (29). 

Given the lack of current studies assessing depressive symptoms with AD-related 
pathophysiology in plasma, as well as in population-based settings, we aimed to 
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assess the cross-sectional relationship between plasma Aβ42/40, p-tau181, NfL, and 
GFAP with depressive symptomology in the Netherlands Consortium for Dementia 
Cohorts (NCDC) including eight cohort studies of individuals without dementia. 

Methods and materials

Study design
This study incorporated a two-stage meta-analysis within the NCDC consortium. 
The NCDC consortium consists of nine prospective, Dutch cohort studies. Cohorts 
from the NCDC consortium were selected for the current study based on a number 
of criteria, including 1) availability of plasma markers, 2) assessment of depressive 
symptoms, and 3) no diagnosis of dementia.

The current study excluded two cohorts (i.e., Lifelines and the Maastricht Study), 
because those did not have data on plasma biomarkers at the time of the study. 
One cohort (i.e., EPAD+) included two subcohorts (i.e., EMIF-Twins and EMIF-90+). 
Therefore, a total of eight cohorts were included in the meta-analysis: the Amsterdam 
Dementia Cohort (ADC) (30), Doetinchem Cohort Study (DCS) (31), EMIF-Twins (32), 
EMIF-90+ (33), Longitudinal Aging Study Amsterdam (LASA) (34), Leiden Longevity 
Study (LLS) (35), Rotterdam Study (36), and the SMART-MR Study (37, 38). The ADC 
came from a memory clinic, but only participants with subjective cognitive decline 
were included in the current study. The SMART-MR Study originated from a hospital 
setting where individuals all have a history of vascular disease. The other six cohorts 
were population-based studies. Only a small subsample from each cohort had 
plasma markers determined (total N = 7210). More information per cohort regarding 
participant selection for plasma assessment can be found in Supplementary Info 1.

Plasma markers
The plasma markers (Aβ40, Aβ42, p-tau181, NfL, and GFAP) were measured using 
novel immunoassays in all cohorts except for EMIF-Twins and the Rotterdam Study. In 
brief, participants underwent venipuncture under non-fasting or fasting conditions 
(depending on the cohort) for EDTA-plasma sample assessment after storage. The 
Neurology 4-Plex E kit (Quanterix) was used for Aβ1-40 and Aβ1-42, NfL, and GFAP (39). 
P-tau181 was assessed using the P-tau181 Advantage V2 kit (Quanterix). Assays were 
run on-board of the Simoa HDx analyzer following manufacturer’s instructions, using 
automated on-board sample dilution. Neurology 4-Plex kits were run in monoplo, 
and the p-tau181 kits were run in duplicates. 
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For EMIF-Twins, Aβ40 and Aβ42 were measured with in-house developed 
immunoassays (“Amyblood”; prototype of the Neurology 4-Plex E kit) (40), p-tau181 
with a prototype immunoassay employing AT270 (Thermo Fisher Specific) and LRL 
(Eli Lilly and Company) antibodies and GFAP was assessed with the commercially-
available Simoa GFAP Discovery kit (Quanterix), using the Simoa HD-x analyzer, as 
described elsewhere (32). NfL was not assessed in EMIF-Twins. 

For the Rotterdam Study, the Simoa Neurology 3-Plex A assay was used to assess 
Aβx-40 and Aβx-42 (41) and the Simoa NF-light advantage kit (42, 43) to assess NfL 
on the Simoa HD-1 analyzer platform. P-tau181 and GFAP were not assessed in the 
Rotterdam Study. 

All plasma measurements were performed at Amsterdam UMC, except for the 
Rotterdam Study. AD plasma biomarker assessment for ADC, DCS, LASA, LLS, and 
SMART-MR were all performed using the same kit lot number. EMIF-90+ was assessed 
with the same assays, but using different kit lot numbers. Further information regarding 
plasma storage and collection per cohort can be found in Supplementary Info 1.

Depressive symptoms
Depressive symptoms were collected from validated questionnaires and included 
continuous sum scores. Depressive symptoms were collected at the same time-point 
as plasma measurements for all cohorts. For three cohorts (i.e., ADC, EMIF-90+, EMIF-
Twins), the Geriatric Depression Scale-15 (44) (GDS-15) was used. The total sum score 
on the GDS-15 is 15, with a higher score representing more depressive symptoms. 
LASA, LLS, and the Rotterdam Study used the Center for Epidemiologic Studies 
Depression Scale (CES-D) (45). The CES-D has a sum score up to 60 based on 20 items 
with a possible score of 0-3 per item. The SMART-MR study used the Patient Health 
Questionnaire-9 (PHQ-9) (46). The PHQ-9 has a total score of 27, based on nine items 
with scores ranging from 0-3 per item. The DCS used the Mental Health Inventory 
questionnaire (MHI-5) (47). The total score on the MHI-5 is up to 100, transformed 
based on a five-item questionnaire with a five-point scale regarding the frequency of 
positive and negative feelings. As higher scores on the MHI-5 reflect lower depressive 
symptoms, this questionnaire was reverse-coded. As questionnaires differed across 
cohorts, sum scores were standardized into z-scores. Additionally, we dichotomized 
these sum scores based on published cut-offs reflecting clinically-relevant depressive 
symptoms. The cut-off for the GDS-15 was six or higher in the short form(44, 48). For 
the CES-D, a cut-off of 16 or higher was used (49). For the PHQ-9, a cut-off of six or 
higher is used (50). Lastly, for the MHI-5, we used a cut-off of 35 or lower (51).



160 | Chapter 6

Covariates
Age and sex were assessed via self-report. Education was assessed categorically into 
less than high school education, at least some high school education, or college/
university degree based on the Dutch education system. APOE ε4 allele (rs429358 
C allele) presence was assessed via blood sample according to methods described 
previously (32, 43, 52-56) and defined dichotomously as the presence of at least one 
ε4 allele or not. 

Statistical analysis 
For the first stage, standardized analyses were performed using Rstudio (v.4.0.3) by 
E.T. locally per cohort. Multiple imputation of 10 imputed datasets was performed 
separately in each cohort with missing data using the mice package in R to address 
missing data. Both outcomes and predictors were imputed if needed (57), using 
covariate information (i.e., age, sex, education, and APOE ε4 allele) as predictors 
in the imputation (see Table 1 for missing data per cohort). The same variables 
for imputation were used in each cohort. Linear regressions were performed to 
estimate the association between the plasma markers (determinant) and depressive 
symptoms (outcome). Logistic regressions were performed for the dichotomous 
outcome of high vs. low depressive symptomology. As assumptions were not met 
for linear regression based on non-normality, rank inverse normal transformation was 
done on the depressive symptom data (58). Thereafter, models met all assumptions. 
Models were adjusted for age, sex, education, and presence of APOE ε4 allele. 
Sensitivity analyses were performed stratifying by sex and APOE ε4 allele status, 
and when excluding missing data (i.e., a complete case analysis). Further, analyses 
were performed assessing the interaction between sex and plasma marker and APOE 
ε4 allele status and plasma marker. Another sensitivity analysis was done on the 
models of Aβ42/40 by adding 1/Aβ40 and Aβ42 as main effects, as suggested by 
previous work on using a ratio in regression analyses (59). Lastly, we also assessed 
as sensitivity analyses Aβ40 and Aβ42 as separate determinants for Aβ pathology.

For stage two, effect estimates for each analysis were pooled using random-effects 
meta-analyses. A random-effects meta-analysis was chosen over a fixed-effects 
meta-analysis as a random-effects meta-analysis relatively weights the studies 
more equally when there is heterogeneity between studies (60). Between-cohort 
heterogeneity was assessed via the I2 and Cochrane’s Q. We also performed meta-
regressions based on the mean age of the studies and the proportion of individuals 
with an APOE ε4 allele to see if these factors influenced meta-analysis results.
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Statistical significance was set to p < 0.01 for Bonferroni correction as we assessed 
four plasma markers: Aβ42/40, p-tau181, NfL, and GFAP. 

Results

Cohort characteristics
Table 1 shows the demographic characteristics of each of the eight cohorts. Table 2 
presents the distributions of the plasma biomarkers and depressive symptoms per 
cohort. In total, 7210 individuals were included in the meta-analysis. The total mean 
age was 71, and mean age per cohort ranged from 60 to 92 years. Percentage women 
per cohort ranged from 17% to 59%. Median values of the plasma biomarkers are 
provided in Table 2; prevalence of high depressive symptomology based on clinical 
cut-offs ranged from 1% to 22% per cohort. 

Table 1. Cohort demographic characteristics
Cohorts N Setting AgeM (SD) 

[Range]
SexN (%) 
female

EducationN 
(%) high

APOE ε4 
alleleleN (%) 

ADC 307 Memory clinic, 
subjective 
cognitive decline

60 (9) [38-82] 130 (42%) 174 (57%) 123 (40%)

DCS 365 General 
population

68 (3) [64-75] 177 (48%) 85 (23%) 108 (30%)

EMIF-90+ 129 General 
population

92 (3) [85-102] 74 (57%) 23 (18%) 29 (22%)

EMIF-Twins 220 General 
population

71 (8) [60-94] 129 (59%) 22 (10%) 74 (34%)

LASA 370 General 
population

69 (7) [61-90] 203 (55%) 26 (7%) 161 (44%)

LLS 370 General 
population

67 (5) [55-85] 189 (51%) 121 (33%) 105 (28%)

Rotterdam 
Study

4855 General 
population

72 (8) [58-99] 2783 (57%) 675 (14%) 1327 (27%)

SMART-MR 594 Patients with 
vascular disease, 
hospital-based

64 (8) [50-83] 101 (17%) 146 (25%) 184 (31%)

Total 7210

Note: Imputed data is shown for cohorts with missing data. 
For ADC, n = 1 missing for education and n = 15 missing for APOE ε4 allele genotype. 
For DCS, n = 8 missing for APOE ε4 genotype. 
For EMIF-90+, n = 26 missing on APOE ε4 allele genotype. 
For EMIF-Twins, n = 4 missing on age, n = 3 missing on sex, n = 3 missing on education, and n = 6 missing 
on APOE ε4 allele genotype. 
For LLS, n = 4 missing on education, n = 5 missing on APOE ε4 allele.
For Rotterdam Study, n = 2 missing on age, n = 70 missing on education, n = 242 missing on APOE ε4 
allele genotype.
For SMART-MR, n = 5 on education and n = 27 missing for APOE ε4 genotype.



162 | Chapter 6

Correlation matrices per cohort for age, depressive symptoms, and AD biomarker 
levels are shown in Supplementary Figure 1. A meta-analysis on the correlations 
between the plasma markers and age showed a positive correlation between 
p-tau181, NfL, and GFAP, and a negative correlation between Aβ42/40 and 
age (Supplementary Figure 2). Men had lower levels of Aβ42/40 and GFAP 
(Supplementary Figure 3). There was no difference in p-tau181 and NfL levels 
between men and women. APOE ε4 allele carriers had lower levels of Aβ42/40 
and higher levels of GFAP (Supplementary Figure 4), but no difference in levels of 
p-tau181 and NfL.

Meta-analysis findings
There was no evidence for an association between any of the AD plasma markers and 
depressive symptoms in the random-effects meta-analysis (standardized regression 
coefficient β: -0.03 – 0.04, all p > 0.05; Figure 1).  

Due to a low number of individuals with high depressive symptomology (n=3), 
logistic regression could not be performed in the EMIF-Twins study and therefore 
not included in the meta-analyses. Random-effects meta-analyses also revealed 
no association with any plasma biomarker and high depressive symptomology 
(Supplementary Figure 5). Per cohort, results were similar to the linear regressions. 

Subsequently, we performed a number of sensitivity analyses. When assessing women 
and men separately, higher levels of NfL were associated with higher depressive 
symptoms in women (β: 0.07, 95% CI: 0.03; 0.10), but not men (β: 0.01, 95% CI: -0.04; 
0.05). However, there was not a significant interaction with sex (p-interaction: 0.95, 
Figure 2). There were no other sex differences in the other plasma markers with 
depressive symptoms (see Supplementary Table 1 for per cohort data).

When stratifying by APOE ε4 allele presence, higher levels of NfL were associated with 
higher depressive symptoms in individuals with an APOE ε4 allele in the stratified 
meta-analyses (β: 0.11, 95% CI: 0.05; 0.17, p < 0.001), while effects in APOE ε4 non-
carriers were much smaller (β: 0.01, 95% CI: -0.06; 0.07). When testing the interaction of 
NfL and APOE, there was a significant interaction (β: 0.08, 95% CI: 0.02; 0.13, p = 0.009, 
Figure 2). No other subgroup differences were found in other AD plasma markers for 
APOE ε4 carrier status (see Supplementary Table 1 for per cohort data).

Complete case analysis is shown in Supplementary Table 2. Main findings remained 
largely similar. When adding the main effects of Aβ42 and 1/Aβ40 to the Aβ42/40 ratio 
model, results remained insignificant (Supplementary Figure 6). When assessing Aβ40 
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Figure 1. Meta-analysis on linear regressions of AD plasma markers and depressive symptoms.
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and Aβ42 separately, both biomarkers showed higher levels associated with increased 
depressive symptoms (Supplementary Figure 7).

Meta-regressions on mean age per study showed that age influenced the results 
of the meta-analysis on levels of NfL and depressive symptoms (QM(1) = 10.78, p = 
0.001, Supplementary Figure 8). For each increase of mean age per year per study, 
there was an increase of 0.01 in the z-score levels of NfL and depressive symptoms. 
For the meta-regression on proportion of APOE ε4 carriers per study, there was no 
evidence of an influence of levels of AD biomarkers and depressive symptoms.

Discussion

In this meta-analysis on eight Dutch cohorts, where depressive symptoms are not 
severe or highly prevalent, we found no association between Aβ42/40, p-tau181, NfL, 
or GFAP and depressive symptoms. In the subgroup analyses, we found higher levels 
of NfL associated with depressive symptoms in individuals with an APOE ε4 allele, 

Table 2. Descriptives of plasma biomarker and depressive symptoms per cohort

Cohorts Aβ40 (pg/mL) Aβ42 (pg/mL) Aβ42/40 (pg/mL) Ptau-181 (pg/mL) NfL (pg/mL) GFAP (pg/mL) Depressive symptomsN (%) high

ADCa 119 (107-135) 6.9 (6.1-7.6) 0.06 (0.05-0.06) 1.36 (1.06-1.99) 11.1 (8.5-15.4) 67 (48-98) 45 (15%)

DCS 119 (100-137) 6.7 (5.6-7.8) 0.06 (0.05-0.07) 1.51 (1.15-1.93) 15.6 (12.6-19.6) 106 (84-144) 78 (21%)

EMIF-90+a 110 (100-129) 7.7 (6.6-9.0) 0.07 (0.06-0.08) 3.02 (2.13-4.40) 44.4 (32.2-56.1) 186 (147-267) 10 (8%)

EMIF-Twinsa 138 (124-154) 32.6 (28.4-37.8) 0.24 (0.21-0.26) 5.93 (4.97-7.49) NA 134 (105-179) 3 (1%)

LASA 122 (108-138) 6.9 (6.1-8.0) 0.06 (0.05-0.06) 1.58 (1.24-2.11) 14.9 (11.7-20.1) 94 (73-131) 24 (6%)

LLS 126 (114-140) 7.3 (6.3-8.3) 0.06 (0.05-0.06) 1.43 (1.17-1.81) 15.4 (12.3-19.1) 99 (76-129) 81 (22%)

Rotterdam Studya 259 (229-293) 10.3 (8.9-12.1) 0.04 (0.04-0.05) NA 13.3 (10.0-18.3) NA 543 (11%)

SMART-MR 113 (99-130) 6.8 (5.8-7.7) 0.06 (0.05-0.07) 1.37 (1.05-1.84) 13.8 (10.1-19.8) 86 (61-115) 100 (17%)

Note: a EMIF-Twins and the Rotterdam Study use a different plasma assay. ADC and EMIF-90+ have been 
assessed at prior time points with a different batch.
Median and interquartile range. Imputed data is shown for cohorts with missing data. 
For ADC, n = 1 missing on both Abeta1-40, 1-42, GFAP, and NFL. N = 2 missing for Ptau-181 and n = 21 
missing for depressive symptoms.
For DCS, n = 1 missing for depressive symptoms.
For EMIF-90+, n = 20 missing on all plasma marker data.
For EMIF-Twins, n = 14 missing on Abeta1-40, n = 33 missing on Abeta1-42, n = 26 missing on Ptau-181, 
n = 14 missing for GFAP, and n = 1 missing on depressive symptoms. NFL was not assessed.
For LASA, n = 1 missing on depressive symptoms.
For LLS, n = 2 missing on depressive symptoms.
For Rotterdam Study, n = 99 missing on depressive symptoms.
For SMART-MR, n = 5 missing for depressive symptoms. Aβ = amyloid-beta; Ptau = phosphorylated tau; 
GFAP = glial fibrillary acidic protein; NfL = neurofilament light.
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Table 2. Descriptives of plasma biomarker and depressive symptoms per cohort

Cohorts Aβ40 (pg/mL) Aβ42 (pg/mL) Aβ42/40 (pg/mL) Ptau-181 (pg/mL) NfL (pg/mL) GFAP (pg/mL) Depressive symptomsN (%) high

ADCa 119 (107-135) 6.9 (6.1-7.6) 0.06 (0.05-0.06) 1.36 (1.06-1.99) 11.1 (8.5-15.4) 67 (48-98) 45 (15%)

DCS 119 (100-137) 6.7 (5.6-7.8) 0.06 (0.05-0.07) 1.51 (1.15-1.93) 15.6 (12.6-19.6) 106 (84-144) 78 (21%)

EMIF-90+a 110 (100-129) 7.7 (6.6-9.0) 0.07 (0.06-0.08) 3.02 (2.13-4.40) 44.4 (32.2-56.1) 186 (147-267) 10 (8%)

EMIF-Twinsa 138 (124-154) 32.6 (28.4-37.8) 0.24 (0.21-0.26) 5.93 (4.97-7.49) NA 134 (105-179) 3 (1%)

LASA 122 (108-138) 6.9 (6.1-8.0) 0.06 (0.05-0.06) 1.58 (1.24-2.11) 14.9 (11.7-20.1) 94 (73-131) 24 (6%)

LLS 126 (114-140) 7.3 (6.3-8.3) 0.06 (0.05-0.06) 1.43 (1.17-1.81) 15.4 (12.3-19.1) 99 (76-129) 81 (22%)

Rotterdam Studya 259 (229-293) 10.3 (8.9-12.1) 0.04 (0.04-0.05) NA 13.3 (10.0-18.3) NA 543 (11%)

SMART-MR 113 (99-130) 6.8 (5.8-7.7) 0.06 (0.05-0.07) 1.37 (1.05-1.84) 13.8 (10.1-19.8) 86 (61-115) 100 (17%)

Note: a EMIF-Twins and the Rotterdam Study use a different plasma assay. ADC and EMIF-90+ have been 
assessed at prior time points with a different batch.
Median and interquartile range. Imputed data is shown for cohorts with missing data. 
For ADC, n = 1 missing on both Abeta1-40, 1-42, GFAP, and NFL. N = 2 missing for Ptau-181 and n = 21 
missing for depressive symptoms.
For DCS, n = 1 missing for depressive symptoms.
For EMIF-90+, n = 20 missing on all plasma marker data.
For EMIF-Twins, n = 14 missing on Abeta1-40, n = 33 missing on Abeta1-42, n = 26 missing on Ptau-181, 
n = 14 missing for GFAP, and n = 1 missing on depressive symptoms. NFL was not assessed.
For LASA, n = 1 missing on depressive symptoms.
For LLS, n = 2 missing on depressive symptoms.
For Rotterdam Study, n = 99 missing on depressive symptoms.
For SMART-MR, n = 5 missing for depressive symptoms. Aβ = amyloid-beta; Ptau = phosphorylated tau; 
GFAP = glial fibrillary acidic protein; NfL = neurofilament light.

Figure 2. Meta-analyses on the interaction of NfL with sex and APOE ε4 carrier status.
Note: A positive interaction would signify higher levels of NfL associated with depressive symptoms in 
women or in APOE ε4 carriers.
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suggesting that in those individuals with a genetic risk for AD, neurodegenerative 
changes may underlie the occurrence of depressive symptoms.

We did not find an association between Aβ42/40 and depressive symptoms, which is 
not in line with a previous meta-analysis that found a relationship with lower levels 
of Aβ42/40 in those with depression compared to healthy controls (61). However, 
all of those studies focused on a clinical population with depression. Further, one 
recent study found a difference between Aβ42/40 between those with clinical 
depression compared to controls, but there was no cross-sectional association 
between depressive symptom severity and Aβ levels (28). Therefore, subclinical 
levels of depressive symptoms may not be associated with accumulating Aβ levels. 
Regarding tau pathology, a systematic review and meta-analysis on tau pathology 
and depression also did not find a relationship (62). Our null finding in GFAP is not in 
line with previous literature that found an association with major depressive disorder 
in serum GFAP (26) and in CSF (63). To our knowledge, no studies yet have been 
performed assessment of GFAP with depressive symptoms. Similar to Aβ, there is a 
possibility that GFAP levels may be altered only when clinical depression is present.

Our results suggest an association between NfL and depressive symptoms in 
individuals with an APOE ε4 allele. This suggests that in individuals with high 
genetic risk for AD, neurodegenerative changes may underlie the occurrence of 
depressive symptoms, while in APOE ε4 noncarriers, depressive symptoms may 
have another origin. This may be explained by increased rates of neurodegeneration 
seen in those with an APOE ε4 allele (64). Further, the presence of an APOE ε4 
allele has been associated with late-life depression (65, 66). NfL has also been 
related to cerebral vascular damage (67), perhaps explaining a vascular pathway to 
depressive symptoms. As literature on NfL in depression is limited (68), particularly 
in population-based studies, more research is needed to validate these findings.

This meta-analysis has multiple strengths. By using a meta-analytical approach, we 
were able to gain power to assess the relationship between plasma AD biomarkers 
and depressive symptoms. Additionally, the ultrasensitive Simoa platform was used 
for biomarker assessments. Further, we harmonized methods across cohort studies, 
employed the same statistical procedure, and controlled for the same confounders. 

The study also comes with some limitations. Depressive symptoms, as well as 
biomarker assessment, were collected at only one time-point. We also could not 
assess a temporal relationship between biomarker levels and depressive symptoms. 
Therefore, we could not infer causal directionality between neuropathology and 
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depressive symptoms. Different depressive symptom questionnaires were also used 
amongst the cohorts, which could have increased heterogeneity and dampened 
replicability of our findings between the cohorts (69). However, the lack of an 
association was mostly consistent across cohorts. Importantly, cohort participants 
were almost exclusively White individuals. As biomarker levels have shown to differ 
across ethnicities (70, 71), future studies should also assess the relationship between 
AD plasma biomarkers and depressive symptoms in other ethnicities.

Our study did not provide evidence for a direct link between plasma markers of the 
AD pathophysiological process and depressive symptoms. Subgroup analyses did 
suggest a more profound role of neurodegeneration and depressive symptomology 
in those with an APOE ε4 allele, but further replication and longitudinal studies 
are needed to elucidate the temporal role of depressive symptoms with 
neurodegeneration.

Acknowledgements
We would like to gratefully acknowledge the participants from all eight cohort studies 
for their participation in this research. We thank the respondents, epidemiologists, 
and fieldworkers of the Municipal Health Service in Doetinchem for their contribution 
to the data collection for this study. We would like to gratefully acknowledge the 
SMART participants. We would like to acknowledge the following SMART research 
nurses, as well as R. van Petersen (data manager), B. G. F. Dinther (vascular manager), 
and the members of the Utrecht Cardiovascular Cohort-Second Manifestations of 
ARTerial disease-Study Group (UCC-SMART-Study Group: M.J. Cramer, H.M. Nathoe 
and M.G. van der Meer (co-PI), Department of Cardiology; G.J. de Borst and M. Teraa 
(co-PI), Department of Vascular Surgery; M.L. Bots and M. van Smeden, Julius Center 
for Health Sciences and Primary Care; M.H. Emmelot-Vonk, Department of Geriatrics; 
P.A. de Jong, Department of Radiology; A.T. Lely, Department of Gynaecology and 
Obstetrics; N.P. van der Kaaij, Department of Cardiothoracic Surgery; L.J. Kappelle 
and Y.M. Ruigrok, Department of Neurology; M.C. Verhaar, Department of Nephrology 
& Hypertension; J.A.N. Dorresteijn (co-PI) and F.L.J. Visseren (PI), Department of 
Vascular Medicine, UMC Utrecht. Research of Alzheimer center Amsterdam is part of 
the neurodegeneration research program of Amsterdam Neuroscience. 

Financial support
The Longitudinal Aging Study Amsterdam (LASA) Study is supported by a grant from 
the Netherlands Ministry of Health, Welfare and Sport, Directorate of Long-Term Care. 
The Doetinchem Cohort Study (DCS) is supported by the Netherlands Ministry of 
Health, Welfare and Sport, Directorate Public Health and the National Institute for 



168 | Chapter 6

Public Health and the Environment. Alzheimer Center Amsterdam is supported by 
Stichting Alzheimer Nederland and Stichting Steun Alzheimercentrum Amsterdam. 
The chair of Wiesje van der Flier is supported by the Pasman stichting. The SCIENCe 
project receives funding from Stichting Dioraphte. Research in LLS was supported 
by the ZonMw Project VOILA (457001001).

This study was conducted as part of the Netherlands Consortium of Dementia Cohorts. 

(NCDC). NCDC receives funding in the Deltaplan Dementie from ZonMw (Project 
number 73305095005) and Alzheimer Nederland. The Leiden Longevity Study 
has received funding from the European Union’s Seventh Framework Programme 
(FP7/2007-2011) under grant agreement number 259679, the Innovation-Oriented 
Research Program on Genomics (SenterNovem IGE05007), the Centre for Medical 
Systems Biology and the Netherlands Consortium for Healthy Ageing (grant 050-
060-810), all in the framework of the Netherlands Genomics Initiative, Netherlands 
Organization for Scientific Research (NWO), BBMRI-NL, a Research Infrastructure 
financed by the Dutch government (NWO 184.021.007 and 184.033.111), and the 
Netherlands Consortium of Dementia Cohorts (NCDC), which is funded by Deltaplan 
Dementie from ZonMW Memorabel (project number 73305095005) and Alzheimer 
Nederland. This study was also supported by Alzheimer Nederland grant WE.03.2021-
09 (PI Geerlings). 

Competing interests
The authors declare none.



169|

6

References

1.	 Byers AL, Yaffe K. Depression and risk of developing dementia. Nat Rev Neurol. 2011;7(6):323-31.

2.	 Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF, 3rd. Late-life depression and risk of vascular 
dementia and Alzheimer's disease: systematic review and meta-analysis of community-based 
cohort studies. Br J Psychiatry. 2013;202(5):329-35.

3.	 Bennett S, Thomas AJ. Depression and dementia: cause, consequence or coincidence? Maturitas. 
2014;79(2):184-90.

4.	 Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation 
of the associations between environmental risk factors and dementia: An umbrella review of 
systematic reviews and meta-analyses. Alzheimers Dement. 2017;13(4):406-18.

5.	 Wilson RS, Barnes LL, Mendes de Leon CF, Aggarwal NT, Schneider JS, Bach J, et al. Depressive 
symptoms, cognitive decline, and risk of AD in older persons. Neurology. 2002;59(3):364-70.

6.	 Lenoir H, Dufouil C, Auriacombe S, Lacombe JM, Dartigues JF, Ritchie K, et al. Depression history, 
depressive symptoms, and incident dementia: the 3C Study. J Alzheimers Dis. 2011;26(1):27-38.

