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Let α be a contact form on a manifold M, and L ⊆ M a closed Legendrian submanifold. I

prove that L intersects some characteristic for α at least twice if all characteristics are

closed and of the same period, and α embeds nicely into the product of R
2n and an exact

symplectic manifold. As an application of the method of proof, the minimal action of a

regular closed coisotropic submanifold of complex projective space is at most π/2. This

yields an obstruction to presymplectic embeddings, and in particular to Lagrangian

embeddings.

1 Main Results

1.1 The strict chord property

Let M be a manifold (possibly noncompact or with boundary) and α a contact form on M.

We say that (M, α) has the strict chord property iff for every nonempty closed Legendrian

submanifold L ⊆ M there exists a characteristic for α that intersects L at least twice.

(Here ”closed” means ”compact and without boundary”, and ”characteristic” means a leaf

of the foliation determined by the integrable distribution ker (dα : T M → T∗M) on M, i.e.,

an unparametrized Reeb trajectory.) To explain this terminology, note that parametriz-

ing part of such a characteristic, we obtain a strict Reeb chord, that is, an integral curve

of the Reeb vector field that starts and ends at different points of L.
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Such chords arise in classical mechanics as libration motions, that is, oscilla-

tions of a mechanical system between two rest points, see [11, p. 118]. The present article

is concerned with the following problem.

Problem (strict chord problem). Find conditions on (M, α) under which it has the strict

chord property. �

In [4, p. 11], Arnol’d conjectured that for n≥ 2 any contact form on S2n−1 induc-

ing the standard structure has the strict chord property. The main result of this article

roughly is that this property holds for every contact form on a manifold if all its charac-

teristics are closed and of the same period and the contact form nicely embeds into the

product of R
2n and an exact symplectic manifold. In particular, this confirms Arnol’d’s

conjecture for the standard form on S2n−1.

To state the result, let M be a manifold and α a contact form on M. The period of

a closed characteristic C for α is the number∣∣∣∣
∫

C
ι∗α

∣∣∣∣ ,
where ι : C → M denotes the inclusion and we equip C with either orientation. We denote

by q1, p1, . . . ,qn, pn the standard coordinates of R
2n, and define

λ0 := 1

2

n∑
i=1

(qidpi − pidqi).

Theorem 1 (strict chord property). The pair (M, α) has the strict chord property if all

characteristics for α are closed and of equal period T , and there exist a manifold W

together with a one-form λ, an integer n≥ 1
2 dim W + 2, and an embedding ϕ : M → R

2n ×
W, such that dλ is a geometrically bounded symplectic form, and

dim M = 2n+ dim W − 1, (1)

ϕ(M)⊆ B̄2n(T)× W, (2)

ϕ∗(λ0 ⊕ λ)= α. (3)

Here B̄2n(a) denotes the closed ball in R
2n of radius

√
a/π . �

We call a symplectic form ω on a manifold W geometrically bounded iff there

exists an ω-compatible almost complex structure J on W such that the metric ω(·, J·) is

complete with bounded sectional curvature and injectivity radius bounded away from 0.

Examples are closed symplectic manifolds, cotangent bundles of closed manifolds, and

symplectic vector spaces.
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The proof of Theorem 1 is based on a result by Chekanov, which implies that the

displacement energy of a closed Lagrangian submanifold in a geometrically bounded

symplectic manifold is at least the minimal symplectic action of the Lagrangian.

Assuming by contradiction that there is no strict Reeb chord, such a Lagrangian

is constructed from the given Legendrian submanifold by moving it with the Reeb flow.

This technique is a variation on the approach used by Mohnke in [23]. (In that article the

Lagrangian was obtained by moving the Legendrian both with the Reeb flow and with

the Liouville flow.)

A crucial ingredient of the proof is the fact that the displacement energy of a

compact subset X of the closed unit ball B̄2n is strictly less than π , provided that X does

not contain the unit sphere (see Lemma 12).

Theorem 1 has the following immediate application. We denote by ι : S2n−1 → R
2n

the inclusion.

Corollary 2 (sphere). For n≥ 2 the standard contact form α0 := ι∗λ0 on S2n−1 has the strict

chord property. �

More examples are obtained by the following construction. By an exact Hamil-

tonian S1-manifold, we mean a triple consisting of a smooth manifold W, a smooth

S1-action ρ on W, and an ρ-invariant one-form λ on W, such that dλ is non-degenerate.

We fix such a triple and numbers c ∈ (0,∞) and n∈ N ∪ {0}. We denote by X the vector

field generated by ρ. (This is the infinitesimal action of the element 1 ∈ R = LieS1, where

we identify S1 with R/2πZ.) We define

H0 : R
2n → R, H0(x0) := 1

2 |x0|2, (4)

H := λ(X) : W → R, (5)

M := {(x0, x) ∈ (B̄2n(2πc) \ {0})× W | H0(x0)+ H(x)= c}. (6)

We denote by
ι : M → W̃ := R

2n × W

the inclusion.

Proposition 3 (contact form). The set M is a (smoothly embedded) hypersurface in W̃,

and
α := ι∗(λ0 ⊕ λ) (7)

is a contact form on M all of whose characteristics are closed and of period 2πc. (M may

have a boundary.) �
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Corollary 4 (strict chord property). If (W,dλ) is geometrically bounded and

n≥ 1
2 dim W + 2 then (M, α) has the strict chord property. �

Proof of Corollary 4. This follows from Theorem 1, using Proposition 3 and the facts

that (R2n, ω0) is geometrically bounded, geometric boundedness is invariant under prod-

ucts, and that conditions (1–3) are satisfied with ϕ := ι. �

Example 5. Let X be a manifold. We define W := T∗X and λ to be the canonical one-form

on W. We fix a smooth S1-action σ on X and define

ρ : S1 → Diff(W), ρ(z)(q, p) := (σz(q), pdσz(q)
−1),

where σz := σ(z). The triple (W, ρ, λ) is an exact Hamiltonian S1-manifold, and (W,dλ)

is geometrically bounded. Hence by Corollary 4 the pair (M, α), defined as in (6, 7), is a

contact manifold that has the strict chord property, provided that n≥ 1
2 dim W + 2. �

Remark. There exist contact forms on closed manifolds that do not have the strict chord

property. The simplest example is the standard contact form on S1.

Another example, which is taken from [23], goes as follows. We denote by γ the

standard angular form on S1 that integrates to 2π . Consider the contact one-form on

M := S1 × S2 given by

α := x1γ + 1
2 (x2dx3 − x3dx2),

where x ∈ S2 ⊆ R
3. Each Legendrian loop S1 × {(0, x2, x3)} intersects each Reeb orbit {z} ×

{x1 = 0} (with z∈ S1) only once. �

1.2 Minimal action of a regular coisotropic submanifold of complex projective space

The bound on the displacement energy of a compact subset of B̄2n, which is used in

the proof of Theorem 1, and a coisotropic version of Chekanov’s theorem have the fol-

lowing application. Let (M, ω) be a symplectic manifold and N ⊆ M a coisotropic sub-

manifold. (This means that for every x ∈ N the symplectic complement TxNω := {v ∈ TxM |
ω(v,w)= 0,∀w ∈ TxN is contained in TxN.)

