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Abstract
We study a natural variant of scheduling that we call partial scheduling: in this variant
an instance of a scheduling problem along with an integer k is given and one seeks
an optimal schedule where not all, but only k jobs, have to be processed. Specifically,
we aim to determine the fine-grained parameterized complexity of partial scheduling
problems parameterized by k for all variants of scheduling problems that minimize
the makespan and involve unit/arbitrary processing times, identical/unrelated paral-
lel machines, release/due dates, and precedence constraints. That is, we investigate
whether algorithms with runtimes of the type f (k)nO(1) or nO( f (k)) exist for a func-
tion f that is as small as possible. Our contribution is two-fold: First, we categorize
each variant to be either in P,NP-complete and fixed-parameter tractable by k, orW[1]-
hard parameterized by k. Second, for many interesting cases we further investigate the
runtime on a finer scale and obtain run times that are (almost) optimal assuming the
Exponential Time Hypothesis. As one of our main technical contributions, we give an
O(8kk(|V | + |E |)) time algorithm to solve instances of partial scheduling problems
minimizing the makespan with unit length jobs, precedence constraints and release
dates, where G = (V , E) is the graph with precedence constraints.
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1 Introduction

Scheduling is one of the most central application domains of combinatorial opti-
mization. In the last decades, huge combined effort of many researchers led to major
progress on understanding the worst-case computational complexity of almost all nat-
ural variants of scheduling: By now, for most of these variants it is knownwhether they
are NP-complete or not. Scheduling problems provide the context of some of the most
classic approximation algorithms. For example, in the standard textbook by Shmoys
and Williamson on approximation algorithms [29] a wide variety of techniques are
illustrated by applications to scheduling problems. See also the standard textbook on
scheduling by Pinedo [24] for more background.

Instead of studying approximation algorithms, another natural way to deal with
NP-completeness is Parameterized Complexity (PC).

While the application of general PC theory to the area of scheduling has still received
considerably less attention than the approximation point of view, recently its study has
seen explosive growth, as witnessed by a plethora of publications (e.g. [2, 13, 18, 22,
27, 28]). Additionally, many recent results and open problems can be found in a survey
byMnich and vanBevern [21], and even an entireworkshop on the subjectwas recently
held [20].

In this paper we advance this vibrant research direction with a complete mapping of
how several standard scheduling parameters influence the parameterized complexity
of minimizing the makespan in a natural variant of scheduling problems that we call
partial scheduling. Next to studying the classical question of whether parameterized
problems are in P, in FPT parameterized by k, or W[1]-hard parameterized by k, we
also follow the well-established modern perspective of ‘fine-grained’ PC and aim at
run times of the type f (k)nO(1) or n f (k) for the smallest function f of parameter k.
Partial Scheduling In many scheduling problems arising in practice, the set of jobs
to be scheduled is not predetermined. We refer to this as partial scheduling. Partial
scheduling is well-motivated from practice, as it arises naturally for example in the
following scenarios:

1. Due to uncertainties a close-horizon approachmay be employed and only few jobs
out of a big set of jobs will be scheduled in a short but fixed time-window,

2. In freelance markets typically a large database of jobs is available and a freelancer
is interested in selecting only a few of the jobs to work on,

3. The selection of the jobs to process may resemble other choices the scheduler
should make, such as to outsource non-processed jobs to various external parties.

Partial scheduling has been previously studied in the equivalent forms of maximum
throughput scheduling [25] (motivated by thefirst example setting above), job rejection
[26], scheduling with outliers [12], job selection [8, 16, 30] and its special case interval
selection [5].

In this paper, we conduct a rigorous study of the parameterized complexity of partial
scheduling, parameterized by the number of jobs to be scheduled. We denote this
number by k. While several isolated results concerning the parameterized complexity
of partial scheduling do exist, this parameterization has (somewhat surprisingly) not
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been rigorously studied yet.1 We address this and study the parameterized complexity
of the (arguably) most natural variants of the problem.We fix as objective to minimize
the makespan while scheduling at least k jobs, for a given integer k and study all
variants with the following characteristics:

– 1 machine, identical parallel machines or unrelated parallel machines,
– release/due dates, unit/arbitrary processing times, and precedence constraints.

Note that a priori this amounts to 3 × 2 × 2 × 2 × 2 = 48 variants.

1.1 Our Results

We give a classification of the parameterized complexity of these 48 variants. Addi-
tionally, for each variant that is not in P, we give algorithms solving them and lower
bounds under ETH. To easily refer to a variant of the scheduling problem, we use the
standard three-field notation by Graham et al. [11]. See Sect. 2 for an explanation of
this notation. To accommodate our study of partial scheduling, we extend the α|β|γ
notation as follows:

Definition 1 We let k-sched in the γ -field indicate that we only schedule k out of n
jobs.

We study the fine-grained parameterized complexity of all problems α|β|γ , where
α ∈ {1, P, R}, the options for β are all combinations for r j , d j , p j = 1, prec, and γ

is fixed to γ = k-sched,Cmax. Our results are explicitly enumerated in Table 1.
The rows of Table 1 are lexicographically sorted on (i) precedence relations/no

precedence relations, (ii) a single machine, identical machines or unrelated machines
(iii) release dates and/or deadlines. Because their presence has amajor influence on the
character of the problem we stress the distinction between variants with and without
precedence constraints.2 On a high abstraction level, our contribution is two-fold:

1. We present a classification of the complexity of all aforementioned variants of
partial scheduling with the objective of minimizing the makespan. Specifically, we
classify all variants to be either solvable in polynomial time, to be fixed-parameter
tractable in k and NP-hard, or to be W[1]-hard.

2. Formost of the studied variantswe present both an algorithm and a lower bound that
shows that our algorithm cannot be significantly improved unless the Exponential
Time Hypothesis (ETH) fails.

Thus,whilewe completely answer a classical type of question in the field of Parameter-
izedComplexity,we pursue in our second contribution amoremodern andfine-grained
understanding of the best possible runtime with respect to the parameter k. For sev-
eral of the studied variants, the lower bounds and algorithms listed in Table 1 follow
relatively quickly. However, for many other cases we need substantial new insights to
obtain (almost) matching upper and lower bounds on the runtime of the algorithms
solving them. We have grouped the rows in result types [A]–[G] depending on our
methods for determining their complexity.

1 We compare the previous works and other relevant studied parameterization in the end of this section.
2 A precedence constraint a ≺ b enforces that job a needs to be finished before job b can start.
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Table 1 The fine-grained parameterized complexity of partial scheduling, where γ denotes k-sched, Cmax
and S.I. abbreviates Subgraph Isomorphism (Color table online)

Problem Description Parameterized
Complexity in k

Result
Type

Lower Bound under ETH RuntimeExcluded Runtime Reduction from

P
re
ce
de

nc
e
R
el
at
io
ns

1 1|prec, pj = 1|γ P [A] nO(1)

2 1|rj ,prec, pj = 1|γ P [A] nO(1)

3 1|dj , prec, pj = 1|γ W[1]-hard [B] no(k/ log k) 3-Coloring nO(k)

4 1|rj , dj ,prec, pj = 1|γ W[1]-hard [B] no(k/ log k) 3-Coloring nO(k)

5 P |prec, pj = 1|γ FPT [C] O∗(2o(
√

k log k)) P |prec, pj = 1|Cmax O∗(2O(k))
6 P |rj,prec, pj = 1|γ FPT [C] O∗(2o(

√
k log k)) P |prec, pj = 1|Cmax O∗(2O(k))

7 P |dj ,prec, pj = 1|γ W[1]-hard [B] no(k/ log k) 3-Coloring nO(k)

8 P |rj, dj , prec, pj = 1|γ W[1]-hard [B] no(k/ log k) 3-Coloring nO(k)

9 1|prec|γ W[1]-hard [D] no(
√
k) k-Clique nO(k)

