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Abstract 

Reading the magnetic state of antiferromagnetic (AFM) thin films is key for AFM spintronic 

devices. We investigate the underlying physics behind the spin Hall magnetoresistance (SMR) of 

bilayers of platinum and insulating AFM hematite (α-Fe2O3) and find an SMR efficiency of up 

to 0.1%, comparable to ferromagnetic based structures. To understand the observed complex 

SMR field dependence, we analyse the effect of misalignments of the magnetic axis that arise 

during growth of thin films, by electrical measurements and direct magnetic imaging, and find 

that a small deviation can result in significant signatures in the SMR response. This highlights 

the care that must be taken when interpreting SMR measurements on AFM spin textures.  

  

Introduction 

With spin dynamics in the terahertz regime and a robustness to external perturbations from magnetic 

fields, antiferromagnetic spintronics seeks to make use of this exciting class of materials for future 

spintronic devices [1,2]. A pure spin current can be generated in insulating antiferromagnets (AFMI) 

by several means [3–6]. However, regardless of the excitation mechanism, the detection of such a pure 

spin current relies on the inverse spin-Hall effect (SHE) in a heavy metal (HM) layer in contact with 

the AFMI layer. For spin-Hall magnetoresistance (SMR), a charge current JC flowing in the HM leads 

to a transverse spin current that flows towards the AFMI/HM interface where it is either absorbed or 

reflected by the AFMI. This then leads to a modulation of the resistance of the HM as the angle between 

JC and the magnetic order is changed. One can thus theoretically determine the orientation of the 



antiferromagnetic order parameter, the Néel vector n, for both collinear [7–9] and some non-

collinear [10] magnetic structures by means of electrical measurements without the need for complex 

synchrotron-based measurements [11]. There have however been conflicting reports about SMR 

measurements in antiferromagnets, exhibiting so-called positive SMR [12,13] and negative SMR [7,8] 

on AFMs as well as the role of the antiferromagnetic symmetry and the interface quality.  

Whilst the SMR is expected to depend on the orientation of n, significant parasitic contributions can 

arise from both ordinary magnetoresistance (OMR) [7,14] and the net magnetic moment of thin film 

canted antiferromagnets [13] and ferrimagnets [10]. The SMR has also been investigated in Cr2O3, 

which has a locally uncompensated interface that has no noticeable impact on the angular dependent 

SMR signals [15,16]. On the theory side, AFMs have been largely treated analogously to ferromagnets 

although a ferromagnetic interface is uncompensated, leading to real and imaginary components of the 

spin mixing conductance (SMC) [17]. 

In this letter, we make use of the insulating antiferromagnet hematite, α-Fe2O3, which exhibits a phase 

transition from an easy-plane AFM to an easy-axis (EA) AFM, known as the Morin transition at TM [18]. 

We study the SMR for different antiferromagnetic symmetries without changing the interface by 

varying the temperature at which the SMR is recorded, finding distinctly different SMR behaviours. 

Below TM, the shape of the SMR cannot be explained using conventional SMR theory. Taking into 

account the interfacial symmetry then proves critical in the spin transmission. In particular, for our 

growth direction, the out-of-plane strain on the crystal lattice leads to a small but finite deviation of the 

magnetic axis from the film normal, as we confirm from direct magnetic imaging. This deviation then 

heavily influences the resulting SMR signal of easy-axis antiferromagnets highlighting that great care 

must be taken when analysing AFM-SMR responses.  

Main Text 

In order to investigate the SMR, epitaxial (0001) oriented 100 nm thin films of hematite were deposited 

on like-wise orientated sapphire (Al2O3) via pulsed laser deposition from a stoichiometric Fe2O3 target 

at 800°C [11,19]. Hall bars were defined by electron beam lithography and the subsequent deposition 



of 7 nm platinum by DC sputtering without additional interfacial treatments. We do not perform 

additional interfacial treatments due to the propensity of transition metal oxides to restructure under 

etching  [20]. In the case of hematite, this would be into other (potentially ferrimagnetic) iron 

oxides  [21]. By making use of magnetic dichroism, we do not observe any evidence of such 

ferrimagnetic oxides at the interface  [22]. A charge current JC is passed through the Pt Hall bar along 

the x-axis indicated in Fig. 1(a) which produces a spin accumulation μs at the interface, polarised along 

y whilst a longitudinal voltage VL is detected, from which we calculate a resistance RL.  

 

Fig. 1. (a) Schematic of the measurement geometry employed of a Pt Hall bar atop hematite films. 

The charge current and longitudinal voltage contacts are indicated. The sample xy-plane is the 

antiferromagnetic easy plane (indicated in orange) above the Morin transition temperature. 

Normalized longitudinal resistance (Δ𝑅𝐿 = 𝑅𝐿 − 𝑅0, where R0 is the zero-field resistance) of a Pt 

Hall bar atop (0001) orientated hematite at 300 K in the easy plane antiferromagnetic phase. The 

resistance is measured as a function of the magnetic field applied along the (b) x-axis, (c) y-axis and 

(d) z-axis. The red line represent the ordinary magnetoresistance (OMR). (e) Normalized longitudinal 

(black) and transverse (red) resistance for an in-plane rotation of the magnetic field μ0H = 5 T. 