The set

T Nω = {(x, v) | x ∈ N, v ∈ TxNω} ⊆ T N

is an involutive distribution on N. Hence by Frobenius’ theorem it gives rise to a foliation

on N. Its leaves are called the isotropic (or characteristic) leaves of N. We denote by Nω

the set of all these leaves, and by D ⊆ R
2 the closed unit disk. We define the action
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spectrum and the minimal action (or area) of N to be

S(N) := S(M, N) := S(M, ω, N) :=
{∫

D

u∗ω
∣∣∣∣ u∈ C ∞(D,M) : ∃F ∈ Nω : u(S1)⊆ F

}
, (8)

A(N) := A(M, N) := A(M, ω, N) := inf(S(N) ∩ (0,∞)) ∈ [0,∞]. (9)

Remarks.

• In the case N = M we have

A(M)= inf
({∫

S2
u∗ω

∣∣∣∣ u∈ C ∞(S2,M)
}

∩ (0,∞)

)
.

(see [28, Lemma 29])

• If N is Lagrangian then

A(N)= inf
({∫

D

u∗ω
∣∣∣∣ u∈ C ∞(D,M) : u(S1)⊆ N

}
∩ (0,∞)

)
. �

We call N regular iff there exists a manifold structure on Nω, such that the

canonical projection π : N → Nω is a smooth submersion (Assume that this is the case.

Then the topology on Nω induced by its manifold structure is by definition Hausdorff

and second countable. It agrees with the quotient topology. The symplectic quotient

of N is well-defined in the sense that the manifold structure on Nω as above is unique

and there exists a unique symplectic form on Nω that pulls back to ι∗ω under π . Here

ι : N → M denotes the inclusion). Examples are Lagrangian submanifolds, N = M, and

the sphere N = S2n−1 ⊆ M = R
2n (for further examples, see [29]). Regularity is invariant

under taking products.

Let n∈ N = {1,2, . . .}. We equip the complex projective space CPn with the Fubini-

Study form ωFS. (This form is normalized in such a way that the area of a projective line

is π .)

Theorem 6 (minimal action). Let (M, ω) be a geometrically bounded symplectic mani-

fold, and ∅ �= N a regular closed coisotropic submanifold of CPn × M of dimension < 2n.

Then

A(N)≤ π

2
. �

Remarks.

• The hypothesis that dim N < 2n cannot be dropped. Otherwise,

M := {pt}, N := CPn
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and

M := CPn, ω := −ωFS, N := {(x, x) | x ∈ CPn}

are counterexamples.

• The hypothesis that N be regular cannot be dropped. To see this, let n≥ 2.

Then there exists a closed hypersurface N0 ⊆ R
2n without any closed charac-

teristic, see [17] and references therein. (In the case n≥ 3 this hypersurface

may be chosen to be smooth, but for n= 2 the hypersurface constructed in

[17] is only C 2.) By shrinking N0 with a homothety and using a Darboux chart,

we obtain a hypersurface N inside CPn with the same property. It satisfies

A(N)= π . (but is not regular.) �

Corollary 7 (minimal action). Let (M, ω) be a geometrically bounded symplectic mani-

fold, such that dim M< 2n. Then the minimal action of a closed nonempty Lagrangian

submanifold of CPn × M is bounded above by π/2. �

Proof. This follows from Theorem 6 and the fact that every Lagrangian submanifold is

regular. �

Remark. By Corollary 7 there is no exact Lagrangian submanifold of CPn × M. By this

we mean a Lagrangian submanifold with minimal action equal to π . �

To explain a further application of Theorem 6, recall that a presymplectic form

on a manifold M is a closed two-form ω on M, such that

corankωx := dim(TxM)ω

does not depend on x ∈ M. (Here (TxM)ω = {v ∈ TxM |ω(v,w)= 0, ∀w ∈ TxM}.) Let ω be such

a form. The set

T Mω = {(x, v) | x ∈ N, v ∈ TxMω} ⊆ T M

is an involutive distribution on M. Hence by Frobenius’ theorem it gives rise to a folia-

tion on M. We denote by Mω the set of its leaves. We call (M, ω) regular iff there exists

a manifold structure on Mω for which the canonical projection π : M → Mω is a smooth

submersion.

A presymplectic embedding of a presymplectic manifold into another one is by

definition a smooth embedding that intertwines the two presymplectic forms.
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Corollary 8 (presymplectic embedding). Let n∈ N and (M, ω) be a geometrically bounded

symplectic manifold, such that
∫

S2
u∗ω ∈ πZ, ∀u∈ C ∞(S2,M). (10)

Let (M′, ω′) be a nonempty closed regular presymplectic manifold, such that every

isotropic leaf of M′ is simply connected, and

dim M′ + corankω′ = 2n+ dim M,

dim M′ < 2n.
(11)

Then (M′, ω′) does not presymplectically embed into the symplectic manifold

(CPn × M, ωFS ⊕ ω). �

Example. Let F be a simply connected closed manifold of positive dimension and (X, σ )

a closed symplectic manifold. By Corollary 8 the presymplectic manifold (X × F, σ ⊕ 0)

does not embed into (CPn, ωFS), where n:= 1
2 dim X + dim F . �

Corollary 8 will be proved in Section 4. It has the following immediate

application.

Corollary 9 (Lagrangian embedding). Let n∈ N and (M, ω) be a geometrically bounded

symplectic manifold such that (10) holds and dim M< 2n. Then no simply connected

closed manifold embeds into CPn × M in a Lagrangian way. �

1.3 Related work

Arnol’d observed in [4] that the strict chord property for (S3, α0) follows from an ele-

mentary argument. In [18, Corollary 1], Givental’ proved that there exists a Reeb chord

between every pair of Legendrian submanifolds of RP2n−1 with the standard contact

form, if they are isotopic via Legendrian submanifolds to the standard RPn−1.

In [8], Chekanov provided lower bounds on the number of critical points of a

quasi-function, that is, a Legendrian submanifold of the 1-jet bundle of a manifold, that

is smoothly homotopic (via Legendrians) to the zero section. These points correspond to

Reeb chords between the zero section and the Legendrian.

Abbas [1–3] proved the strict chord property for certain Legendrian knots in tight

closed contact 3-manifolds.

We say that a contact form α on a manifold M has the chord property iff every

closed Legendrian intersects some characteristic for α at least twice or it intersects
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some closed characteristic (i.e., periodic Reeb orbit). Note that this property is trivially

satisfied iff all characteristics are closed.

Consider now a contact manifold (M, ξ) that arises as the boundary of a compact

Stein manifold, and α a contact form on M inducing ξ . In [23, Theorem 2], Mohnke proved

that α has the chord property. It follows that a nonempty closed Legendrian submanifold

of M admits a strict Reeb chord if it does not intersect any closed characteristic for α.

Intuitively, such Legendrian submanifolds are generic, provided that dim M ≥ 3 and that

α has only countably many closed Reeb orbits.

In [11], Cieliebak proved that Legendrian spheres in the boundaries of certain

subcritical Weinstein domains intersect some characteristic for α at least twice.

Let U ⊆ R
2n be a bounded star-shaped domain with smooth boundary and

∅ �= L ⊆ ∂U a closed Legendrian submanifold of nonpositive curvature. The last condition

means that L that admits a Riemannian metric of nonpositive sectional curvature. In

the recent preprint [12], Cieliebak and Mohnke proved that L possesses a Reeb chord of

length bounded above by the (toroidal) Lagrangian capacity of U , see [12, Corollary 1.12].

Using [12, Corollary 1.3], they deduced that L admits a Reeb chord of length bounded

above by π/n, if n≥ 2, and U = B2n
1 , that is, ∂U is the unit sphere.

