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Promoting insight into algebraic formulas through graphing by
hand
Peter M. G. M. Kop a, Fred J. J. M. Janssena, Paul H. M. Drijversb, and Jan H. van Drielc

aICLON Leiden University Graduate School of Teaching, Leiden University, Leiden, The Netherlands; bFreudenthal
Institute, Utrecht University, Utrecht, The Netherlands; cMelbourne Graduate School of Education, The University of
Melbourne, Australia

ABSTRACT
Student insight into algebraic formulas, including the ability to identify the
structure of a formula and its components and to reason with and about
formulas, is an issue in mathematics education. In this study, we investigated
how 16- and 17-year-old pre-university students’ insight into algebraic formulas
can be promoted through graphing formulas by hand. In an intervention of five
90-min lessons, 21 grade 11 students were taught to graph formulas by hand.
The intervention’s design was based on experts’ strategies in graphing formulas,
that is, using a combination of recognition and qualitative reasoning, and on
principles of teaching complex skills. To assess the effect of this intervention, pre-,
post-, and retention tests were administered, as well as a post-intervention
questionnaire. Six students were asked to think aloud during the pre- and
posttests. The results show that all students improved their abilities to graph
formulas byhand. The think-alouddata suggest that the students improvedboth
on recognition and reasoning, and give a detailed picture of how students used
recognition and qualitative reasoning in combination. We conclude that graph-
ing formulas by hand, based on the interplay of recognition and qualitative
reasoning, might be a means to promote students’ insight into algebraic
formulas.
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Introduction

Research has shown that students in grades 11 and 12, and even beyond secondary school, have persistent
difficulties with algebra in general, and with dealing algebraic formulas and making sense of them in
particular (Arcavi, Drijvers & Stacey, 2017; Arcavi, 1994; Ayalon, Watson, & Lerman, 2015; Chazan &
Yerushalmy, 2003; Drijvers, Goddijn, & Kindt, 2011; Hoch & Dreyfus, 2005, 2010; Kieran, 2006;
Oehrtman, Carlson, & Thomp, 2008). The students lack symbol sense, which is defined as the very
general notion of “when and how” to use symbols (Arcavi, 1994). Symbol sense has several aspects, such
as the ability to read through algebraic expressions, to see the expression as a whole rather than as
a concatenation of letters, and to make rough estimates of the pattern that would emerge in a graphical
representation (Arcavi, 1994; Pierce & Stacey, 2001). Drijvers et al. (2011) describe symbol sense as
complementary to basic skills. Symbol sense involves strategic work with a global view and an emphasis
on algebraic reasoning, whereas basic skills involve procedural work with a local focus and an emphasis
on algebraic calculations. Pierce and Stacey (2001) use algebraic insight to capture the symbol sense
involved in using computer algebra software. This algebraic insight concerns identifying structure
through the recognition of objects, key features, dominant terms, and simple factors, knowing the
meaning of symbols, and the ability to link representations (Pierce & Stacey, 2001).
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In this study, we aimed at this one aspect of symbol sense, namely, insight into algebraic formulas,
that is, the ability to “look through a formula.” More specifically, we viewed insight into algebraic
formulas as including the abilities to recognize the structure of a formula and its components and to
reason with and about a formula. Structure in algebra has been defined by Hoch and Dreyfus (2010)
as a broad analysis of the way an entity is made up by its parts. Structure sense includes abilities such
as seeing an algebraic expression as an entity, recognizing the expression as a previously met
structure, dividing the entity into sub-structures, and recognizing the connection between structures.
In this study, we focused on functions of one variable and their Cartesian graphs. We chose to use
graphing formulas by hand, without technology, as a means to promote students’ insight into
formulas. In this article, this graphing formulas by hand will be called graphing formulas.

Many studies about symbol sense and graphing are about the role of technology like graphic calculators
to promote students’ symbol sense (Arcavi et al., 2017; Drijvers, 2003; Heid et al., 2013; Hennessy, Fung, &
Scanlon, 2001; Kieran & Drijvers, 2006; Philipp, Martin, & Richgels, 1993; Yerushalmy & Gafni, 1992). In
some of these studies, the need for by hand activities has been stressed (Arcavi et al., 2017; Kieran&Drijvers,
2006), but to our knowledge, there are no recent studies that investigate effects of graphing by hand on
students’ symbol sense and this study might fill this gap. We investigated how graphing formulas might be
learned by students and designed an intervention consisting of a series of lessons on graphing formulas, in
grade 11 (16- and 17-year-old pre-university students) to enhance students’ insight into algebraic formulas.
In this way, the current study contributes to the understanding of how recognition, reasoning, and its
interplay involved in graphing formulas may foster students’ insight into formulas.

Theoretical framework

Graphing formulas is a complex task for students. In this section, we elaborate on the theoretical
principles underlying our educational design. First, the literature about symbol sense and graphing is
discussed. Next, we describe the nature and content of the knowledge base students need for
graphing formulas. Finally, we discuss how this knowledge base might be addressed in student
tasks, using the literature on teaching complex skills.

Symbol sense and graphing

To promote insight into formulas, we had two arguments for focusing on graphing formulas. First,
we targeted insight into formulas that are often used in grade 11 textbooks, like y ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

10� x
p

,
y ¼ 2ðx� 3Þ2 xþ 3ð Þ, y ¼ ðxþ 3Þ4 � 9, y ¼ 4xþ 2ð Þ=ðxþ 3Þ2, y ¼ xe�x, y ¼ lnðx� 3Þ, so, we
needed a general domain, in which many different formulas could be addressed. Second, in
literature, it has been recommended to use realistic contexts and multiple representations to give
meaning to algebraic formulas (Kieran, 2006; Radford, 2004), and to learn about functions (Arcavi
et al., 2017; Janvier, 1987; Kieran, 2006; Leinhardt, Zaslavsky, & Stein, 1990; Moschkovich,
Schoenfeld, & Arcavi, 1993). However, besides linear and exponential functions, it is in general
difficult to link formulas to realistic context, except in mathematical modeling. Therefore, we chose
for using representations, in particular for linking formulas to their graphs.

Graphing tools such as graphic calculators are helpful for learning about functions and their
multiple representations (Heid, Thomas, & Zbiek, 2013; Hennessy et al., 2001; Kieran & Drijvers,
2006; Philipp et al., 1993; Yerushalmy & Gafni, 1992). However, Goldenberg (1988) found that
students established the connection between formula and graph more effectively when they did
graphing by hand than when they only performed computer graphing. Therefore, we chose the
context of graphing formulas by hand to promote students’ insight.

