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A central goal of probabilistic programming languages (PPLs) is to separate modelling from inference. How-

ever, this goal is hard to achieve in practice. Users are often forced to re-write their models to improve ef-

ficiency of inference or meet restrictions imposed by the PPL. Conditional independence (CI) relationships

among parameters are a crucial aspect of probabilistic models that capture a qualitative summary of the

specified model and can facilitate more efficient inference.

We present an information flow type system for probabilistic programming that captures conditional in-

dependence (CI) relationships and show that, for a well-typed program in our system, the distribution it

implements is guaranteed to have certain CI-relationships. Further, by using type inference, we can statically

deduce which CI-properties are present in a specified model.

As a practical application, we consider the problem of how to perform inference on models with mixed

discrete and continuous parameters. Inference on such models is challenging in many existing PPLs, but can

be improved through a workaround, where the discrete parameters are used implicitly, at the expense of

manual model re-writing. We present a source-to-source semantics-preserving transformation, which uses

our CI-type system to automate this workaround by eliminating the discrete parameters from a probabilistic

program. The resulting program can be seen as a hybrid inference algorithm on the original program, where

continuous parameters can be drawn using efficient gradient-based inference methods, while the discrete

parameters are inferred using variable elimination.

We implement our CI-type system and its example application in SlicStan: a compositional variant of Stan.1

CCS Concepts: • Theory of computation → Random walks and Markov chains; Type structures; Opera-

tional semantics; • Mathematics of computing → Statistical software; • Computing methodologies →

Learning in probabilistic graphical models;

Additional Key Words and Phrases: Probabilistic programming, information flow types, static analysis,

conditional independence, compiler correctness

1The implementation is available at https://github.com/mgorinova/SlicStan.
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1 INTRODUCTION

The number of probabilistic programming languages (PPLs) has grown far and wide, and so
has the range of inference techniques they support. Some focus on problems that can be solved
analytically and provide a symbolic solution [Gehr et al. 2016]; others are very flexible in the
models they can express and use general-purpose inference algorithms [Wood et al. 2014]. Some
use gradient-basedmethods [Carpenter et al. 2017] ormessage-passingmethods [Minka et al. 2014]
to provide an efficient solution at the cost of restricting the range of expressible programs. Each
option presents its own challenges, whether in terms of speed, accuracy or inference constraints,
which is why PPL users often are required to learn a set of model re-writing techniques: to be able
to change the program until it can be feasibly used within the backend inference algorithm.
Take for example Stan [Carpenter et al. 2017], which is used by practitioners in a wide range

of sciences and industries to analyse their data using Bayesian inference. While efficient inference
algorithms exist for continuous-only and for some discrete-only models, it is much less clear what
algorithm to use for arbitrary models with large numbers of both discrete and continuous (latent,
i.e., unobserved) parameters. Stan has made a conscious choice not to support probabilistic mod-
els with discrete parameters, to perform inference using (dynamic) Hamiltonian Monte Carlo

(HMC) [Betancourt and Girolami 2015; Hoffman and Gelman 2014; Neal et al. 2011]), which pro-
vides efficient, gradient-based inference for differentiable models. As a result, Stan has often been
criticised [Gelman et al. 2015] for its lack of support for discrete parameters. What is usually over-
looked is that many models with discrete parameters can, in fact, be accommodated in Stan, by
manually marginalising (summing) out the discrete parameters and drawing them conditionally
on the continuous parameters [Stan Development Team 2019b, Chapter 7]. One of the core model
rewriting techniques is marginalisation: summing over all possible values that a random variable
can take to obtain a marginal density function that does not involve that variable. Marginalising
efficiently is not always an obvious procedure, as it requires exploiting conditional independence
relationships among the variables in the model. For probabilistic graphical models, there are well-
known algorithms for enumerating all of the conditional independence assumptions implied by a
model. But probabilistic programs are much more general, including control flow and assignment.
For this more general case, it is much less clear how to determine conditional independence rela-
tionships automatically, and doing so requires combining ideas from traditional program analysis
and from probabilistic graphical modelling.
In this article, we introduce an information flow type system that can deduce conditional inde-

pendence relationships between parameters in a probabilistic program. Finding such relationships
can be useful in many scenarios. As an example application, we implement a semantics-preserving
source-to-source transformation that automatically marginalises discrete parameters. We work in
SlicStan [Gorinova et al. 2019], a form of Stan with a more compositional syntax than the orig-
inal language. Our system extends SlicStan to support discrete parameters in the case when the
discrete parameter space is bounded. This transform corresponds to the variable elimination algo-
rithm [Koller and Friedman 2009; Zhang and Poole 1994]: an exact inference algorithm, efficient in
models with sparse structure. Combining this transformation with an efficient algorithm for con-
tinuous parameters, like HMC, gives us a model-specific, automatically derived inference strategy,
which is a composition of variable elimination and the algorithm of choice. While we only focus
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on one application in this article, our type system for conditional independence is applicable to
program transformations of probabilistic programs more generally, and we believe it can enable
other composed-inference strategies.
In short, we make the following contributions:

(1) Factorised semantics for SlicStan: As a basis for proving correctness of our transformation,
we extend SlicStan’s type system, so shredding (which slices a SlicStan program into Stan
for execution) correctly separates well-typed programs into data preprocessing, main model,
and purely generative code (Theorem 1).

(2) Main theoretical result: We show how a very simple, relatively standard information flow
type system can be used to capture a conditional independence in probabilistic programs
(Section 3) and establish a correspondence between well-typed programs and conditional in-
dependence properties of the probability distribution it implements (Theorem 2, Theorem 3).

(3) Main practical result: We describe and implement (in SlicStan) a source-to-source transfor-
mation that repeatedly uses the result from (2) to efficiently marginalise out the discrete
parameters of the program, and we give a generative procedure for drawing these parame-
ters (Section 4), thus automating inference for mixed discrete-continuous models. We prove
that our transformation is semantics-preserving (Theorem 4).

2 SLICSTAN: EXTENDED SYNTAX AND SEMANTICS

SlicStan [Gorinova et al. 2019] is a Stan-like probabilistic programming language. Compared to
Stan, it provides extra compositionality by dropping the requirement that programs be block-
structured. SlicStan uses type inference in an information-flow type system [Abadi et al. 1999;
Gordon et al. 2015; Volpano et al. 1996] to automatically rearrange the program into parts roughly
corresponding to the block structure of Stan: pre-processing (data), model, and post-processing
(generated quantities). Originally, this shredding was developed to compile SlicStan to Stan. In
this article, we show that it can be used, more generally, to automatically compile to an efficient
program-specific inference scheme.
Like Stan, SlicStan is imperative and allows for deterministic assignment, for-loops, if-

statements, probabilistic assignment, and factor-statements. One contribution of this work is that
we present an updated version of SlicStan.
A key difference to the original version of SlicStan is the treatment of sampling (∼) statements. In

the original SlicStan paper [Gorinova et al. 2019], a statement such as x ∼ N(0, 1)was understood
simply as a syntactic sugar for factor(N(x | 0, 1)): adding a factor to the underlying density of
the model, rather than performing actual sampling. In our updated version of SlicStan, sampling
statements are part of the core syntax. The semantics of x ∼ N(0, 1) remains equivalent to that
of factor(N(x | 0, 1)) in terms of density semantics, however it could be implemented differently
depending on the context. In particular, x ∼ N(0, 1) could be implemented as a simple call to a
random number generator in Stan, x = Nrnд(0, 1), like in the example in Figure 1.
This way of treating ∼ statements differently is useful, as it allows for an increase of the func-

tionality of the SlicStan’s information-flow analysis. Consider, for example, the SlicStan program
on the right of Figure 1. Using the original type system, both μ and xpred will be of level model,
as they are both involved in a ∼ statement. Thus, when translated to Stan, both μ and xpred must
be inferred with HMC (or another similar algorithm), which is expensive. However, the updated
type system of this article allows for xpred to be of level genqant, which is preferable: In the
context of Stan, this means only μ needs to be inferred with HMC, while xpred can be simply
drawn using a random number generator. More generally, the updated SlicStan type system al-
lows for factorising the density defined by the program: For data D, parameters θ and generated
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Fig. 1. Example of difference to previous version of SlicStan.

