
Computers & Graphics 108 (2022) 61–73

R
a

b

c

c
5
r
m
a
a
i

t
i
m
s
o
t
i
t
f
t
i
b

A

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on RAGI

Interactive imagemanipulation usingmorphological trees and
spline-based skeletons
Jieying Wang a, Dennis J. Silva a,b,∗, Jiří Kosinka a, Alexandru Telea c,
onaldo F. Hashimoto b, Jos B.T.M. Roerdink a

Bernoulli Institute, University of Groningen, 9747 AG Groningen, The Netherlands
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo-SP, 05508-090, Brazil
Department of Information and Computing Sciences, Utrecht University, 3584 CC Utrecht, The Netherlands

a r t i c l e i n f o

Article history:
Received 14 July 2022
Received in revised form 31 August 2022
Accepted 5 September 2022
Available online 10 September 2022

Keywords:
Image manipulation
Image skeleton
Morphological tree

a b s t r a c t

The ability to edit an image using intuitive commands and primitives is a desired feature for any image
editing software. In this paper, we combine recent results in medial axes with the well-established
morphological tree representations to develop an interactive image editing tool that provides global
and local image manipulation using high-level primitives. We propose a new way to render interactive
morphological trees using icicle plots and introduce different ways of manipulating spline-based
medial axis transforms for grayscale and colored image editing. Different applications of the tool,
such as watermark removal, image deformation, dataset augmentation for machine learning, artistic
illumination manipulation, image rearrangement, and clothing design, are described and showcased
on examples.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
f
t
(
b

1. Introduction

Image manipulation plays a key role in image processing and
omputer graphics. Many image modification methods exist [1–
], most of which are based on raster techniques. Images rep-
esented in vector form [6] have been shown to be easier and
ore natural for humans to edit, mainly because vector images
re represented using higher-level primitives, often controlled by
rrangements of control points with an intuitive and predictable
nfluence on the image.

Recently, Wang et al. [7] generated vector representations of
he medial axis transform (MAT) from raster representations of
nput shapes and explored its potential use for binary image
anipulation. While generating very interesting deformation re-
ults, it is limited to binary images and only to the most basic
perations. Next, they extended the spline-based MAT [7] to
he spline-based dense medial descriptors (SDMD) [8] to realize
mage compression of grayscale and color images. Equipped with
his vector image representation, we now explore its suitability
or image manipulation. To this end, we develop an experimental
ool for users to interactively manipulate grayscale and color
mages. It exploits SDMD to reach its full potential by providing
oth local and global control to the user over the elements of the

∗ Corresponding author at: Bernoulli Institute, University of Groningen, 9747
G Groningen, The Netherlands.

E-mail address: d.j.da.silva@rug.nl (D.J. Silva).
ttps://doi.org/10.1016/j.cag.2022.09.002
097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
method. At the same time, we leverage the icicle representation
of morphological trees of an image, and combine it with SDMD.
The contributions of our work are as follows:

• Novelty: Our method is, to our knowledge, the first approach
to combine morphological trees and vector representations
for image manipulation;

• Generality: Our tool can directly handle any raster image of
any resolution;

• Interactivity: Except for the initial encoding process, which
can be pre-computed and is calculated only once, all sub-
sequent manipulations are in real-time, which brings users
instant interactivity;

• Applications: We demonstrate the good performance of our
tool in a variety of applications, including watermark re-
moval, image deformation, data augmentation for machine
learning tasks, artistic effect generation, image rearrange-
ment, and clothing design.

We start by reviewing related work (Section 2), which is
ollowed by a detailed description of our image manipulation
ool (Section 3). Then we show concrete applications of our tool
Section 4) and discuss its merits and limitations (Section 5),
efore concluding this paper (Section 6).
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cag.2022.09.002
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.09.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:d.j.da.silva@rug.nl
https://doi.org/10.1016/j.cag.2022.09.002
http://creativecommons.org/licenses/by/4.0/


J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

l
t

2

y
a
d

F
a
v
c
p
p
r
t
n

S
f
i
m
c
m
t
m
a
W
s
t
a

u
t
e
t
s
(
d
r
m
t
h
m

t
a
c
a
a

U

a

Fig. 1. Illustrative images of three shape deformation techniques. (a) A free-form
deformation example taken from [1]. (b) Skeleton-based image manipulation
in [4]. (c) A physically-based approach example taken from [3].

2. Related work

We structure related work into two groups: image manipu-
ation methods (Section 2.1) and morphological tree representa-
ions (Section 2.2).

.1. Image manipulation methods

Image manipulation has attracted a lot of research over the
ears due to its popularity and commercial importance. One such
pplication that attracts a lot of attention is image or shape
eformation, which can be roughly classified as follows.

ree-form deformation (FFD) is a popular approach for im-
ge (and shape) manipulation [1,9,10]. This method explicitly di-
ides the (image) space into many domains, e.g., lattices [1] and
ages [11,12], and manipulates each domain by moving control
oints defined in it, as illustrated in Fig. 1(a). While allowing
recise and flexible control [4,13], setting FFD domains is tedious,
equiring the user to laboriously manipulate many control ver-
ices [3]. In addition, FFD methods do not take into account the
atural way in which objects move in the real world [14,15].

keleton-based approaches are also widely used for shape de-
ormation, which using a pre-defined skeleton to manipulate the
nput shape [4,16]. Note that this skeleton is not exactly the
edial axis used in [7,8]. Rather, it is similar to the bones of a
haracter, see Fig. 1(b). The typical workflow of skeleton-based
ethods is to bind the components of the character to be edited

o a pre-defined skeleton such that each component follows the
otions of its associated bones. Skeleton-driven approaches are
lso commonly used in the deformation of 3D shapes [17–19].
hile offering intuitive control of 2D or 3D shapes, binding a

hape to a skeleton, either manually or automatically, is not a
rivial task [17], especially for shapes lacking an obvious bone-
nd-joint structure, e.g., jellies [3], to mention just one salient

example.

Physics-based methods [3,14,20,21] can be regarded as vari-
ants of detail-preserving differential mesh deformation tech-
niques [22], which deform shapes by modeling their rigidity. These
methods allow the user to directly manipulate a shape through
a click-and-drag interface, as shown in Fig. 1(c), and generate
physically natural results by minimizing local shape distortion.
However, such methods are computationally expensive, result-
ing in slow convergence, and require careful tuning of several
parameters [14].

Image deformation techniques, as described above, are most
suitable for images with sharply delineated and simple shapes.
For more complex images, additional image manipulation ap-

plications have been investigated. Pérez et al. proposed Poisson L

62
Image Editing [2], a gradient-based image manipulation method,
which is a simple and efficient way for many operations, such
as seamless cloning, contrast enhancement, texture flattening,
and local illumination/color changes. Since then, numerous ap-
plications have exploited the benefits of working in the gradient
domain. Raskar [23] presented a class of image fusion techniques
to automatically combine images of a scene captured under dif-
ferent illuminations. Levin [24] proposed a technique for image
stitching which combines several individual images that have
some overlapped regions. Sun [25] formulated the problem of
natural image matting as one of solving Poisson equations with
the matte gradient field. Finally, Aris [26] proposed a general vari-
ational framework for non-local image inpainting. More related
work can be found in [27].

In recent years, deep learning-based methods have signifi-
cantly boosted the performance of image manipulation due to the
availability of large amounts of data that one can train on [5,28–
30]. These methods mainly focus on a task called image-to-image
translation, which aims to convert a specific aspect of a given im-
age into another, ranging from changing the facial expression [5]
or hair color [29] of a person to modifying the seasons of scenery
images [30]. While yielding amazing image manipulation results,
these methods require a significant number of labeled image
pairs. To avoid this, Vinker [31] introduced a novel method for
training deep conditional generative models from a single image.
After training, this method is able to perform challenging image
manipulation tasks by modifying the primitive representation.
However, this approach requires training a separate network for
every image, which can be expensive on large datasets. Fur-
thermore, deep learning-based methods generally do not have a
convenient interface for user-interactive operation.