(Δ𝑅𝐿 = 𝑅𝐿 − 𝑅𝛼=0°). Error bars, where visible, represent the standard deviation of the measurement 

points.  

We first investigate the SMR response at room temperature calculated at the change in resistance with 

respect to the zero-field resistance, normalised to the zero-field resistance (Δ𝑅𝐿/𝑅0). At this 

temperature the xy-plane is the antiferromagnetic easy-plane. Like orthoferrites [23], hematite has an 

antisymmetric exchange interaction directed along the (0001) direction that leads to a canting of n [24], 

generating a net magnetic moment m⊥n [18,25], where the role m plays in the SMR is currently 



unclear [10,13,26]. In the absence of a magnetic field H, n demonstrates a three-fold degeneracy that 

leads to an observable magnetic domain structure  [22,27–29]. H applied within the easy-plane, parallel 

(H//x) or perpendicular (H//y) to Jc, will break this degeneracy and n will rotate to lie perpendicular to 

H. The strength of the in-plane anisotropy defines a critical field HMD required to produce this complete 

rotation [7,30]. Indeed, for H//x we observe initially a decrease of RL up to HMD = 0.6 T (Fig. 1b). At 

|H|>HMD the magnetic signal should then saturate, given that AFM-SMR is dependent on the y 

component of n, i.e. ny [7,8,26,30,31]. However, we observe a sustained increase with increasing 

magnetic field. If H is now directed along y, (Fig. 1c) there is a steep increase of RL that plateaus at the 

same field value HMD as before. Above HMD there is again a parabolic background. The decrease 

(increase) of the SMR is related to the change between the zero- and finite field orientations of n and 

μs where for H//x, the final state is n||μs (for H//y, the final state is n⊥μs) and ny increases 

(decreases)  [26,31].  

When the magnetic field is applied out of the plane, along z, n is already perpendicular to H and there 

is no preferred orientation of n within the plane. There is however a parabolic change of RL with 

magnetic field (Fig 1d). This parabolic increase in resistance, present in all field directions on top of the 

magnetic contributions, stems from the ordinary magnetoresistance (OMR) of the Pt itself and is 

unrelated to n [7,14,32]. This is highlighted for all three uniaxial scans by a red parabolic fit made using 

Kohler’s rule with appropriate values to the high field data (see Fig. 1b-d)  [33]. We note that the 

experimental curve measured in Fig. 1a deviates quantitatively from the expected OMR response at 

high magnetic fields. Considering that the magnetic field lies perpendicular to the Néel vector, this will 

induce a canting in the direction of H, reducing the component of n parallel to μs at high magnetic 

fields and may lead to this deviation  [26]. 

Although the behaviour of the SMR for a field along a single direction indicates that n dominates the 

transport response, it does not exclude the possibility of m playing a role as it has been reported to 

contribute strongly to the SMR in thin films of a canted antiferromagnet [13]. To identify the governing 

factor for the SMR, we therefore rotate H in the xy-plane through an angle α (Fig. 1e). Here, the 

longitudinal SMR response is calculated with respect to a field parallel to the charge current Δ𝑅𝐿 =



𝑅𝐿 − 𝑅𝛼=0∘ and normalised by the zero-field resistance of the device. In this plane, the SMR signal for 

both the longitudinal RL and transverse RT resistances shows a behaviour that can be modelled by a 

sin2α relationship indicative of negative SMR and is thus dominated by the orientation of n, even in the 

presence of the spontaneous net moment. The magnitude of the SMR response between the uniaxial 

measurements (Fig. 1b)-c)) which are relative to the zero-field resistance of the devices, and the angular 

dependent longitudinal resistance in Fig. 1e) which is determined as the change in the SMR between 

H//x and H//y are consistent with one another. Due to the existence of a magnetic domain structure in 

the absence of a magnetic field in our films [22], the SMR response of antiferromagnets cannot be 

unambiguously resolved from angular dependent measurements below the critical magnetic fields 

alone. 

Next we check the effect of the antiferromagnetic symmetries, for which the surface sensitive nature of 

SMR is well suited  [10,26]. Below TM, the antiferromagnetic structure has an EA structure and n lies 

along the z-axis. For H⊥EA (H//x and H//y), n undergoes a transition unique to hematite at some critical 

field 𝐻𝑐
⊥ [34,35], smoothly rotating perpendicular to both the EA and H. Considering first the case for 

H//x, n rotates and the final state above 𝐻𝑐
⊥ is that of n//y, decreasing the expected SMR. Alternatively, 

we can apply H//y, which also induces a rotation of n in the plane parallel to Jc and the SMR ratio is 

expected to remain constant  [17,36]. Finally, H//z induces a spin-flop at 𝐻𝑐
||
 and n reorients from z to 

lie within the xy plane [35].  