7.	 Weisenbach SL, Kim J, Hammers D, Konopacki K, Koppelmans V. Linking late life depression and 
Alzheimer's disease: mechanisms and resilience. Curr Behav Neurosci Rep. 2019;6(3):103-12.

8.	 Singh-Manoux A, Dugravot A, Fournier A, Abell J, Ebmeier K, Kivimäki M, et al. Trajectories of 
Depressive Symptoms Before Diagnosis of Dementia: A 28-Year Follow-up Study. JAMA Psychiatry. 
2017;74(7):712-8.

9.	 Gerritsen L, Twait EL, Jonsson PV, Gudnason V, Launer LJ, Geerlings MI. Depression and Dementia: 
The Role of Cortisol and Vascular Brain Lesions. AGES-Reykjavik Study. J Alzheimers Dis. 
2022;85(4):1677-87.

10.	 Linnemann C, Lang UE. Pathways Connecting Late-Life Depression and Dementia. Frontiers in 
Pharmacology. 2020;11.

11.	 Kaup AR, Byers AL, Falvey C, Simonsick EM, Satterfield S, Ayonayon HN, et al. Trajectories of 
Depressive Symptoms in Older Adults and Risk of Dementia. JAMA Psychiatry. 2016;73(5):525-31.

12.	 Mirza SS, Wolters FJ, Swanson SA, Koudstaal PJ, Hofman A, Tiemeier H, et al. 10-year trajectories 
of depressive symptoms and risk of dementia: a population-based study. Lancet Psychiatry. 
2016;3(7):628-35.

13.	 Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and 
therapeutics. Int J Nanomedicine. 2019;14:5541-54.

14.	 Bao W, Xie F, Zuo C, Guan Y, Huang YH. PET Neuroimaging of Alzheimer's Disease: Radiotracers and 
Their Utility in Clinical Research. Front Aging Neurosci. 2021;13:624330.

15.	 Zou K, Abdullah M, Michikawa M. Current Biomarkers for Alzheimer's Disease: From CSF to Blood. 
J Pers Med. 2020;10(3).

16.	 Chatterjee P, Pedrini S, Ashton NJ, Tegg M, Goozee K, Singh AK, et al. Diagnostic and prognostic 
plasma biomarkers for preclinical Alzheimer's disease. Alzheimers Dement. 2022;18(6):1141-54.

17.	 Giacomucci G, Mazzeo S, Bagnoli S, Ingannato A, Leccese D, Berti V, et al. Plasma neurofilament light 
chain as a biomarker of Alzheimer's disease in Subjective Cognitive Decline and Mild Cognitive 
Impairment. J Neurol. 2022;269(8):4270-80.

18.	 Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, et al. Blood-based 
biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol. 2022;21(1):66-77.



170 | Chapter 6

19.	 Moon YS, Kang SH, No HJ, Won MH, Ki SB, Lee SK, et al. The correlation of plasma Aβ42 levels, 
depressive symptoms, and cognitive function in the Korean elderly. Prog Neuropsychopharmacol 
Biol Psychiatry. 2011;35(7):1603-6.

20.	 Sun X, Chiu CC, Liebson E, Crivello NA, Wang L, Claunch J, et al. Depression and plasma amyloid 
beta peptides in the elderly with and without the apolipoprotein E4 allele. Alzheimer Dis Assoc 
Disord. 2009;23(3):238-44.

21.	 Direk N, Schrijvers EM, de Bruijn RF, Mirza S, Hofman A, Ikram MA, et al. Plasma amyloid β, 
depression, and dementia in community-dwelling elderly. J Psychiatr Res. 2013;47(4):479-85.

22.	 Moriguchi S, Takahata K, Shimada H, Kubota M, Kitamura S, Kimura Y, et al. Excess tau PET ligand 
retention in elderly patients with major depressive disorder. Mol Psychiatry. 2021;26(10):5856-63.

23.	 Babulal GM, Roe CM, Stout SH, Rajasekar G, Wisch JK, Benzinger TLS, et al. Depression is Associated 
with Tau and Not Amyloid Positron Emission Tomography in Cognitively Normal Adults. J 
Alzheimers Dis. 2020;74(4):1045-55.

24.	 Banning LCP, Ramakers I, Rosenberg PB, Lyketsos CG, Leoutsakos JS. Alzheimer's disease biomarkers 
as predictors of trajectories of depression and apathy in cognitively normal individuals, mild cognitive 
impairment, and Alzheimer's disease dementia. Int J Geriatr Psychiatry. 2021;36(1):224-34.

25.	 Chan CK, Soldan A, Pettigrew C, Wang J, Albert M, Rosenberg PB. Depressive symptoms and CSF 
Alzheimer's disease biomarkers in relation to clinical symptom onset of mild cognitive impairment. 
Alzheimers Dement (Amst). 2020;12(1):e12106.

26.	 Steinacker P, Al Shweiki MR, Oeckl P, Graf H, Ludolph AC, Schönfeldt-Lecuona C, et al. Glial fibrillary 
acidic protein as blood biomarker for differential diagnosis and severity of major depressive 
disorder. J Psychiatr Res. 2021;144:54-8.

27.	 Chen MH, Liu YL, Kuo HW, Tsai SJ, Hsu JW, Huang KL, et al. Neurofilament Light Chain Is a Novel 
Biomarker for Major Depression and Related Executive Dysfunction. Int J Neuropsychopharmacol. 
2022;25(2):99-105.

28.	 Pomara N, Bruno D, Plaska CR, Ramos-Cejudo J, Osorio RS, Pillai A, et al. Plasma Amyloid-β dynamics 
in late-life major depression: a longitudinal study. Translational Psychiatry. 2022;12(1):301.

29.	 Li D, Mielke MM. An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA 
Platform. Neurol Ther. 2019;8(Suppl 2):73-82.

30.	 Van Der Flier WM, Scheltens P. Amsterdam dementia cohort: performing research to optimize care. 
Journal of Alzheimer's Disease. 2018;62(3):1091-111.

31.	 Verschuren W, Blokstra A, Picavet H, Smit H. Cohort profile: the Doetinchem cohort study. 
International journal of epidemiology. 2008;37(6):1236-41.

32.	 den Braber A, Verberk IMW, Tomassen J, den Dulk B, Stoops E, Dage JL, et al. Plasma biomarkers 
predict amyloid pathology in cognitively normal monozygotic twins after 10 years. Brain 
Communications. 2023.

33.	 Konijnenberg E, Carter SF, ten Kate M, den Braber A, Tomassen J, Amadi C, et al. The EMIF-AD 
PreclinAD study: study design and baseline cohort overview. Alzheimer's Research & Therapy. 
2018;10(1):75.

34.	 Hoogendijk EO, Deeg DJH, de Breij S, Klokgieters SS, Kok AAL, Stringa N, et al. The Longitudinal 
Aging Study Amsterdam: cohort update 2019 and additional data collections. Eur J Epidemiol. 
2020;35(1):61-74.

35.	 Schoenmaker M, de Craen AJM, de Meijer PHEM, Beekman M, Blauw GJ, Slagboom PE, et al. 
Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden 
Longevity Study. European Journal of Human Genetics. 2006;14(1):79-84.



171|

6

36.	 Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, et al. Objectives, design 
and main findings until 2020 from the Rotterdam Study. European journal of epidemiology. 
2020;35:483-517.

37.	 Castelijns MC, Helmink MAG, Hageman SHJ, Asselbergs FW, de Borst GJ, Bots ML, et al. Cohort 
profile: the Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-
SMART) Study-an ongoing prospective cohort study of patients at high cardiovascular risk in the 
Netherlands. BMJ Open. 2023;13(2):e066952.

38.	 Geerlings MI, Appelman AP, Vincken KL, Algra A, Witkamp TD, Mali WP, et al. Brain volumes and 
cerebrovascular lesions on MRI in patients with atherosclerotic disease. The SMART-MR study. 
Atherosclerosis. 2010;210(1):130-6.

39.	 Thijssen EH, Verberk IMW, Kindermans J, Abramian A, Vanbrabant J, Ball AJ, et al. Differential 
diagnostic performance of a panel of plasma biomarkers for different types of dementia. 
Alzheimers Dement (Amst). 2022;14(1):e12285.

40.	 Thijssen EH, Verberk IMW, Vanbrabant J, Koelewijn A, Heijst H, Scheltens P, et al. Highly specific 
and ultrasensitive plasma test detects Abeta(1-42) and Abeta(1-40) in Alzheimer's disease. Sci Rep. 
2021;11(1):9736.

41.	 de Wolf F, Ghanbari M, Licher S, McRae-McKee K, Gras L, Weverling GJ, et al. Plasma tau, 
neurofilament light chain and amyloid-β levels and risk of dementia; a population-based cohort 
study. Brain. 2020;143(4):1220-32.

42.	 Rohrer JD, Woollacott IO, Dick KM, Brotherhood E, Gordon E, Fellows A, et al. Serum neurofilament 
light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology. 
2016;87(13):1329-36.

43.	 Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma β-Amyloid, Total-
Tau, and Neurofilament Light Chain Levels and the Risk of Stroke. A Prospective Population-Based 
Study. 2022;98(17):e1729-e37.

44.	 Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of 
a geriatric depression screening scale: a preliminary report. Journal of psychiatric research. 
1982;17(1):37-49.

45.	 Beekman AT, Deeg D, Van Limbeek J, Braam AW, De Vries M, Van Tilburg W. Brief communication.: 
criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): results from 
a community-based sample of older subjects in the Netherlands. Psychological medicine. 
1997;27(1):231-5.

46.	 Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen 
Intern Med. 2001;16(9):606-13.

47.	 Berwick DM, Murphy JM, Goldman PA, Ware JE, Jr., Barsky AJ, Weinstein MC. Performance of a five-
item mental health screening test. Med Care. 1991;29(2):169-76.

48.	 Hickie C, Snowdon J. Depression scales for the elderly: GDS, Gilleard, Zung. Clinical Gerontologist: 
The Journal of Aging and Mental Health. 1987.

49.	 Lewinsohn PM, Seeley JR, Roberts RE, Allen NB. Center for Epidemiologic Studies Depression Scale 
(CES-D) as a screening instrument for depression among community-residing older adults. Psychol 
Aging. 1997;12(2):277-87.

50.	 Zuithoff NP, Vergouwe Y, King M, Nazareth I, van Wezep MJ, Moons KG, et al. The Patient Health 
Questionnaire-9 for detection of major depressive disorder in primary care: consequences of 
current thresholds in a crosssectional study. BMC Fam Pract. 2010;11:98.

51.	 Walsh TL, Homa K, Hanscom B, Lurie J, Sepulveda MG, Abdu W. Screening for depressive symptoms 
in patients with chronic spinal pain using the SF-36 Health Survey. Spine J. 2006;6(3):316-20.



172 | Chapter 6

52.	 Rhodius-Meester HFM, Liedes H, Koene T, Lemstra AW, Teunissen CE, Barkhof F, et al. Disease-related 
determinants are associated with mortality in dementia due to Alzheimer's disease. Alzheimers Res Ther. 
2018;10(1):23.

53.	 Rietman ML, Onland-Moret NC, Nooyens ACJ, Ibi D, van Dijk KW, Samson LD, et al. The APOE locus is 
linked to decline in general cognitive function: 20-years follow-up in the Doetinchem Cohort Study. Transl 
Psychiatry. 2022;12(1):496.

54.	 Havekes LM, de Knijff P, Beisiegel U, Havinga J, Smit M, Klasen E. A rapid micromethod for apolipoprotein 
E phenotyping directly in serum. Journal of lipid research. 1987;28(4):455-63.

55.	 Noordam R, Oudt CH, Deelen J, Slagboom PE, Beekman M, van Heemst D. Assessment of the contribution 
of APOE gene variants to metabolic phenotypes associated with familial longevity at middle age. Aging 
(Albany NY). 2016;8(8):1790-801.

56.	 Jochemsen HM, Muller M, van der Graaf Y, Geerlings MI. APOE ε4 differentially influences change in 
memory performance depending on age. The SMART-MR study. Neurobiol Aging. 2012;33(4):832.e15-22.

57.	 Groenwold RH, Donders AR, Roes KC, Harrell FE, Jr., Moons KG. Dealing with missing outcome data in 
randomized trials and observational studies. Am J Epidemiol. 2012;175(3):210-7.

58.	 Beasley TM, Erickson S, Allison DB. Rank-based inverse normal transformations are increasingly used, but 
are they merited? Behav Genet. 2009;39(5):580-95.

59.	 Kronmal RA. Spurious Correlation and the Fallacy of the Ratio Standard Revisited. Journal of the Royal 
Statistical Society: Series A (Statistics in Society). 1993;156(3):379-92.

60.	 Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects 
models for meta-analysis. Res Synth Methods. 2010;1(2):97-111.

61.	 Nascimento KK, Silva KP, Malloy-Diniz LF, Butters MA, Diniz BS. Plasma and cerebrospinal fluid amyloid-β 
levels in late-life depression: A systematic review and meta-analysis. J Psychiatr Res. 2015;69:35-41.

62.	 Brown EE, Iwata Y, Chung JK, Gerretsen P, Graff-Guerrero A. Tau in Late-Life Depression: A Systematic 
Review and Meta-Analysis. J Alzheimers Dis. 2016;54(2):615-33.

63.	 Michel M, Fiebich BL, Kuzior H, Meixensberger S, Berger B, Maier S, et al. Increased GFAP concentrations 
in the cerebrospinal fluid of patients with unipolar depression. Transl Psychiatry. 2021;11(1):308.

64.	 Kelly DA, Seidenberg M, Reiter K, Nielson KA, Woodard JL, Smith JC, et al. Differential 5-year brain atrophy 
rates in cognitively declining and stable APOE-ε4 elders. Neuropsychology. 2018;32(6):647-53.

65.	 Feng F, Lu SS, Hu CY, Gong FF, Qian ZZ, Yang HY, et al. Association between apolipoprotein E gene 
polymorphism and depression. J Clin Neurosci. 2015;22(8):1232-8.

66.	 Karlsson IK, Bennet AM, Ploner A, Andersson TM, Reynolds CA, Gatz M, et al. Apolipoprotein E ε4 genotype 
and the temporal relationship between depression and dementia. Neurobiol Aging. 2015;36(4):1751-6.

67.	 Qu Y, Tan CC, Shen XN, Li HQ, Cui M, Tan L, et al. Association of Plasma Neurofilament Light With Small 
Vessel Disease Burden in Nondemented Elderly: A Longitudinal Study. Stroke. 2021;52(3):896-904.

68.	 Travica N, Berk M, Marx W. Neurofilament light protein as a biomarker in depression and cognitive 
function. Curr Opin Psychiatry. 2022;35(1):30-7.

69.	 Fried EI. The 52 symptoms of major depression: Lack of content overlap among seven common depression 
scales. J Affect Disord. 2017;208:191-7.

70.	 Schindler SE, Karikari TK, Ashton NJ, Henson RL, Yarasheski KE, West T, et al. Effect of Race on Prediction 
of Brain Amyloidosis by Plasma Aβ42/Aβ40, Phosphorylated Tau, and Neurofilament Light. Neurology. 
2022;99(3):e245-e57.

71.	 Hall JR, Petersen M, Johnson L, O'Bryant SE. Characterizing Plasma Biomarkers of Alzheimer's in a Diverse 
Community-Based Cohort: A Cross-Sectional Study of the HAB-HD Cohort. Front Neurol. 2022;13:871947.



173|

6

Supplemental Info 

Supplementary Info 1. Plasma collection and selection criteria per 
cohort
Within the Amsterdam Dementia Cohort (ADC), we only included individuals with 
subjective cognitive decline. Samples were stored at -80°C between 2000 and 2016 
until analysis in 2021.

The Doetinchem Cohort Study (DCS) selected individuals with at least 4 repeated 
cognitive measurements, aged 65+ during their second cognitive measurement 
and with blood available were selected (n=348), supplemented with a random 
selection of participants with at least 4 repeated cognitive measurements, aged 64 
years during their second cognitive measurement and with blood available (n=17). 
Plasma was collected between 2000-2007 and first stored at -20°C. If a full batch is 
collected (within about 6 weeks), the plasma is stored at -86°C. Plasma markers were 
analyzed in 2021.

In the EMIF-Twins study, participants were selected from the EMIF-AD PreclinAD 
study based on the following criteria: being monozygotic twins, aged 60 years or 
older, and with normal cognition. Blood was sampled between 2014 and 2017 at 
baseline. Plasma is originally stored at -80°C until analysis. The EMIF-90+ Study 
sampled blood between 2016 and 2018. Plasma was stored at -80°C until analysis. 
For both the EMIF-Twins and EMIF-90+ Study, blood was analyzed in 2021.

For the Longitudinal Aging Study Amsterdam (LASA), individuals were selected 
based on the following data: 60 years or older and available MMSE, APOE e4 allele 
status, and GWAS. Blood was collected in 2008 and 2009 and analyzed in 2021. The 
samples were centrifuged and stored at -80°C.

The Leiden Longevity Study (LLS) recruited between 2002 and 2006 1671 members 
of long-lived families (mean age 60 years) and their 744 partners (mean age 60 years) 
as population controls 1. In 2009 and 2010, 503 participants took part in follow up 
measurements. In accordance with the Declaration of Helsinki, we obtained informed 
consent from all participants prior to their entering the study. Good clinical practice 
guidelines were maintained. The study protocol was approved by the ethical 
committee of the Leiden University Medical Center before the start of the study 
(P01.113). From these 503 participants, the EDTA plasma samples of a subset of 357 
participants were selected for the current study by selection those individuals that 
1) were still alive in 2020, 2) had an APOE genotyping available, 3) were 60 years or 
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older in age. There were N = 13 APOE e4 allele carriers with an age >54.8 years added 
to the main selection, resulting in a total group of N = 370 individuals. EDTA plasma 
was collected between 2009 and 2010, and since then stored at -80°C in aliquot of 
500μl. AD plasma markers were assessed in 2021. 

The Rotterdam Study IIed all participants who had available data during the fourth 
measurement. Blood was collected between 2002 and 2005 and assessed in 2018. 
The samples were stored at -80°C with no additional freeze/thaw cycles.

The SMART-MR Study selected individuals 50 years or older, having a brain MRI scan, 
and available cognitive measurements for AD plasma marker assessment. Plasma 
measurements were performed between 2006 and 2009, during the first follow-
up moment, under overnight-fasting conditions. Plasma measurements were also 
analyzed in 2021.
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Supplementary Figure 1. Correlation matrices for each AD plasma marker, depressive symptoms, and 
age.
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Supplementary Figure 2. Age correlations between the AD plasma markers and age per cohort.

Supplementary Figure 3. Sex differences between AD plasma markers per cohort.

Note: SMD below 1 signify lower levels in men.
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Supplementary Figure 4. APOE e4 allele differences per plasma marker and cohort.

Note: SMD below 0 signify lower levels in APOE e4 carriers. SMD above 0 signify higher levels in APOE 
e4 carriers.
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Supplementary Figure 5. Meta-analyses on logistic regressions of plasma markers and high depressive 
symptomology.
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Supplementary Figure 6. Meta-analyses on Aβ42/40 ratio and depressive symptoms when adding 
Aβ42 and 1/Aβ40 as main effects.

Note: After correction for multiple comparisons, p > 0.05.

Supplementary Figure 7. Meta-analyses on Aβ40 and Aβ42 separately.
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Supplementary Figure 8. A bubble plot representation of the mean age and beta coefficient per study.
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Supplementary Table 1. Sex differences in the associations between plasma AD biomarkers and 
depressive symptoms.

Depressive symptoms (continuous) Depressive symptoms 
(continuous)

Estimate (95% CI) Estimate (95% CI)

Males Females No APOE e4 
allele

APOE e4 allele

ADC (n = 177) (n = 130) (n = 184) (n = 123)

Amyloid 42/40 0.02 (-0.15; 0.19), 
p = 0.82

0.01 (-0.44; 0.47), 
p = 0.96

0.09 (-0.30; 0.47), 
p = 0.65

0.00 (-0.18; 0.18), 
p = 0.99

P-tau181 -0.04 (-0.21; 0.14), 
p = 0.68

-0.03 (-0.22; 0.17), 
p = 0.78

-0.10 (-0.27; 
0.07), p = 0.23

-0.00 (-0.19; 0.19), 
p = 0.99

Neurofilament light -0.10 (-0.24; 0.05), 
p = 0.19

0.06 (-0.20; 0.33), 
p = 0.64

-0.12 (-0.27; 
0.04), p = 0.13

0.04 (-0.20; 0.27), 
p = 0.77

Glial fibrillary acidic 
protein

-0.07 (-0.24; 0.11), 
p = 0.44

0.05 (-0.15; 0.25), 
p = 0.59

-0.02 (-0.24; 
0.20), p = 0.86

-0.03 (-0.21; 0.16), 
p = 0.78

DCS (n = 188) (n = 177) (n = 257) (n = 108)

Amyloid 42/40 -0.09 (-0.24; 0.06), 
p = 0.22

-0.11 (-0.25; 0.02), 
p = 0.10

-0.07 (-0.19; 
0.05), p = 0.26

-0.20 (-0.40; -0.01), 
p = 0.04

P-tau181 -0.13 (-0.25; 
-0.01), p = 0.03

-0.04 (-0.22; 0.15), 
p = 0.69

-0.13 (-0.25; 
-0.01), p = 0.03

-0.07 (-0.27; 0.14), 
p = 0.52

Neurofilament light -0.00 (-0.13; 0.12), 
p = 0.97

0.04 (-0.14; 0.22), 
p = 0.67

-0.06 (-0.19; 
0.07), p = 0.34

0.14 (-0.04; 0.32), 
p = 0.13

Glial fibrillary acidic 
protein

0.03 (-0.12; 0.19), 
p = 0.65

-0.03 (-0.18; 0.11), 
p = 0.64

-0.04 (-0.16; 
0.08), p = 0.50

-0.04 (-0.16; 0.08), 
p = 0.33

EMIF-90+ (n = 55) (n = 74) (n = 100) (n = 29)

Amyloid 42/40 -0.18 (-0.47; 0.10), 
p = 0.20

-0.11 (-0.41; 0.19), 
p = 0.45

-0.13 (-0.31; 
0.06), p = 0.19

0.07 (-0.59; 0.73), 
p = 0.82

P-tau181 0.01 (-0.32; 0.35), 
p = 0.94

-0.05 (-0.30; 0.20), 
p = 0.69

-0.05 (-0.24; 
0.14), p = 0.60

0.13 (-0.68; 0.93), 
p = 0.74

Neurofilament light 0.09 (-0.25; 0.42), 
p = 0.61

0.30 (0.09; 0.51), 
p = 0.01

0.24 (0.07; 
0.42), p = 0.01

0.49 (-0.27; 1.24), 
p = 0.19

Glial fibrillary acidic 
protein

-0.00 (-0.34; 0.34), 
p = 0.99

0.19 (-0.07; 0.45), 
p = 0.15

0.24 (0.06; 0.43), 
p = 0.01

-0.46 (-1.04; 0.12), 
p = 0.11

EMIF-Twins (n = 91) (n = 126) (n = 142) (n = 72)

Amyloid 42/40 0.07 (-0.08; 0.23), 
p = 0.35

-0.08 (-0.27; 0.12), 
p = 0.43

0.04 (-0.14; 0.21), 
p = 0.69

0.00 (-0.14; 0.15), 
p = 0.96

P-tau181 -0.02 (-0.10; 0.07), 
p = 0.69

-0.19 (-0.72; 0.34), 
p = 0.48

-0.03 (-0.14; 
0.08), p = 0.57

0.07 (-0.22; 0.36), 
p = 0.64

Neurofilament light NA NA NA NA

Glial fibrillary acidic 
protein

0.05 (-0.11; 0.21), 
p = 0.51

0.28 (0.10; 0.46), 
p < 0.01

0.27 (0.07; 0.46), 
p < 0.01

0.10 (-0.05; 0.24), 
p = 0.19

LASA (n = 167) (n = 203) (n = 209) (n = 161)

Amyloid 42/40 0.06 (-0.10; 0.22), 
p = 0.48

0.06 (-0.07; 0.19), 
p = 0.40

0.03 (-0.10; 0.16), 
p = 0.67

0.09 (-0.08; 0.25), 
p = 0.29

P-tau181 -0.06 (-0.18; 
0.067), p = 0.36

0.16 (-0.01; 0.34), 
p = 0.07

-0.00 (-0.14; 
0.13), p = 0.96

0.06 (-0.10; 0.21), 
p = 0.47
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Depressive symptoms (continuous) Depressive symptoms 
(continuous)

Estimate (95% CI) Estimate (95% CI)

Males Females No APOE e4 
allele

APOE e4 allele

ADC (n = 177) (n = 130) (n = 184) (n = 123)

Neurofilament light -0.02 (-0.15; 
0.118), p = 0.80

0.12 (-0.08; 0.32), 
p = 0.22

-0.03 (-0.21; 
0.16), p = 0.78

0.08 (-0.06; 0.22), 
p = 0.27

Glial fibrillary acidic 
protein

-0.04 (-0.15; 0.07), 
p = 0.43

0.06 (-0.28; 0.39), 
p = 0.75

0.11 (-0.26; 0.48), 
p = 0.57

-0.02 (-0.13; 0.09), 
p = 0.74

Leiden Longevity 
Study

(n = 181) (n = 189) (n = 266) (n = 104)

Amyloid 42/40 0.11 (-0.06; 0.28), 
p = 0.20

-0.03 (-0.17; 0.11), 
p = 0.70

0.02 (-0.10; 0.14), 
p = 0.80

0.05 (-0.19; 0.28), 
p = 0.70

P-tau181 0.00 (-0.13; 0.13), 
p = 0.98

0.06 (-0.10; 0.23), 
p = 0.44

0.04 (-0.09; 0.16), 
p = 0.57

-0.01 (-0.21; 0.20), 
p = 0.96

Neurofilament light -0.05 (-0.18; 0.08), 
p = 0.43

0.13 (-0.07; 0.32), 
p = 0.19

-0.02 (-0.14; 
0.11), p = 0.81

0.10 (-0.17; 0.36), 
p = 0.47

Glial fibrillary acidic 
protein

-0.03 (-0.18; 0.12), 
p = 0.71

0.08 (-0.08; 0.24), 
p = 0.34

-0.00 (-0.13; 
0.12), p = 0.96

0.10 (-0.13; 0.32), 
p = 0.39

Rotterdam Study (n = 2072) (n = 2783) (n = 3528) (n = 1327)

Amyloid 42/40 -0.02 (-0.06; 0.02), 
p = 0.38

0.01 (-0.03; 0.05), 
p = 0.57

-0.01 (-0.04; 
0.02), p = 0.65

0.03 (-0.03; 0.10), 
p = 0.29

P-tau181 NA NA NA NA

Neurofilament light 0.06 (0.02; 0.10), 
p < 0.01

0.06 (0.02; 0.10), 
p < 0.01

0.05 (0.02; 
0.08), p < 0.01

0.14 (0.06; 0.23), 
p < 0.01

Glial fibrillary acidic 
protein

NA NA NA NA

SMART (n = 493) (n = 101) (n = 410) (n = 184)

Amyloid 42/40 -0.04 (-0.11; 0.03), 
p = 0.23

0.06 (-0.44; 0.56), 
p = 0.80

-0.04 (-0.11; 
0.04), p = 0.35

-0.26 (-0.60; 0.08), 
p = 0.14

P-tau181 -0.02 (-0.09; 0.05), 
p = 0.62

-0.22 (-0.56; 0.12), 
p = 0.21

-0.02 (-0.10; 
0.06), p = 0.65

-0.07 (-0.27; 0.12), 
p = 0.46

Neurofilament light -0.01 (-0.10; 0.07), 
p = 0.77

0.01 (-0.17; 0.18), 
p = 0.95

-0.02 (-0.12; 
0.07), p = 0.64

0.04 (-0.10; 0.18), 
p = 0.58

Glial fibrillary acidic 
protein

0.08 (-0.01; 0.17), 
p = 0.08

-0.08 (-0.28; 0.13), 
p = 0.48

0.05 (-0.05; 0.14), 
p = 0.32

0.05 (-0.13; 0.23), 
p = 0.59

Note: In sex stratified models, models are adjusted for only age, education, and APOE e4 allele. For 
analyses stratified by APOE e4 allele, models are adjusted for age, sex, and education.