In this paper, we propose an interactive image manipulation
method that differs from all the previously described techniques.
We integrate two novel works: the icicle representation for mor-
phological trees (described next) and the SDMD [8] used for
image representation.

2.2. Morphological tree representation

As is well known, medial descriptors, or skeletons can only
be computed for binary shapes. Thus, in order to be able to
represent a grayscale image I with skeletons, we decompose I
in n (256 for 8-bit images) binary images (called level sets) by
pper thresholding T↑

i = {x ∈ I | I(x) ≥ i} , 0 ≤ i < n or lower
hresholding T i

↓
= {x ∈ I | I(x) ≤ i} , 0 ≤ i < n. This works

fficiently for image compression tasks [7,8]. Yet, when it comes
o image manipulation, finer-grained spatial control of each level
et is required. Fig. 2 shows an example. The synthetic image
a) considered in the figure contains nested triangles and nested
isks; (b) then shows its four upper-level sets. When one wants to
emove, rotate, scale, or move those triangles, it is inconvenient to
anipulate them individually. To conquer this, we propose to use

he morphological tree representation [32–34], which represents
ierarchically all connected components of an image. Thus, a
orphological tree is a complete representation of an image.
The most common morphological tree representations contain

rees of shapes [35] and component trees [36]. The latter are usu-
lly represented by compact and non-redundant data structures
alled max-trees (U(I), ⊆) and min-trees (L(I), ⊆). The sets U(I)
nd L(I) are composed of the connected components (CCs) of T↑

i
nd T i

↓
, respectively, i.e.,

(I) = {C ∈ CC(T↑

i (I)) : i ∈ [0, n)}

nd
i
(I) = {C ∈ CC(T
↓
(I)) : i ∈ [0, n)},



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

a
S

w
p

Fig. 2. A synthetic image (a), its 4 upper-level sets (b), and the corresponding
max-tree with 7 nodes, i.e., connected components (c).

Fig. 3. Lena image (512 × 512 pixels) and its complete max-tree, which contains
pproximately 41000 nodes.
ource: Image taken from [44].

here CC(Ti) denotes the sets of either 4- or 8-connected com-
onents of the threshold sets Ti. The max-tree representation of

Fig. 2(a) is shown in (c). From that, one can either process each
triangle shape individually, or, alternatively, all triangles collec-
tively by selecting all descendant nodes of node E. Component
trees can be computed and processed efficiently [37–39], which
is widely used in object recognition [39], 3D segmentation [40],
and remote sensing [41].

To interactively manipulate a grayscale image with component
trees, many visualization tools have been proposed [42,43]. In
such tools, the user either sets parameters for the manipulation
task or selects regions in the input image. Next, the tool shows
interactively the filtering or segmentation results. However, since
max-trees of natural images have tens of thousands of nodes (see
the example in Fig. 3), the user only interacts with the image and
parameters, and not directly with the max-tree.

To simplify the structure of component trees, Tavares [44]
proposed a simplification procedure based on two attributes: ex-
tinction value [45] and the area of nodes. They further improved
the simplification by applying an area difference filter, yield-
ing a more meaningful graphical representation of component
trees [46], as shown in Fig. 4. However, the simplified tree is
no longer a complete representation of the original image. To
alleviate this, we next propose to apply a new representation of
the component trees: icicle plots [47] in Section 3.1. Icicle plots
not only contain all the information of the original image, but
they are also more compact and more organized.

3. Proposed method

As stated in Section 2.1, our proposed method combines two
novel works: an icicle representation for component trees and an
interactive spline manipulation. Fig. 5 demonstrates the pipeline
of our proposed method. Given a grayscale image, we first com-
pute its max-tree or min-tree, which is next represented in an
63
Fig. 4. Interactive max-tree of a brain scan image and some node samples with
their respective connected component.
Source: Image taken from [46].

icicle plot (Section 3.1). All the nodes in the icicle plot are associ-
ated with their corresponding spline control points (step 1). Next,
we allow users to select single or multiple nodes for subsequent
manipulation (step 2). Section 3.2 describes several methods for
node selection. The associated connected components and control
points of the selected nodes are displayed for interactive spline
deformation (step 3), which is described in detail in Section 3.3.
Finally, the manipulated image is reconstructed (step 4).

3.1. Icicle plot representation

Icicle plots [47–49], also called icicle trees, represent hierar-
chical data in the form of stacked rectangles, usually ordered
from top to bottom, following the order of nodes in a tree from
its root to its leaves. Compared with other representations, such
as node-link visualizations, icicle plots allow an easier reading
of the nesting relationships, the areas of the nodes, and various
attributes of the nodes, such as, in our case, the grayscale of
the encoded objects, their perimeter, circularity, complexity, or
the number of skeleton points or spline control points. As such,
we choose the icicle plot metaphor to represent the hierarchical
component trees of grayscale images.

Fig. 6 shows the icicle plot of the max-tree for the synthetic
image in Fig. 2. The selected image is on purpose simple, for illus-
tration purposes. Each icicle, or node, corresponds to a connected
component (CC) in the upper-level sets of the input image. As
visible, the brightest disk (filled with red) in the original image
corresponds to the node marked by the red box in the lower right
corner of the icicle tree. The slender orange rectangle at the top is
the root node, which takes up the entire width. Each child node
is placed under its parent with the width proportional to the area
of the component. The grayscale that each node reaches down to
is exactly the gray value of the selected CC. The height spanned
by each node on the grayscale bar is the gray level difference
between the level of the selected CC and the previous level. The
fill color of each node can be coded by various attributes, e.g., the
number of skeleton points, as shown in Fig. 6. Other attributes,
including area, perimeter, circularity, and complexity, are also
implemented in the tool and available via its user interface.

To decrease the number of pixels needed to render a node of
the morphological tree and to keep the visual separation of the
nodes, we draw the rectangles of the plot with no border and
apply a shading scheme. In this approach, each rectangle is a quad
primitive with a HSV base color associated which is tessellated by
the graphics hardware. During the tessellation process, we com-
pute a luminance profile which replaces the value (V from HSV)
channel of the HSV color. To obtain a good visual separation of the



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

s
l
p

[

c
o
o
k
s
u
t
f
A
s
F

r

Fig. 5. Interactive image manipulation pipeline.
h
r
i

o
d
s
H
n
t
g
c

3

l
n
s
(
a

M
c
S

Fig. 6. The synthetic image in Fig. 2 and its max-tree in icicle representation.
One component/node has been selected (red).

node, we apply an asymmetrical cushion-like [50,51] luminance
profile. This profile is obtained by computing two 1D cubic Bézier
curves: one that is sampled vertically and another horizontally
in the quad tessellation process. Then the final luminance of the
pixel is obtained by multiplying the samples of the Bézier curves
at the parametric (u, v) coordinates produced by the tessellation
hader. Fig. 7 graphically shows the process of obtaining the
uminance profile from the vertical and horizontal curves (or
rofiles).
Using this approach, by default, we set the control points to

0.9, 0.9, 0.9, 0.45] for both curves, which results in a high value
of luminance at the top left, gradually reducing towards the bot-
tom right. This shading produces a dark bottom-right region that
meets the bright top-left regions of its neighboring rectangles,
leading to a visual separation between the nodes. An example
of tree rendering using these parameters can be found in Fig. 7.
Since we modify the color luminance for shading, the rendering
uses an iso-luminant color map [52,53] (see Fig. 7, bottom right).
Although icicle plots are compact and can display hundreds of
nodes, depending on the area of the nodes and window size, the
nodes might be displayed too small. To address this issue, we
developed zoom in, zoom out, and zoom restore functionalities. For
omplex images, the user can explore the connected components
f the image by clicking around the nodes of the tree, in the pixels
f the image, or moving the selection to parent (by pressing the
ey P) and zoom in to explore related connected components of
mall details of the image. When the tree is zoomed in on, the
ser can hold the Alt key for panning around the tree. When
he small details editing is finished, the user can bring back the
ull tree visualization by using the zoom-restore functionality.
n example of this process is shown in a video recording in the
upplementary material [54] and a zoomed in tree is depicted in
ig. 8.
To sum up, icicle representations clearly show the nesting

elationship, the size, the gray level, and other custom attributes
64
Fig. 7. Our luminance profile scheme. Each node of the tree is rendered as a
quad primitive which is tessellated by the graphics hardware. The luminance
of a sampled pixel at parameters (u, v) is computed by multiplying bV (u)
and bH (v), where bV and bH are 1D Bézier curves with control points V =

[0.9, 0.9, 0.9, 0.45] and H = [0.9, 0.9, 0.9, 0.45], respectively. A tree with
undreds of nodes rendered using this method is displayed at the bottom
ight of the figure. In this rendering, the base color is assigned following an
so-luminant color map of the node perimeters.

f connected components of an input image. In addition, they
epict tree nodes using only a few pixels and yet keep a vi-
ual separation of neighboring nodes using a shading approach.
aving this compact and well-organized representation, we are
ow ready to perform image manipulation. The proposed in-
eractive image editing tool is the combination of a high-level
lobal manipulation and a more detailed deformation of local
omponents.

