
Semantics for two-dimensional type theory
Benedikt Ahrens

Delft University of Technology
Delft, The Netherlands

University of Birmingham
Birmingham, United Kingdom

B.P.Ahrens@tudelft.nl

Paige Randall North
University of Pennsylvania

Philadelphia, PA, United States
pnorth@upenn.edu

Niels van der Weide
Radboud University

Nijmegen, The Netherlands
nweide@cs.ru.nl

ABSTRACT
We propose a general notion of model for two-dimensional type
theory, in the form of comprehension bicategories. Examples of com-
prehension bicategories are plentiful; they include interpretations
of directed type theory previously studied in the literature.

From comprehension bicategories, we extract a core syntax, that
is, judgment forms and structural inference rules, for a two-dimen-
sional type theory. We prove soundness of the rules by giving an
interpretation in any comprehension bicategory.

The semantic aspects of our work are fully checked in the Coq
proof assistant, based on the UniMath library.

This work is the first step towards a theory of syntax and seman-
tics for higher-dimensional directed type theory.

CCS CONCEPTS
• Theory of computation→ Type theory; Logic and verification;
Denotational semantics.

KEYWORDS
directed type theory, dependent types, comprehension bicategory,
computer-checked proof
ACM Reference Format:
Benedikt Ahrens, Paige Randall North, and Niels van der Weide. 2022. Se-
mantics for two-dimensional type theory. In 37th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS) (LICS ’22), August 2–5, 2022, Haifa,
Israel. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3531130.
3533334

1 INTRODUCTION
In recent years, efforts have been made to develop directed type the-
ory. Roughly, directed type theory should correspond to Martin-Löf
type theory (MLTT) as∞-categories correspond to∞-groupoids.
Besides theoretical interest in directed type theory, it is hoped that
such a type theory can serve as a framework for synthetic directed
homotopy theory and synthetic∞-category theory. Applications of
those, in turn, include reasoning about concurrent processes [13].

Several proposals for syntax for directed type theory have been
given (reviewed in Section 2), but are ad-hoc and are not always
semantically justified. The semantic aspects of directed type theory

This work is licensed under a Creative Commons Attribution International
4.0 License.

LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9351-5/22/08.
https://doi.org/10.1145/3531130.3533334

are particularly underdeveloped; a general notion of model of a
directed type theory is still lacking.

In this work, we approach the development of directed type
theory from the semantic side. We introduce comprehension bicate-
gories as a suitable mathematical structure for higher-dimensional
(directed) type theory. Comprehension bicategories capture several
different specific mathematical structures that have previously been
used to interpret higher-dimensional or directed type theory.

From comprehension bicategories, we extract the core syntax—
judgment forms and structural inference rules—of a two-dimen-
sional dependent type theory that can accommodate directed type
theory. We also give a soundness proof of our structural rules.
In separate work, we will equip our syntax and semantics with
variances and type and term formers for directed type theory.

To motivate our approach, we analyze in Section 1.1 how higher-
groupoidal structure arises in MLTT through an interplay of judg-
mental equality and typal identity. Our analysis thus leads to the
desiderata listed in Section 1.2. In Section 1.3 we discuss the foun-
dations we work in, and aspects of the computer formalization of
some of our results.

1.1 Judgmental and Typal Higher Dimensions
When discussing two- or higher-dimensional type theory, we need
to understand how these dimensions are generated.

The judgment forms of traditional MLTT specify types, contexts,
terms, and judgmental equality (conversion) between types and
terms. There is, prima facie, nothing higher-dimensional about
these judgments, and an interpretation of types as sets and terms as
elements of sets seems perfectly adequate. In this sense, Martin-Löf
type theory is 1-dimensional. However, MLTT is often said to be∞-
dimensional. The higher dimensions are generated by the identity
type, which internalizes the judgmental equality; specifically, the
well-known reflexivity rule generates a typal identity from a judg-
mental equality. Since the identity type can be iterated, judgmental
equality then also becomes available for terms of the identity type
itself. This mutual interaction between judgmental equality and ty-
pal identity provides the infrastructure to “lift” judgmental equality
to higher dimensions without extending the judgmental structure
of MLTT. The tower of types (A, IdA, IdIdA , . . .) then can be given
the structure of an∞-groupoid, as shown by [8, 28].

When developing a directed type theory, with models in ∞-
categories, analogous ingredients are required:

I1: A judgment of (directed) reductions between types and terms,
analogous to judgmental equality;

I2: A type former for homomorphisms between terms, analogous
to identity types.

https://orcid.org/0000-0002-6786-4538
https://orcid.org/0000-0001-7876-0956
https://orcid.org/0000-0003-1146-4161
https://doi.org/10.1145/3531130.3533334
https://doi.org/10.1145/3531130.3533334
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3531130.3533334
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3531130.3533334&domain=pdf&date_stamp=2022-08-04

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

I3: A notion ofmodel in which to interpret the judgments and type
formers.

Previous work on higher-dimensional and directed type theory
has focused on either syntax (I1/I2) or semantics (I3), but not on
both. Licata and Harper [25, 26] and Nuyts [30] devise judgmental
structure for higher-dimensional and directed type theory. North
[29] devises a type former for directed homomorphisms between
terms, on top of the judgmental structure of MLTT. None of them
proposes an adequate general definition of model of directed type
theory. Garner [17] defines a notion of higher-dimensional model,
but considers only undirected type theory.

In the present work, we propose a judgmental framework (I1),
and a suitable general notion of semantics (I3), for higher-dimen-
sional and directed type theory. In a separate work we will expand
this core by a system of variances suitable for accommodating a type
former akin to North’s hom-types (I2), to build a fully functional
higher-dimensional type theory.

1.2 Syntax and Semantics, Semantics and
Syntax

Most previous work on directed type theory privileged the devel-
opment of syntactic aspects over the semantic ones. We choose to
approach the challenge from the other direction: we start by devis-
ing a suitable categorical structure for directed type theory, and
extract from it a syntax. When developing syntax and semantics,
we applied the following “quality criteria”:
Q1: The obtained syntax should express contexts, types, terms, and

reductions between terms.
Q2: The semantics considered by Garner [17], Licata and Harper

[25, 26], and North [29] should be instances of our semantics
(modulo variances and type constructors that are not considered
here).

The semantics we propose are described in Section 6, and the ex-
tracted syntax is described in Section 7. Both our syntax and se-
mantics are quite general; for instance, our reductions are proof-
relevant—like those in [25, 26], and unlike judgmental equality in
MLTT, which is proof-irrelevant. Syntax and semantics could rea-
sonably be simplified or specialized. Crucially, our work provides a
framework to modify syntax and semantics in lockstep, with a clear
mechanism to analyze changes to the syntax on the semantic side
and vice versa. We suggest some possible changes in Section 7.5.

Following this analysis and workplan, we derive the following
goals for our work:
D1: a system of inference rules for dependent types with directed

reductions between terms;
D2: a definition of mathematical structures suitable for the mathe-

matical modelling of the syntactic rules;
D3: an interpretation of the inference rules in such a mathematical

structure;
D4: a syntax for type and term formers on top of D1;
D5: a semantic structure for the interpretation of type and term

formers.
In the present work, we achieve desiderata D1, D2, and D3. The
study of variances and type and term constructors will be reported
on elsewhere.

1.3 Foundations and Formalization in UniMath
The main results presented here are agnostic to foundations; they
can be formalized in both set theory and type theory.

However, some of the notions we employ can economically be
formulated using dependent types. In particular, we work with
(Grothendieck) fibrations of (bi)categories, whose formulation in
set theory usually relies on postulating equality of objects. Using
dependent types, a formulation of such concepts can be given that
avoids any reasoning about equality of objects; instead, these con-
cepts are formulated in terms of fibers. For this reason, we use
type-theoretic language throughout the paper; see also, e. g., Re-
mark 4.1. More precisely, we work in univalent foundations; in
particular, we formulate results and examples in terms of uni-
valent (bi)categories [2, 3]. These are equivalent to set-theoretic
(bi)categories via Voevodsky’s model in Kan complexes [23].

We carefully distinguish data and property; specifically, we pos-
tulate elements to be explicitly given as data rather than to merely
exist. We do not rely on any choice axioms or on excluded middle.

The semantic results of this work are checked in Coq [41], based
on the UniMath [42] library of univalent mathematics. Our code
has been integrated into UniMath. To document our formalization,
we refer to UniMath commit 3bcf236. Many definitions are accom-
panied by a link (e. g., bicat) to the corresponding definition in an
HTML version of that commit. The code written specifically for
this work comprises approximately 21,000 lines of code.

We build upon an existing library of (bi)category theory [2, 3],
and use heavily the displayed machinery, developed for (1-)cate-
gories in [4] and extended to bicategories in [2]. In particular, the
notions of Grothendieck fibration we are using (in the 1-categorical
case) and developing (in the bicategorical case) are based on dis-
played (bi)categories; we can thus discuss these notions without
postulating equality of objects.

1.4 Synopsis
In Section 2 we review related work. In Section 3 we review (dis-
played) bicategories and functors. In Section 4 we define cloven
global and local (op/iso)fibrations of bicategories. In Section 5 we
discuss Street (op)fibrations internal to bicategories, which form
our main examples of comprehension bicategories. In Section 6 we
give our main definition, of comprehension bicategories, and we
present many examples. In Section 7 we present a syntax for two-
dimensional type theory and give an interpretation of the syntax
in any comprehension bicategory.

2 RELATEDWORK
In this section, we review work with a similar goal to ours, as well
as work we rely on. We pay particular attention to the desiderata
outlined in Section 1.2 and to the difference between judgmental
and typal dimensions.

2.1 Non-dependent type theories
For the sake of completeness, we include in this section pointers
to work on simple type theories with reductions. The following
works satisfy a non-dependent variant of D1, together with suitable
adaptations of D2 and D3. However, due to the absence of type
dependency, they are difficult to compare to our work.

https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/commit/3bcf2369e5115ad6c2b4b1e6f79782357cef12aa
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Core.Bicat.html#bicat

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

Seely’s paper [33] presents a syntax for a two-dimensional sim-
ply-typed lambda calculus, consisting of types, terms, and reduc-
tions between terms. They then construct a 2-category out of that
syntax. Tabareau [40] frames aspect-oriented programming in a
2-categorical way, developing a lambda calculus that provides an
internal language for 2-categories. Hirschowitz [20] constructs a
2-adjunction between 2-signatures for lambda calculi (where such
signatures specify types, terms, and reductions) and the category
of Cartesian closed 2-categories. Fiore and Saville [16] construct
an internal language for cartesian closed bicategories; the result
is a class (parametrized by a notion of signature for constants) of
simple 2-dimensional type theories or lambda calculi. This last work
shares one aspect with ours that the others do not: it uses (weak)
bicategorical structure, rather than (strict) 2-categorical structure.

2.2 Theories for Higher Categories
There is a body of work on designing type theories for ω-groupoids
and ω-categories. In these type theories, one works, semantically
speaking, within one fixed ∞-groupoid (or ω-category). Compare
this to, e. g., , Martin-Löf type theory, where one manipulates ∞-
groupoids (types and identity types) and ∞-functors (functions)
between them. Analogously, in our type theory, each type can be
thought of as a category. Despite these different goals, we mention
some of the work in this area.

Brunerie [9] constructs a type theory whose models are weak
∞-groupoids. Benjamin et al. [7] (see also [14]) design a type the-
ory whose models are precisely ω-categories à la Grothendieck–
Maltsiniotis. In [15], the authors study meta-theoretic properties of
a language for strictly unital∞-categories. There are also computer
tools implementing such type theories, see, e. g., [5, 31].

2.3 Theories with Dependent Types
In this section we review work on higher-dimensional and directed
type theory with dependent types. We start with a review of work
on undirected type theory.

2.3.1 Undirected Type Theory. The idea of considering higher-di-
mensional interpretations of type theory was born with Hofmann
and Streicher’s groupoid interpretation of Martin-Löf type theory
[21]. This interpretation was generalized to stacks (poset-indexed
groupoids satisfying a sheaf condition) in order to prove the inde-
pendence of several logical principles by Coquand, Mannaa, and
Ruch [12]. It was furthermore generalized, from different angles,
to higher dimensions, see, e. g., [8, 23, 28]. Common to all of this
work is the restriction to (higher) groupoids.

In [26], Licata and Harper developed a two-dimensional depen-
dent type theory with a judgment for equivalences Γ ⊢ α : M ≃A N
between terms M,N : A. These equivalences are postulated to
have (strict) inverses. The authors give an interpretation of types
as groupoids: terms are (interpreted as) objects in the interpreting
groupoid, and equivalences are morphisms, necessarily invertible.
No general notion of semantic structure is discussed; this work
hence satisfies an undirected version of D1, but not D2.

Garner [17] studies a typal two-dimensional type theory à la
Martin-Löf: the forms of judgment are the same as in Martin-Löf
type theory. Garner calls a typeX “discrete” if it satisfies identity re-
flection (that is, if any identity p : x = y between elements x ,y : X

induces a judgmental equality x ≡ y. They then add rules that
turn any identity type into a discrete type, effectively “truncating”
intensional Martin-Löf type theory at 1-types (even though in prin-
ciple, the identity type can of course be iterated any number of
times). Garner defines a notion of two-dimensional model based on
(strict) comprehension 2-categories. Exploiting the restriction to 1-
truncated types, they then give a sound and complete interpretation
of their two-dimensional type theory in any model. Identity types
are automatically “symmetric”, i.e., any identity admits an inverse;
correspondingly, Garner defines their comprehension 2-categories
to consist of locally groupoidal 2-categories. Thus, Garner’s work
satisfies D1 for undirected reductions, using the identity type for
this purpose. Garner also considers type constructors such as de-
pendent pair types and dependent product types, thus satisfying
D4 and D5 in this case.1

2.3.2 Directed Type Theory. Licata and Harper [25] (see also [24,
Chapter 7]) also designed a directed two-dimensional type theory
and gave an interpretation for it in the strict 2-category of cat-
egories. Their syntax has a judgment for substitutions between
contexts, written Γ ⊢ θ : ∆, and transformations between parallel
substitutions. An important aspect of their work is variance of con-
texts/types, built into the judgments. The type formers there have
a certain variance—covariance or contravariance—in each of the
arguments. They do not define a general notion of model for their
theory; this work hence satisfies D1, but not D2.

Nuyts [30, Section 1.3.1] observes that the type theory developed
by Licata and Harper [25] does not allow for a non-trivial Martin-
Löf identity type—any such type would coincide with the directed
transformations. Nuyts thus attempts to generalize the treatment of
variance by Licata and Harper, and designs a directed type theory
with additional variances, such as isovariance and invariance. Nuyts
does not provide any interpretation of their syntax, and thus no
proof of (relative) consistency; the work hence does not satisfy D2.

North [29] develops a type former for directed types of mor-
phisms, resulting in a typal higher-dimensional directed type theory
based on the judgments of MLTT. North’s work thus does not sat-
isfy D1. The model given by North is in the 2-category of categories,
similar to Licata and Harper’s [25].

Shulman, in unfinished work [36], aims to develop 2-categorical
logic, including a two-dimensional notion of topos and a suitable
internal language for such toposes. Specifically, Shulman sketches
two internal languages for 2-toposes. The first language [35] is
undirected, consisting only of types and terms. The second language
[34] is only described in a short sketch; it is a kind of directed
type theory featuring, in particular, variances. Our work is similar
to Shulman’s in the sense that both start from a (bi)categorical
notion and extract a language from it, with the goal of developing
a precise correspondence between extensions of the syntax and
additional structure on the semantics. Unfortunately, Shulman’s
work is far from finished, which makes a more complete evaluation
difficult. However, it contains several ideas that have influenced the
present work. For instance, Shulman [37] emphasizes the usefulness
of restricting to (op)fibrations instead of considering all 1-cells

1Garner also relies on Hermida’s [19] slightly incomplete definition of fibration of
2-categories; see Buckley’s work [11, Remark 2.1.9] for details). We have not checked
if Garner’s work extends to Buckley’s corrected definition of 2-fibration.

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

when constructing bicategories of arrows—we do this in our main
examples of comprehension bicategory, Examples 6.4 and 6.5.

Riehl and Shulman [32] design a simplicial type theory (STT)
featuring a directed interval type, as a synthetic theory of (∞, 1)-
categories. As a notion of model, they introduce “comprehension
categories with shapes” [32, Def. A.5]. These are (1-categorical)
towers of fibrations accounting for several layers of contexts. Fur-
ther Work on STT was done, among others, by [43] and [10]. STT is
not higher-dimensional in the sense of [25] or the present work; in
particular, reductions, both in the tope layer and in the type layer,
are symmetric. This work thus does not satisfy D1.

Summary. In the present work, we define a bicategorical notion
of “model” for the interpretation of types, terms, and reductions,
and derive from it a system of inference rules and an interpretation
of those rules in any model; our work thus satisies D1, D2, and D3.
We do not handle D4 and D5 in this work.

Among the described related work, our work is closest to work
by Licata and Harper [25] and Garner [17]. Compared to [25], we
add a general definition of “model” of a directed two-dimensional
type theory, and provide many examples of models. Compared to
[17], we cover directed reductions, and provide many instances of
our general definition of model. Compared to both works, we do
not handle type and term formers.

3 PRELIMINARIES
Here, we sketch some definitions used later on. Many would be very
long if given in full; instead, we try to convey some intuition and
give pointers to the precise definitions. As a reference for bicategory
theory, see Bénabou’s article [6].We use here the vocabulary and
notation introduced in [2].

Definition 3.1 (bicat). A bicategory consists of a type B0 of 0-
cells (or objects), a typea → b of 1-cells froma tob for everya,b : B0,
and a set f ⇒ д of 2-cells from f to д for every a,b : B0 and f ,д :
a → b. We have identity id1(a) : a → a and composition of 1-cells
f · д : a → c (also written f д), which we write in diagrammatical
order. These operations do not satisfy the axioms for a 1-category.
Instead, we have, for instance, the left unitors, that is, invertible 2-
cells of type id1(a) · f → f for any object a, and similar for the right
unitors. Analogously, we have the associators, a family of invertible
2-cells α(f ,д,h) : f · (д · h) → (f · д) · h. For 2-cells θ : f ⇒ д and
τ : д ⇒ h (where f ,д,h : a → b for some a,b : B0), we have a
vertical composition θ •τ : f ⇒ h. For any 1-cell f : a → b, we have
an identity 2-cell id2(f) : f ⇒ f , which is neutral with respect to
vertical composition: id2(f)•θ = θ . For any two objects a and b, the
1-cells from a to b, and 2-cells between them, form the objects and
morphisms of the hom-category B(a,b), with composition given by
vertical composition of B. We also have left and right whiskering;
given a 2-cell θ : f ⇒ д : b → c and a 1-cell e : a → b, we have
the left whiskering e ◁ θ : e · f ⇒ e · д, and, similarly, the right
whiskering θ ▷ h : f · h ⇒ д · h for h : c → d . We do not list
the axioms that these operations satisfy; the interested reader can
consult, e. g., [1, Def. 2.1].

We denote by Cat the bicategory of categories, and by Grpd the
bicategory of groupoids. The bicategory Bco has the same objects

and 1-cells as B, but 2-cells from f to д in Bco are the same as 2-cells
from д to f in B.

Definition 3.2 (psfunctor). Given two bicategories B and B′, a
pseudofunctor F : B → B′ is given by maps F0 : B0 → B′

0,
F1 : (a → b) → (F0a → F0b),2 and p2 : (f ⇒ д) → (F1 f ⇒
F1д), preserving structure on 1-cells up to invertible 2-cells in B′
(specified as part of the functor F) and preserving structure on
2-cells up to equality.

We build complicated bicategories from simpler ones by adding
structure at all dimensions. The additional structure should come
with its own composition and identity, which should lie suitably
over composition and identity of the original bicategory. This idea is
formalized in the notion of displayed bicategory—a layer of data over
a base bicategory—and the resulting total bicategory—the bicategory
of pairs (b,b) of a cell b in the base and a cell b “over” b. We also
obtain a pseudofunctor from the total bicategory into the base,
given at all dimensions by the first projection.

Definition 3.3 ([1, Def. 4.1], disp_bicat). Let B be a bicategory. A
displayed bicategory D over B consists of

(1) for any b : B0, a type Db of objects over b;

(2) for any f : a → b and x : Da and y : Db , a type x
f→ y of

1-cells over f ;

(3) for any θ : f ⇒ д and f : x
f→ y and д : x

д→ y, a set f
θ⇒ д

of 2-cells over θ ;
together with suitably typed composition (over composition in
B) and identity (over identity in B) for both 1- and 2-cells. These
operations are subject to “axioms over axioms in B”.

Definition 3.4 ([1, Def. 4.2], total_bicat). Given a displayed bicate-
gory D over B, we define the total bicategory

∫
D to have, as cells

at dimension i , pairs (b,b) where b is a cell of B at dimension i and
b is a cell of D over b, with the obvious source and target.

We define the projection pseudofunctor π :
∫
D → B to be

given, on any cell, by (b,b) 7→ b.

Remark 3.1. Note that all (displayed) (bi)catgories are assumed
to be univalent. We do not repeat the definition here, but point in-
stead to [2, Defs. 3.1, 7.3]. Intuitively, univalence means that adjoint
equivalence of 0-cells, and isomorphism of 1-cells, coincides with iden-
tity between them, respectively. Working with univalent bicategories
allows us to simplify some definitions, see Remark 4.1.

The following (displayed) bicategories will be used later:

Example 3.5 (trivial_displayed_bicat). Given bicategories B1 and
B2, we define a displayed bicategory B1+B2 over B1 as follows:

• The displayed 0-cells over x : B1 are 0-cells y : B2.
• The displayed 1-cells over f : x1 → x2 from y1 : B2 to
y2 : B2 are 1-cells д : y1 → y2 in B2.

• The displayed 2-cells over θ : f ⇒ д from д1 : y1 → y2 to
д2 : y1 → y2 are 2-cells τ : д1 ⇒ д2 in B2.

The total bicategory is
∫
B1+B2 = B1 × B2 with projection π :

B1 × B2 → B1.
2Note that→ is used for both 1-cells and function types.

https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Core.Bicat.html#bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.PseudoFunctors.PseudoFunctor.html#psfunctor
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.Examples.Trivial.html#trivial_displayed_bicat

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

Example 3.6 (cod_disp_bicat). Let B be a bicategory. Define a
displayed bicategory B↓ over B as follows:

• The displayed objects over y : B are 1-cells x → y.
• The displayed 1-cells over д : y1 → y2 from h1 : x1 → y1 to
h2 : x2 → y2 are pairs consisting of a 1-cell f : x1 → x2 and
an invertible 2-cell γ : д · h2 ⇒ h1 · f .

• Given displayed 1-cells f1 : x1 → x2 withγ1 : д1 ·h2 ⇒ h1 · f1,
and f2 : x1 → x2 with γ2 : д2 · h2 ⇒ h1 · f2, we define the
displayed 2-cells over θ : д1 ⇒ д2 from (f1,γ1) to (f2,γ2) as
2-cells τ : f1 ⇒ f2 such that γ1 • (h1 ◁ τ) = (θ ▷ h2) • γ2.