As explained in [12] after Corollary 1.13, it follows that there exists no exact

Lagrangian embedding into CPn of a closed manifold ∅ �= X of nonpositive curva-

ture. (Corollary 7 is a stabilized version of this without the nonpositive curvature

assumption.)

Cieliebak and Mohnke also proved that for S ⊆ R
2n sufficiently C 1-close to the

unit sphere, every closed Legendrian submanifold ∅ �= L ⊆ S of nonpositive curvature

possesses a strict Reeb chord, see [12, Corollary 1.15].

A powerful tool for finding Reeb chords is Legendrian contact homology. Based

on work by Eliashberg et al. [16] and Chekanov [10], this homology was developed by

Bourgeois et al., see [7, 13–15] and references therein.

Using embedded contact homology, Hutchings and Taubes [19, 20] proved that

every contact form on a closed three-manifold has the chord property. Further results

are contained in [22, 24–26].

In [27, Theorem 3.1], Seidel proved that if a closed manifold X embeds into CPn

in a Lagrangian way then H1(X,Z/(2n+ 2)) �= 0. In particular, X is not simply connected.

Corollary 8 extends the latter statement to presymplectic embeddings into CPn × M.

Biran and Cieliebak [5, 6] generalized Seidel’s result in various ways. In the case∫
S2 u∗ω= 0, for every u∈ C ∞(S2,M), Corollary 9 follows from their results. Further refer-

ences about results on the topology of Lagrangian embeddings are provided in [5, 6].
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2 Proof of Theorem 1 (strict chord property)

The proof of Theorem 1 is based on the following construction. Let M, α, T,W, λ,n, ϕ be

as in the hypothesis of Theorem 1, and L ⊆ M a nonempty closed Legendrian submani-

fold. We construct a Lagrangian immersion in R
2n × W by flowing L with the Reeb flow.

It will follow from Theorem 11 and Lemma 12 that this immersion is not injective. This

means that L admits a strict Reeb chord.

We identify

S1 ∼= R/TZ,

and denote by R the Reeb vector field on M w.r.t. α, and by

ψ : S1 × M → M (12)

its flow. This map is welldefined, since by hypothesis all Reeb orbits of α are closed and

of period T . We write

W̃ := R
2n × W, λ̃ := λ0 ⊕ λ, ω̃ := dλ̃, (13)

and denote by ι : S1 × L → S1 × M the inclusion. We define

f := ϕ ◦ ψ ◦ ι : S1 × L → W̃. (14)

Lemma 10. The map f is a Lagrangian immersion w.r.t. ω̃. �

Proof of Lemma 10. Since ψ is the flow of R, we have

dψ(z, x)(TzS1 × {0})= RRψ(z,x), ∀(z, x) ∈ S1 × M. (15)

We show that f is an immersion. Since L is Legendrian, we have T L ⊆ kerα. Since the

Reeb flow ψz :=ψ(z, ·) preserves α, it preserves kerα, for every z∈ S1. It follows that

dψ({0} × T L)⊆ kerα. Let (z, x) ∈ S1 × L. Using (15) and the fact α(R)≡ 1, it follows that

dψ(z, x)({0} × TxL) ∩ dψ(z, x)(TzS1 × {0})= {0}. (16)

Since ψ is a flow, dψz(x) is injective. It follows from (15) and the fact R �= 0 that

d(ψ(·, x))(z) is injective. Combining this with (16), it follows that

dψ(z, x) : T(z,x)(S
1 × L)→ Tψ(z,x)M

is injective. Using (14) and that ϕ is an immersion, it follows that the same holds for f ,

as claimed.
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We show that f is isotropic. We define ω := dα. The equalities (3,14) and ω̃= dλ̃

imply that

f∗ω̃= dι∗ψ∗ϕ∗λ̃= dι∗ψ∗α= ι∗ψ∗ω.

Therefore, it suffices to show that ψ∗ω vanishes on pairs of vectors in T(S1 × L) (over the

same point). To see this, note that for every z∈ S1 the Reeb flow ψz : M → M preserves ω,

since it preserves α. Since L is Legendrian, it is isotropic w.r.t. ω. It follows that ψ∗ω

vanishes on pairs of vectors in {0} × T L.

The equalities (15) and RR= kerω imply that ψ∗ω vanishes on each pair of vec-

tors in T(S1 × L), of which at least one lies in T S1 × {0}. It follows that ψ∗ω vanishes on

all pairs of vectors in T(S1 × L). This shows that f is isotropic.

Equality (1) implies that the domain of f has dimension equal to 1
2 dim W̃. It

follows that f is a Lagrangian immersion, as claimed. This proves Lemma 10. �

The proof that the map f is not injective, is based on the next result, which is

due to Chekanov. Let (M, ω) be a symplectic manifold. We denote by H(M, ω) the set of

all functions H ∈ C ∞([0,1] × M,R) whose Hamiltonian time t flow ϕt
H : M → M exists and

is surjective, for every t ∈ [0,1]. (The time t flow of a time-dependent vector field on a

manifold M is always an injective smooth immersion on its domain of definition. Hence,

if it is everywhere well defined and surjective then it is a diffeomorphism of M.) We

define

‖ · ‖ : H(M, ω)→ [0,∞], ‖H‖ :=
∫1

0

(
sup

M
Ht − inf

M
Ht

)
dt,

and the displacement energy of a subset X ⊆ M to be

e(X) := e(M, X) := e(M, ω, X)

:= inf{‖H‖ | H ∈H(M, ω) : ϕ1
H (X) ∩ X = ∅}.

(Alternatively, one can define a displacement energy, using only functions H with com-

pact support. However, it seems more natural to allow for all functions in H(M, ω).) Let

L ⊆ M be a Lagrangian submanifold. We denote by D ⊆ R
2 the closed unit disk. The min-

imal symplectic action (or area) of L is defined to be

A(L) := A(M, ω, L) := inf
({∫

D

u∗ω
∣∣∣∣ u∈ C ∞(D,M) : u(S1)⊆ L

}
∩ (0,∞)

)
∈ [0,∞].
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Theorem 11 (displacement energy of a Lagrangian). If (M, ω) is geometrically bounded

and L is closed then

e(L)≥ A(L). �

Proof. This follows from the main theorem in [9]. �

Another key ingredient in the proof that f (defined as in (14)) is not injective, is

the following lemma. Let n∈ N. We denote by ω0 the standard symplectic form on R
2n.

Lemma 12 (bound on displacement energy). Let a> 0 and X be a compact subset of the

closed ball B̄2n(a), which does not contain S2n−1(a), the sphere in R
2n of radius

√
a/π .

Then

e(R2n, X) < a. (17)

�

Proof of Lemma 12. W.l.o.g. we may assume that a= π . Since X does not contain S2n−1,

there exists an orthogonal linear symplectic map Ψ : R
2n → R

2n, such that (1,0, . . . ,0) �∈
Ψ (X). We denote

Yc := {(q, p) ∈ D | q ≤ c}.

Since Ψ (X) is compact and contained in B̄2n, there exists c< 1, such that

Ψ (X)⊆ Yc × R
2n−2. (18)

We have

e(R2n, X)= e(R2n, Ψ (X))

≤ e(R2n,Yc × R
2n−2)

≤ e(R2,Yc)

= area(Yc)

< π

= a.

