
The Power of Amortized Recourse
for Online Graph Problems

Alison Hsiang-Hsuan Liu(B) and Jonathan Toole-Charignon

Department of Information and computing sciences, Utrecht University,
Utrecht, The Netherlands

{h.h.liu,j.c.f.toole-charignon}@uu.nl

Abstract. In this work, we study online graph problems with monotone-
sum objectives, where the vertices or edges of the graph are revealed one
by one and need to be assigned to a value such that certain proper-
ties of the solution hold. We propose a general two-fold greedy algo-
rithm that augments its current solution greedily and references yard-
stick algorithms. The algorithm maintains competitiveness by strate-
gically aligning to the yardstick solution and incurring recourse. We
show that our general algorithm achieves t-competitiveness while incur-
ring at most wmax·(t+1)

t−1
amortized recourse for any monotone-sum prob-

lems with integral solution, where wmax is the largest value that can be
assigned to a vertex or an edge. For fractional monotone-sum problems
where each of the assigned values is between [0, 1], our general algo-
rithm incurs at most t+1

wmin·(t−1)
amortized recourse, where wmin is the

smallest non-negative value that can be assigned. We further show that
the general algorithm can be improved for three classical graph prob-
lems. For Independent Set, we refine the analysis of our general algo-
rithm and show that t-competitiveness can be achieved with t

t−1
amor-

tized recourse. For Maximum Cardinality Matching, we limit our
algorithm’s greed to show that t-competitiveness can be achieved with

(2−t∗)
(t∗−1)(3−t∗) + t∗−1

3−t∗ amortized recourse, where t∗ is the largest number

such that t∗ = 1+ 1
j

≤ t for some integer j. For Vertex Cover, we show
that our algorithm guarantees a competitive ratio strictly smaller than 2
for any finite instance in polynomial time while incurring at most 3.33
amortized recourse. We beat the almost unbreakable 2-approximation
in polynomial time by using the optimal solution as the reference with-
out computing it. We remark that this online result can be used as an
offline approximation result (without violating the unique games conjec-
ture [20]) to partially improve upon the constructive algorithm of Monien
and Speckenmeyer [23].

1 Introduction

Graph optimization problems serve as stems for various practical problems.
A solution for such a problem can be described as an assignment from the ele-
ments of the problem (e.g. vertices of a graph) to non-negative real numbers such
that the constraints between the elements are satisfied. In the online setting, the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Chalermsook and B. Laekhanukit (Eds.): WAOA 2022, LNCS 13538, pp. 134–153, 2022.
https://doi.org/10.1007/978-3-031-18367-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18367-6_7&domain=pdf
http://orcid.org/0000-0002-0194-9360
http://orcid.org/0000-0003-3234-4564
https://doi.org/10.1007/978-3-031-18367-6_7

The Power of Amortized Recourse for Online Graph Problems 135

most considered models are the vertex-arrival and edge-arrival models. That
is, the graph is revealed vertex-by-vertex or edge-by-edge, and once an element
arrives, the online algorithm has to immediately make an irrevocable decision on
the new element. The performance of an online algorithm is measured by com-
petitive ratio against the optimal offline solution. Many graph optimization prob-
lems are non-competitive: the larger the input size, the larger the competitive
ratio of any deterministic online algorithm. In other words, a non-competitive
problem has no constant-competitive online algorithm.

The pure online model is pessimistic, in that altering decisions may be possi-
ble (albeit expensive) or limited knowledge about the future may be available in
the real world. In this work, we investigate online graph optimization problems
in the recourse model. That is, decisions made by the online algorithm can be
revoked. In particular, we aim at finding out the amount of amortized recourse
that is sufficient and/or necessary for attaining a desirable competitive ratio for
a given problem.

Uncertainty and Amortized Recourse. The competitive ratio can be seen
as quantification of how far the quality of an online algorithm’s solution is from
that of a conceptual optimal offline algorithm that has complete knowledge of the
input and unlimited computational power. Therefore, the non-competitiveness of
graph optimization problems suggests that uncertainty of the input is critical to
these problems. However, the online algorithm may perform better when the irre-
vocability constraint is relaxed or knowledge about future inputs is available. It is
intriguing to investigate to what extent these problems remain non-competitive
under these conditions, in particular to determine how much revocability or
knowledge the online algorithm needs in order to attain a desirable competitive
ratio.

Beyond the practical motivation of relaxing irrevocability of online algo-
rithms’ decisions, amortized recourse also provides insight on how a given online
problem is affected by uncertainty. In particular, it captures how rapidly the
structure of the offline optimal solution can change: the fewer elements required
to do so, the larger the amortized recourse. Furthermore, the impact of uncer-
tainty is directly correlated with this idea: the faster the optimal solution can
change, the more impact uncertainty on future inputs will have. Different prob-
lems may attain constant competitive ratios using different amounts of (amor-
tized) recourse, which implies variability in the impact of uncertainty. For exam-
ple, to attain a constant competitive ratio, one needs exactly O(log n) recourse
per edge for min-cost bipartite matching [21], while one only needs a constant
amount of recourse per element for maximum independent set and minimum
vertex cover [10].

Online Monotone-Sum Problems. We study online graph problems in the
vertex-arrival or the edge-arrival models. Along with the newly-revealed element,
which can be a vertex or an edge according to the arrival model, there may be
constraints imposed upon some subset of the currently-revealed elements that a
feasible solution should satisfy. An algorithm aims at finding a feasible solution
that maximizes (or minimizes) the objective. A problem is a sum problem if

136 A. H.-H. Liu and J. Toole-Charignon

the objective is a sum of the values assigned to each element. If the value of
the optimal solution of an instance is always greater than or equal to that of a
subset of the instance, then the problem is a monotone problem.1

An online algorithm makes decisions upon arrival of each element. In the
recourse model, the online algorithm can also revoke an earlier decision that it
made and pay for the revocation. We aim to reduce the competitive ratio with
as little total recourse (i.e. as few revocations) as possible.

Our Contribution. We propose a general online algorithm Target-and-Switch
(TaSt), which is parameterized by a target competitive ratio t and uses a yard-
stick algorithm as a reference. The yardstick algorithm can be ant exact opti-
mal algorithm or an incremental (defined later) approximation algorithm if one
aims at polynomial time online algorithms. Throughout the process, the TaSt

algorithm compares itself to the yardstick algorithm’s solution and strategically
switches its solution to that of the yardstick algorithm. Overall, the TaSt algo-
rithm provides a trade-off between amortized recourse and competitive ratio for
arbitrary monotone-sum graph problems. In particular, we consider two measure-
ments of recourse cost: number of reassigned elements, or the amount of change in
the reassigned values. Our result works for both unweighted and weighted prob-
lems, and it even works for fractional optimization problems, where the smallest
non-zero value assigned to a single element can be a real number between 0
and 1. The following is the main result of our work, where the bound of amor-
tized recourse works for both measurements of recourse cost (Theorem 1 and
Corollary 1).