The generated total bicategory is the arrow bicategory,
∫
B↓ = B→

with projection given by the codomain, cod : B→ → B.

Example 3.7 (disp_bicat_of_opcleaving). We define a displayed
bicategory OpCleav over Cat as follows:

• The displayed objects over C : Cat are displayed categories
D over C together with an opcleaving.

• The displayed 1-cells over F : C1 → C2 from D1 to D2 are
displayed functors F fromD1 toD2 that preserve opcartesian
morphisms.

• The displayed 2-cells over θ : F ⇒ G from F : D1
F→ D2 to

G : D1
G→ D2 are displayed natural transformations from F

to G over θ .
The associated projection pseudofunctor π :

∫
OpCleav → Cat

maps any opcleaving to its codomain category.

Similarly, we can define displayed bicategories Cleav and IsoFib
of cleavings and isocleavings, respectively.

The idea of displayed (bi)categories transfers to functors:

Definition 3.8 ([2, Def. 8.2], disp_psfunctor). Given F : B → B′
and D and D′ displayed bicategories over B and B′, respectively, a
displayed pseudofunctor F over F is

• for all objects x : B and x : Dx an object F (x) : D′
F (x);

• for all displayed morphisms f : x
f→ y, a displayed 1-cell

F (f) : F (x) F (f)→ F (y);
• for all displayed 2-cells θ : f

θ⇒ д, a displayed 2-cell F (θ) :
F (f) F (θ)⇒ F (д).

We denote by
∫
F :

∫
D →

∫
D′ the induced total pseudofunctor.

Remark 3.2. The square of pseudofunctors

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

together with suitably typed composition (over composition
in B) and identity (over identity in B) for both 1- and 2-cells.
These operations are subject to “axioms over axioms in B”.

Definition 3.2 ([1, Def. 4.2], total_bicat). Given a displayed
bicategory D over B, we define the total bicategory

∫
D to

have, as cells at dimension 𝑖 , pairs (𝑏, 𝑏) where 𝑏 is a cell of
B at dimension 𝑖 and 𝑏 is a cell of D over 𝑏, with the obvious
source and target.
We define the projection pseudofunctor 𝜋 :

∫
D → B to

be given, on any cell, by (𝑏, 𝑏) ↦→ 𝑏.

Remark 3.3. Note that all (displayed) (bi)catgories are as-
sumed to be univalent. We do not repeat the definition here,
but point instead to [2, Defs. 3.1, 7.3]. Intuitively, univalence
means that adjoint equivalence of 0-cells, and isomorphism
of 1-cells, coincides with identity between them, respectively.
Working with univalent bicategories allows us to simplify
some definitions, see Remark 4.2.

The following (displayed) bicategories will be used later:

Example 3.4 (trivial_displayed_bicat). Suppose that we
have bicategories B1 and B2. Define a displayed bicategory
B1

+B2 over B1 as follows:
• The displayed 0-cells over 𝑥 : B1 are 0-cells 𝑦 : B2.
• The displayed 1-cells over 𝑓 : 𝑥1 → 𝑥2 from 𝑦1 : B2 to
𝑦2 : B2 are 1-cells 𝑔 : 𝑦1 → 𝑦2 in B2.

• The displayed 2-cells over \ : 𝑓 ⇒ 𝑔 from𝑔1 : 𝑦1 → 𝑦2
to 𝑔2 : 𝑦1 → 𝑦2 are 2-cells 𝜏 : 𝑔1 ⇒ 𝑔2 in B2.

The total bicategory is
∫
B1

+B2 = B1 × B2 with projection
𝜋 : B1 × B2 → B1.

Example 3.5 (cod_disp_bicat). Let B be a bicategory. Define
a displayed bicategory B↓ over B as follows:

• The displayed objects over 𝑦 : B are 1-cells 𝑥 → 𝑦.
• The displayed 1-cells over 𝑔 : 𝑦1 → 𝑦2 from ℎ1 : 𝑥1 →
𝑦1 to ℎ2 : 𝑥2 → 𝑦2 are pairs consisting of a 1-cell
𝑓 : 𝑥1 → 𝑥2 and an invertible 2-cell 𝛾 : 𝑔 · ℎ2 ⇒ ℎ1 · 𝑓 .

• Given displayed 1-cells 𝑓1 : 𝑥1 → 𝑥2 with 𝛾1 : 𝑔1 ·ℎ2 ⇒
ℎ1 · 𝑓1, and 𝑓2 : 𝑥1 → 𝑥2 with 𝛾2 : 𝑔2 · ℎ2 ⇒ ℎ1 · 𝑓2,
we define the displayed 2-cells over \ : 𝑔1 ⇒ 𝑔2 from
(𝑓1, 𝛾1) to (𝑓2, 𝛾2) as 2-cells 𝜏 : 𝑓1 ⇒ 𝑓2 such that 𝛾1 •
(ℎ1 ◁ 𝜏) = (\ ▷ ℎ2) • 𝛾2.

The generated total bicategory is the arrow bicategory,
∫
B↓ =

B→ with projection given by the codomain, cod : B→ → B.

Example 3.6 (disp_bicat_of_opcleaving). We define a dis-
played bicategory OpCleav over Cat as follows:

• The displayed objects over C : Cat are displayed cate-
gories D over 𝐶 together with an opcleaving.

• The displayed 1-cells over 𝐹 : C1 → C2 from D1 to D2
are displayed functors 𝐹 from D1 to D2 that preserve
opcartesian morphisms.

• The displayed 2-cells over \ : 𝐹 ⇒ 𝐺 from 𝐹 : D1
𝐹−→

D2 to 𝐺 : D1
𝐺−→ D2 are displayed natural transforma-

tions from 𝐹 to 𝐺 over \ .
The associated projection pseudofunctor 𝜋 :

∫
OpCleav →

Cat maps any opcleaving to its codomain category.

Similarly, we can define displayed bicategories Cleav and
IsoFib of cleavings and isocleavings, respectively.

The idea of displayed (bi)categories transfers to functors:

Definition 3.7 ([2, Def. 8.2], disp_psfunctor). Given 𝐹 :
B → B′ and D and D′ displayed bicategories over B and B′,
respectively, a displayed pseudofunctor 𝐹 over 𝐹 is

• for all objects 𝑥 : B and 𝑥 : D𝑥 an object 𝐹 (𝑥) : D′
𝐹 (𝑥) ;

• for all displayed morphisms 𝑓 : 𝑥
𝑓−→ 𝑦, a displayed

1-cell 𝐹 (𝑓) : 𝐹 (𝑥) 𝐹 (𝑓)−−−→ 𝐹 (𝑦);
• for all displayed 2-cells \ : 𝑓

\
=⇒ 𝑔, a displayed 2-cell

𝐹 (\) : 𝐹 (𝑓) 𝐹 (\)
====⇒ 𝐹 (𝑔).

We denote by
∫
𝐹 :

∫
D →

∫
D′ the induced total pseudo-

functor.

Remark 3.8. The square of pseudofunctors

∫
D

∫
D′

B B′

∫
𝐹

𝜋D 𝜋D′

𝐹

induced by 𝐹 over 𝐹 commutes up to judgmental equality on
any input.

Furthermore, we need some pullbacks and binary products
in bicategories. The definition of pullbacks is given in the
appendix of the arXiv version [5] of this article.

Example 3.9. We refer to the formalization for the descrip-
tion of pullbacks in Cat (has_pb_bicat_of_univ_cats) and in
groupoids (one_types_has_pb).

As a special case of pullbacks in the presence of terminal
objects, we can define products in bicategories (has_binprod_
ump). If B has chosen products, then we write 𝑥 × 𝑦 for
the product of 𝑥 and 𝑦, and we denote the projections by
𝜋1 : 𝑥 × 𝑦 → 𝑥 and 𝜋2 : 𝑥 × 𝑦 → 𝑦.

4 Fibrations, Type-Theoretically
In this section, we define the notion of global cleaving of
bicategories that we use in our definition of comprehension
bicategories. In addition, we define local (op)cleavings, which
are also used to interpret the syntax of Section 7. We are
guided by Buckley’s paper [12], where local and global fi-
brations are defined, and we add definitions for local cloven

induced by F over F commutes up to judgmental equality.

Furthermore, we need pullbacks and products in bicategories.

Definition 3.9 (has_pb). Let B be a bicategory, and suppose we
have two 1-cells f : a → c and д : b → c . A pullback structure
for f and д on an object x : B together with two 1-cells π1 : x → a
and π2 : x → b and an invertible 2-cell γ : p · f ⇒ q · д is given by
the following data:

• for all 1-cells p′ : z → a and q′ : z → b and invertible 2-cells
γ ′ : p′ · f ⇒ q′ · д, we have a 1-cell u : z → x together with
invertible 2-cells θ : u · p ⇒ p′ and τ : u · q ⇒ q′ such that

α • θ ▷ f • γ ′ = u ◁ γ • α−1 • τ ▷ д.
• for all 1-cells u1,u2 : z → x and 2-cells θ : u1 • p ⇒ u2 • p
and τ : u1 • q ⇒ u2 • q such that

u1 ◁ γ • α • τ ▷ q • α−1 = α • θ ▷ f • α−1 • u2 ◁ γ ,
we have a unique 2-cell ν : u1 ⇒ u2 such that ν ▷ p = θ and
ν ▷ q = τ .

Remark 3.3. There are different notions of pullback in bicategories
depending on whether p · f and q ·д are postulated to be related up to
an equality, invertible 2-cell or even just a 2-cell. In Definition 3.9, the
square commutes up to invertible 2-cell. One could also define strict
pullbacks: this is done similarly to Definition 3.9, but all involved
squares must commute up to equality rather than just up to invertible
2-cell.

Example 3.10. We refer to the formalization for the description
of pullbacks in Cat (has_pb_bicat_of_univ_cats) and in groupoids
(one_types_has_pb).

As a special case of pullbacks in the presence of terminal objects,
we can define products in bicategories (has_binprod_ump). If B has
chosen products, then we write x ×y for the product of x andy, and
we denote the projections by π1 : x × y → x and π2 : x × y → y.

4 FIBRATIONS, TYPE-THEORETICALLY
In this section, we define the notion of global cleaving of bicate-
gories that we use in our definition of comprehension bicategories.
In addition, we define local (op)cleavings, which are also used to
interpret the syntax of Section 7. We are guided by Buckley’s pa-
per [11], where local and global fibrations are defined, and we add
definitions for local cloven iso- and opfibrations. However, there
is an important difference: while Buckley works in a set-theoretic
setting, we reformulate the definitions in a type-theoretic setting
using the displayed technology developed in [2] and reviewed in
Section 3—see also Remark 4.1.

Throughout this section, we assume that B is a bicategory and
D is a displayed bicategory over B.

Definition 4.1 ([11, Def. 3.1.1], cartesian_1cell). Let f : a → b be

a 1-cell in B, and let f : a
f→ b be a displayed 1-cell over f in D. A

cartesian structure on f consists of the following:

(1) For any д : c
h ·f→ b, we have a displayed morphism h :

c
h→ a and a displayed isomorphism θ over the identity

isomorphism on h · f in B.

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

iso- and opfibrations. However, there is an important dif-
ference: while Buckley works in a set-theoretic setting, we
reformulate the definitions in a type-theoretic setting using
the displayed technology developed in [2] and reviewed in
Section 3—see also Remark 4.2.

Throughout this section, we assume that B is a bicategory
and D is a displayed bicategory over B.
Definition 4.1 ([12, Def. 3.1.1], cartesian_1cell). Let 𝑓 : 𝑎 →
𝑏 be a 1-cell in B, and let 𝑓 : 𝑎

𝑓−→ 𝑏 be a displayed 1-cell over
𝑓 inD. A cartesian structure on 𝑓 consists of the following:

1. For any 𝑔 : 𝑐
ℎ ·𝑓−−→ 𝑏, we have a displayed morphism

ℎ : 𝑐 ℎ−→ 𝑎 and a displayed isomorphism \ over the
identity isomorphism on ℎ · 𝑓 in B.

𝑐

𝑎 𝑏

𝑔
ℎ

𝑓

\

𝑐

𝑎 𝑏

ℎ
ℎ ·𝑓

𝑓

id2

We call (ℎ, \) a lift of (ℎ,𝑔).
2. Given lifts (ℎ1, \1) and (ℎ2, \2) of (ℎ1, 𝑔1) and (ℎ2, 𝑔2),

respectively, and 𝛿 : ℎ1 ⇒ ℎ2, and a 2-cell 𝜎 : 𝑔1 ⇒ 𝑔2
over 𝛿 ▷ 𝑓 , we have a unique 2-cell 𝛿 : ℎ1 ⇒ ℎ2 over
𝛿 such that 𝛿 ▷ 𝑓 • \2 = \1 • 𝜎 .

𝑐

𝑎 𝑏

𝑔1

𝑔2

ℎ1 ℎ2

𝑓

𝜎𝛿

𝑐

𝑎 𝑏

ℎ1 ℎ2

𝑓

𝛿

Remark 4.2. Recall that a displayed 1-cell 𝑓 : 𝑎
𝑓−→ 𝑏 in

D gives rise to the 1-cell (𝑓 , 𝑓) in the total bicategory
∫
D.

The definition of cartesian structure on 𝑓 in D of Defini-
tion 4.1 gives rise to a notion of cartesian structure for (𝑓 , 𝑓)
in

∫
D. By expressing the definition of cartesian 1-cell in

the displayed bicategory, instead of the resulting projection
𝜋 :

∫
D → B, we can postulate that a lift in

∫
D lies directly

over a given cell in B, not just modulo an invertible 2-cell.
In univalent bicategories, these two formulations are equiv-
alent.
Definition 4.3 (global_cleaving). A global cleaving on D
is a choice, for any 𝑓 : 𝑎 → 𝑏 in B and 𝑏 : D𝑏 , of

1. a displayed object 𝑎 over 𝑎;
2. a displayed 1-cell 𝑓 : 𝑎

𝑓−→ 𝑏;
3. a cartesian structure on 𝑓 .

Remark 4.4. The notion of global cleaving as in Defini-
tion 4.3 gives rise to a notion of cloven fibration on the total
bicategory

∫
D.

Next we look at local cleavings and opcleavings. A 2-
cell is opcartesian if (and only if) it is opcartesian in the
1-categorical sense for the hom-functor. However, in the for-
malization we give the following direct definition not relying
on hom-categories and -functors, and prove the aforemen-
tioned characterization afterwards (opcartesian_2cell_weq_
opcartesian). Similarly, we give an unfolded definition of
local opcleaving.

Definition 4.5 (is_opcartesian_2cell). Suppose we have 1-
cells 𝑓 , 𝑔 : 𝑥 → 𝑦, a 2-cell \ : 𝑓 ⇒ 𝑔, and displayed objects
𝑥 and 𝑦 over 𝑥 and 𝑦, respectively. Given displayed 1-cells
𝑓 : 𝑥

𝑓−→ 𝑦 and 𝑔 : 𝑥
𝑔−→ 𝑦 and a displayed 2-cell \ : 𝑓

\
=⇒ 𝑔,

we say that \ is 2-opcartesian (or just opcartesian) if for
all 1-cells ℎ : 𝑥 → 𝑦, displayed 1-cells ℎ : 𝑥 ℎ−→ 𝑦, 2-cells
𝜏 : 𝑔 ⇒ ℎ, and displayed 2-cells 𝛾 : 𝑓

𝜏•\
===⇒ ℎ, there is a

unique displayed 2-cell 𝜏 : 𝑔
𝜏
=⇒ ℎ such that \ • 𝜏 = 𝛾 .

Being an opcartesian 2-cell is always a property. The no-
tion of cartesian 2-cells is analogous.

Definition 4.6 (local_opcleaving). A local opcleaving on

D is given by, for every \ : 𝑓 ⇒ 𝑔 and 𝑓 : 𝑥
𝑓−→ 𝑦

1. a displayed 1-cell 𝑔 : 𝑥
𝑔−→ 𝑦 and

2. an opcartesian 2-cell \ : 𝑓
\
=⇒ 𝑔.

The notions of local cleaving and local isocleaving are
defined analogously.

Remark 4.7. The notions of opcartesian 2-cell and of local
opcleaving as in Definition 4.6 give rise to notions of op-
cartesian 2-cell and of cloven local opfibration on the total
bicategory

∫
D.

Proposition 4.8 (CleavingOfBicatIsAProp.v). Suppose that
B is a univalent bicategory andD is a univalent displayed bicat-
egory overD. Then the types of local (resp. global) (op)cleavings
on D are propositions.

In light of Proposition 4.8 and Remark 3.3, we do not dis-
tinguish between fibrations and cloven fibrations (cleavings)
in the following. When we say that D “is a fibration”, we
mean, in particular, that it is equipped with a choice of cleav-
ing. All constructions of cleavings given here are explicit
and constructive.

Now let us look at some examples of these notions.

Example 4.9 (TrivialCleaving.v). The trivial displayed bi-
category B1

+B2 over B1 is a global fibration. Cartesian 1-cells
in B1

+B2 correspond to adjoint equivalences in B2. As such,
we can take the identity 1-cell as the global lift. In addition,
B1

+B2 is both a local fibration and a local opfibration.

Example 4.10 (CodomainCleaving.v). Suppose that B is a
locally groupoidal bicategory with pullbacks. Since cartesian

We call (h,θ) a lift of (h,д).

https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.Examples.Codomain.html#cod_disp_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOfDispCats.html#disp_bicat_of_opcleaving
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.html#disp_psfunctor
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Colimits.Pullback.html#has_pb
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Colimits.Pullback.html#has_pb_bicat_of_univ_cats
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Colimits.Pullback.html#one_types_has_pb
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Colimits.Products.html#has_binprod_ump
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#cartesian_1cell

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

(2) Given lifts (h1,θ1) and (h2,θ2) of (h1,д1) and (h2,д2), re-
spectively, and δ : h1 ⇒ h2, and a 2-cell σ : д1 ⇒ д2 over
δ ▷ f , we have a unique 2-cell δ : h1 ⇒ h2 over δ such that
δ ▷ f • θ2 = θ1 • σ .

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

iso- and opfibrations. However, there is an important dif-
ference: while Buckley works in a set-theoretic setting, we
reformulate the definitions in a type-theoretic setting using
the displayed technology developed in [2] and reviewed in
Section 3—see also Remark 4.2.

Throughout this section, we assume that B is a bicategory
and D is a displayed bicategory over B.
Definition 4.1 ([12, Def. 3.1.1], cartesian_1cell). Let 𝑓 : 𝑎 →
𝑏 be a 1-cell in B, and let 𝑓 : 𝑎

𝑓−→ 𝑏 be a displayed 1-cell over
𝑓 inD. A cartesian structure on 𝑓 consists of the following:

1. For any 𝑔 : 𝑐
ℎ ·𝑓−−→ 𝑏, we have a displayed morphism

ℎ : 𝑐 ℎ−→ 𝑎 and a displayed isomorphism \ over the
identity isomorphism on ℎ · 𝑓 in B.

𝑐

𝑎 𝑏

𝑔
ℎ

𝑓

\

𝑐

𝑎 𝑏

ℎ
ℎ ·𝑓

𝑓

id2

We call (ℎ, \) a lift of (ℎ,𝑔).
2. Given lifts (ℎ1, \1) and (ℎ2, \2) of (ℎ1, 𝑔1) and (ℎ2, 𝑔2),

respectively, and 𝛿 : ℎ1 ⇒ ℎ2, and a 2-cell 𝜎 : 𝑔1 ⇒ 𝑔2
over 𝛿 ▷ 𝑓 , we have a unique 2-cell 𝛿 : ℎ1 ⇒ ℎ2 over
𝛿 such that 𝛿 ▷ 𝑓 • \2 = \1 • 𝜎 .

𝑐

𝑎 𝑏

𝑔1

𝑔2

ℎ1 ℎ2

𝑓

𝜎𝛿

𝑐

𝑎 𝑏

ℎ1 ℎ2

𝑓

𝛿

Remark 4.2. Recall that a displayed 1-cell 𝑓 : 𝑎
𝑓−→ 𝑏 in

D gives rise to the 1-cell (𝑓 , 𝑓) in the total bicategory
∫
D.

The definition of cartesian structure on 𝑓 in D of Defini-
tion 4.1 gives rise to a notion of cartesian structure for (𝑓 , 𝑓)
in

∫
D. By expressing the definition of cartesian 1-cell in

the displayed bicategory, instead of the resulting projection
𝜋 :

∫
D → B, we can postulate that a lift in

∫
D lies directly

over a given cell in B, not just modulo an invertible 2-cell.
In univalent bicategories, these two formulations are equiv-
alent.
Definition 4.3 (global_cleaving). A global cleaving on D
is a choice, for any 𝑓 : 𝑎 → 𝑏 in B and 𝑏 : D𝑏 , of

1. a displayed object 𝑎 over 𝑎;
2. a displayed 1-cell 𝑓 : 𝑎

𝑓−→ 𝑏;
3. a cartesian structure on 𝑓 .

Remark 4.4. The notion of global cleaving as in Defini-
tion 4.3 gives rise to a notion of cloven fibration on the total
bicategory

∫
D.

Next we look at local cleavings and opcleavings. A 2-
cell is opcartesian if (and only if) it is opcartesian in the
1-categorical sense for the hom-functor. However, in the for-
malization we give the following direct definition not relying
on hom-categories and -functors, and prove the aforemen-
tioned characterization afterwards (opcartesian_2cell_weq_
opcartesian). Similarly, we give an unfolded definition of
local opcleaving.

Definition 4.5 (is_opcartesian_2cell). Suppose we have 1-
cells 𝑓 , 𝑔 : 𝑥 → 𝑦, a 2-cell \ : 𝑓 ⇒ 𝑔, and displayed objects
𝑥 and 𝑦 over 𝑥 and 𝑦, respectively. Given displayed 1-cells
𝑓 : 𝑥

𝑓−→ 𝑦 and 𝑔 : 𝑥
𝑔−→ 𝑦 and a displayed 2-cell \ : 𝑓

\
=⇒ 𝑔,

we say that \ is 2-opcartesian (or just opcartesian) if for
all 1-cells ℎ : 𝑥 → 𝑦, displayed 1-cells ℎ : 𝑥 ℎ−→ 𝑦, 2-cells
𝜏 : 𝑔 ⇒ ℎ, and displayed 2-cells 𝛾 : 𝑓

𝜏•\
===⇒ ℎ, there is a

unique displayed 2-cell 𝜏 : 𝑔
𝜏
=⇒ ℎ such that \ • 𝜏 = 𝛾 .

Being an opcartesian 2-cell is always a property. The no-
tion of cartesian 2-cells is analogous.

Definition 4.6 (local_opcleaving). A local opcleaving on

D is given by, for every \ : 𝑓 ⇒ 𝑔 and 𝑓 : 𝑥
𝑓−→ 𝑦

1. a displayed 1-cell 𝑔 : 𝑥
𝑔−→ 𝑦 and

2. an opcartesian 2-cell \ : 𝑓
\
=⇒ 𝑔.

The notions of local cleaving and local isocleaving are
defined analogously.

Remark 4.7. The notions of opcartesian 2-cell and of local
opcleaving as in Definition 4.6 give rise to notions of op-
cartesian 2-cell and of cloven local opfibration on the total
bicategory

∫
D.

