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Abstract
We study compact straight-line embeddings of trees. We show that perfect binary
trees can be embedded optimally: a tree with n nodes can be drawn on a

ffiffiffi

n
p

by
ffiffiffi

n
p

grid. We also show that testing whether a given rooted binary tree has an upward
embedding with a given combinatorial embedding in a given grid is NP-hard.

Keywords Binary trees · Graph drawing · Upward drawing · Area
requirement

1 Introduction

Let T ¼ ðV ;EÞ be a combinatorial tree; that is, a connected graph without cycles. A
straight-line embedding of T in a grid is an injective map f : V ! Z2. An embedding
f is planar if for every pair of edges ðv1; v2Þ; ðw1;w2Þ 2 E the line segments
f ðv1Þf ðv2Þ and f ðw1Þf ðw2Þ do not intersect except, possibly, at common endpoints.
In this paper all the embeddings considered are planar. The size of an embedding (or,
with slight abuse of terminology, the size of the grid) is the width and height of the
portion of Z2 used by f; that is,

sizef ðTÞ ¼ max
v2V

f ðvÞ:x�min
v2V

f ðvÞ:xþ 1; max
v2V

f ðvÞ:y�min
v2V

f ðvÞ:yþ 1

� �

:

We are interested in finding embeddings with as small a size as possible. We say an
embedding of a graph with n vertices is packed if it is embedded in a w� h grid with
n ¼ wh. We say it is almost packed if it cannot be embedded in a strictly smaller
rectangular grid; that is, if it is embedded in a w� h grid with n\wh but n[ ðw�
1Þh and n[wðh� 1Þ. In the following, we may also write a w� h rectangle to refer
to a rectangle of size (w, h).

A rooted tree is a tree Twith a special vertex r 2 V marked as root. Because a tree
has no cycles, a rooted tree has an induced partial order on its vertices: for two
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vertices v;w 2 V , we say v � w if and only if v lies on the path from r to w. An
embedding is strictly upward if, for all v;w 2 V with v � w, we have
f ðvÞ:y[ f ðwÞ:y. An embedding is upward if, for all v;w 2 V with v � w, we have
f ðvÞ:y� f ðwÞ:y. A rooted tree together with a combinatorial embedding is called an
ordered tree. A drawing or an ordered tree is order-preserving if it has the same
combinatorial embedding.

Related Work. Drawing graphs with small area has a long and rich history [7].
However, despite being studied for more than 50 years, we still do not know even
whether simple classes of graphs, such as trees and outerplanar graphs, admit linear-
area embeddings (a graph with n nodes can be embedded in a w� h grid with
wh 2 OðnÞ). Chan [4] showed that every tree admits an embedding with

n2Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log log n log log log n
p

Þ area, improving the long-standing Oðn log nÞ bound one
obtains by a simple divide-and-conquer layout algorithm.

Furthermore, not much is known about the exact minimum area requirements for
graphs that do admit linear-area embeddings. It is clear that not every tree admits a
packed embedding in a grid with exactly n points: for instance, when the graph is a
star, some grid points are “blocked” and cannot be used. The star graph can be drawn
on a linear-area grid: Euler already showed that the fraction of points visible from the
center of a square grid tends to 6

p2 more than 300 years ago [8]. For graphs of bounded
degree, there is hope that we can do better. Clearly, every path admits a packed
embedding. Garg and Rusu [11, 12] showed that trees of degree d ¼ OðndÞ with
d\1=2, and in particular of degree 3, have linear-area embeddings in a square grid,
and even in grids of different aspect ratio; their main concern is studying the relation
between the aspect ratio and the area, but they do not give concrete bounds on the
constant factor.

We conjecture that every tree with maximum degree 3 admits an (almost) packed
embedding in a square grid, and we prove here that this is the case for perfect binary
trees.

For general graphs, when edges are additionally required to be on the grid as well,
this problem is known to be NP-hard [13], using a reduction from the Logic Engine
by Eades and Whitesides [9]. Later, Krug and Wagner showed that it is also NP-hard
to minimize the area of a straight-line grid drawing of a general graph (order-
preserving or not) [15]. The reduction produces a disconnected graph.