Main result (informal). Using an optimal algorithm (resp. an incremental
α-approximation algorithm, defined formally in Sect. 2) as the yardstick, TaSt

is t-competitive (resp. (t · α)-competitive) and incurs at most wmax·(t+1)
min{1,wmin}·(t−1)

amortized recourse for any monotone-sum graph problem where wmax and wmin

are the maximum and minimum non-zero values that can be assigned to an
element.2

TaSt is two-fold greedy. First, it assigns the value greedily once an element
arrives. Second, the algorithm aligns its solution to the yardstick solution com-
pletely and incurs recourse when the current solution fails to be t-competitive
against the yardstick solution.

In general, the TaSt algorithm works for any optimization problem. The chal-
lenge is to bound the amortized recourse that it incurs, as the complete alignment
may require a vast amount of recourse. By looking closer at a specific problem,
we can show a tighter bound on the amount of recourse needed. We use a sophis-
ticated analysis for the Independent Set problem and improve the recourse
bound (Theorem 2).
1 The Dominating Set and Matching with delays problems are sum problems

but not monotone. The Coloring Problem is monotone but not a sum problem.
2 The bound of amortized recourse wmax·(t+1)

wmin·(t−1)
is larger when the elements can be

assigned minimum non-zero values smaller than 1. For example, the fractional
Vertex Cover problem in [24].

The Power of Amortized Recourse for Online Graph Problems 137

The two-fold greedy algorithm may perform better when the greediness is
relaxed. Moreover, by choosing different yardstick algorithms and tuning the
alignment to the yardstick carefully, the amortized recourse can be further
reduced. We show that for the Maximum Cardinality Matching problem,
partially aligning to the yardstick solution is more recourse-efficient (Theorem 5).

For the Vertex Cover problem, we show that a special version of TaSt

with t = 2 − 2
OPT

incurs a very small amount of amortized recourse (Theorem 8)
and is (2 − 2

OPT
)-competitive, where OPT is the size of the optimal vertex cover3

(Theorem 7). Our algorithm uses an optimal solution as a yardstick. The key to
the polynomial time complexity is that instead of explicitly finding the yardstick
assignment, we show that the yardstick cannot be too “far” from our solution at
any moment if the target competitive ratio 2− 2

OPT
is not already achieved. More

specifically, by restricting the range of greedy choice, we can show that the yard-
stick solution can be aligned partially within a constant amount of amortized
recourse. Thus, our result breaks the almost unbreakable 2-approximation for
the Vertex Cover problem and improves upon that of Monien and Specken-
meyer [23] for a subset of the graphs containing odd cycles of length no less than
2k+3 (for which 2− 2

OPT
< 2− 1

k+1), using an algorithm that is also constructive.
Our results are summarized in Table 1, which illustrates the power of amor-

tization.

Table 1. Summary of our results. Note that t can be any real number larger than 1.
For Maximum Matching, t∗ is the largest number such that t∗ ≤ t and t∗ = 1 + 1

j

for some integer j. The note P means that the algorithm is a polynomial-time online
algorithm.

(Competitive ratio,
worst case recourse)

(Competitive ratio, amortized recourse)

Monotone-sum
problems

(tα,
wmax·(t+1)

min{wmin,1}·(t−1)
) (Theorem 1, Corollary 1,

P with incremental α-approximation
algorithms)

Maximum
independent set

(2.598, 2) [10] (t, t
t−1

) (Theorem 2)
(2.598, 1.626) (Theorem 2)

Maximum
matching

(k, O(log k
k

) + 1)) [2]
(1.5, 2) [10]

(t,
(2−t∗)

(t∗−1)(3−t∗) + t∗−1
3−t∗) (Theorem 5, P)

((1.5, 1) with t∗ = 1.5)

Minimum vertex
cover

(2, 1) [10] (2− 2
OPT

, 10
3
) (Theorem 8, P)

Related Work. Typically, online graph problems such as maximum indepen-
dent set, maximum cardinality matching, minimum vertex cover, minimum dom-
inating set, can be modeled as inclusion/exclusion problems. In these problems,
any individual element (vertex or edge as appropriate) is either included in or

3 Note that over all instances, OPT can be arbitrarily large. Thus, there is no ε > 0 for
which 2 − 2

OPT
≤ 2 − ε over all instances. Therefore, our result does not violate the

unique games conjecture [20].

138 A. H.-H. Liu and J. Toole-Charignon

excluded from the solution. In our terminology, the inclusion and exclusion of
an element is assigning values 1 and 0 to it, respectively. Recourse is incurred
each time the inclusion/exclusion status of an element is changed. The min-cost
matching, Steiner tree, facility location, and routing problems are also inclu-
sion/exclusion problems, but the cost of an edge/vertices inclusion is weighted.
That is, the edges/vertices are assigned values 0 or 1, and the cost incurred by a
value-1 edge/vertex is its weight. The scheme also works for non-monotone sum
problems. For example, in coloring and bin-packing problems, the assignment
of vertices/items to colors/bins can be modeled as assigning the vertices/items
non-negative integral numbers, which are the indices of the colors/bins.

The closest previous result is the work by Boyar et al. [10]. The authors inves-
tigated the Independent Set, Maximum Cardinality Matching, Ver-
tex Cover, and Minimum Spanning Forest problems, which are all non-
competitive in the pure online model. The authors showed that the com-
petitive ratio of these problems can be massively reduced to a constant by
incurring at most 2 recourse for any single element. Note that the bounds
of the worst case recourse are upper bounds of the amortized recourse.
Moreover, the algorithms in [10] incur at least 1.5 amortized recourse for
the Maximum Cardinality Matching problem and at least 0.5 amortized
recourse for the Vertex Cover problem.

There is a line of research on online matching problems with recourse.
Angelopoulos et al. [2] studied a more general setting forMaximal Cardinality
Matching and showed that given that no element incurs more than k recourse,
there exists an algorithm that attains a competitive ratio of 1+O(1/

√
k). Megow

and Nölke [21] showed that for the Min-Cost Bipartite Matching problem,
constant competitiveness is achievable with amortized recourse O(log n), where n
is the number of requests. Bernstein et al. [6] showed that there exists an algorithm
that achieves 1-competitiveness with O(log2 n) amortized recourse for the Bipar-
tite Matching problem, where n is the number of vertices inserted. The result
also shows that to achieve 1-competitiveness forVertex Cover, any online algo-
rithm needs at least Ω(n) amortized recourse per vertex.

In addition, there has been extensive work on online algorithms in the
recourse model for a variety of different problems. For amortized recourse, stud-
ied problems include online bipartite matching [6], graph coloring [9], minimum
spanning tree and traveling salesperson [22], Steiner tree [12], online facility
location [11], bin packing [13], submodular covering [14], and constrained opti-
mization [3].

Graph problems model various real-world issues whose performance guar-
antees are often abysmal, as they are notoriously non-competitive in the pure
online model. Prior work has shown curiosity about the conditions under which
these problems become competitive, and these problems have been investigated
under different models out of both practical and theoretical interests. Other than
the recourse model, considered models include paying for a delay in the timing
of decision making to achieve a better solution [5,7]. Another model for delayed
decision making is the reordering buffer model [1], where the online algorithm
can delay up to k decisions by storing the elements in a size-k buffer.