The fourth step follows from a concrete construction of a Hamiltonian diffeomor-

phism that displaces Yc or from a Moser-type argument. This proves (17) and hence

Lemma 12. �
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Proof of Theorem 1. Let M, α, T,W, λ,n, ϕ be as in the hypothesis of this theorem, and

L ⊆ M a nonempty closed Legendrian submanifold. By hypothesis all characteristics for

α are closed, that is, all Reeb orbits are periodic. Furthermore, their periods are all equal

to T . We identify S1 ∼= R/TZ and define ψ, W̃, λ̃, ω̃, f as in (12–14).

Claim 1. The map f is not injective. �

Proof of Claim 1. We denote

L̃ := f(S1 × L),

and by

pr1 : W̃ → R
2n

the projection onto the first factor. The hypotheses (1) and n≥ 1
2 dim W + 2 imply that

dim(S1 × L)= 1 + dim M − 1

2
= n+ 1

2
dim W ≤ 2n− 2.

Hence by Sard’s theorem, it follows that

S2n−1(T) �⊆ pr1 ◦ f(S1 × L)= pr1(L̃).

On the other hand, hypothesis (2) implies that

pr1(L̃)⊆ B̄2n(T).

Therefore, applying Lemma 12, we have

e(W̃, L̃)≤ e(R2n,pr1(L̃)) < T. (19)

Assume now by contradiction that f was injective. This map is proper, since its domain

is compact. Hence, it follows from Lemma 10 that f is a Lagrangian embedding. Since

(R2n, ω0) and (W, ω) are geometrically bounded, the same holds for (W̃, ω̃). Therefore,

Theorem 11 implies that

e(W̃, L̃)≥ A(W̃, L̃).

Combining this inequality with (19) and the next claim, we arrive at a contradiction. �

Claim 2. We have

A(W̃, L̃)≥ T. (20)

�
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Proof of Claim 2. Let ũ∈ C ∞(D, W̃) be such that

ũ(S1 = ∂D)⊆ L̃ = f((R/TZ)× L).

We show that ∫
D

ũ∗ω̃ ∈ TZ. (21)

We define

x := ϕ−1 ◦ ũ: S1 →ψ((R/TZ)× L)⊆ M.

(Recall that ϕ : M → W̃ is the given embedding.) The equality ω̃= dλ̃, Stokes’ theorem,

and the hypothesis (3) imply that

∫
D

ũ∗ω̃=
∫

S1
(ϕ ◦ x)∗λ̃=

∫
S1

x∗α. (22)

We define

(z, y) :=ψ−1 ◦ x : S1 → (R/TZ)× L .

This makes sense, since the restriction of ψ to (R/TZ)× L is injective. (Here we use our

assumption that f is injective.) Since x =ψ ◦ (z, y), we have

x∗α= α(R ◦ ψ ◦ (z, y)dz + dψz(y)dy)= dz + αdy= dz.

Here we view dz as a real-valued one-form on S1. In the second equality, we used that

α(R)≡ 1 and that the Reeb flow ψ preserves α. In the last equality, we used that L is

Legendrian, and hence α|T L = 0. It follows that

∫
S1

x∗α=
∫

S1
dz= T deg(z).

Using (22), this proves (20), that is, Claim 2, and therefore Claim 1. �

By Claim 1 there exist distinct points (zi, xi) ∈ S1 × L = (R/TZ)× L, i = 0,1, such

that

f(z0, x0)= f(z1, x1). (23)

Recalling the definition (14), our hypothesis that the period of every characteristic equals

T , implies that the map f(·, x0) is injective. It follows that x0 �= x1. Using (14, 23), it
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follows that these two points lie on the same characteristic for α. Hence, L intersects

this characteristic at least twice. This proves Theorem 1. �

Remark. The above proof relies on the sharp bound for the displacement energy of

a closed Lagrangian submanifold due to Chekanov [9]. The same result was used by

Mohnke [23] and later by Cieliebak and Mohnke [12, Corollaries 1.4 and 1.5] to find

Reeb chords. The construction of the closed Lagrangian submanifold in the proof of

Theorem 1 is a variation on the construction in [12, 23].

A new feature is that here the Reeb flow alone is used to produce a Lagrangian

submanifold, whereas in [12, 23] both the Reeb flow and the Liouville flow are used.

The new approach works because of the upper bound on the displacement energy of a

compact subset of a ball given in Lemma 12. �

3 Proof of Proposition 3 (contact form)

The proof of Proposition 3 is based on the following result. Let (W, ρ, λ) be an exact

Hamiltonian S1-manifold, and c ∈ R \ {0}. We denote by X the vector field generated by ρ

and define

H := λ(X) : W → R, M := H−1(c)⊆ W.

We denote by

ι : M → W

the inclusion.

Proposition 13. The set M is a hypersurface in W, α := ι∗λ is a contact form on M, and

all characteristics of α are closed. Their periods are equal to 2πc if the restriction of the

action ρ to M is free. �

Proof of Proposition 13. By hypothesis the form

ω := dλ

is nondegenerate, that is, symplectic. We denote by V the Liouville vector field on W

w.r.t. λ. This is the unique vector field satisfying

ιVω= λ.
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We have

dH · V = ιVdιXλ

= ιVLXλ− ιV ιXdλ

= 0 + ιXιVω

= ιXλ

= H.

Here in the second line we used Cartan’s formula, and in the third line we used our

hypothesis that λ is ρ-invariant. It follows that dH · V ≡ c �= 0 along M = H−1(c). Hence

c is a regular value for H , M is a hypersurface in W, and the Liouville vector field V is

transverse to M. It follows that α := ι∗λ is a contact form on M. By the next claim its

characteristics are closed.

Claim 1. The characteristics of α are the orbits of the restriction of ρ to M. �

Proof of Claim 1. It suffices to show that X is c times the Reeb vector field of α. To see

this, note that X is tangent to M, since

dH · X = ιXdιXλ= ιXLXλ− ιXιXdλ= 0 − 0.

By definition, we have

α(X)= λ(X)≡ c on M = H−1(c).

Finally,

ιXdα = ιXdλ=LXλ− dιXλ= 0 − dH = 0 on T M.

It follows that X equals c times the Reeb vector field of α. This proves Claim 1. �

Assume now that the restriction of ρ to M is free. Let C be a characteristic for α.

We choose x0 ∈ C and define

ϕ : S1 → C , ϕ(z) := ρ(z, x0). (24)

This is a diffeomorphism, since the restriction of ρ to C is free. We denote by ι : C → M

the inclusion and by γ the standard angular one-form on S1, whose integral equals 2π .
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We have

ϕ∗ι∗α = (ι ◦ ϕ)∗α = (λ(X) ◦ ϕ)γ = (H ◦ ϕ)γ = cγ.

Here in the second step we used the fact that X generates the action ρ, and (24). It follows

that ∫
C
ι∗α =

∫
S1
ϕ∗ι∗α = 2πc.

Here we equipped C with the orientation induced by the standard orientation on S1 and

the map ϕ. This proves Proposition 13. �

Proof of Proposition 3. We denote by ρ0 the standard diagonal S1-action on R
2n = C

n,

given by

ρ0(z)z0 := zz0 = (zz1
0, . . . , zzn

0).

By ρ0 × ρ we denote the product S1-action on R
2n × W. We define H0, H as in (4, 5). The

triple

(W̃, ρ̃, λ̃) := ((B̄2n(2πc) \ {0})× W, (ρ0 × ρ)|W̃, λ0 ⊕ λ)

is an exact Hamiltonian S1-manifold, and

H̃ := H0 ⊕ H = ιX̃λ̃ : W̃ → R,

where X̃ denotes the vector field generated by ρ̃. The set M defined in (6) is given by

M = H̃−1(c).

