Recognizing DAGs with Page-Number 2 Is NP-complete

Michael A. Bekos ${ }^{1}\left(\mathbb{D}\right.$, Giordano Da $\operatorname{Lozzo}^{2(\boxtimes)}{ }^{(\mathbb{D}}$, Fabrizio Frati ${ }^{2}$ (D),
Martin Gronemann ${ }^{3}$ © , Tamara Mchedlidze ${ }^{4}$ © , and Chrysanthi N. Raftopoulou ${ }^{5}$ (D)
${ }^{1}$ Department of Mathematics, University of Ioannina, Ioannina, Greece bekos@uoi.gr
${ }^{2}$ Department of Engineering, Roma Tre University, Rome, Italy
\{giordano.dalozzo,fabrizio.frati\}@uniroma3.it
${ }^{3}$ Algorithms and Complexity Group, TU Wien, Vienna, Austria
mgronemann@ac.tuwien.ac.at
${ }^{4}$ Department of Computer Science, Utrecht University, Utrecht, The Netherlands t.mtsentlintze@uu.nl
${ }^{5}$ School of Applied Mathematics and Physical Sciences, NTUA, Athens, Greece crisraft@mail.ntua.gr

Abstract

The page-number of a directed acyclic graph (a DAG, for short) is the minimum k for which the DAG has a topological order and a k-coloring of its edges such that no two edges of the same color cross, i.e., have alternating endpoints along the topological order. In 1999, Heath and Pemmaraju conjectured that the recognition of DAGs with page-number 2 is NP-complete and proved that recognizing DAGs with page-number 6 is NP-complete [SIAM J. Computing, 1999]. Binucci et al. recently strengthened this result by proving that recognizing DAGs with page-number k is NP-complete, for every $k \geq 3$ [SoCG 2019]. In this paper, we finally resolve Heath and Pemmaraju's conjecture in the affirmative. In particular, our NP-completeness result holds even for stplanar graphs and planar posets.

Keywords: Page-number • Directed acyclic graphs • Planar posets

1 Introduction

The problem of embedding graphs in books [27] has a long history of research with early results dating back to the 1970's. Such embeddings are specified by a linear order of the vertices along a line, called spine, and by a partition of the edges into sets, called pages, such that the edges in each page are drawn crossingfree in a half-plane delimited by the spine. The page-number of a graph is the minimum number of pages over all its book embeddings, while the page-number of a graph family is the maximum page-number over its members.

This research was partially supported by ПEBE 2020, MIUR Project "AHeAD" under PRIN 20174LF3T8 and by H2020-MSCA-RISE project 734922 - "CONNECT".
(C) The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Angelini and R. von Hanxleden (Eds.): GD 2022, LNCS 13764, pp. 361-370, 2023.
https://doi.org/10.1007/978-3-031-22203-0_26

An important branch of literature focuses on the page-number of planar graphs. An upper bound of 4 was known since 1986 [30], while a matching lower bound was only recently proposed $[4,31]$. Better bounds are known for several subfamilies $[14,15]$. A special attention has been devoted to the planar graphs with page-number $2[3,8,11,13,19,21,25,28]$. These have been characterized as the subgraphs of Hamiltonian planar graphs [17] and hence are called subhamiltonian. Recognizing subhamiltonian graphs turns out to be NP-complete [29].

If the input graph is directed and acyclic (a DAG, for short), then the linear vertex order of a book embedding is required to be a topological order [26]. Heath and Pemmaraju [16] showed that there exist planar DAGs whose pagenumber is linear in the input size. Certain subfamilies of planar DAGs, however, have bounded page-number $[1,6,10,18]$, while recently it was shown that upward planar graphs have sublinear page-number [20], improving previous bounds [12]. From an algorithmic point of view, testing whether a DAG has page-number k is NP-complete for every fixed value of $k \geq 3$ [7], linear-time solvable for $k=1$ [16], and fixed-parameter tractable with respect to the vertex cover number for every k [6] and with respect to the treewidth for $s t$-graphs when $k=2$ [7]. In contrast to the undirected setting, however, for $k=2$ the complexity question has remained open since 1999, when Heath and Pemmaraju posed the following conjecture.

Conjecture 1 (Heath and Pemmaraju [16]). Deciding whether a DAG has page-number 2 is NP-complete.