In linking formulas to graphs, covariational reasoning comes into play. Covariational reasoning
concerns coordinating two varying quantities while attending to how they change in relation to each
other (Carlson, Jacobs, Coe, Larsen,, & Hsu, 2002; Thompson, 2013). While the focus often is on
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quantities in real-life situations, algebraic functions with “imagining running through all input-output
pairs simultaneously and so reason about how a function is acting on an entire interval of input values”
are also included (Carlson et al., 2002). Covariational reasoning often focuses on the global graph and five
levels of development have been described: from the idea that change in one variable depends on change
in another variable, to paying attention to the direction of change, to paying attention to the amount of
change, to considering average rate with uniform increments of the input variable, to the instantaneous
rate of change for entire domain (Carlson et al., 2002; Oehrtman et al., 2008). It has been argued that such
covariational reasoning is critical in supporting student learning of functions in secondary and under-
graduate mathematics (Carlson et al., 2002; Confrey & Smith, 1995; Oehrtman et al., 2008; Thompson &
Carlson, 2017). Students have difficulties with this reasoning. This was shown by Carlson et al. (2015),
who found that students were not able to select the correct graph (out of five alternatives) of
f xð Þ ¼ 1= x� 2ð Þ2, indicating, according to the authors, that students were not able to reason “as the
value of x gets larger the value of y decreases, and as the value of x approaches 2, the value of y increases.”
Such reasoning about functions requires a global perspective on a function, that is, seeing the function as
an entity or object (Confrey & Smith, 1995; Even, 1998; Gray & Tall, 1994; Oehrtman et al., 2008). This
may be hindered by another commonly used perspective, namely, seeing a function as an input-output
machine (a given x–value is linked to a certain y-value). The latter view is considered a pointwise,
process, or correspondence perspective. A global perspective is more powerful and gives a better
understanding of the relation between formula and graph, but a pointwise approach is needed to
construct initial meaning (Even, 1998). To learn graphing formulas, students have to learn to take
a global perspective on functions and to use the first three levels of covariational reasoning, in particular
paying attention to the direction of change and the global amount of change of a function (concavity).

Expertise in graphing formulas: recognition and reasoning

To investigate what is needed to master a complex skill, it has been recommended to examine
expert behavior (Kirschner & Van Merriënboer, 2008; Schoenfeld, 1978). In expertise research, it
has been established that for effective and efficient problem solving one needs recognition, and
reasoning when recognition falls short (Berliner & Ebeling, 1989; Chi, Feltovich, & Glaser, 1981).
In our previous studies, we described experts’ recognition and strategies involved in graphing
formulas (Kop, Janssen, Drijvers, Van Driel, & Veenman, 2015, Kop, Janssen, Drijvers, Van Driel,
2017). Five experts from different backgrounds, but all holding a master’s or PhD in mathematics,
were selected to investigate expertise in graphing formulas: three mathematicians who worked at
Dutch universities, one mathematical textbook writer who was also a mathematics teacher in
upper secondary school, and one who worked at the Dutch Institute for Testing and Assessment.
Because all had more than 10 years of experience in work which often required them to graph
formulas, we considered them experts in graphing formulas (Kop et al., 2015/2017).

To describe experts’ thinking processes for graphing formulas, different levels of recognition were
formulated: the formula can be instantly visualized as a graph or is recognized as a member of
a function family of which the global graph is known; the formula can be decomposed into sub-
formulas of function families; some characteristics of the graph are instantly recognized but not the
whole graph; there is no recognition at all (Kop et al., 2015). These levels of recognition can be
linked to Mason's (2003) levels of attention, in which he described how attention can shift from
seeing essential structure to gazing at the whole and not knowing how to proceed. For recognition,
a repertoire of basic function families that can be instantly visualized by a graph (Eisenberg &
Dreyfus, 1994) and knowledge of features to describe graphs are needed (Slavit, 1997). Kop et al.
(2015) found that experts’ repertoires of basic function families resembled the basic function families
taught in secondary school, like exponential, logarithmic, and polynomial functions. Experts seem to
have linked prototypes of these function families to a set of critical graph features. For instance,
a prototypical logarithmic graph has a vertical asymptote, only positive x–values as a domain, and is
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concave down. Experts use their repertoire of basic function families as building blocks in working
with formulas to decompose complex functions into simpler basic ones and to read characteristic
graph features from formulas (Kop et al., 2015).

When experts graph more complex formulas and instant recognition falls short, they start reasoning
about, for instance, infinity behavior, in/decreasing of a function, and weaker/stronger components of
a function, but they hardly use calculation of points and/or derivatives. In short, our previous studies
suggest an interplay of recognition and reasoning being the backbone of the expertise at stake. We give
five examples to illustrate experts’ recognition and reasoning. (1) Sketching y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

xþ 6
p

: “It is a root-
function translated to the left.” (2) Sketching y ¼ �2x x� 3ð Þ x� 6ð Þ: “It is a polynomial function of
degree 3, reversed because of � x3, and zeroes at 0, 3, 6.” (3) Sketching y ¼ 100� 50 � 0:75x: “It has
y = 100 as an horizontal asymptote, 100 minus …, so, it comes from beneath to the asymptote; when
x is very negative, it is 100 minus very large outcomes, so y-values will be very negative.” (4) Sketching
y ¼ x� 4=x: “I can sketch y ¼ x and y ¼ 4=x, now I have to subtract the graphs, here (with large
values of x) it is almost y ¼ x, when x is a little bit larger than 0 y is very negative, etc. (sketch the
graph). (5) Sketching y ¼ 500= 2þ 0:75xð Þ: “When x goes to infinity then it is 500/2 = 250; 500
dividing by a decreasing number, so outcomes increase; it is always positive, and when x goes to minus
infinity it is almost 0.” (Kop et al., 2015/2017)

The interplay between recognition and reasoning is visible when experts use prototypical graphs of
function families. For example, “a root-function translated” in (1); “a polynomial of degree 3, reversed”
in (2); “decomposing a formula, graphing both sub-formulas, and compose these sub-graphs” in (4)
(Kop et al., 2015; Schwarz & Hershkowitz, 1999). These examples show that experts can start with
prototypical graphs and use reasoning about transformations, about characteristics, about composing
sub-formulas to finish the graph. Sometimes, experts only recognize a key graph feature and have to
use more reasoning to complete the graph. For example, in (3), the horizontal asymptote was instantly
recognized. It also possible that there is no recognition, then experts start strategic exploration of the
graph. For example, in (5) the expert started reasoning about infinity behavior of the function. Experts’
reasoning is often qualitative of character, that is, global reasoning, using global descriptions without
strict proofs, and ignoring what is not relevant. We illustrated this experts’ qualitative reasoning in the
five examples above. In their reasoning experts ignored the factor 2 when sketching y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

xþ 6
p

(1)
and y ¼ �2x x� 3ð Þ x� 6ð Þ (2), the factor 50 in y ¼ 100� 50 � 0:75x (3). Ignoring what is not relevant
is an aspect of adaptive reasoning and an indication of expertise (Chi, 2011; Chi et al., 1981). Global
reasoning is found when exploring parts of a graph, for instance, infinity behavior of the function in (3)
“x is very negative, it is 100 minus very large outcomes, so y-values will be very negative” and in (5)
“when x goes to minus infinity it is almost 0.”Global descriptions were used in (2) “reversed” and in (3)
“it comes from beneath to the asymptote.”

