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Let R be a set of n colored imprecise points, where each point is colored by one of 
k colors. Each imprecise point is specified by a unit disk in which the point lies. We 
study the problem of computing the smallest and the largest possible minimum color 
spanning circle, among all possible choices of points inside their corresponding disks. We 
present an O (nk logn) time algorithm to compute a smallest minimum color spanning 
circle. Regarding the largest minimum color spanning circle, we show that the problem is 
NP-Hard and present a 1

3 -factor approximation algorithm. We improve the approximation 
factor to 1

2 for the case where no two disks of distinct color intersect.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Recognition of color spanning objects of optimum size, in the classical (precise) setting, is a well-studied problem in 
the literature [2,3,8,16]. The motivation of color spanning problems stems from facility location problems. Here facilities 
of type i ∈ {1, 2, . . . , k} are modeled as points with color code i, and the objective is to identify the location of a desired 
geometric shape containing at least one facility of each type such that the desired measure parameter (width, perimeter, 
area, etc.) is optimized. Other applications of color spanning objects can be found in disk-storage management systems [5]
and central-transportation systems [30].

The simplest type of two-dimensional problem considered in this setup is the minimum color spanning circle (MCSC) 
problem, defined as follows. Given a colored point set P in the plane, such that each point in P is colored with one of k
possible colors, compute a circle of minimum radius that contains at least one point of each color (see Fig. 1a). The MCSC
problem is well-understood: As observed by Abellanas et al. [1], a minimum color spanning circle can be computed in 
O (nk log n) time using results on the upper envelope of Voronoi surfaces obtained by Huttenlocher et al. [16].

A limitation of these studies on color spanning objects is that, in many real-life situations, the locations of the points are 
subject to errors and their exact coordinates are unknown. This is an issue that might arise every time that we try to apply 
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Fig. 1. (a) MCSC for a precise colored point set. (b,c) S-MCSC and L-MCSC for an imprecise colored point set. The representative for each disk is marked 
as a point of the corresponding color. In (c), we display two L-MCSC of the same radius. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

a geometric algorithm to real-world data. For this reason, in recent years there have been many studies aimed at describing 
how imprecision in the input data might affect some of the most fundamental geometric descriptors, such as the convex 
hull or the smallest bounding box. In these studies, the input is an imprecise or uncertain point set: the location of every 
point is not uniquely determined, but given by a set of possible locations called its region [29,33]. One of the fundamental 
questions to be studied in this setting is to compute the extreme values of the descriptors, that is, the smallest and biggest, 
e.g., convex hull of the point set, for all possible locations of every point in its region. In this paper, we consider this 
problem for the minimum color spanning circle.

1.1. Related work

Uncertainty in data is paramount in contemporary geometric computations. In the literature, different variations have 
been considered where the regions are modeled as simple geometric objects such as line segments, disks or squares [29,33]. 
Computing the smallest circle intersecting a set of disks or convex regions of total complexity n is called the intersection 
radius problem, and can be solved in O (n) time [17]. Robert and Toussaint [32] studied the problem of computing the 
smallest width corridor intersecting a set of convex regions (disks and line segments) and proposed two O (n log n) time 
algorithms, where n is the number of convex regions. Löffler and van Kreveld [29] considered the problem of computing the 
smallest and largest possible axis-parallel bounding box and circle of a set of regions modeled as circles or squares. Their 
proposed algorithms have running times ranging from O (n) to O (n log n). For a set of squares or line segments, computing 
a placement of points in the regions that maximizes or minimizes the area or the perimeter of the convex hull is studied 
by the same authors [28]. Some variants are shown to be NP-Hard, and the polynomial time algorithms have running times 
ranging from O (n log n) to O (n13). If the input is a set of disks, a (1 + ε)-approximation algorithm for this problem is given 
also by van Kreveld and Löffler [26]. Other problems that have been studied in the region-based model are computing a 
placement to maximize or minimize the diameter on a set of squares or disks [21,29], or the area of the largest or smallest 
triangle on a set of line segments [22].

