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Abstract. The page-number of a directed acyclic graph (a DAG, for
short) is the minimum k for which the DAG has a topological order and
a k-coloring of its edges such that no two edges of the same color cross,
i.e., have alternating endpoints along the topological order. In 1999,
Heath and Pemmaraju conjectured that the recognition of DAGs with
page-number 2 is NP-complete and proved that recognizing DAGs with
page-number 6 is NP-complete [SIAM J. Computing, 1999]. Binucci et
al. recently strengthened this result by proving that recognizing DAGs
with page-number k is NP-complete, for every k ≥ 3 [SoCG 2019]. In
this paper, we finally resolve Heath and Pemmaraju’s conjecture in the
affirmative. In particular, our NP-completeness result holds even for st-
planar graphs and planar posets.
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1 Introduction

The problem of embedding graphs in books [27] has a long history of research
with early results dating back to the 1970’s. Such embeddings are specified by
a linear order of the vertices along a line, called spine, and by a partition of the
edges into sets, called pages, such that the edges in each page are drawn crossing-
free in a half-plane delimited by the spine. The page-number of a graph is the
minimum number of pages over all its book embeddings, while the page-number
of a graph family is the maximum page-number over its members.
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An important branch of literature focuses on the page-number of planar
graphs. An upper bound of 4 was known since 1986 [30], while a matching lower
bound was only recently proposed [4,31]. Better bounds are known for several
subfamilies [14,15]. A special attention has been devoted to the planar graphs
with page-number 2 [3,8,11,13,19,21,25,28]. These have been characterized as
the subgraphs of Hamiltonian planar graphs [17] and hence are called subhamil-
tonian. Recognizing subhamiltonian graphs turns out to be NP-complete [29].

If the input graph is directed and acyclic (a DAG, for short), then the linear
vertex order of a book embedding is required to be a topological order [26].
Heath and Pemmaraju [16] showed that there exist planar DAGs whose page-
number is linear in the input size. Certain subfamilies of planar DAGs, however,
have bounded page-number [1,6,10,18], while recently it was shown that upward
planar graphs have sublinear page-number [20], improving previous bounds [12].
From an algorithmic point of view, testing whether a DAG has page-number k is
NP-complete for every fixed value of k ≥ 3 [7], linear-time solvable for k = 1 [16],
and fixed-parameter tractable with respect to the vertex cover number for every
k [6] and with respect to the treewidth for st-graphs when k = 2 [7]. In contrast to
the undirected setting, however, for k = 2 the complexity question has remained
open since 1999, when Heath and Pemmaraju posed the following conjecture.

Conjecture 1 (Heath and Pemmaraju [16]). Deciding whether a DAG has
page-number 2 is NP-complete.

Our Contribution. In this work, we settle Conjecture 1 in the positive. More
precisely, we show that testing st-planar graphs for 2-page embeddability is NP-
complete. In [2], we further show that the problem remains NP-complete for
planar posets, i.e., upward-planar graphs with no transitive edges.

2 Preliminaries

A plane embedding of a connected graph is an equivalence class of planar drawings
of the graph, where two drawings are equivalent if they define the same clockwise
order of the incident edges at each vertex and the same clockwise order of the
vertices along the outer face. The flip of a plane embedding produces a plane
embedding in which the clockwise order of the incident edges at each vertex
and the clockwise order of the vertices along the outer face is the reverse of the
original one. A drawing of a DAG is upward if each edge is represented by a curve
whose y-coordinates monotonically increase from the source to the sink, and it
is upward planar if it is both upward and planar. An upward planar embedding is
an equivalence class of upward planar drawings of a DAG, where two drawings
are equivalent if they define the same plane embedding and the same left-to-right
order of the outgoing (and incoming) edges at each vertex. A plane DAG is a
DAG together with an upward planar embedding. A DAG is st-planar if it has a
single source s and a single sink t, and admits a planar drawing with s and t on
the outer face. It is known that every st-planar graph is upward planar [9,22]. An
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Fig. 1. Curly curves represent paths and straight-lines represent edges. Edges with
no arrow are directed upward, also in subsequent figures. (a) Generalized diamond,
(b) non-transitive face, (c) rhombus, and (d)-(e) the two subhamiltonian paths of a
double ladder of even length �.

st-plane graph is an st-planar graph together with an upward planar embedding
in which s and t are incident to the outer face. As in the undirected case, a DAG
G has page-number 2 if it is subhamiltonian, i.e., it is a spanning subgraph of an
st-planar graph G that has a directed Hamiltonian st-path P [24]. In the previous
definition, if G has a prescribed plane embedding, we additionally require that
the plane embedding of G restricted to G coincides with the one of G. We say
that P is a subhamiltonian path for G, and we refer to the edges of P that are
not in G as augmenting edges. Further, G is an HP-completion of G.