Proposition 4.8 (CleavingOfBicatIsAProp.v). Suppose that
B is a univalent bicategory andD is a univalent displayed bicat-
egory overD. Then the types of local (resp. global) (op)cleavings
on D are propositions.

In light of Proposition 4.8 and Remark 3.3, we do not dis-
tinguish between fibrations and cloven fibrations (cleavings)
in the following. When we say that D “is a fibration”, we
mean, in particular, that it is equipped with a choice of cleav-
ing. All constructions of cleavings given here are explicit
and constructive.

Now let us look at some examples of these notions.

Example 4.9 (TrivialCleaving.v). The trivial displayed bi-
category B1

+B2 over B1 is a global fibration. Cartesian 1-cells
in B1

+B2 correspond to adjoint equivalences in B2. As such,
we can take the identity 1-cell as the global lift. In addition,
B1

+B2 is both a local fibration and a local opfibration.

Example 4.10 (CodomainCleaving.v). Suppose that B is a
locally groupoidal bicategory with pullbacks. Since cartesian

Remark 4.1. Recall that a displayed 1-cell f : a
f→ b in D gives

rise to the 1-cell (f , f) in the total bicategory
∫
D. The definition of

cartesian structure on f in D of Definition 4.1 gives rise to a notion of
cartesian structure for (f , f) in

∫
D. By expressing the definition of

cartesian 1-cell in the displayed bicategory, instead of the resulting
projection π :

∫
D → B, we can postulate that a lift in

∫
D lies directly

over a given cell in B, not just modulo an invertible 2-cell. In univalent
bicategories, these two formulations are equivalent.

Definition 4.2 (global_cleaving). A global cleaving on D is a
choice, for any f : a → b in B and b : Db , of

(1) a displayed object a over a;

(2) a displayed 1-cell f : a
f→ b;

(3) a cartesian structure on f .

Remark 4.2. The notion of global cleaving as in Definition 4.2
gives rise to a notion of cloven fibration on the total bicategory

∫
D.

Next we look at local cleavings and opcleavings. A 2-cell is
opcartesian if and only if it is opcartesian in the 1-categorical
sense for the hom-functor. However, in the formalization we give
the following direct definition not relying on hom-categories, and
prove the characterization via hom-categories afterwards (opcarte-
sian_2cell_weq_opcartesian). Similarly, we give an unfolded defini-
tion of local opcleaving.

Definition 4.3 (is_opcartesian_2cell). Suppose we have 1-cells
f ,д : x → y, a 2-cell θ : f ⇒ д, and displayed objects x and

y over x and y, respectively. Given displayed 1-cells f : x
f→ y

and д : x
д→ y and a displayed 2-cell θ : f

θ⇒ д, we say that θ is
2-opcartesian (or just opcartesian) if for all 1-cells h : x → y,
displayed 1-cells h : x h→ y, 2-cells τ : д ⇒ h, and displayed 2-cells
γ : f

τ •θ⇒ h, there is a unique displayed 2-cell τ : д
τ⇒ h such that

θ • τ = γ .
Being an opcartesian 2-cell is always a property. The notion of

cartesian 2-cells is analogous.

Definition 4.4 (local_opcleaving). A local opcleaving on D is

given by, for every θ : f ⇒ д and f : x
f→ y

(1) a displayed 1-cell д : x
д→ y and

(2) an opcartesian 2-cell θ : f
θ⇒ д.

The notions of local cleaving and local isocleaving are de-
fined analogously.

Remark 4.3. The notions of opcartesian 2-cell and of local opcleav-
ing as in Definition 4.4 give rise to notions of opcartesian 2-cell and
of cloven local opfibration on the total bicategory

∫
D.

Proposition 4.5 (CleavingOfBicatIsAProp.v). Suppose that B
is a univalent bicategory and D is a univalent displayed bicategory
over D. Then the types of local (resp. global) (op)cleavings on D are
propositions.

In light of Proposition 4.5 and Remark 3.1, we do not distinguish
between fibrations and cloven fibrations (cleavings) in the following.
When we say that D “is a fibration”, we mean, in particular, that it
is equipped with a choice of cleaving. All constructions of cleavings
given here are explicit and constructive.

Now let us look at some examples of these notions.

Example 4.6 (TrivialCleaving.v). The trivial displayed bicategory
B1+B2 over B1 is a global fibration. Cartesian 1-cells in B1+B2 cor-
respond to adjoint equivalences in B2. As such, we can take the
identity 1-cell as the global lift. In addition, B1+B2 is both a local
fibration and a local opfibration.

Example 4.7 (CodomainCleaving.v). Suppose that B is a locally
groupoidal bicategory with pullbacks. Since cartesian 1-cells in B↓
correspond to pullback squares, we can construct a global cleaving
for B↓ by taking pullbacks. Note that all 2-cells in B↓ are cartesian,
because B is locally groupoidal, and thus B↓ also has a local cleaving
and a local opcleaving.

Example 4.8 (OpFibrationCleaving.v). The displayed bicategory
OpCleav has a global cleaving and a local opcleaving. Given a
functor F : C1 → C2 and a displayed category D2 over C2, we
construct a displayed category F ∗(D2) over C1:

• The displayed objects over x : C1 are displayed objects in D2
over F (x).

• The displayed morphisms over f : x → y from x to y are

displayed morphisms over x
F (f)→ y.

Note that F ∗(D2) inherits any opcleaving from D2. In addition, we
have a displayed functor over F from F ∗(D2) to D2 that preserves
cartesian morphisms.

Opcartesian 2-cells in OpCleav correspond to displayed natural
transformations of which all components are opcartesian. We form
local lifts pointwise. Since displayed 1-cells in OpCleav preserve
cartesian morphisms, cartesian 2-cells are preserved under both
left and right whiskering.

Similarly, we can show that the displayed bicategory Cleav has
a global and a local cleaving (FibrationCleaving.v).

5 INTERNAL STREET (OP)FIBRATIONS
In this section, we discuss Street (op)fibrations internal to a fixed
bicategory B. They will yield, in Section 6, many examples of com-
prehension bicategories, see Example 6.5 and Remark 6.3. The ex-
amples of Street opfibrations internal to bicategories of stacks are
particularly interesting (see Remark 6.3).

Note that B↓ is a global fibration if B has pullbacks. However, to
obtain a local (op)cleaving, we used that B is locally groupoidal in
Example 4.7. This assumption is avoided in Example 4.8 where B =
Cat: instead of looking at arbitrary functors, one only considers the

https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#global_cleaving
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#opcartesian_2cell_weq_opcartesian
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#opcartesian_2cell_weq_opcartesian
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#is_opcartesian_2cell
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#local_opcleaving
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.CleavingOfBicatIsAProp.html
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.TrivialCleaving.html
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.CodomainCleaving.html
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.OpFibrationCleaving.html
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.FibrationCleaving.html

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

opfibrations. We can generalize this idea to arbitrary bicategories
by using internal Street (op)fibrations [11].

The displayed bicategory OpCleav has a local opcleaving where
the desired lifts are constructed pointwise. To generalize this to
arbitrary bicategories, we need to adjust this definition, so that we
can lift arbitrary 2-cells. Furthermore, the notion of Grothendieck
opfibration of categories is stricter than appropriate for bicategories.
If we havex → y and an object overy, then aGrothendieck fibration
gives an object strictly living over x , while a Street fibration only
gives an object living weakly over x (i. e., up to an isomorphism).
The precise definition can be found in work by Loregian and Riehl
[27, Example 4.1.2].

Definition 5.1 (internal_sfib). Let p : e → b be a 1-cell in a
bicategory B. Then p is an internal Street fibration if

• For every x : B, the functor p∗ : B(x , e) → B(x ,b) of hom-
categories is a Street fibration.

• For every f : x → y, we have a morphism of Street fibrations

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

1-cells inB↓ correspond to pullback squares, we can construct
a global cleaving for B↓ by taking pullbacks. Note that all
2-cells in B↓ are cartesian, because B is locally groupoidal,
and thus B↓ also has a local cleaving and a local opcleaving.

Example 4.11 (OpFibrationCleaving.v). The displayed bi-
category OpCleav has a global cleaving and a local opcleav-
ing. Given a functor 𝐹 : 𝐶1 → 𝐶2 and a displayed category
D2 over 𝐶2, we construct a displayed category 𝐹 ∗ (D2) over
𝐶1:

• The displayed objects over 𝑥 : 𝐶1 are displayed objects
in D2 over 𝐹 (𝑥).

• The displayed morphisms over 𝑓 : 𝑥 → 𝑦 from 𝑥 to 𝑦
are displayed morphisms over 𝑥

𝐹 (𝑓)−−−→ 𝑦.
Note that 𝐹 ∗ (D2) inherits any opcleaving from D2. In addi-
tion, we have a displayed functor over 𝐹 from 𝐹 ∗ (D2) to D2
that preserves cartesian morphisms.
Opcartesian 2-cells in OpCleav correspond to displayed

natural transformations of which all components are opcarte-
sian. We form local lifts pointwise. Since displayed 1-cells
in OpCleav preserve cartesian morphisms, cartesian 2-cells
are preserved under both left and right whiskering.

Similarly, we can show that the displayed bicategoryCleav
has a global and a local cleaving (FibrationCleaving.v).

5 Internal Street (Op)Fibrations
In this section, we discuss Street (op)fibrations internal to
a fixed bicategory B. They will yield, in Section 6, many
examples of comprehension bicategories, see Example 6.7
and Remark 6.9. We find the examples of Street opfibrations
internal to bicategories of stacks particularly interesting (see
Remark 6.9).

Note that B↓ is a global fibration if B has pullbacks. How-
ever, to obtain a local (op)cleaving, we used that B is locally
groupoidal in Example 4.10. This assumption is avoided in
Example 4.11 where B = Cat: instead of looking at arbitrary
functors, one only considers the opfibrations. We can gen-
eralize this idea to arbitrary bicategories by using internal
Street (op)fibrations [12].
The displayed bicategory OpCleav has a local opcleav-

ing where the desired lifts are constructed pointwise. To
generalize this to arbitrary bicategories, we need to adjust
this definition, so that we can lift arbitrary 2-cells. Further-
more, the notion of Grothendieck opfibration of categories is
stricter than appropriate for bicategories. If we have 𝑥 → 𝑦

and an object over 𝑦, then a Grothendieck fibration gives an
object strictly living over 𝑥 , while a Street fibration only gives
an object living weakly over 𝑥 (i. e., up to an isomorphism).
The precise definition can be found in work by Loregian and
Riehl [28, Example 4.1.2].

Definition 5.1 (internal_sfib). Let 𝑝 : 𝑒 → 𝑏 be a 1-cell in a
bicategory B. Then 𝑝 is an internal Street fibration if

• For every 𝑥 : B, the functor 𝑝∗ : B(𝑥, 𝑒) → B(𝑥, 𝑏) of
hom-categories is a Street fibration.

• For every 𝑓 : 𝑥 → 𝑦, we have a morphism of Street
fibrations

B(𝑦, 𝑒) B(𝑥, 𝑒)

B(𝑦,𝑏) B(𝑥, 𝑏)
𝑝∗

𝑓 ∗

𝑝∗
𝑓 ∗

A 1-cell is called an internal Street opfibration if it is
an internal Street fibration in Bco (internal_sopfib).

In Cat, internal Street fibrations are the same as Street fi-
brations of categories. However, the notion of internal Street
fibrations can be applied in a wider variety of settings: for
example, one could also look at presheaves or stacks valued
in Cat. A classical result on internal Street (op)fibrations is
that they are closed under taking pullbacks [19, 39]:

Proposition 5.2 (pb_of_sfib_cleaving). Street (op)fibrations
are closed under pullback. Concretely: given a pullback square

𝑒1 𝑒2

𝑏1 𝑏2

𝑝1 𝑝2

where 𝑝2 is a Street (op)fibration, then 𝑝1 is so, too.

Now we can construct the desired cleavings.

Definition 5.3 (cod_sopfibs). Let B be a bicategory. We
define a displayed bicategory SOpFib(B) over B as the sub-
bicategory of B↓ such that

• the objects 𝑝 : 𝑒 → 𝑏 are internal Street fibrations;
• right whiskering with 1-cells 𝑓 : 𝑒1 → 𝑒2 from 𝑝1 :
𝑒1 → 𝑏1 to 𝑝2 : 𝑒2 → 𝑏2 preserves opcartesian 2-cells.

In SOpFib(B), 2-cells are the same as 2-cells in B→. How-
ever, 1-cells are a bit different: while 1-cells in B→ are squares

𝑒1 𝑒2

𝑏1 𝑏2

𝑓𝑒

𝑝1 𝑝2

𝑓𝑏

that commute up to invertible 2-cell, 1-cells in SOpFib(B)
have the additional requirement that whiskering with 𝑓𝑒
preserves opcartesian 2-cells.

Example 5.4 (DisplayMapBicatCleaving.v). Let B be a bi-
category with pullbacks. Similarly to Example 4.10, carte-
sian 1-cells are the same as pullback squares. Hence, we
can construct a global cleaving for SOpFib(B) using pull-
backs and Proposition 5.2. Constructing a local opcleaving
for SOpFib(B) is done the same way as constructing a local
cleaving for SFib(B) [12, Example 3.4.6].

A 1-cell is called an internal Street opfibration if it is an in-
ternal Street fibration in Bco (internal_sopfib).

In Cat, internal Street fibrations are the same as Street fibrations
of categories. However, the notion of internal Street fibrations can
be applied in a wider variety of settings: for example, one could
also look at presheaves or stacks valued in Cat. A classical result
on internal Street (op)fibrations is that they are closed under taking
pullbacks [18, 38]:

Proposition 5.2 (pb_of_sfib_cleaving). Street (op-)fibrations
are closed under pullback. Concretely: given a pullback square

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

1-cells inB↓ correspond to pullback squares, we can construct
a global cleaving for B↓ by taking pullbacks. Note that all
2-cells in B↓ are cartesian, because B is locally groupoidal,
and thus B↓ also has a local cleaving and a local opcleaving.

Example 4.11 (OpFibrationCleaving.v). The displayed bi-
category OpCleav has a global cleaving and a local opcleav-
ing. Given a functor 𝐹 : 𝐶1 → 𝐶2 and a displayed category
D2 over 𝐶2, we construct a displayed category 𝐹 ∗ (D2) over
𝐶1:

• The displayed objects over 𝑥 : 𝐶1 are displayed objects
in D2 over 𝐹 (𝑥).

• The displayed morphisms over 𝑓 : 𝑥 → 𝑦 from 𝑥 to 𝑦
are displayed morphisms over 𝑥

𝐹 (𝑓)−−−→ 𝑦.
Note that 𝐹 ∗ (D2) inherits any opcleaving from D2. In addi-
tion, we have a displayed functor over 𝐹 from 𝐹 ∗ (D2) to D2
that preserves cartesian morphisms.
Opcartesian 2-cells in OpCleav correspond to displayed

natural transformations of which all components are opcarte-
sian. We form local lifts pointwise. Since displayed 1-cells
in OpCleav preserve cartesian morphisms, cartesian 2-cells
are preserved under both left and right whiskering.

Similarly, we can show that the displayed bicategoryCleav
has a global and a local cleaving (FibrationCleaving.v).

5 Internal Street (Op)Fibrations
In this section, we discuss Street (op)fibrations internal to
a fixed bicategory B. They will yield, in Section 6, many
examples of comprehension bicategories, see Example 6.7
and Remark 6.9. We find the examples of Street opfibrations
internal to bicategories of stacks particularly interesting (see
Remark 6.9).

Note that B↓ is a global fibration if B has pullbacks. How-
ever, to obtain a local (op)cleaving, we used that B is locally
groupoidal in Example 4.10. This assumption is avoided in
Example 4.11 where B = Cat: instead of looking at arbitrary
functors, one only considers the opfibrations. We can gen-
eralize this idea to arbitrary bicategories by using internal
Street (op)fibrations [12].
The displayed bicategory OpCleav has a local opcleav-

ing where the desired lifts are constructed pointwise. To
generalize this to arbitrary bicategories, we need to adjust
this definition, so that we can lift arbitrary 2-cells. Further-
more, the notion of Grothendieck opfibration of categories is
stricter than appropriate for bicategories. If we have 𝑥 → 𝑦

and an object over 𝑦, then a Grothendieck fibration gives an
object strictly living over 𝑥 , while a Street fibration only gives
an object living weakly over 𝑥 (i. e., up to an isomorphism).
The precise definition can be found in work by Loregian and
Riehl [28, Example 4.1.2].

Definition 5.1 (internal_sfib). Let 𝑝 : 𝑒 → 𝑏 be a 1-cell in a
bicategory B. Then 𝑝 is an internal Street fibration if

• For every 𝑥 : B, the functor 𝑝∗ : B(𝑥, 𝑒) → B(𝑥, 𝑏) of
hom-categories is a Street fibration.

• For every 𝑓 : 𝑥 → 𝑦, we have a morphism of Street
fibrations

B(𝑦, 𝑒) B(𝑥, 𝑒)

B(𝑦,𝑏) B(𝑥, 𝑏)
𝑝∗

𝑓 ∗

𝑝∗
𝑓 ∗

A 1-cell is called an internal Street opfibration if it is
an internal Street fibration in Bco (internal_sopfib).

In Cat, internal Street fibrations are the same as Street fi-
brations of categories. However, the notion of internal Street
fibrations can be applied in a wider variety of settings: for
example, one could also look at presheaves or stacks valued
in Cat. A classical result on internal Street (op)fibrations is
that they are closed under taking pullbacks [19, 39]:

Proposition 5.2 (pb_of_sfib_cleaving). Street (op)fibrations
are closed under pullback. Concretely: given a pullback square

𝑒1 𝑒2

𝑏1 𝑏2

𝑝1 𝑝2

where 𝑝2 is a Street (op)fibration, then 𝑝1 is so, too.

Now we can construct the desired cleavings.

Definition 5.3 (cod_sopfibs). Let B be a bicategory. We
define a displayed bicategory SOpFib(B) over B as the sub-
bicategory of B↓ such that

• the objects 𝑝 : 𝑒 → 𝑏 are internal Street fibrations;
• right whiskering with 1-cells 𝑓 : 𝑒1 → 𝑒2 from 𝑝1 :
𝑒1 → 𝑏1 to 𝑝2 : 𝑒2 → 𝑏2 preserves opcartesian 2-cells.

In SOpFib(B), 2-cells are the same as 2-cells in B→. How-
ever, 1-cells are a bit different: while 1-cells in B→ are squares

𝑒1 𝑒2

𝑏1 𝑏2

𝑓𝑒

𝑝1 𝑝2

𝑓𝑏

that commute up to invertible 2-cell, 1-cells in SOpFib(B)
have the additional requirement that whiskering with 𝑓𝑒
preserves opcartesian 2-cells.

Example 5.4 (DisplayMapBicatCleaving.v). Let B be a bi-
category with pullbacks. Similarly to Example 4.10, carte-
sian 1-cells are the same as pullback squares. Hence, we
can construct a global cleaving for SOpFib(B) using pull-
backs and Proposition 5.2. Constructing a local opcleaving
for SOpFib(B) is done the same way as constructing a local
cleaving for SFib(B) [12, Example 3.4.6].

where p2 is a Street (op)fibration, then p1 is so, too.

Now we can construct the desired cleavings.

Definition 5.3 (cod_sopfibs). Let B be a bicategory. We define a
displayed bicategory SOpFib(B) over B as the subbicategory of B↓
such that

• the objects p : e → b are internal Street fibrations;
• right whiskering with 1-cells f : e1 → e2 from p1 : e1 → b1
to p2 : e2 → b2 preserves opcartesian 2-cells.

In SOpFib(B), 2-cells are the same as 2-cells in B→. However,
1-cells are a bit different: while 1-cells in B→ are squares

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

1-cells inB↓ correspond to pullback squares, we can construct
a global cleaving for B↓ by taking pullbacks. Note that all
2-cells in B↓ are cartesian, because B is locally groupoidal,
and thus B↓ also has a local cleaving and a local opcleaving.

Example 4.11 (OpFibrationCleaving.v). The displayed bi-
category OpCleav has a global cleaving and a local opcleav-
ing. Given a functor 𝐹 : 𝐶1 → 𝐶2 and a displayed category
D2 over 𝐶2, we construct a displayed category 𝐹 ∗ (D2) over
𝐶1:

• The displayed objects over 𝑥 : 𝐶1 are displayed objects
in D2 over 𝐹 (𝑥).

• The displayed morphisms over 𝑓 : 𝑥 → 𝑦 from 𝑥 to 𝑦
are displayed morphisms over 𝑥

𝐹 (𝑓)−−−→ 𝑦.
Note that 𝐹 ∗ (D2) inherits any opcleaving from D2. In addi-
tion, we have a displayed functor over 𝐹 from 𝐹 ∗ (D2) to D2
that preserves cartesian morphisms.
Opcartesian 2-cells in OpCleav correspond to displayed

natural transformations of which all components are opcarte-
sian. We form local lifts pointwise. Since displayed 1-cells
in OpCleav preserve cartesian morphisms, cartesian 2-cells
are preserved under both left and right whiskering.

Similarly, we can show that the displayed bicategoryCleav
has a global and a local cleaving (FibrationCleaving.v).

5 Internal Street (Op)Fibrations
In this section, we discuss Street (op)fibrations internal to
a fixed bicategory B. They will yield, in Section 6, many
examples of comprehension bicategories, see Example 6.7
and Remark 6.9. We find the examples of Street opfibrations
internal to bicategories of stacks particularly interesting (see
Remark 6.9).

Note that B↓ is a global fibration if B has pullbacks. How-
ever, to obtain a local (op)cleaving, we used that B is locally
groupoidal in Example 4.10. This assumption is avoided in
Example 4.11 where B = Cat: instead of looking at arbitrary
functors, one only considers the opfibrations. We can gen-
eralize this idea to arbitrary bicategories by using internal
Street (op)fibrations [12].
The displayed bicategory OpCleav has a local opcleav-

ing where the desired lifts are constructed pointwise. To
generalize this to arbitrary bicategories, we need to adjust
this definition, so that we can lift arbitrary 2-cells. Further-
more, the notion of Grothendieck opfibration of categories is
stricter than appropriate for bicategories. If we have 𝑥 → 𝑦

and an object over 𝑦, then a Grothendieck fibration gives an
object strictly living over 𝑥 , while a Street fibration only gives
an object living weakly over 𝑥 (i. e., up to an isomorphism).
The precise definition can be found in work by Loregian and
Riehl [28, Example 4.1.2].

Definition 5.1 (internal_sfib). Let 𝑝 : 𝑒 → 𝑏 be a 1-cell in a
bicategory B. Then 𝑝 is an internal Street fibration if

• For every 𝑥 : B, the functor 𝑝∗ : B(𝑥, 𝑒) → B(𝑥, 𝑏) of
hom-categories is a Street fibration.

• For every 𝑓 : 𝑥 → 𝑦, we have a morphism of Street
fibrations

B(𝑦, 𝑒) B(𝑥, 𝑒)

B(𝑦,𝑏) B(𝑥, 𝑏)
𝑝∗

𝑓 ∗

𝑝∗
𝑓 ∗

A 1-cell is called an internal Street opfibration if it is
an internal Street fibration in Bco (internal_sopfib).