The Power of Amortized Recourse for Online Graph Problems 139

The impact of extra knowledge about the input has also been studied. For
example, once a vertex arrives, the neighborhood is known to the algorithm [16].
In the lookahead model, an online algorithm is capable of foreseeing the next
events [1]. Predictions provided by machine learning are also considered for graph
problems [4]. Finally, there are also works where the integral assignment restric-
tions are relaxed for vertex cover and matching problems [24].

Another major area of related work for practically any problem considered in
the online model is polynomial-time approximation algorithms for the equivalent
problem in the offline setting. The link between the two is particularly salient
when considering a polynomial-time online algorithm, as this online algorithm
can also be run in polynomial time in the offline setting by processing the graph
as if it were revealed in an online manner.

In the case of minimum vertex cover, assuming the unique games conjec-
ture, it is not possible to obtain an approximation factor of (2 − ε) for fixed
ε > 0 [20]. However, results have been obtained for parameterized ε. In par-
ticular, Halperin [15] showed an approximation factor of 2 − (1 − o(1))2 ln lnΔ

lnΔ
on graphs with maximum degree Δ, and Karakostas [19] showed an approxi-
mation factor of 2 − θ(1√

logn
). Both of these results use semidefinite relaxations

of the problem, whereas Monien and Speckenmeyer [23] had previously used a
constructive approach to show an approximation factor of 2 − 1

k+1 for graphs
without odd cycles of length at most 2k + 1.

Paper Organization. Section 2 defines monotone-sum graph problems and
the amortized recourse model. We propose a general algorithm TaSt for finding
the trade-off between the desired competitive ratio and the amortized recourse
needed. Section 3 provides a refined analysis on the TaSt algorithm on the
Independent Set problem. Section 4 discusses an existing algorithm [2], which
is a variant of TaSt algorithm, for the Maximum Cardinality Matching
problem that is less greedy in aligning its solution and obtains a better trade-
off. Section 5 introduces a polynomial-time version of TaSt algorithm for the
Vertex Cover problem that limits both greedy aspects. This algorithm can
also be used as a novel offline approximation algorithm for certain graph classes.
Due to space constraints, we only provide proof ideas for the theorem. The
detailed proof for all lemmas and theorems can be found in the full version of
this paper.

2 Monotone-Sum Graph Problems and a General
Algorithm

For an online graph problem Q on a graph G = (V,E), which is unknown a priori,
we consider either the vertex-arrival model or the edge-arrival model. In the
vertex-arrival model (resp. edge-arrival model), the elements in V (resp. elements
in E) arrive one at a time, and an algorithm has to assign each element a non-
negative value in [0, wmax] such that the assignment satisfies certain properties
associated with Q. Formally, the assignment is defined as A : X → R

+, where

140 A. H.-H. Liu and J. Toole-Charignon

X is V or E, such that A(X) satisfies a set of properties PQ. The value of
a feasible assignment A is defined as a function value : X × A(X) → R

+,
which should be minimized or maximized as appropriate. In this work, we focus
on the problems with sum objectives, that is, value(X ,A(X)) =

∑
x∈X A(x).

Moreover, we concern ourselves about the impact of lacking information on the
optimality of the solution. Therefore, we consider monotone sum graph problems
where given a feasible assignment and a newly-arrived element, there is always
a value in [0, wmax] that can be assigned to the new element such that the new
assignment is feasible.4

We denote the assignment on input X returned by the algorithm ALG by
ALG(X). We abuse the notation X to denote the graph revealed by the input
X . We further abuse notation and denote the total value of the assignment by
ALG(X) as well. That is, ALG(X) =

∑
xi∈X ALG(xi). When the context is clear,

the parameter X is dropped.
We study the family of monotone-sum graph problems, which is defined as

follows. Similarly, we define the family of incremental algorithms. Note that a
monotone-sum problem can be a maximization or a minimization problem.

Definition 1. The projection of an assignment A(G) on an induced subgraph
H of G assigns to each element in H the same value that A(G) does in G.

Definition 2. Monotone-sum graph problems. A sum problem is mono-
tone if for any graph G and any induced subgraph H of G, 1) the projection of
any feasible assignment A(G) on H is also feasible, and 2) OPT(H) ≤ OPT(G),
where OPT is an optimal solution.

Definition 3. Incremental algorithms. An algorithm ALG is incremental if
for any graph G corresponding to the instance X and any induced subgraph H of
G, ALG(H) ≤ ALG(G). Furthermore, the projection of ALG(X) on a prefix X ′ of
instance X does not have a better objective value than the assignment ALG(X ′).5

In this work, the performance of an online algorithm is measured by the
competitive ratio. An online algorithm ALG attains a competitive ratio of t if
max{ ALG(X)

OPT(X) ,
OPT(X)
ALG(X)} ≤ t for any instance X , where OPT is the optimal offline

algorithm that knows all information necessary for solving the problem. In the
recourse model, the online algorithm can revoke its decisions and incurs recourse
cost. There are two types of recourse cost considered in this paper:

– Type-1: The recourse cost is defined as the number of elements which
assignment values are changed. Formally,

∑
xi∈X 1[A1(xi) �= A2(xi)] when

an assignment on instance X is changed from A1(X) to A2(X).
– Type-2: The recourse cost is defined as the amount of change of the

assignment value. Formally,
∑

xi∈X |A1(xi) − A2(xi)| when an assignment
on instance X is changed from A1(X) to A2(X).

4 Classical graph problems such as Independent Set, Maximum Cardinality
Matching, and Vertex Cover all satisfy this property.

5 For example, the Ramsey algorithm in [8] is an incremental algorithm. Also note
that any online algorithm is an incremental algorithm.

The Power of Amortized Recourse for Online Graph Problems 141

We study the trade-off between the competitive ratio and the amortized recourse.
That is, the total incurred recourse cost divided by the number of elements that
should be assigned a value in the final instance. We define a family of algorithms
for monotone-sum problems.

Target-and-Switch (TaSt) Algorithm. The TaSt algorithm uses a yardstick
algorithm REF as a reference, where the yardstick can be the optimal algorithm
or an incremental α-approximation algorithm. Throughout the process, TaSt

keeps track of the yardstick solution value. Once a new element arrives, TaSt

greedily assigns a feasible value6 to the newly-revealed element if this assignment
remains t-competitive relative to the yardstick algorithm’s solution. Otherwise,
TaSt switches its assignment to the one by the yardstick algorithm and incurs
recourse. (See Algorithm 1).

Algorithm 1. TaSt algorithm for monotone-sum graph problems
ALG ← 0
while new element v arrives do

g ← the best value from [0, wmax] such that no feasibility constraint is violated
if the new assignment will fail to be t-competitive then � max{ ALG+g

OPT
, OPT
ALG+g

} > t
Switch(OPT)

else
incorporate the greedy assignment

end if
ALG ← the value of TaSt’s current assignment

end while

function Switch(assignment A)
for every element x do

if TaSt(x) �= A(x) then
change the assignment of element x into A(x)

end if
end for

end function

Now, we show that the TaSt algorithm achieves the desired competitive ratio t
with at most polynomial of t amortized recourse. In our analysis, we use the
following observation heavily (including for Theorem 1).