quantities Q , a program defining a density p(D,θ ,Q) can be sliced into two programs with densi-
ties p(D,θ ) and p(Q | D,θ ), respectively (Theorem 1). The parameters θ are inferred using HMC
(or another general-purpose inference algorithm) according to p(D,θ ), while the quantitiesQ are
directly generated according to p(Q | D,θ ).
Treating ∼ statements differently based on context is very similar in spirit to existing effect-

handling-based PPLs [Moore and Gorinova 2018] such as Edward2 and Pyro, where ∼ can be han-
dled in different ways. However, in our case, this difference in treatment is determined statically,
automatically, and only in the translation to Stan or another backend.
Another difference between Gorinova et al. [2019]’s SlicStan and our updated version is the

target(S) expression, which we use to capture locally the density defined by statements.
These changes are a small but useful contribution of the current work: They are key to allowing

us to decompose the program and compose different inference strategies for efficiency.
In the rest of this section, we give the updated formal syntax, typing, and semantics of SlicStan

and describe shredding—the procedure key to the translation of Stan / inference composition.

2.1 Syntax

SlicStan has the following types, programs, L-values, statements, and expressions. We highlight
the difference with [Gorinova et al. 2019] with boxes.

SlicStan Types:

� ::= data | model | genqant level type
n ∈ N size

τ ::= real | int | int〈n〉 | τ [] base type

T ::= (τ , �) type

SlicStan Program:

P ::= Γ, S program

SlicStan L-Values:

L ::= x[E1] · · · [En] L-value

SlicStan Typing Environments:

Γ ::= {x1 �→ T1, . . . ,xn �→ Tn} typing environment

SlicStan Statements:

S ::= statement
L = E assignment
S1; S2 sequence
for(x in E1 : E2) S for loop
if(E) S1 else S2 if statement
skip skip

factor(E) factor statement

L ∼ d(E1, ...,En) sample statement

SlicStan Expressions:

E ::= expression
x variable
c constant
[E1, ...,En] array
E1[E2] array element
f (E1, . . . ,En) function call

[E | x in E1 : E2] array comprehension

target(S) evaluating a density
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SlicStan programs consist of a pair Γ, S of a typing environment Γ (a finite map that assigns
global variables x to their types T ) and a statement S . Following the usual style of declaring vari-
ables in C-like languages, we informally present programs Γ, S in examples by sprinkling the type
declarations of Γ throughout the statement S . For example, we write data real x ∼ normal(0, 1)
for the program {x �→ (real,data)},x ∼ normal(0, 1). Sometimes, we will leave out types or write
incomplete types in our examples. In this case, we intend for the missing types to be determined
using type inference.
As we discuss in detail in Section 2.3, a factor(E) statement can be read as multiplying the

current weight (contribution to the model’s joint density) of the program trace by the value of
E. Conversely, a target(S) expression initialises the weight to 1 and returns the weight that is
accumulated after evaluating S . For example, if:

S = x ∼ normal(0,1); y = 2 * x; z ∼ normal(y,1);

= factor(normal_pdf(x|0,1)); y = 2 * x; factor(normal_pdf(z|y,1));

Then target(S) is semantically equivalent to normal_pdf(x|0,1)* normal_pdf(z|2 * x,1).
We extend the base types of the language of [Gorinova et al. 2019] with int〈n〉, which denotes a

positive integer constrained from above by an integer n. For example, if x is of type int〈2〉, then x
can only be 1 or 2. These types allow us to specify the support of discrete variables, and they can
easily be extended to include both upper and lower bounds. For the purpose of our typing rules,
we treat int〈n〉 identically to int. We only differentiate between these types in Section 4, where our
transformation uses the size annotation to eliminate a discrete variable.

2.2 Typing

TypesT in SlicStan range over pairs (τ , �) of a base type τ , and a level type �. The level types � form
a lattice ({data,model, genqant}, ≤), where data ≤ model ≤ genqant. We write

⊔n
i=1 �i for

the least upper bound of the levels �1, . . . , �n . We call variables of level data data (variables), of
level model model parameters, and of level genqant generated quantities. We refer to variables
that are either of level model or genqant simply as parameters. Given a typing environment
Γ, we can consider the well-typedness of expressions and statements, given the types assigned to
variables by Γ. The judgment Γ 	 E : (τ , �)means that expression E has type τ and reads only level
� and below. The judgment Γ 	 S : � means that statement S assigns only to level � and above. We
write Γ 	 S as a shorthand for Γ 	 S : data.
The typing rules for expressions are those of Gorinova et al. [2019] with added rules for the two

constructs of array comprehensions and target(S)-expressions. The typing rules for statements are
as in Gorinova et al. [2019], with three differences (highlighted in boxes). (Factor) and (Sample)
add typing rules for the now new language constructs factor(E) and L ∼ d(E1, . . . ,En). The lan-
guage supports a finite number of built-in functions f with type τ1, . . . ,τn → τ and (conditional)
distributions d ∈ Dist(τ1, . . . ,τn ;τ ) over τ given values of types τ1, . . . ,τn .

Typing Rules for Expressions:

(ESub)
Γ 	 E : (τ , �) � ≤ �′

Γ 	 E : (τ , �′)

(Var)

Γ,x : T 	 x : T

(Const)
ty(c) = τ

Γ 	 c : (τ ,data)

(PrimCall)(f : τ1, . . . ,τn → τ )
Γ 	 Ei : (τi , �i ) ∀i ∈ 1..n

Γ 	 f (E1, . . . ,En) : (τ ,
⊔n

i=1 �i )
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[1.5ex]

(ArrEl)

Γ 	 E1 : (τ [], �) Γ 	 E2 : (int, �)

Γ 	 E1[E2] : (τ , �)

(Target)

Γ 	 S : �′′ ∀�′ > �.RΓ	�′ (S) = ∅
2

Γ 	 target(S) : (real, �)

(Arr)
Γ 	 Ei : (τ , �) ∀i ∈ 1..n

Γ 	 [E1, ...,En] : (τ [], �)

(ArrComp)
Γ 	 E1 : (int, �) Γ 	 E2 : (int, �) Γ,x : (int, �) 	 E : (τ , �) x � dom(Γ)

Γ 	 [E | x in E1 : E2] : (τ [], �)

Typing Rules for Statements:

(SSub)
Γ 	 S : �′ � ≤ �′

Γ 	 S : �

(Assign)3

Γ(L) = (τ , �) Γ 	 E : (τ , �)

Γ 	 (L = E) : �

(If)
Γ 	 E : (real, �) Γ 	 S1 :� Γ 	 S2 :�

Γ 	 if(E) S1 else S2 : �

(Seq)
Γ 	 S1 : � Γ 	 S2 : � S(S1, S2) ∧ G(S1, S2)

Γ 	 (S1;S2) : �

(Factor)
Γ 	 E : (real,model)

Γ 	 factor(E) : model

(Skip)

Γ 	 skip : �

(Sample)3(d ∈ Dist(τ1, . . . ,τn ;τ ))
Γ(L) = (τ , �′) Γ 	 Ei : (τi , �), ∀i ∈ 1..n � = �′ � model

Γ 	 L ∼ d(E1, . . . ,En) : �

(For)
Γ 	 E1 : (int, �) Γ 	 E2 : (int, �) Γ,x : (int, �) 	 S : � x � dom(Γ) x �W (S)

Γ 	 for(x in E1 : E2) S : �

In these rules, we make use of the following notation (see Appendix A for precise definitions).