We investigate the SMR at 175 K, below TM, for different orientations of the magnetic field relative to 

Jc. Starting from H//x in Fig 2a, RL begins to decrease as expected until it reaches 𝜇0𝐻𝑐
⊥ = 2.5 𝑇 and 

saturates at 3x10-4, a higher amplitude than seen above TM. As H continues to increase, there are no 

further changes to the magnetic state and the parabolic nature can again be attributed to the 

OMR [7,14,32]. We then investigate the SMR for H//y where our expectation is to observe only the 

OMR contribution. However, surprisingly we observe a significant increase of RL up to the same 

magnetic field as H//x, which must then be related to the orientation of n. Before we attempt to explain 

this signal, we briefly discuss H//z, where the resistance begins to decrease with increasing magnetic 

field due to a small field misalignment and n begins to rotate. There is a dominating parabolic effect 



from the OMR, which masks the smaller effect of the spin-flop field, 𝜇0𝐻𝑐
∥ = 6.5 T indicated in Fig. 2c 

for the increasing magnetic field. As the magnetic field is lowered, a hysteretic field dependence 

appears, where the critical field is shifted slightly due to the additional, stabilising magnetoelastic 

energy of the spin-flop state above 𝐻𝑐
∥ leading to different values for the increasing and decreasing 

field branch  [37]. There is an asymmetry in the size of the hysteresis for a negative and positive 

magnetic field, possibly due to an asymmetry in the magnetostriction of hematite when the magnetic 

field is not perfectly along the easy axis [37]. If a magnetic field is rotated in the xy-plane through an 

angle α, we again resolve a sin2α dependence characteristic of negative SMR, just as above TM in Fig. 

1e, a feature that arises due to the antisymmetric exchange interaction that enables the rotation of n at 

𝐻𝑐
⊥. 

To investigate the origin of the signal for H//y, we note that, when we discuss the relative field 

directions, these are relative to the charge current of the Hall bar. Given the (0001) orientation of the 

crystal growth, the low temperature AFM structure is expected to lead to an easy-axis parallel to the 

geometric z axis (perpendicular to the film plane), which coincides with the (0001) axis of the Al2O3 

substrates. Measurements of the crystalline structure of our films by x-ray diffraction reveal a hematite 

peak with a FWHM of 0.538±0.009°  [22]. This is not unexpected given the 5% lattice mismatch 

between hematite and sapphire (5.038 Å vs 4.785 Å) resulting in strained growth that relaxes as the 

films get thicker. However, this could also lead to a slight deviation of the hematite (0001) axis from 

the film normal  [22].  To investigate the effect that a small deviation from the geometric z axis has on 

the SMR response, we develop a simple model of hematite (see [22]). Starting first from the naïve 

assumption of the easy-axis perfectly coincident with the out of plane direction, we reproduce the 

expected response for H//x and H//y. We then model the response as a function of angle for a deviation 

from z of the EA in both the xz plane and the yz plane. For a deviation in the yz plane, the impact on 

both field directions is profound, whilst the effect of a deviation in the xz plane is minimal. For a 

deviation between these two extremes, the effect on the SMR will similarly be between these two 

extremes. Comparing these theoretical expectations with our experimental results, it is clear that a small 

deviation of n from the EA gives rise to the experimentally observed SMR response for H//y. It is 



unlikely that the deviation in our films is confined to a single plane as it is for our simulation. Instead, 

it likely presents a range of deviations across the average of the Hall bar, and thus the SMR response is 

the average of all these deviations. To confirm that this model is quantitatively consistent with the thin 

film magnetic structure, we performed x-ray magnetic linear dichroism – photoemission electron 

microscopy (XMLD-PEEM) imaging of the same thin film samples used for the electrical 

measurements oriented as (0001) and compare the magnetic contrast to (11̅02) oriented films grown 

under the same conditions (see Supplementary Ref. [22]). In the case of the (0001) oriented films, we 

observe a magnetic contrast, which likely arises from a distribution in the c-axis directions of the films, 

even in the easy-axis phase, where the 180° nature of the AFM domains should lead to no contrast 

between them. However, the only impact of this domain structure on the SMR response is the emerging 

hysteresis in Fig. 2c  [22]. In single crystal antiferromagnets, the domain structure is not 

considered  [26] and we find here that the presence of large domains in thin films does not lead to an 

improved SMR response  [22]. Such an effect is not noticeable when measuring the SMR response of 

an easy plane AFM given the nature of the anisotropy and that the SMR is sensitive to the net change 

of the projection n·μs. Only by moving to an easy-axis AFM can this lead to the anomalous signals 

observed here. Previous measurements of the SMR on the easy-axis AFM Cr2O3 do not report similar 

effects  [9,16]. However, for the (0001) growth orientation, this effect was only noticeable for H┴EA, 

a configuration in Cr2O3 that does not lead to a spin reorientation and thus does not affect the relative 

alignment of n. We also note that we do not see a similar effect for (11̅02) oriented films, where the c-

axis of the hematite lies parallel to the substrate c-axis and has a projection in-plane [22].  



 

Fig. 2 Longitudinal resistance of Pt/hematite at 175 K in the easy-axis phase for a magnetic field 

applied along the (a) x-axis (b) y-axis and (c) z-axis. Δ𝑅𝐿 = 𝑅𝐿 − 𝑅0 where R0 is the zero-field 

resistance. The red line indicates the parabolic contribution from the ordinary magnetoresistance. 