Supplementary Table 1. Continued
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Supplementary Table 2. Sensitivity analyses on complete case data for cohorts with missing data.

Depressive symptoms 
(continuous)

Depressive symptoms 
(dichotomized)

Estimate (95% CI) Estimate (95% CI)

ADC

Amyloid 42/40 0.11 (-0.17; 0.39), p = 0.44 1.01 (0.43; 2.49), p = 0.98

P-tau181 -0.06 (-0.19; 0.07), p = 0.38 0.85 (0.51; 1.30), p = 0.50

Neurofilament light -0.08 (-0.21; 0.04), p = 0.20 1.05 (0.65; 1.52), p = 0.81

Glial fibrillary acidic protein -0.03 (-0.17; 0.11), p = 0.66 1.09 (0.70; 1.62), p = 0.68

DCS

Amyloid 42/40 -0.11 (-0.21; -0.01), p = 0.03 0.80 (0.62; 1.05), p = 0.11

P-tau181 -0.11 (-0.22; -0.01), p = 0.03 0.77 (0.53; 1.08), p = 0.15

Neurofilament light 0.01 (-0.09; 0.11), p = 0.86 0.82 (0.59; 1.10), p = 0.19

Glial fibrillary acidic protein -0.00 (-0.10; 0.10), p = 0.99 0.98 (0.74; 1.29), p = 0.88

EMIF-90+

Amyloid 42/40 -0.13 (-0.30; 0.05), p = 0.15 1.04 (0.41; 2.90), p = 0.94

P-tau181 -0.04 (-0.22; 0.14), p = 0.64 1.21 (0.58; 2.23), p = 0.53

Neurofilament light 0.23 (0.06; 0.40), p < 0.01 2.12 (1.20; 4.79), p = 0.02

Glial fibrillary acidic protein 0.14 (-0.04; 0.32), p = 0.12 1.56 (0.62; 4.10), p = 0.34

EMIF-Twins

Amyloid 42/40 -0.04 (-0.14; 0.07), p = 0.50 NA

P-tau181 -0.03 (-0.13; 0.08), p = 0.61 NA

Neurofilament light NA NA

Glial fibrillary acidic protein 0.19 (0.07; 0.30), p < 0.01 NA

LASA

Amyloid 42/40 0.05 (-0.05; 0.15), p = 0.35 1.34 (0.87; 2.13), p = 0.20

P-tau181 0.01 (-0.09; 0.12), p = 0.78 1.26 (0.84; 1.72), p = 0.18

Neurofilament light 0.04 (-0.07; 0.15), p = 0.48 1.25 (0.80; 1.79), p = 0.26

Glial fibrillary acidic protein -0.03 (-0.13; 0.08), p = 0.62 1.00 (0.39; 1.42), p = 0.99

Leiden Longevity Study

Amyloid 42/40 0.02 (-0.09; 0.13), p = 0.73 1.09 (0.84; 1.41), p = 0.53

P-tau181 0.02 (-0.08; 0.13), p = 0.65 1.12 (0.87; 1.43), p = 0.36

Neurofilament light 0.00 (-0.11; 0.12), p = 0.94 1.11 (0.83; 1.44), p = 0.43

Glial fibrillary acidic protein 0.02 (-0.09; 0.14), p = 0.66 1.02 (0.78; 1.33), p = 0.87

Rotterdam Study

Amyloid 42/40 0.00 (-0.02; 0.03), p = 0.75 1.07 (0.979; 1.168), p = 0.12

P-tau181 NA NA

Neurofilament light 0.06 (0.03; 0.09), p < 0.01 1.23 (1.12; 1.35), p < 0.01

Glial fibrillary acidic protein NA NA
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Depressive symptoms 
(continuous)

Depressive symptoms 
(dichotomized)

Estimate (95% CI) Estimate (95% CI)

SMART-MR

Amyloid 42/40 -0.05 (-0.12; 0.03), p = 0.21 0.55 (0.30; 0.99), p = 0.06

P-tau181 -0.03 (-0.10; 0.05), p = 0.49 0.78 (0.45; 1.08), p = 0.31

Neurofilament light -0.00 (-0.08; 0.07), p = 0.96 0.96 (0.68; 1.20), p = 0.76

Glial fibrillary acidic protein 0.05 (-0.04; 0.13), p = 0.28 1.11 (0.84; 1.40), p = 0.44

Adjusted for age, sex, education, and APOE e4 allele. Plasma markers are standardized. 

1.	 Westendorp RG, van Heemst D, Rozing MP, et al. Nonagenarian siblings and their offspring display 
lower risk of mortality and morbidity than sporadic nonagenarians: The Leiden Longevity Study. J 
Am Geriatr Soc. Sep 2009;57(9):1634-7. doi:10.1111/j.1532-5415.2009.02381.x

Supplementary Table 2. Continued
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Abstract

Background: Late-life depression (LLD) is related to an increased risk of developing 
dementia; however, the biological mechanisms explaining this relationship  
remain unclear.

Objective: To determine whether the relationship between LLD and dementia can 
be best explained by the glucocorticoid cascade or vascular hypothesis.

Methods: Data are from 4,354 persons (mean age 76±5 years) without dementia at 
baseline from the AGES-Reykjavik Study. LLD was assessed with the MINI diagnostic 
interview (current and remitted Major Depressive Disorder [MDD]) and the Geriatric 
Depression Scale-15. Salivary cortisol measures were obtained after waking 
and at night (glucocorticoid cascade hypothesis). White matter hyperintensities 
(WMH; vascular hypothesis) volume was assessed using 1.5T brain MRI. Using Cox 
proportional hazard models, we estimated the associations of LLD, cortisol levels, 
and WMH volume with incident all-cause dementia, AD and non-AD dementia.

Results: During 8.8±3.2 years of follow-up, 843 persons developed dementia, 
including 397 with AD. Current MDD was associated with an increased risk of 
developing all-cause dementia (HR=2.17; 95% CI 1.66-2.67), with risks similar for AD 
and non-AD, while remitted MDD was not (HR=1.02; 95% CI 0.55-1.49). Depressive 
symptoms were also associated with increased risk of dementia, in particular non-AD 
dementias. Higher levels of evening cortisol increased risk of dementia, but this was 
independent of MDD. WMH partially explained the relation between current MDD 
and dementia risk but remained increased (HR=1.71; 95% CI 1.34-2.08).

Conclusion: The current study highlights the importance of LLD in developing 
dementia. However, neither the glucocorticoid cascade nor the vascular hypotheses 
fully explained the relation between depression and dementia.
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Introduction

Prospective studies have shown that late-life depression (LLD) increases the risk of 
dementia, including Alzheimer’s disease (AD) and vascular dementia (1-3). Notably, 
a recent review demonstrated that depression shows the most consistent evidence 
as a risk factor for dementia (4). However, little is known about the neurobiological 
mechanisms underlying the relation between LLD and dementia and to what 
extent LLD is a risk factor or a prodromal stage of dementia (2). There are two main 
hypotheses for this connection; the glucocorticoid cascade hypothesis (5), which 
stipulates that depression (6) leads to AD through age-associated hippocampal 
atrophy and increased levels of cortisol due to dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis (1, 7-13); and the vascular hypothesis, stating that 
depression precedes dementia through small vessel changes in mood-regulating 
areas resulting from or contributing to depression (2, 14-16). One study showed 
that cerebrovascular disease explained cognitive deficits in LLD better than salivary 
cortisol levels (17), but there is a lack of longitudinal studies that jointly investigate 
these hypotheses with dementia (18). This is important, as better understanding of 
the role of depression in the etiology of dementia, may help develop strategies to 
prevent, delay, or treat the disease.

We aimed to investigate the relationships between LLD, cortisol levels, white matter 
hyperintensity (WMH) volume and incident dementia in a large community-based 
prospective cohort study of older persons. We hypothesized that LLD increased 
the risk of dementia (4); that higher evening cortisol levels interact with LLD to 
increase dementia risk, particularly AD, reflecting the glucocorticoid cascade; and 
that larger WMH volume partially explained the relationship between current LLD 
and dementia, reflecting the underlying contributing factor of WMH in both LLD 
and dementia.

Methods

Study population
The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study is a population-
based prospective cohort study of the National Institute on Aging and the Icelandic 
Heart Association, initiated to investigate the genetic and environmental factors 
contributing to clinical and subclinical disease at older age (19). It is a continuation 
of the Reykjavik Study, which was initiated in 1967 by the Icelandic Heart Association, 
and included men and women born in 1907 to 1935 and living in the Reykjavik area 
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(19). The original cohort of the Reykjavik Study was examined 1 to 6 times according 
to a schedule that allowed longitudinal and cross-sectional analyses over the 30-year 
follow-up period. 

From 2002 through 2006, 5,764 individuals (mean age: 76 years) randomly chosen 
from the survivors of the Reykjavik Study were examined for the AGES-Reykjavik 
Study. They underwent comprehensive assessments at the Reykjavik research center 
including comprehensive questionnaires, blood tests, biometry, 1.5 Tesla brain MRI, 
and depression, cognitive and dementia assessments. 

From 2007 to 2011, 3,316 persons received one follow-up examination. Monitoring 
of incident dementia diagnoses continued until a maximum of 12 years follow-up 
time. Reasons for loss to follow-up have been described elsewhere (20).

Standard protocol approvals, registrations, and patient consents The AGES-Reykjavik Study 
was approved by the Icelandic National Bioethics Committee (VSN: 00-063), the Icelandic 
Data Protection Authority, and by the Institutional Review Board for the National Institute 
on Aging, NIH. Written informed consent was obtained from all participants.

Dementia diagnosis
The procedure for dementia assessment at baseline and follow-up has been described 
elsewhere (20-22). In brief, dementia ascertainment and classification of subtypes 
was performed using a 3-step protocol following international criteria. A cognitive 
screening of the total sample was performed, with a detailed neuropsychological 
exam in screen positives and a further neurologic and proxy exam performed in step 
2 persons who screened positive on test results. A consensus diagnosis according 
to international guidelines was made by a multidisciplinary panel including a 
neurologist, geriatrician, neuroradiologist, and neuropsychologist. Additional 
cases were identified through medical and nursing home records, as well as death 
certificates. When an individual moved into a nursing home, all-cause dementia 
and Alzheimer’s disease diagnosis was based on the intake exam into the nursing 
home. Additional cases were identified in the nursing home following a standardized 
protocol followed by all Icelandic nursing homes (23). For the present study, we 
defined all-cause dementia, Alzheimer dementia, and other dementias.

Depression assessment
Depression measures have been described in detail elsewhere (24). Briefly, remitted 
and current (i.e. in the past two weeks) diagnosis of major depressive disorder (MDD) 
was assessed with the Mini-International Psychiatric Interview (MINI) diagnostic 
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interview (25) by trained health professionals at baseline. For the purpose of this 
study, we categorized participants into 3 groups: never MDD, remitted (past) MDD, 
and current MDD. 

The Geriatric Depression Scale-15 (26) was administered and categorized using the 
cutoff of 6 or higher to indicate elevated depressive symptoms.

Cortisol measures
Measures of cortisol have been described in more detail elsewhere (13). Using 
Salivette® devices (Sarstedt, Rommelsdorf, Germany), saliva samples were collected 
at night the day before visiting the clinic and the next morning 45 minutes after 
awaking. Instructions were given not to eat, drink, or brush teeth before sampling. 
Salivary cortisol was analyzed with a time-resolved immunoassay with fluorescence 
detection (Delfia; PerkinElmer, Waltham, MA) (27). Inter-assay variability was below 
12% and intra-assay variability was below 10%. The lower detection limit was 0.43 
nmol/L. We excluded 0.7% of the morning samples and 0.5% of the evening samples 
as they had values of >100 nmol/L which were considered unreliable. Morning and 
evening levels of cortisol were natural log-transformed due to skewed distribution 
and z-scores were calculated.

Brain MRI and brain segmentation
The MRI protocol and segmentation procedure have been described elsewhere (13, 
28). In short, eligible participants underwent MRI on a 1.5T Signa Twinspeed system 
(General Electric Medical Systems, Waukesha, WI) including a 3-dimensional axial 
T1-weighted spoiled gradient echo sequence, a fluid attenuated inversion recovery 
(FLAIR) sequence, a proton density/T2-weighted (PD/T2) fast spin echo sequence, 
and a T2*-weighted gradient echo type echoplanar sequence. The FLAIR, PD/T2 and 
T2* sequences were acquired with 3mm thick interleaved slices. Regional gray and 
white matter, CSF and WMH were segmented automatically with an AGES-Reykjavik 
Study modified algorithm described elsewhere (28). In brief, an artificial neural 
network classifier categorized each voxel as belonging to either gray matter, white 
matter, CSF or WMH. The automatic classification was further validated by having a 
trained radiographer assess a sample of MRI scans (28). Visibile hyperintense lesions 
on both T2-weighted and FLAIR images were classified as WMHs (29). WMHs were 
classified by trained radiographers using the Achten Scale, which takes into account 
both lesion size and number (30). 
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Covariates
Covariates assessed with questionnaires included age, sex, educational level 
(categorized into three categories [primary, secondary, college/university] from 
four categories [primary, secondary, college, university]), smoking history (current 
vs. non-smoker), alcohol intake (gram/week), and physical activity (never, rarely, 
occasionally, moderate, or high in the past 12 months). Body mass index (BMI) was 
calculated from height and weight and expressed as kg/m2. Systolic and diastolic 
blood pressure was measured with a standard mercury sphygmomanometer. 
Hypertension was defined as systolic blood pressure of ≥140 mm Hg or diastolic 
blood pressure of ≥90 mm Hg, use of antihypertensives or self-reported physician’s 
diagnosis of hypertension. Diabetes mellitus was defined as use of blood glucose-
lowering drugs or fasting blood glucose level ≥7.0 mmol/L or self-reported history 
of diabetes. APOE genotyping was carried out using the microplate array diagonal 
gel electrophoresis (MADGE) system (31). 

Analytical sample
Of the 5,764 members of the cohort, a total of 4,349 had no dementia and brain MRI 
segmentation available. The majority of people not having a MRI had a home visit, 
scheduling conflicts, contraindications, or refused. A small proportion of those with 
MRI did not have brain segmentation (missing sequences or movement artefacts 
(20, 24, 29)). The average age of those who had an MRI was 76 years compared to 80 
years in those who did not receive an MRI. Of those who received a MRI, 58% were 
women compared to 55% in those who did not receive an MRI. Average score on the 
GDS-15 was 2 in those who received an MRI and 3 in those who did not. Of those 
with a brain MRI, 4% had ever MDD diagnosis compared to 3% in those without brain 
MRI. Average morning cortisol levels were 19.8 nmol/L in those who had a brain MRI 
compared to 17.8 nmol/L in those who did not. Evening cortisol in those with a brain 
MRI was 3.9 nmol/L and 4.4 nmol/L in those without.

Data analysis
Participants were followed from date of inclusion until diagnosis of dementia, death, 
loss to follow-up, or end of follow-up (October 2015), whichever came first. Censoring 
date for participants who received a diagnosis of dementia during follow-up was set 
halfway between date of inclusion and follow-up visit. For incident cases identified 
through nursing homes, date of diagnosis was based on the nursing home intake exam 
or the date when the nursing home staff diagnosed dementia based on a standardized 
protocol followed by all Icelandic nursing homes. For those who died, the censoring 
date was date of death. Those lost to follow-up were assumed not to have dementia, 
and the censoring date was set halfway between date of inclusion and end of follow-up.



193|

7

Multiple imputation (AregImpute in R version 2.13.1) was used to address missing 
values at baseline (0-9.3% [medication use]). Incident dementia was not used 
for imputation. R (epiR, survival, and survminer in version 3.6.1) was used for the 
data analyses. Pooled results of 10 datasets are presented. Proportional hazards 
assumption (i.e, Schoenfeld’s residuals), influential observations (i.e., dfbetas), and 
nonlinearity (i.e., martingale residuals) were checked. Cox regression models used 
age as the timescale. Sex and level of education were added as covariates. Lastly, 
stratified results by sex are additionally presented to explore possible sex differences.

Depression and risk for dementia
We calculated baseline characteristics for the total study sample and according 
to depression diagnosis (no history of MDD, remitted MDD, and current MDD). 
Cox proportional hazard models were fit to estimate the hazard ratio (HR) of the 
associations of lifetime MDD, current and remitted MDD compared with never MDD 
with incident all-cause dementia, AD, and other (non-AD) dementias. To further 
assess the aspect of time from baseline depression to dementia diagnosis, we fit 
models stratified by time from depression assessment at baseline to dementia 
diagnosis with a cut-off of 7 years follow-up time. Models were fit using depressive 
symptoms (i.e., the GDS-15) because dementia cases were too few when analyzing 
current MDD.

Glucocorticoid cascade hypothesis
To investigate the role of glucocorticoids, the relationship between morning and 
evening cortisol (i.e., the z-score of natural log-transformed values) with incident 
dementia was estimated. Next, morning and evening cortisol levels were added 
to the model with depressive symptoms. To estimate additive interaction (32) and 
the relative excess risk due to interaction, four groups with or without depression 
(defined by GDS-15 scores <6 or 6 or higher, as there were too few cases with current 
MDD) and low/normal or high levels of evening cortisol (defined as the highest 
tertile of evening cortisol >3.3 nmol/L versus the lower two tertiles) were created and 
their relationship with later dementia outcome was explored. Dummy variables were 
used for ease of interpretation of the interaction (33) with confidence intervals from 
Hosmer and Lemeshow (34). We additionally estimated additive interaction using 
continuous measurements (32), standardizing with z-scores both GDS-15 scores and 
log-transformed cortisol levels.

Vascular hypothesis
Similarly, depressive symptoms and total WMH volume (i.e., the z-score of natural 
log-transformed values) were entered together into the Cox regression model to 
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explore the vascular hypothesis, with standardized intracranial volume (ICV) added 
as a covariate. Next, the relative excess risk due to interaction of high depressive 
symptoms and larger WMH volumes on dementia risk was estimated by calculating 
four dummy variables where large WMH volume was defined as the highest tertile 
of ICV-corrected natural log-transformed WMH volume (>0.28 % ICV) and GDS-15 
scores of 6 or higher were used to indicate presence of depression. We also assessed 
additive interaction using continuous measurements, of standardized GDS-15 score 
and log-transformed WMH volume.

Glucocorticoid cascade and vascular hypotheses
Additionally, to explore to what extent the glucocorticoid cascade and vascular 
pathways are independent contributors, cortisol levels and WMH volume were 
entered together in a model with depression diagnosis. To correct for vascular risk 
factors, additional adjustments were made for APOE genotype (e4 positive vs. e4 
negative), current smoking (vs. never or former), alcohol intake (gram/week), physical 
activity (never, rarely, occasionally, moderate, or high in the past 12 months), BMI, 
hypertension and diabetes mellitus. ICV was also added as a covariate in the model.

Results

Of the 4,349 participants without dementia at baseline, the mean age was 76±5 
years and 59% were women; 194 had a lifetime diagnosis of MDD, 130 of whom had 
a past diagnosis, and 64 a current diagnosis of MDD (Table 1). Of those with a current 
diagnosis, 75% also had a history of MDD. Median (10-90%) morning cortisol level in 
the study sample was 17.3 (5.6-36.2) nmol/L, and median evening cortisol level 2.3 
(0.9-6.9) nmol/L. During a total of 38,221 person-years of follow-up (mean per person 
8.8 ± 3.2 years, range 0.11 – 13.4 years), 843 persons developed dementia, 397 of 
whom had a diagnosis AD, and 446 were diagnosed with dementias other than AD.

Depression and risk for dementia
Of the 843 persons with incident dementia, 35 had a lifetime diagnosis of MDD. Cox 
regression analysis adjusted for age (timescale), sex and education showed that the 
risk of dementia for lifetime MDD was increased (HR 1.37; 95% CI 1.03-1.72). Current 
MDD increased the risk of dementia more than two-fold (HR 2.17; 95% CI 1.66-2.67), 
whereas remitted MDD was not associated with incident dementia (HR 1.02; 95% CI 
0.55-1.49). Similar risks were observed for AD and non-AD dementias, although 95% 
confidence intervals were wider (Table 2). Depressive symptoms were also associated 
with increased risk of dementia, in particular non-AD dementias (Table 2). 
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To assess time between depression assessment and dementia onset, those who had a 
less than 7 year gap between baseline depressive symptoms and dementia diagnosis 
had a greater risk of developing dementia during that time, although the estimate did 
not reach statistical significance (HR 1.30; 95% CI 0.97-1.63), whereas no association 
was observed between high depressive symptomology and dementia in those who 
had a 7 year or greater interval (HR 0.97; 95% CI 0.56-1.39) (Table 3). Number of incident 
dementia cases in those with current MDD were too small to stratify by time interval.

Table 1. Baseline characteristics of study sample (N=4,349) according to depression diagnosis.

  Never MDD Past MDD Current MDD Total
n=4155 n=130 n=64 N=4349

Age, mean (SD), years 76 (5) 74 (5) 75 (5) 76 (5)
Women, no. (%) 2417 (58) 88 (68) 42 (66) 2547 (59)
Primary education, no. (%) 1373 (33) 43 (33) 20 (31) 1435 (33)
Current smoker, no. (%) 490 (12) 21 (16) 12 (19) 523 (12)
Alcohol use, mean (SD), gr/week 15 (33) 9 (19) 19 (49) 15 (33)
Physical activity, moderate/high, no. (%) 1352 (33) 41 (32) 10 (16) 1403 (32)
Body mass index, mean (SD) 27 (4) 28 (4) 28 (5) 27 (4)
Blood pressure, systolic, mean (SD), mmHg 142 (20) 138 (18) 138 (20) 142 (20)
Blood pressure, diastolic, mean (SD), mmHg 74 (10) 74 (10) 74 (9) 74 (10)
Hypertension, no. (%) 3342 (80) 100 (77) 47 (73) 3489 (80)
Diabetes, no. (%) 451 (11) 21 (16) 12 (19) 484 (11)
APOE e4 positive, no. (%) 1131 (27) 33 (25) 21 (33) 1185 (27)
History of MDD, no. (%) 0 (0) 130 (100) 48 (75) 194 (4)
GDS-15, 6+, no. (%) 221 (5) 25 (19) 39 (61) 285 (7)
Morning cortisol, median (IQR), nmol/L 17.3 (15.7) 14.1 (15.9) 15.0 (19.0) 17.3 (15.8)
Evening cortisol, median (IQR), nmol/L 2.3 (2.4) 2.0 (2.6) 2.5 (4.0) 2.3 (2.4)
WMH, median (IQR), ml 13.5 (18.1) 11.6 (16.3) 14.6 (20.2) 13.5 (18.1)

Abbreviation: MDD, Major Depressive Disorder

Results were similar for both men and women, except for depressive symptoms, which 
showed an increased risk for all-cause dementia only in men (Supplementary Table 1).

Glucocorticoid cascade hypothesis
When depression diagnosis and cortisol levels were entered together in the Cox 
regression analyses, the risk of all-cause dementia for current MDD remained 
increased (HR 2.09; 95% CI 1.59-2.59) (Figure 1, model 2a). Similar patterns in 
associations were seen for AD and non-AD dementias. The relative excess risk due 
to interaction to calculate additive interaction (32) did not suggest interaction (Table 
5, Supplementary Table 3). Since we found no association between morning cortisol 
and dementia, we did not further examine the interaction of depressive symptoms 
and morning cortisol levels on dementia. 
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Table 2. Hazard ratios for the relation between LLD and risk of dementia (N=4,349).

  No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Other 
dementias

(n=843) (n=397) (n=446)
HR (95% CI) HR (95% CI) HR (95% CI)

Never MDD 
(n=4155)

808 1 (reference) 379 1 (reference) 429 1 (reference)

Ever MDD (n=194) 35 1.37 (1.03-1.72) 18 1.38 (0.91-1.86) 17 1.43 (0.94-1.92)
Never MDD 
(n=4155)

808 1 (reference) 379 1 (reference) 429 1 (reference)

Remitted MDD 
(n=130)

18 1.02 (0.55-1.49) 9 0.98 (0.31-1.65) 9 1.06 (0.40-1.72)

Current MDD 
(including past) 
(n=64)

17 2.17 (1.66-2.67) 9 2.32 (1.63-3.02) 8 2.35 (1.61-3.09)

  No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Other 
dementias

(n=843) (n=397) (n=446)
HR (95% CI) HR (95% CI) HR (95% CI)

GDS-15 score <6 
(n=4078)

777 1 (reference) 370 1 (reference) 408 1 (reference)

GDS-15 score 6 or 
higher (n=271)

66 1.31 (1.05-1.57) 27 1.16 (0.77-1.55) 38 1.49 (1.14-1.85)

Models are adjusted for age (timescale), sex and level of education.

When analyzed for men and women separately, the increased risk of current MDD 
with all-cause dementia and dementias other than AD was stronger in men, while 
evening cortisol was slightly stronger associated with all types of dementia in women 
and lost statistical significance in men (Supplementary Table 2).

Vascular hypothesis
When WMH volume was added to the model (Figure 1, model 2b), the association 
of current MDD and incident all-cause dementia (HR 2.00; 95% CI 1.50-2.49), AD, 
and non-AD dementia attenuated; however, it remained statistically significant. 
Table 5 shows the joint association of high levels of depressive symptoms with 
large WMH volume on dementia risk. HRs were strongest for the combination of 
depressive symptoms and large WMH volume, although the relative excess risk 
due to interaction to calculate additive interaction (32) did not suggest interaction. 
Results were similar for men and women (Supplementary Table 2).
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Table 3. Hazard ratios for the relation between baseline depressive symptoms and risk of dementia, 
stratified for follow-up time (N=4,349).

  No. of cases All-cause 
dementia

No. of cases Alzheimer’s 
disease

No. of cases Other 
dementias

(n=843) (n=397) (n=446)
HR (95% CI) HR (95% CI) HR (95% CI)

Less than 7 years between baseline depression and time of dementia diagnosis (N=1330)
GDS-15 
score <6 
(n=1213)

367 1 (reference) 191 1 (reference) 176 1 (reference)

GDS-15 
score 6 
or higher 
(n=117)

42 1.30 (0.97-
1.63)

17 1.00 (0.49-
1.52)

25 1.77 (1.33-
2.21)

7 years or more between baseline depression and time of dementia diagnosis (N=3019)
GDS-15 
score <6 
(n=2851)

410 1 (reference) 178 1 (reference) 232 1 (reference)

GDS-15 
score 6 
or higher 
(n=168)

24 0.97 (0.56-
1.39)

11 1.01 (0.40-
1.62)

13 0.96 (0.38-
1.53)

Models are adjusted for age (as timescale), sex and level of education.

Table 4. Results of the Cox regression model with MDD, cortisol levels, and WMH volume entered 
together (model 3a).