10 1|rj ,prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

11 1|dj , prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

12 1|rj , dj ,prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

13 P |prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

14 P |rj,prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

15 P |dj ,prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

16 P |rj, dj , prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

17 R|prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

18 R|rj ,prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

19 R|dj ,prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

20 R|rj , dj , prec|γ W[1]-hard [D] no(k/ log k) Partitioned S.I. nO(k)

N
o
P
re
ce
de

nc
e
R
el
at
io
ns

21 1|pj = 1|γ P [E] nO(1)

22 1|rj , pj = 1|γ P [E] nO(1)

23 1|dj , pj = 1|γ P [E] nO(1)

24 1|rj , dj , pj = 1|γ P [E] nO(1)

25 P |pj = 1|γ P [E] nO(1)

26 P |rj, pj = 1|γ P [E] nO(1)

27 P |dj , pj = 1|γ P [E] nO(1)

28 P |rj, dj , pj = 1|γ P [E] nO(1)

29 1||γ P [F] nO(1)

30 1|rj |γ P [F] nO(1)

31 1|dj |γ P [F] nO(1)

32 1|rj , dj |γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
33 P ||γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
34 P |rj|γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
35 P |dj |γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
36 P |rj, dj |γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
37 R||γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
38 R|rj |γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
39 R|dj |γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))
40 R|rj , dj |γ FPT [G] O∗(2o(k)) Subset Sum O∗(2O(k))

Since p j = 1 implies that the machines are identical, the mentioned number of 48 combinations reduces
to 40 different scheduling problems. The O∗ notation omits factors polynomial in the input size. The
highlighted table entries are new results from this paper

1.2 Our NewMethods

We now describe some of our most significant technical contributions for obtaining
the various types (listed as [A]–[G] in Table 1) of results. Note that we skip some
less interesting cases in this introduction; for a complete argumentation of all results
from Table 1 we refer to Sect. 6. The main building blocks and logical implications to
obtain the results from Table 1 are depicted in Fig. 1. We now discuss these building
blocks of Fig. 1 in detail.
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Fig. 1 An illustration of the various result types as indicated in Table 1. Arrows indicate how a problem is
generalized by another problem

1.2.1 Precedence Constraints

Ourmain technical contribution concerns result type [C]. The simplest of the twocases,
P|prec, p j = 1|k-sched,Cmax, cannot be solved inO∗(2o(

√
k log k)) time assuming the

Exponential Time Hypothesis and not in 2o(k) unless sub-exponential time algorithms
for theBicliqueproblemexist, due to reductions by Jansen et al. [14].Our contribution
lies in the following theorem that gives an upper bound for the more general of the
two problems that matches the latter lower bound:

Theorem 1 P|r j , prec, p j = 1|k-sched,Cmax can be solved in O(8kk(|V | + |E |))
time,3 where G = (V , E) is the precedence graph given as input.

Theorem 1 will be proved in Sect. 3. The first idea behind the proof is based on a
natural4 dynamic programming algorithm indexed by anti-chains of the partial order
naturally associatedwith the precedence constraints.However, evaluating this dynamic
program naïvely would lead to an nO(k) time algorithm, where n is the number of jobs.

3 We assume basic arithmetic operations with the release dates take constant time.
4 A similar dynamic programming approach was also present in, for example, [6].
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Our key idea is to only compute a subset of the table entries of this dynamic pro-
gramming algorithm, guided by a new parameter of an antichain called the depth.
Intuitively, the depth of an antichain A indicates the number of jobs that can be sched-
uled after A in a feasible schedule without violating the precedence constraints.

We prove Theorem 1 by showing we may restrict attention in the dynamic pro-
gramming algorithm to antichains of depth at most k, and by bounding the number of
antichains of depth at most k indirectly by bounding the number ofmaximal antichains
of depth at most k. We believe this methodology should have more applications for
scheduling problems with precedence constraints.

Surprisingly, the positive result of Theorem 1 is in stark contrast with the seemingly
symmetric case where only deadlines are present: Our next result, indicated as [B] in
Fig. 1 shows it is much harder:

Theorem 2 The problem P|d j , prec, p j = 1|k-sched,Cmax isW[1]-hard, and it can-
not be solved in no(k/ log k) time assuming the ETH.

Theorem 2 is a consequence of a reduction outlined in Sect. 4. Note the W[1]-
hardness follows from a natural reduction from the k-Clique problem (presented
originally by Fellows and McCartin [9]), but this reduction increases the parameter
k to �(k2) and would only exclude no(

√
k) time algorithms assuming the ETH. To

obtain the tighter bound from Theorem 2, we instead provide a non-trivial reduction
from the 3- Coloring problem based on a new selection gadget.

For result type [D], we give a lower bound by a (relatively simple) reduction from
Partitioned Subgraph Isomorphism in Theorem 6 and Corollary 4. Since it is
conjectured that Partitioned Subgraph Isomorphism cannot be solved in no(k)

time assuming the ETH, our reduction is a strong indication that the simple nO(k) time
algorithm (see Sect. 6) cannot be improved significantly in this case.

1.2.2 No Precedence Constraints

The secondhalf of our classification concerns schedulingproblemswithout precedence
constraints, and is easier to obtain than the first half. Results [E], [F] are consequences
of a greedy algorithm andMoore’s algorithm [23] that solves the problem 1||∑ j U j in
O(n log n) time.Notice that this also solves the problem1|r j |k-sched,Cmax, by revers-
ing the schedule and viewing the release dates as the deadlines. For result type [G]we
show that a standard technique in parameterized complexity, the color coding method,
can be used to get a 2O(k) time algorithm for the most general problem of the class,
being R|r j , d j |k-sched,Cmax. All lower bounds on the runtime of algorithms for prob-
lems of type [G] are by a reduction from Subset Sum, but for 1|r j , d j |k-sched,Cmax
this reduction is slightly different.

1.3 RelatedWork

The interest in parameterized complexity of scheduling problems recently witnessed
an explosive growth, resulting in e.g. a workshop [20] and a survey by Mnich and van
Bevern [21] with a wide variety of open problems.
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The parameterized complexity of partial scheduling parameterized by the number
of processed jobs, or equivalently, the number of jobs ‘on time’ was studied before:
Fellows et al. [9] studied a problem called k-Tasks On Time that is equivalent to
1|d j , prec, p j = 1|k-sched,Cmax and showed that it is W[1]-hard when parameter-
ized by k,5 and in FPT parameterized by k and the width of the partially ordered set
induced by the precedence constraints. Van Bevern et al. [27] showed that the Job

Interval Selection problem, where each job is given a set of possible intervals
to be processed on, is in FPT parameterized by k. Bessy et al. [2] consider partial
scheduling with a restriction on the jobs called ‘Coupled-Task’, and also remarked the
current parameterization is relatively understudied.

Another related parameter is the number of jobs that are not scheduled, that also
has been studied in several previous works [4, 9, 22]. For example, Mnich and Wiese
[22] studied the parameterized complexity of scheduling problems with respect to
the number of rejected jobs in combination with other variables as parameter. If n
denotes the number of given jobs, this parameter equals n − k. The two parameters
are somewhat incomparable in terms of applications: In some settings only few jobs
out of many alternatives need to be scheduled, but in other settings rejecting a job is
very costly and thus will happen rarely. However, a strong advantage of using k as
parameter is in terms of its computational complexity: If the version of the problem
with all jobs mandatory is NP-complete it is trivially NP-complete for n − k = 0, but
it may still be in FPT parameterized by k.

1.4 Organization of this Paper

This paper is organized as follows: We start with some preliminaries in Sect. 2. In
Sect. 3 we present the proof of Theorem 1, and in Sect. 4 we describe the reductions
for result types [B] and [D]. In Sect. 5 we give the algorithm for result type [G] and in
Sect. 6 we motivate all cases from Table 1. Finally, in Sect. 7 we present a conclusion.

2 Preliminaries

2.1 The Three-Field Notation by Graham Et al

Throughout this paper we denote scheduling problems using the three-field notation
by Graham et al. [11]. Problems are classified by parameters α|β|γ . The α describes
the machine environment. We use α ∈ {1, P, R}, indicating whether there are one (1),
identical (P) or unrelated (R) parallel machines available. Here identical refers to the
fact that every job takes a fixed amount of time process independent of the machine,
and unrelated means a job could take different time to process per machine. The β

field describes the job characteristics, which in this paper can be a combination of the
following values: prec (precedence constraints), r j (release dates), d j (deadlines) and
p j = 1 (all processing times are 1). We assume without loss of generality that all
release dates and deadlines are integers.