• W (S): the set of variables x that have been assigned to in S .
• RΓ	�(S): the set of variables x that are read at level � in S .
• WΓ	�(S): the set of variables x of level � that have been assigned to in S .

• W̃Γ	�(S): the set of variables x of level � that have been ∼-ed in S .
• WW̃Γ	�(S) =WΓ	�(S) ∪ W̃Γ	�(S)

The intention in SlicStan is that statements of level � are executed before those of �′ if � < �′.
To follow that implementation strategy without reordering possibly non-commutative pairs of
statements, we impose the condition S(S1, S2) when we sequence S1 and S2 in (Seq).

Definition 1 (Shreddable Seq). S(S1, S2) � ∀�1, �2.(�2 < �1) =⇒ RΓ	�1 (S1) ∩WΓ	�2 (S2) = ∅.

For example, this excludes the following problematic program:

data real sigma = 1;

model real mu ∼ normal(0, sigma);

sigma = 2;

2We use �′ > � as a shorthand for � ≤ �′ ∧ ¬�′ ≤ �.
3 Here, we use Γ(L) to look up the type of the L-value L in Γ. Sometimes we will use an overloaded meaning of this notation
(Definition 14) to look up the level type of a general expression. Which Γ(.) we refer to will be clear from context.
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Above, sigma and the statements sigma=1 and sigma=2 are of level data, whichmeans they should
be executed before the statement mu ∼ normal(0,sigma), which is of level model. However, this
would change the intended semantics of the program, giving mu a N(0, 2) prior instead of the
intended N(0, 1) prior. This problematic program fails to typecheck in SlicStan, as it is not shred-
dable: ¬S(mu ∼ normal(0,sigma), sigma = 2).

Definition 2 (Generative Seq). G(S1, S2) � ∀� � model.W̃Γ	�(S1) ∩ WW̃Γ	�(S2) = ∅ ∧

WW̃Γ	�(S1) ∩ W̃Γ	�(S2) = ∅.

To be able to read x ∼ N(0, 1) at level genqant, depending on the context, either as a prob-
abilistic assignment to x or as a density contribution, we impose the condition G(S1, S2) when
we sequence S1 and S2. This excludes problematic programs like the following, in which the
multiple assignments to y create a discrepancy between the density semantics of the program
p(y) = N(y | 0, 1)N(y | 0, 1) and the sampling-based semantics of the program y = 5.

genquant real y ∼ normal(0, 1);

y ∼ normal(0, 1);

y = 5;

This problematic program fails to typecheck in SlicStan owing to the G constraint:
¬G(y ∼ normal(0,1), y ∼ normal(0,1)), and also ¬G(y ∼ normal(0,1), y = 5).

2.3 Operational Semantics of SlicStan Statements

In this article, we use a modified version of the semantics given in Gorinova et al. [2019]. We
extend the call-by-value operational semantics given in that paper and derive a more equational
form that also includes the generated quantities.
We define a standard big-step operational semantics for SlicStan expressions and statements:

Big-step Relation

(s,E) ⇓ V expression evaluation
(s, S) ⇓ (s ′,w) statement evaluation

Here, s and s ′ are states,V is a value andw ∈ R>0 is aweight. Our statements can read and write the
state with arbitrary destructive updates. The weight can be thought of as an element of state that
stores a positive real value that only gets accessed bymultiplying it with the value of an expression
E, through the use of factor(E)-statements. It can only be read through a target(S)-statement that
initialises the weight to 1, evaluates the statement S, and returns the final weight.
Formally, states and values are defined as follows:

Values and States:

V ::= value
c constant
[V1, . . . ,Vn] array

s ::= x1 �→ V1, . . . ,xn �→ Vn xi distinct state (finite map from variables to values)

In the rest of the article, we use the notation for states s = x1 �→ V1, . . . ,xn �→ Vn :

• s[x �→ V ] is the state s , but where the value of x is updated toV if x ∈ dom(s), or the element
x �→ V is added to s if x � dom(s).

• s[−x] is the state s, but where x is removed from the domain of s (if it were present).
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We also define lookup and update operations on values:

• IfU is an n-dimensional array value for n ≥ 0 and c1, . . . , cn are suitable indexes intoU , then
the lookup U [c1] . . . [cn] is the value in U indexed by c1, . . . , cn .

• IfU is an n-dimensional array value for n ≥ 0 and c1, . . . , cn are suitable indexes intoU , then
the (functional) update U [c1] . . . [cn] := V is the array that is the same as U except that the
value indexed by c1, . . . , cn is V .

The relation ⇓ is deterministic but partial, as we do not explicitly handle error states. The pur-
pose of the operational semantics is to define a density function in Section 2.4, and any errors lead
to the density being undefined. The big-step semantics is defined as follows:

Operational Semantics of Expressions:

(Eval Const)

(s, c) ⇓ c

(Eval Var)
V = s(x) x ∈ dom(s)

(s,x) ⇓ V

(Eval Arr)
(s,Ei ) ⇓ Vi ∀i ∈ 1..n

(s, [E1, . . . ,En]) ⇓ [V1, . . . ,Vn]

(Eval ArrEl)
(s,E1 ⇓ V ) (s,E2 ⇓ c)

(s,E1[E2]) ⇓ V [c]

(Eval PrimCall)4

(s,Ei ) ⇓ Vi ∀i ∈ 1 . . .n V = f (V1, . . . ,Vn)

(s, f (E1, . . . ,En)) ⇓ V

(Eval ArrComp)5

(s,E1) ⇓ n (s,E2) ⇓m (s,E[i/x]) ⇓ Vi ,∀n ≤ i ≤ m

(s, [E | x in E1 : E2]) ⇓ [Vn , . . . ,Vm]

(Eval Target)
(s, S) ⇓ (s ′,w)

(s, target(S)) ⇓ w

Operational Semantics of Statements:

(Eval Assign) (where L = x[E1] . . . [En])
(s,Ei ) ⇓ Vi ∀i ∈ 1..n (s,E) ⇓ V U = s(x) U ′ = (U [V1] . . . [Vn] := V )

(s,L = E) ⇓ (s[x �→ U ′], 1)

(Eval Skip)

(s, skip) ⇓ (s, 1)

(Eval Seq)
(s, S1) ⇓ (s ′,w) (s ′, S2) ⇓ (s ′′,w ′)

(s, S1;S2) ⇓ (s ′′,w ∗w ′)

(Eval ForFalse)
(s,E1) ⇓ c1 (s,E2) ⇓ c2 c1 > c2

(s, for(x in E1 : E2) S) ⇓ (s, 1)

(Eval ForTrue)
{(s,Ei ) ⇓ ci }i=1,2 c1 ≤ c2 (s[x �→ c1], S) ⇓ (s ′,w) (s ′[−x], for(x in (c1 + 1) : c2) S) ⇓ (s ′′,w ′)

(s, for(x in E1 : E2) S) ⇓ (s ′′,w ∗w ′)

(Eval IfTrue)
(s,E) ⇓ c � 0.0 (s, S1) ⇓ (s ′,w)

(s, if(E) S1 else S2) ⇓ (s ′,w)

(Eval IfFalse)
(s,E) ⇓ 0.0 (s, S2) ⇓ (s ′,w)

(s, if(E) S1 else S2) ⇓ (s ′,w)

(Eval Factor)
(s,E) ⇓ V

(s, factor(E)) ⇓ (s,V )

(Eval Sample)6

(s,L) ⇓ V (s,Ei ) ⇓ Vi ,∀1 ≤ i ≤ n V ′ = d(V |V1, . . . ,Vn)

(s,L ∼ d(E1, . . . ,En)) ⇓ (s,V ′)