When drawing rooted trees, a natural restriction is to require drawings to be
upward. Clearly, packed strictly upward embeddings are impossible unless the tree is
a path, but we may still investigate almost packed embeddings that leave only few
grid points unused. It is known that, for strictly upward embeddings, we cannot do
better than Xðn log nÞ area with [10] or without [5] a prescribed combinatorial
embedding. There is a matching upper bound for non-order-preserving embedding
[10], but the best known upper bound when the combinatorial embedding is given is

Oðn4
ffiffiffiffiffiffiffiffiffi

2 log n
p

Þ [3]. For upward embeddings, Chan [4] also gave an oðn log nÞ bound.
In the special case of binary trees, it is known that complete binary trees admit linear
area upward embeddings [5], even with extra constraints requiring that edges are
axis-aligned and that the bounding boxes of disjoint subtrees are disjoint [6].

123

155 Page 2 of 11 Graphs and Combinatorics (2022) 38:155



Biedl and Mondal [2] proved NP-hardness for deciding whether a strictly upward
embedding exists for a straight-line high-degree tree in a given grid. Their reduction
uses the flexibility of determining the combinatorial embedding in order to obtain the
NP-hardness.

Contribution. We have the following results.

– It is NP-hard to test whether binary trees with fixed combinatorial embedding
admit strictly upward embeddings in a given grid.

– Perfect binary trees of odd height with n vertices admit almost packed
embeddings in a

ffiffiffi

n
p � ffiffiffi

n
p

grid. For even height there are almost packed
embeddings in a rectangular grid. In both cases, a single grid point is left unused.

2 Packed Embeddings of Perfect Binary Trees

We consider the following problem. Given a d ffiffiffi

n
p e � d ffiffiffi

n
p e grid and a tree T with n

vertices, can we draw it with straight non-crossing edges?

Conjecture 1 If T has max degree 3, it is always possible.

In particular, if n ¼ 2kþ1, a perfect binary tree of odd height k with additional
parent of the root (to make the number of vertices exactly n) can be drawn on the
ffiffiffi

n
p � ffiffiffi

n
p

grid. We use a recursive strategy to show it. Similar approaches recursively
embedding trees have been previously used to show asymptotic bounds (but
disregarding smaller order terms); in particular, to prove that perfect binary trees and
Fibonacci trees can be upward drawn in linear area [5] and to bound the area of
complete ternary and 7-ary trees on the 8-grid [1].

Theorem 1 The perfect binary tree of odd height k with an additional root parent,
with n ¼ 2kþ1 vertices, has a packed embedding in the

ffiffiffi

n
p � ffiffiffi

n
p

square grid.

Proof We will recursively argue that perfect binary trees can be embedded in square
grids in two ways. Let Tk be the perfect binary tree on n ¼ 2kþ1 � 1 vertices. We will
recursively define two straight-line embeddings, Fk and Gk , of Tk , both on a d ffiffiffi

n
p e �

d ffiffiffi

n
p e grid and leaving a single spot empty. The vertices in these embeddings are
placed in the grid points fðx; yÞ 2 Z2 : 1� x� 2ðkþ1Þ=2; 1� y� 2ðkþ1Þ=2g.

We first list the required properties of Fk and Gk , also illustrated in Fig. 1a:

(i) both Fk and Gk map the root of Tk to the point ð2ðk�1Þ=2 þ 1; 2ðk�1Þ=2Þ;
(ii) both Fk and Gk do not place any edges in the vertical strip between x ¼

2ðk�1Þ=2 and x ¼ 2ðk�1Þ=2 þ 1, except for the edges incident to the root of Tk ;
(iii) Fk leaves the point ð2ðk�1Þ=2; 1Þ unused; and
(iv) Gk leaves the point (1, 1) unused.

Observe that F1 ¼ G1 is trivial to draw: both are drawings of a path of length 2,
drawn by connecting the point (1, 2) to the point (2, 1) to the point (2, 2).