In Cat, internal Street fibrations are the same as Street fi-
brations of categories. However, the notion of internal Street
fibrations can be applied in a wider variety of settings: for
example, one could also look at presheaves or stacks valued
in Cat. A classical result on internal Street (op)fibrations is
that they are closed under taking pullbacks [19, 39]:

Proposition 5.2 (pb_of_sfib_cleaving). Street (op)fibrations
are closed under pullback. Concretely: given a pullback square

𝑒1 𝑒2

𝑏1 𝑏2

𝑝1 𝑝2

where 𝑝2 is a Street (op)fibration, then 𝑝1 is so, too.

Now we can construct the desired cleavings.

Definition 5.3 (cod_sopfibs). Let B be a bicategory. We
define a displayed bicategory SOpFib(B) over B as the sub-
bicategory of B↓ such that

• the objects 𝑝 : 𝑒 → 𝑏 are internal Street fibrations;
• right whiskering with 1-cells 𝑓 : 𝑒1 → 𝑒2 from 𝑝1 :
𝑒1 → 𝑏1 to 𝑝2 : 𝑒2 → 𝑏2 preserves opcartesian 2-cells.

In SOpFib(B), 2-cells are the same as 2-cells in B→. How-
ever, 1-cells are a bit different: while 1-cells in B→ are squares

𝑒1 𝑒2

𝑏1 𝑏2

𝑓𝑒

𝑝1 𝑝2

𝑓𝑏

that commute up to invertible 2-cell, 1-cells in SOpFib(B)
have the additional requirement that whiskering with 𝑓𝑒
preserves opcartesian 2-cells.

Example 5.4 (DisplayMapBicatCleaving.v). Let B be a bi-
category with pullbacks. Similarly to Example 4.10, carte-
sian 1-cells are the same as pullback squares. Hence, we
can construct a global cleaving for SOpFib(B) using pull-
backs and Proposition 5.2. Constructing a local opcleaving
for SOpFib(B) is done the same way as constructing a local
cleaving for SFib(B) [12, Example 3.4.6].

that commute up to invertible 2-cell, 1-cells in SOpFib(B) have the
additional requirement that whiskering with fe preserves opcarte-
sian 2-cells.

Example 5.4 (DisplayMapBicatCleaving.v). Let B be a bicategory
with pullbacks. Similarly to Example 4.7, cartesian 1-cells are the
same as pullback squares. Hence, we can construct a global cleaving
for SOpFib(B) using pullbacks and Proposition 5.2. Constructing a
local opcleaving for SOpFib(B) is done the same way as construct-
ing a local cleaving for SFib(B) [11, Example 3.4.6].

In the same way we can define SFib(B) and SIsoFib(B), which are
displayed bicategories of internal Street opfibrations and internal
Street isofibrations, respectively. Since both fibrations and isofibra-
tions are closed under pullbacks, these displayed bicategories have
a global cleaving. However, while SOpFib(B) has a local opcleaving,
SFib(B) has a local cleaving and SIsoFib(B) has a local isocleaving.

6 COMPREHENSION BICATEGORIES
In this section, we give the main definition of this paper, of com-
prehension bicategories. We also give several (classes of) instances
of this definition. In some of these instances, we will recognize
structures studied previously in the context of higher-dimensional
and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension bicat-
egory is given by a bicategory B, a displayed bicategory D over B,
and a displayed pseudofunctor χ over the identity on B as pictured
below,

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

In the same way we can define SFib(B) and SIsoFib(B),
which are displayed bicategories of internal Street opfibra-
tions and internal Street isofibrations, respectively. Since
both fibrations and isofibrations are closed under pullbacks,
these displayed bicategories have a global cleaving. However,
while SOpFib(B) has a local opcleaving, SFib(B) has a local
cleaving and SIsoFib(B) has a local isocleaving.

6 Comprehension Bicategories
In this section, we give the main definition of this paper, of
comprehension bicategories. We also give several (classes of)
instances of this definition. In some of these instances, we
will recognize structures studied previously in the context
of higher-dimensional and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension
bicategory is given by a bicategory B, a displayed bicategory
D over B, and a displayed pseudofunctor 𝜒 over the identity
on B as pictured below,

D B↓𝜒 over B

satisfying the following properties (see also Proposition 4.8):
1. D is a global fibration;
2. 𝜒 preserves cartesian 1-cells;
3. D is a local opfibration;
4. opcartesian 2-cells of D are preserved under both left

and right whiskering;
5. 𝜒 preserves opcartesian 2-cells.

Remark 6.2. Recall from Remarks 3.8, 4.4 and 4.7 that the
displayed pseudofunctor 𝜒 : D → B↓ of Definition 6.1 gives
rise to a strictly commuting diagram of pseudofunctors

∫
D

∫
B↓ = B→

B

∫
𝜒

cod

with suitable “classical” structure of global fibration, local
opfibration, and preservation of (op)cartesian cells.

Remark 6.3. Contravariant and isovariant comprehen-
sion bicategories are defined analogously with the notions
of (iso)cleaving and (iso)cartesian taking the place of op-
cleaving and opcartesian in Items 3 to 5 of Definition 6.1.
Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant
comprehension structure.

Next we discuss some examples of comprehension bicate-
gories. Each of these examples gives a different kind of type
theory. The first example we consider gives an interpretation
of a simple type theory.

Example 6.4 (trivial_comprehension_bicat). Suppose, that
we have a bicategory B with products. Then we have the

following comprehension bicategory

B+B B↓𝜒 over B

The displayed pseudofunctor 𝜒 : B+B → B↓ sends the object
𝑦2 over 𝑦1 to the product projection 𝑦1 ×𝑦2 → 𝑦1, that is, the
corresponding total pseudofunctor B × B → 𝐵↓ is defined
by (𝑦1, 𝑦2) ↦→ 𝜋1 : 𝑦1 × 𝑦2 → 𝑦1.

Example 6.4 corresponds roughly to the semantics studied
by Fiore and Saville [17], without taking into account the
type formers.
Another example of a comprehension bicategory comes

from locally groupoidal bicategories, such as Grpd.

Example 6.5 (locally_grpd_comprehension_bicat). Let B
be a locally groupoidal bicategory with pullbacks. Then we
get the following comprehension bicategory

B↓ B↓id over B

Since every 2-cell is opcartesian in B↓ if B is locally group-
oidal, the displayed bicategory B↓ has a local opcleaving.

Example 6.5 models symmetric reductions between terms.
It generalizes the groupoid model of type theory [22] and
is related to the interpretation of the two-dimensional type
theory by Licata and Harper [27], and to the definition of
comprehension 2-category by Garner [18].

We can also consider a directed version of this example by
using categories instead of groupoids.

Example 6.6 (opcleaving_comprehension_bicat). We have
the following comprehension bicategory

OpCleav Cat↓
𝜒 over Cat

The pseudofunctor 𝜒 sends a displayed category D over C
to the functor 𝜋1 :

∫
D → C. To check whether 𝜒 preserves

cartesian 1-cells, it suffices to check whether the chosen lifts
are mapped to pullback squares. The chosen lifts are sent to
strict pullback square because they are given by reindexing.
Since strict pullbacks of isofibrations are weak pullbacks as
well [23], we conclude that 𝜒 preserves cartesian 1-cells.

Example 6.6 roughly corresponds to the interpretations
given by Licata andHarper [26] andNorth [30] in their works
on directed type theories, albeit without considering type for-
mers. Similarly, we can define a contravariant comprehension
bicategory (cleaving_contravariant_comprehension_bicat)
using cleavings instead of opcleavings.
Using Example 5.4, we can generalize the example of

(op)fibrations to arbitrary bicategories with pullbacks. We
discuss the interest in this generalization in Remark 6.9.

Example 6.7 (internal_sopfib_comprehension_bicat). Let
B be a bicategory with pullbacks. Then we get the following
comprehension bicategory

SOpFib(B) B↓𝜒 over B

satisfying the following properties (see also Proposition 4.5):
(1) D is a global fibration;
(2) χ preserves cartesian 1-cells;
(3) D is a local opfibration;
(4) opcartesian 2-cells of D are preserved under both left and

right whiskering;
(5) χ preserves opcartesian 2-cells.

Remark 6.1. Recall from Remarks 3.2, 4.2, and 4.3 that the dis-
played pseudofunctor χ : D → B↓ of Definition 6.1 gives rise to a
strictly commuting diagram of pseudofunctors

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

In the same way we can define SFib(B) and SIsoFib(B),
which are displayed bicategories of internal Street opfibra-
tions and internal Street isofibrations, respectively. Since
both fibrations and isofibrations are closed under pullbacks,
these displayed bicategories have a global cleaving. However,
while SOpFib(B) has a local opcleaving, SFib(B) has a local
cleaving and SIsoFib(B) has a local isocleaving.

6 Comprehension Bicategories
In this section, we give the main definition of this paper, of
comprehension bicategories. We also give several (classes of)
instances of this definition. In some of these instances, we
will recognize structures studied previously in the context
of higher-dimensional and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension
bicategory is given by a bicategory B, a displayed bicategory
D over B, and a displayed pseudofunctor 𝜒 over the identity
on B as pictured below,

D B↓𝜒 over B

satisfying the following properties (see also Proposition 4.8):
1. D is a global fibration;
2. 𝜒 preserves cartesian 1-cells;
3. D is a local opfibration;
4. opcartesian 2-cells of D are preserved under both left

and right whiskering;
5. 𝜒 preserves opcartesian 2-cells.

Remark 6.2. Recall from Remarks 3.8, 4.4 and 4.7 that the
displayed pseudofunctor 𝜒 : D → B↓ of Definition 6.1 gives
rise to a strictly commuting diagram of pseudofunctors

∫
D

∫
B↓ = B→

B

∫
𝜒

cod

with suitable “classical” structure of global fibration, local
opfibration, and preservation of (op)cartesian cells.

Remark 6.3. Contravariant and isovariant comprehen-
sion bicategories are defined analogously with the notions
of (iso)cleaving and (iso)cartesian taking the place of op-
cleaving and opcartesian in Items 3 to 5 of Definition 6.1.
Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant
comprehension structure.

Next we discuss some examples of comprehension bicate-
gories. Each of these examples gives a different kind of type
theory. The first example we consider gives an interpretation
of a simple type theory.

Example 6.4 (trivial_comprehension_bicat). Suppose, that
we have a bicategory B with products. Then we have the

following comprehension bicategory

B+B B↓𝜒 over B

The displayed pseudofunctor 𝜒 : B+B → B↓ sends the object
𝑦2 over 𝑦1 to the product projection 𝑦1 ×𝑦2 → 𝑦1, that is, the
corresponding total pseudofunctor B × B → 𝐵↓ is defined
by (𝑦1, 𝑦2) ↦→ 𝜋1 : 𝑦1 × 𝑦2 → 𝑦1.

Example 6.4 corresponds roughly to the semantics studied
by Fiore and Saville [17], without taking into account the
type formers.
Another example of a comprehension bicategory comes

from locally groupoidal bicategories, such as Grpd.

Example 6.5 (locally_grpd_comprehension_bicat). Let B
be a locally groupoidal bicategory with pullbacks. Then we
get the following comprehension bicategory

B↓ B↓id over B

Since every 2-cell is opcartesian in B↓ if B is locally group-
oidal, the displayed bicategory B↓ has a local opcleaving.

Example 6.5 models symmetric reductions between terms.
It generalizes the groupoid model of type theory [22] and
is related to the interpretation of the two-dimensional type
theory by Licata and Harper [27], and to the definition of
comprehension 2-category by Garner [18].

We can also consider a directed version of this example by
using categories instead of groupoids.

Example 6.6 (opcleaving_comprehension_bicat). We have
the following comprehension bicategory

OpCleav Cat↓
𝜒 over Cat

The pseudofunctor 𝜒 sends a displayed category D over C
to the functor 𝜋1 :

∫
D → C. To check whether 𝜒 preserves

cartesian 1-cells, it suffices to check whether the chosen lifts
are mapped to pullback squares. The chosen lifts are sent to
strict pullback square because they are given by reindexing.
Since strict pullbacks of isofibrations are weak pullbacks as
well [23], we conclude that 𝜒 preserves cartesian 1-cells.

Example 6.6 roughly corresponds to the interpretations
given by Licata andHarper [26] andNorth [30] in their works
on directed type theories, albeit without considering type for-
mers. Similarly, we can define a contravariant comprehension
bicategory (cleaving_contravariant_comprehension_bicat)
using cleavings instead of opcleavings.
Using Example 5.4, we can generalize the example of

(op)fibrations to arbitrary bicategories with pullbacks. We
discuss the interest in this generalization in Remark 6.9.

Example 6.7 (internal_sopfib_comprehension_bicat). Let
B be a bicategory with pullbacks. Then we get the following
comprehension bicategory

SOpFib(B) B↓𝜒 over B

with suitable “classical” structure of global fibration, local opfibration,
and preservation of (op)cartesian cells.

Remark 6.2. Contravariant and isovariant comprehension bi-
categories are defined analogously with the notions of (iso)cleaving
and (iso)cartesian taking the place of opcleaving and opcartesian in
items 3 to 5 of Definition 6.1. Some of our examples of comprehen-
sion bicategories can similarly be equipped with a contravariant and
isovariant comprehension structure.

Next we discuss some examples of comprehension bicategories.
Each of these examples gives a different kind of type theory.

https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Core.InternalStreetFibration.html#internal_sfib
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Core.InternalStreetOpFibration.html#internal_sopfib
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.Core.InternalStreetFibration.html#pb_of_sfib_cleaving
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.Examples.DisplayMapBicatToDispBicat.html#cod_sopfibs
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DisplayMapBicatCleaving.html
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.ComprehensionBicat.html#comprehension_bicat

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

Example 6.2 (trivial_comprehension_bicat). Suppose we have a
bicategory B with products. Then we have the following compre-
hension bicategory

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

In the same way we can define SFib(B) and SIsoFib(B),
which are displayed bicategories of internal Street opfibra-
tions and internal Street isofibrations, respectively. Since
both fibrations and isofibrations are closed under pullbacks,
these displayed bicategories have a global cleaving. However,
while SOpFib(B) has a local opcleaving, SFib(B) has a local
cleaving and SIsoFib(B) has a local isocleaving.

6 Comprehension Bicategories
In this section, we give the main definition of this paper, of
comprehension bicategories. We also give several (classes of)
instances of this definition. In some of these instances, we
will recognize structures studied previously in the context
of higher-dimensional and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension
bicategory is given by a bicategory B, a displayed bicategory
D over B, and a displayed pseudofunctor 𝜒 over the identity
on B as pictured below,

D B↓𝜒 over B

satisfying the following properties (see also Proposition 4.8):
1. D is a global fibration;
2. 𝜒 preserves cartesian 1-cells;
3. D is a local opfibration;
4. opcartesian 2-cells of D are preserved under both left

and right whiskering;
5. 𝜒 preserves opcartesian 2-cells.

Remark 6.2. Recall from Remarks 3.8, 4.4 and 4.7 that the
displayed pseudofunctor 𝜒 : D → B↓ of Definition 6.1 gives
rise to a strictly commuting diagram of pseudofunctors

∫
D

∫
B↓ = B→

B

∫
𝜒

cod

with suitable “classical” structure of global fibration, local
opfibration, and preservation of (op)cartesian cells.

Remark 6.3. Contravariant and isovariant comprehen-
sion bicategories are defined analogously with the notions
of (iso)cleaving and (iso)cartesian taking the place of op-
cleaving and opcartesian in Items 3 to 5 of Definition 6.1.
Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant
comprehension structure.

Next we discuss some examples of comprehension bicate-
gories. Each of these examples gives a different kind of type
theory. The first example we consider gives an interpretation
of a simple type theory.

Example 6.4 (trivial_comprehension_bicat). Suppose, that
we have a bicategory B with products. Then we have the

following comprehension bicategory

B+B B↓𝜒 over B

The displayed pseudofunctor 𝜒 : B+B → B↓ sends the object
𝑦2 over 𝑦1 to the product projection 𝑦1 ×𝑦2 → 𝑦1, that is, the
corresponding total pseudofunctor B × B → 𝐵↓ is defined
by (𝑦1, 𝑦2) ↦→ 𝜋1 : 𝑦1 × 𝑦2 → 𝑦1.

Example 6.4 corresponds roughly to the semantics studied
by Fiore and Saville [17], without taking into account the
type formers.
Another example of a comprehension bicategory comes

from locally groupoidal bicategories, such as Grpd.

Example 6.5 (locally_grpd_comprehension_bicat). Let B
be a locally groupoidal bicategory with pullbacks. Then we
get the following comprehension bicategory

B↓ B↓id over B

Since every 2-cell is opcartesian in B↓ if B is locally group-
oidal, the displayed bicategory B↓ has a local opcleaving.

Example 6.5 models symmetric reductions between terms.
It generalizes the groupoid model of type theory [22] and
is related to the interpretation of the two-dimensional type
theory by Licata and Harper [27], and to the definition of
comprehension 2-category by Garner [18].

We can also consider a directed version of this example by
using categories instead of groupoids.

Example 6.6 (opcleaving_comprehension_bicat). We have
the following comprehension bicategory

OpCleav Cat↓
𝜒 over Cat

The pseudofunctor 𝜒 sends a displayed category D over C
to the functor 𝜋1 :

∫
D → C. To check whether 𝜒 preserves

cartesian 1-cells, it suffices to check whether the chosen lifts
are mapped to pullback squares. The chosen lifts are sent to
strict pullback square because they are given by reindexing.
Since strict pullbacks of isofibrations are weak pullbacks as
well [23], we conclude that 𝜒 preserves cartesian 1-cells.

Example 6.6 roughly corresponds to the interpretations
given by Licata andHarper [26] andNorth [30] in their works
on directed type theories, albeit without considering type for-
mers. Similarly, we can define a contravariant comprehension
bicategory (cleaving_contravariant_comprehension_bicat)
using cleavings instead of opcleavings.
Using Example 5.4, we can generalize the example of

(op)fibrations to arbitrary bicategories with pullbacks. We
discuss the interest in this generalization in Remark 6.9.

Example 6.7 (internal_sopfib_comprehension_bicat). Let
B be a bicategory with pullbacks. Then we get the following
comprehension bicategory

SOpFib(B) B↓𝜒 over B

The displayed pseudofunctor χ : B+B → B↓ sends the objecty2 over
y1 to the product projectiony1×y2 → y1, that is, the corresponding
total pseudofunctor B × B → B↓ is defined by (y1,y2) 7→ π1 :
y1 × y2 → y1.

Example 6.2 corresponds roughly to the semantics studied by
Fiore and Saville [16], but without the type formers.

Another example of a comprehension bicategory comes from
locally groupoidal bicategories, such as Grpd.

Example 6.3 (locally_grpd_comprehension_bicat). Let B be a lo-
cally groupoidal bicategory with pullbacks. Then we get the follow-
ing comprehension bicategory

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

In the same way we can define SFib(B) and SIsoFib(B),
which are displayed bicategories of internal Street opfibra-
tions and internal Street isofibrations, respectively. Since
both fibrations and isofibrations are closed under pullbacks,
these displayed bicategories have a global cleaving. However,
while SOpFib(B) has a local opcleaving, SFib(B) has a local
cleaving and SIsoFib(B) has a local isocleaving.

6 Comprehension Bicategories
In this section, we give the main definition of this paper, of
comprehension bicategories. We also give several (classes of)
instances of this definition. In some of these instances, we
will recognize structures studied previously in the context
of higher-dimensional and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension
bicategory is given by a bicategory B, a displayed bicategory
D over B, and a displayed pseudofunctor 𝜒 over the identity
on B as pictured below,

D B↓𝜒 over B

satisfying the following properties (see also Proposition 4.8):
1. D is a global fibration;
2. 𝜒 preserves cartesian 1-cells;
3. D is a local opfibration;
4. opcartesian 2-cells of D are preserved under both left

and right whiskering;
5. 𝜒 preserves opcartesian 2-cells.

Remark 6.2. Recall from Remarks 3.8, 4.4 and 4.7 that the
displayed pseudofunctor 𝜒 : D → B↓ of Definition 6.1 gives
rise to a strictly commuting diagram of pseudofunctors

∫
D

∫
B↓ = B→

B

∫
𝜒

cod

with suitable “classical” structure of global fibration, local
opfibration, and preservation of (op)cartesian cells.

Remark 6.3. Contravariant and isovariant comprehen-
sion bicategories are defined analogously with the notions
of (iso)cleaving and (iso)cartesian taking the place of op-
cleaving and opcartesian in Items 3 to 5 of Definition 6.1.
Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant
comprehension structure.

Next we discuss some examples of comprehension bicate-
gories. Each of these examples gives a different kind of type
theory. The first example we consider gives an interpretation
of a simple type theory.

Example 6.4 (trivial_comprehension_bicat). Suppose, that
we have a bicategory B with products. Then we have the

following comprehension bicategory

B+B B↓𝜒 over B

The displayed pseudofunctor 𝜒 : B+B → B↓ sends the object
𝑦2 over 𝑦1 to the product projection 𝑦1 ×𝑦2 → 𝑦1, that is, the
corresponding total pseudofunctor B × B → 𝐵↓ is defined
by (𝑦1, 𝑦2) ↦→ 𝜋1 : 𝑦1 × 𝑦2 → 𝑦1.

Example 6.4 corresponds roughly to the semantics studied
by Fiore and Saville [17], without taking into account the
type formers.
Another example of a comprehension bicategory comes

from locally groupoidal bicategories, such as Grpd.

Example 6.5 (locally_grpd_comprehension_bicat). Let B
be a locally groupoidal bicategory with pullbacks. Then we
get the following comprehension bicategory

B↓ B↓id over B

Since every 2-cell is opcartesian in B↓ if B is locally group-
oidal, the displayed bicategory B↓ has a local opcleaving.

Example 6.5 models symmetric reductions between terms.
It generalizes the groupoid model of type theory [22] and
is related to the interpretation of the two-dimensional type
theory by Licata and Harper [27], and to the definition of
comprehension 2-category by Garner [18].

We can also consider a directed version of this example by
using categories instead of groupoids.

Example 6.6 (opcleaving_comprehension_bicat). We have
the following comprehension bicategory

OpCleav Cat↓
𝜒 over Cat

The pseudofunctor 𝜒 sends a displayed category D over C
to the functor 𝜋1 :

∫
D → C. To check whether 𝜒 preserves

cartesian 1-cells, it suffices to check whether the chosen lifts
are mapped to pullback squares. The chosen lifts are sent to
strict pullback square because they are given by reindexing.
Since strict pullbacks of isofibrations are weak pullbacks as
well [23], we conclude that 𝜒 preserves cartesian 1-cells.

Example 6.6 roughly corresponds to the interpretations
given by Licata andHarper [26] andNorth [30] in their works
on directed type theories, albeit without considering type for-
mers. Similarly, we can define a contravariant comprehension
bicategory (cleaving_contravariant_comprehension_bicat)
using cleavings instead of opcleavings.
Using Example 5.4, we can generalize the example of

(op)fibrations to arbitrary bicategories with pullbacks. We
discuss the interest in this generalization in Remark 6.9.