We note that other model formulations have also been proposed for dealing with inaccuracies in geometric problems. 
These are epsilon geometry [33], probabilistic models [6,34], the aggregated uncertainty model [20], and the domain based 
models [11].

Regarding other color spanning objects in the precise setting, efficient algorithms are known for computing smallest 
color spanning squares [1], strips and rectangles [8], 2-intervals [18], equilateral triangles of fixed orientation [15], and axis-
parallel squares [23]. Acharyya et al. [2] propose efficient algorithms to compute the narrowest color spanning annulus for 
circles, axis-parallel squares, rectangles, and equilateral triangles of fixed orientation. The minimum diameter color spanning 
set problem has also been studied [13,19,35]. Its general version is known to be NP-Hard in the Lp metric, for 1 < p < ∞, 
while in the L1 and L∞ metrics the problem can be solved in polynomial time [13].

Colored variations of other geometric problems have also been studied in the context of imprecise points [7,9,31]. Given 
a set of colored clusters, the problem of computing the minimum-weight color spanning tree (generalized MST problem) is 
APX-Hard [9]. Even when each cluster contains exactly two points the problem remains NP-Hard [14]. The problem admits 
a 2δ-approximation, where δ is the maximum size of the cluster for any imprecise vertex of the MST [31]. In the generalized 
TSP problem (GTSP), the imprecision is defined by neighborhoods (which are either continuous or discrete) and the goal 
is to find the shortest tour that visits all neighborhoods. It is known that GTSP with neighborhoods defined by subsets of 
cardinality two is inapproximable [9].

Finally, we would like to notice that the problem of computing the largest minimum color spanning circle (see the 
formal description below) is closely related to the dispersion problem in unit disks, where for a given set of n unit disks 
the goal is to select n points, one from each disk, such that the minimum pairwise distance among the selected points is 
maximized. This problem was introduced by Fiala et al. [12], and the authors proved that it is NP-Hard. It is also known 
that the problem is APX-hard [10]. Constant factor approximation algorithms for this problem are given by Cabello [4], and 
by Dumitrescu and Jiang [10].

1.2. Problem definition and results

In this work, we are given a set R = {R1, R2, . . . , Rn} of n unit disks of diameter 1 in the plane, where each disk is 
colored with one of k possible colors. A colored point set P is a realization of R if there exists a color-preserving bijection 
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Fig. 2. Illustration of Lemma 1. The dotted circle Cc is the MCSC of the disk centers and the circle C ′
c is obtained by decreasing Cc ’s radius by 1

2 .

between P and R such that each point in P is contained in the corresponding disk in R. Each realization of R gives a 
MCSC of certain radius. We are interested in finding realizations of R such that the corresponding MCSC has the smallest 
(S-MCSC) and largest (L-MCSC) possible radius (see Fig. 1b and c).

We present the following results:

– The S-MCSC problem can be solved in O (nk log n) time.
– The L-MCSC problem is NP-Hard.
– A 1

3 -factor approximation to the L-MCSC problem can be computed in O (nk log n) time. When no two distinct color 
disks intersect, the approximation factor becomes 1

2 .

To the best of our knowledge there is no prior result on the minimum color spanning circle problem for imprecise point 
sets.

2. The smallest MCSC (S-MCSC) problem

Given a set R of n imprecise points modeled as unit disks, we present an algorithm that finds a S-MCSC, denoted by 
Copt , and the realization of R achieving it. Notice that the S-MCSC problem is equivalent to finding a smallest circle that 
intersects all color regions.

Let C = {c1, . . . , cn} be the set of center points of the disks in R. Let Cc be a MCSC of the colored set C , and let rc be 
its radius. Finally, let ropt be the radius of Copt . The following relation holds:

Lemma 1. If rc > 1
2 , then ropt = rc − 1

2 .