Observation 1. For all xi ≥ 0 and yi > 0, Σixi

Σiyi
≤ maxi

xi

yi
.

Theorem 1. Using an optimal algorithm (resp. incremental α-approximation
algorithm) as the yardstick, TaSt is t-competitive (resp. (t · α)-competitive) and
incurs at most wmax·(t+1)

t−1 Type-2 amortized recourse for any monotone-sum
graph problem where wmax is the maximum value that can be assigned to an
element. The bound also works for Type-1 amortized recourse.
6 Note that there always exists a value such that the new assignment is feasible since

the problem is monotone.

142 A. H.-H. Liu and J. Toole-Charignon

Proof (Ideas.) We can show that any optimal solution satisfies the incremen-
tal property (see the full version) and thus can be seen as an incremental 1-
approximation algorithm.

Since recourse is incurred only at the moments when a switch happens in the
TaSt algorithm, we partition the process of the algorithm into phases according
to the switches. Phase i consists all the events after the (i − 1)-th switch until
the i-th switch. By Observation 1, the amortized recourse for the whole instance
is bounded by the maximum amortized recourse incurred within a phase. There-
fore, we consider the amortized recourse incurred by the (i + 1)-th switch for
arbitrary i ≥ 0.

Let REFi and TaSi denote the value of the yardstick algorithm’s solution
and the TaSt algorithm’s solution right after the i-th switch, respectively. By
construction, TaSi = REFi. Let ALG denote the value of TaSt’s solution right
before the arrival of x, which triggers the (i + 1)-th switch. The total Type-2
recourse cost is at most ALG + REFi+1 (where the TaSt algorithm changes the
value on every element to zero and then changes it to the REF assignment).

The main ingredients for the proof are:

– Property 1: Monotonicity of the problem and the incremental nature of REF
implies that REFi ≤ REFi+1.

– Property 2: The incremental nature of TaSt during a phase implies that
ALG ≥ REFi.

– Property 3: By the switching condition of TaSt, ALG < REFi+1/t for maxi-
mization problems, and ALG + wmax > t · REFi+1 for minimization problems.

Maximization Problems. By Property 1 and the fact that the assigned
values are at most wmax, we can show that the adversary needs to release at least
REFi+1−REFi

wmax
elements such that the yardstick assignment value increases enough to

trigger the switch. By Property 2 and Property 3, REFi+1−REFi
wmax

≥ (1−1/t)·REFi+1
wmax

.
By Property 3, the total recourse incurred by the (i + 1)-th switch is at most
ALG+REFi+1 < (1+1/t)·REFi+1. Hence, the Type-2 amortized recourse incurred
in phase i + 1 is bounded by wmax·(1+1/t)·REFi+1

(1−1/t)·REFi+1
= wmax·(t+1)

t−1 .

Minimization Problems. In minimization problems, the (i+1)-th switch may
be triggered by shifting the REF assignment completely but without changing
its value. In this case, a massive amount of recourse is incurred by a single
input. However, we can show by Property 3 that in this case, the ALG value
must be large enough to trigger the switch. Thus, we can bound the number
of elements released during phase i + 1 by the change of TaSt assignment’s
total value. That is, it is at least ALG−TaSi

wmax
+ 1 = ALG−REFi

wmax
+ 1, where the 1 is

the element which triggers the switching. By Property 1 and Property 2, the
number is at least (1−1/t)·(ALG+wmax)

wmax
. By Property 3, the total recourse incurred

by the (i + 1)-th switch is at most ALG + REFi+1 < (1 + 1/t) · ALG + wmax/t.
Therefore, the Type-2 amortized recourse incurred in phase i + 1 is bounded
by wmax·((1+1/t)·ALG+wmax/t)

(1−1/t)·(ALG+wmax)
≤ wmax·(t+1)

t−1 . ��

The Power of Amortized Recourse for Online Graph Problems 143

The yardstick algorithm can be the optimal offline algorithm. Since the prob-
lem is monotone, our algorithm can be t-competitive for arbitrary t > 1. Fur-
thermore, if we apply a polynomial-time incremental α-approximation algorithm
as the yardstick, then our algorithm also runs in polynomial time.

The results work for weighted versions of problems, and it also work for
fractional assignment problems, where the value assigned to any element is in
[0, 1] (for example, the fractional Vertex Cover problem in [24]). In this case,
the Type-2 amortized recourse is bounded above by the Type-1 amortized
recourse:

Corollary 1. For a fractional monotone-sum problem, TaSt is (t·α)-competitive
and incurs at most t+1

wmin·(t−1) Type-1 amortized recourse using an incremental
α-approximation algorithm as the yardstick. The bound also works for Type-2
amortized recourse.

The monotone-sum problem property captures many classical graph opti-
mization problems such as Independent Set, Maximum Cardinality
Matching, and Vertex Cover. The three problems can be interpreted as
a special case of general monotone-sum problems as follows.

Independent Set Problem in Vertex-Arrival Model. Vertices arrive one
at a time and should be assigned a value 0 or 1. Once a vertex is revealed, the
edges between it and its previously-revealed neighbors are known. The goal is
to find a maximum value assignment such that for any edge, the sum of values
assigned to the two endpoints is at most 1.

Maximum Cardinality Matching Problem in Vertex-Arrival or Edge-
Arrival Model. Edges or vertices arrive one at a time and each of the edges
should be assigned a value 0 or 1. The goal is to find a maximum value assignment
such that for any vertex, the sum of values assigned to its incident edges is at
most 1.

Vertex Cover Problem in Vertex-Arrival Model. Vertices arrive one at a
time and should be assigned a value 0 or 1. Once a vertex is revealed, the edges
between it and its previously-revealed neighbors are known. The goal is to find
a minimum value assignment such that for any edge, the sum of values assigned
to its two endpoints is at least 1.

Since the available value for each element is either 0 or 1 in these three
problems, we say that an element is accepted if it is assigned a value 1. Similarly,
an element is rejected if it is assigned a value 0. An element is late-accepted if
its value is changed from 0 to 1 after its arrival, and late-rejected if its value is
changed from 1 to 0 after its arrival. Furthermore, since the value for any element
only changes between 0 and 1, the Type-1 recourse cost and Type-2 recourse
cost are equivalent in these three problems. Therefore, we have the following
corollary.

144 A. H.-H. Liu and J. Toole-Charignon

Corollary 2. The TaSt algorithm attains competitive ratio t > 1 while incurring
at most t+1

t−1 (Type-1 or Type-2) amortized recourse for Independent Set,
Maximum Cardinality Matching, and Vertex Cover problems.