5 Our results [C] and [D] build on and improve this result.
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The γ field concerns the optimization criteria. A given schedule determines C j ,
the completion time of job j , and Uj , the unit penalty which is 1 if C j > d j , and 0 if
C j ≤ d j . In this paper we use the following optimization criteria

– Cmax: minimize the makespan (i.e. the maximum completion time C j of any job),
–

∑
j U j : minimize the number of jobs that finish after their deadline,

– k-sched: maximize the number of processed jobs; in particular, process at least k
jobs.

A schedule is said to be feasible if no constraints (deadlines, release dates, prece-
dence constraints) are violated.

2.2 Notation for Posets

Any precedence graph G is a directed acyclic graph and therefore induces a partial
order≺ on V (G). Indeed, if there is a path from x to y, we let x � y. An antichain is a
set A ⊆ V (G) ofmutually incomparable elements.We say that A ismaximal if there is
no antichain A′ with A ⊂ A′, where ‘⊂’ denotes strict inclusion. The set of predeces-
sors of A is pred(A) = {x ∈ V (G) : ∃a ∈ A : x � a}, and the the set of comparables
of A is comp(A) = {x ∈ V (G) : ∃a ∈ A : x � a or x � a}. Note comp(A) = V (G)

if and only if A is maximal.
An element x ∈ V (G) is a minimal element if x � y for all y ∈ comp({x}).

An element x ∈ V (G) is a maximal element if x � y for all y ∈ comp({x}).
Furthermore, min(G) = {x | x is a minimal element in G} and max(G) = {x |
x is a maximal element in G}.

Notice that max(G) is exactly the antichain A such that pred(A) = V (G). We
denote the subgraph of G induced by S with G[S]. We may assume that r j < r j ′ if
j ≺ j ′ since job j ′ will be processed later than r j in any schedule. To handle release
dates we use the following:

Definition 2 Let G be a precedence graph. Then Gt is the precedence graph restricted
to all jobs that can be scheduled on or before time t , i.e. all jobs with release date at
most t .

We assume G = GCmax , since all jobs with release date greater than Cmax can be
ignored.

2.3 Parameterized Complexity

We say a problem is Fixed-Parameter Tractable (and in the complexity class FPT)
parameterized by parameter k, if there exists an algorithm with runtimeO( f (k) · nc),
where n denotes the size of the instance, f is a computable function and c some
constant. There also exist problems for which inclusion in FPT for some parameter is
unlikely, such as k- Clique. This is because k- Clique is complete for the complexity
classW[1] and it is conjectured that FPT = W[1]. One could view FPT as the parameter-
ized version of P andW[1] of the parameterized version of NP. To prove a problem P
to beW[1]-hard, one can use a parameterized reduction from another problem P ′ that
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is W[1]-hard, where the reduction is a polynomial-time reduction with the following
two additional restrictions: (1) the parameter k′ of P ′ is bounded by g(k) for some
function computable g and k the parameter of P , (2) the runtime of the reduction is
bounded by f (k) · nc for f some computable function, n the size of the instance of P
and c a constant.

We exclude fixed-parameter tractable algorithms for problems that are W[1]-hard.
To exclude runtimes in a more fine-grained manner, we use the Exponential Time
Hypothesis (ETH). Roughly speaking, the ETH conjectures that no 2o(n) algorithm
for 3- SAT exists, where n is the number of variables of the instance. As a consequence
we can, for example, exclude algorithms with runtime 2o(n) for Subset Sum where
n is the number of input integers, and algorithms with runtime no(k) for k- Clique
where n is the number of vertices of the input graph and k the size of the clique that
we are after. The function g(k) bounding the size of k′ in the parameterized reductions
plays an important role in these types of proofs, as for example a reduction with g(k)
from k- Clique yields a lower bound under ETH of no(g

−1(k)).

3 Result Type C: Precedence Constraints, Release Dates and Unit
Processing Times

In this section we provide a fast algorithm for partial scheduling with release dates and
unit processing times parameterized by the number k of scheduled jobs (Theorem 1).
There exists a simple, but slow, algorithm with runtime O∗(2k2) that already proves
that this problem is in FPT parameterized by k: This algorithm branches k times on jobs
that can be processed next. If more than k jobs are available at a step, then processing
these jobs greedily is optimal. Otherwise, we can recursively try to schedule all non-
empty subsets of jobs to schedule next, and a O∗(2k2) time algorithm is obtained via
a standard (bounded search-tree) analysis. To improve on this algorithm, we present a
dynamic programming algorithm based on table entries indexed by antichains in the
precedence graph G describing the precedence relations. Such an antichain describes
the maximal jobs already scheduled in a partial schedule. Our key idea is that, to find
an optimal solution, it is sufficient to restrict our attention to a subset of all antichains.
This subset will be defined in terms of the depth of an antichain. With this algorithm
we improve the runtime to O(8kk(|V | + |E |)).

By binary search, we can restrict attention to a variant of the problem that asks
whether there is a feasible schedule with makespan at most Cmax, for a fixed universal
deadline Cmax.

3.1 The Algorithm

We start by introducing our dynamic programming algorithm for P|r j , prec, p j =
1|k-sched,Cmax. Let m be the number of machines available. We start with defining

123



2318 Algorithmica (2022) 84:2309–2334

the table entries. For a given antichain A ⊆ V (G) and integer t we define

S(A, t) =
{
1, if there exists a feasible schedule ofmakespant that processes pred(A),

0, otherwise.

Computing the values of S(A, t) can be done by trying all combinations of scheduling
at mostm jobs of A at time t and then checking whether all remaining jobs of pred(A)

can be scheduled in makespan t − 1. To do so, we also verify that all the jobs in A
actually have a release date at or before t . Formally, we have the following recurrence
for S(A, t):

Lemma 1

S(A, t) = (A ⊆ V (Gt )) ∧
∨

X⊆A:|X |≤m

S(A′, t − 1) : A′ = max(pred(A)\X).

Proof If A � V (Gt ), then there is a job j ∈ A with r j > t . And thus S(A, t) = 0.
For any X ⊆ A, X is a set of maximal elements with respect to G[pred(A)],

and consists of pair-wise incomparable jobs, since A is an antichain. So, we can
schedule all jobs from X at time t without violating any precedence constraints. Define
A′ = max(pred(A)\X) as the unique antichain such that pred(A)\X = pred(A′). If
S(A′, t−1) = 1 and |X | ≤ m, we can extend the schedule of S(A′, t−1) by scheduling
all X at time t . In this way we get a feasible schedule processing all jobs of pred(A)

before or at time t . So if we find such an X with |X | ≤ m and S(A′, t − 1) = 1, we
must have S(A, t) = 1.

For the other direction, if for all X ⊆ A with |X | ≤ m, S(A′, t − 1) = 0, then no
matter which set X ⊆ A we try to schedule at time t , the remaining jobs cannot be
scheduled before t . Note that only jobs from A can be scheduled at time t , since those
are the maximal jobs. Hence, there is no feasible schedule and S(A, t) = 0. ��

The above recurrence cannot be directly evaluated, since the number of different
antichains of a graph can be big: there can be as many as

(n
k

)
different antichains with

|pred(A)| ≤ k, for example in the extreme case of an independent set. Even when
we restrict our precedence graph to have out degree k, there could be kk different
antichains, for example in k-ary trees. To circumvent this issue,we restrict our dynamic
programming algorithm only to a specific subset of antichains. To do this, we use the
following new notion of the depth of an antichain.

Definition 3 Let A be an antichain. Define the depth (with respect to t) of A as

dt (A) = |pred(A)| + |min(Gt − comp(A))|.

We also denote d(A) = dCmax(A).