Proof. Consider a circle C ′
c concentric with Cc with radius r′

c = rc − 1
2 (see Fig. 2). For every disk Ri such that ci is contained 

in Cc , we have that C ′
c contains ci or the intersection between the boundary of Ri and the segment connecting ci with the 

center of Cc . Thus, C ′
c contains at least one point of each color and ropt ≤ r′

c .
If ropt < r′

c , we would get a feasible solution for the MCSC problem of C by increasing the radius of Copt by 1
2 . Since 

such a solution would have radius ropt + 1
2 < r′

c + 1
2 = rc , we would get a contradiction with the fact that rc is the radius of 

any MCSC of C . �
Using Lemma 1, we compute Copt as described in Algorithm 1:

Algorithm 1: Algorithm for the S-MCSC problem

Input: A set R of n unit disks
Output: A S-MCSC of R with radius ropt

1: compute Cc ;
2: if rc > 1/2 then
3: Copt is a circle concentric with Cc , ropt ← rc − 1

2 ;
4: else
5: Copt is a circle concentric with Cc , ropt ← 0; � Copt is a point

6: return Copt

It only remains to prove that Algorithm 1 is correct and efficient:
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Fig. 3. (a) A stack of disks; (b) the distance from the left endpoint of the red disk to its farthest point in the top blue disk is 9
8 ; (c,d) the two placements 

of points with red-blue distances equal to δ.

Theorem 1. A smallest minimum color spanning circle of R can be computed in O (nk logn) time.

Proof. In Algorithm 1, we first compute a MCSC Cc of C in O (nk log n) time using the technique proposed by Huttenlocher 
et al. [16]. If rc > 1

2 , we shrink the radius of Cc by 1
2 and return this circle as a solution to the S-MCSC problem. The 

optimality of the solution follows from Lemma 1. If rc ≤ 1
2 , we have the following property: If ci is contained in Cc , then the 

center of Cc is contained in Ri . Hence, the center of Cc lies in the intersection of k distinct colored disks. In consequence, a 
circle of radius zero concentric with Cc is a solution to the S-MCSC problem. �
3. The largest MCSC (L-MCSC) problem

In this section, we consider the L-MCSC problem, where for the given set R the goal is to find a realization such that 
any MCSC is as large as possible. We show that the problem is NP-Hard, already for k = 2, using a reduction from planar 
3-SAT [27]. Our reduction is inspired by those described by Fiala et al. [12], and by Knauer et al. [24].

Given a planar 3-SAT instance, we construct a set of colored unit disks with the following property: There exists a 
realization such that any MCSC has diameter δ if and only if the 3-SAT instance is satisfiable, where δ = 9

8 . We use disks 
of colors red and blue. Thus, a point set having any MCSC of diameter at least δ is equivalent to saying that there is no 
red-blue pair of points at distance less than δ. We denote the family of realizations with this property by Pδ . With some 
abuse of notation, sometimes we also use the terminology Pδ to characterize realizations of (only) a subset of the disks.

We next describe our construction.
A stack of disks is a set of three vertically aligned unit disks of alternating colors such that the center of the middle disk 

is at distance 3
8 from the centers of the two other disks. See Fig. 3a for an example of a blue-red-blue stack of disks.

Lemma 2. There exist two realizations in Pδ of a stack of disks.

Proof. Let us denote by Ri and R j the upper and middle disk of the stack, and let ci and c j denote their centers. Addition-
ally, let the leftmost and rightmost points of R j be denoted by p j and p′

j (see Fig. 3b). Notice that, among all points which 
are on the upper half of R j or on its horizontal diameter, p j and p′

j are the furthest to ci .
Let qi, q j be two points such that qi lies in Ri and q j lies in R j . Without loss of generality, we assume that q j lies on 

the upper half of R j or on its horizontal diameter (otherwise, we repeat the same arguments taking the lower disk of the 
stack instead of the upper one). Then we have

d(q j,qi) ≤ d(q j, ci) + d(ci,qi) ≤ d(p j, ci) + 1

2
=

√
(d(p j, c j))

2 + (d(ci, c j))
2 + 1

2

= 5

8
+ 1

2
= 9

8
.