3 Maximum Independent Set

For the maximum independent set problem in the vertex-arrival model, the algo-
rithm proposed by Boyar et al. incurs at most 2 amortized recourse while main-
taining a competitive ratio of 2.598 [10]. By Theorem 1, the general TaSt algo-
rithm incurs at most t+1

t−1 amortized recourse and guarantees a competitive ratio
of t. In this section, we show that the amortized recourse incurred by TaSt is
even smaller by a more sophisticated analysis.

Lemma 1 (Instance reduction). For any instance (G, σ) of the maximum
independent set problem, there exists an instance (G′, σ′) for which any newly
revealed vertex is either accepted by TaSt or is part of the optimal offline solution
when TaSt incurs its next switch, but not both, such that the amortized recourse
for (G′, σ′) is at least that for (G, σ).

By Lemma 1, given any input (G, σ), its amortized recourse incurred by TaSt

is bounded above by that of its reduced instance (G′, σ′). In Theorem 2, we
provide an upper bound of the amortized recourse incurred by TaSt against any
reduced instance, and thus that this upper bound holds for any instance.

Theorem 2. For the maximum independent set problem, given a target com-
petitive ratio t > 1, TaSt is t-competitive while incurring at most t

t−1 amortized
recourse.

Proof (Ideas). We prove this theorem by using the same phase partition argu-
ment in the proof of Theorem 1 on any reduced instance (G′, σ′). Assume that
every vertex is released with some “budget” B, which is a function of t, for
later recourse. Our attempt is to find a sufficient B such that the total recourse
incurred by TaSt in one phase is no more than the total recourse budget carried
by the vertices released in this phase. That is, the total recourse incurred by one
switch can be “paid” by the recourse budget from the newly revealed vertices.
By Lemma 1 and Observation 1, TaSt incurs at most B amortized recourse.

By Lemma 1, in the reduced instance, any newly revealed vertex is either
accepted by TaSt or is part of OPTi+1. Therefore, we can show that the number
of vertices revealed in phase i + 1 that are part of OPTi+1 is bounded above
by OPTi+1 − OPTi−1, which implies that it is sufficient for the budget to satisfy
B ≥ ALG+OPTi+1

OPTi+1−OPTi−1
. Furthermore, we incorporate both the number of vertices in

phase i + 1 that are accepted by TaSt and the number of vertices revealed in
phase i that are accepted by TaSt into our analysis and show that the lower
bound on the required budget is largest when there are no such vertices.

We conclude that it is sufficient for each newly-revealed vertex to carry bud-
get B = t

t−1 . Thus, TaSt is t-competitive while incurring at most t
t−1 amortized

recourse. ��

The Power of Amortized Recourse for Online Graph Problems 145

Theorem 3. For any 1 < t ≤ 2, ε > 0, and t-competitive deterministic online
algorithm, there exists an instance for which the algorithm incurs at least 1

t−1 −ε
amortized recourse.

Proof (Ideas). Consider any t-competitive online algorithm against an adver-
sary that constructs a complete bipartite graph and only reveals new vertices
in the partition which does not contain the algorithm’s current solution. This
means that the maximum number of vertices that the algorithm’s solution can
contain will only increase if the algorithm moves its solution from one partition
to the other. Furthermore, in doing so, the algorithm is forced to late-reject all
vertices in its old solution in order to late-accept all vertices in its new solution.

By the structure of this adversary, we can show that 1) each partition-
changing switch will incur at least 1

t recourse amortized over the size of the
revealed graph when the switch occurs, and 2) there are at most t times more
vertices at switch i + 1 than at switch i. Therefore, the recourse incurred by
switches up to switch i amortized over the size of the revealed graph f(i) satis-
fied the recurrence relation f(i) = 1

t + 1
t · f(i − 1), where f(1) = 1. Solving this

recurrence relation, we conclude that for any 1 < t ≤ 2, ε > 0, and t-competitive
deterministic online algorithm, there exists an instance for which the algorithm
incurs at least 1

t−1 − ε amortized recourse. ��

4 Maximum Cardinality Matching

The TaSt algorithm greedily aligns with the yardstick solution completely and
incurs a lot of recourse. However, for some of the elements whose value is changed,
the alignment may not contribute to the improvement of the competitive ratio
as much as the alignment of other elements. This observation suggests that it
may be possible to reduce the amount of amortized recourse while maintain-
ing t-competitiveness by switching the solution only partially into the yard-
stick. In this section, we show that the L-Greedy algorithm by Angelopoulos
et al. [2], which is in fact a TaSt algorithm that uses an optimal solution as
the yardstick without aligning to it fully, incurs less amortized recourse for the
Maximum Cardinality Matching problem.

L-Greedy Algorithm [2]. The algorithm is associated with a parameter L.
Throughout the process, the L-Greedy algorithm partially switches its solution
to the optimal once by eliminating all augmenting paths with length at most
2L + 1. That is, it late rejects all the edges selected by itself and late accepts all
the edges in the optimal solution on the path.

After applying late operations on all augmenting paths with at most 2L + 1
edges, every remaining augmenting path has length at least 2L+3, and the ratio
of the OPT solution value to the L-Greedy solution value is OPT(P)

L-Greedy(P) ≤ L+2
L+1 on

the component P . Since the Maximum Cardinality Matching problem can
be solved in O(n2.5) time, the following theorem holds by selecting L = 	 1

t−1
−1.

Theorem 4. The L-Greedy algorithm returns a valid matching with competitive
ratio L+2

L+1 in O(n3.5) time, where n is the number of vertices in the final graph.

146 A. H.-H. Liu and J. Toole-Charignon

Proof (Ideas). After applying the late operations on all the augmenting path
with at most 2L + 1 edges, every remaining augmenting path P has length at
least 2L + 3 = (L + 2) + (L + 1), and the ratio of the OPT size to the L-Greedy
size OPT(P)

L-Greedy(P) ≤ L+2
L+1 on the component P . By Observation 1, the ratio of an

optimal solution to that of L-Greedy is at most L+2
L+1 .

When an edge/vertex arrives, the algorithm checks if there is an augmenting
path. By the well-known Hopcroft-Karp algorithm [17], it can be done in O(n ·
n2.5) = O(n3.5)-time, where n is the number of vertices in the final graph. ��

Since it was shown that to achieve 1.5-competitiveness, every vertex incurs
at most 2 recourse, we consider a target competitive ratio 1 < t < 2 and have
the following theorem. Note that 1 < t∗ < 2, thus 0 < t∗−1

3−t∗ < 1.

Theorem 5. For the Maximum Cardinality Matching problem in the ver-
tex/edge-arrival model, the L-Greedy algorithm is t-competitive for any 1 < t < 2
and incurs at most (2−t∗)

(t∗−1)(3−t∗) + t∗−1
3−t∗ amortized recourse, where t∗ is the largest

number such that t∗ ≤ t and t∗ = 1 + 1
j for some integer j.

Proof (Ideas). Consider the connected components generated by the union of
edges chosen by L-Greedy or by OPT. By Observation 1, we prove this theorem
by showing that for any component in the graph, the total recourse incurred at
this component divided by its size is at most (2−t∗)

(t∗−1)(3−t∗) + t∗−1
3−t∗ .