Error bars where visible represent the standard deviation of the data point. We indicate in c) the critical 

magnetic field  𝐻𝑐
||
 for an increasing magnetic field. (d)-(e) Expected effect on the SMR ratio for a 

misalignment of the easy-axis in the xz plane (d) or the yz plane (e) for a magnetic field applied in plane 

along either x or y. The critical field of the magnetic field induced 2nd order transition of the Neel vector 

is 𝐻𝑐 = (2𝐽𝐾𝑧 − 𝐷2)/𝐷 , where J is the strength of the exchange interaction, Kz is the uniaxial 

anisotropy, and D is the strength of the DMI exchange interaction. This transition describes a rotation 

of the Neel vector parallel to the easy-axis to a state perpendicular both to the easy-axis and the 

magnetic field. 

Finally, we turn our attention to the temperature dependence of the SMR. In Fig. 3a the temperature 

dependence of the SMR for H//x at select temperatures is shown. The arrows indicate the critical field 

for rotation of n at either 𝐻𝑐
⊥ or HMD. We extract the critical fields from the saturation point for 𝐻𝑐

⊥ and 

plot it alongside the temperature dependence for 𝐻𝑐
||
, extracted from the SMR for H//z, in Fig. 3b. With 

decreasing temperature, these field increase, in line with bulk measurements of the critical 

fields [26,35], however, to our knowledge, the temperature dependence of 𝐻𝑐
⊥ for thin film hematite 



has not been reported. The strong temperature dependence of the magnetic anisotropies of hematite 

determine the critical fields 𝐻𝑐
ǁ and 𝐻𝑐

⊥ as well as TM, where they drop to zero [35]. The temperature 

dependence of the anisotropy is expected to scale by 𝐻𝑐 ∝ √𝑇𝑀 − 𝑇 following a typical temperature 

dependence of a second-order Landau phase transition [26,28]. We then use this functional form to fit 

the critical fields of Fig. 3b, indicated by the dashed lines, providing an estimate of TM ~195 K – 230 

K. Through the Morin transition, we see a low value of the SMR ratio for H//x (Fig. 3c) that decreases 

as we move away from the transition, the anisotropies begin to increase, and the thermal fluctuations of 

the transition are suppressed by the lowering temperature [8,28]. The spurious contribution for H//y 

(Fig. 3c) experiences a drop of 50% across the transiton, before adopting a behaviour that does not 

depend on the temperature. This drop across the transition can be explained by the absence of the SMR 

contribution from the domain redistribution at HMD with the persistent contribution coming from the 

previously discussed tilt in the easy-axis relative to the lab frame. The increase in the absolute value of 

the SMR ratio is contrary to the decrease with temperature observed in Ref  [32], attributed to 

anisotropic magnetoresistance (AMR). This contribution to the SMR was only visible for thin Pt layers 

2 nm thick, whilst the OMR of thicker films masked this effect [32]. Given the thickness of our Pt (7 

nm) and the large OMR contribution, alongside the increase with lower temperatures (Fig. 3c), any 

AMR contribution to our signal is negligible  [32]. Using the data of Fig. 3c, we can estimate a lower 

limit on the real part of the effective spin mixing conductance 𝐺↑↓  for our Pt/α-Fe2O3 in the two 

antiferromagnetic phases [22]. Above the Morin transition in the easy plane phase, we find 𝐺↑↓ ~ 

3.37x1014 Ω-1m-2, a value comparable to other easy plane antiferromagnets  [7]. At lower temperatures, 

we observe a change in the value of 𝐺↑↓ from 𝐺↑↓ ~ 4.60x1014 Ω-1m-2 just below the Morin transition to 

𝐺↑↓ ~ 8.20 x1014 Ω-1m-2 at 25 K. Although the temperature dependence of 𝐺↑↓ is not clear  [38–40], we 

find a continuous decrease of 𝐺↑↓ across the phase transition from easy plane to easy axis.  

From SQUID magnetometry (see [22] and Fig.3d), the Morin transition of the 100 nm films used here 

can be measured in order to confirm the value of TM from electrical measurements. If the films are 

thinner than this, the Morin transition is heavily suppressed or cannot be resolved [41]. We observe 

that, when cooled in an external field, the Morin transition of our films is visible from the drop in 



magnetic moment to effectively zero above the background substrate contributions (Fig 3d). The 

transition takes place over a relatively broad temperature range but below 200 K, the transition is 

complete and the films are in the purely easy-axis phase. The value of TM given by SQUID is then 

comparable not only to synchrotron measurements on similar films [11] but also with the value 

extracted from our electrical measurements. We note that in other SMR studies on thinner films of 

hematite [32,42], the films have not demonstrated a Morin transition and remain in the easy-plane 

phase. It is then only by virtue of having a Morin transition are we able to observe the impact of the 

crystal growth. SQUID magnetometry can also be used to investigate the magnitude of 𝐻𝑐
ǁ and 𝐻𝑐

⊥, 

however thicker films are required in order to have sufficient signal to noise in the first derivative of 

the signal  [43]. This further highlights the practicality of SMR in investigating the magnetic 

anisotropies of AFMs without the need for relying on volume effects.  