.2. Global manipulation

Global manipulation, also considered to be inter-node manipu-
ation, generally includes removing or restoring single or multiple
odes or CCs, which is useful for applications such as image
egmentation, local luminance changes, and watermark removal
Section 4.1). Node selection can be implemented manually or
lgorithmically, as described next.

anual selection refers to the user directly selecting the node or
omponent that one wants to cut out or restore in the interface.
ince the image components in the left window and the nodes



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

w
i
e

b
s
t
v
t
i
t
T
n

s
w
u
i
r
i
f

Fig. 8. A grayscale image and its morphological tree. (top) a node selected in
the full tree, (bottom) zoom-in at the selected node.

in the right window are associated, one can select the part one
wants to manipulate by either directly clicking the node in the
icicle tree or the component on the image. In both ways, one can
select and deselect multiple nodes by holding down the shift key.
When a set of nodes are selected, their connected components are
painted in red on the image panel, so the user can quickly see the
region they are about to edit. The clicking-and-selection opera-
tion is straightforward and convenient. Yet, this operation can be
cumbersome when there are plenty of nodes to be manipulated.
To address this, we added a function to select all descendant
nodes of the currently selected node by clicking icon A. Fig. 9(b)
illustrates this by manipulating a simple art deco image (a).
Deleted nodes are set to translucent. As visible, by discarding
all descendant nodes of node D, their corresponding components
(the rightmost petals in multiple levels) on the image are also
eliminated, which indirectly achieves the effect of local brightness
changes. The operation of restoring a node is similar to deleting
one. By selecting a deleted (translucent) node and then clicking
the node inclusion icon (C), one can restore the node. However,
one cannot add nodes that did not exist in the original tree.

Algorithm-based selection aims to set the number of layers L in
the parameters setting area, and then run the SDMD method, so
that the method will select and retain the most representative
L layers using the cumulative histogram layer selection scheme.
The program constantly checks whether A(T↑

i ) − A(T↑

j=i+m) > λ,
here A(T↑

i ) means the area or the number of pixels of T↑

i , and m
s the minimally-perceivable luminance difference to the human
ye (set empirically to 5 [55] on a luminance range of [0, 255]).

If the difference between A(T↑

i ) and A(T↑

j=i+m) is smaller than
λ, we increase j until the inequality is satisfied. At that point,
we select layer T↑

j and repeat the process until we reach the
last layer. To set a suitable λ, we do a L-to-λ conversion by the
inary search method; see details in [56]. Fig. 9(c) shows the
election result when L is set to 3. The original image contains
ens of level sets or layers. Although not easily visible, there are
arious grayscale values at the edges of the petals. By setting L
o 3, the method selects the three most informative layers, as
ndicated by the red arrows. As can be seen from the results in
he left window, almost no important information is removed.
he algorithm-based selection can only preserve or remove all

odes of a certain layer. Still, in combination with the manual

65
Fig. 9. Global manipulation of an art deco image. (a) The original image and
its icicle tree. (b) The result of removing node D and all its descendants
(corresponding to the rightmost petal). (c) The result of retaining the three most
representative level sets.

operations described above, more refined global manipulation
can be achieved.

Global manipulation is useful for image segmentation [57–59].
Fig. 10 illustrates a skull-stripping segmentation [60,61] by show-
ing several components (A, A1, A2, B, C) of a magnetic resonance
(MR) image (Fig. 10(a)) reconstructed from several nodes and
their corresponding descendants. As visible, the whole brain (A),
including the brain stem (A1) and cerebellum (A2), as well as the
parotid tissue (B) and nasal tissue (C), are successfully segmented.
Moreover, our proposed method is fast and does not require any
preprocessing such as intensity normalization or denoising.

3.3. Local manipulation

Local manipulation is also seen as per-node deformation and
mainly refers to deforming a single connected component by ma-
nipulating its spline control points (CPs). Literature [7] has illus-
trated several preliminary operations, including moving, adding,
and removing CPs and increasing or decreasing the degree of the
pline representing the medial axis transform. In this section,
e further expand this idea by presenting more functions. We
se the node D in Fig. 9(a) as an example to introduce our user
nterface. By selecting node D and then clicking the icon to the
ight of icon C, we open the user manipulation interface, as shown
n Fig. 11. We next introduce one by one all the tools we propose
or this task.



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

s

c

(
s
s
t
T
r
b
i
a
t
t
r
c

4

t
f
i
m
e
a

4

p
t
w
t
t
m

Fig. 10. Skull-stripping segmentation. An MR image (a), its icicle tree (b), and
everal components (A, A1, A2, B, C) of the image.

Fig. 11. User interface for detailed spline manipulation.

Displaying all CPs: By clicking icon A, all CPs of the current
component are shown in the manipulation interface. Each com-
ponent has one or several skeleton branches, thus resulting in
one or more splines. Control points (CPs) on the same spline are
connected by lines of the same color, which indicates the degree
of the spline, as shown at the bottom of the interface. In contrast
to icon A, the function of icon B is to make all CPs invisible.

Changing the radius/degree: When the mouse hovers over a CP,
its radius size is displayed, and the radius value is also updated
in the L area. When a point is clicked, it is highlighted in blue.
Then, when holding down the shift key and scrolling the mouse
wheel, the radius (both the graphical representation and the
actual value) changes accordingly. The operation of modifying the
degree is similar, except that the shift key has to be replaced with
the D key.

Adding a CP to the spline: Icon D allows users to add a CP
to the spline. Note that the clicked point needs to fall in the
(invisible) rectangle formed by any two consecutive CPs of the
spline. Otherwise, a new spline (with two CPs) will be created
upon such a click.

Removing CPs in a spline: The user is allowed to remove one or
more CPs in a spline by pressing icons E or G. One can also delete
the entire spline via icon F.

Rotating/scaling CPs: Icon H is used for rotating all selected CPs.
After clicking this icon, one first needs to select a rotation center,
then select the CPs to be processed by dragging the displayed
rubber band marker with the mouse. Next, one can hold down the
 S

66
Fig. 12. Deformation of a shadow puppet character (a) by manipulating the
spline control points (b). Manipulations are colored just as the spline they affect.

R key and scroll the mouse wheel to specify the desired rotation
angle. The scaling function is similar, except that icon H and the
R key have to be replaced with icon I and the S key.

Copying/cutting CPs: These two functions are similar. First, the
user can select one or more CPs, then press the C/X key, then
lick somewhere for the CP(s) to be pasted and press the V key
to effectuate the actual CP pasting.

Reconstruction: Icons J and K are used to reconstruct the ma-
nipulated component and the whole image, respectively. The
changed splines are first rasterized on the desired pixel grid to
generate the manipulated skeletons. Then, we reconstruct the
component with the medial disks envelope method [8].