Since the restriction of ρ0 to B̄2n(2πc) \ {0} is free, the action ρ̃ is free. Therefore, by

Proposition 13 M is a hypersurface in W̃, and α := ι∗λ̃ is a contact form on M all of whose

characteristics are closed and of period 2πc. This proves Proposition 3. �

4 Proof of Theorem 6 (minimal action) and of Corollary 8 (presymplectic

embedding)

In this section we denote by

Bn
r , B̄n

r , Sn−1
r

the open and closed balls around 0 in R
n of radius r, and the sphere around 0 in R

n

of radius r.

The proof of Theorem 6 is based on Lemma 12 (bound on displacement energy)

and the following. Let (M, ω) be a symplectic manifold.
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Theorem 14. Assume that (M, ω) is geometrically bounded. Let N ⊆ M be a closed, reg-

ular coisotropic submanifold. Then

e(N)≥ A(N). �

Proof. This is an immediate consequence of [29, Theorem 1.1]. �

Remark. This theorem generalizes Chekanov’s Theorem 11. �

In the proof of Theorem 6, we will also use the following lemma. Let (M, ω) be

a presymplectic manifold. Recall that this means that ω is closed two-form on M, and

corankωx := dim(TxM)ω does not depend on x ∈ M. Let N ⊆ M be a coisotropic submani-

fold. This means that for every x ∈ N the space (TxN)ω is contained in TxN. We denote by

ι : N → M the inclusion.

Remark 15. The form ι∗ω is presymplectic. That its corank is constant, follows from

Lemma A.4 and Remark A.6 in appendix. �

By Remark 15 the distribution (T N)ω defines a foliation on N. We denote by Nω

the set of its leaves and define the action spectrum S(N)= S(M, N)= S(M, ω, N) and the

minimal action (or area)

A(N)= A(M, N)= A(M, ω, N)

of such a submanifold as in (8,9).

Lemma 16 (lift of coisotropic submanifold). Let (M, ω) and (M′, ω′) be presymplec-

tic manifolds, f : M′ → M a surjective proper presymplectic submersion, and N ⊆ M a

coisotropic submanifold. (That f is presymplectic means that f∗ω=ω′.) Then the fol-

lowing statements hold:

(i) The set N ′ := f−1(N) is a coisotropic submanifold of M′.

(ii) A(M, N)≤ A(M′, N ′). (25)

(iii) Assume that N is regular and, for all x′, y′ ∈ M′,

f(x′)= f(y′)⇒ x′ and y′ lie on the same isotropic leaf of M′. (26)

Then N ′ is regular. �

Remark. In fact equality in (25) holds. However, this will not be used here. �
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In the proof of Lemma 16 we will use the following. By a presymplectic vector

space we mean a vector space together with a skew-symmetric bilinear form.

Lemma 17. Let (V, ω) and (V ′, ω′) be presymplectic vector spaces, Φ : V ′ → V a linear

presymplectic map (This means that Φ∗ω=ω′.), and W ⊆ V a linear subspace. (That Φ is

presymplectic means that Φ∗ω=ω′.) Then the following statements hold:

(i)

Φ−1(Wω)⊆ (Φ−1(W))ω
′
. (27)

(ii) If Φ is surjective then the inclusion “⊇” in (27) holds. �

Proof of Lemma 17. This follows from the definitions. �

The proof of Lemma 16(iii) is based on the following. Let M be a (smooth finite-

dimensional) manifold and F a (smooth) foliation on M, that is, a maximal atlas of foli-

ation charts. We denote by RF its leaf relation. This is the subset of M × M consisting

of pairs of points lying in the same leaf. We call F regular iff there exists a manifold

structure on the set of leaves M/RF , such that the canonical projection πF : M → M/RF

is a (smooth) submersion. (The induced topology on M/RF is by definition Hausdorff and

second countable.)

Lemma 18. Let (M,F) and (M′,F ′) be foliated manifolds, such that F is regular. Let

f : M′ → M be a smooth surjective submersion such that

x′ RF ′
y′ ⇐⇒ f(x′)RF f(y′), ∀x′, y′ ∈ M′. (28)

Then F ′ is regular. �

Proof of Lemma 18. We define the map

ϕ : M′/RF ′ → M/RF , ϕ(F ′) := [ f(x′)],

where x′ ∈ F ′ is an arbitrary point. It follows from (28) that this map is well defined and

injective. Our hypothesis that f is surjective implies that ϕ is surjective, as well. By our

assumption that F is regular there exists a manifold structure A on M/RF , for which

the canonical projection πF : M → M/RF is a smooth submersion. Since f is a smooth
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submersion and

πF ′ = ϕ−1 ◦ πF ◦ f,

the map πF ′
is a smooth submersion w.r.t. the pullback of A under ϕ. Hence F ′ is regular.

This proves Lemma 18. �

Proof of Lemma 16. (i) Since f is a submersion, N ′ is a submanifold of M′. It follows

from Lemma 17(ii) that it is coisotropic. This proves (i).

To prove (ii, iii), we denote by RN,ω the isotropic leaf relation on N. This is the

subset of N × N consisting of pairs of points that lie in the same isotropic leaf of N.

Claim 1.

(a) If (x′
0, x′

1) ∈ RN ′,ω′
then ( f(x′

0), f(x′
1)) ∈ RN,ω.

(b) If x′
0, x′

1 ∈ N ′ are such that ( f(x′
0), f(x′

1)) ∈ RN,ω then

N ′
x′

0
∩ f−1( f(x′

1)) �= ∅. (29)

Here N ′
x′

0
denotes the isotropic leaf of N ′ through x′

0. �

Proof of Claim 1. Let x′ ∈ N ′. Since f is a submersion, we have

Tx′ N ′ = df(x′)−1(Tf(x′)N).

Using that f is presymplectic, Lemma 17 therefore implies that

(Tx′ N ′)ω
′ = df(x′)−1(Tf(x′)N)

ω. (30)

It follows that f(N ′
x′)⊆ Nf(x′). This proves (a).

Proof of (b): We choose a path x ∈ C ∞([0,1], N), that is tangent to (T N)ω and sat-

isfies x(i)= f(x′
i) for i = 0,1. Since f is a proper submersion, by Proposition A.1 in the

appendix there exists a path x′ ∈ C ∞([0,1],M′) satisfying x′(0)= x′
0 and f ◦ x′ = x. It fol-

lows that x′([0,1])⊆ N ′. Since ẋ(t) ∈ (Tx(t)N)ω, equality (30) implies that ẋ′(t) ∈ (Tx′(t)N ′)ω
′
,

for every t ∈ [0,1]. It follows that x′(1) ∈ N ′
x′(0). Since x′(0)= x′

0 and f(x′(1))= x(1)= f(x′
1),

condition (29) follows. This proves (b) and completes the proof of Claim 1. �

Proof of (ii): Let u′ ∈ C ∞(D,M′) be such that u′(S1) is contained in some isotropic

leaf of N ′. Claim 1(a) implies that f ◦ u′(S1) is contained in some isotropic leaf of N. Since
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f is presymplectic, we have ∫
D

u′∗ω′ =
∫

D

( f ◦ u′)∗ω.