The intuition behind this definition is that it quantifies the number of jobs that
can be scheduled before (and including) A without violating precedence constraints.
See Fig. 2 for an example of an antichain and its depth. We restrict the dynamic
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Fig. 2 Example of an antichain and its depth in a perfect 3-ary tree.We see that |pred(A)| = 2, but d(A) = 4.
If k = 2, the dynamic programming algorithmwill not compute S(A, t) since d(A) > k. The only antichains
with depth ≤ 2 are the empty set and the root node r on its own as a set. Indeed, d(∅) = d({r}) = 1. Note
that for instances with k = 2, a feasible schedule may exist. If so, we will find that R({r}, 1) = 1, which
will be defined later. In this way, we can still find the antichain A as a solution

programming algorithm to only compute S(A, t) for A satisfying dt (A) ≤ k. This
ensures that we do not go ‘too deep’ into the precedence graph unnecessarily at the
cost of a slow runtime.

Because of this restriction in the depth, it could happen that we check no antichains
with k or more predecessors, while there are corresponding feasible schedules. It is
therefore possible that for some antichains A with dt (A) > k, there is a feasible
schedule for all ≥ k jobs in pred(A) before time Cmax, but the value S(A,Cmax) will
not be computed. To make sure we still find an optimal schedule, we also compute the
following condition R(A, t) for all t ≤ Cmax and antichains A with dt (A) ≤ k:

R(A, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if there exists a feasible schedule with makespan at most

Cmax that processes pred(A) on or before t and processes

jobs from min(G − pred(A)) after t, with a total of k jobs

processed,

0, otherwise.

By definition of R(A, t), if R(A, t) = 1 for any A and t ≤ Cmax, then we find a
feasible schedule that processes k jobs on time.6 We show that there is an algorithm,
namely fill(A,t), that quickly computes R(A, t). The algorithm fill(A,t) does
the following: first it checks if S(A, t) = 1 and if so, greedily schedules jobs from
min(G − pred(A)) after t in order of smallest release date. If k − |pred(A)| jobs can
be scheduled before Cmax, it returns ‘true’ (R(A, t) = 1). Otherwise, it returns ‘false’
(R(A, t) = 0).

Lemma 2 There is anO(|V |k+|E |) time algorithm that, given an antichain A, integer
t , and value S(A, t), computes R(A, t).

6 The reverse direction is more difficult and postponed to Lemma 6.
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Proof We show that fill(A,t), defined above, fulfills all requirements. First we
prove that iffill(A,t) returns ‘true’, it follows that R(A, t) = 1. Since S(A, t) = 1,
all jobs from pred(A) can be finished at time t . Take that feasible schedule and process
k−|pred(A)| jobs frommin(G−pred(A))between t andCmax. This is possible because
fill(A,t) is true. All predecessors of jobs in min(G − pred(A)) are in pred(A) and
therefore processed before t . Hence, no precedence constraints are violated and we
find a feasible schedule with the requirements, i.e. R(A, t) = 1.

For the other direction, assume that R(A, t) = 1, i.e. we find a feasible schedule
σ where exactly the jobs from pred(A) are processed on or before t and only jobs
from min(G − pred(A)) are processed after t . Thus S(A, t) = 1. Define M as the set
of jobs processed after t in σ . If M equals the set of jobs with the smallest release
dates of min(G − pred(A)), we can also process the jobs of M in order of increasing
release dates. Then fill(A,t) will be ‘true’, since M has size at least k−|pred(A)|.
However, if M is not that set, we can replace a job which does not have one of the
smallest k−|pred(A)| release dates, by one which has and was not in M yet. This new
set can then still be processed between t + 1 and Cmax because smaller release dates
impose weaker constraints. We keep replacing until we end up with M being exactly
the set of jobs with smallest release dates, which is then proved to be schedulable
between t and Cmax. Hence, fill(A,t) will return ‘true’.

Computing the set min(G − pred(A)) can be done in O(|V | + |E |) time. Sorting
them on release date can be done in O(|V |k) time, as there are at most k different
release dates. Finally, greedily scheduling the jobs while checking feasibility can be
done in O(|V |) time. Hence this algorithm runs in time O(|V |k + |E |). ��

Combining all steps gives us the algorithm as described in Algorithm 1. It remains
to bound its runtime and argue its correctness.

1 foreach t = 1, . . . ,Cmax do
2 Enumerate all antichains A in Gt with dt (A) ≤ k using Lemma 5
3 foreach antichain A in Gt with dt (A) ≤ k do
4 Compute S(A, t) using Lemma 1
5 if fill(S(A, t), A, t) then
6 return TRUE
7 return FALSE

Algorithm 1: Algorithm for P|prec, p j = 1|k-sched,Cmax

3.2 Runtime

To analyze the runtime of the dynamic programming algorithm, we need to bound the
number of checked antichains. Recall that we only check antichains Awith dt (A) ≤ k
for each time t ≤ Cmax. We first analyze the number of antichains A with d(A) ≤ k
in any graph and use this to upper bound the number of antichains checked at time t .

To analyze the number of antichains A with d(A) ≤ k, we give an upper bound on
this number via an upper bound on the number of maximal antichains. Recall from the
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notations for posets, that for a maximal antichain A we have comp(A) = V (G), and
therefore d(A) = |pred(A)|. The following lemma connects the number of antichains
and maximal antichains of bounded depth:

Lemma 3 For any antichain A, there exists a maximal antichain Amax such that A ⊆
Amax and d(A) = d(Amax).

Proof Let Amax = A ∪ min(G − comp(A)). By definition, all elements in min(G −
comp(A)) are incomparable to each other and incomparable to any element of A.
Hence Amax is an antichain. Since comp(Amax) = V (G), Amax is amaximal antichain.
Moreover,

d(A) = |pred(A)| + |min(G − comp(A))| = |pred(Amax)| = d(Amax),

since the elements in min(G − comp(A)) are minimal elements and all their prede-
cessors are in pred(A) besides themselves. ��

For any (maximal) antichain A with d(A) ≤ k, we derive that |A| ≤ k and so each
maximal antichain of depth at most k has at most 2k subsets. By Lemma 3, we see
that each antichain is a subset of a maximal antichain with the same depth.

Corollary 1

|{A : A antichain, d(A) ≤ k}| ≤ 2k |{A : A maximal antichain, d(A) ≤ k}|.

This corollary allows us to restrict attention to only upper bounding the number of
maximal antichains of bounded depth.

Lemma 4 There are atmost 2k maximal antichains Awith d(A) ≤ k in any precedence
graph G = (V , E), and they can be enumerated in O(2kk(|V | + |E |)) time.
Proof Let Ak(G) be the set of maximal antichains in G with depth at most k. We
prove that |Ak(G)| ≤ 2k for any graph G by induction on k. Clearly, |A0(G)| ≤ 1 for
any graph G, since the only antichain with d(A) ≤ 0 is A = ∅ if G = ∅.

Let k > 0 and assume |A j (G)| ≤ 2 j for j < k for any graph G. If we have
a precedence graph G with minimal elements s1, . . . , s�, we partition Ak(G) into
� + 1 different sets B1,B2, . . . ,B�+1. For i = 1, . . . , �, the set Bi is defined as the
set of maximal antichains A of depth at most k in which {si ′ : i ′ < i} ⊆ A, but
si /∈ A (and no restrictions on elements in the set {s′

i : i ′ > i}). If si /∈ A, then
si ∈ pred(A) since A is maximal, so any such maximal antichain has a successor of
si in A. If we define S j as the set of all successors of s j (including s j ), we see that

Bi = Ak−i

(
G −

(⋃i−1
i ′=1 Si ′ ∪ {si }

))
. Indeed, if A ∈ Bi , then {si ′ : i ′ < i} ⊆ A.