    All-cause 
dementia

  Alzheimer’s 
disease

  Other dementias

(n=843) (n=397) (n=446)
HR (95% CI) HR (95% CI) HR (95% CI)

Remitted MDD 1.06 (0.59-1.53) 1.02 (0.34-1.69) 1.11 (0.44-1.77)
Current MDD (including past) 1.96 (1.46-2.45) 2.06 (1.38-2.75) 2.09 (1.37-2.81)
Morning cortisol 0.99 (0.92-1.07) 1.03 (0.92-1.14) 0.97 (0.87-1.07)
Evening cortisol 1.13 (1.06-1.20) 1.16 (1.06-1.26) 1.15 (1.04-1.25)
WMH volume   1.30 (1.22-1.37)   1.25 (1.15-1.36)   1.43 (1.33-1.53)

Adjusted for sex, education, and intracranial volume
WMH: white matter hyperintensities
MDD: major depressive disorder
Cortisol levels and WMH volume per SD increase
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Table 5. Hazard ratios (HR) for the independent and combined association of depressive symptoms, 
evening cortisol, and white matter hyperintensities volume with incident dementia.

    All-cause 
dementia

  Alzheimer’s 
disease

  Other dementias

(n=843) (n=397) (n=446)
HR (95% CI) HR (95% CI) HR (95% CI)

Neither (n=2804) 1 1 1
Depressive symptoms (n=165) 1.37 (1.02-1.72) 1.13 (0.58-1.68) 1.66 (1.19-2.12)
High evening cortisol (n=1261) 1.29 (1.14-1.44) 1.30 (1.08-1.52) 1.41 (1.20-1.62)
Both (n=120) 1.51 (1.11-1.91) 1.44 (0.88-2.00) 1.74 (1.14-2.34)
Additive RERI (95% CI) (32) -0.15 (-1.74-1.44) 0.01 (-2.49-2.50) -0.33 (-2.66-2.00)
Neither (n=2732) 1 1 1
Depressive symptoms (n=168) 1.43 (1.07-1.80) 1.40 (0.90-1.90) 1.54 (1.01-2.07)
Larger WMH (n=1333) 1.51 (1.37-1.65) 1.35 (1.14-1.56) 1.83 (1.63-2.02)
Both (n=117)   1.71 (1.34-2.08)   1.16 (0.52-1.80)   2.47 (1.99-2.95)
Additive RERI (95% CI) (32) -0.23 (-1.85-1.38) -0.59 (-2.25-1.08) 0.10 (-3.28-3.48)

Adjusted for sex and education. 
RERI: relative excess risk due to interaction.
WMH: white matter hyperintensities
The additive RERI is calculated with the epi.interaction() function in the epiR package in Rstudio with 
Hosmer and Lemeshow confidence intervals. The equation for calculating the additive RERI is (HRA+B+ - 
1) – (HRA+B- - 1) – (HRA-B+ - 1) (32). Therefore, RERI = (1.51 – 1) – (1.37 – 1) – (1.29 – 1) = -0.15. 

Glucocorticoid cascade and vascular hypotheses
When cortisol levels and WMH volume were entered together in a model with 
depression diagnosis, higher evening cortisol, and higher WMH volume were each 
independently associated with increased risk of dementia (Figure 1, model 3a; Table 
4). After adjusting for APOE genotype, current smoking, alcohol intake, physical 
activity, BMI, hypertension and diabetes mellitus (Figure 1, model 3b), associations 
attenuated further, but remained statistically significant. When all analyses were 
repeated with GDS-15 score, the association with incident dementia was weaker (HR 
1.09; 95% CI 1.06-1.12), yet increased. HRs barely changed after further adjustment 
for cortisol levels, WMH volume, and other covariates (Figure 1). 

Due to using age as timescale, proportional hazards for sex was not met due to 
differences in risk for dementia between men and women in age in the models for 
Alzheimer’s disease. As noted in Supplementary Figure 1, risk for dementia was 
higher for women than men during older age, which has also been seen previously 
in population-based cohorts (35).
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Discussion

The aim of our study was to investigate two leading hypotheses explaining the 
relation between LLD and risk of dementia. We found that a lifetime diagnosis of MDD 
increased the risk of dementia 1.4 fold, and that a current – not remitted – diagnosis 
of MDD in older persons without dementia was associated with a two-fold risk for 
incident dementia over 13 years follow-up, including AD and non-AD dementia, 
confirming estimates found in meta-analyses (3, 36). Similarly, more depressive 
symptoms were also associated with increased risk of dementia, particularly non-
AD dementia. 

One of the prevailing hypotheses to explain the increased risk of dementia with 
depression has been the glucocorticoid cascade hypothesis (5). In our study, 
we observed that higher evening, but not morning, cortisol increased the risk 
of developing dementia, including AD and non-AD dementia, but cortisol was 
an independent contributor and did not explain the relation between LLD and 
dementia. Thus, we found no evidence to support this hypothesis. Increased cortisol 
levels have been previously found in patients with dementia (37) and have been 
shown to predict dementia (38). However, results are inconclusive regarding the 
timing of cortisol measure, as morning, evening and diurnal variation in cortisol have 
been shown to predict dementia onset (39, 40). In our study, we found a relation with 
evening cortisol only, which is consistent with a previous study where we showed 
that evening cortisol more so than morning cortisol was related with lower brain 
volumes (13). Other studies also found that evening cortisol levels are associated 
with increased age (41), hypertension (42), diabetes (43) and neurodegeneration 
(13, 44). 

Another proposed hypothesis linking LLD with dementia is the vascular depression 
hypothesis (2, 14-16), as vascular brain pathology has often been associated with 
LLD (45). In another cohort, we previously showed that lacunar infarcts are related 
to higher and more fluctuating depressive symptoms at follow-up (46), as well as in 
those with cerebrovascular disease (47). Our current results confirmed other studies 
that more WMH increased the risk of dementia (47, 48), but it only partially explained 
the relationship between MDD and dementia. Also, while the additive association of 
high depressive symptoms and more WMH was strongest for non-AD dementias, it 
did not suggest moderation or mediation. 

While other studies have looked at either dementia or depression with WMH or 
cortisol, studies exploring the simultaneous influence of glucocorticoid and vascular 
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pathways on depression and dementia are scarce. Comparable findings were 
reported in a small preceding study with 18 months of follow-up where cortisol 
levels rather than white matter lesions were related to cognitive decline in older 
depressed persons (17). 

The association between current depression and dementia prevailed after correcting 
for additional cardiovascular risk factors, with WMH having a greater relationship 
with risk than evening cortisol. This is in line with a recent study that found WMHs 
were independently associated with cognitive decline and GDS-15 scores (49) and 
highlights the role of cerebrovascular disease in dementia and depression (50).

Our findings of that current but not past depression increased dementia risk could 
be interpreted as LLD being a prodromal stage of dementia. Indeed, a study with 28 
years of follow-up (48) found that depressive symptoms increased prior to dementia 
diagnosis, suggesting that depression increases dementia risk closer to the time of 
dementia diagnosis. Consistent with this, in our study, those with a shorter time 
period between depression assessment and dementia diagnosis had a higher risk 
of developing dementia, particularly dementia other than AD, whereas those with 
a longer time period between depression and dementia diagnoses were not at 
higher risk. It should be noted that we were only able to stratify the sample for 
depressive symptoms (i.e., GDS-15 score) and not current MDD because of small 
numbers, and we therefore do not know who had previous episodes of depressive 
symptoms. Indeed, in our sample of participants with current MDD, the vast majority 
also had a history of MDD, and the association may partly reflect previous episodes 
of depression. Potentially, different mechanisms underlie different subtypes of LLD 
depending on history of MDD, age of onset, and number of previous episodes. To 
further unravel the direction of causation, similar studies with multiple measures of 
depression and longer follow-up are needed.  

Strengths include the community-based population, the prospective design with 
long follow-up, the large sample size, and the complete ascertainment of incident 
dementia. Further, LLD was assessed with a structured diagnostic interview in 
addition to a depressive symptom questionnaire. 

A limitation of this study is that current MDD was assessed with a two-week time 
window rather than 6 or 12 months. Therefore, the number of participants with 
current MDD was low and risk estimates had wide confidence intervals. We could not 
examine the combined association of current MDD and high cortisol or WMH volume 
and instead relied on depressive symptoms (although, results were similar for high 
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WMH volume with current MDD compared to using depressive symptoms). Further, 
it is preferred to include samples of cortisol collected over multiple days (13, 51), to 
decrease possible within-participant variability (52, 53); however, due to the large 
sample size of our cohort, we were only able to include one-day measurements. By 
investigating cortisol in such a large sample, the large variation on group level may 
have reduced the possibility of intra-subject variation. 

The current study highlights the importance of LLD in developing dementia. While 
higher basal cortisol levels and WMH were also associated with increased risk of 
dementia, they were not a major mechanism underlying the relation between 
depression and risk of dementia. Future studies with long follow-up and repeated 
measures of LLD should investigate other explanatory factors and subtypes of LLD 
to further elucidate the pathophysiology behind depression and dementia and 
investigate to what extent LLD is a susceptibility feature of dementia rather than a 
causal risk factor.
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Supplementary Table 1. Hazard ratios for the relation between depression and risk of dementia 
(n=4,349), stratified by sex.

 

No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Other 
dementias

(N=843) (N=397) (N=446)

HR (95% CI) HR (95% CI) HR (95% CI)

Never MDD (N=1739) Males 316 1 (reference) 142 1 (reference) 174 1 (reference)

Ever MDD (N=63) Males 12 1.49 (0.91-2.07) 6 1.54 (0.72-2.36) 6 1.56 (0.74-2.38)

Never MDD (N=2417) Females 492 1 (reference) 237 1 (reference) 255 1 (reference)

Ever MDD (N=130) Females 23 1.32 (0.90-1.74) 12 1.30 (0.72-1.89) 11 1.37 (0.76-1.98)

Never MDD (N=1739) Males 316 1 (reference) 142 1 (reference) 174 1 (reference)

Remitted MDD (N=42) Males 6 1.01 (0.19-1.83) 4 1.31 (0.29-2.34) 2 0.77 (0.66-2.14)

Current MDD (N=21) Males 6 2.79 (1.98-3.60) 2 2.25 (0.83-3.66) 4 3.55 (2.55-4.54)

Never MDD (N=2417) Females 492 1 (reference) 237 1 (reference) 255 1 (reference)

Remitted MDD (N=87) Females 12 1.02 (0.44-1.59) 5 0.80 (0.09-1.68) 7 1.22 (0.46-1.98)

Current MDD (N=43) Females 11 1.95 (1.32-2.58) 7 2.39 (1.60-3.18) 4 1.75 (0.72-2.77)

GDS-15 score <6 (N=1705) 
Males

303 1 (reference) 136 1 (reference) 167 1 (reference)

 

No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Other 
dementias

(N=843) (N=397) (N=446)

HR (95% CI) HR (95% CI) HR (95% CI)

GDS-15 score 6 or higher 
(N=97) Males

25 1.57 (1.12-2.01) 12 1.57 (0.95-2.19) 13 1.66 (1.01-2.31)

GDS-15 score <6 (N=2359) 
Females

474 1 (reference) 233 1 (reference) 241 1 (reference)

GDS-15 score 6+ (N=188) 
Females

41 1.19 (0.86-1.52) 16 0.97 (0.46-1.48) 25 1.44 (1.00-1.88)

Models are adjusted for level of education, and age as timescale. 
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Supplementary Table 2. Results of the Cox regression model with MDD, cortisol levels, and WMH 
volume entered together (model 3a), stratified by sex.

    All-cause dementia   Alzheimer’s disease   Other dementias

(nmales=328, 
nfemales=515)

(nmales=148, 
nfemales=249)

(nmales=180, 
nfemales=266)

HR (95% CI) HR (95% CI) HR (95% CI)

Males

Remitted MDD 1.05 (0.23-1.87) 1.36 (0.32-2.39) 0.80 (0.60-2.20)

Current MDD (including past) 2.61 (1.79-3.43) 2.12 (0.71-3.52) 3.26 (2.25-4.27)

Morning cortisol 0.92 (0.80-1.04) 0.96 (0.78-1.15) 0.88 (0.73-1.04)

Evening cortisol 1.08 (0.96-1.21) 1.07 (0.89-1.25) 1.12 (0.95-1.29)

WMH volume   1.37 (1.25-1.49)   1.29 (1.11-1.47)   1.55 (1.38-1.71)

Females

Remitted MDD 1.03 (0.46-1.61) 0.82 (0.07-1.71) 1.23 (0.48-1.99)

Current MDD (including past) 1.78 (1.17-2.39) 2.12 (1.35-2.90) 1.60 (0.59-2.60)

Morning cortisol 1.04 (0.95-1.13) 1.07 (0.94-1.20) 1.03 (0.89-1.16)

Evening cortisol 1.15 (1.06-1.24) 1.19 (1.07-1.31) 1.16 (1.03-1.28)

WMH volume   1.26 (1.17-1.36)   1.24 (1.11-1.38)   1.36 (1.23-1.49)

Models are adjusted for education and intracranial volume. WMH: white matter hyperintensities. MDD: 
major depressive disorder. Cortisol levels and WMH volume are shown per SD increase.

Supplementary Table 3. Regression coefficients for the independent and combined association of 
depressive symptoms, evening cortisol, and white matter hyperintensities volume with incident dementia.

All-cause dementia   Alzheimer’s disease   Other dementias

(n=843) (n=397) (n=446)

Coefficient (SE) Coefficient (SE) Coefficient (SE)

Depressive symptoms (β1) 0.17 (0.03) 0.10 (0.05) 0.25 (0.04)

Evening cortisol (β2) 0.12 (0.04) 0.16 (0.05) 0.13 (0.05)

Interaction term (β3) -0.01 (0.03) 0.00 (0.05) -0.01 (0.05)

Additive RERI (95% CI) (32) 0.02 (-0.20-0.24) 0.02 (-0.30-0.34) 0.02 (-0.29-0.34)

Depressive symptoms (β1) 0.18 (0.03) 0.11 (0.05) 0.27 (0.04)

WMH (β2) 0.28 (0.04) 0.24 (0.05) 0.39 (0.05)

Interaction term (β3)   -0.05 (0.03)   -0.03 (0.05)   -0.08 (0.04)

Additive RERI (95% CI) (32) -0.01 (-0.22-0.20) -0.01 (-0.32-0.30) 0.01 (-0.32-0.34)

Adjusted for sex and education. 
RERI: relative excess risk due to interaction.
WMH: white matter hyperintensities
The additive RERI is calculated with the epi.interaction() function in the epiR package in Rstudio. The 
equation is as follows: eβ1+β2+β3- eβ1-eβ2+1 (32). Confidence intervals come from Hosmer and Lemeshow.
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Supplementary Figure 1. Adjusted survival curves for model 3a stratified by sex and Alzheimer’s 
disease.

Model 3a: adjusted for past/current depression diagnosis, education, morning and evening cortisol, 
white matter hyperintensities, and intracranial volume.
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Abstract

Background: The current study aimed to assess if the relation between depression 
and dementia could be explained by allostatic load (AL) profiles, as well as assessing 
their risk on incident all-cause dementia, Alzheimer’s disease (AD), and non-AD 
dementias.

Methods: The study included individuals without dementia at baseline from the 
population-based AGES-Reykjavik Study. Depressive symptoms assessed with the 
Geriatric Depression Scale-15 and AL markers were collected at baseline. Latent 
profile analysis (LPA) was performed on the AL markers. Incident dementia was 
measured during 12-years of follow-up.Cox regressions adjusted for AL profiles were 
performed to evaluate if AL could explain the relation between depressive symptoms 
and incident dementia. Additional Cox regressions exploring the interaction with 
depressive symptoms and AL profiles were also performed.

Results: LPA revealed four profiles based on AL factors: ‘Low cardiovascular 
dysregulation’ (43%), ‘Average’ (42% prevalence), ‘High cardiovascular dysregulation’ 
(11%), and ‘Multisystem dysregulation’ (4%). Cox regression analyses found an 
increased risk for dementia in the ‘Multisystem dysregulation’ group (HR 1.72; 95% 
CI 1.26-2.33), as well as for AD (HR 1.75; 95% CI: 1.12-2.71) and non-AD dementias (HR 
1.87; 95% CI: 1.23-2.84). AL profiles did not mediate the risk of all-cause dementia 
with depressive symptoms; however, there was evidence of additive interaction 
with depressive symptoms and the ‘Multisystem dysregulation’ profile and all-cause 
dementia (RERI 0.15; 95% CI 0.03-0.26).

Conclusion: AL profiles and depressive symptoms were independently related to 
dementia. Individuals with multisystem dysregulation could be more susceptible to 
the negative effects of depressive symptomology on incident dementia.
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Introduction

Dementia is characterized by debilitating cognitive impairment that increases the 
risk of mortality (1). Today, 50 million people in the world have dementia, which is 
expected to triple by 2050 (2, 3). The etiology is still not completely known, and 
no effective treatment is available (4). Further research on modifiable risk factors 
is crucial to better understand the biological underpinnings of dementia, allowing 
for the development of new interventions and prevention strategies, which would 
better the outcome for those at risk.

One of the most consistent determinants for dementia is depression (5), yet the 
mechanistic relationship between the two is still not fully understood (6). Two 
main hypotheses regarding the relation between depression and dementia are 
the neurotoxicity and the vascular hypotheses. The neurotoxicity hypothesis 
stipulates that depression is related to dementia through increased cortisol due 
to dysregulation of the hypothalamic-pituitary-adrenal axis (7-9), whereas the 
vascular hypothesis states that depression may precede dementia through small 
vessel changes in mood-regulating areas (10). In a recent study, we found that the 
neurotoxicity hypothesis did not explain the relation, while the vascular hypothesis 
did in part (11). However, many risk factors overlap both depression and dementia, 
not only vascular and glucocorticoid factors, but also metabolic and inflammatory 
factors. We hypothesize that using a multisystem approach may better explain the 
relation between depression and dementia. An umbrella term encompassing all these 
biological risk factors is allostatic load (AL), which refers to the long-term, damaging 
physiological actions the body performs in response to stressful stimuli. While these 
biological factors are adaptive in response to acute stress (i.e., ‘allostasis’), chronic 
stress over time leads to wear and tear on the body (12), which can be measured by 
dysregulation in multiple physiological systems. 

Depression has been linked to AL factors through two depressive subtypes (13): 
atypical and melancholic depression. Atypical depression is characterized by altered 
energy intake, increased weight, female sex, and immune-metabolic physiological 
factors (e.g., high c-reactive protein [CRP], triglycerides, and blood pressure) (14, 15). 
Whereas melancholic depression, characterized by symptoms of decreased appetite, 
lower body mass index, and smoking, is associated with increased cortisol levels (16, 
17). Further, hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis due to 
excess cortisol has been linked to depression (17). 



216 | Chapter 8

Dementia has also been attributed to AL factors. Cardiovascular factors, such as 
hypertension and Framingham vascular risk factors (e.g., total cholesterol, high-
density lipoprotein [HDL] cholesterol), increase the risk for dementia (18, 19). A recent 
systematic review also highlighted type 2 diabetes as one of the top modifiable risk 
factors for dementia, emphasizing the role of metabolic factors as well (5). Additionally, 
chronically-raised high-sensitivity CRP, an inflammatory marker, has been associated 
with an increased risk of vascular dementia (20). Lastly, regarding glucocorticoids, a 
recent review has outlined the relationship between higher levels of cortisol and 
increased risk for cognitive decline and dementia (21). While these markers have been 
linked individually to both dementia and depression, there has been increased need to 
explore multisystem etiological models.

While many studies have used sum scores to assess AL, there has been an increasing 
need to look at possible subsystems of biomarkers to account for the complex 
interactions that may exist between them (22, 23) and to assess if one subsystem (e.g., 
immune-metabolic) may be more of a driving factor for disease risk than another system 
(e.g., cardiovascular). Additionally, by utilizing latent profile analysis (LPA) over latent 
class analysis (LCA), using continuous data rather than dichotomizing, we allow for more 
variation within and between the profiles. By using a profile-based technique that can 
unravel these subsystems, one can link the use of studying individual biomarkers and 
cumulative scores by looking at possible AL subsystems. Previous research has explored 
profiling individuals based on AL biomarkers, highlighting increased risk for mortality 
based on AL profiles (24-26). Further research has also found associations between 
higher AL and lower cognitive functioning (23, 24, 27-29), as well as with increased 
depressive symptoms (24, 29-31). However, to our knowledge, assessing if AL profiles 
may explain the relationship between depression and dementia has yet to be done. 

The current study aimed to explore the role of AL in the known relation between 
depression and dementia by assessing: 1) the relationship between AL profiles and risk 
of dementia; 2) the relationship between depressive symptoms and these AL profiles; 
3) whether AL mediates the relationship between depression and dementia; and 4) 
if there is additive or multiplicative interaction between depression and AL profiles 
on dementia risk. Based on previous research, we hypothesized to find at least one 
AL profile characterized by metabolic and inflammatory criteria, one by cardiovascular 
factors, and one without any increased AL qualities (32). We further hypothesized 
that the metabolic-inflammatory and cardiovascular profiles will be associated with 
depressive symptoms as well as an increased risk for dementia. We had no a-priori 
hypothesis regarding possible mediation or interaction of AL on the relation between 
depression and dementia.
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Methods

Participants
The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study is a population-based 
cohort study comprised of individuals aged 65 years and older living in the Reykjavik 
area. It is explained in-depth elsewhere (33). Briefly, the AGES-Reykjavik Study stems 
from the Reykjavik Study, which was initiated in 1967 by the Icelandic Heart Association. 
Between 2002 and 2006, 5,764 participants were included in the study, randomly 
selected from survivors from the Reykjavik Study. All participants underwent baseline 
cognitive and biometric assessments at the Reykjavik research center. Participants were 
followed up until 2014 to identify incident dementia diagnoses. 

Standard protocol approvals, registrations, and patient consents
The Icelandic National Bioethics Committee (VSN: 00-063), the Icelandic Data Protection 
Authority, and the Institutional Review Board for the National Institute on Aging, NIH 
approved this study. Written informed consent was obtained from all participants.

Depression assessment
The Geriatric Depression Scale-15 (GDS-15) (34) was used to assess depressive 
symptoms at baseline. The GDS-15 consists of items such as apathy (e.g., ‘Have 
you dropped many of your activities or interests?’), feelings of helplessness and 
hopelessness, and life satisfaction. The answer categories are binary (i.e., either 
present or absent), and the internal consistency has been shown to be high, with a 
Cronbach’s alpha of 0.80 (35). For sensitivity analyses, a cut-off of 6 or higher was also 
explored to define high depressive symptomology. We chose a cut-off of 6 or higher 
as it has been highlighted to have a higher sensitivity and specificity in community-
based settings (36). A diagnosis of major depressive disorder (MDD) was also 
assessed using the Mini-International Psychiatric Interview. For more information 
on depression assessment, refer to (37).

Dementia assessment
Ascertainment of dementia was done using a three-step procedure based on 
international criteria and is described in detail elsewhere (38-40). The total sample 
underwent cognitive assessment, and further neuropsychological testing was done 
in screen positives. In step 2, persons who were positive on test results, received 
further neurologic and proxy examinations. Next, a multidisciplinary panel consisting 
of a neurologist, geriatrician, neuroradiologist, and neuropsychologist diagnosed 
dementia according to international guidelines (33) at baseline for exclusion and at 
follow-up (between 2007 to 2011) for incident dementia. All participants were also 
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continuously followed up for incident dementia using medical and nursing home 
records and death certificates for less misclassification bias of cases as controls. 
When an individual moved into a nursing home, all-cause dementia and Alzheimer’s 
disease (AD) diagnoses were based on an intake exam. Additional cases within a 
nursing home were done by a standardized procedure done by all Icelandic nursing 
homes (41). For the current study, all-cause dementia, AD, and non-AD dementias 
were defined.

AL measures
Based on previous research (42), we included the following cardiovascular factors 
as indicative of AL: systolic blood pressure and pulse pressure (43, 44); lipids as 
HDL, low-density lipoprotein (LDL) (32), and triglycerides (42); metabolic factors as 
abdominal circumference (45) and fasting glucose (32); an inflammatory factor as 
high-sensitivity CRP (46), and stress factors as morning and evening salivary cortisol 
(32). Two consecutive measurements of blood pressure were taken with a mercury 
sphygmomanometer, with the mean systolic blood pressure value being used. Pulse 
pressure was defined as diastolic blood pressure subtracted from systolic blood 
pressure. Fasting glucose, HDL cholesterol, triglycerides, and CRP were measured 
on a Hitachi 912, using reagents from Roche Diagnostics. Salivary cortisol samples 
were collected the night before visiting the research center and the next morning 
45 minutes after waking with Salivette® devices (Sarstedt, Rommelsdorf, Germany) 
and analyzed with a time-resolved immunoassay with fluorescence detection (Delfia; 
PerkinElmer, Waltham, MA) (47). Inter-assay and intra-assay variabilities were below 
12% and 10%, respectively. The lower detection limit was 0.43 nmol/L (47). Salivary 
cortisol, CRP, triglycerides, and fasting glucose were natural log-transformed due to 
skewed distribution.

Other measures
At baseline, age, sex, education, and lifestyle variables were assessed via 
questionnaires. Education was categorized as primary, secondary, college, or 
university degree. Smoking was characterized as current, former, or never smoker. 
Alcohol use was quantified as grams per week. Physical activity (moderate-vigorous 
intensity) was classified by a self-reported questionnaire as never, rarely, occasionally 
(weekly but <1 h), moderate (1-3 h per week), or high (>4 h per week) (48) and 
included in the model as a nominal variable. Antihypertensive or antidepressant 
medication was classified as none or any. Mild cognitive impairment was defined 
by scoring less than 1.5 standard deviations below a cut-point determined from 
the cohort on memory or two other domains (e.g., language, visuoperceptual/
visuoconstructional, psychomotor speed, executive functions, fine motor control) 
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(49) and was diagnosed by a multidisciplinary panel of specialists (see above with 
dementia diagnosis). Metabolic syndrome was defined based on WHO criteria (50, 
51) as having insulin resistance (i.e., type 2 diabetes or impaired fasting glucose 
or tolerance), as well as any two of the following: 1) hypertension or taking 
antihypertensive medications, 2) dyslipidemia, or 3) obesity accompanied by a high 
albumin excretion rate. Prevalent stroke was defined through self-assessment or 
from hospital registries. Presence of APOE ε4 genotype was assessed via microplate 
array diagonal gel electrophoresis (MADGE) (52). APOE ε4 was characterized as 
dichotomous, classifying those with ε2/4, ε3/4, and ε4/4 genotypes as APOE ε4 
positive and those with ε2/2, ε2/3, and ε3/3 genotypes as APOE ε4 negative.

Data analysis
Excluding those with dementia at baseline, 5,343 individuals were included in 
the current analysis. To address missing values (max: 12%) at baseline, multiple 
imputation (10 datasets) was performed in Mplus (v. 6.12, Muthen & Muthen, 
2004). Multiple imputation in Mplus is based on Bayesian Markov chain Monte-
Carlo estimation. The outcome, incident dementia, was also used as a predictor in 
the imputation process, but it was not imputed itself. Results from the 10 datasets 
were then pooled for the rest of the analyses. Chi-square tests and ANOVAs were 
performed to assess differences in demographic and AL variables in those with high 
and low depressive symptomology.

First, we created profiles based on AL variables using LPA. LPA was performed 
using Mplus (v. 6.12, Muthen & Muthen, 2004) with AL items as indicators. LPA uses 
covariance across the indicator variables to find relationships amongst individuals 
(53). All AL factors were treated as continuous in the model. To determine the number 
of profiles, we used the Bayesian information criterion (BIC) and Akaike information 
criterion (AIC) with lower values indicating a better fitting model, the Vuong-Lo-
Mendell-Rubin Likelihood Ratio test (VLMR), entropy with higher values indicating 
a better fit, and that at least 1% of the cohort fitting into one profile. We estimated 
2-6 profiles to assess best model fit. Participants were classified based on their most 
likely latent profile membership for further analyses. ANOVAs were performed to 
assess differences between profiles on AL markers and depressive symptomology.