It follows that S(M′, N ′)⊆ S(M, N), and therefore,

A(M′, N ′)≥ A(M, N).

This proves (ii).

Proof of (iii): By Claim 1(a) the implication “⇒” in condition (28) with M,M′

replaced by N, N ′, and F =FN,ω, F ′ =FN ′,ω′
, is satisfied. Here FN,ω denotes the isotropic

foliation on N w.r.t. ω.

To see the opposite implication, let x′
0, x′

1 ∈ N ′ be such that the relation

f(x′
0)R

N,ω f(x′
1) holds. By Claim 1(b) there exists y′

1 ∈ N ′
x′

0
∩ f−1( f(x′

1)). Since f(x′
1)= f(y′

1),

our hypothesis (26) implies that

(x′
1, y′

1) ∈ RM′,ω′ ∩ (N ′ × N ′)⊆ RN ′,ω′
.

Since (x′
0, y′

1) ∈ RN ′,ω′
, it follows that (x′

0, x′
1) ∈ RN ′,ω′

. This shows the implication “⇐” in (28)

with M,M′ replaced by N, N ′, and F =FN,ω, F ′ =FN ′,ω′
. Hence (28) is satisfied. Therefore,

applying Lemma 18, it follows that N ′ is regular. This proves (iii) and completes the proof

of Lemma 16. �

In the proof of Theorem 6, we will also use the following lemma.

Lemma 19. Let (M, ω) be a presymplectic manifold, M′ a coisotropic submanifold of M

and M′′ a coisotropic submanifold of M′. Then the following holds.

(i) M′′ is a coisotropic submanifold of M.

(ii) If M strongly smoothly deformation retracts onto M′ then

A(M′,M′′)≤ A(M,M′′). (31)

�

Remarks 20.

(i) That M strongly smoothly deformation retracts onto M′ means that there

exists a smooth map h : [0,1] × M → M such that

h(0, ·)= id, h({1} × M)⊆ M′, h(t, x)= x, ∀t ∈ [0,1], x ∈ M′.

(ii) The inequality “≥” in (31) is true without the retraction condition. However,

this will not be used here. �
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In the proof of Lemma 19, we will use the following lemma.

Lemma 21. Let (V, ω) be a finite-dimensional presymplectic vector space, V ′ a

coisotropic subspace of (V, ω), and V ′′ a coisotropic subspace of (V ′, ω′ :=ω|V ′×V ′). Then

V ′′ is a coisotropic subspace of (V, ω). �

Proof of Lemma 21. This follows from Lemma A.4 in appendix. �

Proof of Lemma 19. (i) This follows from Lemma 21.

We prove (ii). It suffices to show that

S(M,M′′)⊆ S(M′,M′′). (32)

Let u∈ C ∞(D,M) be such that u(S1) is contained in some isotropic leaf of M′′. We choose

a map h as in Remark 20(i). We denote ht := h(t, ·) and define

f : [0,1] × D → M, f(t, z) := ht ◦ u(z).

Using that dω= 0 and Stokes’ theorem, we have

0 =
∫

[0,1]×D

d f∗ω

=
∫
∂([0,1]×D)

f∗ω

=
∫

D

(h1 ◦ u)∗ω −
∫

D

(h0 ◦ u)∗ω +
∫

[0,1]×S1
f∗ω

=
∫

D

(h1 ◦ u)∗ω −
∫

D

u∗ω + 0. (33)

(We used a version of Stokes’ theorem that allows the manifold to have corners. See

e.g. [21, Theorem 16.25].) Here in the last equality we used the fact h0 = id and that

u(S1)⊆ M′′ ⊆ M′, and therefore ht ◦ u|S1 is constant in t. Since h1(M)= h({1} × M)⊆ M′, the

map h1 ◦ u takes values in M′. It is of the sort occurring in the definition of S(M′,M′′).

Hence (33) implies (32). This proves (ii) and completes the proof of Lemma 19. �

In the proof of Theorem 6, we will also use the following lemma.

Lemma 22. Let (M, ω) and (M′, ω′) be presymplectic manifolds, N ⊆ M × M′ a

coisotropic submanifold, and x ∈ M, such that dim M> 2 and N ∩ ({x} × M′)= ∅. Then

A((M \ {x})× M′, N)≤ A(M × M′, N). (34)

�
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Remark. In fact equality in (34) holds. However, this will not be used here. �

Proof of Lemma 22. It suffices to prove that

S(M × M′, N)⊆ S((M \ {x})× M′, N). (35)

Let

ũ= (u,u′) ∈ C ∞(D,M × M′)

be a map that sends S1 to some isotropic leaf of N. Since dim M> 2, by Sard’s theorem

M \ u(B2
1 ) is dense in M. Hence, an argument in a chart shows that there exists a smooth

map h : [0,1] × M → M, such that

h(0, ·)= id, x �∈ h({1} × u(B2
1 )),

h(t, ·)= id in some neighbourhood of pr1(N)⊆ M.

Here we denoted by pr1 : M × M′ → M the canonical projection, and we used the hypoth-

esis that N ∩ ({x} × M′)= ∅. We denote ht := h(t, ·) and define

f : [0,1] × D → M, f(t, z) := ht ◦ u(z).

We have, as in (33), ∫
D

(h1 ◦ u)∗ω=
∫

D

u∗ω.

Here we used the facts h0 = id, u(S1)= pr1 ◦ ũ(S1)⊆ pr1(N), and ht = id in a neighbour-

hood of pr1(N). It follows that

∫
D

(h1 ◦ u,u′)∗ω̃=
∫

D

ũ∗ω̃. (36)

Since x �∈ h1(u(B2
1 )), the map

(h1 ◦ u,u′) : D → (M \ {0})× M′

is of the sort occurring in the definition of S((M \ {x})× M′, N). Hence (36) implies (35).

This proves Lemma 22. �
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In the proof of Theorem 6, we will also use the following.

Lemma 23. Let (M, ω) be a connected symplectic manifold and N ⊆ M coisotropic sub-

manifold. Then

S(N)+
{∫

S2
u∗ω

∣∣∣∣ u∈ C ∞(S2,M)
}

⊆ S(N). (37)

�

Proof of Lemma 23. Let u∈ C ∞(D,M) be such that u(S1) is contained in some isotropic

leaf of N, and v ∈ C ∞(S2,M). We choose a point z0 ∈ S2.

Claim 1. There exist maps ũ∈ C ∞(D \ B2
1
2
,M) and ṽ ∈ C ∞(B̄2

1
3
,M) such that

∫
D\B2

1
2

ũ∗ω=
∫

D

u∗ω,
∫

B̄2
1
3

ṽ∗ω=
∫

S2
v∗ω, (38)

ũ= u in some neighbourhood of S1, ũ≡ u(0) in some neighbourhood of S1
1
2
, and ṽ≡ v(z0)

in some neighbourhood of S1
1
3
. �

Proof of Claim 1. We choose a map f ∈ C ∞(D \ B2
1
2
,D) that restricts to an orientation

preserving diffeomorphism from D \ B̄2
3
4

to D \ {0}, equals identity in a neighbourhood of

S1, and sends B̄2
3
4

\ B2
1
2

to 0. We define

ũ:= u◦ f : D \ B2
1
2
→ M.

This map has the required properties.