Notice that equality is only attained if q j, ci and qi are aligned, and q j is equal to p j or p′
j . Thus, there exist only two 

realizations in Pδ , shown in Fig. 3c and d. �
3.1. Variable gadget

Our variable gadget (see Fig. 4) is an alternating chain of red and blue disks, whose centers lie on a hexagon, together 
with some stacks of disks. The distance between the centers of two consecutive red and blue disks along the same edge 
of the hexagon is δ. Each edge of the hexagon contains two stacks of disks placed near the endpoints, and every pair of 
consecutive edges is joined by a blue disk. In the following description, we say that pi and p′

i are the leftmost and rightmost
points of disk Ri if they are its leftmost and rightmost points after the hexagon has rotated so that the edge containing the 
center of Ri is horizontal and the center of the hexagon is below the edge.
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Fig. 4. A variable gadget with zoomed in view for the top-left corner. The dashed circles are centered at p′
k, pk, p′

i , pi and have radius δ.

At the top-left corner of the variable gadgets, the disks are placed as follows (the other corners are constructed similarly). 
Let Ri be the last disk in clockwise order along the top-left edge of the hexagon, and let R j and Rk be the first and second 
disks along the top edge (see Fig. 4). The point p j lies at the top left corner of the hexagon, and the centers of R j and Rk
are at distance δ. Regarding Ri , it is placed in such a way that the lower blue disk of its stack contains a point z which is 
at distance δ from both pk and pi (see Fig. 4). Notice that, if a realization in Pδ chooses p′

i , the choice for R j is not unique; 
however, none of the points in R j at distance at least δ from p′

i is at distance at least δ from pk . Therefore, the choice of p′
i

forces the choice of p′
k , and clearly the choice of pk forces the choice of pi .

For a realization in Pδ of a variable gadget, the following holds: By Lemma 2, the stack containing Rk is constrained to 
choose either pk or p′

k . Let us assume that it chooses p′
k . This choice propagates to the right through the chain of disks in 

the top edge. The red disk of the stack on the right of the edge also chooses its rightmost point, and this forces the red disk 
of the first stack of the top right edge to choose its rightmost point too. Therefore, the choice of p′

k propagates through the 
whole hexagon. If Rk chooses pk , the same phenomenon occurs. We conclude:

Lemma 3. For any realization in Pδ of a variable gadget, either all the unit disks centered at the edges of the hexagon, except for the 
ones intersecting corners of the hexagon, choose their rightmost point, or they all choose their leftmost point.

3.2. Clause gadget

Clause gadgets are illustrated in Fig. 5a-c. We consider an equilateral triangle of side length 7
2 and center g , and we 

place one red disk at every corner of the triangle in such a way that the center of the disk is aligned with g and its nearest 
corner of the triangle. Then we place a blue disk centered at g . Each red disk of a clause gadget is associated to one of the 
literals occurring in the clause, and is connected to the corresponding variable gadget via a connection gadget. Intuitively, to 
decide if there exists any realization in Pδ , each red disk Rτ of the clause gadget has essentially two relevant placements, 
called tRτ and f Rτ (see Fig. 5a). As we will see, when the associated literal is set to true, we can choose the placement tRτ , 
and when it is set to false, we are forced to choose f Rτ . It is easy to see that any realization in Pδ of the clause gadget does 
not choose f Rτ for at least one of the disks Rτ (see Fig. 5b and c).

3.3. Connection gadget

A variable gadget is connected to each of its corresponding clause gadgets with the help of a connection gadget. A 
connection gadget consists of an alternating chain of red and blue disks together with some stacks of disks (see Fig. 6).

The chain in a connection gadget is formed by straight line portions of groups of disks equal to those along the edges 
of hexagons associated to variable gadgets. These straight line portions are connected at bends of 120◦ . The placement of 
disks at each bend is similar to the placements at the corners of a variable gadget; in particular, stacks of disks are used 
around the bends.

The precise connection of the variable gadget to the clause gadget by a connection gadget depends on whether the 
variable in the clause is positive or negative. For a positive variable, the connection is established through a pair of a red 
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Fig. 5. (a-c) A clause gadget with distinct truth assignments. In the placement in (a), the red-blue pairs are at distance smaller than δ, while in (b) and (c) 
they are at distance greater than δ.