In literature, the importance of qualitative reasoning with its focus on the global shape of the graph
and ignoring what is not relevant has been addressed. Leinhardt et al. (1990) spoke about qualitative
interpretation of graphs to gain meaning about the relationship between the two variables, and their
pattern of covariation. In physics and physics education, qualitative reasoning is used to describe
essential entities and processes and to provide the necessary grounding for a deep and robust under-
standing of quantitativemodels (Bredeweg& Forbus, 2003; Forbus, 1996). Friedlander and Arcavi (2012)
used the term qualitative thinking in their framework for cognitive processes involved in algebraic skills.
Qualitative thinking is about predicting and interpreting results without calculation and/ormanipulation
skills and strict proofs. Experts use this qualitative reasoning also in their communication with students.
For example, Thompson (2013) described how an experienced teacher added two sub-graphs using
blank axes to keep students away from calculations, focusing on an estimation of the sum-graph, and
using qualitative reasoning in the discussion with the class, with descriptions like “it is less negative,”
“how negative,” “it will get lower.” However, this qualitative reasoning, with its ignoring what is not
relevant and its focus on the global shape of the graph, is often used implicitly and hardly taught explicitly
in school (Duval, 2006; Leinhardt et al., 1990).
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Experts’ recognition and reasoning in graphing formulas inform us about “what to teach”:
students should learn a repertoire of basic function families, with prototypes and key features, for
recognition and students should learn experts’ reasoning, with its qualitative character, using global
descriptions, ignoring what is not relevant, and without strict proofs. In the next section, we address
the literature on complex skills to formulate design principles (DP) about how to teach graphing
formulas, based on recognition and reasoning.

Teaching complex skills

Although graphing formulas is a well-described task, it can also be considered a complex task,
because functions may vary from basic functions to very complex ones. In this section, we outline
a social constructivist approach to teaching graphing formulas as a complex skill. In this approach,
students learn component knowledge and skills in the context of more complex whole tasks, with
adaptive support and students are invited to articulate and reflect on their own problem-solving
processes (De Corte, 2010).

Complex cognitive skills consist of many constituent skills, which have to be integrated and
coordinated. In education, a part-task approach is often used: all constituent skills are taught
separately and in succession, and only at the end are students confronted with the complexity of
the whole task. This results in students having difficulties in integrating and coordinating all the
constituent skills (Kirschner & Van Merriënboer, 2008).

Instead of the part-task strategy, a whole-task-first approach is recommended: students learn
skills and knowledge in the context of entire tasks (Collins, 2006; Kirschner & Van Merriënboer,
2008; Merrill, 2013; Van Merriënboer Clark, & De Croock, 2002). Of course, students cannot
immediately perform an entire task without help. Therefore, it is recommended to support student
learning processes in different ways (Kirschner & Van Merriënboer, 2008; Merrill, 2013; Van
Merriënboer et al., 2002). In the context of graphing formulas, the whole-task-first approach
means that students are confronted from the start with the full complexity of graphing formulas;
that is, they have to deal with different kinds of functions and strategies (DP 1). In order to support
students, help is provided in different ways: through modeling (that is, showing expert thinking
processes to students), examples, overviews, sub-questions, and reflection questions (DP 2)
(Kirschner & Van Merriënboer, 2008; Merrill, 2013; Van Merriënboer et al., 2002).

Landa (1983) described the importance of general thinking methods or meta-heuristics that are
needed to use one’s skills and knowledge in problem situations. Pierce and Stacey (2007)
indicated the importance of teaching students the habit of starting with the question “What do
I notice about this expression which may be important?” We call this “questioning the formula,”
which can be considered a meta-heuristic (Arievitch & Haenen, 2005; Landa, 1983). In graphing
formulas, students should learn to internalize and automatize the habit of questioning the
formula (DP 3).

In the current study, we used these three design principles to design an intervention on graphing
formulas, with the aim to promote insight into formulas of functions of one variable. The following
main research question guides the study:

How can 16- and 17-year-old pre-university students’ insight into algebraic formulas be promoted
through graphing formulas?

Methods

In this section, we subsequently describe the intervention, including the tasks that were used in the
teaching, the participants, the instruments used in the pretest, posttest, and retention test, and the
data analysis.
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Intervention

The intervention took five lessons of 90 minutes. Each day, the lesson started with a short plenary
discussion (max 10 minutes) with general feedback on the students’ work, reflection on the tasks,
and modeling of expert thinking processes. After the plenary, the students worked in pairs or groups
of three, studied their personal feedback and the written elaborations on the tasks given by the
teacher, and discussed strategies and solutions for the whole tasks. The teacher visited each group at
least once during a lesson to give further explanations and coaching. At the end of a lesson, all pairs
and groups handed in their work for personal feedback which focused on the reflection questions,
for which students had to construct their own examples.

The intervention started with a whole-class discussion about the levels of recognition; this was to
introduce the meta-heuristic “questioning the formula” (DP 3). The aim was that students would
develop the habit of asking themselves questions like: “Do I instantly know the graph?”, “Do
I recognize a function family?”, “Can I decompose the formula?”, “Do I recognize graph features?”,
“Can I do some strategic search for, for instance, infinity behavior?” At the end of the intervention,
but before the posttest, 18 of the 21 students voluntarily attended a longer plenary discussion of
30 minutes in which they discussed strategies for graphing several formulas.

The tasks used in the teaching were formulated as whole tasks, reflecting the levels of recognition
and the meta-heuristic “questioning the formula”: task 1 and 2 concerned recognition of basic
functions and aimed to develop a knowledge base of function families with their characteristic
features and to deal with simple transformations; task 3 concerned the decomposition of formulas
and the composition of sub-graphs through qualitative reasoning; task 4 concerned the instant
recognition of key graph features; and task 5 was about strategic exploration of parts of a graph,
through qualitative reasoning. We now give some examples of the tasks.

Task 1 required students to match formulas of basic function y ¼ ffiffiffi

x
p

; y ¼ x3, y ¼ 0; 5x; y ¼
lnðxÞ; y ¼ xj j to their graphs. Task 2 was based on Swan (2005): Describe the differences and similarities
between the graphs of the pairs of functions like y ¼ 2

ffiffiffi

x
p � 4, y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

x� 4
p

and y ¼ �3x, y ¼ 3�x. In
task 3, the function y ¼ ffiffiffi

x
p

3x� 6ð Þ had to be graphed by multiplying the graphs of the sub-functions
y ¼ ffiffiffi

x
p

and y ¼ 3x� 6. Task 4 was inspired by Burkhardt and Swan (2013) and Swan (2005), and
concerned the recognition of graph features: What features of the given graph can be instantly read from
the given two equivalent formulas y ¼ ðx� 4Þ2 � 1 and y ¼ x� 5ð Þ x� 3ð Þ?

Task 5 concerned reasoning about parts of a graph (part-graph exploration). For instance, what
happens to the y-values of the functions y ¼ 0; 6x � x60, y ¼ 52:7= 1þ 62; 9 � 0; 692xð Þ,
whenx ! þ1? Choose y ! þ1; y ! a�0; y ! 0; y ! �1

For each task, help was provided, and a reflection question was added. For instance, in task 2 (about
recognizing transformations of basic functions) students could choose to use GeoGebra, and/or to study
worked-out examples for help. After each whole task, a reflection question was posed, in which students
were asked to construct three new examples to demonstrate the principles of the whole task. Constructing
examples are a means to stimulate students to reflect (Watson & Mason, 2002).

Participants

The intervention was held in the first author’s grade 11 mathematics B class, a regular class of 21 pre-
university students, who were 16 or 17 years old. Mathematics B is a course that prepares students in the
Netherlands for university studies in mathematics, science, and engineering. In regular education in the
Netherlands, students learn about linear, quadratic, and exponential functions in grades 8 and 9. In grade
10, the graphic calculator is introduced and power, rational, logarithmic functions, and the derivative are
the most important topics. In grade 11, further exploration of derivatives and rules for differentiation are
taught, together with solving calculus problems (e.g., optimization, tangent, and parameter problems) using
algebraic manipulation and the graphic calculator. In this school, students were used to working together
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on tasks in an open space, as there was only one small room for plenary instruction available, which could
be used once a week.