Our Contribution. In this work, we settle Conjecture 1 in the positive. More precisely, we show that testing st-planar graphs for 2-page embeddability is NPcomplete. In [2], we further show that the problem remains NP-complete for planar posets, i.e., upward-planar graphs with no transitive edges.

2 Preliminaries

A plane embedding of a connected graph is an equivalence class of planar drawings of the graph, where two drawings are equivalent if they define the same clockwise order of the incident edges at each vertex and the same clockwise order of the vertices along the outer face. The flip of a plane embedding produces a plane embedding in which the clockwise order of the incident edges at each vertex and the clockwise order of the vertices along the outer face is the reverse of the original one. A drawing of a DAG is upward if each edge is represented by a curve whose y-coordinates monotonically increase from the source to the sink, and it is upward planar if it is both upward and planar. An upward planar embedding is an equivalence class of upward planar drawings of a DAG, where two drawings are equivalent if they define the same plane embedding and the same left-to-right order of the outgoing (and incoming) edges at each vertex. A plane $D A G$ is a DAG together with an upward planar embedding. A DAG is st-planar if it has a single source s and a single $\operatorname{sink} t$, and admits a planar drawing with s and t on the outer face. It is known that every st-planar graph is upward planar [9,22]. An

Fig. 1. Curly curves represent paths and straight-lines represent edges. Edges with no arrow are directed upward, also in subsequent figures. (a) Generalized diamond, (b) non-transitive face, (c) rhombus, and (d)-(e) the two subhamiltonian paths of a double ladder of even length ℓ.
st-plane graph is an st-planar graph together with an upward planar embedding in which s and t are incident to the outer face. As in the undirected case, a DAG G has page-number 2 if it is subhamiltonian, i.e., it is a spanning subgraph of an st-planar graph \bar{G} that has a directed Hamiltonian st-path P [24]. In the previous definition, if G has a prescribed plane embedding, we additionally require that the plane embedding of \bar{G} restricted to G coincides with the one of G. We say that P is a subhamiltonian path for G, and we refer to the edges of P that are not in G as augmenting edges. Further, \bar{G} is an HP-completion of G.

A generalized diamond is an st-plane graph consisting of three directed paths from v_{s} to v_{t}, one of which is the edge $v_{s} v_{t}$ and appears between the other two paths in the upward planar embedding; see Fig. 1a. A face (by face of a plane DAG we always mean an internal face, unless otherwise specified) of a plane DAG whose boundary consists of two directed paths is an st-face. An st-face is transitive if one of these paths is an edge; non-transitive, otherwise (see Fig. 1b). A rhombus is a non-transitive $s t$-face whose boundary paths have length 2 ; see Fig. 1c. From [24, Theorem 1], we obtain Property 1 which implies Property 2.

Property 1. A Hamiltonian st-plane graph contains only transitive faces and no generalized diamond.

Property 2. Let G be a plane $D A G$ and P be a subhamiltonian path for G. If G contains a rhombus $\left(v_{s}, v_{l}, v_{r}, v_{t}\right)$ with source v_{s} and sink v_{t}, then P contains either the edge $v_{l} v_{r}$ or the edge $v_{r} v_{l}$, i.e., v_{l} and v_{r} are consecutive in P.

The next property follows directly from Theorem 1 in [23] and Property 1. We provide a full proof in [2].

Property 3 (\star). Let G be a plane $D A G$ and P be a subhamiltonian path for G. If G contains a non-transitive face f with boundaries $\left(v_{s}, w, v_{t}\right)$ and $\left(v_{s}, v_{1}, \ldots, v_{r}, v_{t}\right)$, then the augmenting edges of P inside f are either (i) the edge $w v_{1}$, or (ii) the edge $v_{r} w$, or (iii) edges $v_{i} w$ and $w v_{i+1}$ for some $1 \leq i<r$.