Next, we determined the risk of these AL profiles on developing all-cause dementia, 
AD, and non-AD. Univariate Cox regression analyses were performed in IBM SPSS 
Statistics (version 25) to estimate the hazard ratio (HR) of the association between 
AL profiles and all-cause dementia, AD and non-AD with follow-up years on the time 
scale. Model 1 corrected for age, sex, and education, and model 2 added history 
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of stroke, smoking, alcohol use, antihypertensive and antidepressant medication, 
physical activity, and APOE e4 genotype as covariates. The Cox proportional hazards, 
influential observations, and nonlinearity assumptions were tested and met.

Finally, we estimated the risk of depression with developing all-cause dementia, AD, 
and non-AD, with the AL profiles as covariates. Cox regression analyses first were 
done with depressive symptoms as main predictor and compared to joint models 
adding the AL profiles to assess their individual and joint contributions to dementia 
risk. Next, we also assessed multiplicative interaction with depressive symptoms 
and AL profiles by adding product terms between depressive symptoms and AL 
profiles into the model.  We also calculated the relative excess risk due to interaction 
(RERI) to assess additive interaction (54) and used the delta method to calculate the 
confidence interval (55). Model 1 correcting for age, sex, and education, and model 2 
for additional correction (see above) were also performed. Sensitivity analyses were 
done to explore differences in models 1 and 2 when using a clinical cut-off of the 
GDS-15 (6 or higher) or using a clinical diagnosis of MDD. To explore the robustness 
of the RERI, a sensitivity analysis exploring interaction using standardized depressive 
symptom scores was also performed. Lastly, a competing risk model was performed 
with all-cause mortality and dementia-free mortality as separate outcomes in Cox 
regression models. 

Results

Of the 5343 participants (mean age at baseline: 77 years), 58% were women (Table 
1). During a 12-year follow-up (M = 8.43 years; SD = 3.43 years), 1099 individuals 
developed dementia with 492 cases having AD diagnosis. Most individuals (n = 900) 
were diagnosed via assessment in nursing homes, and an additional (n = 160) were 
diagnosed by the Icelandic Heart Association, and 39 by death certificates. Internal 
consistency of the GDS-15 was quite high with a Cronbach’s alpha of 0.71.

The LPA on AL variables showed that four profiles were determined as the best-fitting 
model (see Supplemental Table 1). According to BIC and AIC criteria, more profiles 
resulted in a better fitting model. Additionally, based on the VLMR, four profiles 
compared to five profiles resulted in a better model fit (p = 0.047). Lastly, entropy 
was higher in the four profile model (0.829 v. 0.777). Therefore, we chose a four 
profile model. A figure of the five profile model is shown in Supplemental Figure 1.
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Figure 1. Average allostatic load factor value per profile.

Note: z-scores are represented here for visualization purposes. However, the variables are used in their 
non-standardized format in the latent profile analysis.

Table 1. Baseline characteristics in the study sample and stratified by high depressive symptomology 
(n=5343).

Total population 
(n=5343)

GDS <6 
(n=4933)

GDS 6+ 
(n=410)

Age, years 77 ± 6 77 ± 6 78 ± 6

Women 58% 57% 65%

Education, college + university 27% 28% 19%

Current smoker 12% 12% 16%

Alcohol use, gr/week 15 ± 32 15 ± 32 11 ± 24

Physical activity, moderate/high 32% 33% 21%

Stroke/blood clot in brain 7% 6% 12%

MCI at baseline 10% 10% 18%

Metabolic syndrome 32% 31% 33%

Diabetes 13% 12% 16%

Antihypertensive medication 48% 48% 47%

Antidepressant medication 14% 13% 34%

APOE e4 genotype 28% 28% 28%

Depression (M ± SD)

GDS-15, total 2 ± 2 2 ± 1 8 ± 2

Allostatic load indicators (M ± SD)

Systolic blood pressure (mmHg) 143 ± 21 143 ± 21 142 ± 23

Diastolic blood pressure (mmHg) 74 ± 10 74 ± 10 73 ± 11

Pulse pressure (mmHg) 69 ± 18 69 ± 18 68 ± 20

High-density lipoprotein (mmol/L) 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.4

Low-density lipoprotein (mmol/L) 3.5 ± 1.0 3.5 ± 1.0 3.4 ± 1.0

Abdominal circumference (cm) 101 ± 12 101 ± 12 101 ± 12

Fasting glucose (mg/dL) 5.8 ± 1.2 5.8 ± 1.2 5.8 ± 1.4
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Total population 
(n=5343)

GDS <6 
(n=4933)

GDS 6+ 
(n=410)

Triglycerides (mg/dL) 1.2 ± 0.7 1.2 ± 0.7 1.3 ± 0.6

C-reactive protein (mg/L) 3.8 ± 6.8 3.7 ± 6.4 5.2 ± 10.7

Morning cortisol (nmol/L) 20 ± 13 20 ± 14 18 ± 15

Evening cortisol (nmol/L) 4 ± 7 4 ± 7 5 ± 6

NOTE: Diastolic blood pressure was not used in the latent profile analysis, only systolic blood pressure 
and pulse pressure. Missings were less than 1% for all indicators except: 9% for evening cortisol, 10% 
for morning cortisol, and 12% for GDS-15 sum score. 
GDS = Geriatric Depression Scale-15; MCI = mild cognitive impairment.

Figure 2. Schematic diagram of the relations between depressive symptoms, allostatic load profiles, 
and all-cause dementia. Hazard ratios (HRs) and 95% confidence intervals are shown for the relationships 
between allostatic load and all-cause dementia, as well as between depressive symptoms and all-cause 
dementia (also adjusted for allostatic load profiles), adjusted for age, sex, education, smoking, alcohol, 
physical activity, stroke at baseline, antihypertensive medication, antidepressant medication, and APOE 
e4 genotype. AL = allostatic load.

Description of AL profiles
The profile with the highest prevalence (i.e., 43%) was named the ‘Low cardiovascular’ 
profile due to lower blood pressure compared to the total sample (mean systolic 
blood pressure: 130 mmHg vs. in the total sample: 143 mmHg) and generally 
average levels on all other AL markers (Figure 1). The profile with the second highest 
prevalence (i.e., 42%) was distinguished by average values across all AL domains 
and therefore called ‘Average’. This profile was defined as the reference group for all 
remaining analyses. A third profile was described by high pulse pressure (mean pulse 
pressure: 103 mmHg vs. in the total sample: 69 mmHg) with a prevalence of 11%, and 
therefore termed the ‘High cardiovascular dysregulation’ profile due to high levels 
on only cardiovascular AL markers. Lastly, a profile containing 4% of the sample, was 
characterized by higher values across multiple AL domains, with higher triglycerides 
(2.0 mg/dL vs. 1.2 mg/dL), higher abdominal circumference (109 cm vs. 101 cm), 

Table 1. Continued
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higher glucose (10 mg/dL vs. 5.8 mg/dL), higher evening cortisol (6 nmol/L vs. 4 
nmol/L), and higher CRP (5.4 mg/L vs. 3.8 mg/L). Average levels were seen regarding 
cardiovascular AL markers. Therefore, it was named ‘Multisystem dysregulation’ (Table 
2, Figure 1). ANOVAs on the AL markers reported significant differences amongst 
all AL markers between the profiles. Briefly, the ‘High cardiovascular dysregulation’ 
profile had the highest mean age (79 years), highest proportion of women (62%), 
and lowest proportion of individuals with high education (26%). Whereas the 
‘Multisystem dysregulation’ profile had the lowest proportion of women (44%) and 
the highest proportion of individuals with high education (30%). Demographic and 
covariate information per AL profile is shown in Supplemental Table 2.

Table 2. Baseline characteristics of the indicators in the latent profile analysis with four profiles.

  Average
n=2245 (42%)

High Cardiovascular 
Dysregulation
n=607 (11%)

Low Cardiovascular
n=2269 (43%)

Multisystem 
Dysregulation
n=222 (4%)

Allostatic load 
indicators (M ± SD)
Systolic blood 
pressure (mmHg)

145 ± 10 181 ± 14 130 ± 10 146 ± 17

Diastolic blood 
pressure (mmHg)

74 ± 9 78 ± 12 73 ± 10 73 ± 11

Pulse pressure 
(mmHg)

71 ± 9 103 ± 13 58 ± 9 73 ± 14

High-density 
lipoprotein (mmol/L)

1.6 ± 0.4 1.6 ± 0.4 1.6 ± 0.5 1.3 ± 0.4

Low-density 
lipoprotein (mmol/L)

3.5 ± 1.0 3.6 ± 1.1 3.5 ± 1.0 3.0 ± 1.1

Abdominal 
circumference (cm)

100 ± 12 100 ± 12 101 ± 12 109 ± 13

Fasting glucose (mg/
dL)

5.6 ± 0.7 5.8 ± 0.8 5.6 ± 0.6 10.0 ± 2.5

Triglycerides (mg/dL) 1.2 ± 0.6 1.2 ± 0.6 1.2 ± 0.6 2.0 ± 1.2

C-reactive protein 
(mg/L)

3.6 ± 7.0 4.1 ± 7.4 3.8 ± 6.1 5.4 ± 9.2

Morning cortisol 
(nmol/L)

20 ± 16 19 ± 15 20 ± 14 20 ± 14

Evening cortisol 
(nmol/L)

4 ± 7 4 ± 6 4 ± 5 6 ± 10

Depressive symptoms 
(GDS-15 sum score)

2 ± 2 3 ± 2 2 ± 2 3 ± 2

Note: GDS-15 = Geriatric Depression Scale-15
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Table 3. HRs and 95% CIs from the Cox regression on all-cause dementia, AD, and non-AD with allostatic 
load profiles.

  No. Of 
cases

All-cause 
dementia

No. Of 
cases

Alzheimer’s 
disease

No. Of 
cases

Other 
dementias

(n=1099) (n=492) (n=607)
HR (95% CI) HR (95% CI) HR (95% CI)

Model 1
Average 459 1 (reference) 216 1 (reference) 242 1 (reference)
High Cardiovascular 
Dysregulation

153 1.09 (0.89; 1.32) 50 0.83 (0.61; 1.13) 102 1.34 (1.04; 1.72)

Low Cardiovascular 438 1.04 (0.86; 1.26) 203 1.01 (0.83; 1.23) 236 1.06 (0.80; 1.40)
Multisystem 
Dysregulation

49 1.59 (1.17; 2.15) 23 1.49 (0.96; 2.31) 27 1.81 (1.19; 2.76)

Model 2
Average 459 1 (reference) 216 1 (reference) 242 1 (reference)
High Cardiovascular 
Dysregulation

153 1.19 (0.97; 1.44) 50 0.87 (0.64; 1.19) 102 1.40 (1.09; 1.79)

Low Cardiovascular 438 1.03 (0.86; 1.24) 203 1.00 (0.82; 1.22) 236 1.03 (0.82; 1.31)
Multisystem 
Dysregulation

49 1.72 (1.26; 2.33) 23 1.67 (1.08; 2.59) 27 1.85 (1.21; 2.81)

Model 1 is adjusted for age, sex, and education. 
Model 2 is adjusted for age, sex, education, smoking, alcohol, physical activity, stroke at baseline, 
antihypertensive medication, antidepressant medication, and APOE e4 genotype. 

Depression and AL profiles
When comparing those with high vs. low depressive symptomology, a one-way 
ANOVA showed that CRP was higher in those with high depressive symptoms 
(F(1, 5341)=16.33, p<0.001), as well as higher evening cortisol (F(1, 5341)=14.18, 
p<0.001). No other AL variables differed between those with low or high depressive 
symptomology. When comparing the AL profiles, depressive symptoms were slightly 
higher in the ‘High cardiovascular dysregulation’ and ‘Multisystem dysregulation’ 
profiles (Supplemental Info 1). 

AL profiles and dementia risk
Cox regression analyses for the first model, adjusting for age, sex, and education, 
showed no association between the ‘High cardiovascular dysregulation’ profile (HR 
1.09; 95% CI 0.89-1.32) or the ‘Low cardiovascular’ profile (HR 1.04; 95% CI 0.86-1.26) 
compared to the ‘Average’ profile with all-cause dementia. There was a 59% increased 
risk for all-cause dementia in the ‘Multisystem dysregulation’ profile (HR 1.59; 95% 
CI 1.17-2.15) compared to the ‘Average’ profile (Table 3, model 1). Estimates and 
confidence intervals slightly changed in the second model after further correction 
for additional lifestyle factors (Table 3, model 2).
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Table 4. Additive and multiplicative interaction between depressive symptoms and AL profiles on all-cause 
dementia, AD, and non-AD.

  No. Of 
cases

All-cause 
dementia

No. Of 
cases

Alzheimer’s 
disease

No. Of 
cases

Other 
dementias

(n=1099) (n=492) (n=607)
Model 1 HR (95% CI) HR (95% CI) HR (95% CI)
Multiplicative interaction
Depressive symptoms 
x High cardiovascular 
dysregulation

153 0.99 (0.91; 1.08) 50 0.97 (0.84; 1.13) 102 0.99 (0.89; 1.10)

Depressive symptoms x 
Low cardiovascular

438 1.01 (0.94;  1.09) 203 1.00 (0.92; 1.10) 236 1.01 (0.93; 1.10)

Depressive symptoms 
x Multisystem 
dysregulation

49 1.10 (0.97; 1.24) 23 1.09 (0.88; 1.35) 27 1.06 (0.92; 1.23)

Additive interaction RERI (95% CI) RERI (95% CI) RERI (95% CI)
Depressive symptoms 
x High cardiovascular

153 0.00 (-0.07; 0.08) 50 -0.03 (-0.16; 0.09) 102 0.04 (-0.07; 0.14)

Depressive symptoms 
x Low cardiovascular

438 0.01 (-0.05;  0.07) 203 0.00 (-0.08; 0.08) 236 0.01 (-0.05; 0.08)

Depressive symptoms 
x Multisystem 
dysregulation

49 0.15 (0.04; 0.26) 23 0.13 (-0.07; 0.33) 27 0.17 (0.01; 0.33)

Model 2 HR (95% CI) HR (95% CI) HR (95% CI)
Multiplicative interaction
Depressive symptoms 
x High cardiovascular 
dysregulation

153 0.97 (0.89; 1.05) 50 0.95 (0.82; 1.10) 102 0.95 (0.85; 1.05)

Depressive symptoms x 
Low cardiovascular

438 1.08 (0.96; 1.21) 203 0.99 (0.91; 1.08) 236 1.04 (0.90; 1.20)

Depressive symptoms 
x Multisystem 
dysregulation

49 1.01 (0.95; 1.07) 23 1.09 (0.89; 1.35) 27 1.00 (0.93; 1.08)

Additive interaction RERI (95% CI) RERI (95% CI) RERI (95% CI)
Depressive symptoms 
x High cardiovascular

153 -0.02 (-0.10; 0.06) 50 -0.05 (-0.19; 0.08) 102 -0.01 (-0.14; 0.11)

Depressive symptoms 
x Low cardiovascular

438 0.01 (-0.05; 0.06) 203 -0.01 (-0.09; 0.07) 236 0.00 (-0.06; 0.06)

Depressive symptoms 
x Multisystem 
dysregulation

49 0.15 (0.03; 0.26) 23 0.16 (-0.05; 0.37) 27 0.15 (-0.01; 0.32)

Model 1 is adjusted for age, sex, and education. 
Model 2 is adjusted for age, sex, education, smoking, alcohol, physical activity, stroke at baseline, antihypertensive 
medication, antidepressant medication, and APOE e4 genotype. 
For information on calculation of the additive RERI by using a product term in a regression model, please see (54).
AL = allostatic load; AD = Alzheimer’s disease.
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For AD dementias, there was an increased risk in the ‘Multisystem dysregulation’ 
group with full adjustment for covariates (HR 1.75; 95% CI 1.12-2.71). For non-AD 
dementias, an increased risk was found in the ‘High cardiovascular dysregulation’ 
group (HR 1.34; 95% CI 1.04-1.72) and in the ‘Multisystem dysregulation’ group 
(HR 1.81; 95% CI 1.19-2.76) in model 1 and remained with further adjustment for 
covariates in model 2 (Table 3).

Depression and incident dementia and the role of AL profiles
Cox regression analyses found an increased risk for incident dementia in relation to 
the sum-score on the GDS-15 (HR per point increase 1.12; 95% CI 1.09-1.15) which 
remained in model 2. An increased risk for AD dementia (HR 1.07; 95% CI 1.03-1.12) 
and non-AD dementias (HR 1.16; 95% CI 1.12-1.21) was also found in relation to 
depressive symptoms, which also remained in model 2. However, when adding 
the AL profiles into the Cox regression to assess mediation, the effect estimates of 
depressive symptoms on incident dementia remained increased (Figure 2). Further, 
HRs and confidence intervals were similar in the AL profiles for all-cause dementia, 
AD, and non-AD dementias in the joint model with depressive symptoms compared 
to a model with AL profiles alone (Supplemental Table 3, Table 3). Sensitivity 
analyses based on the GDS-15 cut-off of 6 or higher or using current MDD diagnosis 
showed similar results as well (Supplemental Table 4). Evidence for possible additive 
interaction with depressive symptoms and the ‘Multisystem dysregulation’ profile 
was found for all-cause dementia (RERI 0.15; 95% CI 0.04-0.26), as well as non-AD 
dementia (RERI 0.17; 95% CI 0.01-0.33) in model 1 (Table 4). That is, the combined 
effect of depressive symptoms and the ‘Multisystem dysresgulation’ profile on all-
cause dementia and non-AD dementia was larger than the sum of the individual 
effects. Results stayed similar for all-cause dementia after further correction for 
covariates (Table 4) and when standardizing depressive symptoms (Supplemental 
Table 5). No evidence for interaction on the multiplicative scale was found with 
depressive symptoms and any AL profile (Table 4; Supplemental Table 5).

The competing risk model did not find a difference in risk when looking at dementia-
free mortality compared to all-cause dementia (Supplemental Table 6).

Discussion

The current study aimed to explore the role of AL in the relation between depressive 
symptoms and incident dementia. Using LPA, we identified four profiles: ‘Low 
cardiovascular’, ‘Average’, ‘High cardiovascular dysregulation’, and ‘Multisystem 
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dysregulation’. A 72% increased risk of all-cause dementia was found in the 
‘Multisystem Dysregulation’ group, and a 41% increased risk of non-AD dementias 
was found for the ‘High cardiovascular dysregulation’ group. Depressive symptoms 
were associated with a 10% higher risk of all-cause dementia with each point 
increase on the GDS-15, which remained after further correction of the AL profiles. 
Therefore, no evidence for mediation was found. Evidence for additive interaction 
was found between depressive symptoms and the ‘Multisystem dysregulation’ profile 
for all-cause dementia, specifically for non-AD related dementias. No multiplicative 
interaction was found with depressive symptoms and any AL profile.

While AL profiles and dementia have yet to be assessed previously, the results of the 
AL profiles with incident dementia are in line with previous studies on depression 
and AL profiles. This suggests that AL profiles may show similar associations with 
both dementia and depression. The highest risk for incident dementia was found 
in the ‘Multisystem Dysregulation’ group, which was characterized by metabolic 
and inflammatory factors. Previous studies on AL and depression also found an 
association between depression and AL profiles characterized by dysregulation in 
metabolic and inflammatory subsystems (56-59). Further, this profile was associated 
specifically with AD dementia as well, whereas both the ‘Multisystem Dysregulation’ 
and the ‘High cardiovascular dysregulation’ were associated with AD and non-AD 
dementias. This could be due to vascular dementia cases in the non-AD dementia 
subgroup. This distinction in AL profiles between subtypes of dementia should be 
assessed further for more precise and individualized intervention implementation.

Previous research has highlighted the most consistent evidence for risk of dementia 
being depression (5). Hypotheses regarding this association have included 
inflammatory, stress, and vascular mechanisms that all cumulatively represent AL 
(11, 60-62). We did find that there was an indication that the joint effect of the 
‘Multisystem dysregulation’ profile and depressive symptoms was greater than the 
sum of the effects of the ‘Multisystem dysregulation’ profile alone and depressive 
symptoms alone. This implies those in the ‘Multisystem dysregulation’ profile could 
be more susceptible to the negative effects of late-life depressive symptoms on 
incident dementia. As this is the first study assessing the role of AL profiles and 
depressive symptoms on incident dementia, and we had no a-priori hypothesis 
regarding this finding, future studies need to replicate this finding.

Strengths of this study include a large, community-based population, extensive 
follow-up time to determine incident dementia and the monitoring of dementia 
diagnosis with virtually no loss to follow-up for dementia outcome. Multiple 
imputation was done to address missing data and HRs were corrected for potential 
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confounders. Further, using LPA as the analytical method allowed for using 
empirically-based classification instead of arbitrary cut-offs.

One limitation of the current study was that a wide range of AL markers were not 
available for inflammatory and stress processes, such as interleukin-6 or D-HEAS. 
Additionally, subtyping of dementias other than AD was not done reliably in those 
diagnosed in nursing homes. Therefore, we were unable to examine vascular dementia 
as an outcome and infer with categorical certainty our results regarding AD and non-
AD individuals. It is critical to note that the population of the AGES-Reykjavik study is 
ethnically homogeneous. These findings need to be replicated in other populations, 
especially in those who are marginally underrepresented. Further, we did not have the 
power to distinguish between those who had remitted or prior depressive symptoms 
and those who only experienced late-life depressive symptoms. Thus, these results 
need to be validated in those who also experience high depressive symptoms in early- 
to midlife. Lastly, our findings regarding the interaction between depressive symptoms 
and the ‘Multisystem dysregulation’ profile needs to be replicated, as this profile was 
less prevalent (i.e., 4% of the study sample).

The current study found that both a profile specifically associated with metabolic 
and inflammatory dysregulation, as well as increased depressive symptoms, were 
independently associated with an increased risk of all-cause dementia. Further, 
this profile showed specific susceptibility to the effects of depressive symptoms on 
dementia risk. Future studies on dementia should take a multifaceted approach to 
guide awareness for subsequent individualized prevention and treatment efforts.
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Supplemental Table 1. Model fit criteria for 2-6 classes.

Model LL AIC BIC aBIC Entropy

2 classes -99488 199038 199242 199144 0.811

3 classes -98492 197068 197345 197211 0.867

4 classes -97582 195269 195618 195450 0.829

5 classes -96997 194122 194544 194340 0.777

6 classes -96541 193232 193726 193488 0.785

Supplemental Info 1.

High vs. low depressive symptomology based on GDS-15 cut-off score (<6 and 6+)
A one-way ANOVA revealed that those with high depressive symptoms were 
significantly older compared to those with low depressive symptoms (F(1, 
5341)=13.05; p<0.001). Current alcohol consumption was lower in those with high 
depressive symptomology (F(1, 5341)=7.63; p=0.01). C-reactive protein was also 
higher in those with high depressive symptoms (F(1, 5341)=16.33; p<0.001). Lastly, 
greater evening cortisol was also observed in those with high depressive symptoms 
(F(1, 5341)=14.18; p<0.001). No other variables significantly differed between the 
groups. Chi-square tests revealed a significant difference in sex (F(1)=9.26; p=0.002), 
education (F(3)=8.28; p<0.001), physical activity (F(4)=7.87; p<0.001), history of 
stroke (F(1)=14.43; p<0.001), mild cognitive impairment (F(1)=26.48; p<0.001), and 
use of antidepressants (F(1)=122.89; p<0.001). More women, a lower proportion of 
those with high education, a lower proportion of those with high physical activity 
level, a higher number of individuals with prevalent stroke and mild cognitive 
impairment, and more individuals on antidepressant medication were in the group 
with high depressive symptomology. Marginal significance was found in smoking 
status (F(2)=3.01; p=0.05) and type 2 diabetes (F(1)=3.75; p=0.05), with more current 
smokers and individuals with diabetes in those with high depressive symptomology.

Allostatic load risk subgroups
A one-way ANOVA revealed significant differences between the allostatic load 
subgroups on age (F(3, 5339)=61.16; p<0.001), pulse pressure (F(3, 5339)=5087.39; 
p<0.001), high-density lipoprotein (F(3, 5339)=59.70; p<0.001), low-density 
lipoprotein (F(3, 5339)=19.09; p<0.001), abdominal circumference (F(3, 5339)=41.90; 
p<0.001), glucose (F(3, 5339)=1893.11; p<0.001), triglycerides (F(3, 5339)=123.94; 
p<0.001), c-reactive protein (F(3, 5339)=6.74; p<0.001), evening cortisol (F(3, 
5339)=6.35; p<0.001), and depressive symptoms (F(3, 5339)=4.23; p=0.004). 



234 | Chapter 8

Supplemental Table 2. Baseline characteristics of demographic information and covariates in the  
four profiles.

Average
n=2245 (42%)

High Cardiovascular 
Dysregulation
n=607 (11%)

Low Cardiovascular
n=2269 (43%)

Multisystem 
Dysregulation
n=222 (4%)

Age, years 77 ± 6 79 ± 6 76 ± 6 76 ± 6

Women 59% 62% 57% 44%

Education, college + 
university

27% 26% 28% 30%

Current smoker 11% 8% 14% 13%

Alcohol use, gr/week 15 ± 30 16 ± 35 14 ± 31 15 ± 35

Physical activity, 
moderate/high

32% 28% 32% 31%

Stroke/blood clot in 
brain

7% 7% 6% 9%

MCI at baseline 10% 12% 10% 12%

Metabolic syndrome 29% 35% 28% 87%

Diabetes 8% 15% 8% 99%

Antihypertensive 
medication

48% 67% 41% 61%

Antidepressant 
medication

14% 11% 15% 16%

APOE e4 genotype 28% 27% 27% 25%

GDS-15 sum score 2 ± 2 3 ± 2 2 ± 2 3 ± 2
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Supplemental Table 3. HRs and 95% CIs from the Cox regression on all-cause dementia, AD, and non-
AD with depressive symptoms, correcting for allostatic load profiles.

  No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Non-AD 
dementias

(n=1099) (n=492) (n=607)
HR (95% CI) HR (95% CI) HR (95% CI)

Model 1
GDS-sum score 1099 1.12 (1.09-1.15) 492 1.07 (1.03-1.12) 607 1.16 (1.12-1.20)
Average 459 1 (reference) 216 1 (reference) 242 1 (reference)
High 
Cardiovascular 
Dysregulation

153 1.07 (0.89-1.30) 50 0.82 (0.60-1.11) 102 1.32 (1.04-1.68)

Low 
Cardiovascular

438 1.02 (0.87-1.21) 203 1.00 (0.82-1.21) 236 1.04 (0.82-1.31)

Multisystem 
Dysregulation

49 1.58 (1.17-2.13) 23 1.49 (0.96-2.30) 27 1.77 (1.17-2.67)

Model 2
GDS-sum score 1099 1.10 (1.07-1.13) 492 1.07 (1.03-1.12) 607 1.14 (1.09-1.18)
Average 459 1 (reference) 216 1 (reference) 242 1 (reference)
High 
Cardiovascular 
Dysregulation

153 1.13 (0.93-1.36) 50 0.85 (0.62-1.16) 102 1.34 (1.06-1.71)

Low 
Cardiovascular

438 1.01 (0.88-1.17) 203 0.99 (0.81-1.21) 236 1.02 (0.83-1.24)

Multisystem 
Dysregulation

49 1.68 (1.24-2.27) 23 1.67 (1.08-2.60) 27 1.80 (1.19-2.73)

Model 1: Adjusted for age, sex, and education. 
Model 2: Adjusted for age, sex, education, smoking, alcohol, physical activity, stroke at baseline, 
antihypertensive medication, antidepressant medication, and APOE e4 genotype.
AD = Alzheimer’s disease.
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Supplemental Table 4. HRs and 95% CIs from the Cox regression on all-cause dementia, AD, and non-
AD with depressive symptoms (dichotomized) as well as for current diagnosis for major depressive 
disorder.