A generalized diamond is an st-plane graph consisting of three directed paths
from vs to vt, one of which is the edge vsvt and appears between the other two
paths in the upward planar embedding; see Fig. 1a. A face (by face of a plane
DAG we always mean an internal face, unless otherwise specified) of a plane
DAG whose boundary consists of two directed paths is an st-face. An st-face is
transitive if one of these paths is an edge; non-transitive, otherwise (see Fig. 1b).
A rhombus is a non-transitive st-face whose boundary paths have length 2; see
Fig. 1c. From [24, Theorem 1], we obtain Property 1 which implies Property 2.

Property 1. A Hamiltonian st-plane graph contains only transitive faces and
no generalized diamond.

Property 2. Let G be a plane DAG and P be a subhamiltonian path for G. If G
contains a rhombus (vs, vl, vr, vt) with source vs and sink vt, then P contains
either the edge vlvr or the edge vrvl, i.e., vl and vr are consecutive in P .

The next property follows directly from Theorem 1 in [23] and Property 1. We
provide a full proof in [2].

Property 3 (�). Let G be a plane DAG and P be a subhamiltonian path
for G. If G contains a non-transitive face f with boundaries (vs, w, vt) and
(vs, v1, . . . , vr, vt), then the augmenting edges of P inside f are either (i) the
edge wv1, or (ii) the edge vrw, or (iii) edges viw and wvi+1 for some 1 ≤ i < r.
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3 NP-completeness

Let φ be a Boolean 3-SAT formula with n variables x1, . . . , xn and m clauses
c1, . . . , cm. A clause of φ is positive (negative) if it has only positive (negative)
literals. The incidence graph Gφ of φ is the graph that has variable vertices
x1, . . . , xn, clause vertices c1, . . . , cm, and has an edge (cj , xi) for each clause cj

containing xi or xi. Note that we use the same notation for variables (clauses)
in φ and variable vertices (clause vertices) in Gφ. If φ has clauses with less than
three literals, we introduce parallel edges in Gφ so that all clause vertices have
degree 3 in Gφ; see, e.g., the dotted edge in Fig. 4. The formula φ is an instance
of the NP-complete Planar Monotone 3-SAT problem [5], if each clause of φ
is positive or negative, and Gφ has a plane embedding Eφ to which the edges of a
cycle Cφ := x1, . . . , xn can be added that separates positive and negative clause
vertices. The problem asks whether φ is satisfiable. Next, we present our gadgets.

Double Ladder. A double ladder of even length � is defined as follows. Its vertex
set consists of two sources, s1 and s2, two sinks, t1 and t2, and vertices in
∪�

i=0{ui, vi, wi}. Its edge set consists of edges s1u0, s1v0, s2v0, s2w0, u�t1, v�t1,
v�t2, w�t2, and ∪�−1

i=0{uiui+1, viui+1, vivi+1, wivi+1, wiwi+1}.

Property 4. The double ladder has a unique upward planar embedding (up to
a flip), shown in Figs. 1d and 1e.

Proof. The embedding shown in Figs. 1d and 1e clearly is an upward planar
embedding. The underlying graph of the double ladder has four combinatorial
embeddings, which are obtained from the embedding in Figs. 1d and 1e, by
possibly flipping the path u1u0s1v0 along u1v0 and the path w�−1w�t2v� along
w�−1v�. However, such flips respectively force s1v0 and v�t2 to point downward.
Finally, since the outer face of the embedding in Figs. 1d and 1e is the only face
containing at least one source and one sink, the claim follows. ��
Property 5. Let G be a plane DAG with a subhamiltonian path P . If G con-
tains a double ladder of length �, then P contains the pattern [. . . uiviwi . . . wi+1

vi+1ui+1 . . .] or [. . . wiviui . . . ui+1vi+1wi+1 . . .] for i = 0, . . . , � − 1.

Proof. By Properties 2 and 4, ui, vi, wi are consecutive along P , for i = 0, . . . , �.
The edge uiui+1 implies that ui, vi, wi precede ui+1, vi+1, wi+1. So, it remains
to rule out patterns [. . . uiviwi . . . ui+1vi+1wi+1 . . .] and [. . . wiviui . . . wi+1vi+1

ui+1 . . .]. If P contains one of them, then edges uiui+1, vivi+1 and wiwi+1 pair-
wise cross, implying that G has page-number at least 3; a contradiction. ��
Corollary 1. There exist two subhamiltonian paths for the double ladder, shown
in Figs. 1d and 1e.