Fig. 6. Connection gadget for a positive variable in a clause; the variable has truth value T .

Fig. 7. Point placements corresponding to (a) positive and (b) negative variable in a clause, at the intersection of a connection gadget and a variable gadget. 
In both figures, the left subfigures correspond to the truth value T for the variable, and the right subfigures to the truth value F .

disk Ri and a blue disk R j which appear consecutively along an edge of the hexagon, and such that none of them intersects 
a corner of the hexagon, and Ri comes before R j in clockwise order (see Fig. 7a). Let Rk be the first red disk of the 
connection gadget. The top-most point of Rk is at distance δ from p j , and its bottom-most point is at distance δ from p′

j . 
For a negative variable, the connection is established through a pair of blue-red disks in the variable gadget. The placement 
of the first red disk of the connection gadget is analogous to the one in the red-blue configuration (see Fig. 7b).
121



A. Acharyya, R.K. Jallu, V. Keikha et al. Theoretical Computer Science 930 (2022) 116–127
Fig. 8. (a) Planar embedding of F = (x1 ∨ x2 ∨ x̄4) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x̄4). (b) A vertical portion of a connection gadget with increased gaps among 
three central disks, which have been replaced by stacks.

To ensure the desired propagation of the placement of points in the disks, stacks of disks are used next to the first disk 
Rk , and next to the red disk of the clause gadget associated to the literal (see Fig. 6).

The truth value T of a variable is associated with the choice of the rightmost points of the disks in the variable gadget. If 
the variable appears positive at a clause, this allows (for a realization in Pδ) the choice of the bottom-most point of Rk , and 
this propagates through the connection gadget and eventually allows the choice of the associated point tRτ in the clause 
gadget (see Fig. 6). If the truth value is F , p j is selected, which (for a realization in Pδ ) forces the choice of a point in a 
close vicinity of the top-most point of Rk . Since there is a stack next to Rk , the blue disk in the stack chooses the top-most 
point, and this eventually forces the choice of f Rτ . The analysis of the other cases are similar.

3.4. Final construction

In the following lemma, we put all pieces of the construction together, and we prove that it has polynomial size.

Lemma 4. Using the gadgets described above, we can construct in polynomial time a polynomial-size instance of the L-MCSC problem 
associated to the given planar 3-SAT formula.

Proof. The dependency graph of the 3-SAT formula can be embedded so that all variables lie on a horizontal line, all 
clauses are on either side of them, and each edge connecting a clause to a variable is an orthogonal edge with at most one 
bend (see Fig. 8a for an example) [25]. We take an embedding with these properties which, additionally, is aligned with a 
grid of a resolution which is high enough to prevent interference once we place our gadgets; for the sake of simplicity, we 
choose resolution 20 (i.e., the distance between any pair of consecutive horizontal or vertical segments is at least 20). In the 
following lines, we explain how to modify this embedding to produce an instance of the L-MCSC problem. Our construction 
is illustrated in Fig. 9.

First, we replace the variables of the embedding by gadgets as described above. The size of a variable gadget is chosen 
so that the upper and lower side of the hexagon are long enough to fit all edges leading to clauses. Since any two such 
edges are at distance at least 20 and we place them at distance at least 20 from the extremes of the edges of the hexagon, 
the side of the hexagon is no longer than 20(m + 1), where m is the number of clauses in the formula. During this step, 
we might again need to horizontally “stretch” the initial embedding so that variable gadgets end up at distance at least 20 
from each other.

Next, we replace the clauses of the embedding by clause gadgets. We explain in detail the case where the clause is above 
the variables; the other case is solved symmetrically (in particular, clause gadgets lying below the variables will be rotated 
by 180◦). Initially, the clause is incident to three edges, which we call the “left”, “middle” and “right” edges. Each of them is 
assigned to one of the red disks of the clause gadgets, i.e., the connection between the variable gadget and the connection 
gadget will be done through that disk. In particular, the left edge is assigned to the left-most red disk of the gadget, the 
middle edge is assigned to the right-most red disk of the gadget, and the right edge is assigned to the top red disk of the 
gadget (see Fig. 9).
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Fig. 9. Instance of the L-MCSC problem associated to the formula F in Fig. 8a. The proportions among the sizes of the different objects have been altered a 
little, and the hexagons associated to the variables are not drawn regular. The placement of points corresponds to the satisfying assignment x1 = F , x2 = T , 
x3 = T , and x4 = F .