  No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Non-AD 
dementias

(n=1099) (n=492) (n=607)
HR (95% CI) HR (95% CI) HR (95% CI)

Model 1
GDS-score 6+ 109 1.43 (1.14-1.79) 40 1.18 (0.83-1.67) 69 1.69 (1.26-2.26)
GDS-score 6+ 
(correcting for AL)

109 1.43 (1.14-1.78) 40 1.18 (0.84-1.68) 69 1.67 (1.25-2.25)

Model 2
GDS-score 6+ 109 1.32 (1.06-1.66) 40 1.16 (0.82-1.65) 69 1.52 (1.12-2.06)
GDS-score 6+ 
(correcting for AL)

109 1.32 (1.05-1.65) 40 1.17 (0.82-1.66) 69 1.50 (1.10-2.03)

Model 1
Current MDD 25 2.13 (1.32-3.46) 11 1.95 (1.01-3.77) 14 2.87 (1.38-5.99)
Current MDD 
(correcting for AL)

25 2.12 (1.32-3.42) 11 1.95 (1.01-3.76) 14 2.80 (1.38-5.67)

Model 2
Current MDD 25 1.63 (1.03-2.59) 11 1.64 (0.85-3.18) 14 1.93 (1.00-3.75)
Current MDD 
(correcting for AL)

25 1.62 (1.03-2.55) 11 1.65 (0.85-3.21) 14 1.83 (0.95-3.52)

Model 1: Adjusted for age, sex, and education. 
Model 2: Adjusted for age, sex, education, smoking, alcohol, physical activity, stroke at baseline, 
antihypertensive medication, antidepressant medication, and APOE e4 genotype.
Note: n=410 for those with GDS-sum score of 6 or higher and n = 76 for those with a current MDD 
diagnosis. GDS = Geriatric Depression Scale 15; AD = Alzheimer’s disease.
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Supplemental Table 5. Additive & multiplicative interaction between standardized depressive 
symptoms & AL profiles on all-cause dementia, AD, and non-AD.

  No. of 
cases

All-cause 
dementia

No. of 
cases

Alzheimer’s 
disease

No. of 
cases

Other 
dementias

(n=1099) (n=492) (n=607)
Model 1 HR (95% CI) HR (95% CI) HR (95% CI)
Multiplicative interaction
Depressive symptoms 
x High cardiovascular 
dysregulation

153 0.98 (0.82; 1.17) 50 0.94 (0.69; 1.29) 102 0.97 (0.78; 1.22)

Depressive symptoms x 
Low cardiovascular

438 1.03 (0.88; 1.20) 203 1.01 (0.83; 1.22) 236 1.03 (0.86; 1.23)

Depressive symptoms x 
Multisystem dysregulation

49 1.21 (0.94; 1.57) 23 1.20 (0.76; 1.88) 27 1.14 (0.84; 1.54)

Additive interaction RERI (95% CI) RERI (95% CI) RERI (95% CI)
Depressive symptoms x 
High cardiovascular

153 0.00 (-0.23; 0.22) 50 -0.08 (-0.38; 0.21) 102 0.07 (-0.29; 0.43)

Depressive symptoms x 
Low cardiovascular

438 0.04 (-0.15; 0.23) 203 0.01 (-0.21; 0.23) 236 0.05 (-0.20; 0.29)

Depressive symptoms 
x Multisystem 
dysregulation

49 0.52 (0.01; 1.03) 23 0.41 (-0.48; 1.30) 27 0.56 (-0.17; 1.29)

Model 2 HR (95% CI) HR (95% CI) HR (95% CI)
Multiplicative interaction
Depressive symptoms 
x High cardiovascular 
dysregulation

153 0.93 (0.78; 1.11) 50 0.90 (0.66; 1.22) 102 0.89 (0.71; 1.11)

Depressive symptoms x 
Low cardiovascular

438 1.01 (0.89; 1.15) 203 0.98 (0.81; 1.18) 236 1.01 (0.86; 1.19)

Depressive symptoms x 
Multisystem dysregulation

49 1.17 (0.91; 1.49) 23 1.21 (0.78; 1.88) 27 1.09 (0.80; 1.47)

Additive interaction RERI (95% CI) RERI (95% CI) RERI (95% CI)
      Depressive symptoms x 
High cardiovascular

153 -0.06 (-0.28; 0.16) 50 -0.13 (-0.42; 0.17) 102 -0.08 (-0.41; 0.26)

      Depressive symptoms x 
Low cardiovascular

438 0.01 (-0.14; 0.17) 203 -0.03 (-0.24; 0.19) 236 0.01 (-0.20; 0.23)

      Depressive symptoms x 
Multisystem dysregulation

49 0.46 (-0.07; 1.00) 23 0.52 (-0.48; 1.52) 27 0.44 (-0.26; 1.14)

Model 1 is adjusted for age, sex, and education. Model 2 is adjusted for age, sex, education, smoking, 
alcohol, physical activity, stroke at baseline, antihypertensive medication, antidepressant medication, 
and APOE e4 genotype. For information on calculation of the additive RERI by using a product term in 
a regression model, please see (53). AL = allostatic load; AD = Alzheimer’s disease.
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Supplemental Table 6. Hazard ratios and 95% CIs from Cox regression models of subgroups on all-
cause dementia, all-cause mortality, dementia-free mortality, and dementia and/or mortality.

  No. of 
cases

All-cause dementia
(n=1099)
HR (95% CI)

No. of 
cases

All-Cause Mortality
(n=2525)
HR (95% CI)

No. of 
cases

Dementia-Free Mortality
(n=1746)

No. of 
cases

Dementia and/or Mortality
(n=2845)

GDS-sum score 1099 1.12 (1.09-1.15) 2525 1.11 (1.09-1.13) 1746 1.11 (1.09-1.14) 2845 1.11 (1.09-1.13)

Average 459 1 (reference) 1035 1 (reference) 705 1 (reference) 1164 1 (reference)

High C Dysregulation 153 1.07 (0.89-1.30) 354 1.10 (0.97-1.24) 237 1.11 (0.95-1.29) 389 1.09 (0.96-1.24)

Low C 438 1.02 (0.87-1.21) 1000 1.02 (0.91-1.13) 702 1.03 (0.90-1.18) 1141 1.03 (0.91-1.16)

Multisystem Dysregulation 49 1.58 (1.17-2.13) 136 1.77 (1.47-2.12) 102 1.87 (1.51-2.32) 151 1.76 (1.48-2.10)

GDS-sum score 1099 1.10 (1.07-1.13) 2525 1.09 (1.07-1.11) 1746 1.09 (1.06-1.11) 2845 1.09 (1.07-1.11)

Average 459 1 (reference) 1035 1 (reference) 705 1 (reference) 1164 1 (reference)

High C Dysregulation 153 1.13 (0.93-1.36) 354 1.14 (1.01-1.29) 237 1.14 (0.98-1.34) 389 1.14 (1.01-1.28)

Low C 438 1.01 (0.88-1.17) 1000 1.00 (0.92-1.10) 702 1.02 (0.90-1.15) 1141 1.01 (0.92-1.12)

Multisystem Dysregulation 49 1.68 (1.24-2.27) 136 1.77 (1.48-2.13) 102 1.85 (1.49-2.29) 151 1.79 (1.50-2.12)

Models are adjusted for age, sex, and level of education in the first panel and for age, sex, level of 
education, smoking, alcohol, physical activity, stroke at baseline, anti-hypertension medication, anti-
depressant medication, and APOE e4 genotype in the second panel.
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Supplemental Table 6. Hazard ratios and 95% CIs from Cox regression models of subgroups on all-
cause dementia, all-cause mortality, dementia-free mortality, and dementia and/or mortality.

  No. of 
cases

All-cause dementia
(n=1099)
HR (95% CI)

No. of 
cases

All-Cause Mortality
(n=2525)
HR (95% CI)

No. of 
cases

Dementia-Free Mortality
(n=1746)

No. of 
cases

Dementia and/or Mortality
(n=2845)

GDS-sum score 1099 1.12 (1.09-1.15) 2525 1.11 (1.09-1.13) 1746 1.11 (1.09-1.14) 2845 1.11 (1.09-1.13)

Average 459 1 (reference) 1035 1 (reference) 705 1 (reference) 1164 1 (reference)

High C Dysregulation 153 1.07 (0.89-1.30) 354 1.10 (0.97-1.24) 237 1.11 (0.95-1.29) 389 1.09 (0.96-1.24)

Low C 438 1.02 (0.87-1.21) 1000 1.02 (0.91-1.13) 702 1.03 (0.90-1.18) 1141 1.03 (0.91-1.16)

Multisystem Dysregulation 49 1.58 (1.17-2.13) 136 1.77 (1.47-2.12) 102 1.87 (1.51-2.32) 151 1.76 (1.48-2.10)

GDS-sum score 1099 1.10 (1.07-1.13) 2525 1.09 (1.07-1.11) 1746 1.09 (1.06-1.11) 2845 1.09 (1.07-1.11)

Average 459 1 (reference) 1035 1 (reference) 705 1 (reference) 1164 1 (reference)

High C Dysregulation 153 1.13 (0.93-1.36) 354 1.14 (1.01-1.29) 237 1.14 (0.98-1.34) 389 1.14 (1.01-1.28)

Low C 438 1.01 (0.88-1.17) 1000 1.00 (0.92-1.10) 702 1.02 (0.90-1.15) 1141 1.01 (0.92-1.12)

Multisystem Dysregulation 49 1.68 (1.24-2.27) 136 1.77 (1.48-2.13) 102 1.85 (1.49-2.29) 151 1.79 (1.50-2.12)

Models are adjusted for age, sex, and level of education in the first panel and for age, sex, level of 
education, smoking, alcohol, physical activity, stroke at baseline, anti-hypertension medication, anti-
depressant medication, and APOE e4 genotype in the second panel.
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Abstract

Background: Early identification of dementia is crucial for prompt intervention 
for high-risk individuals in the general population. External validation studies on 
prognostic models for dementia have highlighted the need for updated models. 
The use of machine learning in dementia prediction is in its infancy and may 
improve predictive performance. The current study aimed to explore the difference 
in performance of machine learning algorithms compared to traditional statistical 
techniques, such as logistic and Cox regression, for prediction of all-cause dementia. 
Our secondary aim was to assess the feasibility of only using clinically accessible 
predictors rather than MRI predictors.

Methods: Data are from 4,793 participants in the population-based AGES-Reykjavik 
Study without dementia or mild cognitive impairment at baseline (mean age: 76 
years, % female: 59%). Cognitive, biometric, and MRI assessments (total: 59 variables) 
were collected at baseline, with follow-up of incident dementia diagnoses for a 
maximum of 12 years. Machine learning algorithms included elastic net regression, 
random forest, support vector machine, and elastic net Cox regression. Traditional 
statistical methods for comparison were logistic and Cox regression. Model 1 was 
fit using all variables and model 2 was after feature selection using the Boruta 
package. A third model explored performance when leaving out neuroimaging 
markers (clinically accessible model). Ten-fold cross-validation, repeated ten times, 
was implemented during training. Upsampling was used to account for imbalanced 
data. Tuning parameters were optimized for recalibration automatically using the 
caret package in R.

Results: Nineteen percent of participants developed all-cause dementia. Machine 
learning algorithms were comparable in performance to logistic regression in all 
three models. However, a slight added performance was observed in the elastic 
net Cox regression in the third model (c = 0.78, 95% CI: 0.78-0.78) compared to the 
traditional Cox regression (c = 0.75, 95% CI: 0.74-0.77).

Conclusions: Supervised machine learning only showed added benefit when 
using survival techniques. Removing MRI markers did not significantly worsen our 
model’s performance. Further, we presented the use of a nomogram using machine 
learning methods, showing transportability for the use of machine learning models 
in clinical practice. External validation is needed to assess the use of this model in 
other populations. Identifying high-risk individuals will amplify prevention efforts 
and selection for clinical trials.
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Introduction

Dementia is characterized by debilitating cognitive impairment that increases 
the risk of mortality, while quality of life decreases for both the patient and his or 
her caregivers. Currently, 50 million people in the world have dementia, which is 
expected to triple by 2050 (1). While much research has been done on the risk factors 
for dementia, no effective treatment is available (2). Further, by the time of diagnosis, 
the brain has already substantially declined in function. Thus, early classification 
is crucial for prompt intervention and better outcomes for high-risk individuals. 
Many prognostic models for incident dementia have been developed using 
‘traditional’ statistical techniques, such as logistic or Cox regression (3-6). However, 
external validation of these models showed poor calibration and performance (7, 
8), highlighting the need for updated models for prognostication of dementia. The 
recent increased application of machine learning for disease prediction offers the 
possibility to improve dementia prognostic models. Machine learning can aid in 
unraveling complex relationships between predictors, taking into account nonlinear 
relationships and interactions, while additionally using that information to increase 
a model’s predictive performance (9).

Research thus far using machine learning for dementia prediction is in its infancy 
and current models primarily focus on magnetic resonance imaging (MRI) for 
prediction (10, 11). Some studies have explored demographic factors (12, 13) 
and plasma proteomic data (14-16), but no studies have yet also explored some 
commonly assessed biomarkers (e.g., glucose, cholesterol, blood pressure) 
along with demographic and lifestyle information in dementia prediction using 
machine learning classifiers (10). A recent review also highlighted the need for the 
development of new prognostic models for dementia that focus on clinical variables 
over imaging variables (10). An emphasis on predictors that are more clinically 
accessible than MRI is crucial for the potential future use of prognostic models for 
dementia in clinical practice. Focusing on accessible predictors will allow for wider 
generalizability of the assessment of high-risk individuals for dementia into the 
general population.

Previous studies using machine learning methods have mostly used the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) cohort for algorithm testing (10), with 
relatively limited sample sizes (i.e., less than 1,000 participants). Discrimination has 
focused on differentiating mild cognitive impairment (12) from Alzheimer’s disease 
(10), the leading cause of dementia. Further, most studies that implemented machine 
learning methods did not take class imbalance into account (10), which focuses on 
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negative predictive value over positive predictive value and introduces possible bias. 
As previous studies have also focused on cohorts that have more cases than controls, 
the possible generalizability of the prognostic model decreases (17). Therefore, there 
is a current gap in developing a dementia risk model using machine learning for the 
general population, using a large sample size. 

We aimed to assesses if machine learning algorithms (e.g., elastic net regression, 
support vector machine) aid in the performance of dementia prognosis compared 
to traditional statistical techniques (e.g., logistic and Cox regression) in a large, 
population-based cohort from Reykjavik, Iceland of almost 5,000 individuals without 
dementia or mild cognitive impairment. Further, we wanted to assess if performance 
remained high when focusing only on clinically accessible predictors. Lastly, we 
wanted to assess if performance differed when stratifying by sex.

Methods

This study was reported following the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) Statement (18).

Study sample
Data originated from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik 
Study, a community-based cohort study of individuals 65 years or older living in 
the Reykjavik area. More details are provided elsewhere (19). In brief, participants 
from the AGES-Reykjavik Study stem from the Reykjavik study, initiated in 1967 
by the Icelandic Heart Association. Between 2002 and 2006, 5,764 individuals 
randomly selected from survivors of the Reykjavik Study were included. Baseline 
cognitive, biometric, and MRI assessments were done at the Reykjavik research 
center. Individuals with dementia or mild cognitive impairment at baseline were 
excluded from the current analysis, leaving 4,793 individuals in the analytical sample. 
Cognitive, biometric, and MRI assessments were done at baseline between 2002 and 
2006, with follow-up of incident dementia diagnoses for a maximum of 12 years.  
Written informed consent was obtained from all participants. The Icelandic National 
Bioethics Committee (VSN: 00-0063), the Icelandic Data Protection Authority, and 
the Institutional Review Board for the National Institute on Aging, NIH approved 
this study.
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Dementia assessment
Details regarding the procedure for dementia ascertainment can be found elsewhere 
(20-22). In brief, a three-step procedure based on international guidelines (19) was 
used. First, all participants underwent neuropsychological testing of cognition 
using the Mini-Mental State Examination (MMSE) and the Digit Symbol Substitution 
Test (21), with the next step in those who screened positive undergoing further 
neuropsychological examination. In the third step, in those who screened positive 
on the neuropsychological examinations, further proxy and diagnostic assessments 
were performed regarding the Activities of Daily Living (ADL), as well as social 
and cognitive functioning. Then, a multidisciplinary panel including a neurologist, 
geriatrician, neuroradiologist, and neuropsychologist performed a consensus 
diagnosis that included exam measures and brain MRI (22). Additional dementia 
cases were also obtained through medical and nursing home records as well as in 
death certificates. Dementia cases obtained through nursing homes were collected 
following a standardized protocol in Icelandic nursing homes (23). The current study 
focused on all-cause dementia only. 

Demographics
Age (continuous), sex (dichotomous), education (categorical; categorized as primary 
school, secondary school, college, or university), and current marital status (married/
living together, widowed, divorced, single) were collected by questionnaire at baseline.

Clinical variables
A wide range of clinical variables were used, including metabolic, lipid, and 
inflammatory levels, as well as medical diagnoses (more information in 
Supplementary Info 1). 

Medication use
Medication use was treated as dichotomous (yes/no) for benzodiazepines, beta-
adrenergic blockers, glucocorticoids, psycholeptics, or anti-depressants.

Lifestyle variables
We included the following continuous variables: alcohol consumption, mental leisure 
activity (days per month), social leisure activity (days per month), number of close 
friends, and number of living close relatives. The categorical variables we included 
are as follows: smoking status (current, former, never), physical activity within the 
last 12 months (never, rarely, occasionally, moderate, high), difficulty in walking 2 
kilometers (very easy, somewhat easy, not that easy), difficulty in walking 500 meters 
(very easy, somewhat easy, not that easy), and how often fish is consumed as the 



248 | Chapter 9

main meal (never, less than once a week, 1-2 times a week, 3-4 times a week, 5-6 
times a week, daily, more than once a day).

Cognitive assessment
The raw total score of the test of global cognitive function, the MMSE, was the only 
variable used to assess cognition. 

Neuroimaging variables
MR images were collected using 1.5T brain MRI (Signa TwinSpeed; General Electric 
Medical Systems). For more information on the MRI protocol, refer to (24-26). Log-
transformed white matter lesion volume and hippocampal volume, as well as the 
ratio of gray matter/intracranial volume (to account for correlation), and the number 
of cerebral microbleeds were entered as continuous predictors. The presence of 
infarcts (yes/no) was entered as a dichotomous variable.

Statistical analyses 
All analyses were performed in R (v 4.0.3). Before beginning the analyses, data were 
split into a two-thirds (proportion: 0.66) training set and a one-third test set, ensuring 
for balanced incident dementia cases in the train/test sets by using the split_df() 
function in R. 

Sample size calculations
We performed a post-hoc sample size calculation using pmsampsize package in R to 
calculate the number of events/cases required using logistic regression as best-case-
scenario (27). If all predictors are included, the required sample size is at least 1,691, 
which is less than the current sample of 4,793. 

Missing data
Half of the individuals (55%) had at least one missing value on predictors (max: 
27% missing on ability to walk 2km or 500m). There were no missing values on the 
outcome (i.e., dementia). Missing data were handled with multiple imputation using 
the mice package in R separately in the training and test sets using ten imputed 
datasets. The predictor matrix for the training set was used for imputation in the 
test set. All predictors as well as the outcome were used in the imputation process. 
A random imputed dataset from a total of ten was selected for further analyses for 
both the training and test sets as pooling methods for machine learning prognostic 
models have yet to be validated. See Supplementary Table 1 for an overview of 
predictors and outcome in both training and test sets.
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Model building
The caret package in R (28) was used for all prediction models, i.e. elastic net 
regression, random forest, support vector machine, and logistic regression. To 
take time-to-event and censoring into account, we also performed a regular Cox 
regression using the glmnet package (29) and elastic net Cox regression using the 
hdnom package (30) in R. For the support vector machine classifier, a radial kernel 
was used to allow for nonlinear separations of the data. Hyperparameter tuning was 
performed automatically by caret. Pseudocode can be found in Supplementary Code 
1. The models were first fitted with all features (model 1). Then, models were fit after 
feature selection using the Boruta package in R (31) for more parsimonious models 
(model 2). In short, Boruta uses a random forest classifier and applies mean decrease 
accuracy to evaluate each feature’s importance based on 99 iterations. Tentative 
features were not included. Lastly, to evaluate a clinically accessible model (i.e., 
one that does not include MRI features), models were fit only with features selected 
from Boruta that were not MRI (model 3). Tuning parameters were optimized for 
recalibration and varied across all three models (Supplementary Table 2).

Internal validation 
Using cross-validation, more variability is introduced into the training of each 
classifier. Ten-fold cross-validation, repeated ten times, for a total of 100 times, was 
used in training each machine learning algorithm. The training data are divided into 
ten folds, with the given classifier trained on nine folds, using the tenth for testing. 
This is repeated until each of the ten folds is held back for testing. The performance 
metrics are then averaged across all repetitions. Further, upsampling was performed 
to handle imbalanced data and was implemented during cross-validation. This is 
done by resampling with replacement our class with incident dementia (i.e., the 
minority class) to be the same size as those who do not develop dementia (i.e., the 
majority class). If models failed to converge with upsampling, downsampling was 
used, which deletes samples from the majority class (i.e., those who do not develop 
dementia). Additionally, we tested different thresholds for classification other than 
0.5, ranging from 0.10 to 0.90 by steps of 0.02. 

Performance metrics
The following performance measures were used to assess the models: area under the 
receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, positive 
predictive value, and negative predictive value. The model with the highest AUC was 
then used for the test set. For the survival models, the c-statistic was used. C-statistics 
and AUC values are comparable to assess performance. The Mleval package in R was 
used to calculate 95% confidence intervals. Bootstrapping using the hdnom package 
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was done to calculate 95% confidence intervals in the elastic net Cox regression 
models. The hdnom package was used to create calibration plots for the elastic net 
Cox regression as well as to create a clinically relevant nomogram.

Sensitivity analysis
To assess if the prognostic model has similar performance in men and women, the 
trained model in both sexes was tested on men and women separately.

Results

During an average of 9 ± 3 years of follow-up, 892 (n = 750 from nursing homes) 
individuals developed dementia. Mean (SD) age at baseline for all participants was 
76 (6) years and 59% were female. Demographic and clinical information for the full 
study sample on all predictor variables and the outcome are shown in Table 1. 

Model performance
Logistic regression (AUC = 0.73, 95% CI: 0.71-0.75) had a similar AUC to the elastic 
net regression (AUC = 0.74, 95% CI: 0.72-0.76) and random forest classifiers (AUC = 
0.74, 95% CI: 0.72-0.76) in model 1 (i.e., the full model), as well as in the model after 
feature selection and after removal of neuroimaging variables (Table 2). Support 
vector machine showed lower performance compared to all other machine learning 
classifiers and the logistic regression. Both logistic regression and the elastic net 
regression had the same performance in model 3 without neuroimaging variables 
(AUC = 0.71, 95% CI: 0.68-0.74) (Table 2). 

When taking time-to-event into account with the elastic net Cox model, the c-statistic 
was high (c = 0.80, 95% CI: 0.79-0.80) in model 1 and higher than the traditional Cox 
model (c = 0.78, 95% CI: 0.77-0.79). The same c-statistics and confidence intervals 
were seen in model 2. Performance slightly lowered in model 3, but the elastic net 
Cox regression still showed higher c-statistics (c = 0.78, 95% CI: 0.78-0.78, model 3) 
compared to the traditional Cox model (c = 0.75, 95% CI: 0.74-0.77). The results of the 
elastic net Cox regression for model 3 are presented as a nomogram in Figure 1 for 
12-year overall risk. To predict the patient’s risk for dementia, one can draw a vertical 
line to the top given each variable to get the number of points per that variable. The 
points from each variable are then summed and the total number of points is used 
to give a patient’s overall 12-year risk.
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Table 1. Characteristics of the predictors in the study sample (n = 4793).

Mean (SD) or n (%) % missing per variable

Demographics

Age (years)* + 76 (6) 0%

Sex (female)* + 2822 (59%) 0%

Education (college + university) 1392 (29%) 6%

Neuroimaging variables

Log-transformed white matter lesion volume (ml)* 13.5 (2.5) 18%

Hippocampal volume (ml)* 5.6 (0.7) 17%

Number of microbleeds* 0.3 (1.6) 17%

Presence of infarcts 1491 (31%) 16%

Gray matter volume (ml)* 676 (63) 18%

Intracranial volume (ml)* 1501 (148) 18%

Clinical variables

Abdominal circumference (cm) 101 (12) 1%

Carotid intima-media thickness test (CIMT) 1 (0.1) 10%

High-density lipoprotein (mmol/L) 1.6 (0.5) <1%

Low-density lipoprotein (mmol/L) 3.5 (1.0) <1%

Triglycerides (mmol/L) 1.2 (0.7) <1%

Fasting glucose (mmol/L) 5.8 (1.2) <1%

B-hemoglobin A1c (g/dl) 0.5 (0.1) 8%

High-sensitive c-reactive protein (mg/L) 3.8 (6.7) <1%

Systolic blood pressure (mmHg) 142 (21) 1%

Diastolic blood pressure (mmHg) 74 (10) 1%

Hypertension 3855 (80%) 1%

Coronary artery disease 842 (18%) 0%

Diabetes mellitus 591 (12%) 0%

Metabolic syndrome 1499 (31%) 1%

Stroke/blood clot in the brain 297 (6%) 2%

History of cancer 753 (16%) 1%

Experienced a head trauma or lost consciousness 416 (9%) 5%

Subjective memory decline*+ 1431 (30%) 3%

Often forget the names of a friend 1522 (32%) 5%

Often forget where items are*+ 2083 (44%) 5%

Difficulty finding the right words 1517 (32%) 5%

Difficulty finding the way to familiar places*+ 385 (8%) 5%

Inability in managing money*+ 132 (3%) 4%

Inability in dressing oneself*+ 29 (1%) 6%

Intermit claudication in legs 227 (5%) 5%
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Mean (SD) or n (%) % missing per variable

Insomnia 1438 (30%) 3%

Poor health status 276 (6%) 1%

ADL score, full dependence on all items*+ 52 (1%) 6%

Morning salivary cortisol (nmol/L) 19.8 (13.3) 9%

Evening salivary cortisol (nmol/L) 3.8 (6.6) 9%

GDS-15 sum score*+ 2.3 (2.1) 6%

All anxiety questions ‘yes’ 40 (1%) 1%

Diagnosis of current GAD, social phobia, panic 
disorder, or agoraphobia

98 (2%) 5%

Current/past diagnosis of major depressive disorder 248 (5%) 5%

Medication use

Benzodiazepines 396 (8%) 0%

Beta-adrenergic blockers 1660 (35%) 0%

Glucocorticoids 171 (4%) 0%

Psycholeptics 818 (17%) 0%

Anti-depressants 662 (14%) 0%

Lifestyle variables

Current smoker, % 582 (12%) 4%

Alcohol consumption (g/week) 16 (33) 4%

Moderate/high physical activity 1509 (31%) 7%

Mental leisure activity (days per month) 7 (6) 6%

Social leisure activity (days per month) 4 (4) 6%

Single marital status, % 288 (6%) 6%

Number of close friends 4 (4) 6%

Not that easy to walk 2 km*+ 960 (20%) 27%

Not that easy to walk 500 m*+ 233 (5%) 27%

Number of living close relatives 7 (4) 6%

Never fish consumption, % 26 (1%) 6%

Cognitive assessment

MMSE total score*+ 27 (3) 1%

Outcome

Incident dementia 892 (19%) 0%

Follow-up time (years) 9 (3) 0%

Note: * marks variables entered in model 2. + marks variables entered in model 3. GAD = generalized 

anxiety disorder. GDS-15 = Geriatric Depression Scale-15. CVLT =  California Verbal Learning Test.