Fig. 12 shows the manipulation of a shadow puppet character,
in which most of the above operations are covered, including
deleting CPs (−c), decreasing radius values (−r), and moving
M), rotating (R), scaling (S), and copying (C) control points. We
tart by making the figure head smaller by pressing icon I, next
electing all the CPs that represent the head, and then scrolling
he mouse wheel down to adjust them to the appropriate size.
hen we move all CPs down slightly to make the result more
ealistic. For the left arm, we intend to separate the hand from the
ody. For this, we first delete the selected spline A (with 5 CPs)
n Fig. 12(a), then rotate the arm clockwise by about 30 degrees,
nd next copy the right hand into the left side and rotate it by
he suitable angle. We also decrease the radius of both CPs of
he spline at the elbow by 8 pixels. In addition, the left leg and
ight arm of the character are also rotated by about 20 degrees
lockwise and counterclockwise, respectively.

. Applications

In the previous section, we introduced our proposed interac-
ive image editing tool. Section 3.2 introduced several schemes
or selecting multiple icicle nodes. Section 3.3 demonstrated the
nternal manipulation of a single node. Combining the two, i.e. to
ove, scale, rotate, remove, and paste multiple nodes at once, we
nable more interesting and powerful applications of our method,
s detailed next.

.1. Visible watermark removal

Visible watermarks are widely used in images and videos to
rotect copyright ownership. Analyzing watermark removal helps
o strengthen the anti-attack techniques in an adversarial way,
hich attracted increasing attention and became a hot research
opic [62–65]. Due to the uncertainty of the size, shape, color,
ransparency, and location of watermarks, developing an auto-
atic visible watermark removal method remains a difficult task.

ome techniques even require user-guidance [62,63] or assume



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

t
m
i
o
f
i
t
a
a

i
m
w
f
d
w
t
y
t
t
w
o
c
d
(
i
s
w
F
w
o
m
d

4

t
s
d
w
i

Fig. 13. Example results on watermark removal. (a1)–(f1) Watermarked images. (a2)–(f2) The results of removing the watermarks with our method.
hat test images have the same watermark region [66]. Our image
anipulation tool provides a way to remove watermarks, but

n an interactive way, rather than automatically like the meth-
ds mentioned above. Our proposed method is very simple. We
irst select watermark-related nodes through the several schemes
ntroduced in Section 3.2. Then we enter local manipulation (Sec-
ion 3.3), and press icon E in Fig. 11 to delete all control points
ssociated to the watermark. Two manipulation demonstrations
re available in the supplementary material [54].
Fig. 13 shows the results of our method on six watermarked

mages. As can be seen from the three grayscale images, our
ethod works well not only for images where the embedded
atermark is brighter than the surrounding area (Fig. 13(b1,

1)), which can be easily manipulated with the selection-and-
eletion scheme described in Section 3.2, but also for images
here the embedded watermark has a similar or lower intensity
o the surrounding area (Fig. 13(d1)). Our proposed tool also
ields good results for color images (a2, c2, e2) by manipulating
heir three components, e.g.YUV, independently. However, since
he manipulated image is reconstructed from the skeletons, this
atermark removal method also has the common drawbacks
f skeleton-based image representation methods [8,56,67], i.e. it
annot deal well with images with many thin and small-scale
etails, such as plants on the mountains (b2, e2) and animal fur
c2, d2). Yet, the skeleton-based method is good at processing
mages with relatively large shapes but thin watermark shapes,
uch as shown in Fig. 13(a1). For such images, the SDMD method
ith suitable parameters (by setting the SDMD control bar in
ig. 9) inherently removes those thin watermark patterns even
ithout using global or local manipulation. This process takes
nly a few seconds (see the demonstration in the supplementary
aterial), rather than several minutes as with the GIMP tool (see
etails in Section 5.1).

.2. Image deformation

The previous section has shown how to achieve good wa-
ermark removal performance by combining the multiple node
election in the global manipulation (Section 3.2) with the CPs
eletion in the local manipulation (Section 3.3). In this section,
e combine the node selection with deletion and addition of CPs

n local manipulation to implement image deformation.
67
Fig. 14 illustrates an example by showing several steps to re-
move glasses from a cartoon avatar. We first remove the glasses’
lenses (step 1) by deleting nodes A, B, and C in Fig. 14(b2) by
pressing icon B in Fig. 9(a). Then we eliminate the glasses’ frame
(step 2) by selecting node D and all its descendants in (b2),
entering the local manipulation interface (c2), and deleting all CPs
related to the frame shape (region E in c2). Step 2 produces a very
light eye contour (see (c1)), so in the next step, we aim to darken
the eye outline (step 3). We select only node D in (b2) and enter
the user interface (d2). Then we use the CP adding function (icon
C in Fig. 9(a)) to put in several splines and manipulate their CPs
to form the eye contour, as shown in region F in (d2). Now we
successfully remove the glasses from the original image (a1) and
generate a reasonable result (d1).

Following the same idea, we further generate four other facial
changes, as shown in Fig. 15(a1–a4). To generate (a1), we first
remove all CPs related to the glasses and the eyes. Then we add
four splines to represent the smiling eyes. The remaining ones use
similar operations. We first delete control points that represent
the smiling mouth, then we add the new mouth (a2), mustache
(a3), and beard (a4) in turn by adding new splines.

Fig. 15(b1–b4) shows the manipulations of a more complex
running horse image. To generate (b2), we first rotate all the CPs
representing the horse counterclockwise by about 30 degrees,
then rotate the two hind legs of the horse clockwise by about
35 degrees. Next, we rotate the fore cannon bones clockwise
by certain angles to achieve the bending of the forelegs. The
demonstration is available in the supplementary material [54].
We manipulate the remaining two examples (b3, b4) similarly,
mainly by rotating and moving the control points representing
the front legs.

4.3. Dataset augmentation

Many machine learning setups require a high number of sam-
ples to avoid overfitting and to increase their performance. How-
ever, acquiring annotated samples for a dataset is usually hard
and costly [68]. Thus, producing new samples by applying trans-
formations to existing samples in a dataset using data augmen-
tation techniques has been used to address these issues [68–70].

We show an example of using our tool to automatically augment



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

c

Fig. 14. Key steps for removing glasses from a cartoon avatar (a1). Images (a2) and (b2) show icicle trees of (a1) and (b1), respectively. Image (c2) shows the
orresponding components and control points of node D and its descendants, while (d2) shows those of node D only.
U

Fig. 15. Image deformation examples. (a1–a4) Four additional facial variations
resulting from the manipulation of the original image in Fig. 14(a1). (b2–b4)
Deformations of a running horse image (b1).

a handwritten digit dataset by randomly applying small changes
to the samples. The general idea is simple: we take an annotated
sample (in this case we already know its class), and then produce
different versions of this sample by randomly generating small
changes on the control points of different threshold levels.

As a proof of concept, we apply this method to augment a
subset of the MNIST dataset [71] using our tool’s functionality
to generate images by applying random changes; this can be
accessed by clicking on Icon C (Fig. 11). In this experiment, we
created a dataset called 50-MNIST by randomly choosing 50 sam-
ples for each digit of the MNIST dataset and training an SVM on it.
After that, we augmented the dataset. We scaled up the images 10
times to allow our tool to successfully produce relevant skeletons
that can be manipulated. For each image, we ran the SDMD
pipeline, keeping only the 10 most relevant threshold values, se-
lected all nodes other than the root node (to have all details of the
68
Fig. 16. Examples of generated samples. The left-most column shows samples
of 50-MNIST. The other columns present their ‘augmented’ samples.

digit selected), and then for each control point of each selected
node we applied a sequence of transformations: displacement,
radius scale, rotation, and scale. For each transformation, we
define a range of values as follows:

1. Displacement: mindis = −15 and maxdis = 15.
2. Radius scale: minrad = 0.75 and maxrad = 1.50.
3. Rotation: minrot = −15 and maxrot = 15.
4. Scale: minsca = 0.75 and maxsca = 1.50.

sing these values, we computed the mean µT =
minT+maxT

2
and the standard deviation σT = maxT − minT, where T ∈

{dis, rad, rot, sca}, for a normal distribution of the parameter
of each transformation. Then, for each control point and each
transformation, we drew a parameter from its corresponding
normal distribution and applied the transformation. Then, using a
script, we generated 15 new images by applying these transfor-
mations with the parameter randomly drew for each sample of
50-MNIST. This procedure produced images that are slightly per-
turbed versions of the original sample. Examples of the generated
images are shown in Fig. 16.