3 NP-completeness

Let ϕ be a Boolean 3-SAT formula with n variables x_{1}, \ldots, x_{n} and m clauses c_{1}, \ldots, c_{m}. A clause of ϕ is positive (negative) if it has only positive (negative) literals. The incidence graph G_{ϕ} of ϕ is the graph that has variable vertices x_{1}, \ldots, x_{n}, clause vertices c_{1}, \ldots, c_{m}, and has an edge $\left(c_{j}, x_{i}\right)$ for each clause c_{j} containing x_{i} or \bar{x}_{i}. Note that we use the same notation for variables (clauses) in ϕ and variable vertices (clause vertices) in G_{ϕ}. If ϕ has clauses with less than three literals, we introduce parallel edges in G_{ϕ} so that all clause vertices have degree 3 in G_{ϕ}; see, e.g., the dotted edge in Fig. 4. The formula ϕ is an instance of the NP-complete Planar Monotone 3-SAT problem [5], if each clause of ϕ is positive or negative, and G_{ϕ} has a plane embedding \mathcal{E}_{ϕ} to which the edges of a cycle $\mathcal{C}_{\phi}:=x_{1}, \ldots, x_{n}$ can be added that separates positive and negative clause vertices. The problem asks whether ϕ is satisfiable. Next, we present our gadgets.

Double Ladder. A double ladder of even length ℓ is defined as follows. Its vertex set consists of two sources, s_{1} and s_{2}, two sinks, t_{1} and t_{2}, and vertices in $\cup_{i=0}^{\ell}\left\{u_{i}, v_{i}, w_{i}\right\}$. Its edge set consists of edges $s_{1} u_{0}, s_{1} v_{0}, s_{2} v_{0}, s_{2} w_{0}, u_{\ell} t_{1}, v_{\ell} t_{1}$, $v_{\ell} t_{2}, w_{\ell} t_{2}$, and $\cup_{i=0}^{\ell-1}\left\{u_{i} u_{i+1}, v_{i} u_{i+1}, v_{i} v_{i+1}, w_{i} v_{i+1}, w_{i} w_{i+1}\right\}$.

Property 4. The double ladder has a unique upward planar embedding (up to a flip), shown in Figs. 1d and 1e.

Proof. The embedding shown in Figs. 1d and 1e clearly is an upward planar embedding. The underlying graph of the double ladder has four combinatorial embeddings, which are obtained from the embedding in Figs. 1d and 1e, by possibly flipping the path $u_{1} u_{0} s_{1} v_{0}$ along $u_{1} v_{0}$ and the path $w_{\ell-1} w_{\ell} t_{2} v_{\ell}$ along $w_{\ell-1} v_{\ell}$. However, such flips respectively force $s_{1} v_{0}$ and $v_{\ell} t_{2}$ to point downward. Finally, since the outer face of the embedding in Figs. 1d and 1e is the only face containing at least one source and one sink, the claim follows.

Property 5. Let G be a plane $D A G$ with a subhamiltonian path P. If G contains a double ladder of length ℓ, then P contains the pattern $\left[\ldots u_{i} v_{i} w_{i} \ldots w_{i+1}\right.$ $\left.v_{i+1} u_{i+1} \ldots\right]$ or $\left[\ldots w_{i} v_{i} u_{i} \ldots u_{i+1} v_{i+1} w_{i+1} \ldots\right]$ for $i=0, \ldots, \ell-1$.

Proof. By Properties 2 and $4, u_{i}, v_{i}, w_{i}$ are consecutive along P, for $i=0, \ldots, \ell$. The edge $u_{i} u_{i+1}$ implies that u_{i}, v_{i}, w_{i} precede $u_{i+1}, v_{i+1}, w_{i+1}$. So, it remains to rule out patterns $\left[\ldots u_{i} v_{i} w_{i} \ldots u_{i+1} v_{i+1} w_{i+1} \ldots\right]$ and $\left[\ldots w_{i} v_{i} u_{i} \ldots w_{i+1} v_{i+1}\right.$ $\left.u_{i+1} \ldots\right]$. If P contains one of them, then edges $u_{i} u_{i+1}, v_{i} v_{i+1}$ and $w_{i} w_{i+1}$ pairwise cross, implying that G has page-number at least 3 ; a contradiction.

Corollary 1. There exist two subhamiltonian paths for the double ladder, shown in Figs. 1d and 1e.