Data collection

We collected all individual student responses to three written tests: the pre-test, the post-test, and the
retention test, all of which had two similar tasks: a graphing task and a multiple-choice task that
focused on recognition (indication of the total time: 25 min). The formulas used in the three tests,
though not the same, were comparable in structure and difficulty. To avoid a learning effect from the
tests, the students’ work was not returned to them. The period of 4 months between the post-test and
the retention test, including a holiday period, was considered long enough to prevent learning
effects.

The three written tests demonstrated the students’ competencies to graph formulas but gave only
limited information about their recognition and reasoning. Therefore, more detailed information
about the students’ thinking processes was needed: six students were asked to think aloud during the
pre-test and post-test, when working on the graphing task. These interviews were videotaped and
transcribed. Thinking aloud is not expected to disturb the thinking process and should give reliable
information about problem-solving activities (Ericsson, 2006). As it was possible that the effect of the
intervention would depend on students’ previous mathematics performance, the six students were
selected on the basis of their earlier mathematics performances during the school year: two high-
achieving (S and K), two more than average-achieving (A and M), and two average-achieving
students (Y and I).

In a post-intervention questionnaire, the students were asked to report their ideas about the series
of lessons. Six questions were posed: whether they had improved their skills in graphing formulas
(1), whether they had learned to use more strategies (2), whether their recognition of graph features
had improved (3), whether their recognition of formulas that could be instantly graphed had
improved (4), whether they could switch their strategy more often (5), and whether they used the
meta-heuristic “questioning the formula” more often when graphing formulas (6). In each question,
the students were asked to indicate, on a scale of 1 to 4, to what extent they agreed with the
statement. In two open questions, the students were invited to make remarks about the series of
lessons and their learning during these lessons. The first author (teacher) kept a logbook with lesson
plans, and short descriptions of the plenary discussions and other aspects of the student’s learning.

Graphing task and multiple-choice task in the tests

The first task used to investigate the students’ insight into formulas was “Draw a rough sketch of the
following functions … .” We selected seven simple and seven more complex functions, all of which
could appear in the students’ mathematics textbooks. The simple functions aimed to assess the
students’ repertoire of basic function families and their reasoning using prototypical graphs, trans-
formations and/or function family characteristics. Examples of these simple functions are y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 2x
p

and y ¼ x2 � 4ð Þ x2 � 6ð Þ. The more complex functions, like y ¼ ffiffiffi

x
p

x� 2ð Þ x� 6ð Þ and
y ¼ 3x

ffiffiffiffiffiffiffiffiffiffiffi

xþ 2
p

, aimed to assess the students’ recognition of graph features and their part-graph
exploration.

To assess the students’ recognition abilities, a multiple-choice task with 21 alternatives (20 graphs
and one “none of these”; see Figure 1) was also used. For 16 functions, the students were asked to
match the formula to the global shape of the graph. The following are examples of functions that
were used: y ¼ 2x x� 9ð Þ, y ¼ x2 6� x2ð Þ, y ¼ 4x � 5, y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

8� x
p

, y ¼ �2
ffiffiffi

x
p

. Figure 1 shows four
of the 20 graphs that were used as alternatives.
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Data analysis

For the analysis of the graphing task, the graphs in all tests were graded as correct, partly correct, or
not correct, resulting in a score of 1, 0.5, or 0. We graded a graph as partly correct when many but
not all aspects of (the construction of) the graph were correct. For example, when the graph of y ¼
�2x x� 2ð Þ x� 5ð Þ had zeroes at x ¼ 2 and x ¼ 5, and the direction of the “oscillation” was correct,
but the graph failed to show the zero at x ¼ 0, or when the sub-graphs of y ¼ x2ex (y ¼ x2 and
y ¼ ex) were correctly graphed but mistakes were made in the composition of the sub-graphs. For
each student, the total score, the score on simple functions, and the score on complex functions were
calculated. For the multiple-choice task in all tests, each item was graded as correct (score 1) or
incorrect (score 0), resulting in a total score on the multiple-choice task.

To compare the scores on the graphing task and multiple-choice task of the pretest, posttest, and
retention test, the mean scores, and standard deviations were calculated. A paired t-test with the effect
size (Cohen’s d) for each task was calculated to determine differences between pre-test and post-test
results (short-term effect) and differences between pre-test and retention test (long-term effect).

The thinking-aloud protocols of the graphing task of the six students were transcribed and time
was recorded. The transcripts were cut into units of analysis which contained crucial steps of
students' recognition and reasoning (Schwarz & Hershkowitz, 1999). To analyze students’ insight,
we used categories with descriptions of the experts’ strategies in graphing formulas (see examples in
theory section): combinations of recognizing and reasoning involving function families, involving
key graph features, and part-graph exploration. The encoding of the thinking-aloud protocols was
done according to the instructions in Table 1.

The units of analysis were encoded by the first author and checked by another researcher, which
resulted in recoding of 10% of the transcripts. When the student succeeded in making a correct
(rough) sketch of the formula (score of 1), using P1, P2, F, PG, we interpreted this as a sign of insight
into this formula, resulting in an insight-score of 1. However, if the student used the calculation of
more than two points and/or the derivative (C), we said that the student had no insight in this
formula, resulting in an insight-score of 0. If the graph was partly correct and sketched via P1, P2, F,
PG, we considered this as showing “some insight,” resulting in an insight-score of 0.5.

Below, we illustrate these encodings with two examples (other examples in the result section).
Student A sketching y ¼ � x� 3ð Þ4 � 5 correctly with insight-score 1, used a prototypical graph:
Looks like parabola; turning point is in (3,-5) (P1); parabola with a maximum (P1)
Student A sketching y ¼ x2 þ 6ð Þ= x2 � 4ð Þ correctly with insight-score 1, decomposed the for-

mula into two parabola, graphed both sub-graphs, then used graph features (vertical asymptotes and
symmetry) and part-graph exploration about infinity behavior of the function and the graph’s
behavior in the neighborhood of the vertical asymptotes. Only two points of the graph were
calculated, so the insight-score was 1.

(tries to manipulate the function (x� 2)(x + 2)); no, this does not work; first decomposing; (graphed
both parabolas) (P2); when x is very large than y is close to 1 (PG); when x = 2 no outcomes, so
a vertical asymptote (F); and also at x =� 2; when x is a little bit larger than 2 than the denominator
is very small and the dominator relative large (PG); the larger x will be the smaller the outcomes will be

5 6 7 8

Figure 1. Some alternatives in the multiple-choice task.
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(PG); when x =� 2 this will be the same (F); when x = 1 y is 7/� 3 is about � 2; when x =� 1 I get
the same; when x = 0 it is � 1.5; when x is just under 2, the denominator is negative and the
dominator is very large, so is goes to minus infinity (PG); at x =� 2 the same, because of symmetry (F).

To analyze the post-intervention questionnaire, the mean scores were calculated for each question
and an inventory of the remarks about the series of lessons was made.

Results

The results of the graphing and multiple-choice tasks of the pretest, posttest, and retention test are
described first, then we report the results of the six thinking-aloud students on the graphing task,
and finally the results of the post-intervention questionnaire and fragments of the teacher’s logbook.