Then, we combined the 50-MNIST dataset and the generated
samples to train an SVM, using the same hyper-parameters that
were used to train the SVM on 50-MNIST. We computed perfor-
mance scores using the MNIST test dataset for both SVMs: trained
on 50-MNIST and augmented 50-MNIST. The computed scores
are shown in Table 1. In general, our data augmentation strategy
increased the accuracy of the model from 0.83 to 0.88. It is worth
noting that our approach produces small shape perturbation as
observed in Fig. 16, like the shape of the holes in digits zero
and two; the top and the tail lines of digit two. As far as we
know, these shape changes are not easily randomly obtained

by other techniques. In addition, we use a similar approach to



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

u
r

1
N
t
m
d

4

g
m
c

A

Table 1
Testing scores of the SVM model trained on 50-MNIST and augmented 50-MNIST (aug. 50-MNIST).

Precision Recall F1-score

Digit 50-MNIST Aug. 50-MNIST 50-MNIST Aug. 50-MNIST 50-MNIST Aug. 50-MNIST Support

0 0.92 0.93 0.91 0.95 0.92 0.94 980
1 0.93 0.90 0.93 0.98 0.93 0.94 1132
2 0.89 0.93 0.78 0.84 0.84 0.88 1032
3 0.87 0.87 0.76 0.86 0.81 0.86 1010
4 0.90 0.87 0.82 0.86 0.86 0.87 982
5 0.77 0.80 0.77 0.87 0.77 0.83 892
6 0.90 0.91 0.84 0.94 0.87 0.92 958
7 0.63 0.88 0.87 0.90 0.73 0.89 1028
8 0.76 0.86 0.79 0.76 0.78 0.81 974
9 0.80 0.84 0.78 0.83 0.79 0.83 1009

Accuracy 0.83 0.88 10000
Fig. 17. Examples of producing artistic effects. Original images (a1, b1). Sim-
lations of light spots enlarging (a2), shrinking (b2), offsetting (a3, b3), and
emoving (a4, b4).

5-EMNIST, randomly picked 15 samples for each class of EM-
IST [72], and increased the accuracy of the SVMmodel from 0.47
o 0.54 (the classifier full table is available in the supplementary
aterial [54]). Thus, the results show the potential of our tool for
ata augmentation tasks.

.4. Other applications

In this section, we further combine the node selection in the
lobal manipulation (Section 3.2) with more features in local
anipulation (Section 3.3), including scaling, moving, rotating,
utting and copying CPs, to implement additional applications.

rtistic illumination effects can be achieved with our method.
Fig. 17 shows two examples to illustrate the potential of our tool
to produce these artistic effects. The enlargement (a2), diminu-
tion (b2), movement (a3, b3), and removal (a4, b4) of the white
light spots can be implemented by scaling up, scaling down, mov-
ing or rotating, and removing, respectively, all control points in
all nodes representing these highlights on the three components
(YUV) of the tomato (a1) or the copper ball image (b1). The
manipulation demonstration is available in the supplementary
material [54]. While the proposed image editing tool handles
these simple objects with ease, we do not claim that our tool does
already have a well-established relighting mechanism for dealing
with very complex objects.

Image rearrangement is also easily implemented using our
method. Fig. 18 shows an example by rearranging the birds’
positions. We aim to exchange the position of two birds on the far
right (D, E) and the two ones in the middle (B, C), and rotate bird
D. We start by cutting the CPs (by pressing the X key) that encode
the two birds on the far right (D, E) and pasting them (by pressing
the V key) into an empty space in the spline manipulation inter-
face; see the demonstration in the supplementary material [54].
69
Fig. 18. Image rearrangement example. (a) The original image and (b) the
manipulated result. We swap the position of two birds on the far right (D,
E) and the two birds in the middle (B, C) and rotate bird D.

Then we select the CPs representing birds B and C by dragging the
displayed rubber band marker with the mouse and move them
to the far right. Next, we select and move the CPs that represent
birds D and E to the second and third positions. We end up using
the rotate function (icon G in Fig. 11) to rotate bird D by about
30 degrees clockwise.

Clothing design can also be executed with our tool. Fig. 19 gives
two examples. For Fig. 19(a), we intend to change the long-tube
shoe to a short-tube one, and the thick sole to be thinner. For this,
we first eliminate CPs that encode the long tube, and then reduce
the radius of all CPs of the splines representing the sole of the
shoe by about 1/3. For Fig. 19(b), we simply add two stripes to the
T-shirt by adding several splines encoding the stripes. Note that
the added stripes should be put in the same position for the three
components, i.e., YUV, of the color image, otherwise false colors
are produced; see Section 5. As visible, our approach generates
images of good quality and fidelity.

5. Discussion

In this section, we discuss several aspects of our interactive
image manipulation tool.

5.1. Comparison with GIMP

GNU Image Manipulation Program (GIMP) is a well-developed
and widely used tool. An advanced interface and rich features
allow GIMP to handle simple image painting as well as complex
image manipulation. Table 2 compares the performance of GIMP
and our method on seven applications introduced in Sections 4
and 3.2. The operation time listed in the table only counts the
manipulation time for each task, i.e., for GIMP, excluding the time
to open the image, and for our tool, excluding the initial encoding



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

a

p
L
w
c
a

I
(
t
o
a
s
f
1

W
t

Table 2
Comparison of GIMP and our tool for seven different applications in terms of manipulation convenience (top) and operation time
(bottom; in minutes). Manipulation convenience is judged on a Likert scale that ranges from ‘very easy’ to ‘very hard’ (++, +, +/−,
−, −−).
Application Segmentation Watermark

removal
Deformation Dataset

augmentation
Artistic
effects

Rearrangement Clothing
design

GIMP +/−
∼ 4

+/−
3–10

−

∼ 6
+

∼ 2
+

<1
+

∼ 3
++

<1

Our tool ++

∼ 1
+/−
1–3

+

∼ 3
++

<1
++

<1
+

∼ 1
++

<1
Fig. 19. Clothing design examples. (a) Making a long tube, thick-soled, shoe into
short tube thin-soled shoe. (b) Adding two stripes to a T-shirt.

rocess (see Section 5.2). All experiments were performed on a
inux PC with an Nvidia RTX 2060 GPU. The participant is familiar
ith both our tool and GIMP, and has normal vision without
olor blindness issues. All the manipulation demonstrations are
vailable in the supplementary material [54].

mage segmentation: For the skull-stripping segmentation
Fig. 10), GIMP takes around 4 min. The segmentation of each
issue requires careful marching with the mouse along the edges
f the object with the free or fuzzy selection tool. The marching
nts can be tuned by adding to and subtracting from the current
election modes. With our tool, however, it is only a matter of
inding the nodes representing each tissue, which takes about
min.

atermark removal: To remove the watermarks, GIMP can use
he clone or healing tool to cover the watermark with the pattern
near the watermark, which takes around 3 min to clean an image
with regular watermarks (such as (f1) in Fig. 13). However, when
dealing with images with lots of watermark patterns (like (a1)
in Fig. 13), this process lasts more than 10 min. In contrast, our
tool only needs to remove the control points representing the
watermarks, which takes only 1 to 3 min.

Image deformation: In GIMP, cage transform is used to deform an
image. However, this feature is not handy when a certain part of
the image needs to be rotated. For that task, the rotate tool plus
the clone tool can help. To achieve the deformation in Fig. 15(b2),
GIMP takes about 6 min, whereas our method implements this
only with the rotation function (icon H in Fig. 11), which takes
around 3 min.

Dataset augmentation: For a single sample, our tool generates
random changes by simply moving the corresponding CPs, which
only needs dozens of seconds. While GIMP can achieve this using
70
cage and healing tools, which takes about 2 min. Most impor-
tantly, our tool can automatically produce a high number of sam-
ple variants by randomly adjusting the positions of the sample
CPs, which is almost impossible for GIMP.