Table 1. Continued
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When testing different thresholds, all classifiers demonstrated optimal sensitivity 
and specificity at 0.50.

Regarding resampling, up-sampling was used for all models except for all support 
vector machine models. Down-sampling was used instead for model convergence.

Figure 1. Predictive nomogram for 12-year overall risk for incident dementia in the elastic net Cox 
regression for model 3. To predict the patient’s risk for dementia, one can draw a vertical line to the top 
given each variable to get the number of points per that variable. The points from each variable are then 
summed and the total number of points represents a patient’s overall 12-year risk.

Feature selection
For feature selection, Boruta ranked the following variables as most important: age, 
hippocampal volume, log-transformed white matter lesion volume, gray matter/
intracranial volume ratio, MMSE score, difficulty finding the way to familiar places, 
difficulty in dressing oneself, subjective memory decline, the ADL score, forgetting 
where items are, number of microbleeds, the sum score of the Geriatric Depression 
Scale-15, how difficult it is to walk 500m, sex, inability to manage money, and how 
difficult it is to walk 2km (Supplementary Figure 1). These variables were then used 
as the predictors in the parsimonious model (model 2), and then the MRI variables 
were removed for the clinically accessible model (model 3).

Variable importance slightly differed per algorithm in model 3. The least amount of 
variables used were in the elastic net regression (Supplementary Figure 2). As there 
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is no built-in variable importance for support vector machine, the AUC is shown 
instead on the x-axis.

Internal validation
As the elastic net model performed the best regarding AUC, sensitivity, and 
specificity, it was chosen as the classifier to be used on the test data. The AUC was the 
same for both models 1 and 2 (AUC = 0.73; 95% CI: 0.70-0.76) and slightly decreased 
in model 3 when MRI variables were removed (AUC = 0.72; 95% CI: 0.69-0.75) (Table 
3). Sensitivity was the same in all models (Sensitivity = 61%; 95% CI: 56-66%), and 
specificity was highest in model 2 (Specificity = 71%; 95% CI: 69-74%) (Table 3). For 
the elastic net Cox model, c-statistics were comparable for all three models (model 
3: c = 0.77; 95% CI: 0.77-0.78).

Table 2. Summary of cross-validated prediction models on trained data (n = 3473).

Model AUC Sensitivity 
(%)

Specificity 
(%)

PPV (%) NPV (%)

Model 1

Logistic regression 0.73
[0.71-0.75]

64
[60-68]

70
[68-71]

32
[30-35]

89
[88-91]

Elastic net 0.74
[0.72-0.76]

68
[64-71]

69
[67-71]

33
[31-36]

90
[89-92]

Random forest 0.74
[0.72-0.76]

6
[4-8]

99
[99-99]

60
[47-71]

82
[81-83]

SVM 0.65
[0.62-0.68]

49
[45-53]

73
[71-74]

29
[27-32]

86
[85-88]

Model 2

Logistic regression 0.74
[0.72-0.76]

67
[63-70]

70
[68-72]

34
[31-36]

90
[89-91]

Elastic net 0.74
[0.72-0.76]

67
[63-70]

69
[67-71]

33
[30-36]

90
[89-91]

Random forest 0.74
[0.72-0.76]

47
[43-51]

84
[82-85]

40
[36-44]

88
[86-89]

SVM 0.73
[0.71-0.75]

72
[69-76]

63
[61-65]

31
[28-33]

91
[89-92]

Model 3

Logistic regression 0.71
[0.68-0.74]

64
[60-68]

68
[66-70]

31
[29-34]

89
[88-91]

Elastic net 0.71
[0.68-0.74]

64
[60-67]

67
[65-69]

31
[28-33]

89
[88-90]

Random forest 0.71
[0.68-0.74]

55
[51-59]

75
[73-77]

34
[31-37]

88
[87-89]

SVM 0.70
[0.67-0.73]

69
[65-73]

61
[59-63]

29
[27-31]

90
[88-91]

Note: AUC = area under the ROC curve. SVM = support vector machine.
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Table 3. Summary of the elastic net models on test data (n = 1870), as well as stratified by sex.

AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Model 1 0.73
[0.70-0.76]

61
[55-66]

71
[69-73]

33
[29-37]

89
[87-91]

     Women 0.74
[0.70-0.78]

60
[53-67]

70
[67-73]

35
[30-40]

87
[84-89]

     Men 0.73
[0.67-0.79]

64
[55-73]

71
[67-75]

29
[23-35]

92
[89-94]

Model 2 0.73
[0.70-0.76]

61
[56-66]

71
[69-74]

33
[29-37]

89
[87-91]

     Women 0.73
[0.69-0.77]

59
[52-66]

71
[67-74]

35
[30-40]

87
[84-89]

     Men  0.73
[0.67-0.79]

63
[54-72]

72
[68-76]

29
[24-36]

92
[89-94]

Model 3 0.72
[0.69-0.75]

61
[56-66]

69
[66-71]

31
[28-35]

89
[86-90]

     Women 0.71
[0.67-0.75]

59
[52-65]

69
[66-72]

33
[29-38]

86
[84-89]

     Men 0.72
[0.66-0.78]

66
[57-75]

67
[63-71]

27
[22-33]

92
[89-94]

Note: AUC = area under the ROC curve; PPV = positive predictive value; NPV = negative predictive value.

Calibration
Calibration was assessed for all models. All models showed overfitting, which was 
resolved after re-calibration (Figure 2). Re-calibration was performed by training a 
logistic regression using the uncalibrated probabilities as a predictor. In the elastic 
net Cox regression, calibration was optimal in both our training (internal calibration) 
and testing sets (external calibration) (Figure 3).

Sex stratification
Models were also tested on women only and men only to assess possible differences 
in predictive accuracy when stratified by sex. Across all models using elastic net 
regression, men and women had similar AUCs. Sensitivity was slightly higher in men, 
whereas specificity was slightly higher in women (Table 3). However, confidence 
intervals overlapped. In the elastic net Cox regression model, men (c = 0.86, 95% CI: 
0.85-0.87, model 3) had higher c-statistics than women (c = 0.73, 95% CI: 0.72-0.74, 
model 3) in all three models.
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Figure 2. Calibration plots for logistic regression, elastic net regression, random forest, and support 
vector machine in model 3 (clinically accessible model) both before and after recalibration. Performance 
above the diagonal represents under-forecasting and performance below the diagonal represent over-
forecasting. There were no individuals in the bins after 77.
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Figure 3. Calibration plots for the elastic net Cox regression in both the training set (internal calibration) 
and in the test set (‘external’ calibration). Performance above the diagonal represents under-forecasting 
and performance below the diagonal represents over-forecasting.

Discussion
The current study aimed to explore the difference in performance between machine 
learning algorithms and traditional statistical methods for a prognostic model for 
dementia. We further aimed to assess the feasibility of only using clinically accessible 
predictors compared to including structural brain MRI, as well as exploring model 
performance when stratifying by sex. Machine learning only showed benefit over 
traditional statistical methods when using survival methods. When removing 
imaging variables from the prediction model, AUC and c-statistic values slightly 
lowered but remained high. Models performed similarly in men and women in the 
elastic net regression; however, in the elastic net Cox regression, men had higher 
c-statistics compared to women.

The current study explored the difference in performance when using machine 
learning methods compared to traditional statistical techniques. Previous prediction 
models using machine learning yielded high performance accuracy when using only 
MRI variables (32), yet systematic reviews have highlighted the lack of exploration on 
other, more clinically accessible variables for dementia prediction (10, 33). Machine 
learning showed added benefit only when using survival techniques, as our elastic 
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net Cox regression outperformed the regular Cox regression. A recent comparative 
study on various machine learning survival models and Cox regression for dementia 
prediction also found similar accuracy across techniques (34), which is also in line with 
previous studies assessing possible performance differences between conventional 
regression techniques and machine learning (35, 36). Further, a study predicting two-
year incident dementia also found similar performance across traditional techniques 
(i.e., logistic regression) and machine learning algorithms, with a slight added benefit 
of machine learning models regarding positive predictive value (37). The current 
study found a slight advantage over elastic net regression, which was also found 
in a simulation study (36). To note, elastic net reduces the risk of overfitting by 
penalizing the estimates. This also increases comprehensibility of the prognostic 
model by decreasing the number of required variables. We were also able to build 
a nomogram from our elastic net Cox regression, highlighting the feasibility and 
explainability of using machine learning in clinical settings (38). This study highlights 
the importance of censoring in risk prediction as well as the use of algorithms that 
can capture interactions and high-dimensional relationships within predictors, such 
as with machine learning (39). Further, when removing neuroimaging markers, the 
performance of all models, including those using traditional statistical techniques, 
lowered, but remained high overall.

The most Important variables for prediction in our final elastic net Cox regression 
included age, subjective memory complaints, and MMSE score. Subjective memory 
decline has been shown to be present years before mild cognitive impairment 
and later dementia (40), highlighting its possible use in early prediction. Further, 
variables such as ‘forgetting where things are’ or ‘difficulty dressing oneself ’ were 
also present in our final model, which are items similar to those being used to create 
a telephonic interview for dementia prediction (41). Functional limitations were also 
found in previous studies to be highly predictive of later developing dementia (42, 
43). Previous studies have explored the use of neuropsychological assessments for 
prognostic models of dementia (7, 44), however the current study only used the 
MMSE and still showed high performance. To note, the variables with most predictive 
power in our model were used in the three-step procedure to diagnose dementia 
during follow-up at the clinic, i.e., the MMSE and the ADL score, which may have 
induced overfitting into our model. However, our study focused on the feasibility of 
using machine learning methods for dementia prediction. 

One recent study using population-based data from the UK Biobank also explored the 
use of machine learning for dementia prediction, with five and ten-year predictions 
(45). However, one of the top predictors was APOE e4 genotype, making this model 
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less clinically accessible due to the need for genotyping. APOE e4 genotype was also 
used in some previous prediction models, focusing on individuals already at risk 
(i.e., those with amnestic mild cognitive impairment) (46), and it is also included in 
the well-known Disease State Index (DSI) model (47). The current study focused on 
the feasibility of using clinically accessible variables; therefore, we aimed to assess if 
performance can remain high for prediction even without genotyping.

While performing sex-stratified validation of prediction models is still quite novel 
and explorative, our study found differences in the elastic net Cox regression when 
testing our prediction model in women and men separately. As sex differences in 
dementia have been highlighted previously with the push for sex-based prognostic 
models (48, 49), future studies should further explore the possible benefit of creating 
sex-stratified prognostic models.

Strengths of the current study include using multiple imputation to address missing 
data and cross-validation to increase variability in training of the prediction models. 
We additionally address differences between novel machine learning classifiers, 
classical logistic and Cox regression, and using a survival-based machine learning 
method (i.e., the elastic net Cox regression). The current study also had a large 
sample size from a well-phenotyped, community-based population. We also report 
calibration, which has been highlighted as lacking in previous prognostic studies (35, 
50). Further, tuning of the machine learning classifiers was done for recalibration. 
We also were able to extract a clinically relevant nomogram from our elastic net 
Cox regression that makes our machine learning methods translatable to clinical 
practice. Lastly, we performed resampling and threshold adjustment which further 
helps address imbalanced classification.

The current study also had limitations. The models presented first need to be 
externally validated to assess its transportability to other populations. Further, the 
ascertainment of dementia was done with a three-step procedure that consisted of 
the ADL and MMSE, which were also used as predictors. Further, the AGES-Reykjavik 
cohort is predominantly White; therefore, it is crucial for the validation of this model 
in marginally underrepresented populations. Further, development of prognostic 
models in systemically minoritized groups should also be prioritized for future 
research. Lastly, we did not assess different time-windows for our survival models 
as we solely aimed to assess the comparability of techniques. Future studies should 
assess which models suit best for shorter- or longer-term prediction of dementia.

Our results showed that prediction models developed using supervised machine 
learning classifiers are feasible and add to the model’s performance, only when 
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using survival methods. We also exemplify ways to implement machine learning in 
a classical point-based method using a nomogram. Additionally, model performance 
remained high after the removal of MRI variables. As dementia becomes a leading 
problem in developing countries, focusing on clinically accessible variables for the 
prognostication of dementia is crucial.
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Supplementary Info 1. Details on clinical variables used.
The following variables were continuous: abdominal circumference, high-density 
lipoprotein, low-density lipoprotein, triglycerides, fasting glucose, b-hemoglobin 
A1c, high-sensitive c-reactive protein, systolic and diastolic blood pressure, log-
transformed morning salivary cortisol, log-transformed evening salivary cortisol, 
total score on the Geriatric Depression Scale-15 (GDS-15), and the carotid intima-
media thickness test (CIMT). 

The following variables were dichotomous: hypertension, coronary artery disease, 
diabetes mellitus (type 2), metabolic syndrome, stroke/blood clot in the brain, 
history of cancer, ever experienced a head trauma or lost consciousness, subjective 
cognitive decline, often forget the names of a friend, often forget where left things, 
difficulty finding the right words, difficulty finding the way to familiar places, ever 
felt intermittent claudication in legs, insomnia, Mini-International Neuropsychiatric 
Interview (MINI) diagnosis of current generalized anxiety disorder, social phobia, 
panic disorder, or agoraphobia, and the MINI diagnosis of history/current of major 
depressive disorder. 

Categorical predictors were as follows: difficulty in managing money (no difficulty, 
some difficulty, much difficulty, I am unable to do it), difficulty dressing (e.g., tie, 
zippers, or buttons) (no difficulty, some difficulty, much difficulty, I am unable to 
do it), health status (excellent, very good, good, fair, poor), Activities of Daily Living 
(ADL) total score (dressing, bathing, transferring, eating, walking), and the total score 
of following anxiety questions (experienced anxiety/fright in the last 30 days, lately 
felt anxious/not well, or that special situations may you anxious).

Supplemental Info 2. Definition of all acronyms used.

ADL Activities of Daily Living

ADNI Alzheimer’s Disease Neuroimaging Initiative

AGES-Reykjavik Study Age, Gene/Environment Susceptibility-Reykjavik Study

AUC Area under the receiver operating characteristic curve

DSI Disease State Index

MMSE Mini Mental State Examination

MRI Magnetic resonance imaging

TRIPOD Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD)
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Supplementary Code 1. Pseudocode of algorithms used.
Upsample <- trainControl(method = “repeatedcv”, number = 10, repeats = 10, 
classProbs = TRUE, summaryFunction = twoClassSummary, savePredictions = TRUE, 
sampling = “up”)

downsample <- trainControl(method = “repeatedcv”, number = 10, repeats = 10, 
classProbs = TRUE, summaryFunction = twoClassSummary, savePredictions = TRUE, 
sampling = “down”)

Logistic regression
Logfit <- train(outcome ~ ., training.data, metric = “ROC”, method = “glm”, trControl 
= upsample)

Elastic net regression
Elastic_net <- train(outcome ~ ., train, metric = “ROC”, method = “glmnet”, trControl 
= upsample, importance = TRUE)

Random forest
Rf <- train(outcome ~ ., train, metric = “ROC”, method = “ranger”, tuneGrid = expand.
grid(mtry = c(2, 5, 10, 19), splitrule = c(“gini”, “extratrees”), min.node.size = 1), 
trcontrol = upsample, importance = “permutation”)

Support vector machine
Svm <- train(outcome ~ ., train, metric = “ROC”, method = “svmRadial”, trControl = 
downsample, scale = FALSE)

Cox regression
Coxreg <- cv.glmnet(x = variables, y = outcome, family = “cox”, nfolds = 10, type.
measure = “C”)

Elastic net Cox regression
Enet.cox <- fit_enet(x = variables, y = outcome, rule = “lambda.1se”, seed = c(5, 7), 
parallel = TRUE)
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Supplementary Table 1. Characteristics of the predictors in the study sample (n = 4793).

Train data 
(n = 3138)

Test data
(n = 1655)

Mean (SD) or n (%) Mean (SD) or n (%)

Demographics

Age (years)* + 76 (6) 76 (6)

Sex (female)* + 1823 (58%) 999 (60%)

Education (college + university) 911 (29%) 481 (29%)

Neuroimaging variables

Log-transformed white matter lesion volume (ml)* 2.6 (0.9) 2.6 (0.9)

Hippocampal volume (ml)* 5.6 (0.7) 5.6 (0.7)

Number of microbleeds* 0.3 (1.8) 0.3 (1.4)

Presence of infarcts 961 (31%) 530 (32%)

Gray matter/intracranial volume ratio* 0.5 (0.04) 0.5 (0.04)

Clinical variables

Abdominal circumference (cm) 101 (12) 101 (12)

Carotid intima-media thickness test (CIMT) 1 (0.1) 1 (0.1)

High-density lipoprotein (mmol/L) 1.6 (0.5) 1.6 (0.5)

Low-density lipoprotein (mmol/L) 3.5 (1) 3.5 (1)

Triglycerides (mmol/L) 1.2 (0.6) 1.2 (0.7)

Fasting glucose (mmol/L) 5.8 (1.1) 5.8 (1.3)

B-hemoglobin A1c (g/dl) 0.5 (0.1) 0.5 (0.1)

High-sensitive c-reactive protein (mg/L) 3.8 (7) 3.7 (6.3)

Systolic blood pressure (mmHg) 143 (21) 142 (20)

Diastolic blood pressure (mmHg) 74 (10) 74 (10)

Hypertension 2548 (81%) 1307 (79%)

Coronary artery disease 560 (18%) 282 (17%)

Diabetes mellitus 368 (12%) 223 (14%)

Metabolic syndrome 967 (31%) 532 (32%)

Stroke/blood clot in the brain 195 (6%) 102 (6%)

History of cancer 482 (15%) 271 (16%)

Experienced a head trauma or lost consciousness 245 (8%) 171 (10%)

Subjective memory decline*+ 952 (30%) 479 (29%)

Often forget the names of a friend 982 (31%) 540 (33%)

Often forget where items are*+ 1374 (44%) 709 (43%)

Difficulty finding the right words 983 (31%) 534 (32%)

Difficulty finding the way to familiar places*+ 238 (8%) 147 (9%)

Inability in managing money*+ 74 (2%) 58 (4%)

Inability in dressing oneself*+ 13 (<1%) 16 (1%)

Intermit claudication in legs 148 (5%) 79 (5%)

Insomnia 963 (31%) 527 (32%)
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Train data 
(n = 3138)

Test data
(n = 1655)

Mean (SD) or n (%) Mean (SD) or n (%)

Poor health status 181 (6%) 95 (6%)

ADL score, full dependence on all items*+ 28 (1%) 24 (2%)

Morning salivary cortisol (nmol/L) 19.8 (13.2) 19.6 (13.3)

Evening salivary cortisol (nmol/L) 3.9 (6.4) 4.0 (7.4)

GDS-15 sum score*+ 2 (2) 2 (2)

All anxiety questions ‘yes’ 23 (1%) 17 (1%)

Diagnosis of current GAD, social phobia, panic disorder, or 
agoraphobia

68 (2%) 30 (2%)

Current/past diagnosis of major depressive disorder 167 (5%) 81 (5%)

Medication use

Benzodiazepines 258 (8%) 138 (8%)

Beta-adrenergic blockers 1090 (35%) 570 (34%)

Glucocorticoids 108 (3%) 63 (4%)

Psycholeptics 539 (17%) 279 (17%)

Anti-depressants 427 (14%) 235 (14%)

Lifestyle variables

Current smoker, % 377 (12%) 205 (12%)

Alcohol consumption (g/week) 16 (35) 14 (28)

Moderate/high physical activity 964 (31%) 545 (33%)

Mental leisure activity (days per month) 7 (6) 7 (6)

Social leisure activity (days per month) 4 (4) 4 (4)

Single marital status, % 187 (6%) 101 (6%)

Number of close friends 3 (4) 3 (3)

Not that easy to walk 2 km*+ 615 (20%) 345 (21%)

Not that easy to walk 500 m*+ 157 (5%) 76 (5%)

Number of living close relatives 7 (5) 7 (5)

Never fish consumption, % 19 (1%) 7 (<1%)

Cognitive assessment

MMSE total score*+ 27 (3) 27 (3)

Outcome

Incident dementia 583 (19%) 309 (19%)

Follow-up time (years) 9 (3) 9 (3)

Note: * marks variables entered in model 2. + marks variables entered in model 3. A significant difference 
was found between train and test data for experiencing a head trauma or losing consciousness  
(χ2 = 8.4, p = 0.004), inability to dress oneself (χ2 = 9.0, p = 0.03), and ability to walk 2 kilometers  
(χ2 = 6.7, p = 0.03).

Supplementary Table 1. Continued
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Supplementary Table 2. Tuning parameters for each machine learning classifier.

Classifier Tuning parameter

Model 1

Elastic net Alpha = 1, lambda = 0.02

Random forest Mtry = 5, splitrule = gini, minimum node size = 1

Support vector machine Sigma = 0.01, cost = 0.25

Model 2

Elastic net Alpha = 0.55, lambda = 0.02

Random forest Mtry = 2, splitrule = gini, minimum node size = 1

Support vector machine Sigma = 0.05, cost = 0.25

Model 3

Elastic net Alpha = 0.55, lambda = 0.02

Random forest Mtry = 2, splitrule = gini, minimum node size = 1

Support vector machine Sigma = 0.07, cost = 0.25
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Supplementary Table 3. Elastic net and logistic regression coefficients in models 2 and 3.

Elastic net regression Logistic regression

Model 2 Model 3 Model 2 Model 3

Intercept -1.621 -6.583 -0.732 -7.927

Age 0.070 0.098 0.082 0.124

Sex 0.034 0.184 0.288 0.296

Subjective cognitive decline 0.349 0.282 0.459 0.445

Difficulty in remembering where things are 0.221 0.334 0.300 0.326

Difficulty finding familiar places 0 0.050 0.080 0.278

Difficulty in managing money (some difficulty) 0 0.011 -0.178 -0.049

Difficulty in managing money (much difficulty) 0 0 -0.854 -0.741

Difficulty in managing money (unable) -0.120 -0.089 -0.722 -0.845

Difficulty in dressing oneself (some difficulty) 0 0 0.205 0.159

Difficulty in dressing oneself (much difficulty) 0 0 0.199 0.141

Difficulty in dressing oneself (unable) 0.092 0.269 0.961 1.155

Difficulty in walking 2 km (somewhat easy) 0 0 -0.072 -0.093

Difficulty in walking 2 km (not very easy) -0.098 0 -0.312 -0.268

Difficulty in walking 500 m (somewhat easy) 0.132 0.073 0.317 0.351

Difficulty in walking 500 m (not very easy) 0 0 0.084 0.259

1 ADL item dependent 0 -0.001 -0.165 -0.181

2 ADL items dependent 0 0 0.043 0.009

3 ADL items dependent 0 0 -0.012 0.128

4 ADL items dependent 0 0.300 -0.082 0.137

5 ADL items dependent 0.839 0.512 0.723 0.832

GDS-15 score 0 0 -0.023 -0.010

MMSE score -0.043 -0.053 -0.071 -0.078

Log-transformed WML volume 0.360 Not included 0.468 Not included

Hippocampal volume -0.432 Not included -0.553 Not included

Microbleeds 0.009 Not included 0.015 Not included

Gray matter/ICV ratio -3.419 Not included -5.220 Not included

Note: 0s represent variables that were penalized to 0 during model fit. GDS= Geriatric Depression Scale; 
ICV = intracranial volume;  WML = white matter lesion.
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Supplementary Figure 1. Boruta feature selection. 

Green variables are selected for feature selection, yellow variables are rated as tentative, and red 
variables are ranked as unimportant. Ninety-nine iterations were performed.
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Supplementary Figure 2. Variable importance per trained prognostic model in model 3, the clinically 
accessible model.

Note: As there is no built-in variable importance for support vector machine, the AUC is shown instead 
on the x-axis.





Chapter 10

General discussion
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The present thesis filled several gaps in the etiology of dementia by looking at 
the associations between biological and psychosocial factors. This thesis further 
combined both biological and environmental risk factors using data-driven 
methodology to aim for precision medicine for dementia.

Associations between amyloid-beta and vascular 
pathology during the preclinical stage of dementia

The first portion of this thesis focused on the association between the two main 
biomarkers for dementia: amyloid-beta and vascular burden. To first get an overview 
of previous literature, we performed a systematic review and meta-analysis on 
the association between amyloid-beta burden and white matter hyperintensities 
(WMH), which was described in the general introduction of this thesis as one of 
the main pathologies related to vascular burden (1). Previous systematic reviews 
and meta-analyses on the association between amyloid-beta and vascular burden 
did not explicitly look at the preclinical stage of dementia (2-4). By focusing on the 
extended preclinical stage of dementia, we can reduce possible heterogeneity of 
results as well as increase the timeliness of detection of high-risk individuals and 
possible routes for prevention. Therefore, in chapter 2, the primary focus was on 
cognitively unimpaired individuals, to elucidate if an association is present before 
cognitive symptoms begin. Our meta-analysis found a small- to medium-sized effect 
size between amyloid-beta burden and WMH. However, no association was found in 
the studies assessing amyloid-beta burden in blood plasma. 

As only two studies on blood plasma were included in our systematic review and 
meta-analysis and did not utilize the innovative, highly sensitive blood assays for 
amyloid-beta detection in plasma, we decided to assess this relationship in chapter 
3. This chapter further aimed to assess other aspects of Alzheimer’s disease (AD) 
pathophysiology in blood plasma alongside amyloid-beta, such as phosphorylated 
tau (p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). In 
this study, we also aimed to assess infarcts as well as WMH for aspects of vascular 
pathology. We also wanted to examine associations between these novel AD plasma 
biomarkers with neurodegeneration on MRI, specifically in the hippocampus 
as well as on total brain volume. Higher levels of p-tau181 were associated with 
more WMH burden. NfL, a blood biomarker for neurodegeneration non-specific 
to AD, was associated with total brain volume as well as cortical infarcts. Plasma 
p-tau181 and NfL may be noninvasive markers for monitoring vascular pathology 
and neurodegeneration.
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Mapping the biological to the psychosocial
The second part of this thesis extended on the biomarkers for AD by assessing 
possible relations with psychosocial factors. Many psychosocial factors have shown 
to be associated with incident dementia, such as depression (5-7), anxiety (8), early-
life adversity (9), and social support (10). Chapter 4 focused on assessing if depressive 
symptoms, anxiety symptoms, early- or late-life adversity, or social support show 
an association with hippocampal (subfield) atrophy. We observed trends across 
hippocampal subfields with lower volumes related to early-life adversity and higher 
volumes related to late-life adversity. We found a protective effect of higher social 
support associated with higher volumes in the cornu ammonis (CA) 3 subfield of 
the hippocampus, which is a subfield associated with specific sensitivity to stress 
(11). However, we did not find an association between depressive symptoms or 
anxiety symptoms and neurodegeneration in the hippocampus. Therefore, in the 
next chapters, we assessed if the relation between depression and dementia could 
be explained through other biological mechanisms.

In chapter 5, we performed a systematic review and meta-analysis to assess if 
amyloid-beta is associated with depression diagnosis or depressive symptoms in 
cognitively unimpaired older adults. We found no association between amyloid-beta 
using PET, CSF, or plasma and depression or depressive symptoms, but there was a 
trend towards a positive association in the PET and CSF studies. However, all included 
plasma studies were performed in 2016 or before and none utilized highly-sensitive 
plasma assays. As amyloid-beta exists in ten-fold lower concentrations in blood 
plasma compared to in CSF (12), using highly-sensitive techniques is of importance. 
Therefore, in chapter 6, we assessed the association between AD plasma biomarkers 
(amyloid-beta, p-tau181, NfL, and GFAP), analyzed with highly-sensitive plasma 
assays, with depressive symptoms in eight cohort studies conducted throughout the 
Netherlands. AD pathology in plasma was not associated with depressive symptoms, 
using a meta-analytical technique on the cohort studies of varying settings. 
Therefore, in chapter 7, we explored the neurotoxicity and vascular hypotheses in 
the relation between depression and dementia. 