Example 6.7 (internal_sopfib_comprehension_bicat). Let
B be a bicategory with pullbacks. Then we get the following
comprehension bicategory

SOpFib(B) B↓𝜒 over B

Since every 2-cell is opcartesian in B↓ if B is locally groupoidal, the
displayed bicategory B↓ has a local opcleaving.

Example 6.3 models symmetric reductions between terms. It thus
generalizes the groupoid model of type theory [21] and is related
to the interpretation of the two-dimensional type theory by Licata
and Harper [26], and to the definition of comprehension 2-category
by Garner [17].

We can also consider a directed version of this example by using
categories instead of groupoids.

Example 6.4 (opcleaving_comprehension_bicat). From opfibra-
tions we build the following comprehension bicategory:

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

In the same way we can define SFib(B) and SIsoFib(B),
which are displayed bicategories of internal Street opfibra-
tions and internal Street isofibrations, respectively. Since
both fibrations and isofibrations are closed under pullbacks,
these displayed bicategories have a global cleaving. However,
while SOpFib(B) has a local opcleaving, SFib(B) has a local
cleaving and SIsoFib(B) has a local isocleaving.

6 Comprehension Bicategories
In this section, we give the main definition of this paper, of
comprehension bicategories. We also give several (classes of)
instances of this definition. In some of these instances, we
will recognize structures studied previously in the context
of higher-dimensional and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension
bicategory is given by a bicategory B, a displayed bicategory
D over B, and a displayed pseudofunctor 𝜒 over the identity
on B as pictured below,

D B↓𝜒 over B

satisfying the following properties (see also Proposition 4.8):
1. D is a global fibration;
2. 𝜒 preserves cartesian 1-cells;
3. D is a local opfibration;
4. opcartesian 2-cells of D are preserved under both left

and right whiskering;
5. 𝜒 preserves opcartesian 2-cells.

Remark 6.2. Recall from Remarks 3.8, 4.4 and 4.7 that the
displayed pseudofunctor 𝜒 : D → B↓ of Definition 6.1 gives
rise to a strictly commuting diagram of pseudofunctors

∫
D

∫
B↓ = B→

B

∫
𝜒

cod

with suitable “classical” structure of global fibration, local
opfibration, and preservation of (op)cartesian cells.

Remark 6.3. Contravariant and isovariant comprehen-
sion bicategories are defined analogously with the notions
of (iso)cleaving and (iso)cartesian taking the place of op-
cleaving and opcartesian in Items 3 to 5 of Definition 6.1.
Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant
comprehension structure.

Next we discuss some examples of comprehension bicate-
gories. Each of these examples gives a different kind of type
theory. The first example we consider gives an interpretation
of a simple type theory.

Example 6.4 (trivial_comprehension_bicat). Suppose, that
we have a bicategory B with products. Then we have the

following comprehension bicategory

B+B B↓𝜒 over B

The displayed pseudofunctor 𝜒 : B+B → B↓ sends the object
𝑦2 over 𝑦1 to the product projection 𝑦1 ×𝑦2 → 𝑦1, that is, the
corresponding total pseudofunctor B × B → 𝐵↓ is defined
by (𝑦1, 𝑦2) ↦→ 𝜋1 : 𝑦1 × 𝑦2 → 𝑦1.

Example 6.4 corresponds roughly to the semantics studied
by Fiore and Saville [17], without taking into account the
type formers.
Another example of a comprehension bicategory comes

from locally groupoidal bicategories, such as Grpd.

Example 6.5 (locally_grpd_comprehension_bicat). Let B
be a locally groupoidal bicategory with pullbacks. Then we
get the following comprehension bicategory

B↓ B↓id over B

Since every 2-cell is opcartesian in B↓ if B is locally group-
oidal, the displayed bicategory B↓ has a local opcleaving.

Example 6.5 models symmetric reductions between terms.
It generalizes the groupoid model of type theory [22] and
is related to the interpretation of the two-dimensional type
theory by Licata and Harper [27], and to the definition of
comprehension 2-category by Garner [18].

We can also consider a directed version of this example by
using categories instead of groupoids.

Example 6.6 (opcleaving_comprehension_bicat). We have
the following comprehension bicategory

OpCleav Cat↓
𝜒 over Cat

The pseudofunctor 𝜒 sends a displayed category D over C
to the functor 𝜋1 :

∫
D → C. To check whether 𝜒 preserves

cartesian 1-cells, it suffices to check whether the chosen lifts
are mapped to pullback squares. The chosen lifts are sent to
strict pullback square because they are given by reindexing.
Since strict pullbacks of isofibrations are weak pullbacks as
well [23], we conclude that 𝜒 preserves cartesian 1-cells.

Example 6.6 roughly corresponds to the interpretations
given by Licata andHarper [26] andNorth [30] in their works
on directed type theories, albeit without considering type for-
mers. Similarly, we can define a contravariant comprehension
bicategory (cleaving_contravariant_comprehension_bicat)
using cleavings instead of opcleavings.
Using Example 5.4, we can generalize the example of

(op)fibrations to arbitrary bicategories with pullbacks. We
discuss the interest in this generalization in Remark 6.9.

Example 6.7 (internal_sopfib_comprehension_bicat). Let
B be a bicategory with pullbacks. Then we get the following
comprehension bicategory

SOpFib(B) B↓𝜒 over B

The pseudofunctor χ sends a displayed category D over C to the
functor π1 :

∫
D → C. To check whether χ preserves cartesian

1-cells, it suffices to check whether the chosen lifts are mapped
to pullback squares. The chosen lifts are sent to strict pullback
square because they are given by reindexing. Since strict pullbacks
of isofibrations are weak pullbacks as well [22], we conclude that
χ preserves cartesian 1-cells.

Example 6.4 roughly corresponds to the interpretations given by
Licata and Harper [25] and North [29] in their works on directed
type theories, albeit without considering type formers.

Similarly, we can define a contravariant comprehension bicat-
egory (cleaving_contravariant_comprehension_bicat) using fibra-
tions instead of opcleavings.

Using Example 5.4, we can generalize the example of (op)fibra-
tions to arbitrary bicategories with pullbacks. We discuss the inter-
est in this generalization in Remark 6.3.

Example 6.5 (internal_sopfib_comprehension_bicat). For bicate-
gory B with pullbacks, we construct the comprehension bicategory

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

In the same way we can define SFib(B) and SIsoFib(B),
which are displayed bicategories of internal Street opfibra-
tions and internal Street isofibrations, respectively. Since
both fibrations and isofibrations are closed under pullbacks,
these displayed bicategories have a global cleaving. However,
while SOpFib(B) has a local opcleaving, SFib(B) has a local
cleaving and SIsoFib(B) has a local isocleaving.

6 Comprehension Bicategories
In this section, we give the main definition of this paper, of
comprehension bicategories. We also give several (classes of)
instances of this definition. In some of these instances, we
will recognize structures studied previously in the context
of higher-dimensional and directed type theory.

Definition 6.1 (comprehension_bicat). A comprehension
bicategory is given by a bicategory B, a displayed bicategory
D over B, and a displayed pseudofunctor 𝜒 over the identity
on B as pictured below,

D B↓𝜒 over B

satisfying the following properties (see also Proposition 4.8):
1. D is a global fibration;
2. 𝜒 preserves cartesian 1-cells;
3. D is a local opfibration;
4. opcartesian 2-cells of D are preserved under both left

and right whiskering;
5. 𝜒 preserves opcartesian 2-cells.

Remark 6.2. Recall from Remarks 3.8, 4.4 and 4.7 that the
displayed pseudofunctor 𝜒 : D → B↓ of Definition 6.1 gives
rise to a strictly commuting diagram of pseudofunctors

∫
D

∫
B↓ = B→

B

∫
𝜒

cod

with suitable “classical” structure of global fibration, local
opfibration, and preservation of (op)cartesian cells.

Remark 6.3. Contravariant and isovariant comprehen-
sion bicategories are defined analogously with the notions
of (iso)cleaving and (iso)cartesian taking the place of op-
cleaving and opcartesian in Items 3 to 5 of Definition 6.1.
Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant
comprehension structure.

Next we discuss some examples of comprehension bicate-
gories. Each of these examples gives a different kind of type
theory. The first example we consider gives an interpretation
of a simple type theory.

Example 6.4 (trivial_comprehension_bicat). Suppose, that
we have a bicategory B with products. Then we have the

following comprehension bicategory

B+B B↓𝜒 over B

The displayed pseudofunctor 𝜒 : B+B → B↓ sends the object
𝑦2 over 𝑦1 to the product projection 𝑦1 ×𝑦2 → 𝑦1, that is, the
corresponding total pseudofunctor B × B → 𝐵↓ is defined
by (𝑦1, 𝑦2) ↦→ 𝜋1 : 𝑦1 × 𝑦2 → 𝑦1.

Example 6.4 corresponds roughly to the semantics studied
by Fiore and Saville [17], without taking into account the
type formers.
Another example of a comprehension bicategory comes

from locally groupoidal bicategories, such as Grpd.

Example 6.5 (locally_grpd_comprehension_bicat). Let B
be a locally groupoidal bicategory with pullbacks. Then we
get the following comprehension bicategory

B↓ B↓id over B

Since every 2-cell is opcartesian in B↓ if B is locally group-
oidal, the displayed bicategory B↓ has a local opcleaving.

Example 6.5 models symmetric reductions between terms.
It generalizes the groupoid model of type theory [22] and
is related to the interpretation of the two-dimensional type
theory by Licata and Harper [27], and to the definition of
comprehension 2-category by Garner [18].

We can also consider a directed version of this example by
using categories instead of groupoids.

Example 6.6 (opcleaving_comprehension_bicat). We have
the following comprehension bicategory

OpCleav Cat↓
𝜒 over Cat

The pseudofunctor 𝜒 sends a displayed category D over C
to the functor 𝜋1 :

∫
D → C. To check whether 𝜒 preserves

cartesian 1-cells, it suffices to check whether the chosen lifts
are mapped to pullback squares. The chosen lifts are sent to
strict pullback square because they are given by reindexing.
Since strict pullbacks of isofibrations are weak pullbacks as
well [23], we conclude that 𝜒 preserves cartesian 1-cells.

Example 6.6 roughly corresponds to the interpretations
given by Licata andHarper [26] andNorth [30] in their works
on directed type theories, albeit without considering type for-
mers. Similarly, we can define a contravariant comprehension
bicategory (cleaving_contravariant_comprehension_bicat)
using cleavings instead of opcleavings.
Using Example 5.4, we can generalize the example of

(op)fibrations to arbitrary bicategories with pullbacks. We
discuss the interest in this generalization in Remark 6.9.

Example 6.7 (internal_sopfib_comprehension_bicat). Let
B be a bicategory with pullbacks. Then we get the following
comprehension bicategory

SOpFib(B) B↓𝜒 over B

The (displayed) pseudofunctor χ forgets that the morphisms in
SOpFib(B) are internal Street opfibrations. From the characteriza-
tion of cartesian 1-cells and 2-cells in Example 5.4, we conclude
that χ preserves opcartesian 1-cells and 2-cells.

Example 6.6. By Example 5.4 any bicategory with pullbacks,
thus in particular any bicategory of stacks [39], gives rise to a
comprehension bicategory.

Remark 6.3. Recall from Section 2.3.1 that Coquand, Mannaa, and
Ruch [12] constructed models of MLTT in stacks valued in groupoids.
Using those models, they proved the independence of countable choice
in univalent foundations.

With our comprehension bicategories of stacks (not just ones val-
ued in groupoids), one could follow [12] and study the validity and
independence of logical principles in directed type theory.

Remark 6.4. Note that similarly, we can construct a contravariant
and an isovariant comprehension bicategory from SOpFib(B) and
SIsoFib(B) respectively.

7 THE TYPE THEORY BTT
In this section, we extract a core syntax for two-dimensional type
theory from our semantic model. We call the resulting type theory
Bicategorical Type Theory (BTT). We also prove soundness of our
syntax by giving an interpretation of the syntax in any comprehen-
sion bicategory.

The syntax extracted here is maximally general, in the sense
that it reflects the structure of a general comprehension bicategory.
In Section 7.5, we propose several orthogonal simplifications to
the syntax, along with the corresponding semantic structure and
properties. As such, our syntax and semantics are to be viewed
as a framework to study different semantic structures and their
corresponding internal languages, rather than as one particular
pair of syntax and semantics.

In Section 7.1 we present the judgment forms of BTT, as well as
the rules extracted from the bicategories of contexts and of types,
respectively. In Sections 7.2 and 7.3 we present the comprehension
and substitution rules, respectively. In Section 7.4 we prove the
aforementioned soundness result. In Section 7.5 we point to possible
simplifications in the syntax, and the corresponding assumptions
in the semantics.

For reasons of space we omit here several rules, for instance,
coherence rules relating the image of associators under the compre-
hension pseudofunctor with other associators. Such rules, written
out in the “linear” syntax used here, would take up several lines
and would be difficult to understand. Consequently, the syntax
presented here is not complete. The presentation of the complete
syntax and a suitable completeness theorem is left for future work.

7.1 Judgments and Basic Rules
BTT features contexts, substitutions, types, generalized terms, and
reductions between terms. As befits the bicategorical semantics,
judgmental equality is only postulated between parallel reductions.

There are eight kinds of judgments in BTT:
(1) Γ ctx, which is read as ‘Γ is a context’;
(2) ∆ ⊢ s : Γ (given ∆, Γ ctx), which is read as ‘s is a substitution’

from ∆ to Γ;
(3) ∆ ⊢ r : s ⇝ t : Γ (where ∆ ⊢ s, t : Γ), which is read as ‘r is a

reduction from s to t ’;
(4) ∆ ⊢ r ≡ r ′ : s ⇝ t : Γ (where ∆ ⊢ r , r ′ : s ⇝ t : Γ), which is

read as ‘r is equal to r ′’;

https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.ComprehensionBicat.html#trivial_comprehension_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.ComprehensionBicat.html#locally_grpd_comprehension_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.ComprehensionBicat.html#opcleaving_comprehension_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.ComprehensionBicat.html#cleaving_contravariant_comprehension_bicat
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.ComprehensionBicat.html#internal_sopfib_comprehension_bicat

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

(5) Γ ⊢ T type (where Γ ctx), which is read as ‘T is a type in
context Γ’

(6) Γ | S ⊢ t : T (where Γ ⊢ S,T type), which is read as ‘t is a
term in T depending on S in context Γ’

(7) Γ | S ⊢ ρ : t ⇝ t ′ : T (where Γ | S ⊢ t , t ′ : T), which is read
as ‘ρ is a reduction from t to t ′’

(8) Γ | S ⊢ ρ ≡ ρ ′ : t ⇝ t ′ : T (where Γ | S ⊢ ρ, ρ ′ : t ⇝ t ′ : T),
which is read as ‘ρ is equal to ρ ′’.

We often abbreviate the above judgments and write, e. g., just ρ :
t ⇝ t ′ instead of Γ | S ⊢ ρ : t ⇝ t ′ : T . For these judgments, we
have rules that express the bicategorical structure of contexts and
types. Rules are given in Figure 1 for the bicategory of contexts,
and in Figure 2 for the bicategory of types.

We also introduce symbols which read like judgements but stand
for several judgements, using the composition and identities intro-
duced in Figures 1 and 2.

(1) ∆ ⊢ ρ : s ⇝̃ t : Γ stands for the four judgments
• ∆ ⊢ ρ : s ⇝ t : Γ ∆ ⊢ ρ−1 : t ⇝ s : Γ
• ρ ∗ ρ−1 ≡ 1s ρ−1 ∗ ρ ≡ 1t

(2) Γ | S ⊢ ρ : t ⇝̃ t ′ : T stands for the four judgments
• Γ | S ⊢ ρ : t ⇝ t ′ : T Γ | S ⊢ ρ−1 : t ′⇝ t : T
• ρ ∗ ρ−1 ≡ 1t ρ−1 ∗ ρ ≡ 1t ′

(3) ∆
∼⊢ s : Γ stands for the four judgments

• ∆ ⊢ s : Γ Γ ⊢ s−1 : ∆
• sℓ : ss−1 ⇝̃ 1∆ sρ : s−1s ⇝̃ 1Γ

(4) Γ | S ∼⊢ t : T stands for the four judgments
• Γ | S ⊢ t : T Γ | T ⊢ t−1 : S
• tℓ : tt−1 ⇝̃ 1S tρ : t−1t ⇝̃ 1T

Remark 7.1. By abuse of notation, we write several topically re-
lated rules that share all the same hypotheses as one rule with several
conclusions. These rules then also share the same name, e. g., extend-
con-Ty. When referring to a rule by name, it is usually clear from the
context which of the possible rules we refer to. The names of infer-
ence rules in the text are hyperlinks to the corresponding rules (e. g.,
map). The equality ≡ is assumed to be a congruence for every other
constructor and judgement. For brevity, we have not recorded here the
resulting rules. When parentheses are omitted, everything is associ-
ated to the left: that is, rst stands for ((rs)t). Note also that in several
rules in which it is necessary to re-associate several four or more terms
or substitutions, we have written α instead of a long composition of
whiskered associators α•,•,• in the interest of readability.

7.2 Comprehension Structure
Comprehension, that is, context extension, is extracted from the
pseudofunctor χ . The rules for comprehension are given in Figure
3. There are some notable differences to comprehension in MLTT.
First, the rule extend-con-Tm, which forms a substitution, comes
together with a reduction that expresses the commutativity of a
triangle. Second, we also have a rule extend-con-Red that extends a
substitution with a reduction. Since reductions are proof-relevant,
this rule comes with a coherency on the commutativity.

7.3 Substitution Structure
Substitution is given, in the semantics, by the global and local
(op)cleaving structure. We reflect this into the syntax as explicit

substitution, as was also used, e. g., in [16, 26] in their respective
settings.

The rules for substitution are given in Figures 4 and 5. We dis-
tinguish them based on whether we need the global cleaving or
the local opcleaving to interpret them. There are several important
observations to be made about these rules. First, in line with our
truly bicategorical approach, we do not assume the comprehension
bicategory is split. In particular, no equality between T [id] and T
is postulated. Instead, there is an equivalence between them (see
sub-id and sub-comp), and terms of these types are transported
along the equivalence. Note that there are more rules than just
those in the figure. For example, if we have a context Γ and a type
T , then STmI(1T) is equal to

(sub−1id ◁ SubI(1Γ) ▷ subid) ∗ (rsub−1id ▷ subid) ∗ subℓid.

The rule map expresses that each type T behaves ‘functorially’:
for each ∆ ⊢ s : Γ (i. e., object in ‘hom(∆, Γ)’) we get a type T [s]
(i. e., object in ‘the category of types in context ∆’) by sub-ty and
for each r : s ⇝ s ′ (i.e., morphism in ‘hom(∆, Γ)’) we get a term
∆ | T [s] ⊢ map T θ : T [s ′] (i. e., morphism in ‘the category of types
in context ∆’) bymap. The rulesmap-id andmap-comp ensure that
T [−] preserves identity and composition. With rew-tm we can then
understand terms to be ‘natural transformations’.

Remark 7.2. For contravariant comprehension bicategories (Re-
mark 6.2), the rule map would be in the opposite direction, while for
isovariant comprehension bicategories, this rule would be restricted to
isomorphisms in the base.

7.4 Soundness: Interpretation in
Comprehension Bicategories

In this section, we give an interpretation of BTT in any comprehen-
sion bicategory. To this end, we fix a comprehension bicategory

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

When parentheses are omitted, everything is associated
to the left: that is, 𝑟𝑠𝑡 stands for ((𝑟𝑠)𝑡).
Note also that in several rules in which it is necessary to

re-associate several four or more terms or substitutions, we
have written 𝛼 instead of a long composition of whiskered
associators 𝛼•,•,• in the interest of readability.

Note that names of inference rules in the text are hyper-
links to the corresponding rules (e. g., map).

7.2 Comprehension Structure
Comprehension, that is, context extension, is extracted from
the pseudofunctor 𝜒 . The rules for comprehension are given
in Fig. 1. There are some notable differences to comprehen-
sion in MLTT. First, the rule extend-con-Tm, which forms a
substitution, comes together with a reduction that expresses
the commutativity of a triangle. Second, we also have a rule
extend-con-Red that extends a substitution with a reduction.
Since reductions are proof-relevant, this rule comes with a
coherency on the commutativity.

7.3 Substitution Structure
Substitution is given, in the semantics, by the global and
local (op)cleaving structure. We reflect this into the syntax
as explicit substitution, as was also used, e. g., in [17, 27] in
their respective settings.
The rules for substitution are given in Fig. 2 and Fig. 3.

We distinguish them based on whether we need the global
cleaving or the local opcleaving to interpret them. There
are several important observations to be made about these
rules. First, in line with our truly bicategorical approach,
we do not assume the comprehension bicategory is split. In
particular, no equality between 𝑇 [id] and 𝑇 is postulated.
Instead, there is an equivalence between them (see sub-id
and sub-comp), and terms of these types are transported
along the equivalence. Note that there are more rules than
just those in the figure. For example, if we have a context Γ
and a type 𝑇 , then STmI (1𝑇) is equal to
(sub−1id ◁ SubI (1Γ) ▷ subid) ∗ (𝑟sub−1id ▷ subid) ∗ subid ℓ .

The rule map expresses that each type 𝑇 behaves ‘func-
torially’: for each Δ ⊢ 𝑠 : Γ (i. e., object in ‘hom(Δ, Γ)’) we
get a type 𝑇 [𝑠] (i. e., object in ‘the category of types in con-
text Δ’) by sub-ty and for each 𝑟 : 𝑠 ⇝ 𝑠 ′ (i.e., morphism
in ‘hom(Δ, Γ)’) we get a term Δ | 𝑇 [𝑠] ⊢ map 𝑇 \ : 𝑇 [𝑠 ′]
(i. e., morphism in ‘the category of types in context Δ’) by
map. The rules map-id and map-comp ensure that𝑇 [−] pre-
serves identity and composition. With rew-tm we can then
understand terms to be ‘natural transformations’.

Remark 7.2. For contravariant comprehension bicategories
(Remark 6.3), the rule map would be in the opposite direction,
while for isovariant comprehension bicategories, this rule
would be restricted to isomorphisms in the base.

7.4 Soundness: Interpretation in Comprehension
Bicategories

In this section, we give an interpretation of BTT in any
comprehension bicategory. To this end, we fix a compre-
hension bicategory D B↓𝜒 over B. We interpret the
judgments as follows.

• Γ ctx is interpreted as an object ⟦Γ⟧ of B.
• Δ ⊢ 𝑠 : Γ is interpreted as a 1-cell ⟦𝑠⟧ : ⟦Δ⟧ → ⟦Γ⟧ in
B.

• Δ ⊢ 𝑟 : 𝑠 ⇝ 𝑡 : Γ is interpreted as a 2-cell ⟦𝑟⟧ : ⟦𝑠⟧ ⇒
⟦𝑡⟧ in B.

• Δ ⊢ 𝑟 ≡ 𝑟 ′ : 𝑠 ⇝ 𝑡 : Γ is interpreted as an equality
⟦𝑟⟧ = ⟦𝑟 ′⟧.