Variable Gadget: Let $x \in\left\{x_{1}, \ldots, x_{n}\right\}$. The variable gadget L_{x} for x is the double ladder of length $4 d_{x}$, where d_{x} is the degree of x in G_{ϕ}. To distinguish between vertices of different variable gadgets, we denote the vertices of L_{x} with

Fig. 2. The connector gadget for two variables having (a)-(b) the same truth assignment, and (c)-(d) the opposite truth assignment.
the superscript x, as in Fig. 2. Vertices $s_{1}^{x}, s_{2}^{x}, u_{0}^{x}$ are the bottom connectors and $w_{4 d_{x}}^{x}, t_{1}^{x}, t_{2}^{x}$ are the top connectors of L_{x}. The two subhamiltonian paths of Corollary. 1 correspond to the truth assignments of x; Fig. 1d corresponds to true, while Fig. 1e to false. Also, we refer to the edges of L_{x} that are part of the subhamiltonian path of Fig. 1d (of Fig. 1e) as true edges (false edges, respectively). In particular, $u_{2 j}^{x} u_{2 j+1}^{x}$ and $w_{2 j+1}^{x} w_{2 j+2}^{x}$ are true edges of L_{x}, while $u_{2 j+1}^{x} u_{2 j+2}^{x}$ and $w_{2 j}^{x} w_{2 j+1}^{x}$ are false edges of L_{x}, for $j=0, \ldots, 2 d_{x}-1$.

Connector Gadget: A connector gadget connects two variable gadgets L_{x} and L_{y} by means of three paths from the top connectors of L_{x} to the bottom connectors of L_{y}; see Fig. 2. These paths are: the edge $t_{1}^{x} u_{0}^{y}$, the length-2 path $t_{2}^{x} \rho_{x, y} s_{1}^{y}$, where $\rho_{x, y}$ is a newly introduced vertex, and the edge $w_{4 d_{x}}^{x} s_{2}^{y}$.

Property 6. Given subhamiltonian paths P_{x} for L_{x} and P_{y} for L_{y}, there is a subhamiltonian path P containing P_{x} and P_{y} for the graph obtained by adding a vertex $\rho_{x, y}$ and edges $t_{1}^{x} u_{0}^{y}, t_{2}^{x} \rho_{x, y}, \rho_{x, y} s_{1}^{y}, w_{4 d_{x}}^{x} s_{2}^{y}$ to $L_{x} \cup L_{y}$.

Proof. Each of P_{x} and P_{y} is one of the two subhamiltonian paths of Corollary 1; see Fig. 1. In particular, the last vertex of P_{x} is t_{1}^{x} or t_{2}^{x}, and the first vertex of P_{y} is s_{1}^{y} or s_{2}^{y}, depending on the truth assignments for x and y, respectively, as shown in Fig. 2. We obtain P by adding directed edges from the last vertex of P_{x} to $\rho_{x, y}$ and from $\rho_{x, y}$ to the first vertex of P_{y}.

Fig. 3. Clause gadgets for (a) a positive clause and (b) a negative clause. (Color figure online)

Clause Gadget: Let c be a positive (negative) clause. Assume that the variables x, y and z of c appear in this order along \mathcal{C}_{ϕ}, when traversing \mathcal{C}_{ϕ} from x_{1} towards x_{n}. In \mathcal{E}_{ϕ}, the edges between x and the positive (negative) clause vertices of G_{ϕ} appear consecutively around x. Assume that the edge (c, x) is the $(i+1)$-th such edge in a clockwise (counter-clockwise) traversal of the edges around x starting at the edge of \mathcal{C}_{ϕ} incoming x. Similarly, define indices j and k for y and z, respectively. Let L_{x}, L_{y} and L_{z} be the three variable gadgets for x, y and z.

The clause gadget C_{c} for c consists of an anchor vertex a_{c}, and four edges. If c is positive, these edges are $u_{4 i}^{x} a_{c}, a_{c} u_{4 k+1}^{z}, u_{4 i+1}^{x} u_{4 j}^{y}$ and $u_{4 j+1}^{y} u_{4 k}^{z}$ (green in Fig. 3a); otherwise, they are $w_{4 i-4}^{x} a_{c}, a_{c} w_{4 k-3}^{z}, w_{4 i-3}^{x} w_{4 j-4}^{y}$ and $w_{4 j-3}^{y} w_{4 k-4}^{z}$ (green in Fig. 3b). Note that C_{c} creates a non-transitive face f_{c}, called anchor face, whose boundary is delimited by the two newly-introduced edges incident to a_{c} and by a directed path whose edges alternate between three true edges (if c is positive) or three false edges (if c is negative) and the two newly-introduced edges not incident to a_{c}; see Fig. 3. The three true (or false) edges on the boundary of f_{c} stem from L_{x}, L_{y}, and L_{z}. The length of the double ladders ensures that, if $x=y$ (which implies that $j=i+1$), then vertices $u_{4 i+1}^{x}$ and $u_{4 j}^{y}\left(w_{4 i-3}^{x}\right.$ and $\left.w_{4 j-4}^{y}\right)$ are not adjacent in L_{x} and the edge $u_{4 i+1}^{x} u_{4 j}^{y}\left(w_{4 i-3}^{x} w_{4 j-4}^{y}\right)$ is well defined; this is the reason that we do not use vertices with indices $2,3 \bmod 4$.