By selecting L = 	 2−t
t−1
, the path eliminations only happen at odd-size com-

ponents with length from 3 to 2 · (1
t−1
 − 1) + 1 (note that 	 1

t−1
 ≥ 2 since
1 < t < 2). Moreover, for such a (2k + 1)-edge augmenting path, the total

recourse incurred by the 2k +1 elements in the path is at most 1+
∑� 1

t−1 �−1

k=1 2k.
Hence, the amount of amortized recourse incurred by this component is at most
(� 1

t−1 �−1)·� 1
t−1 �+1

2� 1
t−1 �−1

. Thus, the theorem is proven if t = 1 + 1
j for some integer j.

For the case in which there is no integer j such that t = 1 + 1
j , the proof can

be adapted by rounding down t to the largest t∗ ≤ t such that t∗ = 1+ 1
j for some

integer j. By eliminating all augmenting paths that have length at most 2
t∗−1 −1,

the amount of incurred amortized recourse is at most 2−t∗
(t∗−1)(3−t∗) + t∗−1

3−t∗ , and
the algorithm attains a competitive ratio of t∗ ≤ t. ��
Theorem 6. No deterministic t-competitive online algorithm can incur amor-
tized recourse less than (2−t∗)

(t∗−1)(3−t∗) in the worst case.

Proof (Ideas). Given that n+2
n+1 ≤ t < n+1

n for some integer n ≥ 1, consider the
adversarial instance that releases a sequence of 2n + 1 edges that form a path.
More specifically, given the current instance which is an �-path, the adversary
releases a new edge that is incident to one of the endpoints of the �-path and
forms a (� + 1)-path. For any 1 ≤ k ≤ n, the following invariants hold for any
t-competitive algorithm:

The Power of Amortized Recourse for Online Graph Problems 147

(I1) For a path with length 2k+1, a t-competitive algorithm has to accept k+1
edges.

(I2) For a path with length 2k, a t-competitive algorithm has to accept k edges.
(I3) When an instance is increased from a 2(k − 1) + 1 path to a 2k + 1 path,

a t-competitive algorithm incurs at least 2k amount of recourse.

Given the invariants I1, I2, and I3, the (2n + 1)-length path instance incurs
recourse with total amount at least

∑n
k=1(2k) = n · (n + 1). Therefore, any t-

competitive algorithm incurs at least n·(n+1)
2n+1 amortized recourse for this instance.

Let t∗ = n+2
n+1 ≤ t. It follows that n = 2−t∗

t∗−1 . Therefore, the amortized recourse is

at least n·(n+1)
2n+1 = (2−t∗)

(t∗−1)(3−t∗) . ��

5 Minimum Vertex Cover

In this section, we propose a special version of the TaSt algorithm, Duo-Halve,
that attains a competitive ratio of 2 − 2

OPT
for the Minimum Vertex Cover

problem with optimal vertex cover size OPT in polynomial time.
The Duo-Halve algorithm uses an optimal solution as the yardstick with

t = 2− 2
OPT

. However, the computation of the optimal solution of Vertex Cover
is very expensive. Thus, we maintain a maximal matching greedily (as the well-
known 2-approximation algorithm for Vertex Cover) on the current input
graph and only select vertices that are saturated by the matching. Intuitively, if
the Duo-Halve algorithm rejects two of these saturated vertices, the competitive
ratio is at most 2 − 2

OPT
. We show that either we can remove up to 2 carefully

chosen vertices from the matching-based solution without violating its feasibility,
or the optimal solution contains at least one vertex more than the number of
edges in the maximal matching (Lemma 3 and Theorem 7). In either case, the
constructed solution is (2− 2

OPT
)-competitive. We can refine the choice of vertices

to be removed so that they are incident to one of the two last edges added to the
matching. This restriction allows us to show that maintaining this constructed
solution needs only a constant amount of amortized recourse, and polynomial
time (Lemma 2).

In the following discussion, we use some terminology. Let ME1 and ME2 be
the last and second-to-last edges added to the matching respectively. Note that
ME1 and ME2 change over the course of the input sequence as more vertices are
revealed and edges are added to the matching. Also, let VM(X) be the vertices
saturated by the maximal matching M(X). The DH algorithm partitions the
vertices into three groups: Group-1: the endpoints of ME1 or ME2, Group-2:
the vertices in VM but not in Group-1, and Group-3: the vertices in V \VM .

Duo-Halve Algorithm (DH). When a new vertex v arrives, if an edge (p, v) is
added to M(X), then it introduces a new ME1 (namely (p, v)). The algorithm
first accepts all Group-2 vertices that are adjacent to v. Then, the algorithm
decides the assignment of ME1 and ME2 and minimizes the number of accepted
endpoints of ME1 and ME2. If there is a tie, we apply the one that accepts fewer
endpoints in ME1 and/or incurs less recourse. (See Algorithm 2).

148 A. H.-H. Liu and J. Toole-Charignon

Algorithm 2. Duo-Halve algorithm (DH) for Minimum Vertex Cover Problem
ME1 ← ∅, ME2 ← ∅, VM ← ∅

while new vertex v arrives do
if there is a vertex p ∈ N(v) ∪ (V \VM) then

ME2 ← ME1
ME1 ← (p, v) � (p, v) is a new matched edge. If there is more than one p,

choose one arbitrarily.
Add p and v into VM

LateAccept all rejected vertices in (VM\{vertices in ME1 or ME2}) ∩ N(v)
HalveBoth(ME1, ME2)

else
LateAccept all rejected vertices in VM ∩ N(v)
HalveBoth(ME1, ME2)

end if
end while

Function HalveBoth(matched edge ME1, matched edge ME2)
Among accept/reject configurations of ME1 and ME2 that yield a valid vertex cover,
return one that maximizes the number of half edges among ME1 and ME2 with the
minimum number of late operations. If there is a tie, prioritize ME1 (see Fig. 1 for
details).
end Function

The DH algorithm returns a feasible solution in O(n3) time, where n is the
number of vertices in the graph. Intuitively, the algorithm maintains a valid
solution as it greedily covers edges using vertices in the maximal matching, with
the exception of ME1 and ME2, where it carefully ensures that a feasible config-
uration is chosen. Furthermore, the most computationally-expensive component
of the DH algorithm, which checks the validity of a constant number of configu-
rations by looking at the neighborhoods of ME1 and ME2, runs in O(n2) time
for each new element.

Lemma 2. The DH algorithm always returns a valid vertex cover in O(n3) time,
where n is the number of vertices in the graph.

We first show that if DH fails to produce a solution where it accepts only one
vertex of ME1, then OPT ≥ |M | + 1. The intuition is that if DH has to accept
both endpoints of ME1, there must be at least one Group-3 vertex in each of
the endpoints’ neighborhoods. Therefore, the optimal solution has to cover the
corresponding edges with at least two vertices.

Lemma 3. In the assignment of DH, if both endpoints of ME1 are selected, then
the optimal solution must contain at least two vertices in ME1 ∪ (V \VM), and
DH
OPT

≤ 2 − 2
OPT

.