• Γ ⊢ 𝑇 type is interpreted as an object ⟦𝑇⟧ in D over
⟦Γ⟧.

• Γ | 𝑆 ⊢ 𝑡 : 𝑇 is interpreted as a 1-cell ⟦𝑡⟧ : ⟦𝑆⟧ → ⟦𝑇⟧
over the identity on ⟦Γ⟧.

• Γ | 𝑆 ⊢ 𝑟 : 𝑡 ⇝ 𝑡 ′ : 𝑇 is interpreted as a 2-cell
⟦𝑟⟧ : ⟦𝑡⟧ ⇒ ⟦𝑡 ′⟧ over the identity 2-cell.

• Γ | 𝑆 ⊢ 𝑟 ≡ 𝑟 ′ : 𝑡 ⇝ 𝑡 ′ : 𝑇 is interpreted as an equality
⟦𝑟⟧ = ⟦𝑟 ′⟧.

Regarding the “bicategorical” rules for contexts and types,
each rule is analogous to one of the operations or laws of a
bicategory, which also indicates how it is interpreted.
Next we interpret the rules related to comprehension of

Fig. 1. Suppose that we have a context Γ : B and a type 𝑇
over Γ. Its image 𝜒 (𝑇) in B↓ gives rise to an object Γ.𝑇 : B
and a 1-cell 𝜋Γ.𝑇 : Γ.𝑇 → Γ, which interprets extend-con-Ty.
A 1-cell 𝑡 from 𝑆 to 𝑇 over the identity gets sent by 𝜒 to the
following triangle

Γ.𝑆 Γ.𝑇

Γ

𝜒 (𝑡)

𝜋Γ.𝑆 𝜋Γ.𝑇

which commutes up to invertible 2-cell. This yields the in-
terpretation of the rules in extend-con-Tm. Furthermore, a
reduction 𝑟 : 𝑡 ⇝ 𝑡 ′ is mapped by 𝜒 to a 2-cell from 𝜒 (𝑡) to
𝜒 (𝑡 ′) in B↓, and this is how we interpret extend-con-Red.
Finally, we interpret the rules for substitution. The rule

sub-ty follows directly from the global cleaving. To interpret
sub-tm, consider the following diagram:

𝑆 [𝑠] 𝑆

𝑇 [𝑠] 𝑇

𝑡 [𝑠] 𝑡 over
Γ1 Γ2

𝑠

The map 𝑇 [𝑠] → 𝑇 is cartesian. The composition 𝑆 [𝑠] →
𝑆 → 𝑇 lives over id1 ·𝑠 , and by Remark 4.2 we obtain the
desired factorization. Since the identity 1-cell is cartesian and
being cartesian is preserved under composition, the rules
sub-id and sub-comp follow as well.

. We interpret the judgments as follows.
• Γ ctx is interpreted as an object ⟦Γ⟧ of B.
• ∆ ⊢ s : Γ is interpreted as a 1-cell ⟦s⟧ : ⟦∆⟧ → ⟦Γ⟧ in B.
• ∆ ⊢ r : s ⇝ t : Γ is interpreted as a 2-cell ⟦r⟧ : ⟦s⟧ ⇒ ⟦t⟧ in
B.

• ∆ ⊢ r ≡ r ′ : s ⇝ t : Γ is interpreted as an equality ⟦r⟧ =
⟦r ′⟧.

• Γ ⊢ T type is interpreted as an object ⟦T⟧ in D over ⟦Γ⟧.
• Γ | S ⊢ t : T is interpreted as a 1-cell ⟦t⟧ : ⟦S⟧ → ⟦T⟧ over
the identity on ⟦Γ⟧.

• Γ | S ⊢ r : t ⇝ t ′ : T is interpreted as a 2-cell ⟦r⟧ : ⟦t⟧ ⇒
⟦t ′⟧ over the identity 2-cell.

• Γ | S ⊢ r ≡ r ′ : t ⇝ t ′ : T is interpreted as an equality
⟦r⟧ = ⟦r ′⟧.

Regarding the “bicategorical” rules of Figures 1 and 2, each rule
is analogous to one of the operations or laws of a bicategory, which
also indicates how it is interpreted.

Next we interpret the rules related to comprehension of Figure
3. Suppose that we have a context Γ : B and a type T over Γ.
Its image χ (T) in B↓ gives rise to an object Γ.T : B and a 1-cell
πΓ.T : Γ.T → Γ, which interprets extend-con-Ty. A 1-cell t from S
to T over the identity gets sent by χ to the following triangle

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

Γ ctx
Γ ⊢ 1Γ : Γ

Γ, ∆ ctx ∆ ⊢ s : Γ
∆ ⊢ 1s : s ⇝ s : Γ

Γ, ∆ ctx ∆ ⊢ s, s ′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ
∆ ⊢ ρ ≡ ρ : s ⇝ s ′ : Γ

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ t : Γ
E ⊢ st : Γ

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ t, t ′ : Γ ∆ ⊢ ρ : t ⇝ t ′ : Γ
E ⊢ s ◁ ρ : st ⇝ st ′ : Γ

Γ, ∆, E ctx E ⊢ s, s ′ : ∆ ∆ ⊢ t : Γ E ⊢ σ : s ⇝ s ′ : ∆
E ⊢ σ ▷ t : st ⇝ s ′t : Γ

Γ, ∆ ctx ∆ ⊢ s, s ′, s ′′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ ∆ ⊢ σ : s ′⇝ s ′′ : Γ
∆ ⊢ ρ ∗ σ : s ⇝ s ′′ : Γ

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ t : Γ
E ⊢ 1s ▷ t ≡ 1st : st ⇝ st : Γ
E ⊢ s ◁ 1t ≡ 1st : st ⇝ st : Γ

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ t, t ′, t ′′ : Γ ∆ ⊢ ρ : t ⇝ t ′ : Γ ∆ ⊢ ρ′ : t ′⇝ t ′′ : Γ
E ⊢ (s ◁ ρ) ∗ (s ◁ ρ′) ≡ s ◁ (ρ ∗ ρ′) : st ⇝ st ′′ : Γ

Γ, ∆, E ctx E ⊢ s, s ′, s ′′ : ∆ ∆ ⊢ t : Γ E ⊢ σ : s ⇝ s ′ : ∆ E ⊢ σ ′ : s ′⇝ s ′′ : ∆
E ⊢ (σ ▷ t) ∗ (σ ′ ▷ t) ≡ (σ ∗ σ ′) ▷ t : st ⇝ s ′′t : Γ

Γ, ∆, E ctx E ⊢ s, s ′ : ∆ ∆ ⊢ t, t ′ : Γ E ⊢ σ : s ⇝ s ′ : ∆ ∆ ⊢ ρ : t ⇝ t ′ : Γ
E ⊢ (σ ▷ t) ∗ (s ′ ◁ ρ) ≡ (s ◁ ρ) ∗ (σ ▷ t ′) : st ⇝ s ′t ′ : Γ

Γ, ∆ ctx ∆ ⊢ s : Γ
∆ ⊢ ℓs : 1∆s ⇝̃ s : Γ

Γ, ∆ ctx ∆ ⊢ s : Γ
∆ ⊢ rs : s1Γ ⇝̃ s : Γ

Γ, ∆, E, Z ctx Z ⊢ r : E E ⊢ s : ∆ ∆ ⊢ t : Γ
Z ⊢ αr ,s,t : r (st) ⇝̃ (r s)t : Γ

Γ, ∆ ctx ∆ ⊢ s, s ′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ
∆ ⊢ r−1s ∗ (ρ ▷ 1Γ) ∗ rs′ ≡ ρ : s ⇝ s ′ : Γ

∆ ⊢ ℓ−1s ∗ (1∆ ◁ ρ) ∗ ℓs′ ≡ ρ : s ⇝ s ′ : Γ

Γ, ∆, E, Z ctx Z ⊢ s : E E ⊢ t : ∆ ∆ ⊢ u, u′ : Γ ∆ ⊢ ρ : u ⇝ u′ : Γ
Z ⊢ α−1

s,t,u ∗ (s ◁ (t ◁ ρ)) ∗ αs,t,u′ ≡ st ◁ ρ : (st)u ⇝ (st)u′ : Γ
Γ, ∆, E, Z ctx Z ⊢ s : E E ⊢ t, t ′ : ∆ ∆ ⊢ u : Γ E ⊢ ρ : t ⇝ t ′ : ∆
Z ⊢ α−1

s,t,u ∗ (s ◁ (ρ ▷ u)) ∗ αs,t ′,u ≡ (s ◁ ρ) ▷ u : (st)u ⇝ (st ′)u : Γ

Γ, ∆, E, Z ctx Z ⊢ s, s ′ : E E ⊢ t : ∆ ∆ ⊢ u : Γ Z ⊢ ρ : s ⇝ s ′ : E
Z ⊢ α−1

s,t,u ∗ (ρ ▷ tu) ∗ αs′,t,u ≡ (ρ ▷ t) ▷ u : (st)u ⇝ (s ′t)u : Γ

Γ, ∆ ctx ∆ ⊢ s, s ′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ
∆ ⊢ 1s ∗ ρ ≡ ρ : s ⇝ s ′ : Γ
∆ ⊢ ρ ∗ 1s′ ≡ ρ : s ⇝ s ′ : Γ

Γ, ∆ ctx ∆ ⊢ s, s ′, s ′′, s ′′′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ ∆ ⊢ σ : s ′⇝ s ′′ : Γ ∆ ⊢ τ : s ′′⇝ s ′′′ : Γ
∆ ⊢ (ρ ∗ σ) ∗ τ ≡ ρ ∗ (σ ∗ τ) : s ⇝ s ′′′ : Γ

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ t : Γ
E ⊢ αs,1∆,t ∗ (rs ▷ t) ≡ s ◁ ℓt : s(1∆t)⇝ st : Γ

Γ, ∆, E, Z, H ctx H ⊢ s : Z Z ⊢ t : E E ⊢ u : ∆ ∆ ⊢ v : Γ
H ⊢ αs,t,uv ∗ αst,u,v ≡ (s ◁ αt,u,v) ∗ αs,tu,v ∗ (αs,t,u ▷ v) : s(t (uv))⇝ ((st)u)v : Γ

Figure 1: Rules for the bicategory of contexts

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

When parentheses are omitted, everything is associated
to the left: that is, 𝑟𝑠𝑡 stands for ((𝑟𝑠)𝑡).
Note also that in several rules in which it is necessary to

re-associate several four or more terms or substitutions, we
have written 𝛼 instead of a long composition of whiskered
associators 𝛼•,•,• in the interest of readability.

Note that names of inference rules in the text are hyper-
links to the corresponding rules (e. g., map).

7.2 Comprehension Structure
Comprehension, that is, context extension, is extracted from
the pseudofunctor 𝜒 . The rules for comprehension are given
in Fig. 1. There are some notable differences to comprehen-
sion in MLTT. First, the rule extend-con-Tm, which forms a
substitution, comes together with a reduction that expresses
the commutativity of a triangle. Second, we also have a rule
extend-con-Red that extends a substitution with a reduction.
Since reductions are proof-relevant, this rule comes with a
coherency on the commutativity.

7.3 Substitution Structure
Substitution is given, in the semantics, by the global and
local (op)cleaving structure. We reflect this into the syntax
as explicit substitution, as was also used, e. g., in [17, 27] in
their respective settings.
The rules for substitution are given in Fig. 2 and Fig. 3.

We distinguish them based on whether we need the global
cleaving or the local opcleaving to interpret them. There
are several important observations to be made about these
rules. First, in line with our truly bicategorical approach,
we do not assume the comprehension bicategory is split. In
particular, no equality between 𝑇 [id] and 𝑇 is postulated.
Instead, there is an equivalence between them (see sub-id
and sub-comp), and terms of these types are transported
along the equivalence. Note that there are more rules than
just those in the figure. For example, if we have a context Γ
and a type 𝑇 , then STmI (1𝑇) is equal to
(sub−1id ◁ SubI (1Γ) ▷ subid) ∗ (𝑟sub−1id ▷ subid) ∗ subid ℓ .

The rule map expresses that each type 𝑇 behaves ‘func-
torially’: for each Δ ⊢ 𝑠 : Γ (i. e., object in ‘hom(Δ, Γ)’) we
get a type 𝑇 [𝑠] (i. e., object in ‘the category of types in con-
text Δ’) by sub-ty and for each 𝑟 : 𝑠 ⇝ 𝑠 ′ (i.e., morphism
in ‘hom(Δ, Γ)’) we get a term Δ | 𝑇 [𝑠] ⊢ map 𝑇 \ : 𝑇 [𝑠 ′]
(i. e., morphism in ‘the category of types in context Δ’) by
map. The rules map-id and map-comp ensure that𝑇 [−] pre-
serves identity and composition. With rew-tm we can then
understand terms to be ‘natural transformations’.

Remark 7.2. For contravariant comprehension bicategories
(Remark 6.3), the rule map would be in the opposite direction,
while for isovariant comprehension bicategories, this rule
would be restricted to isomorphisms in the base.

7.4 Soundness: Interpretation in Comprehension
Bicategories

In this section, we give an interpretation of BTT in any
comprehension bicategory. To this end, we fix a compre-
hension bicategory D B↓𝜒 over B. We interpret the
judgments as follows.

• Γ ctx is interpreted as an object ⟦Γ⟧ of B.
• Δ ⊢ 𝑠 : Γ is interpreted as a 1-cell ⟦𝑠⟧ : ⟦Δ⟧ → ⟦Γ⟧ in
B.

• Δ ⊢ 𝑟 : 𝑠 ⇝ 𝑡 : Γ is interpreted as a 2-cell ⟦𝑟⟧ : ⟦𝑠⟧ ⇒
⟦𝑡⟧ in B.

• Δ ⊢ 𝑟 ≡ 𝑟 ′ : 𝑠 ⇝ 𝑡 : Γ is interpreted as an equality
⟦𝑟⟧ = ⟦𝑟 ′⟧.

• Γ ⊢ 𝑇 type is interpreted as an object ⟦𝑇⟧ in D over
⟦Γ⟧.

• Γ | 𝑆 ⊢ 𝑡 : 𝑇 is interpreted as a 1-cell ⟦𝑡⟧ : ⟦𝑆⟧ → ⟦𝑇⟧
over the identity on ⟦Γ⟧.

• Γ | 𝑆 ⊢ 𝑟 : 𝑡 ⇝ 𝑡 ′ : 𝑇 is interpreted as a 2-cell
⟦𝑟⟧ : ⟦𝑡⟧ ⇒ ⟦𝑡 ′⟧ over the identity 2-cell.

• Γ | 𝑆 ⊢ 𝑟 ≡ 𝑟 ′ : 𝑡 ⇝ 𝑡 ′ : 𝑇 is interpreted as an equality
⟦𝑟⟧ = ⟦𝑟 ′⟧.

Regarding the “bicategorical” rules for contexts and types,
each rule is analogous to one of the operations or laws of a
bicategory, which also indicates how it is interpreted.
Next we interpret the rules related to comprehension of

Fig. 1. Suppose that we have a context Γ : B and a type 𝑇
over Γ. Its image 𝜒 (𝑇) in B↓ gives rise to an object Γ.𝑇 : B
and a 1-cell 𝜋Γ.𝑇 : Γ.𝑇 → Γ, which interprets extend-con-Ty.
A 1-cell 𝑡 from 𝑆 to 𝑇 over the identity gets sent by 𝜒 to the
following triangle

Γ.𝑆 Γ.𝑇

Γ

𝜒 (𝑡)

𝜋Γ.𝑆 𝜋Γ.𝑇

which commutes up to invertible 2-cell. This yields the in-
terpretation of the rules in extend-con-Tm. Furthermore, a
reduction 𝑟 : 𝑡 ⇝ 𝑡 ′ is mapped by 𝜒 to a 2-cell from 𝜒 (𝑡) to
𝜒 (𝑡 ′) in B↓, and this is how we interpret extend-con-Red.
Finally, we interpret the rules for substitution. The rule

sub-ty follows directly from the global cleaving. To interpret
sub-tm, consider the following diagram:

𝑆 [𝑠] 𝑆

𝑇 [𝑠] 𝑇

𝑡 [𝑠] 𝑡 over
Γ1 Γ2

𝑠

The map 𝑇 [𝑠] → 𝑇 is cartesian. The composition 𝑆 [𝑠] →
𝑆 → 𝑇 lives over id1 ·𝑠 , and by Remark 4.2 we obtain the
desired factorization. Since the identity 1-cell is cartesian and
being cartesian is preserved under composition, the rules
sub-id and sub-comp follow as well.

which commutes up to invertible 2-cell. This yields the interpre-
tation of the rules in extend-con-Tm. Furthermore, a reduction
r : t ⇝ t ′ is mapped by χ to a 2-cell from χ (t) to χ (t ′) in B↓, and
this is how we interpret extend-con-Red.

Finally, we interpret the rules for substitution. The rule sub-
ty follows directly from the global cleaving. To interpret sub-tm,
consider the following diagram:

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

When parentheses are omitted, everything is associated
to the left: that is, 𝑟𝑠𝑡 stands for ((𝑟𝑠)𝑡).
Note also that in several rules in which it is necessary to

re-associate several four or more terms or substitutions, we
have written 𝛼 instead of a long composition of whiskered
associators 𝛼•,•,• in the interest of readability.

Note that names of inference rules in the text are hyper-
links to the corresponding rules (e. g., map).

7.2 Comprehension Structure
Comprehension, that is, context extension, is extracted from
the pseudofunctor 𝜒 . The rules for comprehension are given
in Fig. 1. There are some notable differences to comprehen-
sion in MLTT. First, the rule extend-con-Tm, which forms a
substitution, comes together with a reduction that expresses
the commutativity of a triangle. Second, we also have a rule
extend-con-Red that extends a substitution with a reduction.
Since reductions are proof-relevant, this rule comes with a
coherency on the commutativity.

7.3 Substitution Structure
Substitution is given, in the semantics, by the global and
local (op)cleaving structure. We reflect this into the syntax
as explicit substitution, as was also used, e. g., in [17, 27] in
their respective settings.
The rules for substitution are given in Fig. 2 and Fig. 3.

We distinguish them based on whether we need the global
cleaving or the local opcleaving to interpret them. There
are several important observations to be made about these
rules. First, in line with our truly bicategorical approach,
we do not assume the comprehension bicategory is split. In
particular, no equality between 𝑇 [id] and 𝑇 is postulated.
Instead, there is an equivalence between them (see sub-id
and sub-comp), and terms of these types are transported
along the equivalence. Note that there are more rules than
just those in the figure. For example, if we have a context Γ
and a type 𝑇 , then STmI (1𝑇) is equal to
(sub−1id ◁ SubI (1Γ) ▷ subid) ∗ (𝑟sub−1id ▷ subid) ∗ subid ℓ .

The rule map expresses that each type 𝑇 behaves ‘func-
torially’: for each Δ ⊢ 𝑠 : Γ (i. e., object in ‘hom(Δ, Γ)’) we
get a type 𝑇 [𝑠] (i. e., object in ‘the category of types in con-
text Δ’) by sub-ty and for each 𝑟 : 𝑠 ⇝ 𝑠 ′ (i.e., morphism
in ‘hom(Δ, Γ)’) we get a term Δ | 𝑇 [𝑠] ⊢ map 𝑇 \ : 𝑇 [𝑠 ′]
(i. e., morphism in ‘the category of types in context Δ’) by
map. The rules map-id and map-comp ensure that𝑇 [−] pre-
serves identity and composition. With rew-tm we can then
understand terms to be ‘natural transformations’.

Remark 7.2. For contravariant comprehension bicategories
(Remark 6.3), the rule map would be in the opposite direction,
while for isovariant comprehension bicategories, this rule
would be restricted to isomorphisms in the base.

7.4 Soundness: Interpretation in Comprehension
Bicategories

In this section, we give an interpretation of BTT in any
comprehension bicategory. To this end, we fix a compre-
hension bicategory D B↓𝜒 over B. We interpret the
judgments as follows.

• Γ ctx is interpreted as an object ⟦Γ⟧ of B.
• Δ ⊢ 𝑠 : Γ is interpreted as a 1-cell ⟦𝑠⟧ : ⟦Δ⟧ → ⟦Γ⟧ in
B.

• Δ ⊢ 𝑟 : 𝑠 ⇝ 𝑡 : Γ is interpreted as a 2-cell ⟦𝑟⟧ : ⟦𝑠⟧ ⇒
⟦𝑡⟧ in B.

• Δ ⊢ 𝑟 ≡ 𝑟 ′ : 𝑠 ⇝ 𝑡 : Γ is interpreted as an equality
⟦𝑟⟧ = ⟦𝑟 ′⟧.

• Γ ⊢ 𝑇 type is interpreted as an object ⟦𝑇⟧ in D over
⟦Γ⟧.

• Γ | 𝑆 ⊢ 𝑡 : 𝑇 is interpreted as a 1-cell ⟦𝑡⟧ : ⟦𝑆⟧ → ⟦𝑇⟧
over the identity on ⟦Γ⟧.

• Γ | 𝑆 ⊢ 𝑟 : 𝑡 ⇝ 𝑡 ′ : 𝑇 is interpreted as a 2-cell
⟦𝑟⟧ : ⟦𝑡⟧ ⇒ ⟦𝑡 ′⟧ over the identity 2-cell.

• Γ | 𝑆 ⊢ 𝑟 ≡ 𝑟 ′ : 𝑡 ⇝ 𝑡 ′ : 𝑇 is interpreted as an equality
⟦𝑟⟧ = ⟦𝑟 ′⟧.

Regarding the “bicategorical” rules for contexts and types,
each rule is analogous to one of the operations or laws of a
bicategory, which also indicates how it is interpreted.
Next we interpret the rules related to comprehension of

Fig. 1. Suppose that we have a context Γ : B and a type 𝑇
over Γ. Its image 𝜒 (𝑇) in B↓ gives rise to an object Γ.𝑇 : B
and a 1-cell 𝜋Γ.𝑇 : Γ.𝑇 → Γ, which interprets extend-con-Ty.
A 1-cell 𝑡 from 𝑆 to 𝑇 over the identity gets sent by 𝜒 to the
following triangle

Γ.𝑆 Γ.𝑇

Γ

𝜒 (𝑡)

𝜋Γ.𝑆 𝜋Γ.𝑇

which commutes up to invertible 2-cell. This yields the in-
terpretation of the rules in extend-con-Tm. Furthermore, a
reduction 𝑟 : 𝑡 ⇝ 𝑡 ′ is mapped by 𝜒 to a 2-cell from 𝜒 (𝑡) to
𝜒 (𝑡 ′) in B↓, and this is how we interpret extend-con-Red.
Finally, we interpret the rules for substitution. The rule

sub-ty follows directly from the global cleaving. To interpret
sub-tm, consider the following diagram:

𝑆 [𝑠] 𝑆

𝑇 [𝑠] 𝑇

𝑡 [𝑠] 𝑡 over
Γ1 Γ2

𝑠

The map 𝑇 [𝑠] → 𝑇 is cartesian. The composition 𝑆 [𝑠] →
𝑆 → 𝑇 lives over id1 ·𝑠 , and by Remark 4.2 we obtain the
desired factorization. Since the identity 1-cell is cartesian and
being cartesian is preserved under composition, the rules
sub-id and sub-comp follow as well.