 

 

Fig 3. (a) Temperature dependence of the normalised longitudinal resistance for a magnetic field 

H//x. The arrows indicate the critical magnetic field 𝐻𝑐
⊥ for each temperature. (b) Temperature 

dependence of the critical fields for H//x (H//y) (black) and H//z (grey). (c) Temperature dependence 

of the SMR ratio for H//x (black) and H//y (blue). (d) Normalised magnetic susceptibility of 100 nm 

thick (0001) orientated hematite for a field parallel to the c-axis. The Morin transition is indicated. 

 



In conclusion, the spin Hall magnetoresistance technique is shown to be an excellent tool for 

investigating antiferromagnets to understand the effects of anisotropies, symmetries and surface 

symmetry breaking. The surface sensitivity nature of the technique allows for the extraction of the 

Morin transition even for thin films of hematite where conventionally used bulk-sensitive techniques 

fail. We find distinctly different behaviours above and below the Morin transition. By probing the SMR 

for different directions of the applied magnetic field, we observe an SMR response that cannot be 

described by assuming a perfect crystallographic orientation of the film. By considering the distribution 

of growth crystallites that accompanies thin film deposition, we demonstrate that a small misalignment 

between the magnetic easy-axis and the external geometric system can have large consequences for the 

SMR response and the interpretation of the underlying magnetic symmetries. These conclusions are 

confirmed by direct imaging of the domain structure. 
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Supporting Information 

1) X-ray Diffraction Characterization 

The crystallographic structure of our films can be investigated by performing x-ray diffraction, 

using the known (0001) peak of the Al2O3 substrate for alignment. In Supplementary Fig. S1a, 

we show a 2θ measurement of a typical α-Fe2O3 films across the (0001) peaks of both film and 

substrate, where both are labelled appropriately. We fit a Gaussian distribution (red line) to the 

α-Fe2O3 peak and find a full width half maximum (FWHM) of 0.538° and a peak value of 2θ 

at 39.337°. The R2 value of the Gaussian fit is 0.89. To the left of the main film peak, we 

observe a small shoulder, indicating regions of the film with a variation in the out-of-plane 

axis. By fixing the angle of the incident x-rays at 2θ = 39.337°, we can perform a rocking curve 

around this angle. We show this in Supplementary Fig. S1b along with a Gaussian fit in red. 

From this rocking curve, we find the peak angle to be located at 19.697°. This value differs 

from the expected value (19.668°) taken from Supplementary Fig. S1a, indicating that the film 

and substrate [0001] axes are not parallel, and a finite angle exists between them. Aligning to 

the film peak gives the same result. We can calculate the effective grain size by making use of 

Scherrer’s formula, where we find a lower limit of 17.4 nm. This broader peak may also be 

related to the formation of domains within each crystallographic grain that are dominated by 

the magnetoelastic interaction. These domains are visible in magnetic imaging, performed 

later.” 

 

Supplementary Fig. S1. a) X-ray diffraction measurement of 100 nm thick, (0001) α-Fe2O3 film on a 

Al2O3 substrate across the (0001) peak of both. The α-Fe2O3 peak is fit by a Gaussian (red line). b) 

Rocking curve of the α-Fe2O3 (0001) peak where the incident angle of the x-rays is fixed at 2θ = 

39.337°. The rocking curve is fit by a Gaussian (red line). 

 

2) SQUID Magnetometry  

In order to investigate the Morin temperature of the hematite thin films, superconducting 

quantum interference magnetometry (SQUID) was used. At the Morin temperature, the weak 

moment caused by the additional Dzyaloshinskii-Moriya interaction disappears as the Néel 

vector rotates. This is then characterized by a drop in the magnetic susceptibility of the samples. 

The films were first warmed to 400 K, where a large magnetic field of 3 T was applied 

perpendicular to the easy-axis. This field is in order to saturate the weak moment in the 



direction of the field, within the easy-plane. The magnetic field is then reduced to a probing 

field of 50 mT and the sample is cooled in this field at a rate of 2 K/min. A temperature 

independent, constant background is subtracted to account for the diamagnetic contribution 

from the sapphire substrate. The magnetic susceptibility is shown in Figure 3d) of the main text 

and the Morin transition is clearly visible from the drop of the signal to around zero. We label 

200 K as the Morin transition where the spin structure has completely rotated. The transition 

takes place over a relatively broad temperature range unlike in bulk hematite but is an effect 

seen previously in thin films of hematite. 

3) Theoretical Model on the spin Hall magnetoresistance in hematite thin films 

Here, we will calculate the spin Hall magnetoresistance (SMR) of a thin film of hematite. 

Defining the lab frame as (x,y,z) where the charge current flows along x, we study the effect 

on the SMR of a small misalignment between the antiferromagnetic easy-axis and z. 

 

2.1) Hematite Model 

We model the hematite films with a two-spin model described by the Hamiltonian, 

ℋ = 𝒥𝑺𝟏 ⋅ 𝑺𝟐 − 𝓓 ⋅ 𝑺𝟏 × 𝑺𝟐 −
𝑲𝒛

𝟐
[(𝑺𝟏 ⋅ 𝒆)𝟐 + (𝑺𝟐 ⋅ 𝒆)𝟐] − 𝑯 ⋅ (𝑺𝟏 + 𝑺𝟐), (𝑺𝟏) 

  

where 𝒥 is the exchange interaction, 𝓓 = 𝒟�̂� is the DMI interaction, Kz is the anisotropy 

directed along the easy-axis e and H is the magnetic field. In the following, we consider the 

easy axis to be misaligned with z. We quantify the misalignment using spherical coordinates 

𝐞 = (𝐬𝐢𝐧 𝛉 𝐜𝐨𝐬 𝛟 , 𝐬𝐢𝐧 𝛉 𝐬𝐢𝐧 𝛟 , 𝐜𝐨𝐬𝛉). In such a way we consider different degrees of 

misalignment of the easy-axis quantified by the azimuthal angle θ both in the planes xz and yz. 