Artistic effect: Both GIMP and our method can achieve artistic
results easily and in very little time. To shrink the light spot
in Fig. 17(a1), GIMP can use the shrink area mode in the warp
transformwhile our tool can simply apply the scaling feature (icon
I in Fig. 11).

Image rearrangement: This application can be implemented
with cut and paste, which is achieved in both GIMP and our tool.
The difference is that GIMP pastes the content to a different layer,
whereas our tool can operate on the same image layer, which
takes less time.

Clothing design: GIMP can achieve this application by directly
drawing on the image using pencil or ink tool, or by erasing cer-
tain content with the eraser. Our method can add new elements
by adding new splines (icon D in Fig. 11) or remove content by
delete the corresponding CPs (icon G in Fig. 11).

To sum up, compared with GIMP, our tool implements the
above seven applications with the same or more convenient
manipulation in similar or less time. Furthermore, our tool can
achieve one function that GIMP cannot, i.e., automatically pro-
ducing a high number of sample variants for certain machine
learning tasks. However, we acknowledge that the seven appli-
cations evaluated in the table are the ones that our tool excels at.
There are also some applications that are easy to be achieved with
GIMP but not for our tool, such as drawing content with a brush,
copying content from another image, adding text, and more. In
terms of quality, we admit that our skeleton-based method does
not handle images with fine details well, which is not a problem
for GIMP.

5.2. Running time

The longest (slowest) step in our end-to-end pipeline is the
encoding process at the beginning. This is so since all the image
information needs to be encoded, including all components on all
layers. Take the original image in Fig. 10 as an example, whose
intensities span from 0 to 255. Although its resolution is only
320 × 320 pixels, encoding all the information, i.e., computing
skeletons, and running spline fitting for all the components, takes
118 s on a commodity PC. In addition, encoding runtime depends
on the morphological tree size (number nodes). The size of the
morphological tree depends on the content of the image; larger
regions with tiny details like foliage and fur produce many nodes.
Thus, encoding a larger image could be faster than a smaller im-
age if its morphological tree contains sufficiently fewer nodes. We
ran runtime experiments for a dataset of images with different
content and sizes varying from 256 × 256 to 640 × 480, and plot
a graph comparing the runtime of the encoding process according
to the number of max-tree nodes (Fig. 20). More detail on this
experiment as well as other runtime plots relating to image
size and grayscale resolution are available in the supplementary



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

o
s

Fig. 20. Runtime experiment plot.

Fig. 21. Ghosting, false colors, and artifacts are introduced when changes to the
three color components do not coincide.

material [54]. Fortunately, the encoding operation only needs to
be executed one time. Once the encoding process is complete, the
subsequent series of operations, whether deleting, adding icicle
nodes, all the manipulation operations on CPs, or reconstruct-
ing the components or images, occur in real-time. In practical
applications, for inexperienced users, it takes approximately 2
to 4 min to successfully remove the watermark in an image
or achieve a reasonable image deformation result. As for image
rearrangement, artistic effect generation, and clothing design, it
takes around 1 to 2 min to perform.

5.3. Limitations

Our interactive tool is not yet able to handle the three com-
ponents of color images simultaneously, but only facilitates their
manipulation separately. This leads to a problem where false
colors, ghosting, and artifacts can occur when changes to the
three components do not coincide. Fig. 21 shows two examples.
For (a), when the added stripes for the Y component and U
component of the right image in Fig. 19 are in different positions,
ghosting is introduced, as indicated by the arrows. Similarly, in
(b), when the added eye shapes in the three components of the
image in Fig. 15(a1) do not coincide, artifacts and false colors are
produced; see where the arrow points. However, we argue that
these ghosting and false colors have perceptually little impact,
and they can be avoided with careful manipulation.

We admit that for inexperienced users, some per-node ma-
nipulations may not be so intuitive and fully straightforward, e.g.,
71
adding splines to form the eye shape in Fig. 14(d2), or performing
some complex deformation operations on the legs of the binary
horse shape (see the supplementary material [54]). To achieve
these, some practice and experience with our tool is required.
Yet, apart from that, we believe that removing, moving, rotating,
scaling, cutting, and copying some CPs in whole are all easy to
understand and conduct for inexperienced users. Besides, the
global manipulation (Section 3.2) is straightforward to learn to
use. There are only two windows in the interface: The left one
is the image display interface while the right one shows the
icicle tree; see Figs. 6 and 9, respectively. The two windows
are linked, e.g., when one clicks an icicle node on the right, its
corresponding component is highlighted on the left, as shown
in Fig. 6, and vice versa. In the supplementary material [54], we
provide our full source code and all demonstration videos for
replication purposes.

6. Conclusion

In this paper, we have presented a novel interactive image
manipulation tool, which combines the spline-based medial axis
for shape manipulation [7] with an icicle representation of com-
ponent trees. Dealing with component trees instead of threshold
sets allows finer-grained spatial control of each level set. We
have demonstrated how to operate our tool in detail in Section 3.
To verify the effectiveness of our tool, we have illustrated it
by several applications of editing real-world images. Only ma-
nipulating icicle nodes globally (Section 3.2), such as removing
multiple nodes in the icicle tree, achieves simple watermark
removal tasks (Fig. 13(a, e)). When adding local spline manip-
ulations, more interesting applications are achieved. When the
global manipulation is combined with the control points deletion
function, more complex watermark removal tasks are achieved
(Fig. 13(b, c, d, f)). When combined with removing and adding
CPs, interesting image deformation is achieved (Section 4.2). Also,
we have shown an application of these deformations in data
augmentation by generating new samples for a handwritten digit
dataset (Section 4.3). We have also combined the global manipu-
lation with more features in local manipulation, including scaling,
moving, rotating, cutting and copying CPs, to implement artistic
illumination effects, image rearrangement, and clothing design
(Section 4.4).

Several future work directions are possible. First, more func-
tions can be added to our tool. One possibility is to allow to
open two images simultaneously and stitch their content, such as
seamlessly stitching objects from one image into the background
of another image. Some additional functions, such as allowing
users to directly move the node up or down in the icicle plot
interface to achieve the intensity change of that node, can also be
considered. Secondly, improving our tool to process color images
more conveniently is also important to study. Finally, we aim
to explore the potential of our tool for more applications in the
future, such as image smoothing and image abstraction.

CRediT authorship contribution statement

Jieying Wang: Conceptualization, Methodology, Software, Re-
sources, Writing – original draft, Writing – review & editing,
Investigation. Dennis J. Silva: Conceptualization, Methodology,
Software, Resources, Writing – original draft, Writing – review &
editing, Investigation. Jiří Kosinka: Conceptualization, Methodol-
gy, Writing – original draft, Writing – review & editing, Supervi-
ion, Project administration. Alexandru Telea: Conceptualization,
Methodology, Writing – original draft, Writing – review & edit-
ing, Supervision, Project administration. Ronaldo F. Hashimoto:
Conceptualization, Writing – review & editing, Supervision. Jos
B.T.M. Roerdink: Conceptualization, Writing – review & editing,
Supervision.



J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73

D

c
t

A

(
S
m
n
F
2
m
c

A

l
o

R

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

Jieying Wang acknowledges the China Scholarship Council
Grant number 201806320354) for financial support. Dennis J.
ilva acknowledges CNPq - Conselho Nacional de Desenvolvi-
ento Científico e Tecnológico (Proc. 141422/2018-1) for fi-
ancial support. Ronaldo F. Hashimoto acknowledges FAPESP -
undação de Amparo à Pesquisa do Estado de São Paulo (Proc.
015/22308-2) and CNPq - Conselho Nacional de Desenvolvi-
ento Científico e Tecnológico (Grant 407242/2021-0) for finan-
ial support.

ppendix A. Supplementary data

Supplementary material related to this article can be found on-
ine at https://doi.org/10.1016/j.cag.2022.09.002. The source code
f the tool presented in this article is available at [54].

eferences

[1] Milliron T, Jensen RJ, Barzel R, Finkelstein A. A framework for geometric
warps and deformations. ACM Trans Graph 2002;21(1):20–51.