Graphing tasks

The results of the graphing tasks gave information about the students’ abilities to graph formulas.
For a first impression of the effect of the intervention, we compared the mean scores in the pre-test,
post-test, and retention test. We distinguished between the simple and the complex functions. Table
2 shows that the mean total score in the pretest was 2.95 out of 14, with a standard deviation of 2.42.
The post-test scores were higher, with a mean total score of 9.21. In the retention test, the mean
score dropped to 6.97. A similar pattern was found for basic functions and complex functions.

The paired t-tests that were used to calculate the differences between the scores in the pre-test and
post-test and between the pre-test and retention test showed that all score differences were sig-
nificant with p < .01. Cohen’s d, used to quantify these differences were rather large. See Table 2.

Table 1. Codebook for thinking-aloud protocols.

Encoding Description Example

P1
(a
prototypical
graph)

If a function family has been recognized (mentioned)
and a prototypical graph and/or (qualitative) reasoning
(with transformations and/or characteristics) are used
to sketch the graph.

Sketching y ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi

x þ 8
p

: “it is a root-function,
translated to the left.” (factor 2 can be ignored);
Sketching y ¼ ffiffiffiffiffiffiffiffiffiffiffi

8� x
p

: “it is a reversed root-function,
and edgepoint is (8,0)”

P2
(two
prototypical
graphs)

If two function families have been recognized
(mentioned), two sub-formulas are graphed and the
two sub-graphs are combined using qualitative
reasoning.

Sketching y ¼ xe�x : “decompose it into y ¼ x and
y ¼ e�x , and multiplying the two sub-graphs, when
x is very large e�x is almost 0 and stronger than x, so
y � 0; when x is very negative y will be very
negative.”

F
(key graph
feature)

If the graph has not been recognized but a key graph
feature has been recognized.

“It has a vertical asymptote at x = 3” or
“it has zeroes at … ”;
but not when calculating the y-intercept.

PG
(part-graph)

If the graph has not been recognized and parts of the
graph are explored using qualitative reasoning.

“When x is large, y is … (infinity behavior),” or
“in the neighborhood of x = 3 … ”

C
(calculation)

If more than two points of the graph are calculated, or
if a derivative is calculated, or brackets in a formula are
expanded.

Table 2. Results of graphing task in pre-, post-, and retention test compared.

Pretest mean
(SD)

Posttest mean
(SD)

t-value & p-value
pre-post test Cohen’s d

Retention test
Mean
(SD)

t-value & p-value
pre-retention test Cohen’s d

Total 2.95 (2.42) 9.21 (2.58) t(20) = 13.00; p < .001 2.50 6.97 (3.35) t(14) = 3.48;
p = .001

1.38

Simple 2.42 (1.42) 6.19 (1.26) t(20) = 10.73;
p < .001

2.87 4.87 (1.80) t(14) = 5.40;
p < .001

1.56

Complex 0.74 (1.41) 3.02 (1.71) t(20) = 9.51;
p < .001

1.45 2.10 (1.85) t(14) = 2.46;
p = .028

0.83
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Multiple-choice tasks

The results of the multiple-choice tasks gave information about the students’ recognition of basic
function families and graph features. The results on these tasks showed the same pattern as on the
graphing tasks: the scores on the 14 items were low in the pre-test, increased substantially in the
post-test, and decreased slightly in the retention test. Table 3 shows that the differences were
significant and that the effect sizes were rather large.

Thinking-aloud protocols on the graphing task

First, we give an overview of the results of the six students who thought aloud during the graphing
task, then, we portray the recognition and reasoning of two representative students (student M and
the high-achieving student K) in the pre-test and post-test. These examples illustrate their insight
into formulas, that is, their recognition and reasoning when graphing formulas. We end this section
with some remarks about the results of the four other students.

Table 4 shows the scores of the six thinking-aloud students on the graphing task in the pre-test
and post-test (on simple and complex functions) and the time they needed to finish these tasks. In
addition, their scores on the retention test are indicated. For instance, in the pretest, student K had
a score of 4 out of 7 on simple functions and a score of 4 out of 7 on complex functions; their
insight-score was 3 on both simple formulas and complex formulas; K used in 6 graphs prototypical
graphs and in 5 graphs part-graph exploration.

Table 4 confirmed the higher scores in the post-test and retention test in comparison with the
pre-test and the differences in scores between simple and complex formulas, as found in Table 2.
Table 4 shows that the time needed in the posttest was much shorter than in the pre-test that the
scores and insight-scores in the post-test were higher than in the pre-test, and that the scores and
insight-scores were closely related. The latter indicates that calculations were hardly used in
successfully graphing formulas. Table 4 also shows that the high-achieving students did relatively
well on complex formulas in the pre-test and only missed one graph in the post-test. The results
show that most students used more prototypes of function families in the post-test. In the retention
test, only student S graphed all formulas correctly, but the scores of the other five students were still
higher than in the pre-test.

To illustrate the student’s insight, we portray the recognition and reasoning of two representative
thinking-aloud students: student K as a high-achieving student, and student M as one of the other four
students. In the pre-test, student M had great difficulties graphing formulas: M only recognized the
graphs of root-functions and features like zeroes of polynomial-functions and vertical asymptotes, but
had a limited repertoire of reasoning. This resulted in a score of only 2 correct graphs out of 14 (only
y ¼ 3

ffiffiffi

x4
p þ 2 and y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 2x
p

). Some citations illustrate their thinking processes and insight.
M sketching y ¼ ðx� 3Þ2 � 9 (insight-score 0); after calculating a point and part-graph reasoning

with “when x is increasing then y …,” M could not sketch the graph:

… At x ¼ 3 y ¼ �9. (After some time) the larger x is, the larger y, so it increases (PG). It is a parabola.
(M stopped talking for a while; after a couple of minutes) I do not know how to proceed. Encoding: PG.

M also had problems with sketching y ¼ ln x� 3ð Þ(insight-score 0); after recognizing a translation,
M did not know the shape of the ln(x)-graph, and tried to construct the graph via the inverse
function (but did not succeed):

Table 3. Results of multiple-choice task in pre-, post-, and retention-test compared.

Pre-test
mean
(SD)

Post-test
mean
(SD)

t-value & p-value
pre-post test Cohen’s d

Retention test
Mean
(SD)

t-value & p-value
pre-retention test Cohen’s d

Total 2.95 (2.29) 10.01 (2.79) t(20) = 10.17;
p < .001

2.22 8.07 (3.33) t(14) = 4.65;
p < .001

1.20
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… graph of ln xð Þ, that is translated 3 to the right (F) (M did not use this, instead writes
loge x� 3ð Þ ¼ logðeÞ= logðx� 3Þ; ey ¼ x� 3). This is an asymptote (F); x cannot be 3; … .; when y ¼ 0; x� 3 ¼
1 (drew point (4,0) and stopped). Encoding: F.

In the post-test, M’s insight had improved, resulting in a score of 10 out of 14. Some citations to
illustrate these improvements:

M sketching correctly y ¼ 30 � 0:92x þ 40 (insight-score 1), used a prototypical decreasing expo-
nential graph and a translation, and described globally the function’s infinity behavior:

Decreasing exponential function (sketched a prototypical graph)(P1); 40 above (P1); when x = 0, y = 70; later
approximately 40 (PG). Encoding: P1,PG.