To construct ṽ, we choose a map g ∈ C ∞(B̄2
1
3
, S2) that restricts to an orientation

preserving diffeomorphism from B2
1
4

to S2 \ {z0} and sends B̄2
1
3

\ B2
1
4

to z0. The map ṽ := v ◦ g

has the required properties. This proves Claim 1. �

We choose ũ, ṽ as in this claim. Since M is connected, there exists a path x ∈
C ∞ ([

1
3 ,

1
2

]
,M

)
, such that x(0)= v(z0) and x(1)= u(0). We may modify x, such that it is

constant in some neighbourhoods of 1
3 and 1

2 . We define

w(z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṽ(z), if z∈ B̄2
1
3
,

x(|z|), if z∈ B2
1
2

\ B̄2
1
3
,

ũ(z), if z∈ D \ B2
1
2
.

This map is smooth. It follows from (38) that
∫

D

w∗ω=
∫

S2
v∗ω + 0 +

∫
D

u∗ω. (39)
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Since w= u in some neighbourhood of S1, the image w(S1) is contained in some isotropic

leaf of N. It follows that
∫

D
w∗ω ∈ S(N). Combining this with (39), the inclusion (37) fol-

lows. This proves Lemma 23. �

In the proof of Theorem 6, we will also use the following.

Remark 24. Let (M, ω) be a symplectic manifold and N ⊆ M a coisotropic submanifold.

Then

S(N)= −S(N)= {−a | a∈ S(N)}.

This follows from the fact that for every u∈ C ∞(D,M) we have

∫
D

ū∗ω= −
∫

D

u∗ω,

where ū(z) := u(z̄), for every z∈ D ⊆ C. �

Proof of Theorem 6. We denote by

π : S2n+1 × M → CPn × M

the canonical projection, by ι : S2n+1 → R
2n the inclusion, and by ω0 the standard sym-

plectic form on R
2n. We equip S2n+1 × M with the presymplectic form ι∗ω0 ⊕ ω. It follows

from Lemma 16(i,ii) that N ′ = π−1(N) is a coisotropic submanifold of S2n+1 × M, and

A(CPn × M, N)≤ A(S2n+1 × M, N ′). (40)

Since π is proper and N is compact, N ′ is compact. The manifold (R2n+2 \ {0})× M

strongly smoothly deformation retracts onto S2n+1 × M. Hence by Lemma 19(ii), we have

A(S2n+1 × M, N ′)≤ A((R2n+2 \ {0})× M, N ′). (41)

Since n≥ 1, by Lemma 22 we have

A((R2n+2 \ {0})× M, N ′)≤ A(R2n+2 × M, N ′). (42)

The symplectic manifold R
2n+2 is geometrically bounded. Using our hypothesis that M

is geometrically bounded, it follows that R
2n+2 × M has the same property. Since by

hypothesis N is regular, by Lemma 16(iii) with f = π the same holds for N ′. (Condition

818 F. Ziltener

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2016/3/795/2450853 by Johannes F.G
. Vliegenthart user on 27 M

arch 2024



(26) with M′ := S2n+1 × M is satisfied, since

RS2n+1×M = {((x, y), (zx, y)) | (x, y) ∈ S2n+1 × M, z∈ S1},

where we consider S2n+1 as a subset of C
n+1 and S1 ⊆ C.) Hence applying Theorem 14, we

obtain

A(R2n+2 × M, N ′)≤ e(R2n+2 × M, N ′). (43)

We denote by pr1 : S2n+1 × M → S2n+1 the projection onto the first factor. We have

e(R2n+2 × M, N ′)≤ e(R2n+2 × M,pr1(N
′)× M)

≤ e(R2n+2,pr1(N
′)). (44)

Our hypothesis dim M< 2n implies that dim N ′ = dim N + 1 ≤ 2n. Hence, the restriction

pr1|N ′ : N ′ → S2n+1 is not submersive at any point, and therefore the set of its regular val-

ues is the complement of its image. Hence by Sard’s Theorem pr1(N
′) �= S2n+1. Therefore

by Lemma 12 we have

e(R2n+2,pr1(N
′)) < π.

Combining this with (40–44), it follows that

A(N)= A(CPn × M, N) < π.

Hence there exists a∈ S(N) ∩ (0, π). If a≤ π
2 then it follows that A(N)≤ π

2 , as claimed.

Otherwise −a + π < π
2 . By Remark 24 we have −a∈ S(N). Since there exists u∈

C ∞(S2,CPn), such that
∫

S2 u∗ωFS = π , Lemma 23 implies that −a + π ∈ S(N). Since −a +
π < π

2 , it follows that A(N) < π
2 . Hence in every case we have A(N)≤ π

2 . This proves

Theorem 6. �

Proof of Corollary 8. We denote

M̃ := CPn × M, ω̃ :=ωFS ⊕ ω.

Assume by contradiction that there exists a presymplectic embedding ϕ : M′ → M̃. We

denote N := ϕ(M′). It follows from our hypothesis (11) and Lemma A.4 in appendix that

N is coisotropic. It is regular, since M′ is regular.

Claim 2. We have

A(M̃, N)≥ π. (45)

�
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Proof of Claim 2. It follows from our hypothesis (10) that
∫

S2
w̃∗ω̃ ∈ πZ, ∀w̃ ∈ C ∞(S2, M̃). (46)

Let ũ∈ C ∞(D, M̃) be such that ũ(S1) is contained in some isotropic leaf F of N. We choose

a map f ∈ C ∞(D,D) that restricts to an orientation preserving diffeomorphism from B2
1
2

to B2
1 and satisfies f(z)= z/|z| on D \ B2

1
2
.

The pre-image ϕ−1(F ) is an isotropic leaf of M′. By hypothesis it is simply con-

nected. Hence, the same holds for F . It follows that there exists a map ṽ ∈ C ∞(D, F ) sat-

isfying ṽ = ũ on S1. Modifying ṽ, we may assume that ṽ(z)= ṽ(z/|z|) for every z∈ D \ B2
1
2
.

We denote by D̄ the disk with the reversed orientation and by D#D̄ the smooth

oriented manifold obtained by concatenating the two disks along their boundary. We

define w̃ : D#D̄ → CPn × M to be the concatenation of ũ◦ f and ṽ. This is a smooth map.

It follows that ∫
D#D̄

w̃∗ω̃=
∫

D

(ũ◦ f)∗ω̃ −
∫

D

ṽ∗ω̃=
∫

D

ũ∗ω̃ − 0. (47)

Since D ∪ D̄ is diffeomorphic to S2, (46) implies that
∫

D#D̄
w̃∗ω̃ ∈ πZ. Combining this with

(47), inequality (45) follows. This proves Claim 2. �

This claim and the hypothesis dim M′ < 2n contradict Theorem 6. Hence the

presymplectic embedding ϕ : M′ → M̃ does not exist. This proves Corollary 8. �
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Appendix 1. Lifting Paths

The following result was used in the proof of Lemma 16. Let M′,M be smooth manifolds,

f : M′ → M a smooth proper submersion, p′ ∈ M′, and x ∈ C ∞([0,1],M).

Proposition A.1 (lifting a path). If f(p′)= x(0) then there exists a path x′ ∈ C ∞([0,1],M′),

such that

f ◦ x′ = x, x′(0)= p′. �

The proof of this lemma is based on the following.
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Lemma A.2 (locally lifting a path). Let t0 ∈ [0,1] and H ⊆ T M′ be a (smooth) subbundle,

that is complementary to ker df , that is, it satisfies T M′ = H ⊕ ker df .