What remains is to argue that we can recursively draw Fk and Gk using drawings
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of Fk�2 and Gk�2. The argument is illustrated in Fig. 1.
To draw Fk we place two (possibly mirrored) copies of Fk�2 and two (possibly

mirrored) copies of Gk�2 in the four quadrants of the 2ðkþ1Þ=2 by 2ðkþ1Þ=2 grid: one
identical copy of Fk�2 in the top right quadrant, one horizontally mirrored copy
of Fk�2 in the top left quadrant, one vertically mirrored copy of Gk�2 in the bottom
right quadrant, and one horizontally mirrored copy of Gk�2 in the bottom right
quadrant. Because, except for edges incident to the respective roots, each copy leaves
a vertical strip empty, we can connect the roots of the top right and bottom right
subtrees to a new node at ð2ðk�1Þ=2 þ 2ðk�3Þ=2; 2ðk�1Þ=2 þ 1Þ (which was left empty by
definition of F). Note that, since the new edges are also incident to the roots of the
subtrees, they don’t cross with the edges incident to the respective roots that cross the
strip. Moreover, the new top edge lies completely above the edge crossing the strip in
the bottom right quadrant and the new bottom edge lies completely below the edge
crossing the strip in the top right quadrant. Thus, the two new edges are drawn
without crossings. Similarly, we connect the roots of the top left and bottom left
subtrees to a new node at ð2ðk�3Þ=2 þ 1; 2ðk�1Þ=2 þ 1Þ. Finally, we connect both of
these new nodes to the new root of Tk , drawn at ð2ðk�1Þ=2 þ 1; 2ðk�1Þ=2Þ (which was
left empty by definition of G), as required. The point ð2ðk�1Þ=2; 1Þ remains unused,

(a)

(b)

Fig. 1 Recursive embedding of perfect binary trees
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and the central vertical strip is empty except for one edge connecting the root of Tk to
the left subtree.

To draw Gk we also place two copies of Fk�2 and two copies of Gk�2 in the four
quadrants of the 2ðkþ1Þ=2 by 2ðkþ1Þ=2 grid: one identical copy of Fk�2 in the top right
quadrant, another identical copy of Fk�2 in the top left quadrant, one identical copy
of Gk�2 in the bottom left quadrant, and one vertically mirrored copy of Gk�2 in the
bottom right quadrant. As in the case of F, we can connect the roots of the top right
and bottom right subtrees to a new node at ð2ðk�1Þ=2 þ 2ðk�3Þ=2; 2ðk�1Þ=2 þ 1Þ, and the
roots of the top left and bottom left subtrees to a new node at ð2ðk�3Þ=2; 2ðk�1Þ=2 þ 1Þ.
We connect the two new nodes to the new root of Gk at ð2ðk�1Þ=2 þ 1; 2ðk�1Þ=2Þ. The
point (1, 1) remains unused, and the central vertical strip is again empty except for
the edge connecting the root of Gk to the left subtree. h

Perfect binary trees with even height (with an additional root parent) trivially do
not admit a packed embedding in a square grid, but we can use the construction in the
proof of Theorem 1 to obtain packed embeddings in rectangular grids. If the even
height is k, a packed embedding of the perfect binary tree with an additional root
parent and n ¼ 2kþ1 vertices is given by the subdrawing in the two right quadrants of
Fkþ1.

Corollary 1 The perfect binary tree of even height k with an additional root parent,
with n ¼ 2kþ1 vertices, has a packed embedding in the 2k=2þ1 � 2k=2 rectangular
grid.

3 Upward Embedding of Trees in a Given Grid is NP-Hard

Recall that an embedding of a rooted tree is upward if the y-coordinate of a node is
strictly greater than the y-coordinate of its children. A combinatorial embedding is
given by a circular order of incident edges around each vertex. In this section we
show that deciding if a rooted binary tree with a fixed combinatorial embedding can
be drawn upward and without crossings in a given square grid is NP-complete.

Theorem 2 Deciding whether an upward planar straight-line drawing of a fixed
combinatorial embedding of a rooted binary tree on a grid of given size ðw� hÞ
exists is NP-complete.

Proof The problem is in NP since a grid drawing of a tree with k vertices in the grid
can be expressed in O(k) size by assigning vertices to grid points. Checking whether
the drawing is an embedding can trivially be done in Oðk2Þ time by checking
pairwise edge crossings. Checking whether the drawing preserves the given rotation
system takes Oðk2Þ time and checking whether it is upward can be done in O(k) time.