When sketching y ¼ �2x x� 2ð Þ x� 5ð Þ correctly (insight-score 1), M recognized the zeroes, and
used qualitative reasoning when exploring the function’s behavior at x = 1 and when ignoring the
factor 2 in −2x:

… goes downwards (F); zeroes at 0, 2, 5 (F). At x=1, it is negative (PG). Encoding: F,PG.

M showed “some insight” into y ¼ x2 þ 6ð Þ= x2 � 4ð Þ(insight-score 0.5), as M did not indicate the
horizontal asymptote; the function’s behavior in the neighborhood of x = 2 was explored:

… asymptotes at 2 and −2 (F); zero at
ffiffiffi

6
p

; no, no zeroes, because x2 cannot be negative; when x is smaller than 2,
then it is positive here, and negative here, so it is negative (PG); when x is a bit larger than 2, positive here,
positive here, so positive (PG); the same for � 2 (F). Encoding: F,PG.

Although the high-achieving student K scored 8 correct graphs out of 14 in the pre-test, K then had
problems with recognizing basic function graphs. However, K was able to compensate this lack of
recognition through her reasoning abilities and the calculation of many points. We give two
examples to illustrate this: when K did not know the ln(x) graph and when K could not read the
zeroes from y ¼ x� 2ð Þ x� 6ð Þ.

K, sketching y ¼ ln x� 3ð Þ (insight-score 1), did not recognize the shape of a logarithmic func-
tion, but used qualitative reasoning about the inverse function to sketch the graph correctly:

I do not know the ln-graph anymore. When x� 3 ¼ 0, then … … When x� 3 ¼ 1, then y ¼ 0, so x ¼ 4. At x-as
the x-axis is intersected. When x is increasing then y increases, so the graph increases (PG). When x is negative …
(thinking). Because something to the power of e (e … .) does not give negative y-values (PG). So, x� 3 cannot be
negative; the graph only exists from x = 3, larger than 3 (PG). So, at x = 3 a tangent (means asymptote) and
outcomes smaller when x is in the neighborhood of 3 (PG). Encoding: PG.

K sketching y ¼ ffiffiffi

x
p

x� 2ð Þ x� 6ð Þ correctly but with insight-score 0; K decomposed the formula,
but was then unable to sketch the graph of the parabola y ¼ x� 2ð Þ x� 6ð Þ using recognition and
reasoning, as K did not recognize the zeroes and needed the calculation of more than two points of
this parabola; however, K showed their reasoning abilities when constructing a correct graph by
multiplying the two sub-graph using qualitative reasoning:

First expanding the brackets: y ¼ ffiffiffi

x
p

x2 � 8xþ 12ð Þ, … .sub-function is parabola with minimum and root
function,

ffiffiffi

x
p

goes like this (P1); when x is negative, this part remains empty (left y-axis)(P1); at x = 0,
parabola gives = +12; (sketched an incorrect parabola through (0,0)); … ; (calculation of points, (1,5) and
(4, � 8) (C)(noticed that parabola is incorrect and calculated more points of parabola; (2,0), (4,� 4), (6,0));
so, parabola goes like this (correct parabola); between 2 and 6 (parabola) negative, so, positive (root) times
negative gives negative (P2), and more negative than � 4; … ; it goes through (1,5); … so, I expect that the
graph progressively increases because of

ffiffiffi

x
p

(P2) and that is looks like a parabola; at x = 0, y = 0, that means
that between 0 and 1 something strange happens; it goes like …..

ffiffiffi

x
p

; … .; (sketched a correct graph).
Encoding: P1,P2,C

In the post-test, K’s recognition of basic functions had improved and K still used their reasoning
abilities, resulting in a score of 13 out of 14. Some citations to portray their insight into formulas:

When sketching y ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi

5� x
p

correctly (insight-score 1), K ignored the factor 2:
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“times � 1; exists for x � 5 (P1); so, starts at x = 5 (P1), and from there is goes like this”. Encoding: P1

When sketching y ¼ 2x
ffiffiffiffiffiffiffiffiffiffiffi

xþ 6
p

correctly (insight-score 1), K decomposed the formula and used part-
graph reasoning in the composition of the two sub-graphs:

2x goes like this (P1);
ffiffiffiffiffiffiffiffiffiffiffi

xþ 6
p

goes like this (sketch)(P1); here it is 0; here negative, here 0, and after this it is
steeper (P2). Encoding: P1,P2.

K sketching y ¼ 30= 2þ 6 � 0:9xð Þ correctly with insight-score 1, gesturing the sub-graph of the
denominator, ignoring the factors 2 and 6 and reasoning about infinity behavior of the function:

0:9x goes like this (P1); 6 � 0:9x and 2þ 6 � 0:9x (P1) like this (gestured correct graph); … 30/ … .; 30/2 goes to 15;
that means a horizontal asymptote (F); 30 divided by an ever increasing number (looks at the negative x-axis)
becomes smaller, goes to 0 (PG). Encoding: P1,F,PG.

These examples of student K illustrate how the two high-achieving students (K and S) were already
able to reason with and about formulas in the pre-test, but had problems with the recognition of the
prototypical graphs and characteristics of basic function families. In the post-test, their recognition
had improved, and they were able to combine their recognition and reasoning more effectively and
efficiently, resulting in more insight into formulas. Also, the four other students had problems with
recognizing basic function families and their characteristics in the pre-test, but their reasoning then
was very limited, as was illustrated by citations of student M and Table 4. In the post-test, these four
students showed insight in almost all the simple formulas. However, they still had problems with
complex formulas. Although they showed more insight as they were able to make the first steps (e.g.,
decomposing into sub-formulas and graphing correct sub-graphs), they had difficulties composing
the two sub-graphs and/or finding and combining all relevant graph information. Two examples to
illustrate these problems:

Student Y graphed y ¼ �x4 þ 2x2 partly correct (insight-score 0.5); Y missed that the graph of x4

is “flatter” than the one of x2 in the neighborhood of x ¼ 0:

Adding both (P2); I split the function; a parabola ’to the power of 4ʹ will run like this (P1)(sketches the graph of
y ¼ �x4); 2x2 goes like this (P1); this is not nice, you have to add them; the ‘to the power of 4ʹ is stronger than ‘ to
the power of 2ʹ, so, … .; it goes through 0; then adding; this one (� x4) is stronger, thus it goes under this one”
(sketched a parabola-shaped graph with maximum)(P2). Encoding: P1,P2

Student I graphed y ¼ xþ e�x partly correctly (insight-score 0.5); the sub-graphs were correct, but
the composition was incorrect:

ex goes like this; -x, so (y ¼ exÞ is reversed over y-axis (P1): it becomes smaller and is not negative; the larger x, the
smaller y; e�x is stronger; y ¼ x goes like this (P1) (sketched two correct sub-graphs); when x =� 1 it is positive;
when x is more positive, than e�x becomes smaller and x larger, but e�xis stronger, so, the outcomes are smaller
and negative (P2)(sketched a graph beneath the x-axis for large values of x). Encoding: P1,P2

Post-intervention questionnaire and teacher’s logbook

In the post-intervention questionnaire, the students indicated, on a scale of 1 to 4, whether they
thought they had improved their skills in graphing formulas (mean score 3.1), that they used more
strategies (mean score 3.2), that they had improved their recognition of graph features (mean score
3.3), and that they used “questioning the formula” more often (mean score 3.0). However, the scores
on “more formulas could be instantly graphed” and “being able to switch strategy” were lower: 2.8
and 2.4, respectively. In their answers on the open questions about the series of lessons and their
learning during these lessons, the students indicated they thought their recognition of basic func-
tions and graphs had improved, that they could visualize formulas (of basic functions) faster, and
that they “understood” formulas better.