Variable Gadget: Let x ∈ {x1, . . . , xn}. The variable gadget Lx for x is the
double ladder of length 4dx, where dx is the degree of x in Gφ. To distinguish
between vertices of different variable gadgets, we denote the vertices of Lx with



Recognizing DAGs with Page-Number 2 Is NP-complete 365

Fig. 2. The connector gadget for two variables having (a)-(b) the same truth assign-
ment, and (c)-(d) the opposite truth assignment.

the superscript x, as in Fig. 2. Vertices sx
1 , sx

2 , ux
0 are the bottom connectors

and wx
4dx

, tx1 , tx2 are the top connectors of Lx. The two subhamiltonian paths
of Corollary. 1 correspond to the truth assignments of x; Fig. 1d corresponds
to true, while Fig. 1e to false. Also, we refer to the edges of Lx that are
part of the subhamiltonian path of Fig. 1d (of Fig. 1e) as true edges (false edges,
respectively). In particular, ux

2ju
x
2j+1 and wx

2j+1w
x
2j+2 are true edges of Lx, while

ux
2j+1u

x
2j+2 and wx

2jw
x
2j+1 are false edges of Lx, for j = 0, . . . , 2dx − 1.

Connector Gadget: A connector gadget connects two variable gadgets Lx and Ly

by means of three paths from the top connectors of Lx to the bottom connectors
of Ly; see Fig. 2. These paths are: the edge tx1u

y
0, the length-2 path tx2ρx,ysy

1,
where ρx,y is a newly introduced vertex, and the edge wx

4dx
sy
2.

Property 6. Given subhamiltonian paths Px for Lx and Py for Ly, there is a
subhamiltonian path P containing Px and Py for the graph obtained by adding a
vertex ρx,y and edges tx1u

y
0, t

x
2ρx,y, ρx,ysy

1, w
x
4dx

sy
2 to Lx ∪ Ly.

Proof. Each of Px and Py is one of the two subhamiltonian paths of Corollary
1; see Fig. 1. In particular, the last vertex of Px is tx1 or tx2 , and the first vertex
of Py is sy

1 or sy
2, depending on the truth assignments for x and y, respectively,

as shown in Fig. 2. We obtain P by adding directed edges from the last vertex
of Px to ρx,y and from ρx,y to the first vertex of Py. ��
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Fig. 3. Clause gadgets for (a) a positive clause and (b) a negative clause. (Color figure
online)

Clause Gadget: Let c be a positive (negative) clause. Assume that the variables
x, y and z of c appear in this order along Cφ, when traversing Cφ from x1 towards
xn. In Eφ, the edges between x and the positive (negative) clause vertices of Gφ

appear consecutively around x. Assume that the edge (c, x) is the (i+1)-th such
edge in a clockwise (counter-clockwise) traversal of the edges around x starting
at the edge of Cφ incoming x. Similarly, define indices j and k for y and z,
respectively. Let Lx, Ly and Lz be the three variable gadgets for x, y and z.

The clause gadget Cc for c consists of an anchor vertex ac, and four edges. If
c is positive, these edges are ux

4iac, acu
z
4k+1, ux

4i+1u
y
4j and uy

4j+1u
z
4k (green in

Fig. 3a); otherwise, they are wx
4i−4ac, acw

z
4k−3, wx

4i−3w
y
4j−4 and wy

4j−3w
z
4k−4

(green in Fig. 3b). Note that Cc creates a non-transitive face fc, called anchor
face, whose boundary is delimited by the two newly-introduced edges incident
to ac and by a directed path whose edges alternate between three true edges (if
c is positive) or three false edges (if c is negative) and the two newly-introduced
edges not incident to ac; see Fig. 3. The three true (or false) edges on the bound-
ary of fc stem from Lx, Ly, and Lz. The length of the double ladders ensures
that, if x = y (which implies that j = i + 1), then vertices ux

4i+1 and uy
4j (wx

4i−3

and wy
4j−4) are not adjacent in Lx and the edge ux

4i+1u
y
4j (wx

4i−3w
y
4j−4) is well

defined; this is the reason that we do not use vertices with indices 2, 3 mod 4.

Theorem 1. Recognizing whether a DAG has page-number 2 is NP-complete,
even if the input is an st-planar graph.

Proof. The problem clearly belongs to NP, as a non-deterministic Turing
machine can guess an order of the vertices of an input graph and a partition
of its edges into two pages, and check in polynomial time whether the order is a
topological order and if so, whether any two edges in the same page cross.