Theorem 1. Recognizing whether a DAG has page-number 2 is NP-complete, even if the input is an st-planar graph.

Proof. The problem clearly belongs to NP, as a non-deterministic Turing machine can guess an order of the vertices of an input graph and a partition of its edges into two pages, and check in polynomial time whether the order is a topological order and if so, whether any two edges in the same page cross.

Given an instance ϕ of Planar Monotone 3-SAT, we construct in polynomial time an st-planar graph H that has page-number 2 if and only if ϕ is satisfiable; see Fig. 4 . We consider the variable gadgets $L_{x_{1}}, \ldots, L_{x_{n}}$, where x_{1}, \ldots, x_{n} is the order of the variables along the cycle \mathcal{C}_{ϕ}; for $i=1, \ldots, n-1$,

Fig. 4. The graph H obtained from $\phi=c_{1} \wedge c_{2} \wedge c_{3}$ with $c_{1}=\left(x_{1} \vee x_{2} \vee x_{3}\right), c_{2}=\left(x_{3} \vee x_{4}\right)$, and $c_{3}=\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right)$. For space reasons, the variable gadgets have smaller length and the drawing is rotated by 45°.
we connect $L_{x_{i}}$ with $L_{x_{i+1}}$ using a connector gadget. For each positive (negative) clause c of ϕ, we add a clause gadget C_{c} using the true (false) edges of the variable gadgets. This yields a plane DAG with two sources $s_{1}^{x_{1}}$ and $s_{2}^{x_{1}}$ and two sinks $t_{1}^{x_{n}}$ and $t_{2}^{x_{n}}$. We add a source s connected with outgoing edges to $s_{1}^{x_{1}}$ and $s_{2}^{x_{1}}$, and a sink t connected with incoming edges to $t_{1}^{x_{n}}$ and $t_{2}^{x_{n}}$. The constructed graph H is st-planar. Since the underlying graph of H is a subdivision of a triconnected planar graph and since only one face of H contains s and t, it follows that H has a unique upward planar embedding. We next prove that H is subhamiltonian (and therefore has page-number 2) if and only if ϕ is satisfiable.

Assume first that ϕ is satisfiable. We show how to construct a subhamiltonian path P for H, by exploiting a satisfying truth assignment for ϕ. For $i=1, \ldots, n$, we have that P contains the subhamiltonian path P_{i} for $L_{x_{i}}$ shown in Fig. 1d if x_{i} is true, and the one shown in Fig. 1e otherwise. By Property 6, there is a subhamiltonian path P for the subgraph of H induced by the vertices of all variable and connector gadgets, containing P_{1}, \ldots, P_{n} as subpaths. The path P starts from a source of $L_{x_{1}}$ and ends at a sink of $L_{x_{n}}$; hence we can extend P to include s and t as its first and last vertices. We now extend P to a subhamiltonian path for H by including the anchor vertex of each clause gadget. Consider a positive clause $c=(x \vee y \vee z)$ with anchor vertex a_{c}; the case of a negative clause is similar. As ϕ is satisfied, at least one of x, y and z is true; assume w.l.o.g. that x is true. By construction, the anchor face f_{c} of C_{c} is non-transitive, with the anchor vertex a_{c} on its left boundary, and exactly one true edge of each of L_{x}, L_{y}, and L_{z} along its right boundary. Let $i \geq 0$ be such that $u_{4 i}^{x} u_{4 i+1}^{x}$ is the true edge of L_{x} on the right boundary of f_{c}. Since x is true, vertices $u_{4 i}^{x}$ and $u_{4 i+1}^{x}$ are consecutive in P. We extend P by visiting vertex a_{c} after $u_{4 i}^{x}$ and before $u_{4 i+1}^{x}$. This corresponds to adding two augmenting edges $u_{4 i}^{x} a_{c}$ and $a_{c} u_{4 i+1}^{x}$ of P in the interior of f_{c}; see the black dashed edges of Fig. 4. At the end of this process, P is extended to a subhamiltonian path for H.