The map T [s] → T is cartesian. The composition S[s] → S → T
lives over id1 ·s , and by Remark 4.1 we obtain the desired factor-
ization. Since the identity 1-cell is cartesian and being cartesian is
preserved under composition, the rules sub-id and sub-comp follow
as well.

For map we consider the following diagram.

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

Γ ctx Γ ⊢ 𝑇 type
extend-con-Ty

Γ.𝑇 ctx
Γ.𝑇 ⊢ 𝜋Γ.𝑇 : Γ

Γ ctx Γ ⊢ 𝑆,𝑇 type Γ | 𝑆 ⊢ 𝑡 : 𝑇
extend-con-Tm

Γ.𝑆 ⊢ Γ.𝑡 : Γ.𝑇
Γ.𝑆 ⊢ 𝑐Γ.𝑡 : 𝜋Γ.𝑆 ⇝̃ (Γ.𝑡)𝜋Γ.𝑇 : Γ

Γ ctx Γ ⊢ 𝑆,𝑇 type Γ | 𝑆 ⊢ 𝑡, 𝑡 ′ : 𝑇 Γ | 𝑆 ⊢ 𝑟 : 𝑡 ⇝ 𝑡 ′ : 𝑇
extend-con-Red

Γ.𝑆 ⊢ Γ.𝑟 : Γ.𝑡 ⇝ Γ.𝑡 ′ : Γ.𝑇
Γ.𝑆 ⊢ 𝑐Γ.𝑡′ ≡ 𝑐Γ.𝑡 (Γ.𝑟 ▷ 𝜋Γ.𝑇) : 𝜋Γ.𝑆 ⇝ (Γ.𝑡 ′)𝜋Γ.𝑇 : Γ.𝑇

Γ ctx Γ ⊢ 𝑇 type
extend-con-id

Γ.𝑇 ⊢ 𝜒 id
𝑇

: Γ.1𝑇 ⇝̃ 1Γ.𝑇 : Γ.𝑇

Γ.𝑇 ⊢ 𝑐Γ.1𝑇 ∗ (𝜒 id
𝑇
▷ 𝜋Γ.𝑇) ∗ ℓ𝜋Γ.𝑇 ≡ 1𝜋Γ.𝑇 : 𝜋Γ.𝑇 ⇝ 𝜋Γ.𝑇 : Γ

Γ ctx Γ ⊢ 𝑅, 𝑆,𝑇 type Γ | 𝑅 ⊢ 𝑠 : 𝑆 Γ | 𝑆 ⊢ 𝑡 : 𝑇
extend-con-comp

Γ.𝑅 ⊢ 𝜒
comp
𝑠,𝑡 : (Γ.𝑠) (Γ.𝑡) ⇝̃ Γ.(𝑠𝑡) : Γ.𝑇

Γ.𝑅 ⊢ 𝑐Γ.𝑠 ∗ (Γ.𝑠 ◁ 𝑐Γ.𝑡) ∗ 𝛼Γ.𝑠,Γ.𝑡,𝜋Γ.𝑇 ∗ (𝜒comp
𝑠,𝑡 ▷ 𝜋Γ.𝑇) ≡ 𝑐Γ.𝑠𝑡 : 𝜋Γ.𝑅 ⇝ (Γ.𝑠𝑡)𝜋Γ.𝑇 : Γ

Γ ctx Γ ⊢ 𝑆,𝑇 type Γ | 𝑆 ⊢ 𝑡 : 𝑇
Γ.𝑆 ⊢ Γ.1𝑡 ≡ 1Γ.𝑡 : Γ.𝑡 ⇝ Γ.𝑡 : Γ.𝑇

Γ ctx Γ ⊢ 𝑆,𝑇 type Γ | 𝑆 ⊢ 𝑡, 𝑡 ′, 𝑡 ′′ : 𝑇 Γ | 𝑆 ⊢ 𝜌 : 𝑡 ⇝ 𝑡 ′ : 𝑇 Γ | 𝑆 ⊢ 𝜌′ : 𝑡 ′⇝ 𝑡 ′′ : 𝑇
Γ.𝑆 ⊢ Γ.(𝜌 ∗ 𝜌′) ≡ Γ.𝜌 ∗ Γ.𝜌′ : Γ.𝑇

Γ ctx Γ ⊢ 𝑆,𝑇 type Γ | 𝑆 ⊢ 𝑡 : 𝑇
Γ.𝑆 ⊢

(
𝜒 id
𝑆
▷ (Γ.𝑡)

)
∗ ℓΓ.𝑡 ≡ 𝜒

comp
1,𝑡 ∗ (Γ.ℓ𝑡) : (Γ.1) (Γ.𝑡) ⇝ Γ.𝑡 : Γ.𝑇

Γ ctx Γ ⊢ 𝑆,𝑇 type Γ | 𝑆 ⊢ 𝑡 : 𝑇
Γ.𝑆 ⊢

(
(Γ.𝑡) ◁ 𝜒 id

𝑆

)
∗ 𝑟Γ.𝑡 ≡ 𝜒

comp
𝑡,1 ∗ (Γ.𝑟𝑡) : (Γ.𝑡) (Γ.1) ⇝ Γ.𝑡 : Γ.𝑇

Γ ctx Γ ⊢ 𝑄,𝑅, 𝑆,𝑇 type Γ | 𝑄 ⊢ 𝑟 : 𝑅 Γ | 𝑅 ⊢ 𝑠 : 𝑆 Γ | 𝑆 ⊢ 𝑡 : 𝑇
Γ.𝑄 ⊢

(
(Γ.𝑟) ◁ 𝜒

comp
𝑠,𝑡

)
∗ 𝜒

comp
𝑟,(𝑠𝑡) ∗ (Γ.𝛼𝑟,𝑠,𝑡) ≡ 𝛼Γ.𝑟 ,Γ.𝑠,Γ.𝑡 ∗

(
𝜒
comp
𝑟,𝑠 ▷ (Γ.𝑡)) ∗ 𝜒

comp
(𝑟𝑠),𝑡 : (Γ.𝑟) ((Γ.𝑠) (Γ.𝑡)) ⇝ Γ.((𝑟𝑠)𝑡) : Γ.𝑇

Γ ctx Γ ⊢ 𝑅, 𝑆,𝑇 type Γ | 𝑅 ⊢ 𝑠, 𝑠′ : 𝑆 Γ | 𝑆 ⊢ 𝑡 : 𝑇 Γ | 𝑅 ⊢ 𝜌 : 𝑠 ⇝ 𝑠′ : 𝑆
Γ.𝑅 ⊢ 𝜒

comp
𝑠,𝑡 ∗ Γ.(𝜌 ▷ 𝑡) ≡ (Γ.𝜌 ▷ Γ.𝑡) ∗ 𝜒

comp
𝑠′,𝑡 : (Γ.𝑠) (Γ.𝑡) ⇝ Γ.(𝑠′𝑡) : Γ.𝑇

Γ ctx Γ ⊢ 𝑅, 𝑆,𝑇 type Γ | 𝑅 ⊢ 𝑠 : 𝑆 Γ | 𝑆 ⊢ 𝑡, 𝑡 ′ : 𝑇 Γ | 𝑆 ⊢ 𝜌 : 𝑡 ⇝ 𝑡 ′ : 𝑇
Γ.𝑅 ⊢ 𝜒

comp
𝑠,𝑡 ∗ Γ.(𝑠 ◁ 𝜌) ≡ (Γ.𝑠 ◁ Γ.𝜌) ∗ 𝜒

comp
𝑠,𝑡′ : (Γ.𝑠) (Γ.𝑡) ⇝ Γ.(𝑠𝑡 ′) : Γ.𝑇

Figure 1. Rules for comprehension

For map we consider the following diagram.

𝑇 [𝑠]

𝑇 [𝑠 ′] 𝑇

𝜎′
𝜎 over

Γ1 Γ2

𝑠

𝑠′

𝜏

Note that 𝜎 lives over 𝑠1; since we have a local opcleaving,
𝜎 ′ lives over 𝑠2. Using that𝑇 [𝑠2] → 𝑇 is cartesian, we obtain
a 1-cell 𝑇 [𝑠1] → 𝑇 [𝑠2] living over the identity. Hence, we
get the desired morphism by composition. The rules map-id
and map-comp follow because the identity is cartesian and
because cartesian 2-cells are preserved under composition.
Since we assumed that 𝜒 preserves cartesian 2-cells, the rules
map-lwhisker and map-rwhisker follow as well. To interpret
the rule rew-tm, we use the second item of Definition 4.1.

All in all, we can state the following theorem:
Theorem 7.1 (Soundness). We can interpret BTT in every
comprehension bicategory.

7.5 Variations on Syntax
BTT is a very complicated type theory, and might be unfea-
sible to implement or use in practice. Its main purpose is to
serve as a framework for studying specialized syntax and
the corresponding semantics. Based on a user’s goal, they
might adopt one of the following simplifications:

V1: Splitness. We could assume the comprehension bi-
category is split; thus, the rules sub-id and sub-comp
would collapse into ordinary equalities. For this, an
equality judgment on types would be added to BTT.

V2: Strictness. The rules for contexts and types are aimed
at bicategories. When working with strict 2-categories
instead, the unitors and associators would become
equalities, and as a result, rules for inverse laws, nat-
urality, and the pentagon and triangle equations are
not needed.

V3: Terms. If we assume that we have a unit type, then
we can simplify the judgment for terms. Instead of
looking at judgments of the shape Γ | 𝑆 ⊢ 𝑡 : 𝑇 , we
can take 𝑆 to be the unit type, thus recovering the
judgment Γ ⊢ 𝑡 : 𝑇 for terms in MLTT. Semantically,
this amounts to assuming that the fiber in D above any
object in B has a terminal object.

V4: Undirected TT.We could add a rule postulating in-
verses of reductions. Semantically, this would amount
to working in groupoid-enriched categories.

V5: Proof-irrelevant reductions. Our syntax, and the
semantics, allow us to distinguish parallel reductions
(2-cells). We could instead “truncate” them, by moving
to proof-irrelevant reductions, making the judgmental
equality on them superfluous. This would yield a di-
rected analog to the judgments of MLTT; semantically,

Note that σ lives over s1; since we have a local opcleaving, σ ′
lives over s2. Using that T [s2] → T is cartesian, we obtain a 1-cell
T [s1] → T [s2] living over the identity. Hence, we get the desired
morphism by composition. The rulesmap-id andmap-comp follow
because the identity is cartesian and because cartesian 2-cells are
preserved under composition. Since we assumed that χ preserves
cartesian 2-cells, the rules map-lwhisker and map-rwhisker follow
as well. To interpret the rule rew-tm, we use the second item of
Definition 4.1. All in all, we can state the following theorem:

Theorem 7.1 (Soundness). We can interpret BTT in every com-
prehension bicategory.

7.5 Variations on Syntax
BTT is a very complicated type theory, and might be unfeasible
to implement or use in practice. Its main purpose is to serve as a
framework for studying specialized syntax and the corresponding

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

Γ ⊢ T type

Γ | T ⊢ 1T : T
Γ ⊢ S, T type Γ | S ⊢ t : T

Γ | S ⊢ 1t : t ⇝ t : T
Γ ⊢ S, T type Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T

Γ | S ⊢ ρ ≡ ρ : t ⇝ t ′ : T

Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t : T
Γ | R ⊢ st : T

Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T
Γ | R ⊢ s ◁ ρ : st ⇝ st ′ : T

Γ ⊢ R, S, T type Γ | R ⊢ s, s ′ : S Γ | S ⊢ t : T Γ | R ⊢ σ : s ⇝ s ′ : S
Γ | R ⊢ σ ▷ t : st ⇝ s ′t : T

Γ ⊢ S, T type Γ | S ⊢ t, t ′, t ′′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T Γ | S ⊢ σ : t ′⇝ t ′′ : T
Γ | S ⊢ ρ ∗ σ : t ⇝ t ′′ : T

Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t : T
Γ | R ⊢ 1s ▷ t ≡ 1st : st ⇝ st : T
Γ | R ⊢ s ◁ 1t ≡ 1st : st ⇝ st : T

Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t, t ′, t ′′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T Γ | S ⊢ ρ′ : t ′⇝ t ′′ : T
Γ | R ⊢ (s ◁ ρ) ∗ (s ◁ ρ′) ≡ s ◁ (ρ ∗ ρ′) : st ⇝ st ′′ : T

Γ ⊢ R, S, T type Γ | R ⊢ s, s ′, s ′′ : S Γ | S ⊢ t : T Γ | R ⊢ σ : s ⇝ s ′ : S Γ | R ⊢ σ ′ : s ′⇝ s ′′ : S
Γ | R ⊢ (σ ▷ t) ∗ (σ ′ ▷ t) ≡ (σ ∗ σ ′) ▷ t : st ⇝ s ′′t : T

Γ ⊢ R, S, T type Γ | R ⊢ s, s ′ : S Γ | S ⊢ t, t ′ : T Γ | R ⊢ σ : s ⇝ s ′ : S Γ | S ⊢ ρ : t ⇝ t ′ : T
Γ | R ⊢ (σ ▷ t) ∗ (s ′ ◁ ρ) ≡ (s ◁ ρ) ∗ (σ ▷ t ′) : st ⇝ s ′t ′ : T

Γ ⊢ S, T type Γ | S ⊢ s : T
Γ | S ⊢ ℓs : 1S s ⇝̃ s : T

Γ ⊢ S, T type Γ | S ⊢ s : T
Γ | S ⊢ rs : s1T ⇝̃ s : T

Γ ⊢ Q, R, S, T type Γ | Q ⊢ r : R Γ | R ⊢ s : S Γ | S ⊢ t : T
Γ | Q ⊢ αr ,s,t : r (st) ⇝̃ (r s)t : T

Γ ⊢ S, T type Γ | S ⊢ s, s ′ : T Γ | S ⊢ ρ : s ⇝ s ′ : T
Γ | S ⊢ r−1s ∗ (ρ ▷ 1S) ∗ rs′ ≡ ρ : s ⇝ s ′ : T

Γ | S ⊢ ℓ−1s ∗ (1S ◁ ρ) ∗ ℓs′ ≡ ρ : s ⇝ s ′ : T
Γ ⊢ Q, R, S, T type Γ | Q ⊢ s : R Γ | R ⊢ t : S Γ | S ⊢ u, u′ : T Γ | S ⊢ ρ : u ⇝ u′ : T

Γ | Q ⊢ α−1
s,t,u ∗ (s ◁ (t ◁ ρ)) ∗ αs,t,u′ ≡ st ◁ ρ : (st)u ⇝ (st)u′ : T

Γ ⊢ Q, R, S, T type Γ | Q ⊢ s : R Γ | R ⊢ t, t ′ : S Γ | S ⊢ u : T Γ | R ⊢ ρ : t ⇝ t ′ : S
Γ | Q ⊢ α−1

s,t,u ∗ (s ◁ (ρ ▷ u)) ∗ αs,t ′,u ≡ (s ◁ ρ) ▷ u : (st)u ⇝ (st ′)u : T
Γ ⊢ Q, R, S, T type Γ | Q ⊢ s, s ′ : R Γ | R ⊢ t : S Γ | S ⊢ u : T Γ | Q ⊢ ρ : s ⇝ s ′ : R

Γ | Q ⊢ α−1
s,t,u ∗ (ρ ▷ tu) ∗ αs′,t,u ≡ (ρ ▷ t) ▷ u : (st)u ⇝ (s ′t)u : T

Γ ⊢ S, T type Γ | S ⊢ s, s ′ : T Γ | S ⊢ ρ : s ⇝ s ′ : T
Γ | S ⊢ 1s ∗ ρ ≡ ρ : s ⇝ s ′ : T
Γ | S ⊢ ρ ∗ 1s′ ≡ ρ : s ⇝ s ′ : T

Γ ⊢ S, T type Γ | S ⊢ s, s ′, s ′′, s ′′′ : T Γ | S ⊢ ρ : s ⇝ s ′ : T Γ | S ⊢ σ : s ′⇝ s ′′ : T Γ | S ⊢ τ : s ′′⇝ s ′′′ : T
Γ | S ⊢ ρ ∗ (σ ∗ τ) ≡ (ρ ∗ σ) ∗ τ : s ⇝ s ′′′ : T

Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t : T
Γ | R ⊢ αs,1S ,t ∗ (rs ▷ t) ≡ s ◁ ℓt : s(1S t)⇝ st : T

Γ ⊢ P, Q, R, S, T type Γ | P ⊢ q : Q Γ | Q ⊢ r : R Γ | R ⊢ s : S Γ | S ⊢ t : T
Γ | P ⊢ αq,r ,st ∗ αqr ,s,t ≡ (q ◁ αr ,s,t) ∗ αq,r s,t ∗ (αq,r ,s ▷ t) : q(r (st))⇝ ((qr)s)t : T

Figure 2: Rules for the the bicategory of types

semantics. Based on a user’s goal, they might adopt one of the
following simplifications:

V1: Splitness. We could assume the comprehension bicategory is
split; thus, the rules sub-id and sub-comp would collapse into
ordinary equalities. For this, an equality judgment on types
would be added to BTT.

V2: Strictness. The rules in Figures 1 and 2 are aimed at bicat-
egories. When working with strict 2-categories instead, the
unitors and associators would become equalities, and as a re-
sult, rules for inverse laws, naturality, and the pentagon and
triangle equations are not needed.

V3: Terms. If we assume that we have a unit type, then we can sim-
plify the judgment for terms. Instead of looking at judgments
of the shape Γ | S ⊢ t : T , we can take S to be the unit type,

thus recovering the judgment Γ ⊢ t : T for terms in MLTT. Se-
mantically, this amounts to assuming that the fiber in D above
any object in B has a terminal object.

V4: Undirected TT. We could add a rule postulating inverses of
reductions. Semantically, this would amount to working in
groupoid-enriched categories.

V5: Proof-irrelevant reductions. Our syntax, and the semantics,
allow us to distinguish parallel reductions (2-cells). We could
instead “truncate” them, by moving to proof-irrelevant reduc-
tions, making the judgmental equality on them superfluous.
This would yield a directed analog to the judgments of MLTT;
semantically, it corresponds to working in poset-enriched cate-
gories instead of general bicategories.

V6: Conflating terms and substitutions.One could equate terms
and substitutions that are left-inverse to projections.

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

Γ ctx Γ ⊢ T type
extend-con-Ty

Γ.T ctx
Γ.T ⊢ πΓ.T : Γ

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t : T
extend-con-Tm

Γ.S ⊢ Γ.t : Γ.T
Γ.S ⊢ cΓ.t : πΓ.S ⇝̃ (Γ.t)πΓ.T : Γ

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t, t ′ : T Γ | S ⊢ r : t ⇝ t ′ : T
extend-con-Red

Γ.S ⊢ Γ.r : Γ.t ⇝ Γ.t ′ : Γ.T
Γ.S ⊢ cΓ.t ′ ≡ cΓ.t (Γ.r ▷ πΓ.T) : πΓ.S ⇝ (Γ.t ′)πΓ.T : Γ

Γ ctx Γ ⊢ T type
extend-con-id

Γ.T ⊢ χ id
T : Γ.1T ⇝̃ 1Γ.T : Γ.T

Γ.T ⊢ cΓ.1T ∗ (χ id
T ▷ πΓ.T) ∗ ℓπΓ.T ≡ 1πΓ.T : πΓ.T ⇝ πΓ.T : Γ

Γ ctx Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t : T
extend-con-comp

Γ.R ⊢ χ comp
s,t : (Γ.s)(Γ.t) ⇝̃ Γ.(st) : Γ.T

Γ.R ⊢ cΓ.s ∗ (Γ.s ◁ cΓ.t) ∗ αΓ.s,Γ.t,πΓ.T ∗ (χ comp
s,t ▷ πΓ.T) ≡ cΓ.st : πΓ.R ⇝ (Γ.st)πΓ.T : Γ

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t : T
Γ.S ⊢ Γ.1t ≡ 1Γ.t : Γ.t ⇝ Γ.t : Γ.T

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t, t ′, t ′′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T Γ | S ⊢ ρ′ : t ′⇝ t ′′ : T
Γ.S ⊢ Γ.(ρ ∗ ρ′) ≡ Γ.ρ ∗ Γ.ρ′ : Γ.t ⇝ Γ.t ′′ : Γ.T

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t : T
Γ.S ⊢ (

χ id
S ▷ (Γ.t)) ∗ ℓΓ.t ≡ χ comp

1S ,t
∗ (Γ.ℓt) : (Γ.1S)(Γ.t)⇝ Γ.t : Γ.T

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t : T
Γ.S ⊢ ((Γ.t) ◁ χ id

S
) ∗ rΓ.t ≡ χ comp

t,1T
∗ (Γ.rt) : (Γ.t)(Γ.1T)⇝ Γ.t : Γ.T

Γ ctx Γ ⊢ Q, R, S, T type Γ | Q ⊢ r : R Γ | R ⊢ s : S Γ | S ⊢ t : T
Γ.Q ⊢

(
(Γ.r) ◁ χ comp

s,t

)
∗ χ comp

r , (st) ∗ (Γ.αr ,s,t) ≡ αΓ.r ,Γ.s,Γ.t ∗
(
χ comp
r ,s ▷ (Γ.t)) ∗ χ comp

(r s),t : (Γ.r)((Γ.s)(Γ.t))⇝ Γ.((r s)t) : Γ.T
Γ ctx Γ ⊢ R, S, T type Γ | R ⊢ s, s ′ : S Γ | S ⊢ t : T Γ | R ⊢ ρ : s ⇝ s ′ : S

Γ.R ⊢ χ comp
s,t ∗ Γ.(ρ ▷ t) ≡ (Γ.ρ ▷ Γ.t) ∗ χ comp

s′,t : (Γ.s)(Γ.t)⇝ Γ.(s ′t) : Γ.T
Γ ctx Γ ⊢ R, S, T type Γ | R ⊢ s : S Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T

Γ.R ⊢ χ comp
s,t ∗ Γ.(s ◁ ρ) ≡ (Γ.s ◁ Γ.ρ) ∗ χ comp

s,t ′ : (Γ.s)(Γ.t)⇝ Γ.(st ′) : Γ.T

Figure 3: Rules for comprehension

We have developed comprehension bicategories with the explicit
goal of encompassing previously defined interpretations of higher-
dimensional and directed type theory. In the following remarks we
summarize the relationship with two previous works.

Remark 7.3 (Comparison to Garner’s work [17]). To summa-
rize the differences of Garner’s comprehension 2-categories [17] to our
comprehension bicategories, the former are full, strict, split, undirected
(i. e., locally groupoidal), and incorporate type constructors.