Also, the teacher’s logbook confirmed the progress in the students’ insight during the interven-
tion. To illustrate this, we provide some quotations from the teacher’s logbook. During the first
lesson: “The pre-test was not motivating for the students, but after some time they are working on
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the teaching tasks.” During the second lesson: “The task about transformations is hard for these
students and costs more time than needed.” During the fourth lesson: “In the groups, I heard their
reasoning with ‘this one goes like this (with gesturing)’ and ‘when x is very large, then … ’.” During
the last lesson: “The high-achieving students show more interest in the plenary discussions than
usual. They seem to be challenged by these tasks. One of the students indicated that they thought
these lessons (in the intervention) are different from regular lessons: ‘we now use global reasoning
(referring to qualitative reasoning); it is fun this kind of reasoning.’ In a discussion, students show
their abilities to reason qualitatively when discussing the graph of y ¼ 10

ffiffiffiffiffiffiffiffiffiffiffi

6� x
p þ 3. One of the

students had drawn a global graph on the whiteboard, using (6,3) as starting point, and sketched
a reversed root-graph (i.e., a root graph to the left). Another student wondered what had to be done
with the 10 in the formula. The first student responded ‘hardly anything, only when one wants to
compare the graph with 10 and the graph with, for instance, 8. However, the graph with � 10 is
reversed, so very different. The same is true for the 3 in the formula: 3, 4, 5 does not matter, but � 3
does matter.’ A third student then explained this fact by referring to the scaling of the vertical axis.”

Discussion and conclusion

The current research aimed at promoting insight into algebraic formulas, an important aspect of
symbol sense. To foster grade 11 students’ insight, we chose to teach experts’ strategies in graphing
formulas, which could be described through a combination of recognition and reasoning (Kop et al.,
2015/2017). In this study, we designed an intervention of five lessons of 90 minutes, focusing on the
recognition of basic function families and of graph features, and on qualitative reasoning, and
investigated whether students’ insight was enhanced. The pre-test results of the written tests showed
that the students had problems with graphing formulas and the thinking-aloud protocols suggested
a lack of recognition and reasoning skills, which resulted in time-consuming calculations and many
incorrect graphs. The lack of recognition was confirmed by the results of the multiple-choice test.

In the post-test, the results of the written tests showed large improvements. The thinking-aloud
protocols of six students showed how their recognition and reasoning skills had improved. All six
students showed insight into formulas, as they could now recognize function families and use these
in their reasoning. However, unlike the two high-achieving students S and K, the other four students
still had problems in graphing the complex functions. Although these four students showed more
insight into complex functions, using decompositions into sub-functions and graphing these sub-
functions correctly, they often made mistakes in the composition of the two sub-graphs and/or in
finding and combining all relevant information. The results of the post-intervention questionnaire
suggest that the students themselves thought that their skills in graphing formulas had improved,
that they used more strategies and more recognition, and that they had more insight into formulas,
as they indicated that they understood formulas better.

In the retention test, the scores on the graphing task and multiple-choice task were, as expected,
lower than in the post-test. Still, the scores were higher than in the pre-test. This suggests a long-
lasting effect of the intervention, in particular on simple functions.

The findings of the current study suggest that through this intervention in which students were
taught to graph formulas using recognition and qualitative reasoning, students improved their
insight into formulas, that is, the ability to identify the structure of a formula and to reason with
and about formulas.

Before we address the study’s limitations and reflect on the intervention, we discuss the findings.
In the current study, we chose to use graphing formulas to foster students’ insight into formulas, in
contrast to other approaches that focus on manipulations and/or structures of expressions. Graphing
formulas is a small domain in algebra, which makes it more possible for students to learn experts’
strategies. However, graphing formulas is also a rich domain, as it can involve all kinds of functions
and involves aspects which are important in learning about functions: the relation between two
major representations of functions, formulas, and graphs, allowing students to give meaning to
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abstract algebraic formulas (Kieran, 2006), and the need of both a global and a local perspective on
functions to learn about the process and object duality of functions. The results of the thinking-aloud
protocols reveal that all students started to use experts’ strategies, although only high-achieving
students were able to correctly graph complex formulas. Students used insight into formulas to graph
formulas, but hardly used algebraic manipulations even if these would be more convenient, for
example, when graphing y ¼ �x4 þ 2x2. The results of the questionnaire and the logbook suggested
that the graphing tasks in the intervention were challenging and encouraged students to engage in
algebraic reasoning. We believe that our strategy to select a small domain in algebra and to focus on
just reading through formulas and making sense of formulas might explain a part of the positive
students’ results in this study.

Our approach differs from regular approaches as well as from innovative approaches to learn
about algebraic formulas as it was based on a systematical analysis of experts’ strategies in which the
two elements, recognition of function families and key graph features and qualitative reasoning, both
play an important role. Regular approaches often focus on manipulation of algebraic expressions
(Arcavi et al., 2017; Schwartz & Yerushalmy, 1992), and use graphing tools, for example, the graphic
calculator, to explore function families and to work on calculus problems. In comparison to regular
approaches, our intervention paid more attention to the recognition of function families and graph
features, to part-graph exploration, and to the reasoning with and about formulas. In innovative
approaches, graphing tools have been used to learn to reason about functions using the structure of
the formula, for instance, the composition and translation of graphs (Schwartz & Yerushalmy, 1992;
Yerushalmy, 1997; Yerushalmy & Gafni, 1992), about the role of parameters (Drijvers, 2003; Heid
et al., 2013), and about special function families (Heid et al., 2013). Pierce and Stacey (2007)
suggested highlighting the formula’s structure and key features when considering graphs in class-
room discussions. Friedlander and Arcavi (2012) developed a framework comprising different
cognitive processes and activities, including qualitative thinking and global comprehension, and
formulated small tasks in which components of their framework had been worked out. In compar-
ison to these innovative approaches, our intervention paid more attention to the systematical
teaching of thinking tools: a repertoire of basic function families, the recognition of function families
and key graph features, and qualitative reasoning. In the designed intervention these aspects were
taught in an integrated way via a task-centered approach with adaptive support.