Finally, we replace every edge connecting a clause to a variable gadget by a connection gadget in the following way: 
The position of the first disk of the connection gadget (that is, the nearest to the clause gadget) is given by the previous 
assignment of edges to red disks of the clause. The position of the last disk (i.e., the disk of the connection gadget which 
intersects the variable gadget) is as near as possible to the original location of the edge, while respecting the requirements 
for each type of connection (which depend on whether the variable appears positive or negative in the clause; refer to 
Fig. 7). Since the left and middle edges become connection gadgets with one bend of 120◦ (see Fig. 9), the precise shape 
of these gadgets (including the position of the bend) is determined by their first and last disks. Notice also that, since 
the middle edge (which is vertical) is replaced by a chain of shape “ ”, it might be necessary to move the clause gadget 
slightly towards the left. Regarding the right edge, it is replaced by a chain of shape “ ” starting from the top red disk of 
the clause variable. In this case, there is some freedom to choose the positions of the bends, and we place them so that the 
final connection gadget is close enough to the original replaced edge.

After replacing orthogonal edges by connection gadgets with bends of 120◦ , some pairs of connection gadgets might 
have ended up too near (or even cross) and might interfere with each other. This can again be solved by stretching the 
embedding to separate them.

We finally point out that the straight portions of our connection gadgets are made of chains of unit disks at a certain 
fixed distance, and thus they can only have certain prescribed lengths of 9k

8 + 1 for some integer k, which we call integer
lengths (e.g., for vertical portions of a connection gadget, the distance between the bottom-most and top-most points of 
the chain can only take values of the form 9k

8 + 1, for some integer k). Therefore, it might happen that the positions of a 
clause and variable gadget force the placement of a chain which does not have integer length. In this case, we proceed as 
follows: Suppose that we need a vertical chain such that the positions and colors of the first and last disk are prescribed, 
and either the distance l between the bottom-most and top-most points of the chain does not correspond to an integer 
length, or it does but it has the wrong parity (e.g., when we try to build the chain, the bottom-most disk turns up blue, 
but we would need it to be red). We take the longest chain of integer length having length smaller than l and having the 
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desired combination of colors of the first and last disk. If this chain has length 9k
8 + 1, for some integer k, then we have 

that l < 9(k+2)
8 + 1. Thus, the difference in lengths is at most 9

4 . To solve this discrepancy, we select two to four consecutive 
disks from the middle of the chain and increase the gap between them from 1

8 to some appropriate value smaller than or 
equal to 7

8 (the remaining gaps between consecutive disks of the chain remain of 1
8 ). By replacing these two to four disks 

by stacks, we ensure the required propagation among them despite the increased gaps. See Fig. 8b for an example. Since 
we might increase up to three gaps by up to 3

4 , we can achieve the difference in lengths of at most 9
4 .

Since the final construction has a polynomial number of disks and all the steps in the construction can be performed in 
polynomial time, the lemma follows. �

Given a planar 3-SAT formula F , let us denote by RF an associated instance of the L-MCSC problem constructed 
following the steps in the proof of Lemma 4. We prove that RF has the desired property:

Lemma 5. The planar 3-SAT formula F has a satisfying assignment if and only if there exists a realization of RF in Pδ .