Remark 7.4 (Comparison to Licata and Harper’s work). Li-
cata and Harper’s interpretation of their two-dimensional type theory
into categories [25] should take place in a comprehension bicategory.
Specifically, Licata and Harper interpret a type in context Γ as a (strict
1-)functor from the category interpreting Γ into a 1-category CAT of
categories. Formally, they thus consider the slice bicategory Cat/CAT,
where Cat is the bicategory of categories, in which CAT is assumed
to be a 0-cell. The “domain” pseudofunctor dom : Cat/CAT → Cat
carries the structure of a global cleaving; this is more generally the
case for any “domain” pseudofunctor dom : B/a → B (DomainCleav-
ing.v). The remaining structure of a comprehension bicategory—in
particular, the comprehension χ and its conservation properties—will
make use of the specifics of the bicategory of categories, in particular,
the Grothendieck construction. This construction will be carried out
elsewhere.

8 CONCLUSION
We have introduced the notion of comprehension bicategory for
the interpretation of two-dimensional and directed type theory.
From this semantic notion, we have extracted a two-dimensional

core syntax for dependent types, terms, and reductions, and an
interpretation of that syntax in comprehension bicategories. Our
work is very general; it allows for the modelling of the structural
rules of previous suggestions for directed type theory. Furthermore,
it can be used as a framework for defining and studying more
specialized syntax and semantics, in lockstep.

As outlined in Section 1.1, in separate work we are going to
extend our structural rules with variances and a suitable hom-type
former à la North [29] on top.

Garner [17] proves completeness of 2-truncated Martin-Löf type
theorywith respect to semantics in comprehension 2-categories.We
would like to give a similar completeness result with respect to our
comprehension bicategories. As mentioned, we have omitted many
syntactic rules from this paper, for a lack of space and convenient
syntax to write these rules. We plan to specify a the complete set
of rules, and prove completeness with respect to our models.

Finally, we are planning to construct, in UniMath, the compre-
hension bicategory formalizing Licata and Harper’s interpretation
in categories [25].

ACKNOWLEDGMENTS
We gratefully acknowledge the work by the Coq development team
in providing the Coq proof assistant and surrounding infrastruc-
ture, as well as their support in keeping UniMath compatible with
Coq. We are very grateful to Dan Licata and Bob Harper for their
help in understanding their interpretation and how it fits into our
framework. We thank the anonymous referees for their insight-
ful comments. This work was partially funded by EPSRC under
agreement number EP/T000252/1. This material is based upon work

https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DomainCleaving.html
https://unimath.github.io/doc/UniMath/3bcf236/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DomainCleaving.html

Semantics for two-dimensional type theory LICS ’22, August 2–5, 2022, Haifa, Israel

Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ T type
sub-ty

∆ ⊢ T [s] type
Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ S, T type Γ | S ⊢ t : T

sub-tm
∆ | S [s] ⊢ t [s] : T [s]

Γ ctx Γ ⊢ T type
sub-id

Γ | T [1Γ] ∼⊢ subid : T

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ s ′ : Γ Γ ⊢ T type
sub-comp

E | T [s ′][s] ∼⊢ subcomp(s, s ′) : T [ss ′]
Γ ctx Γ ⊢ S, T type Γ | S ⊢ t : T

tm-sub-id
Γ | S ⊢ STmI(t) : sub−1id t [1Γ] subid ⇝̃ t : T

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ s ′ : Γ Γ ⊢ S, T type Γ | S ⊢ t : T
tm-sub-comp

E | S [ss ′] ⊢ STmC(t, s, s ′) : subcomp(s, s ′)−1 t [s ′][s] subcomp(s, s ′) ⇝̃ t [ss ′] : T [ss ′]
Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ T type

sub-on-id
∆ | T [s] ⊢ SubI(s) : 1T [s] ⇝̃ 1T [s] : T [s]

Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ R, S, T type Γ | R ⊢ r : S Γ | S ⊢ t : T
sub-on-comp

∆ | R[s] ⊢ SubC(r, t, s) : r [s]t [s] ⇝̃ (r t)[s] : T [s]
Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ S, T type Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T

∆ | S [s] ⊢ ρ[s] : t [s]⇝ t ′[s] : T [s]
Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ S, T type Γ | S ⊢ t : T

∆ | S [s] ⊢ 1t [s] ≡ 1t [s] : t [s]⇝ t [s] : T [s]

Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ S, T type Γ | S ⊢ t, t ′, t ′′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T Γ | S ⊢ ρ′ : t ′⇝ t ′′ : T
∆ | S [s] ⊢ (ρ ∗ ρ′)[s] ≡ ρ[s] ∗ ρ′[s] : t [s]⇝ t ′′[s] : T [s]

Γ ctx Γ ⊢ S, T type Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T
Γ | S ⊢ STmI(t) ∗ ρ ≡ (sub−1id ◁ ρ[1Γ] ▷ subid) ∗ STmI(t ′) : sub−1id t [1Γ] subid ⇝ t ′ : T

Γ, ∆, E ctx Γ ⊢ S, T type E ⊢ s : ∆ ∆ ⊢ s ′ : Γ Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T
E | S [ss ′] ⊢ STmC(t, s, s ′) ∗ ρ[ss ′] ≡ (sub−1comp(s, s ′) ◁ ρ[s ′][s] ▷ subcomp(s, s ′)) ∗ STmC(t ′, s, s ′) : T [ss ′]

Γ, ∆ ctx Γ ⊢ S, T type ∆ ⊢ s : Γ Γ | S ⊢ t : T
∆ | S [s] ⊢ (SubI(s) ▷ t [s]) ∗ ℓt [s] ≡ SubC(1S , t, s) ∗ ℓt [s] : 1S [s]t [s]⇝ t [s] : T [s]

Γ, ∆ ctx Γ ⊢ S, T type ∆ ⊢ s : Γ Γ | S ⊢ t : T
∆ | S [s] ⊢ (t [s] ◁ SubI(s)) ∗ rt [s] ≡ SubC(t, 1T , s) ∗ rt [s] : t [s]1T [s]⇝ t [s] : T [s]

Γ, ∆ ctx Γ ⊢ Q, R, S, T type ∆ ⊢ s : Γ Γ | Q ⊢ q : R Γ | R ⊢ r : S Γ | S ⊢ t : T
∆ | Q [s] ⊢ (q[s] ◁ SubC(r, t, s)) ∗ SubC(q, r t, s) ∗ αq,r ,t [s] ≡ αq[s],r [s],t [s] ∗ (SubC(q, r, s) ▷ t [s]) ∗ SubC(qr, t, s) : q[s](r [s]t [s])⇝ ((qr)t)[s] : T [s]

Γ, ∆ ctx Γ ⊢ R, S, T type ∆ ⊢ s : Γ Γ | R ⊢ r : S Γ | S ⊢ t, t ′ : T Γ | S ⊢ ρ : t ⇝ t ′ : T
∆ | R[s] ⊢ SubC(r, t, s) ∗ (r ◁ ρ)[s] ≡ r [s] ◁ ρ[s] ∗ SubC(r, t ′, s) : r [s]t [s]⇝ r t ′[s] : T [s]

Γ, ∆ ctx Γ ⊢ R, S, T type ∆ ⊢ s : Γ Γ | R ⊢ r, r ′ : S Γ | S ⊢ t : T Γ | R ⊢ ρ : r ⇝ r ′ : S
∆ | R[s] ⊢ SubC(r, t, s) ∗ (ρ ▷ t)[s] ≡ (ρ[s] ▷ t [s]) ∗ SubC(r ′, t, s) : r [s]t [s]⇝ r ′t [s] : T [s]

Figure 4: Rules for global substitution

Γ, ∆ ctx ∆ ⊢ s, s ′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ Γ ⊢ T type
map

∆ | T [s] ⊢ map T ρ : T [s ′]
Γ, ∆ ctx ∆ ⊢ s, s ′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ Γ ⊢ S, T type Γ | S ⊢ t : T

rew-tm
∆ | S [s] ⊢ map t ρ : t [s](map T ρ) ⇝̃ (map S ρ)t [s ′] : T [s ′]

Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ T type
map-id

∆ | T [s] ⊢ mapTid s : map T 1s ⇝̃ 1T [s] : T [s]
Γ, ∆ ctx ∆ ⊢ s, s ′, s ′′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ ∆ ⊢ τ : s ′⇝ s ′′ : Γ Γ ⊢ T type

map-comp
∆ | T [s] ⊢ mapTcomp(ρ, τ) : map T (ρ ∗ τ) ⇝̃ map T ρ ·map T τ : T [s ′′]

Γ, ∆, E ctx E ⊢ s : ∆ ∆ ⊢ s ′, s ′′ : Γ ∆ ⊢ ρ : s ′⇝ s ′′ : Γ Γ ⊢ T type
map-lwhisker

E | T [ss ′] ⊢ mapTl (s, ρ) : map T (s ◁ ρ) ⇝̃ sub−1comp(s, s ′) · (map T ρ)[s] · subcomp(s, s ′′) : T [ss ′′]
Γ, ∆, E ctx E ⊢ s, s ′ : ∆ ∆ ⊢ s ′′ : Γ E ⊢ ρ : s ⇝ s ′ : ∆ Γ ⊢ T type

map-rwhisker
E | T [ss ′′] ⊢ mapTr (ρ, s ′′) : map T (ρ ▷ s ′′) ⇝̃ sub−1comp(s, s ′′) ·map (T [s ′′]) ρ · subcomp(s ′, s ′′) : T [s ′s ′′]

Γ, ∆ ctx ∆ ⊢ s, s ′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ Γ ⊢ S, T type Γ | S ⊢ t, t ′ : T Γ | S ⊢ τ : t ⇝ t ′ : T
∆ | S [s] ⊢ map t ρ ∗ (map S ρ ◁ τ [s ′]) ≡ (τ [s] ▷ map T ρ) ∗map t ′ ρ : T [s ′]

Γ, ∆ ctx ∆ ⊢ s : Γ Γ ⊢ S, T type Γ | S ⊢ t : T
∆ | S [s] ⊢ t [s] ◁ (mapTid s)−1 ∗map t 1s ∗mapSid s ▷ t [s] ≡ rt [s] ∗ ℓ−1t [s] : T [s]

Γ, ∆ ctx ∆ ⊢ s, s ′, s ′′ : Γ ∆ ⊢ ρ : s ⇝ s ′ : Γ ∆ ⊢ ρ′ : s ′⇝ s ′′ : Γ Γ ⊢ S, T type Γ | S ⊢ t : T
∆ | S [s] ⊢ map t (ρ ∗ ρ′) ∗ (mapScomp(ρ, ρ′) ▷ t [s ′′]) ∗ α−1 ≡ (t [s] ◁ mapTcomp(ρ, ρ′)) ∗ α ∗ (map t ρ ▷ map T ρ′) ∗ α−1 ∗ (map S ρ ◁ map t ρ′) : T [s ′′]

Figure 5: Rules for local substitution

supported by the Air Force Office of Scientific Research under award
number FA9550-21-1-0334.

REFERENCES
[1] Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide. 2019.

Bicategories in Univalent Foundations. In 4th International Conference on Formal
Structures for Computation and Deduction (FSCD 2019) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 131), Herman Geuvers (Ed.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 5:1–5:17. https:
//doi.org/10.4230/LIPIcs.FSCD.2019.5

https://doi.org/10.4230/LIPIcs.FSCD.2019.5
https://doi.org/10.4230/LIPIcs.FSCD.2019.5

LICS ’22, August 2–5, 2022, Haifa, Israel Benedikt Ahrens, Paige Randall North, and Niels van der Weide

[2] Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der
Weide. 2022. Bicategories in univalent foundations. Mathematical Structures in
Computer Science (2022), 1–38. https://doi.org/10.1017/S0960129522000032

[3] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. 2015. Univalent
categories and the Rezk completion. Math. Struct. Comput. Sci. 25, 5 (2015),
1010–1039. https://doi.org/10.1017/S0960129514000486

[4] Benedikt Ahrens and Peter LeFanu Lumsdaine. 2019. Displayed Categories. Log.
Methods Comput. Sci. 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:20)2019

[5] Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. 2018. Globular: an online proof
assistant for higher-dimensional rewriting. Log. Methods Comput. Sci. 14, 1 (2018).
https://doi.org/10.23638/LMCS-14(1:8)2018

[6] Jean Bénabou. 1967. Introduction to bicategories. In Reports of the Midwest
Category Seminar. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–77. https:
//doi.org/10.1007/BFb0074299

[7] Thibaut Benjamin, Eric Finster, and Samuel Mimram. 2021. Globular weak ω-
categories as models of a type theory. CoRR (2021). arXiv:2106.04475

[8] Benno van den Berg and Richard Garner. 2011. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society 102, 2 (2011), 370–394. https:
//doi.org/10.1112/plms/pdq026

[9] Guillaume Brunerie. 2016. On the homotopy groups of spheres in homotopy type
theory. Ph.D. Dissertation. Université Nice Sophia Antipolis. arXiv:1606.05916

[10] Ulrik Buchholtz and JonathanWeinberger. 2021. Synthetic fibered (∞, 1)-category
theory. CoRR abs/2105.01724 (2021). arXiv:2105.01724

[11] Mitchell Buckley. 2014. Fibred 2-categories and bicategories. Journal of Pure and
Applied Algebra 218, 6 (2014), 1034–1074. https://doi.org/10.1016/j.jpaa.2013.11.
002

[12] Thierry Coquand, Bassel Mannaa, and Fabian Ruch. 2017. Stack semantics of
type theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–11.
https://doi.org/10.1109/LICS.2017.8005130

[13] Lisbeth Fajstrup, Eric Goubault, Emmanuel Haucourt, Samuel Mimram, and
Martin Raussen. 2016. Directed Algebraic Topology and Concurrency. Springer.
https://doi.org/10.1007/978-3-319-15398-8

[14] Eric Finster and Samuel Mimram. 2017. A type-theoretical definition of weak
ω-categories. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12.
https://doi.org/10.1109/LICS.2017.8005124

[15] Eric Finster, David Reutter, Alex Rice, and Jamie Vicary. 2022. A Type Theory
for Strictly Unital -Categories. In 37th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS) (LICS ’22). https://doi.org/10.1145/3531130.3533363

[16] Marcelo Fiore and Philip Saville. 2019. A type theory for cartesian closed bicat-
egories (Extended Abstract). In 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE, 1–13.
https://doi.org/10.1109/LICS.2019.8785708

[17] Richard Garner. 2009. Two-dimensional models of type theory. Math. Struct.
Comput. Sci. 19, 4 (2009), 687–736. https://doi.org/10.1017/S0960129509007646

[18] John W. Gray. 1966. Fibred and Cofibred Categories. In Proceedings of the
Conference on Categorical Algebra, S. Eilenberg, D. K. Harrison, S. MacLane,
and H. Röhrl (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 21–83.
https://doi.org/10.1007/978-3-642-99902-4_2

[19] Claudio Hermida. 1999. Some properties of Fib as a fibred 2-category. Journal of
Pure and Applied Algebra 134, 1 (1999), 83–109. https://doi.org/10.1016/S0022-
4049(97)00129-1

[20] Tom Hirschowitz. 2013. Cartesian closed 2-categories and permutation equiv-
alence in higher-order rewriting. Log. Methods Comput. Sci. 9, 3 (2013). https:
//doi.org/10.2168/LMCS-9(3:10)2013

[21] Martin Hofmann and Thomas Streicher. 1994. The Groupoid Model Refutes
Uniqueness of Identity Proofs. In Proceedings of the Ninth Annual Symposium on
Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994. IEEE Computer
Society, 208–212. https://doi.org/10.1109/LICS.1994.316071

[22] André Joyal and Ross Street. 1993. Pullbacks equivalent to pseudopullbacks.
Cahiers de topologie et géométrie différentielle catégoriques 34, 2 (1993), 153–156.
http://eudml.org/doc/91518

[23] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. 2021. The simplicial model of
Univalent Foundations (after Voevodsky). Journal of the European Mathematical
Society 23, 6 (2021), 2071–2126. https://doi.org/10.4171/jems/1050

[24] Daniel R. Licata. 2011. Dependently Typed Programming with Domain-Specific
Logics. Ph.D. Dissertation. USA. Advisor(s) Harper, Robert. https://doi.org/10.
5555/2338432 AAI3476124.

[25] Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory.
In Twenty-seventh Conference on the Mathematical Foundations of Programming
Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011 (Electronic Notes in
Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine
(Eds.). Elsevier, 263–289. https://doi.org/10.1016/j.entcs.2011.09.026

[26] Daniel R. Licata and Robert Harper. 2012. Canonicity for 2-dimensional type
theory. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 337–348. https://doi.org/
10.1145/2103656.2103697

[27] Fosco Loregian and Emily Riehl. 2020. Categorical notions of fibration. Expo-
sitiones Mathematicae 38, 4 (2020), 496–514. https://doi.org/10.1016/j.exmath.
2019.02.004

[28] Peter LeFanu Lumsdaine. 2010. Weak omega-categories from intensional type
theory. Log. Methods Comput. Sci. 6, 3 (2010). https://doi.org/10.2168/LMCS-6(3:
24)2010

[29] Paige Randall North. 2019. Towards a Directed Homotopy Type Theory. In
Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of
Programming Semantics, MFPS 2019, London, UK, June 4-7, 2019 (Electronic Notes
in Theoretical Computer Science, Vol. 347), Barbara König (Ed.). Elsevier, 223–239.
https://doi.org/10.1016/j.entcs.2019.09.012

[30] Andreas Nuyts. 2015. Towards a Directed Homotopy Type Theory based on 4 Kinds
of Variance. Master’s thesis. KU Leuven. https://anuyts.github.io/files/mathesis.
pdf

[31] David Reutter and Jamie Vicary. 2019. High-level methods for homotopy con-
struction in associative n-categories. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019.
IEEE, 1–13. https://doi.org/10.1109/LICS.2019.8785895

[32] Emily Riehl andMichael Shulman. 2017. A type theory for synthetic∞-categories.
Higher Structures 1, 1 (May 2017), 147–224. https://journals.mq.edu.au/index.
php/higher_structures/article/view/36

[33] Robert A. G. Seely. 1987. Modelling Computations: A 2-Categorical Framework.
In Proceedings of the Symposium on Logic in Computer Science (LICS ’87), Ithaca,
New York, USA, June 22-25, 1987. IEEE Computer Society, 65–71.

[34] Michael Shulman. 2010. Functorially Dependent Types. https://ncatlab.org/
michaelshulman/show/functorially+dependent+types

[35] Michael Shulman. 2011. Internal Logic of a 2-Category. https://ncatlab.org/
michaelshulman/show/internal+logic+of+a+2-category

[36] Michael Shulman. 2012. 2-Categorical Logic. https://ncatlab.org/
michaelshulman/show/2-categorical+logic

[37] Michael Shulman. 2019. Fibrational Slice. https://ncatlab.org/michaelshulman/
show/fibrational+slice

[38] Ross Street. 1980. Fibrations in bicategories. Cahiers de topologie et géométrie
différentielle catégoriques 21, 2 (1980), 111–160. http://archive.numdam.org/item/
CTGDC_1980__21_2_111_0/

[39] Ross Street. 1982. Characterization of bicategories of stacks. In Category Theory
(Lecture Notes in Mathematics, Vol. 962), K.H. Kamps, D. Pumplün, and W. Tholen
(Eds.). Springer. https://doi.org/10.1007/BFb0066909

[40] Nicolas Tabareau. 2011. Aspect oriented programming: a language for 2-
categories. In Proceedings of the 10th international workshop on Foundations of
aspect-oriented languages, FOAL 2011, Porto de Galinhas, Brazil, March 21-25, 2011,
Hridesh Rajan (Ed.). ACM, 13–17. https://doi.org/10.1145/1960510.1960514

[41] The Coq Development Team. 2022. The Coq Proof Assistant. https://doi.org/10.
5281/zenodo.5846982

[42] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. 2022. UniMath
— a computer-checked library of univalent mathematics. Available at https:
//unimath.org. https://github.com/UniMath/UniMath

[43] Matthew Z. Weaver and Daniel R. Licata. 2020. A Constructive Model of Directed
Univalence in Bicubical Sets. In LICS ’20: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM, 915–928.
https://doi.org/10.1145/3373718.3394794

https://doi.org/10.1017/S0960129522000032
https://doi.org/10.1017/S0960129514000486
https://doi.org/10.23638/LMCS-15(1:20)2019
https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.1007/BFb0074299
https://doi.org/10.1007/BFb0074299
https://arxiv.org/abs/2106.04475
https://doi.org/10.1112/plms/pdq026
https://doi.org/10.1112/plms/pdq026
https://arxiv.org/abs/1606.05916
https://arxiv.org/abs/2105.01724
https://doi.org/10.1016/j.jpaa.2013.11.002
https://doi.org/10.1016/j.jpaa.2013.11.002
https://doi.org/10.1109/LICS.2017.8005130
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1109/LICS.2017.8005124
https://doi.org/10.1145/3531130.3533363
https://doi.org/10.1109/LICS.2019.8785708
https://doi.org/10.1017/S0960129509007646
https://doi.org/10.1007/978-3-642-99902-4_2
https://doi.org/10.1016/S0022-4049(97)00129-1
https://doi.org/10.1016/S0022-4049(97)00129-1
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.1109/LICS.1994.316071
http://eudml.org/doc/91518
https://doi.org/10.4171/jems/1050
https://doi.org/10.5555/2338432
https://doi.org/10.5555/2338432
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.1016/j.exmath.2019.02.004
https://doi.org/10.1016/j.exmath.2019.02.004
https://doi.org/10.2168/LMCS-6(3:24)2010
https://doi.org/10.2168/LMCS-6(3:24)2010
https://doi.org/10.1016/j.entcs.2019.09.012
https://anuyts.github.io/files/mathesis.pdf
https://anuyts.github.io/files/mathesis.pdf
https://doi.org/10.1109/LICS.2019.8785895
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://ncatlab.org/michaelshulman/show/functorially+dependent+types
https://ncatlab.org/michaelshulman/show/functorially+dependent+types
https://ncatlab.org/michaelshulman/show/internal+logic+of+a+2-category
https://ncatlab.org/michaelshulman/show/internal+logic+of+a+2-category
https://ncatlab.org/michaelshulman/show/2-categorical+logic
https://ncatlab.org/michaelshulman/show/2-categorical+logic
https://ncatlab.org/michaelshulman/show/fibrational+slice
https://ncatlab.org/michaelshulman/show/fibrational+slice
http://archive.numdam.org/item/CTGDC_1980__21_2_111_0/
http://archive.numdam.org/item/CTGDC_1980__21_2_111_0/
https://doi.org/10.1007/BFb0066909
https://doi.org/10.1145/1960510.1960514
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://unimath.org
https://unimath.org
https://github.com/UniMath/UniMath
https://doi.org/10.1145/3373718.3394794

	Abstract
	1 Introduction
	1.1 Judgmental and Typal Higher Dimensions
	1.2 Syntax and Semantics, Semantics and Syntax
	1.3 Foundations and Formalization in UniMath
	1.4 Synopsis

	2 Related Work
	2.1 Non-dependent type theories
	2.2 Theories for Higher Categories
	2.3 Theories with Dependent Types

	3 Preliminaries
	4 Fibrations, Type-Theoretically
	5 Internal Street (Op)Fibrations
	6 Comprehension Bicategories
	7 The Type Theory BTT
	7.1 Judgments and Basic Rules
	7.2 Comprehension Structure
	7.3 Substitution Structure
	7.4 Soundness: Interpretation in Comprehension Bicategories
	7.5 Variations on Syntax

	8 Conclusion
	Acknowledgments
	References