[2] Pérez P, Gangnet M, Blake A. Poisson image editing. ACM Trans Graph
2003;22(3):313–8.

[3] Igarashi T, Moscovich T, Hughes JF. As-rigid-as-possible shape manipula-
tion. ACM Trans Graph 2005;24(3):1134–41.

[4] Wang X, Yang W, Peng H, Wang G. Shape-aware skeletal deformation for
2D characters. Vis Comput 2013;29:545–53.

[5] Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J. Stargan: Unified generative
adversarial networks for multi-domain image-to-image translation. In:
2018 IEEE/CVF conference on computer vision and pattern recognition.
2018, p. 8789–97.

[6] Barla P, Bousseau A. Gradient art: Creation and vectorization. In: Image
and video-based artistic stylisation. Springer; 2013, p. 149–66.

[7] Wang J, Kosinka J, Telea A. Spline-based medial axis transform
representation of binary images. Comput. Graph. 2021;98:165–76.

[8] Wang J, Kosinka J, Telea A. Spline-based dense medial descriptors for lossy
image compression. J. Imaging 2021;7(8).

[9] Sederberg TW, Parry SR. Free-form deformation of solid geometric models.
SIGGRAPH Comput Graph 1986;151–60.

[10] MacCracken R, Joy KI. Free-form deformations with lattices of arbitrary
topology. In: Proceedings of the 23rd annual conference on computer
graphics and interactive techniques. 1996, p. 181–8.

[11] Lipman Y, Levin D, Cohen-Or D. Green coordinates. ACM Trans Graph
2008;27(3):1–10.

[12] Gain J, Bechmann D. A survey of spatial deformation from a user-centered
perspective. ACM Trans Graph 2008;27(3):1–21.

[13] Reis JPD, Kosinka J. Injective hierarchical free-form deformations using
THB-splines. Comput Aided Des 2018;100:30–8.

[14] Weng Y, Xu W, Wu Y, Zhou K, Guo B. 2D shape deformation using
nonlinear least squares optimization. Vis Comput 2006;22:653–60.

[15] Mota T, Esperança C, Oliveira A. 2D shape deformation based on positional
constraints and layer manipulation. In: 2011 Brazilian symposium on
games and digital entertainment. 2011, p. 1–10.

[16] Tagliasacchi A, Delame T, Spagnuolo M, Amenta N, Telea A. 3D skeletons:
A state-of-the-art report. Comput Graph Forum 2016;35(2):573–97.

[17] Lewis JP, Cordner M, Fong N. Pose space deformation: A unified approach
to shape interpolation and skeleton-driven deformation. In: Proceedings
of the 27th annual conference on computer graphics and interactive
techniques. 2000, p. 165–72.

[18] Yan H-B, Hu S, Martin RR, Yang Y-L. Shape deformation using a skele-
ton to drive simplex transformations. IEEE Trans Vis Comput Graphics
2008;14(3):693–706.

[19] Jacobson A, Sorkine O. Stretchable and twistable bones for skeletal shape
deformation. ACM Trans Graph 2011;30(6):1–8.

[20] Sýkora D, Dingliana J, Collins S. As-rigid-as-possible image registration
for hand-drawn cartoon animations. In: Proceedings of the 7th interna-
tional symposium on non-photorealistic animation and rendering. 2009,
p. 25–33.
72
[21] Yang W, Feng J, Wang X. Structure preserving manipulation and
interpolation for multi-element 2D shapes. Comput Graph Forum
2012;2249–58.

[22] Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H-Y. Mesh edit-
ing with Poisson-based gradient field manipulation. ACM Trans Graph
2004;23(3):644–51.

[23] Raskar R, Ilie A, Yu J. Image fusion for context enhancement and
video surrealism. In: Proceedings of the 3rd international symposium on
non-photorealistic animation and rendering. 2004, p. 85–152.

[24] Levin A, Zomet A, Peleg S, Weiss Y. Seamless image stitching in the
gradient domain. In: European conference on computer vision, vol. 4. 2004,
p. 377–89.

[25] Sun J, Jia J, Tang C-K, Shum H-Y. Poisson matting. ACM Trans Graph
2004;23:315–21.

[26] Arias P, Facciolo G, Caselles V, Sapiro G. A variational framework for
exemplar-based image inpainting. Int J Comput Vis 2011;93:319–47.

[27] Di Martino JM, Facciolo G, Meinhardt-Llopis E. Poisson image editing.
Image Process Line 2016;6:300–25.

[28] Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with
conditional adversarial networks. In: 2017 IEEE conference on computer
vision and pattern recognition. 2017, p. 5967–76.

[29] Kim T, Cha M, Kim H, Lee JK, Kim J. Learning to discover cross-domain
relations with generative adversarial networks. In: Proceedings of the
34th international conference on machine learning - Volume 70. 2017,
p. 1857–65.

[30] Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. In: IEEE international conference
on computer vision. 2017, p. 2223–32.

[31] Vinker Y, Horwitz E, Zabari N, Hoshen Y. Deep single image manipulation.
2020, ArXiv arXiv:2007.01289.

[32] Salembier P, Oliveras A, Garrido L. Antiextensive connected operators for
image and sequence processing. IEEE Trans. Image Process. 1998;7:555–70.

[33] Berger C, Géraud T, Levillain R, Widynski N, Baillard A, Bertin E. Effective
component tree computation with application to pattern recognition in
astronomical imaging. In: 2007 IEEE international conference on image
processing, vol. 4. 2007, p. IV – 41.

[34] Souza R, Tavares L, Rittner L, Lotufo R. An overview of max-tree princi-
ples, algorithms and applications. In: 2016 29th SIBGRAPI conference on
graphics, patterns and images tutorials (SIBGRAPI-T). 2016, p. 15–23.

[35] Ballester C, Caselles V, Monasse P. The tree of shapes of an image. ESAIM
Control Optim Calc Var 2003;9:1–18.

[36] Najman L, Couprie M. Building the component tree in quasi-linear time.
IEEE Trans Image Process 2006;15(11):3531–9.

[37] Wilkinson M, Gao H, Hesselink W, Jonker J-E, Meijster A. Concurrent
computation of attribute filters on shared memory parallel machines. IEEE
Trans Pattern Anal Mach Intell 2008;30:1800–13.

[38] Carlinet E, Géraud T. A comparative review of component tree computation
algorithms. IEEE Trans Image Process 2014;23(9):3885–95.

[39] Souza R, Rittner L, Lotufo R, Machado R. An array-based node-oriented
max-tree representation. In: 2015 ICIP. 2015, p. 3620–4.

[40] Donoser M, Bischof H. Efficient maximally Stable Extremal Region (MSER)
tracking. In: 2006 IEEE computer society conference on computer vision
and pattern recognition, vol. 1. 2006, p. 553–60.

[41] Benediktsson JA, Bruzzone L, Chanussot J, Mura MD, Salembier P, Valero S.
Hierarchical analysis of remote sensing data: Morphological attribute
profiles and binary partition trees. In: Proceedings of the 10th International
conference on mathematical morphology and its applications to image and
signal processing. 2011, p. 306–19.

[42] Westenberg MA, Roerdink JBTM, Wilkinson MHF. Volumetric attribute
filtering and interactive visualization using the max-tree representation.
IEEE Trans Image Process 2007;16(12):2943–52.

[43] Passat N, Naegel B, Rousseau F, Koob M, Dietemann J-L. Interactive
segmentation based on component-trees. Pattern Recognit 2011;44:2539–
54.

[44] Tavares LA, Souza RM, Rittner L, Machado RC, Lotufo RA. Interactive max-
tree visualization tool for image processing and analysis. In: 2015 IPTA.
2015, p. 119–24.

[45] Vachier C. Extinction value: a new measurement of persistence. In: IEEE
workshop on nonlinear signal and image processing. 1995, p. 254–7.