The spins follow the Landau-Lifschitz-Gilbert equation (LLG) given by,  

�̇�𝒊 = −𝛾𝑺𝒊 × 𝑯𝑖
𝑒𝑓𝑓

+ 𝛼𝑺𝑖 × �̇�𝒊, (𝑆2) 

 

where α is the damping parameter and, 

𝐻𝑖
𝑒𝑓𝑓

= −
1

ℏγ

δℋ

δ𝑆𝑖

(𝑆3) 

 

Is the effective field for the ith spin. We will solve these equations numerically and write the 

steady state in terms of the Néel and magnetization order parameters, respectively n=1/2(𝑺𝟏 −
𝑺𝟐) and m=1/2(𝑺𝟏 + 𝑺𝟐). 

 

2.2) Antiferromagnetic Spin Hall Magnetoresistance  

The equations describing the spin hall effect in the Pt Hall bar are given by, 

ji =
σ

q
∂iμ −

σ′

2q
ϵijk ∂jμk, (𝑆4.1)   

𝑗𝑖,𝑗
𝑠 = −

σ

2𝑞
∂𝑖μ𝑗 −

σ′

𝑞
ϵ𝑖𝑗𝑘 ∂𝑘μ, (S4.2) 

 

Where 𝜎 is the conductivity of the platinum, ji is charge current and 𝑗𝑖,𝑗
𝑠  is the spin current 

polarised along the jth. The interfacial spin current will then be, 

𝑗𝑠 =
𝑔𝑛,𝑟

(↑↓)

4π
𝑛 × (μ × 𝑛) +

𝑔𝑚,𝑟
(↑↓)

4π
𝑚 × (μ × 𝑚) +

𝑔𝑚,𝑖
(↑↓)

4π
μ × 𝑚 (𝑆5) 

 



We assume that a spin accumulation  �⃗� builds up in the platinum bar that follows a diffusion 

equation given by, 

 

∂𝑧
2�⃗� = �⃗�/l𝑠

2, (𝑆6) 

  

Where ls is the spin diffusion length of the Pt. Equation (S6) has a general solution given by, 

�⃗�𝑠(𝑧) = 𝝁−𝑒−𝑧/l𝑠 + 𝝁+𝑒𝑧/l𝑠 (𝑆7) 

 

Where 𝝁+ and 𝝁− are constants determined by the boundary conditions. The boundary 

conditions for the spin current in the Pt flowing in the z direction are, 
                             𝑗𝑦

𝑠(𝑧 = 0) = 0 (𝑆8)  

while for the other boundary the interfacial current is given by Eq.(S5) evaluated in 𝑧 = 𝑡. 

 

Using equation (S7) and its boundary conditions together with Eqs. (S4) we solve for the charge 

current along the 𝑥 direction, finding 

⟨𝑗𝑞⟩ = σ𝐸 + 𝑒𝑡/ls(𝑒𝑡/2l𝑠 − 𝑒−𝑡/2l𝑠)
2 σ′

𝑞𝑡
�̂� × μ+ − σθ𝑆𝐻

2
l𝑠

𝑡
(𝑒𝑡/l𝑠 − 1)�̂� × (�̂� × 𝐸), (𝑆9) 

 

where 𝑗0 = σ𝑬 is the unperturbed charge current and the constant 𝝁+ is a function  of n, m, and 

E and is computed numerically using Eq.(S5) and the results of the LLG simulation. 

Meanwhile, 𝜃𝑆𝐻 is the spin Hall angle and t is the thickness of the platinum. We define the 

resistivity tensor 𝜌 from Eq.(S9) as 𝑬 = 𝜌 < 𝒋𝒒 >  and focus on the magnetic field dependence 

of 𝜌.   
 

We numerically solve Equation S2 with the following physical parameters: 𝒥/μ𝐵 = 1000 T, 

𝒟/μ𝐵 = 0.65 T, Kz/μB = 30 mT, α = 0.001 where μB is the Bohr magneton. We analyze the 

effect of an external magnetic field on the resistivity tensor in two cases: (i) a magnetic field 

parallel to the charge current and (ii) a magnetic field perpendicular to the charge current for 

misalignments of e with respect to z. The amplitude was taken in the range H=-2Hc → 2Hc 

where Hc = 
2𝒥𝐾𝑧

2 − 𝒟
𝒟

⁄  the critical field for the second order transition going from n||e to n⊥ 

to both H and e. The results are shown for select angles in the main text Figs. 2c and 2d. 