Hence we can remove those elements and its successors from the graph, as they
are comparable to any such antichain. Moreover, we can also remove si (but not its
successors) from the graph, since it is in pred(A). Thus Bi is then exactly the set of
maximal antichains with depth i less in the remaining graph. The set B�+1 is defined
as all antichains not in some Bi , which is all maximal antichains of A of depth at most
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k for which {s1, . . . , s�} ⊆ A. Note that B�+1 = {s1, . . . , s�}. We get the following
recurrence relation:

|Ak(G)| =
�∑

i=1

∣
∣
∣
∣
∣
∣
Ak−i

⎛

⎝G −
⎛

⎝
i−1⋃

j=1

S j ∪ {si }
⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣
+ 1, (1)

since |Bl+1| = 1. Notice that we may assume that � ≤ k, because otherwise the depth
of the antichain will be greater than k. Then if we use the induction hypothesis that
|A j (G)| ≤ 2 j for j < k for any graph G, we see by (1) that:

|Ak(G)| =
�∑

i=1

∣
∣
∣
∣
∣
∣
Ak−i

⎛

⎝G −
⎛

⎝
i−1⋃

j=1

S j ∪ {si }
⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣
+ 1,

≤ 2k
(

k∑

i=1

1

2i
+ 1

2k

)

= 2k .

The lemma follows since the above procedure can easily be modified in a recursive
algorithm to enumerate the antichains, and by using a Breadth-First Search we can

compute G−
(⋃i−1

j=1 S j ∪ {si }
)
in O(|V |+|E |) time. Thus, each recursion step takes

O(k(|V | + |E |)) time. ��
Returning to (non-maximal) antichains, we see that we can enumerate all maximal

antichains of depth at most k with Lemma 4 and by Corollary 1 we can find all
antichains of depth at most k by taking all subsets of the found maximal antichains.

Corollary 2 There are at most 4k antichains A with d(A) ≤ k in any precedence graph
G = (V , E), and they can be enumerated within O(4k(|V | + |E |)) time.
Notice that the runtime is indeed correct, as it dominates both the time needed for the
construction of the set Ak(G) and the time needed for taking the subsets of Ak(G)

(which is 2k |Ak(G)|).
We now restrict the number of antichains A in Gt with dt (A) ≤ k. Take Gt to be

the graph in Corollary 2 and notice that dt (A) = d(A) for any antichain A in Gt . By
Corollary 2 we obtain Lemma 5.

Lemma 5 For any t, there are at most 4k antichains A with dt (A) ≤ k in any prece-
dence graph G = (V , E), and they can be enumerated within O(4k(|V | + |E |))
time.

To compute each S(A, t), we look at a maximum of
( k
m

) ≤ 2k different sets X .
Computing the antichain A′ such that A′ = max(pred(A)\X) takes O(|V | + |E |)
time. After this computation, R(A, t) is directly computed in O(|V |k + |E |) time.
For each time t ∈ {1, . . . ,Cmax}, there are at most 4k different antichains A for
which we compute S(A, t) and R(A, t). Since Cmax ≤ k, we therefore have total
runtime of O(4kk(2k(|V | + |E |) + (|V |k + |E |))). Hence, Algorithm 1 runs in time
O(8kk(|V | + |E |)).

123



Algorithmica (2022) 84:2309–2334 2323

3.3 Correctness of Algorithm

To show that the algorithm described in Algorithm 1 indeed returns the correct answer,
the following lemma is clearly sufficient:

Lemma 6 A feasible schedule for k jobs with makespan at most Cmax exists if and only
if R(A, t) = 1 for some t ≤ Cmax and antichain A with dt (A) ≤ k.

Before we are able to prove Lemma 6, we need one more definition.

Definition 4 Let σ be a feasible schedule. Then A(σ ) is the antichain such that
pred(A(σ )) is exactly the set of jobs that was scheduled in σ .

Equivalently, if X is the set of jobs processed by σ , then A(σ ) = max(G[X ]).
Proof (Lemma 6) Clearly, if R(A, t) = 1 for some t ≤ Cmax and antichain A with
dt (A) ≤ k, we have a feasible schedule with k jobs by definition of R(A, t). Hence,
it remains to prove that if a feasible schedule for k jobs exists, then R(B, t) = 1 for
some t ≤ Cmax and antichain B with dt (B) ≤ k. Let

�∗ = {σ |σ is a feasible schedule that processes k jobs

and has a makespan of at most Cmax},

so �∗ is the set of all possible solutions. Define

σ ∗ = argmin
σ

{d(A(σ ))|σ ∈ �∗},

i.e. σ ∗ is a schedule for which A(σ ∗) has minimal depth (with respect to Cmax). We
now define t and B such that R(B, t) = 1.

– Let t = max{t : job not inmax(G[pred(A(σ ∗))])was scheduled at time t}, so from
t + 1 and on, only maximal jobs (with respect to G[pred(A(σ ∗))]) are scheduled.

– Let M = {x : job x was scheduled at t + 1 or later in σ ∗ }.
– Let B = max(pred(A(σ ∗))\M), so pred(B) is exactly the set of jobs scheduled
on or before time t in σ ∗.

See Fig. 3a for an illustration of these concepts. There are two cases to distinguish:
dt(B) ≤ k. In this case we prove that R(B, t) = 1. The feasible schedule we are
looking for in the definition of R(B, t) is exactly σ ∗. Indeed, all jobs from pred(B)

werefinished at time t . Furthermore, all jobs inM aremaximal, so all their predecessors
are in pred(B). Hence, M ⊆ min(G − pred(B)). So, by definition R(B, t) = 1.
dt(B) > k. In this case we prove that there is a schedule σ ′ such that d(A(σ ′)) <

d(A(σ ∗)), i.e. we find a contradiction to the fact that d(A(σ ∗)) was minimal. This
σ ′ can be found as follows: take schedule σ ∗ only up until time t . Let C be a subset
of min(Gt − comp(B)) such that |C | = k − |pred(B)|. This C can be found since
dt (B) ≥ k. Process the jobs in C after time t in σ ′. These can all be processed without
precedence constraint or release date violations, since their predecessors were already
scheduled and C ⊆ Gt . So, we find a feasible schedule that processes k jobs, called
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(a) (b)
Fig. 3 Visualization of the definitions of M and B and the schedule σ∗ in the proof of Lemma 6 is shown
in a. b Depicts the schedule σ ′ as chosen in the subcase d(B) > k. The grey boxes indicate which jobs are
processed in the schedules. We will prove that |D(A(σ ′))| < |D(A(σ∗))|

σ ′. The choice of σ ′ is depicted in Fig. 3. Note that C ⊆ min(Gt − comp(B)) ⊆
min(G − comp(B)) and not all jobs of min(G − comp(B)) are necessarily processed
in σ ′.

It remains to prove that d(A(σ ′)) < d(A(σ ∗)). Define D(A) = pred(A)∪min(G−
comp(A)) for any antichain A. So D(A) is the set of jobs that contribute to d(A) and
so |D(A)| = d(A). We will prove that D(B) = D(A(σ ′)) ⊂ D(A(σ ∗)). This will be
done in two steps, first we show that

D(B) = D(A(σ ′)) ⊆ D(A(σ ∗)).

In the last step we prove D(B) = D(A(σ ∗)), which gives us d(A(σ ′)) < d(A(σ ∗)).
Notice that C ⊆ D(B) since C ⊆ min(G − comp(B)), hence D(B) = D(B ∪C).

Since A(σ ′) = B ∪C it follows that D(A(σ ′)) = D(B). Next we prove that D(B) ⊆
D(A(σ ∗)). Clearly, if x ∈ pred(B) then x ∈ pred(A(σ ∗)). It remains to show that
x ∈ min(G − comp(B)) implies that x ∈ D(A(σ ∗)). If x ∈ min(G − comp(B)),
then either x ∈ M or x /∈ M . If x ∈ M , then x ∈ A(σ ∗) so x ∈ pred(A(σ ∗)). If
x /∈ M , then x /∈ comp(B∪M) since x was a minimal element in min(G−comp(B)).
Since A(σ ∗) ⊆ B ∪ M , and thus comp(A(σ ∗)) ⊆ comp(B ∪ M), we observe that
x ∈ min(G − comp(A(σ ∗))). We then conclude that D(B) ⊆ D(A(σ ∗)).