4f (V1, . . . , Vn ) means applying the built-in function f on the values V1, . . . , Vn .
5Here, we write E[E′/x ] for the usual capture avoiding substitution of E′ for x in E .
6By d (V |V1, . . . , Vn ), we mean the result of evaluating the intended built-in conditional distribution d onV , V1, . . . , Vn .
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Most rules of the big-step operational semantics are standard, with the exception of (Eval Fac-
tor) and (Eval Sample), which correspond to the PPL-specific language constructs factor and
L ∼ d(E1, . . . ,En). While we refer to the latter construct as probabilistic assignment, its formal
semantics is not that of an assignment statement: Both the left- and the right-hand side of the
“assignment” are evaluated to a value, for the density contribution d(V | V1, . . . ,Vn) to be evalu-
ated and factored into the weight of the current execution trace. Contrary to (Eval Assign), there
is no binding of a result to a variable in (Eval Sample). Of course, as is common in probabilistic
programming, it might, at times,7 be beneficial to execute these statements as actual probabilistic
assignments. Our treatment of these statements is agnostic of such implementation details, how-
ever.
The design of the type system ensures that information can flow from a level � to a higher one

�′ ≥ �, but not a lower one �′ < �: a noninterference result. To state this formally, we introduce
the notions of conformance between a state s and a typing environment Γ and �-equality of states.
We define a conformance relation on states s and typing environments Γ. A state s conforms to

an environment Γ, whenever s provides values of the correct types for the variables used in Γ:

Conformance Relation:

s |= Γ state s conforms to environment Γ

Rule for the Conformance Relation:

(Stan State)
Vi |= τi ∀i ∈ I

(xi �→ Vi )
i ∈I |= (xi : τi )

i ∈I

Here, V |= τ denotes that the value V is of type τ , and it has the following definition:

• c |= int, if c ∈ Z, and c |= real, if c ∈ R.
• [V1, . . . ,Vn] |= τ [n], if ∀i ∈ 1 . . .n.Vi |= τ .

Definition 3 (�-equal States). Given a typing environment Γ, states s1 |= Γ and s2 |= Γ are �-equal
for level � (written s1 ≈� s2), if they differ only for variables of a level strictly higher than �:

s1 ≈� s2 � ∀x : (τ , �′) ∈ Γ. (�′ ≤ � =⇒ s1(x) = s2(x)) .

Lemma 1 (Noninterference of 	). Suppose s1 |= Γ, s2 |= Γ, and s1 ≈� s2 for some �. Then for

SlicStan statement S and expression E:

(1) If Γ 	 E : (τ , �) and (s1,E) ⇓ V1 and (s2,E) ⇓ V2, then V1 = V2.
(2) If Γ 	 S : � and (s1, S) ⇓ s ′1,w1 and (s2, S) ⇓ s ′2,w2, then s ′1 ≈� s

′
2.

Proof. (1) follows by rule induction on the derivation Γ 	 E : (τ , �), and using that if Γ 	 E :
(τ , �), E reads x and Γ(x) = (τ ′, �′), then �′ ≤ �. (2) follows by rule induction on the derivation
Γ 	 S : � and using (1). We present more details of the proof in Appendix A. �

2.4 Density Semantics

The semantic aspect of a SlicStan program Γ, S that we are the most interested in is the final weight
w obtained after evaluating the program S . This is the value the program computes for the unnor-
malised joint density p∗(x) = p∗(D,θ ,Q) over the dataD, the model parameters θ , and generated

7For example, in our Stan backend for SlicStan, if such a statement is of level model, it will be executed as density contri-

bution, while if it is of level genqant, then it will be executed as a probabilistic assignment.
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4:10 M. I. Gorinova et al.

quantities Q of the program (see Section 2.6). Given a program Γ, S , we separate the typing en-
vironment Γ into disjoint parts: Γσ and Γx, such that Γσ contains precisely the variables that are
deterministically assigned in S and Γx contains those that never get deterministically assigned; that
is, the variables x with respect to which we define the target unnormalised density p∗(x):

Γσ = {(x : T ) ∈ Γ | x ∈W (S)} Γx = Γ \ Γσ .

Similarly, any conforming state s |= Γ separates as σ � x with

σ = {(x �→ V ) ∈ s | x ∈W (S)} x = s \ σ .

Then, σ |= Γσ and x |= Γx.
The semantics of a SlicStan program Γσ , Γx, S is a function �S� on states σ |= Γσ and x |= Γx that

yields a pair of a state σ ′ and a weightw , such that:

�S�(σ )(x) = σ ′,w, where σ � x, S ⇓ σ ′ � x,w .

We will sometimes refer only to one of the two elements of the pair σ ,w . In those cases, we
use the notation: �S�s (σ )(x), �S�p (σ )(x) = �S�(σ )(x). We call �S�s the state semantics and �S�p the
density semantics of Γ, S . We will be particularly interested in the density semantics.
The function �S�p (σ ) is some positive function ϕ(x) of x. If x1, x2 is a partitioning of x and∫
ϕ(x)dx1 is finite, we sayϕ(x) is an unnormalised density corresponding to the normalised density

p(x1 | x2) = ϕ(x)/
∫
ϕ(x)dx1 over x1 and we write �S�p (σ )(x) ∝ p(x1 | x2). Sometimes, when σ is

clear from context, we will leave it implicit and simply write p(x) for p(x;σ ).
Next, we observe how the state and density semantics compose.

Lemma 2 (Semantics Composes). The state and density semantics compose as follows:

�S1;S2�s (σ )(x) = �S2�s (�S2�s (σ )(x))(x) �S1;S2�p (σ )(x) = �S1�p (σ )(x) × �S2�p (�S1�s (σ )(x))(x)

Throughout the article, we use the following notation to separate the store in a concise way.

Definition 4 (Γ�(s) or s�). For a typing environment Γ and a store s |= Γ, let Γ�(s) = {(x �→ V ) ∈

s | Γ(x) = (_, �)}. When it is clear which typing environment the notation refers to, we write
simply s� instead of Γ�(s).

Using this definition, we re-state the noninterference result in the following convenient form:

Lemma 3 (Noninterference of 	 Reformulated). Let Γσ , Γx 	 S be a well-typed SlicStan

program. For all levels � ∈ {data,model, genquant}, there exist unique functions f� , such that for

all σ |= Γσ , x |= Γx and σ ′ such that �S�s (σ )(x) = σ ′, σ ′
�
= f�({σ�′, x�′ | �

′ ≤ �}).

2.5 Shredding and Translation to Stan

A key aim of SlicStan is to rearrange the input program into three phases of execution, corre-
sponding to the levels of the type system: data preprocessing, core model code to run MCMC or
another inference algorithm on, and genqant, or generated quantities, which amount to sample
post-processing after inference is performed. The motivation for these phases is that they all natu-
rally appear in the workflow of probabilistic programming. The blocks of the Stan are built around
this phase distinction, and compilation of SlicStan to Stan and comparable backends requires
it.
The phases impose different restrictions on the code and make it incur differing computational

costs. The model phase is by far the most expensive to evaluate: Code in this phase tends to be ex-
ecuted repeatedly within the inner loop of an inference algorithm like an MCMC method. Further,
it tends to be automatically differentiated [Griewank and Walther 2008] in case gradient-based
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Conditional Independence by Typing 4:11

inference algorithms are used, which restricts the available programming features and increases
the space and time complexity of evaluation. Type inference in SlicStan combined with shredding
allows the user to write their code without worrying about the performance of different phases,
as code will be shredded into its optimal phase of execution.
The shredding relation is in the core of this rearrangement. Shredding takes a SlicStan statement

S and splits it into three single-level statements (Definition 5). That is, S �Γ SD , SM , SQ means we
split S into sub-statements SD , SM , SQ , where SD mentions only data variables, SM mentions data
and model variables, and SQ is the rest of the program, and such that the composition SD ;SM ;SQ

behaves the same as the original program S . When combined with type inference, shredding auto-
matically determines optimal statement placement, such that only necessary work is executed in
the “heavy-weight” model part of inference.
We adapt the shredding from Gorinova et al. [2019], so the following holds for the three sub-

statements of a shredded well-typed SlicStan program Γ 	 S :

• SD implements deterministic data preprocessing: No contributions to the density are allowed.
• SM is the inference core: It is the least restrictive of the three slices—either or both of SD and
SQ can be merged into SM . It can involve contributions to the density that require advanced
inference for sampling. Therefore, this is the part of the program that requires the most
computation during inference (in Stan, what is run inside HMC).