(i) (local existence) If f(p′)= x(t0) then there exists a (relatively) open neigh-

bourhood V of t0 in [0,1] and a path x′ ∈ C ∞(V,M′), satisfying

ẋ′(t) ∈ Hx′(t), f ◦ x′(t)= x(t), ∀t ∈ V, (A.1)

x′(t0)= p′. (A.2)

(ii) (local uniqueness) If V0,V1 are open neighbourhoods of t0 in [0,1] and x′
0,

x′
1 ∈ C ∞([0,1],M′) are paths, satisfying (A.1,A.2) then there exists an open

neighbourhood V ⊆ V0 ∩ V1 of t0 in [0,1], such that x′
0 = x′

1 on V . �

Remark A.3 (global uniqueness). For i = 0,1 let ti ∈ [0,1] and x′
i ∈ C ∞([0, ti],M′) be a

path satisfying (A.1) and x′
i(0)= p′. Then x′

0 = x′
1 on [0,min{t0, t1}]. This follows from

Lemma A.2(ii). �

Proof of Lemma A.2. By using a chart in M we may assume w.l.o.g. that M = R
n. Using

the Implicit Function Theorem and our hypothesis that f is a smooth submersion, we

may further assume w.l.o.g. that M′ = R
m × R

n and f = pr2 : R
m × R

n → R
n, the canonical

projection.

For t ∈ [0,1] and y∈ R
m we define Xt(y) ∈ R

m to be the unique vector, such that

(Xt(y), ẋ(t)) ∈ H(y,x(t)). (A.3)

This vector exists and is unique, since H is complementary to ker df = ker pr2. The fam-

ily (Xt)t∈[0,1] is a smooth time-dependent vector field on R
m. We write p′ = (y0, x(t0)).

We prove (i). By the Picard-Lindelöf theorem there exist an open neighbourhood

V of t0 in [0,1] and a smooth solution y∈ C ∞(V,Rm) of the ordinary differential equation

ẏ= Xt ◦ y, y(t0)= y0.

Using (A.3), the path x′ := (y, x) : [0,1] → M′ = R
m × R

n satisfies (A.1,A.2). This proves (i).

Statement (ii) follows from a similar argument. This proves Lemma A.2. �
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Proof of Proposition A.1. We choose a subbundle H ⊆ T M′, that is complementary to

ker df . (We may define H to be the normal bundle of ker df with respect to some

Riemannian metric.) We define

y′ :=
⋃ {

x′ | t1 ∈ [0,1], x′ ∈ C ∞([0, t1],M′) :

(A.1) with V = [0, t1], x′(0)= p′} ⊆ [0,1] × M′. (A.4)

It follows from Remark A.3 that there exists t0 ∈ [0,1] such that y′ is a smooth map from

[0, t0) or [0, t0] to M′. Proposition A.1 is a consequence of the following claim.

Claim 1. The domain of y′ is [0,1]. �

Proof of Claim 1. We define

X := {(x′, v) | v ∈ Tf(x′)M}, Φ : X → H, Φx′v :=Φ(x′, v) := v′,

where v′ ∈ Hx′ is the unique vector satisfying df(x′)v′ = v. Since df(x′) is surjective and

Tx′ M′ = Hx′ ⊕ ker df(x′), this vector exists and is unique, hence Φ is well-defined. This

map is smooth, since H is smooth. We choose Riemannian metrics g on M and g′ on M′.

Since f is proper, the pre-image K ′ := f−1(x([0,1]))⊆ M′ is compact. Therefore,

C := sup{|Φx′ | | x′ ∈ K ′}<∞.

Here |Φx′ | denotes the operator norm of the linear map Φx′ : Tf(x′)M → Tx′ M′ w.r.t. the

norms induced by g and g′.

Let t ∈ [0, t0). By (A.1) we have ẏ′(t) ∈ Hy′(t) and df(y′(t))ẏ′(t)= ẋ(t), and therefore

ẏ′(t)=Φy′(t)ẋ(t).

Since y′([0, t0))⊆ K ′, it follows that

|ẏ′(t)| ≤ C |ẋ(t)| ≤ C max
t∈[0,1]

|ẋ(t)|.

It follows that y′(t) converges to some point y′
0, as t ↑ t0.

Assume now by contradiction that the domain of y′ is not equal to [0,1]. We

choose V, x′ as in Lemma 10(i), with p′ replaced by y′
0. Concatenating y′ with x′, we obtain

a solution z′ of (A.1) with V replaced by an interval that strictly contains the domain of

y′, such that z′(0)= p′. (Here we use Lemma A.2(ii), which ensures that x′ and y′ agree on

the intersection of V with the domain of y′, if we shrink V .) By (A.4) we have z′ ⊆ y′. This
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is a contradiction. It follows that the domain of y′ is equal to [0,1]. This proves Claim 1

and completes the proof of Proposition A.1. ��

Appendix 2. Coisotropic Subspaces of Presymplectic Vector Spaces

The following lemma was used in the proof of Lemma 21. Let (V, ω) be a finite-

dimensional presymplectic vector space and W ⊆ V a linear subspace. We denote by

i : W → V the inclusion, and by

Wω := {v ∈ V |ω(v,w)= 0, ∀w ∈ W}

the presymplectic complement of W in V .

Lemma A.4. The subspace W is coisotropic iff

dim W + dim Wi∗ω ≥ dim V + dim Vω. (A.5)

�

(By definition, Wi∗ω is the presymplectic complement of W inside W.) The proof

of this lemma is based on the following.

Lemma A.5. We have

dim W + dim Wω = dim V + dim(Vω ∩ W). (A.6)

�

Remark A.6. Since Wi∗ω ⊆ Wω, Lemma A.5 implies that inequality “≤” in (A.5) holds, for

every linear subspace W. �

Proof of Lemma A.5. We define the linear map

�ω : V → V∗, �ωv :=ω(v, ·).

Then Wω = ker(i∗�ω), and therefore,

dim im(i∗�ω)+ dim Wω = dim V. (A.7)

Consider the canonical isomorphism ι : V → V∗∗, ι(v)(ϕ) := ϕ(v). A direct calculation

shows that (�ω)∗ι= −�ω. It follows that (�ωi)∗ι= −i∗�ω, and therefore

dim im(�ωi)= dim im(�ωi)∗ = dim im((�ωi)∗ι)= dim im(i∗�ω).
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Combining this with (A.7), we obtain

dim W + dim Wω = dim ker(�ωi)+ dim im(�ωi)+ dim Wω

= dim ker(�ωi)+ dim V. (A.8)

Since ker(�ωi)= Vω ∩ W, equality (A.6) follows. This proves Lemma A.5. �

Proof of Lemma A.4. We prove “⇒”. Assume that W is coisotropic. Then Wω ⊆ Wi∗ω and

therefore, using Lemma A.5, we have

dim W + dim Wi∗ω ≥ dim W + dim Wω

= dim V + dim(Vω ∩ W).

Since Vω ⊆ Wω ⊆ W, inequality (A.5) follows. This proves “⇒.”

To prove the opposite implication, assume that (A.5) holds. Using Lemma A.5, it

follows that

dim Wω = dim V − dim W + dim(Vω ∩ W)

≤ dim Wi∗ω − dim Vω + dim(Vω ∩ W)

≤ dim Wi∗ω.

Since Wω ⊇ Wi∗ω, it follows that Wω = Wi∗ω ⊆ W. Therefore, W is coisotropic. This proves

“⇐” and completes the proof of Lemma A.4. �
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