In the current study, several levels of recognition and several aspects of qualitative reasoning
were distinguished. Often recognition is treated as a dichotomous variable: there is recognition or
there is no recognition. In our approach we use different levels of recognition: complete
recognition and instantly knowing the graph, recognizing a member of a function family,
decomposing the formula into manageable sub-formulas, perceiving key graph features, no
recognition. These levels of recognition can be linked to Mason's (2003) levels of attention, in
which has been described how attention can shift from seeing essential structure to gazing at the
whole and not knowing how to proceed. An essential aspect in our approach was the explicit
focus on qualitative reasoning. The importance of this kind of reasoning and its omission in
mathematics curricula has been stressed by Leinhardt et al. (1990), Goldenberg, Lewis, and
O'Keefe (1992), Yerushalmy (1997), and Duval (2006), who have indicated that qualitative
reasoning could support the construction of meaning and understanding through its global
focus. To our knowledge, this idea has never been applied in concrete and systematic teaching
approaches. In our approach, students learned to use global descriptions and to ignore what is not
relevant, when composing two sub-graphs (after decomposing a formula into two sub-formulas)
and when exploring parts of a graph, for instance, infinity behavior. We recommend paying more
attention to explicit teaching of qualitative reasoning in grades 11. We expect that in other
domains of algebra, such as solving equations, qualitative reasoning might help students to
become more proficient in algebra, as it might enable students to ignore what is not relevant
and to focus on the structure of formulas/equations.
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In the designed intervention not only attention has been paid to recognition and to qualitative
reasoning, but also explicit attention is paid to the interplay between recognition and qualitative
reasoning. In problem solving, recognition determines the problem space within which via certain
heuristics can be searched for a solution (Berliner & Ebeling, 1989; Chi et al., 1981). In the
intervention, each whole task was related to one of the levels of recognition (see intervention in
method section), and attention was paid to the reasoning needed to sketch the graph, starting from
this level of recognition. This approach enables students to use different ways to graph a function
like y ¼ 30= 2þ 6 � 0:9xð Þ: in the post-test, we found students who decomposed this function into
two sub-functions (y ¼ 30 and the exponential function y ¼ 2þ 6 � 0:9x), but also students who
used part-graph exploration (infinity behavior and/or the function is increasing), and/or the
calculation of the y-intercept. These examples illustrate how a correct graph can be produced via
different levels of recognition in combination with different reasonings and that insight into
formulas can be described as an interplay between recognition and reasoning. The analysis of the
thinking-aloud protocols showed how students’ insight into formulas could be described with the
recognition of a function family and (qualitative) reasoning about transformations and/or family
characteristics, the decomposition of a formula into two sub-functions and the composition of two
sub-graphs through qualitative reasoning, the recognition of key graph features, and the qualitative
reasoning about parts of a graph. Although in other domains of mathematics, like in modeling and
solving equations, insight into formulas might consist of different aspects, our descriptions might be
helpful in describing insight and in designing education to promote insight into formulas in these
domains.

Insight in the interplay between recognition and reasoning can contribute to a better knowledge
about covariational reasoning in the context of algebraic functions. Graphing formulas by hand is
closely related to this kind of covariational reasoning. Both are about how a function is acting on an
entire domain, have a focus on global graphs and use qualitative reasoning. The current study
showed that the use of function families with their prototypical graphs and characteristics is crucial
in graphing formulas. However, Moore and Thompson (2015) have problematized what they called
static shape thinking, that is, seeing a graph-as-a-wire, and associating shapes with function proper-
ties. Previous studies about expert behavior in graphing formulas have showed that experts often use
their repertoire of function families (Kop et al., 2015/2017). Eisenberg and Dreyfus (1994) and Slavit
(1997) have indicated that students need such a repertoire of basic function families and function
properties. The pre-test results of our study showed that before the intervention students lacked
a repertoire of function families that could be instantly visualized by a graph. As a consequence,
graphing formulas required too much reasoning of these students. Post-test results showed that
students had improved their recognition of basic function families with their prototypical graphs and
characteristics, which could be used as building blocks in their reasoning. The results of our study
suggest that students’ covariational reasoning might improve if they can use such repertoire of
function families to reason with prototypes.

Limitations of the study

A limitation of the study is that only one class was involved, and no comparison group was included.
As the results were positive, we would recommend involving more students and other teachers in
a future study to provide stronger evidence that graphing formulas in this way does indeed promote
students’ insight into algebraic formulas. We suggest also including students and teachers from other
countries in a future study, as we expect that difficulties with insight into algebraic formulas are not
exclusive to students in The Netherlands. In the current study, insight into formulas was studied in
the context of graphing formulas. We expect that there might be some transfer from insight into
formulas from this domain of graphing formulas to other domains of algebra, such as solving
algebraic problems and solving equations. More research is needed to explore whether students who
have learned insight into formulas via graphing formulas will be able to use this insight when
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working on other algebraic problems that are related to graphs (e.g., discussing the number of
solutions of a given equation).

In the pre-test, the students needed more time than expected for the graphing task. This might be the
reason for the poor scores on the multiple-choice task in the pre-test, as many students did not have
enough time to work on that task. From the thinking-aloud protocols, we conclude that some students
had problems interpreting the graphs in the multiple-choice task, as they thought that the x-axis and
y-axis were drawn instead of vertical and horizontal asymptotes. We suggest to explicitly indicate the
asymptotes in the figures and illustrate this via an example in the task description. The whole task on
transformations of basic functions (task 2) took much more time than planned, and the students often
needed the help provided by the teaching material. The whole tasks on the composition of two sub-
graphs and on part-graph exploration by qualitative reasoning (tasks 3 and 5) needed, as planned, extra
modeling by the teacher, as this kind of reasoning was new to the students. The meta-heuristic of
“questioning the formula” was at the core of this series of lessons and was demonstrated more than
once. In the post-intervention questionnaire, the students indicated that they had started to question
formulas. However, this was often very implicit, as the thinking-aloud protocols showed.

Some aspects of the series of lessons deserve more attention in the future. On each level of
recognition, only one whole task with a reflection question was formulated, because of time
constraints (5 lessons). With more time available, we would follow Kirschner and Van
Merriënboer (2008) suggestion to use more variability in the whole tasks (more whole tasks on
each level of recognition) with more practice of the integration and coordination of all sub-skills.
To improve reflection, the implementation of cumulative reflection tasks, which promote reflec-
tion on the current task and all previous tasks, might be considered. In the current study students
had problems with graphing polynomial functions, like with y ¼ �x4 þ 2x2, but not when zeroes
could easily be read from the formulas, like with y ¼ �2x x� 3ð Þ x� 6ð Þ. When graphing
y ¼ �x4 þ 2x2, students used qualitative reasoning to compose two sub-graphs, after decompos-
ing the formula into sub-formulas y ¼ �x4 and y ¼ 2x2, which gave them much trouble and
incorrect graphs. These findings suggest to pay more attention to polynomial function families
and to incorporate small manipulations of algebraic formulas, for instance, to rewrite y ¼ �x4 þ
2x2 into y ¼ x2 �x2 þ 2ð Þ;which would enable students to find zeroes of polynomial functions.

Conclusion

This study portrays how students might learn insight into formulas, that is, the ability to “look
through a formula,” to recognize the structure of a formula and its components, and to reason with
and about a formula. Graphing formulas requires students to recognize the structure of formulas and
to reason with and about formulas. Therefore, our teaching focused on using function families as
meaningful building blocks and on using qualitative reasoning. Students often see formulas on an
atomic level, that is, paying attention to every number and variable, which means that students
cannot see the wood before the trees: they do not recognize any structure (Davis, 1983).

The current study showed how students learned to use function families as larger meaningful
building blocks to recognize the structure of formulas and to graph formulas. The two ingredients,
function families as larger building blocks and qualitative reasoning, are important thinking tools in
the recognition of the structure of the formulas and so, in the reading of formulas, as they might
relieve students’ working memory. Our findings suggest that teaching graphing formulas to grade 11
students, based on recognition and qualitative reasoning, might be an efficient means to promote
student insight into algebraic formulas in a meaningful and systematical way.
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