As mentioned in the general introduction, the neurotoxicity hypothesis stipulated 
that increased cortisol and activation of the HPA axis could explain the relation 
between depression and dementia (13). Whereas the vascular hypothesis specified 
that the relation may lie in vascular changes occurring in mood-regulating areas 
of the brain (14). We explored both of these hypotheses in chapter 7 by assessing 
depression diagnosis, WMH volume, and salivary cortisol at baseline with incident 
dementia with up to 12 years of follow-up time. Both current depression diagnosis 
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and high levels of salivary cortisol were independently associated with increased risk 
of dementia. However, WMH volume partially explained the relationship between 
current depression and dementia, but not fully. Therefore, the final section of this 
thesis assessed if utilizing data-driven techniques and combining both biomarkers 
and psychosocial factors may help further untangle risk for dementia.

Towards precision medicine: the use of high-risk clusters and 
machine learning prognostic model
Complex interactions between dementia biomarkers and psychosocial risk factors 
exist (15). Instead of studying these factors in isolation, we can make use of these 
interactions and use a biopsychosocial framework to assess risk for dementia. With the 
development of recent data-driven statistical techniques, this becomes increasingly 
possible. In chapter 8, we first assessed a multimodal biomarker framework and if 
clusters of various biomarkers explained the association between depression and 
dementia. In chapter 7, we saw vascular pathology played a partial role In this 
relationship. We hypothesized that this could be further explained by other biomarker 
pathways, such as through inflammatory or metabolic systems. This study found four 
biomarker profiles: low cardiovascular dysregulation, average, high cardiovascular 
dysregulation, and multisystem dysregulation. We found additive interaction between 
depressive symptoms and the multisystem dysregulation profile on incident all-cause 
dementia. Individuals that have dysregulation across multiple biomarker systems, 
specifically inflammatory, metabolic, and stress systems, may be more susceptible of 
the negative impact of depressive symptoms on incident dementia. 

Lastly, chapter 9 assessed if utilizing machine learning techniques improved 
performance and calibration of prediction models for dementia. Previous external 
validation studies found poor calibration of prediction models for dementia (16, 17), 
highlighting the need for the development of better dementia prediction models. 
We further assessed if an accurate prediction model could be developed without 
the use of expensive biomarkers such as MRI markers. Machine learning, through 
an elastic net Cox regression, provided a benefit to performance only when using 
survival techniques (e.g., a traditional Cox regression model). However, we found 
that when removing MRI markers as predictors in our model, performance did not 
decrease significantly. 

Future research
Personalized interventions that include biopsychosocial factors have been suggested 
to be the most promising to prevent Alzheimer’s disease (AD) and other dementias 
(18, 19) and pave the way towards precision medicine. Clinical precision medicine 
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has been adapted as an extended clinical history of a patient, not only focusing 
on past medical history and physical examination, but also including psychosocial 
factors (e.g., educational history, social support, life course events, physical activity) 
(18, 20, 21). By focusing on biopsychosocial factors, a clinician can more definitely 
assess a patient’s risk as well as create a more personalized prevention and/or 
treatment plan (20). One of the current proposed personalized prevention methods 
for AD are the “ABCs”, i.e. anthropometrics, blood biomarkers, and cognition (18, 20). 
I hypothesize the future use of the “ABCDs” for AD prevention, extending this also to 
include demographic factors, such as life course events, education, socioeconomic 
status, and other psychosocial factors. Personalized treatment for AD has also shown 
promising results, highlighting that dementia is a multifactorial disease and should 
be prevented and treated as such (22). 

The translation of a biopsychosocial framework from research to clinical practice 
has shown disadvantages alongside the aforementioned advantages. In a recent 
qualitative study, healthcare professionals were asked to explain their experience of 
implementing a biopsychosocial approach in clinical practice (23). While the healthcare 
professionals valued the implementation of a biopsychosocial framework, many 
barriers remained regarding how time-consuming it was to incorporate. However, 
studies have shown that incorporating biopsychosocial approaches in practice 
can save time and resources in the long-term (23, 24). In line with the time costs of 
implementing more individualized clinical medicine approaches, future studies should 
explore the use of AI in the clinic with its purpose to minimize time costs (25).

Further, the implementation of prevention comes along with ethical considerations 
when a clinician is met with a high-risk patient. While studies did not show increased 
psychosocial stress after disclosing APOE ε4 allele status (26), ethical considerations 
remain crucial moving forward and understanding the cost/benefit ratio of 
disclosing high-risk status to a patient. The implementation of cognitive therapy for 
those who are assigned high-risk for disease, such as eye-movement desensitization 
and reprocessing (EMDR) therapy, may help increase quality of life and reduce any 
psychological impact post-disclosure (27).

The Importance of precision medicine remains for the understanding of differential 
impact of risk factors on dementia risk. Zahodne (28) defined differential impact 
where subgroups show different strengths of association between risk factor and 
dementia risk. This could be based on sex/gender, ethnicity, or genetics. For example, 
APOE ε4 allele carriers show differential impact on physical activity, smoking, and 
alcohol consumption for dementia risk compared to APOE e4 allele non-carriers 



278 | Chapter 10

(18, 29). Previous studies have highlighted differences in dementia risk based on 
ethnicity and sex/gender and that this may be mediated by differences in risk factors 
(30). Unfortunately, the studies included in this thesis did not include ethnic or sex/
gender minorities. To successfully achieve an individualized approach for dementia 
prevention and treatment, future studies need to incorporate diverse samples in 
their studies and then stratify their findings based on sex/gender and ethnicity to 
explore if differential impact based on sex/gender identity or orientation or ethnicity 
exists with specific risk factors. Future research on sex/gender and ethnicity will also 
allow the clinician to then make further individualized considerations per patient.

Specifically, studies assessing transgender or nonbinary individuals are unfortunately 
scarce, some recent studies have found that transgender and nonbinary individuals 
have higher rates of subjective cognitive decline (31) and a higher prevalence of 
dementia (32). As assessing sex differences in risk factors for dementia is of priority 
for precision medicine for dementia (33), the inclusion of sex and gender minorities 
(SGM) in these studies will be crucial. The inclusion of systemically underrepresented 
populations can be done at the governmental level by facilitating clinical research in 
high-risk groups, diversifying research groups, or through international collaborations 
with research groups with data on marginally underrepresented populations (34). By 
prioritizing the creation of cohort studies and consortiums that ensure the inclusion of 
minority groups across all domains – ethnic, socioeconomic, and SGM – we will unravel 
the true etiology of dementia and the interplay between biopsychosocial factors.

Future research should not only ensure to include diverse samples but also a wide 
variety of psychosocial factors. As many psychosocial factors are not routinely 
collected in cohort studies (28), the prioritization of the inclusion of psychosocial 
factors will be crucial to elucidate the multifactorial etiology of neurological diseases 
such as dementia. Further, many psychosocial factors may be racially patterned, such 
as discrimination, and therefore understanding these psychosocial factors when 
including marginally underrepresented populations will be crucial to understand the 
underpinnings of disease in these groups. Lastly, it will be vital to not only prioritize 
the inclusion of psychosocial risk factors in future cohort studies, but psychosocial 
protective factors as well. By focusing equally on disease prevention as well as health 
promotion, we can steer public policy to implement not only prevention but healthy 
ageing practices as well. 

Biological factors not explored in this thesis should also be considered for future 
studies. Our findings did not solidify a specific biological mechanism linking 
psychosocial factors to dementia. Recent evidence has found associations between 
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gut microbiota and depression (35) and AD pathology (36). It is possible that 
disruption in the gut microbiota, which also has a role in one’s inflammatory system 
(37), may explain the relation between depression and dementia. There is also a 
possibility that psychotropic medication (38) or diet (39) play a role in the associations 
found and should be included as possible confounders in future research. Further, 
recent evidence has shown air pollution may also be a risk factor for dementia (40-
42), as well as depression (43). Future studies should comprehensively include a 
wide range of biological and psychosocial factors as we used data that was already 
collected from previous cohort studies and were restricted to the availability of the 
factors included. Future cohort studies should prioritize repeated assessments of 
both biomarkers as well as psychosocial factors to elucidate the key factors – and 
their temporal occurrence – during the preclinical stage of dementia.

We may achieve this comprehensive goal through collaboration with primary care 
researchers and general practice databases. By using a ‘real-world’ data approach 
to epidemiological studies, we have the ability to gain a life course perspective 
on dementia etiology (44). This can be done using a ‘longitudinal exposome-
wide association study’ (LEWAS) approach (45). In this approach, it is also possible 
to explore further protective factors, to discover possible reasons why high-
risk individuals do not develop dementia, or how in some individuals with mild 
cognitive impairment, they transition back to normal cognition (46). As having a 
biopsychosocial background on a patient is becoming more prioritized in clinical 
practice, future primary care clinics can focus on intakes that gain a more holistic 
background of the patient. As mentioned previously, incorporating AI techniques 
in the clinic can make this goal more achievable, more cost-effective, and without 
creating an added burden for clinicians (25).

Lastly, the current study highlighted the added benefit of using data-driven 
analytical approaches to apply precision medicine to the etiology of dementia. 
Previous neuroimaging studies have highlighted the benefits of using data-driven 
methods to unravel heterogeneity and discover possible subgroups (47). Specifically, 
data-driven methods can validate previous hypothesis-driven subtypes as well as 
elucidate subgroups that may go beyond previous characterizations (47). However, 
this methodology will require the implementation of international consortia that 
include diverse cohorts to externally validate if subgroups may exist within specific or 
broad samples. As a previous systematic review has highlighted that methodological 
implementations on addressing the complex systems behind disease are lacking 
(48), future studies should make methodological prioritizations as well as focus on 
guidelines on when to use which methodology.
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Conclusions
To conclude, the current thesis first assessed the individual relation between 
biomarkers and psychosocial factors in risk for dementia. However, the use of 
multimodal and data-driven techniques that encapsulate biopsychosocial factors 
all together showed advantageous in understanding the etiology of dementia.

Further, the current study was able to implement the recent advancements in reliable 
blood biomarker assessment for dementia by performing large-scale assessments 
of AD pathophysiology with other biomarkers (e.g., vascular pathology and 
neurodegeneration) as well as with psychosocial factors (e.g., depressive symptoms) 
through a nationwide Dutch consortium on dementia cohort studies. This study, 
to our knowledge, is the first to look at blood biomarkers for dementia in a non-
demented, 50+ population. Further, we aimed to focus primarily on individuals 
without dementia, to assess the role of both biomarkers as well as psychosocial 
factors during the prolonged preclinical stage of dementia. We also aimed to focus 
on individuals at higher risk for dementia, by using the hospital-based SMART 
population of individuals with a history of vascular disease. Focusing on the earliest 
disease stage, as well as a high-risk population, allows for the future utilization of 
modes of prevention and treatment monitoring. 

The path towards precision medicine for dementia is still a long way to go. Through 
the creation of consortia and cohort studies that prioritize the ability to assess risk 
factor trajectories through repeated measurements as well as differences between 
groups through the inclusion of diverse individuals, the future for individualized 
prevention, prediction, and treatment will be attainable.
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Dementia is a neurodegenerative disease, the prevalence of which is expected to 
triple by 2050 (1). It is characterized by decline in cognitive functioning as well as 
a decrease in quality of life. There are many risk factors associated with dementia, 
both biological as well as psychosocial. The first part of this thesis aimed to assess 
the relation between the two main causes of dementia, amyloid-beta and vascular 
pathology, in the stage before dementia diagnosis. The second aim of this thesis 
was then to assess if there is a relation between these biomarkers for dementia and 
psychosocial risk factors. Lastly, the third aim of this thesis was to combine both 
biomarkers and psychosocial factors into a biopsychosocial framework, through 
clustering and creating a machine learning prediction model.

In part I of this thesis, we assessed the relationship between amyloid-beta and 
vascular pathology. Chapter 2 systematically reviewed the literature on amyloid-
beta burden and white matter hyperintensities (WMH) in cognitively unimpaired 
older adults and performed a meta-analysis on PET, CSF, and plasma studies. We 
found a small-to-medium- effect size between amyloid-beta burden on PET and CSF 
with WMH burden. However, no association was found in the plasma studies. 

Chapter 3 explored the association not only with plasma biomarkers for AD 
pathophysiology (i.e., amyloid-beta and phosphorylated tau), but also with 
biomarkers for neurodegeneration (i.e., neurofilament light; NfL) and astrocytic 
activation (i.e., glial fibrillary acidic protein; GFAP) with vascular pathology (i.e., 
WMH and infarcts) as well as neurodegeneration (i.e., total brain and hippocampal 
atrophy). We used a sample of 594 individuals all with comorbid vascular disease 
from the SMART-MR study. P-tau181 was associated with WMH, whereas NfL was 
associated with total brain atrophy and infarct presence. As this was the first study to 
our knowledge assessing plasma AD biomarkers with total brain atrophy, this should 
be validated in other studies.

Part II of this thesis aimed to assess the biological mechanisms behind the 
psychosocial factors associated with incident dementia. Using high-field 7T MRI, 
chapter 4 assessed if depressive symptoms, anxiety symptoms, early- or late-life 
adversity, or social support were associated with hippocampal (subfield) volume. 
Early- and late-life events showed a trend of association with hippocampal (subfield) 
volume. Early-life adversity was associated with lower hippocampal (subfield) 
volumes, whereas late-life adversity was associated with higher hippocampal 
(subfield) volumes. Lower levels of social support was associated with lower volumes 
in the cornu ammonis (CA) CA3, a region of the hippocampus specifically sensitive to 
stress. Previous studies on social support and hippocampal volume have been scarce; 
thus, further studies on social support and hippocampal volume are warranted.
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Chapter 5 assessed the role of amyloid-beta burden on depression and depressive 
symptoms in cognitively unimpaired older adults through a systematic review and 
meta-analysis. PET, CSF, and plasma studies on amyloid-beta and depression or 
depressive symptoms did not show a relationship between the two. However, a trend 
towards an association was found for the PET and CSF studies. Regarding plasma 
studies on amyloid-beta, those included in the meta-analysis were quite old and did 
not implement the newer, more sensitive techniques for amyloid-beta ascertainment in 
plasma. Therefore, chapter 6 aimed to assess multiple plasma AD biomarkers, including 
amyloid-beta, with depressive symptoms in eight Dutch cohort studies. In this meta-
analysis on a total of 7210 participants, no association was found between depressive 
symptoms and AD plasma markers (amyloid-beta42/40, p-tau181, NfL, or GFAP). Late-
life depressive symptoms during this stage may be explained by other mechanisms 
independent of those related to AD, neurodegeneration, and astrocytic activation.

Chapter 7 aimed to assess if the relation between depression and dementia may 
be explained by either the neurotoxicity hypothesis (e.g., through elevated salivary 
cortisol levels) or the vascular hypothesis (e.g., through WMH). In this study using the 
population-based AGES-Reykjavik study, we assessed baseline depression diagnosis, 
morning and evening salivary cortisol levels, and WMH volume and their relation 
with incident dementia with up to 12-years of follow-up time. Current depression 
diagnosis and evening salivary cortisol levels were independently associated with 
incident dementia. However, WMH volume partially explained the relationship 
between current depression diagnosis and incident dementia.

Part III of this thesis explored the use of data-driven techniques on biomarkers and 
psychosocial factors together to move towards precision medicine for dementia. As 
interactions exist between and within biomarkers and psychosocial factors, using 
advanced statistical techniques is of interest to take into account and take advantage 
of those interactions when assessing dementia etiology. Chapter 8 of this thesis 
used a clustering technique of different biomarkers (i.e., cardiovascular, metabolic, 
inflammatory, and stress) to assess if these biomarker profiles explained the 
relationship between depression and dementia. Using the AGES-Reykjavik study, we 
found four profiles: low cardiovascular dysregulation, average, high cardiovascular 
dysregulation, and multisystem dysregulation. We found additive interaction 
between the multisystem dysregulation group and late-life depressive symptoms 
on incident all-cause dementia. Those with dysregulation across multiple biomarker 
domains (i.e., metabolic, inflammatory, and stress) showed specific vulnerability to 
the negative effects of late-life depressive symptoms on incident dementia.
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Lastly, chapter 9 assessed the use of machine learning in the prognostication of 
dementia risk. We also assessed the feasibility of a prediction model for dementia 
that did not include MRI markers for a more clinically-accessible model. We found 
that machine learning only added a benefit to predictive performance when we 
took time-to-event into account. However, when removing MRI markers from our 
prediction model, performance remained high, highlighting the utility of readily 
accessible markers in predicting dementia.

In conclusion, we assessed multiple biomarkers and psychosocial factors and 
their relation to one another before diagnosis of dementia. We found that some 
biomarkers in plasma may be of use for monitoring of neurodegeneration and 
vascular pathology. Further, we found a specific time effect of adverse life events on 
hippocampal neurodegeneration, with early-life adverse events showing detrimental 
effects on hippocampal volume that remained in late-life. We also found a protective 
effect of high social support on hippocampal volume in stress-sensitive regions. 
Finally, we found that using a multimodal approach was the most advantageous 
for clustering and prediction. Future studies should prioritize combining both the 
internal experience (i.e., biomarkers) and the external experience (i.e., psychosocial 
factors) when assessing disease etiology, prevention, and treatment.
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Dementie is een neurodegeneratieve ziekte waarvan het aantal patiënten dat 
lijdt aan deze ziekte naar verwachting tegen 2050 zal verdrievoudigen. Dementie 
wordt gekenmerkt door achteruitgang van cognitief functioneren en een afname 
van kwaliteit van leven. Er zijn veel risicofactoren verbonden aan dementie, zowel 
biologisch als psychosociaal. Het eerste deel van dit proefschrift was gericht 
op het beoordelen van de relatie tussen de twee hoofdoorzaken van de ziekte 
van Alzheimer, amyloïd-bèta en vasculaire pathologie, in het stadium vóór de 
diagnose van dementie. In het tweede deel van dit proefschrift lag de focus op 
het onderzoeken van een mogelijk verband tussen deze biomarkers voor dementie 
en psychosociale risicofactoren. Ten slotte was de focus van het derde deel van 
dit proefschrift om zowel biomarkers als psychosociale factoren te combineren in 
een psychosociaal raamwerk, door middel van clustering en het creëren van een 
voorspellingsmodel met behulp van machine learning.

In deel 1 van dit proefschrift hebben we de relatie tussen amyloïd-bèta en vasculaire 
pathologie onderzocht. Hoofdstuk 2 besprak systematisch de literatuur over amyloïde-
bèta-belasting en hyperintensiteiten van de witte stof (WMH) bij cognitief gezonde 
ouderen en voerde een meta-analyse uit van PET-, CSF-, en plasma-onderzoeken. We 
vonden een klein tot middelgroot effect van amyloïde-bèta gemeten met PET scans en 
gemeten in CSF met WMH gemeten met MRI. Er werd echter geen verband gevonden 
tussen amyloïde-bèta gemeten in bloed plasma en WMH. 

In Hoofdstuk 3 werd de associatie met bloedplasma biomarkers voor AD 
pathofysiologie (d.w.z. amyloïde-bèta en gefosforyleerd tau) en biomarkers 
voor neurodegeneratie (d.w.z. neurofilament licht; NfL) en astrocyte activatie 
(d.w.z. gliaal fibrillair zuur eiwit; GFAP) met vasculaire pathologie (d.w.z. WMH en 
infarcten) evenals neurodegeneratie (d.w.z. totale hersen- en hippocampale atrofie) 
onderzocht. We gebruikten daarvoor een steekproef van 594 personen, allen met 
een manifeste vaatziekte uit de SMART-MR-studie. P-tau181 was geassocieerd met 
WMH, terwijl NfL geassocieerd was met totale hersenatrofie en de aanwezigheid 
van een infarct. Aangezien dit voor zover ons bekend de eerste studie was waarin 
plasma-AD-biomarkers met totale hersenatrofie werden beoordeeld, zou dit in 
andere studies moeten worden gevalideerd. 

Deel 2 van dit proefschrift was gericht op het onderzoeken van de biologische 
mechanismen achter de psychosociale factoren die samenhangen met incidentele 
dementie. in hoofdstuk 4 beoordeeld of depressieve symptomen, angstsymptomen, 
levensgebeurtenissen in het vroege of late leven of sociale steun geassocieerd waren 
met hippocampus volume gemeten op high-field 7T MRI. Levensgebeurtenissen in 
het vroege en late leven vertoonden een trend van een associatie met het volume 
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van de hippocampus. Levensgebeurtenissen in het vroege leven waren geassocieerd 
met kleinere hippocampus volumes, terwijl levensgebeurtenissen op latere leeftijd 
geassocieerd waren met grotere hippocampus) volumes. Minder sociale steun was 
geassocieerd met kleinere volumes in de cornu ammonis (CA) CA3, een regio van de 
hippocampus die specifiek gevoelig is voor stress. Eerdere studies over sociale steun 
en hippocampusvolume waren schaars; daarom zijn verdere studies over sociale 
steun en hippocampusvolume gerechtvaardigd. 

Hoofdstuk 5 onderzocht de rol van amyloïd-bèta-belasting op depressie en 
depressieve symptomen bij cognitief gezonde ouderen door middel van een 
systematische review en meta-analyse. Plasma-onderzoeken naar amyloïd-bèta 
en depressie of depressieve symptomen lieten geen verband tussen beide zien. Er 
werd echter een trend in de richting van een associatie gevonden voor de PET- en 
CSF-onderzoeken. Wat betreft plasma-onderzoeken naar amyloïd-bèta, waren de 
onderzoeken die in de meta-analyse waren opgenomen vrij oud en implementeerden 
ze niet de nieuwere, meer gevoelige technieken voor het vaststellen van amyloïd-
bèta in plasma. Daarom was hoofdstuk 6 gericht op het beoordelen van meerdere 
plasma AD biomarkers, waaronder amyloïd-bèta, met depressieve symptomen in 
acht Nederlandse cohortstudies. In deze meta-analyse van in totaal 7210 deelnemers 
werd geen verband gevonden tussen depressieve symptomen en AD-plasmamarkers 
(amyloid-beta42/40, p-tau181, NfL of GFAP). Depressieve symptomen op latere 
leeftijd tijdens deze fase kunnen worden verklaard door andere mechanismen die 
onafhankelijk zijn van de processen welke verband houden met biomarkers van AD, 
neurodegeneratie en astrocytische activering. 

Hoofdstuk 7 had als doelstelling om te beoordelen of de relatie tussen depressie en 
dementie kan worden verklaard door ofwel de neurotoxiciteitshypothese (bijv. door 
verhoogde cortisolspiegels) of de vasculaire hypothese (bijv. door WMH). In deze 
studie met behulp van de populatie-gebaseerde AGES-Reykjavik-studie, hebben we 
de basisdiagnose van depressie, de speekselcortisolspiegels in de ochtend en de 
avond en het WMH-volume en hun relatie met incidentele dementie onderzocht met 
een follow-uptijd tot 12 jaar. De huidige diagnose van depressie en cortisolspiegels in 
het avondspeeksel waren onafhankelijk geassocieerd met incidentele dementie. Het 
WMH-volume verklaarde echter gedeeltelijk de relatie tussen de huidige diagnose 
van depressie en incidentele dementie. 

Deel 3 van dit proefschrift onderzocht het gecombineerde gebruik van data-
gestuurde technieken op biomarkers en psychosociale factoren om tot 
precisiegeneeskunde voor dementie te kunnen komen. Aangezien er interacties 
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bestaan tussen en binnen biomarkers en psychosociale factoren, is het gebruik 
van geavanceerde statistische technieken van belang om rekening te houden 
met en te profiteren van die interacties bij het beoordelen van de etiologie van 
dementie. Hoofdstuk 8 van dit proefschrift gebruikte een clustertechniek van 
verschillende biomarkers (d.w.z. cardiovasculair, metabolisch, inflammatoir en 
stress) om te beoordelen of deze biomarkerprofielen de relatie tussen depressie 
en dementie verklaren. Met behulp van de AGES-Reykjavik-studie vonden we vier 
profielen: lage cardiovasculaire ontregeling, gemiddelde, hoge cardiovasculaire 
ontregeling en multisysteemontregeling. We vonden een additieve interactie tussen 
de multisysteemdisregulatiegroep en depressieve symptomen op latere leeftijd bij 
incidentele dementie. Mensen met ontregeling over meerdere biomarkerdomeinen 
(d.w.z. metabolisch, inflammatoir en stress) vertoonden een verhoogde 
kwetsbaarheid voor de negatieve effecten van depressieve symptomen op latere 
leeftijd op incidentele dementie.

Ten slotte beoordeelde hoofdstuk 9 het gebruik van machine learning bij het 
voorspellen van het risico op dementie. We hebben ook de geschiktheid beoordeeld 
van een voorspellingsmodel voor dementie zonder MRI-markers voor een meer klinisch 
toegankelijk model. We vonden dat machine learning alleen voordelig was voor de 
voorspellende prestaties als we rekening hielden met de tijd totdat de dementie zich 
ontwikkelde. Bij het verwijderen van MRI-markers uit ons voorspellingsmodel bleven 
de prestaties echter hoog, wat het nut van gemakkelijk toegankelijke markers in de 
klinische praktijk bij het voorspellen van dementie benadrukte.

Concluderend hebben we meerdere biomarkers en psychosociale factoren en hun 
relatie tot elkaar beoordeeld op het risico voor het ontwikkelen van dementie. We 
ontdekten dat sommige biomarkers in plasma nuttig kunnen zijn voor het monitoren 
van neurodegeneratie en vasculaire pathologie. Verder vonden we een specifiek 
tijdseffect van ongunstige levensgebeurtenissen op neurodegeneratie van de 
hippocampus, waarbij stressvolle levensgebeurtenissen in het vroege leven nadelige 
effecten vertoonden op het volume van de hippocampus en deze effecten hielden 
op latere leeftijd aan. We vonden ook een beschermend effect van hoge sociale steun 
op het volume van de hippocampus in stressgevoelige regio’s. We ontdekten dat het 
gebruik van een multimodale aanpak het meest voordelig was voor clustering en 
voorspelling van dementie. Toekomstige studies zouden prioriteit moeten geven 
aan het combineren van zowel de biomedische factoren (d.w.z. biomarkers) als de 
psychologische factoren (d.w.z. psychosociale factoren) bij het beoordelen van 
ziekte-etiologie, preventie en behandeling.
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there during every late-night studying. You taught me so much about unconditional 
love; you would approach every person on the street with the biggest joy. You passed 
away because your heart grew too big, and there’s so much irony to me in that. My 
biggest regret will always be not being there when you passed away.



310 | Addendum

To my family, my mom and dad, thank you so much for all your support. Dad, thanks 
for sending me podcasts on neuroscience and epidemiology and for trying to take 
that one epidemiology course when you retired. I’m sorry the professor wouldn’t let 
you audit it. Mom, thanks so much for always reading my papers. I’ll never forget 
when we were near Amsterdam UMC in 2017 and Dad told me, “You have to work 
there someday,” and now I do.

Lieve Joep, jij bent mijn steun en toeverlaat. Jij maakt alles lichter. Dank je voor wie je 
bent en alles wat je voor mij doet. Bedankt dat je eindeloos naar me hebt geluisterd, 
vooral die ene keer over amyloïd-bèta. Op een van onze eerste dates bracht je me op 
het idee om tijdens mijn verdediging wit te dragen. Dank je wel dat je mijn carrière 
ook voor jou belangrijk hebt gemaakt. Ik kan niet wachten om samen met jou het 
academiegebouw uit te lopen.
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