We prove NP-hardness by a reduction from 3SAT which is an NP-complete
problem [14]. An instance of 3SAT is given by a set fx1; . . .; xng of n variables and a
set fc1; . . .; cmg of m clauses. Each variable can assume one of two values in
ftrue; falseg. Each clause is defined by 3 literals, i.e., positive or negative copies
of a variable. A clause is satisfied if at least one of its literals is true. The problem

123

Graphs and Combinatorics (2022) 38:155 Page 5 of 11 155



3SAT asks for an assignment from the variables to ftrue; falseg that satisfies all
clauses. We give an arbitrary order for the variables and say that xi appears before xj
if i\j. The first (resp., second, resp., third) literal of a clause is the literal (among the
3 literals that define the clause) of the variable that appears first (resp., second, resp.,
third) in the order assigned to variables. Given an instance of 3SATwe build a rooted
tree with Oðm2 þ mnÞ vertices and set w ¼ 4mþ 4 and
h ¼ dlog2ð4mþ 4Þe þ 5nþ 4mþ 1.

Overview. Refer to Fig. 2. This paragraph gives a brief informal overview of the
reduction. The following paragraphs will give a full proof. In this section, all
logarithms are base 2. The reduction is divided into 3 parts. The top part (spanning
the top dlogð4mþ 4Þe rows in Fig. 2) is a perfect binary tree with 2dlogð4mþ4Þe�1

leaves. The middle part (spanning the next 5n rows in Fig. 3) is where the variables
are assigned a Boolean value. The bottom part (spanning the last 4mþ 1 rows in
Fig. 3) enforces that every clause of the original instance of 3SAT is satisfied. Each
variable is represented by a red subtree with two long paths that have to span all but
one row below the least common ancestor. The left (resp., right) path represents a
positive (resp., negative) literal of the variable. The construction forces one of the
paths to be drawn one unit above the other and that encodes the Boolean assignment.
If the left path does not span the last row, then the variable is set to true. The
variable is set to false otherwise. In Fig. 2, x2 and x3 (resp., x1 and x4) are set to
true (resp., false). The blue subtrees encode the clauses by allowing the rest of
the construction to occupy specific extra grid positions. The incidence of a variable in
a clause is encoded by an extra leaf child in one of the paths that represent the
incident literal corresponding to the variable. If none of the incident literals of a
clause are set to true, the drawing would require the use of an extra row or column.

Fig. 2 Reduction from 3-SAT
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Otherwise, the extra leaves can be accommodated exactly by the space provided by
the blue subtrees.

Construction. There are exactly 4mþ 4 subtrees attached to the perfect binary
tree on the top of the construction. The fixed combinatorial embedding prescribes a
left-to-right order of such subtrees. For each variable xi, do the following. Set the
4ði� 1Þ þ 1-th subtree to be a path p of length 5nþ 4m; attach another path of
length 5nþ 4m� 5ði� 1Þ � 4 to the right of the 5ði� 1Þ þ 4-th vertex of p. Attach
a right child to the second to last vertex of p. Set the 4ði� 1Þ þ 2-th subtree to be a
path of length 5ði� 1Þ þ 1. Set the 4ði� 1Þ þ 3-th subtree to be a path of length
5ði� 1Þ. At the end of the path, attach two paths pt and pf of length 5ðn� iþ
1Þ þ 4m� 2 each as left and right subtrees respectively. Attach a right (resp., left)
child to the first vertex of pt (resp., pf ). We now describe the position of the vertices
that encode the incidence of a variable in a clause. We call such vertices literal
leaves. If xi (resp., xi) is the first or second literal of cj, then add a right child ‘i;j to the
5ðn� iþ 1Þ þ 4ðj� 1Þ-th vertex of pt (resp., pf ). If xi (resp., xi) is the third literal of
cj, then add a left child ‘i;j to the 5ðn� iþ 1Þ þ 4ðj� 1Þ-th vertex of pt (resp., pf ).
The 4ði� 1Þ þ 3-th subtree is shown in red in Fig. 2. Set the 4ði� 1Þ þ 4-th subtree
to be a path of length 5ði� 1Þ. Finally, we describe the four last subtrees (shown in
blue in Fig. 2). Set the 4mþ 1-th, 4mþ 2-th, and 4mþ 3-th subtrees to be paths of
length 5nþ 4m each. For every clause cj, attach a right leaf child to the 5nþ 4j-th
vertex of the 4mþ 3-th subtree. Set the last subtree to be a path of length 5n. For
each variable xi, attach a right leaf child to the 5i� 4-th vertex of the path. This
finalizes the construction.