• SQ represents sample post-processing: Any contributions to the density are generative. That
is, they can immediately be implemented using draws from random number generators.

In terms of inference, we can run SD once as a pre-processing step. Then use a suitable inference
algorithm for SM (in the case of Stan, that is HMC, but we can use other MCMC or VI algorithms),
and, finally, we use ancestral sampling for SQ .

8

Shredding Relation

S �Γ (SD , SM , SQ ) statement shredding

Shredding Rules for Statements:

(Shred Assign)
Γ(L) = (_,data) → SD = L = E, SM = SQ = skip

Γ(L) = (_,model) → SM = L = E, SD = SQ = skip

Γ(L) = (_, genqant) → SQ = L = E, SD = SM = skip

L = E �Γ (SD , SM , SQ )

(Shred Seq)
S1 �Γ SD1 , SM1 , SQ1 S2 �Γ SD2 , SM2 , SQ2

S1;S2 �Γ (SD1 ;SD2 ), (SM1 ;SM2 ), (SQ1 ;SQ2 )

(Shred Factor)
Γ(E) = data → SD = factor(E), SM = SQ = skip

Γ(E) = model → SM = factor(E), SD = SQ = skip

Γ(E) = genqant → SQ = factor(E), SD = SM = skip

factor(E) �Γ (SD , SM , SQ )

(Shred Skip)

skip �Γ (skip, skip, skip)

8Ancestral (or forward) sampling refers to the method of sampling from a joint distribution by individually sampling

variables from the factors constituting the joint distribution. For example, we can sample from p(x, y) = p(x )p(y | x ) by

randomly generating x̂ according to p(x ), and then randomly generating ŷ according to p(y | x = x̂ ).
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4:12 M. I. Gorinova et al.

(Shred Sample)
Γ(L,E1, . . . ,En) = data → SD = L ∼ d(E1, . . . ,En), SM = SQ = skip)

Γ(L,E1, . . . ,En) = model → SM = L ∼ d(E1, . . . ,En), SD = SQ = skip)

Γ(L,E1, . . . ,En) = genqant → SQ = L ∼ d(E1, . . . ,En), SD = SM = skip)

L ∼ d(E1, . . . ,En) �Γ (SD , SM , SQ )

(Shred If)
S1 �Γ (SD1 , SM1 , SQ1) S2 �Γ (SD2 , SM2 , SQ2)

if(д) S1 else S2 �Γ (if(д) SD1 else SD2), (if(д) SM1 else SM2 ), (if(д) SQ1 else SQ2)

(Shred For)
S �Γ (SD , SM , SQ )

for(x in д1 : д2) S �Γ (for(x in д1 : д2) SD ), (for(x in д1 : д2) SM ), (for(x in д1 : д2) SQ )

Here, Γ(E) (Definition 14) gives the principal type of an expression E, while Γ(E1, . . . ,En) (Defi-
nition 15) gives the least upper bound of the principal types of E1, . . . ,En .
The (Shred If) and (Shred For) rules make sure to shred if and for statements so they are

separated into parts that can be computed independently at each of the three levels. Note that the
usage of if and for guards is simplified to avoid stating rules for when the guard(s) are of different
levels. For example, if we have a statement if(E) S1 else S2, where E is of level model, then we
cannot access E at level data, thus the actual shredding rule we would use is:

(Shred If Model Level)
S1 �Γ (SD1 , SM1 , SQ1) S2 �Γ (SD2 , SM2 , SQ2 )

if(д) S1 else S2 �Γ skip, (if(д) SD1 ;SM1 else SD2 ;SM2 ), (if(д) SQ1 else SQ2)

These shredding rules follow very closely those given by Gorinova et al. [2019]. The main dif-
ference is that sample statements (L ∼ d(E1, . . . ,En)) are allowed to be of genqant level and can
be included in the last, generative slice of the program (see rule (Shred Sample)). In other words,
such genqant sample statements are those statements that can be interpreted as probabilistic
assignment (using random number generator functions) to directly sample from the posterior dis-
tribution according to ancestral sampling.
We provide proofs for the following key results in Appendix A: Shredding produces single-level

statements (Definition 5 and Lemma 4) and shredding is semantics preserving (Lemma 6).
Intuitively, a single-level statement of level � is one that updates only variables of level �.

Definition 5 (Single-level Statement Γ 	 �(S)). We define single-level statements S of level � with
respect to Γ (written Γ 	 �(S)), by induction:

Single Level Statements:

(Assign Single)
Γ(x) = (_, �)

Γ 	 �(x[E1] · · · [En] = E)

(Seq Single)
Γ 	 �(S) Γ 	 �(S ′)

Γ 	 �(S ;S ′)

(For Single)
Γ,x : (int, �) 	 �(S)

Γ 	 �(for(x in E1 : E2)S)

(If Single)
Γ 	 �(S1) Γ 	 �(S2)

Γ 	 �(if(E) S1 else S2)

(Skip Single)

Γ 	 �(skip)

(Factor Single)
Γ 	 E : � ∀�′ < �.Γ � E : �′

Γ 	 �(factor(E))
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(Sample Single)
Γ 	 L ∼ d(E1, . . . ,En) : � ∀�′ < �.Γ � L ∼ d(E1, . . . ,En) : �

′

Γ 	 �(L ∼ d(E1, . . . ,En))

Lemma 4 (Shredding Produces Single-level Statements).

Γ 	 S ∧ S �Γ (SD , SM , SQ ) =⇒ Γ 	 data(SD ) ∧ Γ 	 model(SM ) ∧ Γ 	 genquant(SQ ).

We prove a result about the effect of single-level statements on the store and weight of well-
typed programs (Lemma 5). Intuitively, this result shows that a single-level statement of level �
acts on the state and weight in a way that is independent of levels greater than �.

Lemma 5 (Property of Single-level Statements). Let Γσ , Γx, S be a SlicStan program, such

that S is a single-level statement of level �, Γ 	 �(S). Then there exist unique functions f and ϕ, such

that for any σ , x |= Γσ , Γx:

�S�(σ )(x) = f (σ≤�, x≤�) ∪ σ>�, ϕ(σ≤�)(x≤�),

where we write σ≤� = {(x �→ V ) ∈ σ | Γσ (x) = (_, �)} and σ>� = σ \ σ≤� .

Lemma 6 (Semantic Preservation of �Γ). If Γ 	 S : data and S �Γ (SD , SM , SQ ), then �S� =
�SD ;SM ; SQ �.

2.6 Density Factorisation

As an extension of Gorinova et al. [2019], we show that shredding induces a natural factorization
of the density implemented by the program: p(D,θ ,Q) = p(θ ,D)p(Q | θ ,D).9 This means that we
can separate the program into a deterministic preprocessing part, a part that uses a “heavy-weight”
inference algorithm, such as HMC, and a part that uses simple ancestral sampling.