Given an instance φ of Planar Monotone 3-SAT, we construct in poly-
nomial time an st-planar graph H that has page-number 2 if and only if φ is
satisfiable; see Fig. 4. We consider the variable gadgets Lx1 , . . . , Lxn

, where
x1, . . . , xn is the order of the variables along the cycle Cφ; for i = 1, . . . , n − 1,
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Fig. 4. The graph H obtained from φ = c1∧c2∧c3 with c1 = (x1∨x2∨x3), c2 = (x3∨x4),
and c3 = (x1 ∨ x2 ∨ x4). For space reasons, the variable gadgets have smaller length
and the drawing is rotated by 45◦.

we connect Lxi
with Lxi+1 using a connector gadget. For each positive (nega-

tive) clause c of φ, we add a clause gadget Cc using the true (false) edges of
the variable gadgets. This yields a plane DAG with two sources sx1

1 and sx1
2 and

two sinks txn
1 and txn

2 . We add a source s connected with outgoing edges to sx1
1

and sx1
2 , and a sink t connected with incoming edges to txn

1 and txn
2 . The con-

structed graph H is st-planar. Since the underlying graph of H is a subdivision
of a triconnected planar graph and since only one face of H contains s and t, it
follows that H has a unique upward planar embedding. We next prove that H is
subhamiltonian (and therefore has page-number 2) if and only if φ is satisfiable.

Assume first that φ is satisfiable. We show how to construct a subhamiltonian
path P for H, by exploiting a satisfying truth assignment for φ. For i = 1, . . . , n,
we have that P contains the subhamiltonian path Pi for Lxi

shown in Fig. 1d
if xi is true, and the one shown in Fig. 1e otherwise. By Property 6, there is
a subhamiltonian path P for the subgraph of H induced by the vertices of all
variable and connector gadgets, containing P1, . . . , Pn as subpaths. The path P
starts from a source of Lx1 and ends at a sink of Lxn

; hence we can extend P to
include s and t as its first and last vertices. We now extend P to a subhamiltonian
path for H by including the anchor vertex of each clause gadget. Consider a
positive clause c = (x∨y∨z) with anchor vertex ac; the case of a negative clause
is similar. As φ is satisfied, at least one of x, y and z is true; assume w.l.o.g. that
x is true. By construction, the anchor face fc of Cc is non-transitive, with the
anchor vertex ac on its left boundary, and exactly one true edge of each of Lx,
Ly, and Lz along its right boundary. Let i ≥ 0 be such that ux

4iu
x
4i+1 is the true

edge of Lx on the right boundary of fc. Since x is true, vertices ux
4i and ux

4i+1

are consecutive in P . We extend P by visiting vertex ac after ux
4i and before

ux
4i+1. This corresponds to adding two augmenting edges ux

4iac and acu
x
4i+1 of

P in the interior of fc; see the black dashed edges of Fig. 4. At the end of this
process, P is extended to a subhamiltonian path for H.
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Assume now that there exists a subhamiltonian path P for H. For each
variable gadget Lxi

, P induces a subhamiltonian path Pi for Lxi
. By Corollary

1, Pi is one of the two subhamiltonian paths of Fig. 1. We assign to xi the
value true if Pi is the path of Fig. 1d and false if Pi is the path of Fig. 1e.
We claim that this truth assignment satisfies φ. Assume, for a contradiction,
that there exists a clause c that is not satisfied. Assume that c is a positive
clause (x ∨ y ∨ z), where x, y and z are assigned false, as the other case is
analogous. Also, assume that x, y, z appear in this order in Cφ, and that the
right boundary of the anchor face fc of the clause gadget Cc contains the true
edges ux

4iu
x
4i+1, uy

4ju
y
4j+1 and uz

4kuz
4k+1 of Lx, Ly and Lz. As x, y and z are false,

the corresponding subhamiltonian paths Px, Py and Pz of Lx, Ly and Lz are the
ones of Fig. 1e. Hence, P contains the augmenting edges ux

4iv
x
4i and vx

4i+1u
x
4i+1 of

Px, uy
4jv

y
4j and vy

4j+1u
y
4j+1 of Py and uz

4kvz
4k and vz

4k+1u
z
4k+1 of Pz. By Property 3

for the non-transitive face fc, P contains either (i) the augmenting edge acu
x
4i+1,

or (ii) the augmenting edge uz
4kac, or (iii) for a pair of consecutive vertices, say u

and u′, along the right boundary of fc, the augmenting edges uac and acu
′. Cases

(i) and (ii) contradict the existence of augmenting edges vx
4i+1u

x
4i+1 and uz

4kvz
4k

of P respectively. Similarly, in case (iii) the augmenting edges of P that belong
to Px, Py, and Pz imply that u /∈ {ux

4i, u
y
4j , u

z
4k} and u′ /∈ {ux

4i+1, u
y
4j+1, u

z
4k+1}.

Hence u = ux
4i+1 and u′ = uy

4j holds, or u = uy
4j+1 and u′ = uz

4k. In both
cases, the HP-completion of H contains a generalized diamond with vs = u and
vt = u′, violating Property 1. Hence at least one of variables x, y and z must be
true, contradicting our assumption that c is not satisfied. ��
We conclude by mentioning that our NP-completeness proof can be adjusted so
that the constructed graph is a planar poset; refer to [2] for details.
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