Assume now that there exists a subhamiltonian path P for H. For each variable gadget $L_{x_{i}}, P$ induces a subhamiltonian path P_{i} for $L_{x_{i}}$. By Corollary 1, P_{i} is one of the two subhamiltonian paths of Fig. 1. We assign to x_{i} the value true if P_{i} is the path of Fig. 1d and false if P_{i} is the path of Fig. 1e. We claim that this truth assignment satisfies ϕ. Assume, for a contradiction, that there exists a clause c that is not satisfied. Assume that c is a positive clause $(x \vee y \vee z)$, where x, y and z are assigned false, as the other case is analogous. Also, assume that x, y, z appear in this order in C_{ϕ}, and that the right boundary of the anchor face f_{c} of the clause gadget C_{c} contains the true edges $u_{4 i}^{x} u_{4 i+1}^{x}, u_{4 j}^{y} u_{4 j+1}^{y}$ and $u_{4 k}^{z} u_{4 k+1}^{z}$ of L_{x}, L_{y} and L_{z}. As x, y and z are false, the corresponding subhamiltonian paths P_{x}, P_{y} and P_{z} of L_{x}, L_{y} and L_{z} are the ones of Fig. 1e. Hence, P contains the augmenting edges $u_{4 i}^{x} v_{4 i}^{x}$ and $v_{4 i+1}^{x} u_{4 i+1}^{x}$ of $P_{x}, u_{4 j}^{y} v_{4 j}^{y}$ and $v_{4 j+1}^{y} u_{4 j+1}^{y}$ of P_{y} and $u_{4 k}^{z} v_{4 k}^{z}$ and $v_{4 k+1}^{z} u_{4 k+1}^{z}$ of P_{z}. By Property 3 for the non-transitive face f_{c}, P contains either (i) the augmenting edge $a_{c} u_{4 i+1}^{x}$, or (ii) the augmenting edge $u_{4 k}^{z} a_{c}$, or (iii) for a pair of consecutive vertices, say u and u^{\prime}, along the right boundary of f_{c}, the augmenting edges $u a_{c}$ and $a_{c} u^{\prime}$. Cases (i) and (ii) contradict the existence of augmenting edges $v_{4 i+1}^{x} u_{4 i+1}^{x}$ and $u_{4 k}^{z} v_{4 k}^{z}$ of P respectively. Similarly, in case (iii) the augmenting edges of P that belong to P_{x}, P_{y}, and P_{z} imply that $u \notin\left\{u_{4 i}^{x}, u_{4 j}^{y}, u_{4 k}^{z}\right\}$ and $u^{\prime} \notin\left\{u_{4 i+1}^{x}, u_{4 j+1}^{y}, u_{4 k+1}^{z}\right\}$. Hence $u=u_{4 i+1}^{x}$ and $u^{\prime}=u_{4 j}^{y}$ holds, or $u=u_{4 j+1}^{y}$ and $u^{\prime}=u_{4 k}^{z}$. In both cases, the HP-completion of H contains a generalized diamond with $v_{s}=u$ and $v_{t}=u^{\prime}$, violating Property 1. Hence at least one of variables x, y and z must be true, contradicting our assumption that c is not satisfied.

We conclude by mentioning that our NP-completeness proof can be adjusted so that the constructed graph is a planar poset; refer to [2] for details.