We are left to show that D(B) = D(A(σ ∗)). Remember that t was chosen such
that there is a job processed at time t that was not in max(G[pred(A(σ ∗))]). In other
words, there was a job x ∈ B in σ ∗ at time t with y ∈ M such that y � x . Note that
y /∈ D(B), since y ∈ M , so y is not in pred(B) and y is clearly comparable to x .
However, y ∈ D(A(σ ∗)), so we find that d(A(σ ′)) = d(B) < d(A(σ ∗)). Hence, we
found a schedule with smaller d(A(σ ′)), which leads to a contradiction. ��
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4 Result Types B and D: OneMachine and Precedence Constraints

In this section we show that Algorithm 1 cannot be even slightly generalized further: if
we allow job-dependent deadlines or non-unit processing times, the problem becomes
W[1]-hard parameterized by k and cannot be solved in no(k/ log k) time unless the ETH
fails. In the following reductions we reduce to a variant of the scheduling problems
that asks whether there is a feasible schedule withmakespan at mostCmax, whereCmax
is given as input. If for a given instance such a schedule exists, we call the instance
a yes instance, and a no instance otherwise. We may restrict ourselves to this variant
because of binary search.

4.1 Job-Dependent Deadlines

The fact that combining precedence constraints with job-dependent deadlines makes
the problem W[1]-hard, is a direct consequence from the fact that 1|prec, p j =
1| ∑ j U j is W[1]-hard, parameterized by n − ∑

j U j = k where n is the number
of jobs [9]. It is important to notice that the notation of these problems implies that
each job can have its own deadline. Hence, we conclude from this that 1|d j , prec, p j =
1|k-sched,Cmax isW[1]-hard parameterized by k. This is a reduction from k-Clique
that yields a quadratic blow-up on the parameter, giving a lower bound on algorithms
for the problemofn�(

√
k). Based on theExponential TimeHypothesis,we nowsharpen

this lower bound with a reduction from 3- Coloring:

Theorem 3 1|d j , prec, p j = 1|k-sched,Cmax is W[1]-hard parameterized by k. Fur-
thermore, there is no algorithm solving 1|d j , prec, p j = 1|k-sched,Cmax in 2o(n) time
where n is the number of jobs, assuming ETH.

Proof The proof will be a reduction from 3- Coloring, for which no 2o(|V |+|E |) algo-
rithm exists under the Exponential Time Hypothesis [7, pages 471–473]. Let the graph
G = (V , E) be the instance of 3- Coloringwith |V | = n′ and |E | = m′.We label the
vertices v1, . . . , vn′ and the edges e1, . . . , em′ . We then create the following instance
for 1|d j , prec, p j = 1|k-sched,Cmax.

• For each vertex vi ∈ V , create 6 jobs:

– v1i , v
2
i and v3i with deadline dvi = i ,

– w1
i , w

2
i and w3

i with deadline dwi = n′ + 2m′ + 1 − i ,

add precedence constraints v1i ≺ w1
i , v

2
i ≺ w2

i and v3i ≺ w3
i . These jobs represent

which color for each vertex will be chosen (for instance if v1i andw1
i are processed,

vertex i gets color 1).
• For each edge e j ∈ E , create 12 jobs:

– e12j , e
13
j , e

21
j , e

23
j , e

31
j and e32j with deadline de j = n′ + j ,

– f 12j , f 13j , f 21j , f 23j , f 31j and f 32j with deadline d f j = n′ + m′ + 1 − j ,

add precedence constraints eabj ≺ f abj for a, b ∈ {1, 2, 3} with a = b. These jobs

represent what the colors of the endpoints of an edge will be. So if the jobs eabj
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and f abj are processed for e = {u, v}, then vertex u has color a and vertex v has
color b. Since the endpoints should have different colors, the jobs eaaj and f aaj do
not exist.

• For each eabj with e = {vi , vi ′ } and a, b ∈ {1, 2, 3}with a = b, add the precedence

constraints vai ≺ eabj and vbi ′ ≺ eabj .
• Set Cmax = k = 2n′ + 2m′.

We now prove that the created instance is a yes instance if and only if the original
3- Coloring instance is a yes instance. Assume that there is a 3-coloring of the graph
G = (V , E). Then there is also a feasible schedule: For each vertex vi with color a,
process the jobs vai andwa

i at their respective deadlines. For each edge e j = {u, v}with
u colored a and v colored b, process the jobs eabj and f abj exactly at their respective
deadlines. Notice that because it is a 3-coloring, each edge has endpoints of different
colors, so these jobs exist. Also note that no two jobs were processed at the same
time. Exactly 2n′ + 2m′ jobs were processed before time 2n′ + 2m′. Furthermore, no
precedence constraints were violated.

For the other direction, assume that we have a feasible schedule in our cre-
ated instance of 1|d j , prec, p j = 1|k-sched,Cmax. Let Vi = {v1i , v2i , v3i }, Wi =
{w1

i , w
2
i , w

3
i } for all i = 1, . . . , n′, and let E j = {e12j , e13j , e21j , e23j , e31j , e32j } and

F j = { f 12j , f 13j , f 21j , f 23j , f 31j , f 32j } for all j = 1, . . . ,m′. We show by induction on
i that out of each of the sets Vi , Wi , E j and F j , exactly one job was scheduled at its
deadline.

Since we have a feasible schedule, at time 2m′ + 2n′ one of the jobs of W1 must
be scheduled, since they are the only jobs with a deadline greater than 2n + 2m − 1.
If wa

1 was scheduled at time 2m′ + 2n′, then the job va1 must be processed at time 1
because of precedence constraints and since its deadline is 1. No other jobs from V1
and W1 can be processed, due to their deadlines and precedence constraints.

Now assume that all sets V1, . . . ,Vi−1,W1, . . . ,Wi−1 have exactly one job sched-
uled at their respective deadline, and no more can be processed. Since we have a
feasible schedule, one job should be scheduled at time 2n′ + 2m′ − (i − 1). However,
since no more jobs from W1, . . . ,Wi−1 can be scheduled, the only possible jobs are
fromWi since they are the only other jobs with a deadline greater than 2n′ + 2m′ − i .
However, if wa

i was scheduled at time 2n′ + 2m′ − (i − 1), then the job vai must be
processed at time i because of precedence constraints, its deadline at i and because at
times 1, . . . , i − 1 other jobs had to be processed. Also, no other job from Vi can be
processed in the schedule, since they all have deadline i . As a consequence, no other
jobs from Wi can be processed, as they are restricted to precedence constraints. So
the statement holds for all sets Vi and Wi . In the exact same way, one can conclude
the same about all sets E j and F j .

Because of this, we see that each job and each vertex have received a color from the
schedule. Theymust form a 3-coloring, because a job from E j could only be processed
if the two endpoints got two different colors. Hence, the 3- Coloring instance is a
yes instance.

As k = 2n′ +2m′ we therefore conclude there is no 2o(n) algorithm under the ETH.
��
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Note that this bound significantly improves the old lower bound of 2�(log n
√
k)

implied by the the reduction from k-Clique reduction. Since k ≤ n and n/ log n is an
increasing function, Theorem 3 implies that

Corollary 3 Assuming ETH, there is no algorithm solving 1|d j , prec, p j = 1|k-sched,
Cmax in no(k/ log(k)) where n is the number of jobs.

4.2 Non-unit Processing Times

We show that having non-unit processing times combined with precedence constraints
make the problem W[1]-hard even on one machine. The proof of Theorem 4 heavily
builds on the reduction from k-Clique to k-Tasks On Time byFellows andMcCartin
[9].

Theorem 4 1|prec|k-sched,Cmax is W[1]-hard, parameterized by k, even when p j ∈
{1, 2} for all jobs j .

Proof The proof is a reduction from k-Clique. We start withG = (V , E), an instance
of k-Clique. For each vertex v ∈ V , create a job Jv with processing time p(Jv) = 2.
For each edge e ∈ E , create a job Je with processing time p(Je) = 1. Now for
each edge (u, v), add the following two precedence relations: Ju ≺ Je and Jv ≺ Je,
so before one can process a job associated with an edge, both jobs associated with
the endpoints of that edge need to be finished. Now let k′ = k + 1

2k(k − 1) and
Cmax = 2k + 1

2k(k − 1). We will now prove that 1|prec|k′-sched,Cmax is a yes
instance if and only if the k-Clique instance is a yes instance.