Proof. Suppose that F has n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm .
Let us first assume that F is satisfiable. Thus, every clause contains a literal whose truth value is T . We describe a 

realization of RF in Pδ .
Let C j be a clause and let �i be a literal making the clause true. Then we pick tRi from the associated disk Ri in the 

clause. This choice propagates through the connection gadget and eventually forces one of the realizations for the variable 
gadget described in Lemma 3: the one choosing the rightmost points of the disks, if �i ’s truth value is T and it appears 
in the clause positively; or the one choosing the leftmost points of the disks, if �i ’s truth value is F and it appears in the 
clause negatively. Notice that a variable might make true several clauses, but the obtained realizations of the variable gadget 
are consistent with each other.

Let us consider a variable whose realization has been fixed in the paragraph above. If its truth value is T and it appears 
in a clause negatively, or if its truth value is F and it appears in a clause positively, the placement described above forces 
the realizations of the corresponding connection gadget and associated disk in the clause gadget.

For the variables whose realization has not been fixed yet (if any), we pick, say, the realization choosing the leftmost 
points of the disks. For their connection gadgets to the clauses, we pick the realization choosing the top-most (respectively, 
bottom-most) points of the disks, if the clause is above (respectively, below) the variable. The described realizations belong 
to Pδ .

After following the steps above, for each clause gadget at least one of the three red disks has its representative at the 
position tRτ . In consequence, it is possible to find a realization of the blue disk such that the realization of the clause gadget 
is in Pδ .

Notice that we have described realizations for all gadgets in the construction. Clearly, the global realization is in Pδ .
We next prove the second implication. Suppose that there exists a realization R of RF in Pδ . Let C j be a clause. Since 

the realization of the clause is in Pδ , at least one of the red disks Ri of the clause does not have the representative at 
the position f Ri . If the corresponding literal appears positive in the clause, we set the associated variable to T . Otherwise, 
we set it to F . In this way, we ensure that every clause is true, but we need to argue that we did not assign T and F
simultaneously to the same variable due to two distinct clauses.

Since in the connection gadget there is a stack of disks next to Ri , the fact that Ri does not have the representative at 
the position f Ri forces the choice of the representative of the blue disk in the stack. The choice propagates to the connection 
gadget and eventually to the variable gadget: If the literal associated to Ri appears positive in C j , the variable has been set 
to T and the realization in the variable gadget is the one choosing the rightmost points of the disks. If the literal appears 
negative, the variable has been set to F and the realization in the variable gadget chooses the leftmost points of the disks. 
Since in R the realization of the variable gadget is either the rightmost or the leftmost, the variable has either been set to 
T or to F . �

Lemmas 4 and 5 imply the following:

Theorem 2. The problem of finding a largest minimum color spanning circle of R is NP-Hard.

Remark 1. Given a yes-instance, we can verify in O (nk log n) time whether the given realization is correct and the radius of 
its MCSC is at least δ. Therefore, the decision version of the problem is NP-Complete.

4. Approximation algorithms

Given that the L-MCSC problem is NP-Hard, in this section we turn our attention to approximation algorithms.
Let r̃opt denote the radius of a largest possible minimum color spanning circle of R. We first prove bounds on r̃opt .

Lemma 6. r̃opt ≥ 1/4.
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Fig. 10. The tilted grid in the proof of Lemma 6. We choose pi as the red corner of Q contained in Ri .

Proof. First, we show that it is enough to prove the result for the case where k = 2: Suppose that k > 2. We select two of 
the k colors, say red and blue, and the set R′ ⊆R of red and blue disks. Suppose that the radius of any L-MCSC of R′ is 
greater than or equal to 1/4. Then there exists a realization of R′ whose MCSC has radius greater than or equal to 1/4. We 
complete this realization of R′ to a realization of R by choosing any point in each disk of the remaining k − 2 colors. Since 
any MCSC of this realization contains at least one red and one blue point, its radius is greater than or equal to 1/4.