Theorem 1 (Shredding Induces a Factorisation of the Density). Suppose Γ 	 S : data and

S �Γ SD , SM , SQ and Γ = Γσ , ΓD , Γθ , ΓQ . For all σ , D, θ , and Q : if σ ,D,θ ,Q |= Γσ , ΓD , Γθ , ΓQ , and

�S�p (σ )(D,θ ,Q) ∝ p(D,θ ,Q) and W̃ (SQ ) = dom(ΓQ ) then:

(1) �SM �p (σD )(D,θ ,Q) ∝ p(θ ,D),
(2) �SQ �p (σM )(D,θ ,Q) = p(Q | θ ,D),

where σD = �SD�s (σ )(D,θ ,Q), σM = �SM �s (σD )(D,θ ,Q), and p(D,θ ,Q) = p(D,θ )p(Q | D,θ ).

Proof. This follows by proving a more general result using induction on the structure of S ,
Lemma 6, Lemma 2, and Lemma 4. See Appendix A for full proof. �

The given SlicStan program S defines a joint densityp(D,θ ,Q). By shredding, we obtain a model
block SM that defines p(θ ,D) and a genqant block SQ that defines p(Q | θ ,D). Hence, inference
in Stan using these blocks recovers the semantics p(D,θ ,Q) of the SlicStan program.

3 THEORY: CONDITIONAL INDEPENDENCE BY TYPING

This section presents the main theoretical contribution of the article: an information flow type sys-
tem for conditional independence. We present a type system and show that a well-typed program
in that system is guaranteed to have certain conditional independencies in its density semantics.
As a reminder, determining the conditional independence relationships between variables is impor-
tant, as such relationships capture a qualitative summary of the specified model and can facilitate
more efficient inference. For example, in Section 4, we present an application that uses our type

9Here, p(Q | θ, D) denotes the conditional probability density of Q , given the values of θ and D.
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system: a semantic-preserving transformation that allows for discrete parameters to be introduced
in SlicStan, which was previously not possible due to efficiency constraints.
Our aim is to optimise probabilistic programs by transforming abstract syntax trees or interme-

diate representations (as in the Stan compiler) that are close to abstract syntax. Hence, we seek a
way to compute conditional dependencies by a type-based source analysis, rather than by explicitly
constructing a separate graphical representation of the probabilsitic model.
Given three disjoint sets of random variables (RVs) A, B, and C , we say that A is condition-

ally independent of B given C , written A ⊥⊥ B | C , if and only if their densities factorise as
p(A,B | C) = p(A | C)p(B | C). (An alternative formulation states that A ⊥⊥ B | C if and only
if p(A,B,C) = ϕ1(A,C)ϕ2(B,C) for some functions ϕ1 and ϕ2.) Deriving conditional independen-
cies in the presence of a graphical model (such as a factor graph10) is straightforward, which is why
some PPLs focus on building and performing inference on graphs (for example, Infer.NET [Minka
et al. 2014]). However, building and manipulating a factor graph in generative PPLs (e.g., Gen
[Cusumano-Towner et al. 2019], Pyro [Uber AI Labs 2017], Edward2 [Tran et al. 2018], PyMC3
[Salvatier et al. 2016]), or imperative density-based PPLs (SlicStan, Stan) is not straightforward.
Dependencies between modelled variables might be separated by various deterministic transfor-
mations, making it harder to track the information flow and—more importantly—more difficult to
isolate parts of the model needed for transformations such as variable elimination. In the case of
SlicStan, each program can still be thought of as specifying a factor graph implicitly. In this article,
we focus on the problem of how to work with conditional independence information implicitly
encoded in a probabilistic program, without having access to an explicit factor graph. For example,
consider Program A:

The factor graph above represents the factorisation of the joint density function over the param-
eters of the program: p(z1, z2,y1,y2) = b(z1 | θ0)b(y1 | foo(1, z1))b(z2 | foo(θ0, z1))b(y2 | foo(1, z2)).
Each of the four factors is represented by a square node in the graph, and it connects to the vari-
ables (circle nodes) that the factor depends on. This representation is useful for thinking about
conditional independencies. For example, it is immediately evident from the graph that variables
that connect to the same square node cannot be conditionally independent, as they share a fac-
tor. More generally, if there is an (uninterrupted by observed variables) direct path between two
variables, then these two variables are not conditionally independent [Frey 2002].
When looking at the factor graph, it is straightforward to see that z1 and z2 are not conditionally

independent, and neither are z1 and y1 nor z2 and y2, as there is a direct path between each of
these pairs. When looking at the program, however, we need to reason about the information flow
through the deterministic variables θ1,ϕ1 and ϕ2 to reach the same conclusion.

10A factor graph is a bipartite graph that shows the factorisation of a multivariable function. Variables are circular nodes,

and each factor of the function is a square node. An edge exists between a variable node x and a factor node ϕ if and only

if ϕ is a function of x . See Program A and its corresponding factor graph as an example, or Koller and Friedman [2009] for

details.
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Moreover, manipulation of the program based on conditional dependencies can also be more
difficult without a factor graph. As an example, consider the problem of variable elimination (which
we discuss inmore details in Section 4.3). If we are to eliminate z1 in the factor graph, using variable
elimination, we would simply merge the factors directly connected to z1, sum over z1 and attach
the new factors to all former neighbours of z1 (in this case y1 and z2, but not y2). However, in the
case of an imperative program, we need to isolate all the statements that depend on z1 and group
them together without changing the meaning of the program beyond the elimination:

We need a way to analyse the information flow to determine conditional independencies be-
tween variables. In the example above, we can leave y2 out of the elimination of z1, because z1 and
y2 are conditionally independent given z2, written z1 ⊥⊥ y2 | z2.
To analyse the information flow, we introduce a novel type system, which we refer to via the

relation 	2. It works with a lower semi-lattice ({l1, l2, l3}, ≤) of levels, where l1 ≤ l2 and l1 ≤ l3
and l2 and l3 are unrelated. (Recall that a lower semi-lattice is a partial order in which any two
elements �1, �2 have a greatest lower bound �1 � �2 but do not always have an upper bound.) A
well-typed program induces a conditional independence relationship for the (random) variables

(RVs) in the program: l2-RVs ⊥⊥ l3-RVs | l1-RVs.
In the example above, this result allows us to eliminate l2-variables (z1), while only consid-

ering l1-variables (y1 and z2) and knowing l3-variables (y2) are unaffected by the elimination.
We can use a shredding relation almost identical to that of Section 2.5 to slice the program in a
semantics-preserving way and isolate the sub-statements needed for elimination. Here, θ1 and ϕ1
must be of level l2 for the program to be well-typed. Thus, all statements involving z1,θ1, or ϕ1
are of level l2, and the shredding relation groups them together inside of the elimination loop
for z1.
Figure 2 shows the relationship between the levels l1, l2, l3 and the shredding relation. Informa-

tion flows from l1 to l2 and l3, but there is no flow of information between l2 and l3 (Figure 2(b)).
A 	2-well-typed program S is shredded by �Γ into S1, S2, and S3, where S1 only mentions l1 vari-
ables, S2 only mentions l1 and l2 variables, and S3 only mentions l1 and l3 variables. This can
be understood as a new factor graph formulation of the original program S , where each of the
substatements S1, S2, S3 defines a factor connected to any involved variables (Figure 2(a)).
Our approach relies on determining the l1, l2, l3 level types by type inference, as they are

not intrinsic to the variables or program in any way, but are designed solely to determine
conditional independence relationships. These types are not accessible by the probabilistic pro-
gramming user. Our type system makes it possible to answer various questions about conditional
independence in a program. Assuming a program defining a joint density p(x), we can use the type
system to:

(1) Check if x2 ⊥⊥ x3 | x1 for some partitioning x = x1, x2, x3.
(2) Find an optimal variable partitioning. Given a variable x ∈ x, find a partitioning x =

x1, x2, x3, such that x ∈ x2, x2 ⊥⊥ x3 | x1, and x1 and x2 are as small as possible.
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Fig. 2. Intuition for the semi-lattice case l1 < l2 and l1 < l3, where x� is of level �. We get xl2 ⊥⊥ xl3 | xl1.