Assume that the k-Clique instance is a yes instance, then process first the k jobs
associated with the vertices of the k-clique. Next process the 1

2k(k−1) jobs associated
with the edges of the k-clique. In total, k + 1

2k(k − 1) = k′ jobs are now processed
with a makespan of 2k + 1

2k(k − 1). Hence, the instance of 1|prec|k′-sched,Cmax is
a yes instance.

For the other direction, assume 1|prec|k′-sched,Cmax to be a yes instance, so there
exists a feasible schedule. For any feasible schedule, if one schedules � jobs associated
with vertices, then at most 1

2�(� − 1) jobs associated with edges can be processed,
because of the precedence constraints. However, because k′ = k + 1

2k(k − 1) jobs
were done in the feasible schedule before Cmax = 2k + 1

2k(k − 1), at most k jobs
associated with vertices can be processed, because they have processing time of size
2. Hence, we can conclude that exactly k vertex-jobs and 1

2k(k − 1) edge-jobs were
processed. Hence, there were k vertices connected through 1

2k(k − 1) edges, which is
a k-clique. ��

The proofs of Theorem 6 and Corollary 4 are reductions from Partitioned Sub-

graph Isomorphism. Let P = (V ′, E ′) be a ‘pattern’ graph, G = (V , E) be a
‘target’ graph, and χ : V → V ′ a ‘coloring’ of the vertices of G with elements from
P . A χ -colorful P-subgraph of G is a mapping ϕ : V ′ → V such that (1) for each
{u, v} ∈ E ′ it holds that {ϕ(u), ϕ(v)} ∈ E and (2) for each u ∈ V ′ it holds that
χ(ϕ(u)) = u. If χ and G are clear from the context they may be omitted in this
definition.
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Definition 5 (Partitioned Subgraph Isomorphism) Given graphs G = (V , E)

and P = (V ′, E ′), χ : V → V ′, determine whether there is a χ -colorful P-subgraph
of G.

Theorem 5 (Marx [19]) Partitioned Subgraph Isomorphism cannot be solved in
no(|E ′|/ log |E ′|) time assuming the Exponential Time Hypothesis (ETH), where n is the
size of the input.

Wewill now reducePartitioned Subgraph Isomorphism to 1|prec, r j |k-sched,
Cmax.

Theorem 6 1|prec, r j |k-sched,Cmax cannot be solved in no(k/ log k) time assuming the
Exponential Time Hypothesis (ETH).

Proof Let G = (V , E), P = (V ′, E ′) and χ : V → V ′. We will write V ′ =
{1, . . . , s}. Define for i = 0, . . . , s the following important time stamps:

ti :=
i∑

j=1

3s+1− j .

Construct the following jobs for the instance of the 1|prec, r j |k-sched,Cmax problem:

• For i = 1, . . . , s:

– For each vertex v ∈ V such that χ(v) = i , create a job Jv with processing
time p(Jv) = 3s+1−i and release date ti−1.

• For each {v,w} ∈ E such that {χ(v), χ(w)} ∈ E ′, create a job J{v,w} with
p(J{v,w}) = 1 and release date ts . Add precedence constraints Jv ≺ J{v,w} and
Jw ≺ J{v,w}.

Then ask whether there exists a solution to the scheduling problem for k = s + |E ′|
with makespan Cmax = ts + |E ′|.

Let the Partitioned Subgraph Isomorphism instance be a yes-instance and let
ϕ : V ′ → V be a colorful P-subgraph. We claim the following schedule is feasible:

• For i = 1, . . . , s:

– Process Jϕ(i) at its release date ti−1.

• Process for each {i, i ′} ∈ E ′ the job J{ϕ(i),ϕ(i ′)} somewhere in the interval [ts, ts +
|E ′|].

Notice that all jobs are indeed processed after their release date and that in total there
are k = s +|E ′| jobs processed before Cmax = ts +|E ′|. Furthermore, all precedence
constraints are respected as any edge job is processed after both its predecessors. Also,
the edge jobs J{ϕ(i),ϕ(i ′)} must exist, as ϕ is a properly colored P-subgraph. Therefore,
we can conclude that indeed this schedule is feasible.

For the other direction, assume that there is a solution to the created instance of
1|prec, r j |k-sched,Cmax. Define Ji = {Jv : χ(v) = i}. Wewill first prove that at most
one job from each set Ji can be processed in a feasible schedule. To do this, we first
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prove that at most one job from each set Ji can be processed before ts . Any job in Ji has
release date ti−1 = ∑i−1

j=1 3
s+1− j . Therefore, there is only ts − ti−1 = ∑s

j=i 3
s+1− j

time left to process the jobs from Ji before time ts . However, the processing time of
any job in Ji is 3s+1−i , and since 2 · 3s+1−i >

∑s
j=i 3

s+1− j , at most one job from Ji
can be processed before ts . Since all jobs not in some Ji have their release date at ts ,
at most s jobs are processed at time ts . Thus, at time ts , there are |E ′| time units left to
process |E ′| jobs, because of the choice of k and makespan. Hence, the only way to
get a feasible schedule is to process exactly one job from each set Ji at its respective
release date and process exactly |E ′| edge jobs after ts .

Let vi be the vertex, such that Jv was processed in the feasible schedule with
color i . We will show that ϕ : V ′ → V , defined as ϕ(i) = vi , is a properly colored
P-subgraph of G. Hence, we are left to prove that for each {i, i ′} ∈ E ′, the edge
{ϕ(i), ϕ(i ′)} ∈ E , i.e. that for each {i, i ′} ∈ E ′, the job J{ϕ(i),ϕ(i ′)} was processed.
Because only the vertex jobs Jϕ(1), Jϕ(2), . . . , Jϕ(s) were processed, the precedence
constraints only allow for edge jobs J{ϕ(i),ϕ(i ′)} to be processed. We created edge job
J{v,w} if and only if {v,w} ∈ E and {χ(v), χ(w)} ∈ E ′, hence the |E ′| edge jobs have
to be exactly the edge jobs J{ϕ(i),ϕ(i ′)} for {i, i ′} ∈ E ′. Therefore, we proved indeed
that ϕ is a colorful P-subgraph of G.

Notice that k = s + |E ′| ≤ 3|E ′| as we may assume the number of vertices in P is
at most 2|E ′|. The given bound follows. ��
Corollary 4 2|prec|k-sched,Cmax cannot be solved in no(k/ log k) time assuming the
Exponential Time Hypothesis (ETH).

Proof We can use the same idea for the reduction from Partitioned Subgraph

Isomorphism as in the proof of Theorem 6, except for the release dates, as they are
not allowed in this type of scheduling problem. To simulate the release dates, we
use the second machine as a release date machine, meaning that we will create a
job for each upcoming release date and will require these new jobs to be processed.
More formally: For i = 1, . . . , s, create a job Jri with processing time 3s+1−i and
precedence constraints Jri ≺ J for any job J that had release date ti in the original
reduction. Furthermore, let Jri ≺ Jri+1 . Then we add |E ′| jobs J ′ with processing time
1 and with precedence relations Jrs ≺ J ′. We then ask whether there exists a feasible
schedule with k = 2s + 2|E ′| and with makespan ts + |E ′|. All newly added jobs are
required in any feasible schedule and therefore, all other arguments from the previous
reduction also hold. Finally, note that k is again linear in |E ′|. ��

5 Result Type G: k-scheduling without Precedence Constraints

The problem P||k-sched,Cmax cannot be solved inO∗(2o(k)) time assuming the ETH,
since there is a reduction to Subset Sum for which 2o(n) algorithms were excluded
by Jansen et al. [15].

We show that the problem is fixed-parameter tractable with a matching runtime
in k, even in the case of unrelated machines, release dates and deadlines, denoted by
R|r j , d j |k-sched,Cmax.
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Theorem 7 R|r j , d j |k-sched,Cmax is fixed-parameter tractable in k and can be solved
in O∗((2e)kkO(log k)) time.