References

1. Alzohairi, M., Rival, I.: Series-parallel planar ordered sets have pagenumber two. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 11-24. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_34
2. Bekos, M.A., Da Lozzo, G., Frati, F., Gronemann, M., Mchedlidze, T., Raftopoulou, C.N.: Recognizing DAGs with page-number 2 is NP-complete. CoRR abs/2208.13615 (2022). https://arxiv.org/abs/2208.13615
3. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of 4-planar graphs. Algorithmica 75(1), 158-185 (2016)
4. Bekos, M.A., Kaufmann, M., Klute, F., Pupyrev, S., Raftopoulou, C.N., Ueckerdt, T.: Four pages are indeed necessary for planar graphs. J. Comput. Geom. 11(1), 332-353 (2020)
5. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187-206 (2012)
6. Bhore, S., Da Lozzo, G., Montecchiani, F., Nöllenburg, M.: On the upward book thickness problem: combinatorial and complexity results. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 242-256. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2_18
7. Binucci, C., Da Lozzo, G., Di Giacomo, E., Didimo, W., Mchedlidze, T., Patrignani, M.: Upward book embeddings of ST-Graphs. In: Barequet, G., Wang, Y. (eds.) SoCG. LIPIcs, vol. 129, pp. 13:1-13:22. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019)
8. Cornuéjols, G., Naddef, D., Pulleyblank, W.R.: Halin graphs and the travelling salesman problem. Math. Program. 26(3), 287-294 (1983)
9. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175-198 (1988)
10. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Book embeddability of series-parallel digraphs. Algorithmica 45(4), 531-547 (2006)
11. Ewald, G.: Hamiltonian circuits in simplicial complexes. Geom. Dedicata. 2(1), 115-125 (1973)
12. Frati, F., Fulek, R., Ruiz-Vargas, A.J.: On the page number of upward planar directed acyclic graphs. J. Graph Algorithms Appl. 17(3), 221-244 (2013)
13. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar graphs. Discrete Comput. Geom. 13, 459-468 (1995)
14. Guan, X., Yang, W.: Embedding planar 5-graphs in three pages. Dis. Appl. Math. 282, 108-121 (2020)
15. Heath, L.: Embedding planar graphs in seven pages. In: FOCS, pp. 74-83. IEEE Comp. Soc. (1984)
16. Heath, L., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: part II. SIAM J. Comput. 28(5), 1588-1626 (1999)
17. Heath, L.S.: Embedding outerplanar graphs in small books. SIAM J. Algebraic Discrete Methods 8(2), 198-218 (1987)
18. Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: part I. SIAM J. Comput. 28(4), 1510-1539 (1999)
19. Hoffmann, M., Klemz, B.: Triconnected planar graphs of maximum degree five are subhamiltonian. In: Bender, M.A., Svensson, O., Herman, G. (eds.) ESA. LIPIcs, vol. 144, pp. 58:1-58:14. Schloss Dagstuhl (2019)
20. Jungeblut, P., Merker, L., Ueckerdt, T.: A sublinear bound on the page number of upward planar graphs. In: Naor, J.S., Buchbinder, N. (eds.) SODA, pp. 963-978. SIAM (2022)
21. Kainen, P.C., Overbay, S.: Extension of a theorem of Whitney. Appl. Math. Lett. 20(7), 835-837 (2007)
22. Kelly, D.: Fundamentals of planar ordered sets. Discret. Math. 63(2-3), 197-216 (1987)
23. Mchedlidze, T., Symvonis, A.: Crossing-free acyclic Hamiltonian path completion for planar ST-digraphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 882-891. Springer, Heidelberg (2009). https://doi.org/10. 1007/978-3-642-10631-6_89
24. Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic HP-completion for outerplanar ST-digraphs. J. Graph Algorithms Appl. 15(3), 373-415 (2011)
25. Nishizeki, T., Chiba, N.: Planar Graphs: theory and algorithms, chap. 10. Hamiltonian Cycles, pp. 171-184. Dover Books on Mathematics, Courier Dover Publications (2008)
26. Nowakowski, R., Parker, A.: Ordered sets, pagenumbers and planarity. Order 6(3), 209-218 (1989). https://doi.org/10.1007/BF00563521
27. Ollmann, T.: On the book thicknesses of various graphs. In: Hoffman, F., Levow, R., Thomas, R. (eds.) Southeastern Conference on Combinatorics, Graph Theory and Computing. Cong. Num., vol. 8, p. 459 (1973)
28. Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 203-212. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0030834
29. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Tech. Rep. TR-298, Princeton University (1982)
30. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36-67 (1989)
31. Yannakakis, M.: Planar graphs that need four pages. J. Comb. Theory Ser. B 145, 241-263 (2020)