Correctness. We argue that the construction is correct, by showing that every
satisfiable 3SAT instance can indeed be embedded in a w� h grid, and that every
drawing that fits in a w� h grid must correspond to a satisfiable 3SAT instance.

Correctness ð)Þ. First assume that the 3SAT instance has a positive solution.
Then we can upward embed the constructed tree in a ðw� hÞ grid as follows. Use the
first dlogð4mþ 4Þe rows to embed the top part of the tree (perfect binary tree). We
describe the embedding of the bottom part of the tree by assigning grid points to
vertices of the subtrees from left to right. Let the bottom left grid point be (0, 0).
Assign the root of the s-th subtree to ðs; 5nþ 4mÞ. We describe the embedding from
left to right with s starting from 1 to 4mþ 4.

General Rule. Apart from the roots of the paths pt and pf of the red subtrees, and
the literal leaves, recursively assign the left child to the leftmost free grid point in the
row immediately below its parent, then assign the right child to the leftmost free grid
point in the same row.

Encoding Truth Assignment. For the i-th red subtree (i.e., s ¼ 4i� 1), let vi be the
least common ancestor of pt and pf . Denote by ðvi:x; vi:yÞ the coordinate of the grid
point assigned to vi. If xi is assigned true (resp., false) in the solution of the
3SAT instance, respectively assign the roots of pt and pf to ðvi:x; vi:y� 1Þ and
ðvi:xþ 1; vi:y� 2Þ (resp., ðvi:x� 1; vi:y� 2Þ and ðvi:x; vi:y� 1Þ).

Position of Literal Leaves ‘i;j. Let a be the parent of ‘i;j. If xi or xi is the first literal
of a clause cj, we place ‘i;j as follows. If it is the last (and therefore the only) literal of
cj with true value, assign it to ða:xþ 1; a:y� 1Þ (see Fig. 3a). Else, if its value is
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true, assign it to ða:xþ 1; a:y� 3Þ (see Fig. 3b). Else, assign it to ða:xþ 1; a:y�
2Þ (see Fig. 3c). If xi or xi is the second literal of a clause cj, we proceed as follows. If
it is the last true literal of cj, assign ‘i;j to ða:xþ 1; a:y� 1Þ (see Fig. 3d). Else, if its
value is true, assign it to ða:xþ 1; a:y� 2Þ (see Fig. 3e). If the first literal of cj was
embedded as in Fig. 3a, then assign ‘i;j to ða:x; a:y� 1Þ (see Fig. 3f). Else, assign ‘i;j
to ða:xþ 1; a:y� 1Þ (see Fig. 3g). If xi or xi is the third literal of a clause cj, we
proceed as follows. If its value is true, assign ‘i;j to ða:x; a:y� 1Þ (see Fig. 3h).
Else, if the second literal of cj was embedded as in Fig. 3f (which happens when the
first and second literals are true and false respectively), then assign ‘i;j to ða:x�
1; a:y� 2Þ (see Fig. 3i). Else, assign ‘i;j to ða:x� 1; a:y� 1Þ (see Fig. 3j). By
construction, the blue subtrees will occupy one less grid point in each of the 3 rows
of y-coordinate 1þ 4ðm� jÞ, 2þ 4ðm� jÞ and 3þ 4ðm� jÞ for each cj. Since the
SAT instance has a positive solution, these will be exactly filled by the literal leaves
of the corresponding variable gadgets.

Correctness ð(Þ. Now, assume that the constructed tree can be upward
embedded in the ðw� hÞ grid. We show that the 3SAT instance has a positive
solution.