 

4. Spin Mixing Conductance 

We calculate the effective spin mixing conductance (SMC) 𝐺↑↓ according to the formulation 

provided by Chen et al  [1] for a magnetic field parallel to x. We focus on this orientation given 

the dependence of the SMC on the measured value of the SMR, where H//y (Fig. 3c of the main 

text) shows minimal temperature dependence compared to H//x. For H//z, the dominant OMR 

contribution makes it challenging to extract the true contribution from the SMR. We use a spin 

diffusion length and spin Hall angle for our Pt of 1.5 nm and 0.01 respectively  [2]. The 

conductivity of Pt was extracted from our experimental data in the absence of a magnetic field. 

We show in Supplementary Fig. 2 a comparison between the SMR value for H//x and the 

calculated effective SMC.  



 

Supplementary Fig. 2. Calculated effective spin mixing conductance (red) as a function of 

temperature for a magnetic field applied parallel to the charge current. Comparison curve to the 

experimental values of the SMR (black) as a function of temperature for the same configuration. The 

Morin transition temperature obtained from SQUID is marked (Fig. 3d of main text). 

We extract an absolute value of the effective SMC at 300 K of  𝐺↑↓ ~ 3.37x1014 Ω-1m-2 and a 

value that increases with decreasing temperature from 𝐺↑↓ ~ 4.60x1014 Ω-1m-2 just below the 

Morin transition to 𝐺↑↓  ~ 8.20 x1014 Ω-1m-2  at 25 K. This change may originate from a 

temperature dependence of other parameters rather than representing a temperature dependence 

of the spin mixing conductance itself  [3–5]. Although the conductivity used in the calculation 

was temperature dependent, we assumed a constant value of the spin Hall angle and the spin 

diffusion length. These values are comparable to other reported values of the SMC for 

AFM/HM bilayers  [6,7] and YIG/Pt heterostructures  [8].  

 

5. Spin Hall Magnetoresistance in (11̅02) Oriented Hematite Films 

For comparison, the spin Hall magnetoresistance has also been investigated for 500 nm (11̅02) 

oriented hematite films, grown on Al2O3 substrates with the same orientation by pulsed laser 

deposition. To allow for a comparison, we have as for the (0001) films discussed in the main 

text, also patterned Pt Hall bars by lithographic means and the deposition of 7 nm Pt in an Ar 

atmosphere (Supplementary Fig. 3a). Due to the orientation of growth, the crystallographic c-

axis, and therefore the low temperature easy-axis, lies at an angle of 33° to the sample plane. 

The Hall bar is oriented such that the charge current Jc is passed parallel to the in-plane 

projection of the easy-axis (Supplementary Fig. 3a). To identify the Morin transition 

temperature of these films, we perform temperature dependent measurements of the 

magnetization for a probing magnetic field applied perpendicular and parallel to the c-axis 

(Supplementary Fig. 3b). The magnetization is measured for both a cooling (-2 K/min) and 

warming curve (+5 K/min). The Morin transition is visible for the magnetic field perpendicular 

to the c-axis as the net moment present in the easy-plane phase reduces with decreasing 

temperature. We label TM ~ 200 K as the point when the films have adopted an easy-axis nature 

across the majority of the film volume. Just as for the (0001) films, the Morin transition 

temperature is reduced from the bulk value of 260 K.  

 

We now turn our attention to investigating the SMR in these films. The longitudinal resistance 

is measured as a magnetic field H is swept perpendicular to Jc. This places H perpendicular to 

the easy-axis. Given that the SMR depends on the component of the Néel vector perpendicular 

to Jc, i.e. n·μs, this orientation should be insensitive to the reorientation of the Néel vector that 

can occur in the easy-axis phase [9]. This is confirmed by the measurements just below TM in 

Supplementary Fig. 3c. If the c-axis was misaligned to the substrate, as in the (0001) films of 

the main text, then we would see a signal for this configuration of H with respect to Jc (see Fig. 

2b of the main text). As we increase the temperature, the films adopt an easy-plane nature 

where n rotates 90°. This easy-plane has degenerate orientations of n in the absence of a 

magnetic field, and thus a finite component of n will lie parallel to the interfacial spin 

accumulation μs. The application of the magnetic field will then lead n to reorient within the 

easy-plane perpendicular to H above a certain magnetic field. This will reduce the projection 



n·μs leading to an increase in ΔRL. This behavior is seen in Supplementary Fig. 3c for two 

temperatures, 230 K within the Morin transition and at 270 K, above the Morin transition. 

 

The SMR in Supplementary Fig. 3c is one order of magnitude smaller than that of the (0001) 

oriented films in Fig. 1 and Fig. 2 of the main text. This reduction indicates that this crystal 

orientation has resulted in a poorer Pt/α-Fe2O3 interface than in the films of the main text. We 

also observe no significant contribution from the ordinary magnetoresistance that produced the 

parabolic background in Fig 1b-1d and Fig. 2a-2c of the main text. This could be due to several 

factors such as the quality of the Pt on this orientation of hematite leading to differences in the 

grain size of the Pt or variations in the Pt deposition, which were performed at different times 

for the two film orientations.   

 

 
Supplementary Fig. 3. a) Schematic of a Pt Hall bar atop a 500 nm (11̅02) oriented hematite film. 