Theorem 7. The DH algorithm is (2 − 2
OPT

)-competitive.

The Power of Amortized Recourse for Online Graph Problems 149

YES

Given v accepted,
is ME2 halvable?

vertex v arrives Is there a new ME1 = (p, v)?

NO

Given the current ME1,
is ME2 halvable?

YESHalve ME2
accept v

NO
Given p late accepted,

is ME2 halvable?

YES

Halve ME2
late accept p

YES
Halve ME2

Given ME1 flipped,
is ME2 halvable?

Halve ME2
flip ME1

NO

YES

Given full ME2,
is ME1 halvable?

NO

NO

Full ME2
halve ME1

Full ME1
ME2 unchanged

YES

NO

Fig. 1. An illustration of the flow of HalveBoth (ME1, ME2).

Proof (Ideas). We define an edge as being half if exactly one of its endpoints
is accepted by DH, and full if both of its endpoints are accepted by DH. In any
possible solution provided by DH, there are three states based on the configuration
of ME1 and ME2: 1) both ME1 and ME2 are half, 2) ME1 is half and ME2 is
full, and 3) ME1 is full. In state 1, we can directly show that the bound holds
since DH ≤ 2|M | − 2. The bound holds for state 3 by Lemma 3.

State 2 requires more involved analysis. If an endpoint of ME2 has a rejected
Group-2 neighbor, then DH rejects at least two vertices in VM (this Group-
2 neighbor and 1 ME1 vertex) and DH ≤ 2|M | − 2. Otherwise, if at least one
endpoint of ME2 has no Group-3 neighbor, then we can show that there is no
solution based on the maximal matching containing only 2 Group-1 vertices.
This means that OPT must contain either a Group-3 vertex or 3 Group-1
vertices, and thus OPT ≥ |M |+1. Finally, if each endpoint of ME2 has a Group-
3 neighbor, then OPT must either select a Group-3 vertex or both endpoints of
ME2, and OPT ≥ |M | + 1. ��

For a single newly-revealed vertex, the amount of recourse incurred can be
up to O(n). Even if we restrict our consideration to ME1 and ME2, a single
new vertex can incur recourse at most 4. However, this cannot happen at every
input. We use a potential function to show that the amortized recourse incurred
by DH is at most 3.33.

Theorem 8. The amortized recourse incurred by DH is at most 10
3 .

Proof (Ideas). We prove the theorem by using a potential function. To this end,
we define an edge (u, v) as being free if there exist feasible assignments both by
either accepting u or by accepting v. Also, we define a matched edge with only
one endpoint selected as being expired if it is neither ME1 nor ME2. Finally, we
define A as the set of vertices accepted by DH. Using these terms, we define the
potential function Φ as

Φ := |{(u, v)|(u, v) expired}| +
1
3
|A ∩ (ME1 ∪ ME2)| +

2
3

· 1[ME2 is free]

150 A. H.-H. Liu and J. Toole-Charignon

Furthermore, at any given moment in the input sequence where the matching
constructed by DH contains at least 2 edges, the status of ME1 and ME2 is
characterized by one of 6 states according to their possible combinations of
selection statuses of their endpoints. We also differentiate between the two half
possibilities for ME1, since the newly-revealed vertex in ME1 can be accepted
without incurring a late operation when there is a new ME1.

We show that, for any possible state transition triggered by a newly-revealed
vertex, the number of incurred late operations LO added to the change in poten-
tial ΔΦ is bounded above by 10

3 . Note that, for any newly-revealed vertex v, v
may be adjacent to k ≥ 0 rejected vertices that are matched by some expired
edge. This incurs k late operations, but also decreases Φ by k, so this may be
ignored when computing LO + ΔΦ. Since Φ0 = 0 and Φi ≥ 0, this allows us to
conclude the statement of our theorem. ��

Moreover, we can show a lower bound by constructing a family of instances
that alternates between incurring a late accept on a Group-2 vertex, and 4 late
operations on ME1 and ME2. This is illustrated in Fig. 2.

Lemma 4. For any ε > 0, there exists an instance such that DH incurs amortized
recourse strictly greater than 5

2 − ε.

Fig. 2. Adversarial instance for Vertex Cover such that DH incurs asymptotic amor-
tized recourse 5

2
. Each arrow’s number denotes the number of late operations incurred

by the next vertex’s reveal. The dotted ovals highlight the repeating structure.

Finally, we show that the analysis in Theorem 7 is tight for a class of online
algorithms where its solution only contains vertices saturated by the matching
maintained throughout the process in an incremental manner. In other words,
no online algorithm in this class achieves a lower competitive ratio, no matter
how much amortized recourse it uses.

Definition 4. An algorithm for vertex cover is incremental matching-based if it
maintains a maximal matching throughout the process in an incremental manner,
and its solution only contains vertices saturated by the matching.

Theorem 9. No deterministic incremental matching-based algorithm achieves
a competitive ratio smaller than 2 − 2

OPT
.

The Power of Amortized Recourse for Online Graph Problems 151

Proof. Consider the instance which first reveals k disconnected edges via their
endpoints. For any incremental matching-based algorithm, each of these k edges
will be added to the matching, and at least one vertex from each pair will
be accepted. Then, the instance reveals a final vertex that is adjacent to all
previously-revealed vertices (See Fig. 3). The incremental matching-based algo-
rithm will not accept this vertex, as it is not matched, but must accept all other
vertices for a vertex cover of size 2k. However, the optimal solution consists of
the last revealed vertex, and one endpoint from each of the k edges. Therefore, no
incremental matching-based algorithm can achieve a competitive ratio smaller
than 2k

k+1 = 2 − 2
OPT

. ��

Fig. 3. Adversarial instance for Vertex Cover such that any incremental matching-
based algorithm is exactly (2 − 2

OPT
)-competitive. Vertices are labeled by their release

order. Any such algorithm must accept n − 1 vertices, whereas the optimal solution
contains n−1

2
+ 1 vertices.

6 Concluding Remarks

In this paper, we propose a general Target-and-Switch algorithm for online prob-
lems that allow recourse. We prove that for any monotone-sum graph problem,
the algorithm attains a competitive ratio of t > 1 while incurring wmax ·(1+ 1

t−1)
amortized recourse. Many interesting problems remain open. A major future
direction is extending the analysis to non-monotone problems such as Domi-
nating Sets or monotone-max problems such as Coloring.

Acknowledgement. We wish to thank the anonymous referees for their comments
and suggestions on a previous version of this paper. In particular, we thank them for
helping us complete the monotone problem definition.