Top Part. Notice that the number of vertices in the subtrees of the descendants of
the top perfect binary tree is ð5nþ 4mþ 1Þð4mþ 4Þ. The uppermost y-coordinate
that each root of a subtree can occupy is 5nþ 4m because each has exactly
dlogð4mþ 4Þe ancestors. Then, the solution must place all 4mþ 4 roots of such
subtrees on the row with y-coordinate 5nþ 4m and

ðHÞ every point of the grid below this y-coordinate must be occupied.

Frame. The first subtree can only be embedded as shown in Fig. 2, i.e., each node
occupying the uppermost leftmost grid point possible, or else a grid point would not
be used contradicting ðHÞ. The same is valid for the blue subtrees as well switching
leftmost for rightmost, by ðHÞ. The second tree also has only one possible embedding
by ðHÞ: if a vertex is mapped to a point that is to the right of its leftmost possible
position, then a grid point would be unused; else if it is mapped to a point lower than
its uppermost possible position, then the edge between the vertex and its parent
would go through a grid point, making it unusable by other vertices.

Variable assignment. Let T1 be the first red subtree. We show that the top part
of T1 has only two possible embeddings. First, note that due to a “bump“ created by a
leaf of the last subtree, every grid point ðb; 4mþ 5n� 1Þ for b� 3 is occupied by a

(a)

(h) (i) (j)

(b) (c) (d) (e) (f) (g)

Fig. 3 Possible embeddings for the literal leaves of a clause
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vertex of a tree to the right of T1, or else ðHÞ would be violated. Let vl and vr be the
roots of pl and pr respectively (i.e., children of the root of T1). Then, only one among
vl and vr can be at ð2; 4mþ 5n� 1Þ and those are the only vertices that can be
assigned to that grid point. If we choose vl (resp., vr) to be at ð2; 4mþ 5n� 1Þ, then
vr (resp., vl) must be at ð1; 4mþ 5n� 2Þ (resp., ð3; 4mþ 5n� 2Þ). The remainder of
the embedding of T1 is fixed by ðHÞ until row 4m. Using similar arguments, we can
show that, if ðHÞ is satisfied, once we fix the embedding of the top part of T1, the
embeddings of all subtrees are fixed from their roots to row 4mþ 5n� 5. We can
then apply induction to show that there are only two possible embeddings for the top
part of i-th red subtree Ti and every non-red subtree has a fixed embedding until row
4m.

Clause Satisfaction. Once the middle part of the construction is fixed, row 0 is also
fixed because the 4mþ 3 leftmost vertices at row 4m have 4mþ 4 descendant leaves
at distance 4m. That implies that every vertex on a path of length 4m or 4m� 1 in the
bottom part of the construction has their y-coordinate fixed. Because of the fixed
position of the leaves of the blue trees, the literal leaves of a clause cj can only
occupy the y-coordinates 4ðm� jÞ þ 1, 4ðm� jÞ þ 2, and 4ðm� jÞ þ 3. Note that a
literal leaf can only occupy a y-coordinate 4ðm� jÞ þ 3 if the corresponding red path
was embedded above the other red path of the same variable. Since every clause must
have a literal leaf at y-coordinate 4ðm� jÞ þ 3, assigning true (resp., false) to xi
if the corresponding pl (resp., pr) is embedded above pr (resp., pl) will result in a
satisfying assignment. h

4 Conclusions

We studied tree drawings in small areas.
For arbitrary drawings, we constructed (almost) packed embeddings of perfect

binary trees. The main remaining open question here is whether every low-degree
tree with wh vertices (or fewer) can be embedded in a w� h grid. We conjecture that
this is the case when w ¼ h. Another intriguing question is, for general trees, whether
testing if they can be embedded in a given grid is computationally tractable.

For strictly upward drawings, we showed that even for bounded-degree trees,
testing whether an order-preserving embedding of given tree in a w� h rectangle
exists is already NP-hard. It would be interesting to know whether the same is true
when one can freely choose the combinatorial embedding (Biedl and Mondal’s proof
[2] produces trees of degree nXð1Þ). Another question is whether the problem is also
NP-hard for upward embeddings, where adjacent vertices may be embedded using
the same y-coordinate.
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