[46] Tavares LA, de Souza RM, Rittner L, Machado RC, de Alencar Lotufo R.
A max-tree simplification proposal and applications for the interactive
max-tree visualization tool. In: 29th SIBGRAPI. 2016, p. 313–20.

[47] Kruskal JB, Landwehr JM. Icicle plots: Better displays for hierarchical
clustering. Amer Statist 1983;37(2):162–8.

[48] Fekete J-D. The InfoVis toolkit. In: Proceedings of the IEEE symposium on
information visualization. 2004, p. 167–74.

[49] Bostock M, Heer J. Protovis: A graphical toolkit for visualization. IEEE Trans
Vis Comput Graphics 2009;15:1121–8.

[50] van Wijk J, van de Wetering H. Cushion treemaps: visualization of hierar-
chical information. In: Proceedings 1999 IEEE Symposium on information
visualization. IEEE Computer Society; 1999, p. 73–8.

https://doi.org/10.1016/j.cag.2022.09.002
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb1
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb1
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb1
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb2
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb2
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb2
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb3
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb3
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb3
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb4
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb4
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb4
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb5
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb6
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb6
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb6
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb7
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb7
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb7
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb8
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb8
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb8
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb9
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb9
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb9
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb10
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb10
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb10
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb10
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb10
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb11
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb11
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb11
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb12
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb12
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb12
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb13
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb13
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb13
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb14
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb14
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb14
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb15
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb15
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb15
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb15
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb15
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb16
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb16
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb16
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb17
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb18
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb18
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb18
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb18
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb18
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb19
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb19
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb19
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb20
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb21
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb21
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb21
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb21
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb21
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb22
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb22
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb22
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb22
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb22
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb23
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb23
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb23
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb23
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb23
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb24
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb24
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb24
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb24
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb24
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb25
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb25
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb25
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb26
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb26
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb26
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb27
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb27
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb27
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb28
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb28
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb28
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb28
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb28
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb29
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb30
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb30
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb30
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb30
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb30
http://arxiv.org/abs/2007.01289
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb32
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb32
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb32
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb33
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb34
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb34
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb34
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb34
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb34
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb35
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb35
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb35
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb36
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb36
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb36
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb37
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb37
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb37
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb37
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb37
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb38
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb38
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb38
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb39
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb39
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb39
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb40
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb40
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb40
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb40
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb40
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb41
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb42
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb42
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb42
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb42
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb42
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb43
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb43
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb43
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb43
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb43
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb44
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb44
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb44
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb44
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb44
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb45
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb45
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb45
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb46
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb46
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb46
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb46
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb46
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb47
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb47
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb47
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb48
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb48
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb48
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb49
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb49
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb49
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb50
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb50
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb50
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb50
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb50


J. Wang, D.J. Silva, J. Kosinka et al. Computers & Graphics 108 (2022) 61–73
[51] Lommerse G, Nossin F, Voinea L, Telea A. The visual code navigator: an
interactive toolset for source code investigation. In: IEEE symposium on
information visualization, 2005. INFOVIS 2005. 2005, p. 24–31.

[52] Kovesi P. Good colour maps: How to design them. 2015, CoRR, arXiv:
1509.03700.

[53] Kovesi P. CET perceptually uniform colour maps. 2022, https://colorcet.
com/.

[54] Wang J, Silva D, Kosinka J, Telea A, Hashimoto R, Roerdink J. Interactive
image manipulation supplementary material. 2022, https://github.com/
WangJieying/Interactive_manipulation_supp_mat.

[55] Hecht S. The visual discrimination of intensity and the Weber-Fechner law.
J Gen Physiol 2003;7:235–67.

[56] Wang J, Terpstra M, Kosinka J, Telea A. Quantitative evaluation of dense
skeletons for image compression. Information 2020;11(5):274–92.

[57] Pal NR, Pal SK. A review on image segmentation techniques. Pattern
Recognit 1993;26(9):1277–94.

[58] Pham DL, Xu C, Prince JL. Current methods in medical image segmentation.
Annu Rev Biomed Eng 2000;2:315–37.

[59] Zaitoun NM, Aqel MJ. Survey on image segmentation techniques. Procedia
Comput Sci 2015;65:797–806.

[60] Hahn H, Peitgen H-O. The skull stripping problem in MRI solved by a single
3D watershed transform. In: Lecture notes in computer science, vol. 1935,
2000, p. 134–43.

[61] Doshi J, Erus G, Ou Y, Gaonkar B, Davatzikos C. Multi-atlas skull-stripping.
Acad Radiol 2013;20(12):1566–76.

[62] Huang C-H, Wu J-L. Attacking visible watermarking schemes. IEEE Trans
Multimed 2004;6(1):16–30.
73
[63] Pei S-C, Zeng Y-C. A novel image recovery algorithm for visible
watermarked images. IEEE Trans Inf Forensics Secur 2007;1:543–50.

[64] Cheng D, Li X, Li W-H, Lu C, Li F, Zhao H, et al. Large-scale visible
watermark detection and removal with deep convolutional networks. In:
Pattern recognition and computer vision. 2018, p. 27–40.

[65] Qin C, He Z, Yao H, Cao F, Gao L. Visible watermark removal scheme based
on reversible data hiding and image inpainting. Sig Proc: Image Comm
2018;60:160–72.

[66] Xu C, Lu Y, Zhou Y. An automatic visible watermark removal technique
using image inpainting algorithms. In: 2017 4th International Conference
on Systems and Informatics. 2017, p. 1152–7.

[67] Wang J, Joao L, Falcão A, Kosinka J, Telea A. Focus-and-context skeleton-
based image simplification using saliency maps. In: VISAPP, vol. 4. 2021,
p. 45–55.

[68] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for
deep learning. J Big Data 2019;6:60.

[69] Perez L, Wang J. The effectiveness of data augmentation in image
classification using deep learning. 2017, CoRR arXiv:1712.04621.

[70] Benato BC, Telea AC, Falcão AX. Iterative pseudo-labeling with deep
feature annotation and confidence-based sampling. In: 2021 34th SIBGRAPI
conference on graphics, patterns and images. 2021, p. 192–8.

[71] Deng L. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Process Mag 2012;29(6):141–2.

[72] Cohen G, Afshar S, Tapson J, van Schaik A. EMNIST: Extending MNIST
to handwritten letters. In: 2017 international joint conference on neural
networks. 2017, p. 2921–6.

http://refhub.elsevier.com/S0097-8493(22)00163-7/sb51
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb51
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb51
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb51
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb51
http://arxiv.org/abs/1509.03700
http://arxiv.org/abs/1509.03700
http://arxiv.org/abs/1509.03700
https://colorcet.com/
https://colorcet.com/
https://colorcet.com/
https://github.com/WangJieying/Interactive_manipulation_supp_mat
https://github.com/WangJieying/Interactive_manipulation_supp_mat
https://github.com/WangJieying/Interactive_manipulation_supp_mat
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb55
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb55
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb55
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb56
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb56
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb56
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb57
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb57
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb57
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb58
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb58
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb58
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb59
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb59
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb59
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb60
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb60
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb60
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb60
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb60
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb61
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb61
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb61
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb62
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb62
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb62
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb63
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb63
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb63
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb64
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb64
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb64
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb64
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb64
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb65
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb65
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb65
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb65
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb65
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb66
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb66
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb66
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb66
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb66
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb67
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb67
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb67
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb67
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb67
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb68
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb68
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb68
http://arxiv.org/abs/1712.04621
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb70
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb70
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb70
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb70
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb70
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb71
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb71
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb71
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb72
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb72
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb72
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb72
http://refhub.elsevier.com/S0097-8493(22)00163-7/sb72

	Interactive image manipulation using morphological trees and spline-based skeletons
	Introduction
	Related work
	Image manipulation methods
	Morphological tree representation

	Proposed method
	Icicle plot representation
	Global manipulation
	Local manipulation

	Applications
	Visible watermark removal
	Image deformation
	Dataset augmentation
	Other applications

	Discussion
	Comparison with GIMP
	Running time
	Limitations

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A. Supplementary data
	References