References

1. Albers, S., Schraink, S.: Tight bounds for online coloring of basic graph classes.
In: Pruhs, K., Sohler, C. (eds.) 25th Annual European Symposium on Algorithms,
ESA 2017, 4–6 September 2017, Vienna, Austria. LIPIcs, vol. 87, pp. 7:1–7:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.ESA.2017.7

2. Angelopoulos, S., Dürr, C., Jin, S.: Online maximum matching with recourse.
J. Comb. Optim. 40(4), 974–1007 (2020). https://doi.org/10.1007/s10878-020-
00641-w

https://doi.org/10.4230/LIPIcs.ESA.2017.7
https://doi.org/10.4230/LIPIcs.ESA.2017.7
https://doi.org/10.1007/s10878-020-00641-w
https://doi.org/10.1007/s10878-020-00641-w

152 A. H.-H. Liu and J. Toole-Charignon

3. Avitabile, T., Mathieu, C., Parkinson, L.H.: Online constrained optimization with
recourse. Inf. Process. Lett. 113(3), 81–86 (2013). https://doi.org/10.1016/j.ipl.
2012.09.011

4. Azar, Y., Panigrahi, D., Touitou, N.: Online graph algorithms with predictions.
In: Naor, J.S., Buchbinder, N. (eds.) Proceedings of the 2022 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2022, Virtual Conference, Alexandria, VA,
USA, 9–12 January 2022, pp. 35–66. SIAM (2022). https://doi.org/10.1137/1.
9781611977073.3

5. Azar, Y., Touitou, N.: Beyond tree embeddings - a deterministic framework for net-
work design with deadlines or delay. In: Irani [18], pp. 1368–1379 (2020). https://
doi.org/10.1109/FOCS46700.2020.00129

6. Bernstein, A., Holm, J., Rotenberg, E.: Online bipartite matching with amortized
O(log 2 n) replacements. J. ACM 66(5), 37:1–37:23 (2019). https://doi.org/10.
1145/3344999

7. Bienkowski, M., Kraska, A., Liu, H.-H., Schmidt, P.: A primal-dual online deter-
ministic algorithm for matching with delays. In: Epstein, L., Erlebach, T. (eds.)
WAOA 2018. LNCS, vol. 11312, pp. 51–68. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-04693-4 4

8. Boppana, R.B., Halldórsson, M.M.: Approximating maximum independent sets
by excluding subgraphs. BIT 32(2), 180–196 (1992). https://doi.org/10.1007/
BF01994876

9. Bosek, B., Disser, Y., Feldmann, A.E., Pawlewicz, J., Zych-Pawlewicz, A.: Recolor-
ing interval graphs with limited recourse budget. In: Albers, S. (ed.) 17th Scandi-
navian Symposium and Workshops on Algorithm Theory, SWAT 2020, 22–24 June
2020, Tórshavn, Faroe Islands. LIPIcs, vol. 162, pp. 17:1–17:23. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.SWAT.
2020.17

10. Boyar, J., Favrholdt, L.M., Kotrbćık, M., Larsen, K.S.: Relaxing the irrevocabil-
ity requirement for online graph algorithms. Algorithmica 84, 1916–1951 (2022).
https://doi.org/10.1007/s00453-022-00944-w

11. Cygan, M., Czumaj, A., Mucha, M., Sankowski, P.: Online facility location with
deletions. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Sym-
posium on Algorithms, ESA 2018, 20–22 August 2018, Helsinki, Finland. LIPIcs,
vol. 112, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ESA.2018.21

12. Gu, A., Gupta, A., Kumar, A.: The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput. 45(1), 1–28 (2016). https://doi.
org/10.1137/140955276

13. Gupta, A., Guruganesh, G., Kumar, A., Wajc, D.: Fully-dynamic bin packing with
limited repacking. CoRR abs/1711.02078 (2017). http://arxiv.org/abs/1711.02078

14. Gupta, A., Levin, R.: Fully-dynamic submodular cover with bounded recourse. In:
Irani [18], pp. 1147–1157 (2020). https://doi.org/10.1109/FOCS46700.2020.00110

15. Halperin, E.: Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. SIAM J. Comput. 31(5), 1608–1623 (2002). https://doi.
org/10.1137/S0097539700381097

16. Harutyunyan, H.A., Pankratov, D., Racicot, J.: Online domination: the value
of getting to know all your neighbors. In: Bonchi, F., Puglisi, S.J. (eds.) 46th
International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, 23–27 August 2021, Tallinn, Estonia. LIPIcs, vol. 202, pp. 57:1–
57:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPIcs.MFCS.2021.57

https://doi.org/10.1016/j.ipl.2012.09.011
https://doi.org/10.1016/j.ipl.2012.09.011
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1145/3344999
https://doi.org/10.1145/3344999
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/BF01994876
https://doi.org/10.1007/BF01994876
https://doi.org/10.4230/LIPIcs.SWAT.2020.17
https://doi.org/10.4230/LIPIcs.SWAT.2020.17
https://doi.org/10.1007/s00453-022-00944-w
https://doi.org/10.4230/LIPIcs.ESA.2018.21
https://doi.org/10.1137/140955276
https://doi.org/10.1137/140955276
http://arxiv.org/abs/1711.02078
https://doi.org/10.1109/FOCS46700.2020.00110
https://doi.org/10.1137/S0097539700381097
https://doi.org/10.1137/S0097539700381097
https://doi.org/10.4230/LIPIcs.MFCS.2021.57
https://doi.org/10.4230/LIPIcs.MFCS.2021.57

The Power of Amortized Recourse for Online Graph Problems 153

17. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973). https://doi.org/10.1137/0202019

18. Irani, S. (ed.): 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, 16–19 November 2020. IEEE (2020). https://doi.
org/10.1109/FOCS46700.2020

19. Karakostas, G.: A better approximation ratio for the vertex cover problem.
ACM Trans. Algorithms 5(4), 41:1–41:8 (2009). https://doi.org/10.1145/1597036.
1597045

20. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008). https://doi.org/10.1016/j.jcss.2007.
06.019

21. Megow, N., Nölke, L.: Online minimum cost matching with recourse on the line.
In: Byrka, J., Meka, R. (eds.) Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, 17–
19 August 2020, Virtual Conference. LIPIcs, vol. 176, pp. 37:1–37:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/
LIPIcs.APPROX/RANDOM.2020.37

22. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online
MST and TSP. SIAM J. Comput. 45(3), 859–880 (2016). https://doi.org/10.1137/
130917703

23. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Inform. 22(1), 115–123 (1985). https://doi.org/
10.1007/BF00290149

24. Wang, Y., Wong, S.C.: Two-sided online bipartite matching and vertex cover: beat-
ing the greedy algorithm. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speck-
mann, B. (eds.) ICALP 2015, Part I. LNCS, vol. 9134, pp. 1070–1081. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7 87

https://doi.org/10.1137/0202019
https://doi.org/10.1109/FOCS46700.2020
https://doi.org/10.1109/FOCS46700.2020
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1145/1597036.1597045
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.37
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.37
https://doi.org/10.1137/130917703
https://doi.org/10.1137/130917703
https://doi.org/10.1007/BF00290149
https://doi.org/10.1007/BF00290149
https://doi.org/10.1007/978-3-662-47672-7_87

	The Power of Amortized Recourse for Online Graph Problems
	1 Introduction
	2 Monotone-Sum Graph Problems and a General Algorithm
	3 Maximum Independent Set
	4 Maximum Cardinality Matching
	5 Minimum Vertex Cover
	6 Concluding Remarks
	References