The charge current Jc passes parallel to the in-plane projection of the easy-axis (EA). b) SQUID 

magnetometry measurements of the magnetization for a magnetic field applied perpendicular (top) 

or parallel (bottom) to the c-axis. The remnant magnetization of the easy-plane phase decreases with 

temperature due to the Morin transition to the easy-axis phase. The red arrows indicate cooling and 

warming curves. c) Change in longitudinal resistance as a function of magnetic field for temperatures 

above and below the Morin transition temperature. The error bars represent the standard deviation 

of each data point.  

 

6. Impact of Antiferromagnetic Domain Structures on the Spin Hall Magnetoresistance 

To further elucidate the deviation of the easy-axis from the substrate normal by making use of 

x-ray magnetic linear dichroism-photoemission electron microscopy (XMLD-PEEM) 

technique to image the antiferromagnetic domains. These images have been acquired at the Fe 

L2 edge in 2 energy mode with a single polarization at ℎ𝜐1 = 720.24 𝑒𝑉 and ℎ𝜐2 = 721.79 𝑒𝑉, 

calculating the contrast, after normalizing and correcting for the image drift, from the two 

images as: 𝑋𝑀𝐿𝐷 =
ℎ𝜐1−ℎ𝜐2

ℎ𝜐1+ℎ𝜐2
. The beam shines x-rays on the sample inclined at an angle of 16° 

and we use both linear horizontal (LH) out-of-plane and linear vertical (LV) in-plane 

polarizations. We removed a parabolic background to get rid of the non-uniform illumination 

resulting from the dispersion of the beam energy. We show in Supplementary Fig. 4 XMLD-

PEEM images for (0001) oriented hematite, capped by 2 nm Pt to mitigate charging effects, at 

100 K, i.e. below the Morin transition temperature. If the easy-axis was parallel to the surface 

normal, then the 180° nature of easy-axis antiferromagnetic domains would not give rise to 

magnetic contrast between neighboring domains. However, as clearly seen in Supplementary 

Fig. 4, the antiferromagnetic domain structure can be resolved originating from a distribution 

of the antiferromagnetic axis with respect to the incoming beam axis. this is further emphasized 

by comparing incident x-rays polarized in-plane (Supplementary Fig. 4b) with those polarized 

mostly out-of-plane (Supplementary Fig. 4a). The out-of-plane contrast is clearly stronger, 



however the in-plane contrast shown in Supplementary Fig. 4b indicates that the Néel vector 

is rotated away from the surface normal.  

 

Supplementary Fig. 4. X-ray magnetic linear dichroism photoemission electron microscopy 

(XMLD-PEEM) images of (0001) oriented hematite capped by 2 nm Pt. a) PEEM image for 

linear horizontal polarization of X-rays providing out-of-plane contrast. b) PEEM image for 

linear vertical polarization of X-rays providing in-plane contrast. The contrast in both 

originates from a deviation of the Néel vector from the surface normal by varying angles in 

each domain. 

 

We show in Supplementary Fig. 5 XMLD-PEEM imaging of (11̅02) oriented hematite films 

capped by 2 nm Pt to prevent charging effects at 100 K in the easy-axis phase. The 

antiferromagnetic domains are clearly visible by the large regions of single contrast typical of 

an easy-axis antiferromagnet. These large domains are separated by clear domain walls as the 

Néel vector rotates 180°. When we focus on the in-plane component of the Néel vector, shown 

in Supplementary Fig. 5b) we see that there is no correlation to the domain structure visible in 

Supplementary Fig. 5a). This supports the transport measurements in Supplementary Fig. 3c, 

where we concluded that the easy-axis was collinear with the substrate c-axis. We notice that 

in Supplementary Fig. 5a) a closed domain wall exists in the upper right quadrant, a feature 

that may be of interest to the wider spintronics community. Focusing on this feature closer, we 

observe a circular domain wall with a central core (Supplementary Fig. 5c-e). Finally, we note 

that the spin structure is reminiscent of other topological structures currently being researched 

and for chiral domain walls would represent effectively an antiferromagnetic anti-skyrmion. In 

order to ascertain how the Néel vector rotates across the line scan indicated in Supplementary 

Fig. 5c, we can utilize Supplementary Fig. 5d, where we plot the line scan of the contrast and 

is sensitive to the in-plane or out-of-plane orientation of the Néel vector. Due to the strong out-

of-plane contrast of the domain wall in Supplementary Fig. 5a), we can conclude that n rotates 

out of the sample plane across the domain wall. The structure of the line scan in Supplementary 

Fig. 5c)-d)is schematically shown in Supplementary Fig. 5e, although whether these domain 

walls are chiral cannot be deduced from these measurements. 



 

Supplementary Fig. 5. a) XMLD-PEEM image for linear horizontal polarization of the 

incident x-rays. Large monochromatic domains are separated by dark domains walls. b) 

XMLD-PEEM image for linear vertical polarization demonstrating an absence of contrast 

for the domain walls, indicating that the Néel vector rotates out of the plane between 

neighboring domains. c) Expansion of the area indicated in red in a). d) Line profile of the 

intensity of the structure shown in c) taken as the averaged intensity across the black box. e) 

Schematic of the Néel vector rotation across the structure in c). The Néel vector in each 

domain lies at 33° to the surface plane and rotates 180° out-of-plane between adjacent 

domains, and thus represents a Néel type domain wall. 
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