Proof We give an algorithm that solves any instance of R|r j , d j |k-sched,Cmax within
O∗((2e)kkO(log k)) time. The algorithm is a randomized algorithm that uses the color
coding method; it can can be derandomized as described by Alon et al. [1]. The
algorithm first (randomly) picks a coloring c : {1, . . . , n} → {1, . . . , k}, so each job
is given one of the k available colors. We then compute whether there is a feasible
colorful schedule, i.e. a feasible schedule that processes exactly one job of each color.
If this colorful schedule can be found, then it is possible to schedule at least k jobs
before Cmax. ��

Given a coloring c, we compute whether there exists a colorful schedule in the
following way. Define for 1 ≤ i ≤ m and X ⊆ {1, . . . , k}:

Bi (X) = minimum makespan of all schedules on machine i processing

|X | jobs, each from a different color in X .

Clearly Bi (∅) = 0, and all values Bi (X) can be computed in O(2kn) time using the
following:

Lemma 7 Let min{∅} = ∞. Then

Bi (X) = min
�∈X min

j :c( j)=�
{C j = max{r j , Bi (X\{�})} + pi j : C j ≤ d j }.

Proof In a schedule on one machine with |X | jobs using all colors from X , one job
should be scheduled as last, defining the makespan. So for all possible jobs j , we
compute what the minimal end time would be if j was scheduled at the end of the
schedule. This j cannot start before its release date or before all other colors are
scheduled. ��

Next, define for 1 ≤ i ≤ m and X ⊆ [k], Ai (X) to be 1 if Bi (X) ≤ Cmax, and to be 0
otherwise. So Ai (X) = 1 if and only if |X | jobs, each fromadifferent color of X , can be
scheduled on machine i before Cmax. A colorful feasible schedule exists if and only if
there is some partition X1, . . . , Xm of {1, .., k} such that�m

i=1Ai (Xi ) = 1. The subset
convolution of two functions is defined as (Ai ∗ Ai ′)(X) = ∑

Y⊆X Ai (Y )Ai ′(X\Y ).
Then there is some partition X1, . . . , Xm of {1, . . . , k} such that �m

i=1Ai (Xi ) = 1 if
and only if (A1∗· · ·∗Am)({1, . . . , k}) > 0. The value of (A1∗· · ·∗Am)({1, . . . , k}) >

0 can be computed in 2kkO(1) time using fast subset convolution [3].
An overview of the randomized algorithm is given in Algorithm 2. If the k jobs that

are processed in an optimal solution are all in different colors, the algorithm outputs
true. By standard analysis, k jobs are all assigned different colors with probability at
least 1/ek , and thus ek independent trials to boost the error probability of the algorithm
to at most 1/2.

By using the standardmethods byAlon et al. [1], Algorithm 2 can be derandomized.
��
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1 For a given coloring c:
2 foreach i = 1, . . . ,m do
3 foreach X ⊆ {1, .., k} in order of increasing size do
4 Compute Bi (X) using Lemma 7.
5 Set Ai (X) = 1 if Bi (X) ≤ Cmax, set Ai (X) = 0 otherwise.
6 Compute (A1 ∗ · · · ∗ Am )({1, . . . , k}) using fast subset convolution [3].
7 if (A1 ∗ · · · ∗ Am )({1, . . . , k}) > 0 then
8 return True
9 return False

Algorithm 2: Algorithm for solving R|r j , d j |k-sched,Cmax

6 Argumentation of the Results in Table 1

For completeness and the readers convenience, we explain in this section for each row
of Table 1 how the upper and lower bounds are obtained.

First notice that themost general variant R|r j , d j , prec|k-sched,Cmax can be solved
in nO(k) time as follows: Guess for each machine the set of jobs that are scheduled on
it, and guess how they are ordered in an optimal solution, to get sequences σ1, . . . , σm
with a joint length equal to k. For each such (σ1, . . . , σm), run the following simple
greedy algorithm to determine whether the minimummakespan achieved by a feasible
schedule that schedules for each machine i the jobs as described in σi : Iterate t =
1, . . . , n and schedule the job σi (t) at machine i as early as possible without violating
release dates/deadline and precedence constraints (if this is not possible, return NO).
Since each optimal schedule can be assumed to be normalized in the sense that no
single job can be executed earlier, it is easy to see that this algorithm always returns an
optimal schedule for some choice of σ1, . . . , σm . Since there are only nO(k) different
sequences σ1, . . . , σm of combined length k, the runtime follows.

Cases 1–2 The polynomial time algorithms behind result [A] are obtained by a
straightforwardgreedy algorithm:For 1|r j , prec, p j = 1|k-sched,Cmax,
build the schedule from beginning to end, and schedule an arbitrary
job if any is available; otherwise wait until one becomes available.

Cases 3–4, 7–8 The given lower bound is by Corollary 3.
Cases 5–6 The upper bound is by the algorithm of Theorem 1. The lower bound

is due to reduction by Jansen et al. [14]. In particular, if no subexpo-
nential time algorithm for the Biclique problem exists, there exist no
algorithms in no(k) time for these problems.

Case 9 The lower bound is byTheorem4,which is a reduction from k- Clique
and heavily builds on the reduction from k- Clique to k-Tasks On

Time by Fellows and McCartin [9]. This reduction increases the
parameter k to �(k2), hence the lower bound of no(

√
k).

Cases 10–20 The given lower bound is by Theorem 6, which is a reduction from
Partitioned Subgraph Isomorphism. It is conjectured that there
exist no algorithms solving Partitioned Subgraph Isomorphism

in no(k) time assuming ETH, which would imply that the nO(k) algo-
rithm for these problems cannot be improved significantly.
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Cases 21–28 Result [E] is established by a simple greedy algorithm that always
schedules an available job with the earliest deadline.

Cases 29–31 Result [F] is a consequence of Moore’s algorithm [23] that solves
the problem 1||∑ j U j in O(n log n) time. The algorithm creates a
sequence j1, . . . , jn of all jobs in earliest due date order. It then repeats
the following steps: It tries to process the sequence (in the given order)
on one machine. Let ji be the first job in the sequence that is late. Then
a job from j1, . . . , ji with maximal processing time is removed from
the sequence. If all jobs are on time, it returns the sequence followed
by the jobs that have been removed from the sequence. Notice that this
also solves the problem 1|r j |k-sched,Cmax, by reversing the schedule
and viewing the release dates as the deadlines.

Cases 32 The lower bound for this problem is a direct consequence of the reduc-
tion from Knapsack to 1|r j | ∑ j U j by Lenstra et al. [17], which is
a linear reduction. Jansen et al. [15] showed that Subset Sum (and
thus also Knapsack) cannot be solved in 2o(n) time assuming ETH.

Cases 33–40 Since 2||Cmax is equivalent to Subset Sum and can therefore not be
solved in 2o(n) time assuming ETH, as shown by Jansen et al. [15].
Therefore, its generalizations, in particular those mentioned in cases
33–40, have the same lower bound on run times assuming ETH. The
upper bound is by the algorithm of Theorem 7.

7 Concluding Remarks

We classify all studied variants of partial scheduling parameterized by the number of
jobs to be scheduled to be either in P, NP-complete and fixed-parameter tractable by k,
orW[1]-hard parameterized by k. Our main technical contribution is anO(8kk(|V | +
|E |)) time algorithm for P|r j , prec, p j = 1|k-sched,Cmax.

In a fine-grained sense, the cases we left open are cases 3–20 from Table 1. We
believe in fact algorithms in rows 5–6 and 10–20 are optimal: An no(k) time algorithm
for any case from result type [C] or [D] would imply either a 2o(n) time algorithm
for Biclique or an no(k) time algorithm for Partitioned Subgraph Isomorphism,
which both would be surprising. It would be interesting to see whether for any of the
remaining cases with precedence constraints and unit processing times a ‘subexpo-
nential’ time algorithm exists.

A related case is P3|prec, p j = 1|Cmax (where P3 denotes three machines). It is a
famously hard open question (see e.g. [10]) whether this can be solved in polynomial
time, but maybe it is doable to try to solve this question in subexponential time, e.g.
2o(n)?
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