(3) Ask questions about the Markov boundary of a variable. Given two variables x and x ′, find
the partitioning x = x , x1, x2, such that x ⊥⊥ x1 | x2 and x2 is as small as possible. Is x

′ in x2?
In other words, is x ′ in the Markov boundary of x?

In the rest of Section 3, we give the 	2 type system (Section 3.1), state a noninterference result
(Lemma 7, Lemma 8) and show that semantics is preserved when shredding 	2-well-typed pro-
grams (Lemma 10). We present the type system and transformation rules in a declarative style.
The implementation relies on type inference, which we discuss in Section 4.4. We derive a result
about the way shredding factorises the density defined by the program (Theorem 2). We prove a
conditional independence result (Section 3.2, Theorem 3) and discuss the scope of our approach
with examples (Section 3.3).

3.1 The 	2 Type System

We introduce a modified version of SlicStan’s type system. Once again, types T range over pairs
(τ , �) of a base type τ , and a level type �, but levels � are one of l1, l2, or l3, which form a lower
semi-lattice ({l1, l2, l3}, ≤), where l1 ≤ l2 and l1 ≤ l3. This means, for example, that an l2
variable can depend on an l1 variable, but an l3 variable cannot depend on an l2 variable, as level
types l2 and l3 are incomparable.
The type system is a standard information flow type system, very similar to the 	 system in-

troduced in Section 2.2. We mark the only non-standard rules, (Sample2), (Factor2), and (Seq2),
which also differ from those of 	. (Sample2) and (Factor2) both have the same effect as an assign-
ment to an implicit weight variable that can be of any of the three levels. (Seq2) is a less restrictive
version of (Seq) and exactly as in Gorinova et al. [2019], and it makes sure the program can be
sliced later.
Note also the non-interference between l2 and l3 relies on the (PrimCall2) rule not being

derivable when the least upper bound
⊔n

i=1 �i does not exist.

Typing Rules for Expressions:

(ESub2)
Γ 	2 E : (τ , �) � ≤ �′

Γ 	2 E : (τ , �′)

(Var2)

Γ,x : T 	2 x : T

(Const2)
ty(c) = τ

Γ 	2 c : (τ , l1)

(Arr2)
Γ 	2 Ei : (τ , �) ∀i ∈ 1..n

Γ 	2 [E1, . . . ,En] : (τ [n], �)

(ArrEl2)
Γ 	2 E1 : (τ [n], �) Γ 	 E2 : (int, �)

Γ 	2 E1[E2] : (τ , �)

(PrimCall2)(f : τ1, . . . ,τn → τ )
Γ 	2 Ei : (τi , �i ) ∀i ∈ 1..n

Γ 	2 f (E1, . . . ,En) : (τ ,
⊔n

i=1 �i )
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(ArrComp2)
∀i = 1, 2.Γ 	2 Ei : (int, �) Γ,x : (int, �) 	 E : (τ , �) x � dom(Γ)

Γ 	2 [E | x in E1 : E2] : (τ [n], �)

(Target2)
Γ 	2 S : �′′ ∀�′ > �.RΓ	�′ (S) = ∅

Γ 	2 target(S) : (real, �)

Typing Rules for Statements:

(SSub2)
Γ 	2 S : �′ � ≤ �′

Γ 	2 S : �

(Assign2)
Γ(L) = (τ , �) Γ 	2 E : (τ , �)

Γ 	2 (L = E) : �

(Sample2)
Γ 	2 factor(D(L | E1, . . . ,En)) : �

Γ 	2 L ∼ Ddist(E1, . . . En) : �

(Factor2)
Γ 	2 E : (real, �)

Γ 	2 factor(E) : �

(Seq2)
Γ 	2 S1 : � Γ 	2 S2 : � S(S1, S2)

Γ 	2 (S1;S2) : �

(If2)
Γ 	2 E : (bool, �) Γ 	2 S1 : � Γ 	2 S2 : �

Γ 	2 if(E) S1 else S2 : �

(Skip2)

Γ 	2 skip : �

(For2)
Γ 	2 E1 : (int, �) Γ 	2 E2 : (int, �) Γ,x : (int, �) 	2 S : � x � dom(Γ) x �W (S)

Γ 	2 for(x in E1 : E2) S : �

We state and prove a noninterference result for 	2, which follows similarly to the result
for 	.

Lemma 7 (Noninterference of 	2). Suppose s1 |= Γ, s2 |= Γ, and s1 ≈� s2 for some �. Then for a

SlicStan statement S and expression E:

(1) If Γ 	2 E : (τ , �) and (s1,E) ⇓ V1 and (s2,E) ⇓ V2, then V1 = V2.
(2) If Γ 	2 S : � and (s1, S) ⇓ s ′1,w1 and (s2, S) ⇓ s ′2,w2, then s ′1 ≈� s

′
2.

Proof. (1) follows by rule induction on the derivation Γ 	2 E : (τ , �), and using that if Γ 	2 E :
(τ , �), x ∈ R(E) and Γ(x) = (τ ′, �′), then �′ ≤ �. (2) follows by rule induction on the derivation
Γ 	2 S : � and using (1). �

Once again, we derive a more convenient form of the noninterference result. Because the level
types l2 and l3 are not comparable in the order ≤, changes in the store at l2 do not affect the store
at l3 and vice versa.

Lemma 8 (Noninterference of 	2-well-typed Programs). Let Γσ , Γx, S be a SlicStan program,

and Γ 	2 S : l1. There exist unique functions f ,д, and h, such that for all σ |= Γσ , x |= Γx and σ ′ such

that �S�s (σ )(x) = σ ′:

σ ′
l1 = f (σl1, xl1), σ ′

l2 = д(σl1,σl2, xl1, xl2), σ ′
l3 = h(σl1,σl3, xl1, xl3).

Proof. Follows from noninterference (Lemma 7). �

Next, we extend the shredding relation from Section 2.5, and the concept of single-level state-
ments, to SlicStan programs that are well-typed with respect to 	2. This is done by simply treating
l1 as data, l2 as model, and l3 as genqant for the purpose of shredding. We include the full
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definition of shredding with respect to 	2 for completeness below. We use the same notation �Γ ,
and we generally treat the standard shredding relation from Section 2.5 and the conditional inde-

pendence shredding relation presented here, as the same relation, as there is no difference between
the two, other than the naming of levels.

Shredding Rules for Statements:

(Shred2 Assign)
Γ(L) = l1 → S1 = L = E, S2 = S3 = skip

Γ(L) = l2 → S2 = L = E, S1 = S3 = skip

Γ(L) = l3 → S3 = L = E, S1 = S2 = skip

L = E �Γ (S1, S2, S3)

(Shred2 Seq)

S1 �Γ S (1)1 , S
(1)
2 , S

(1)
3 S2 �Γ S (2)1 , S

(2)
2 , S

(2)
3

S1;S2 �Γ (S (1)1 ;S (2)1 ), (S (1)2 ;S (2)2 ), (S (1)3 ;S (2)3 )

(Shred2 Factor)
Γ(E) = l1 → S1 = factor(E), S2 = S3 = skip

Γ(E) = l2 → S2 = factor(E), S1 = S3 = skip

Γ(E) = l3 → S3 = factor(E), S1 = S2 = skip

factor(E) �Γ (S1, S2, S3)

(Shred2 Skip)

skip �Γ (skip, skip, skip)

(Shred2 Sample)
Γ(L,E1, . . . ,En) = l1 → S1 = L ∼ d(E1, . . . ,En), S2 = S3 = skip

Γ(L,E1, . . . ,En) = l2 → S2 = L ∼ d(E1, . . . ,En), S1 = S3 = skip

Γ(L,E1, . . . ,En) = l3 → S3 = L ∼ d(E1, . . . ,En), S1 = S2 = skip

L ∼ d(E1, . . . ,En) �Γ (S1, S2, S3)

(Shred2 If)

S1 �Γ S (1)1 , S
(1)
2 , S

(1)
3 S2 �Γ S (2)1 , S

(2)
2 , S

(2)
3

if(д) S1 else S2 �Γ (if(д) S (1)1 else S (2)1 ), (if(д) S (1)2 else S (2)2 ), (if(д) S (1)3 else S (2)3 )

(Shred2 For)
S �Γ S1, S2, S3

for(x in д1 : д2) S �Γ (for(x in д1 : д2) S1), (for(x in д1 : д2) S2), (for(x in д1 : д2) S3)

As before, shredding produces single-level statements, and shredding preserves semantics with
respect to 	2-well-typed programs.