Therefore, we only show that the bound holds when k = 2 by providing a realization P whose MCSC achieves the 
bound. Consider a regular square grid rotated by π/4 such that the side of every cell of the grid has length 1/2. We color 
the corners of the cells in red or blue in such a way that all corners lying in some vertical line are colored red, all corners 
lying in the next vertical line are colored blue, and so on (see Fig. 10). Now let Ri ∈ R have red color, and let Q be the 
cell of the grid containing the center of Ri (if the center of Ri lies on an edge or vertex of the grid, we assign it to any of 
the adjacent cells). Notice that at least one of the two red corners of Q lies inside Ri . We choose such a corner as pi ∈ P . 
Similarly, for every R j ∈R of blue color, P contains one of the blue corners of a cell containing the center of R j . We obtain 
that P is a subset of the grid corners. Since the distance between any pair of red and blue corners is at least 1/2, the radius 
of any MCSC is at least 1/4. �

Next, we establish a relation between r̃opt and rc . We recall that rc is the radius of a MCSC (denoted Cc ) of the colored 
set C containing the center points of the disks in R.

Lemma 7. r̃opt ≤ rc + 1
2 .

Proof. Without loss of generality we can assume that Cc contains the centers of the disks in R′ = {R1, R2, . . . , Rk}. A circle 
of radius rc + 1

2 , concentric with Cc , contains the k disks in R′ . Therefore, for any placement of points inside disks of R′ , 
we can always get a color spanning circle with radius at most rc + 1

2 . Thus, r̃opt ≤ rc + 1
2 . �

We use the bounds above to design a simple approximation algorithm, presented in Algorithm 2. Let P g denote the 
realization of R described in the proof of Lemma 6.

Algorithm 2: 1
3 -factor approximation algorithm for the L-MCSC problem

Input: A set R of n unit disks
Output: A MCSC of a realization of R with radius at least r̃opt/3

1: compute Cc ;
2: if rc ≥ 1/4 then
3: return Cc ;
4: else
5: return a MCSC of P g ;

It only remains to prove that Algorithm 2 indeed gives a 1
3 -factor approximation:

Theorem 3. A 1
3 -factor approximation for the L-MCSC problem can be computed in O (nk log n) time. If no two distinct colored unit 

disks of R intersect, the approximation factor becomes 1
2 .

Proof. If rc ≥ 1/4, then, by Lemma 7, r̃opt ≤ 3rc and Cc gives a 1
3 -approximation for the problem. If rc < 1/4, then, by 

Lemma 7, r̃opt < 3/4. By Lemma 6, any MCSC of P g has radius at least 1/4, so such a circle gives a 1
3 -approximation for 

the problem.
Computing P g takes O (n) time, and computing a MCSC of P g or the set of disk centers can be done in O (nk log n) time.
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Fig. 11. Construction in the proof of Remark 2. For the sake of clarity, the red disks centered at the grid points are not displayed.

Finally, if no two distinct colored disks intersect, rc ≥ 1
2 . This, combined with Lemma 7, gives rc ≥ r̃opt

2 . �
Since Lemma 6 is one of the key ingredients of our approximation algorithm, we conclude this section by showing that 

it is the best possible.

Remark 2. Given any ε > 0, there exists a set R of unit disks for which r̃opt < 1/4 + ε.

Proof. We start with a blue disk R1. We overlay a square grid of red points over the area covered by R1 enlarged a little 
around the boundary (see Fig. 11). The length of the sides of the grid cells is set to 2

√
2ε. Then, for every red point of the 

grid, we place a red disk centered at that point. Finally, we place the remaining blue disks far away from the construction.
Let p1 be the representative for R1 in a realization P giving a minimum color spanning circle of radius r̃opt . Since p1 lies 

inside some cell of the grid, there exists some red grid point q such that d(p1, q) ≤ 2ε. Let R j be the red disk centered at q, 
and p j be its representative in the realization P . Then, d(p1, p j) ≤ d(p1, q) + d(q, p j) ≤ 2ε + 1/2. Since p1, p j is a blue-red 
pair at distance at most 1/2 + 2ε, the radius of any minimum color spanning circle is at most 1/4 + ε. �
5. Open problems

Naturally, the main open problems are related to the L-MCSC problem and the existence of better approximation al-
gorithms for it. So far we have not succeeded in finding a PTAS for this problem, and we suspect that the problem might 
be APX-Hard. If this is the case, it would also be interesting to improve the approximation factor of our approximation 
algorithm.
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