Lemma 9 (Shredding Produces Single-level Statements, 	2). b If S �Γ S1, S2, S3, then Γ 	

l1(S1), Γ 	 l2(S2), and Γ 	 l3(S3).

Lemma 10 (Semantic Preservation of �Γ , 	2). If Γ 	2 S : l1 and S �Γ S1, S2, S3, then �S� =
�S1;S2;S3�.

In addition, we derive a result about the effect of single-level statements on the store and weight
of 	2-well-typed programs.

Lemma 11 (Property of 	2 Single-level Statements). Let Γσ , Γx, S be a SlicStan program, and

Γ 	2 S : l1, and S be single-level statement of level �, Γ 	2 �(S). Then there exist unique functions f
and ϕ, such that for any σ , x |= Γσ , Γx:

(1) If � = l1, then �S�(σ )(x) =
(
f (σl1, xl1),σl2,σl3

)
, ϕ(σl1)(xl1),

(2) If � = l2, then �S�(σ )(x) =
(
σl1, f (σl1,σl2, xl1, xl2),σl3

)
, ϕ(σl1,σl2)(xl1, xl2),

(3) If � = l3, then �S�(σ )(x) =
(
σl1,σl2, f (σl1,σl3, xl1, xl3)

)
, ϕ(σl1,σl3)(xl1, xl3).
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We give proofs for Lemma 9, 10, and 11 in Appendix A. These results allow us to derive the
second key theorem of this article, Theorem 2, which, similarly to Theorem 1, gives us a result on
the way shredding factorises the density defined by the program.
Here, and throughout the article, we use subscripts to refer to specific subsets of Γ. For example,

Γl1 stands for the subset of the parameters Γx, such that x : (τ , �) ∈ Γl1 if and only if x : (τ , �) ∈ Γx

and � = l1.

Theorem 2 (Shredding Induces a Factorisation of the Density (2)). Suppose Γ 	2 S : l1

with Γ = Γσ , Γl1, Γl2, Γl3, S �Γ S1, S2, S3. Then for σ ,θ 1,θ 2,θ 3 |= Γσ , Γ1, Γ2, Γ3, and σ ′,σ ′′ such that

�S1�(σ )(θ 1,θ 2,θ 3) = σ ′, and �S2�(σ
′)(θ 1,θ 2,θ 3) = σ ′′, we have:

(1) �S1�p (σ )(θ 1,θ 2,θ 3) = ϕ1(θ 1),
(2) �S2�p (σ

′)(θ 1,θ 2,θ 3) = ϕ2(θ 1,θ 2),
(3) �S3�p (σ

′′)(θ 1,θ 2,θ 3) = ϕ3(θ 1,θ 3).

Proof. By applying Lemma 11 to each of S1, S2, S3, which are single-level statements
(Lemma 9). �

3.2 Conditional Independence Result for 	2-Well-typed Programs

Theorem 3 states the key theoretical result of this article: the typing in programs well-typed with
respect to 	2 corresponds to a conditional independence relationship. In our proofs, we use the
factorisation characterisation of conditional independence stated by Definition 6. This is a well-
known result in the literature (e.g., Murphy [2012], Theorem 2.2.1).

Definition 6 (Characterisation of Conditional Independence as Factorisation). For variables x ,y, z
and a density p(x ,y, z), x is conditionally independent of y given z with respect to p, written
x ⊥⊥p y | z, if and only if ∃ϕ1,ϕ2 such that p(x ,y, z) = ϕ1(x , z)ϕ2(y, z).
An equivalent formulation is p(x ,y | z) = p(x | z)p(y | z).
We extend the notion of conditional independence to apply to a general functionϕ(x ,y, z), using

the notation x ⊥ϕ y | z to mean ∃ϕ1,ϕ2 such that ϕ(x ,y, z) = ϕ1(x , z)ϕ2(y, z).

Theorem 3 (	2-Well-typed Programs Induce a Conditional Independence Relationship).
For a SlicStan program Γ, S such that Γ 	2 S : l1, Γ = Γσ , Γl1, Γl2, Γl3, and for σ ,θ 1,θ 2,θ 3 |=

Γσ , Γl1, Γl2, Γl3, we have θ 2 ⊥ϕ θ 3 | θ 1.
When �S�p (σ )(θ 1,θ 2,θ 3) ∝ p(θ 1,θ 2,θ 3), we have θ 2 ⊥⊥p θ 3 | θ 1.

Proof. Let θ = θ 1,θ 2,θ 3, S �Γ S1, S2, S3, and let σ
′ and σ ′′ be such that σ ′ = �S1�s (σ )(θ ), and

σ ′′ = �S2�s (σ
′)(θ ). Then, by semantic preservation of shredding (Lemma 10), we have

�S�p (σ )(θ ) = �S1;S2;S3�p (σ )(θ ) by Lemma 10,

= �S1�p (σ )(θ ) × �S2�p (σ
′)(θ ) × �S3�p (σ

′′)(θ ) by Lemma 2,

= ϕ1(θ 1) × ϕ2(θ 1,θ 2) × ϕ3(θ 1,θ 3) by Theorem 2,

= ϕ ′(θ 1,θ 2) × ϕ3(θ 1,θ 3),

for some ϕ1,ϕ2, and ϕ3, ϕ
′(θ 1,θ 2) = ϕ1(θ 1) × ϕ2(θ 1,θ 2). Thus, θ 2 ⊥ϕ θ 3 | θ 1 by definition of ⊥ϕ .

Suppose ϕ(θ 1,θ 2,θ 3) ∝ p(θ 1,θ 2,θ 3). Then p(θ 1,θ 2,θ 3) = ϕ(θ 1,θ 2,θ 3) × Z = ϕ ′(θ 1,θ 2) ×
ϕ3(θ 1,θ 3) × Z = ϕ ′(θ 1,θ 2) × ϕ ′′(θ 1,θ 3), where Z is a constant and ϕ ′′(θ 1,θ 3) = ϕ3(θ 1,θ 3) × Z .
Therefore, θ 2 ⊥⊥p θ 3 | θ 1. �
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Fig. 3. The cross model, as written in SlicStan (a) with its DAG (b) and CI relationships (c).

3.3 Scope of the Conditional Independence Result

We have shown that 	2-well-typed programs exhibit a conditional independence relationship in
their density semantics. However, it is not the case that every conditional independence relation-
ship can be derived from the type system. In particular, we can only derive results of the form
θ 2 ⊥⊥ θ 3 | θ 1, where θ 1,θ 2,θ 3 is a partitioning of θ |= Γx for a SlicStan program Γσ , Γx, S . That is,
the relationship includes all parameters in the program.
We discuss the scope of our approach using an example and show a situation where trying to

derive a conditional independence result that does not hold results in a failure to type check.

3.3.1 Example of 	2-well-typed Program → Conditional Independence. Consider the Cross
Model in Figure 3, its SlicStan program (a), its directed graphical model, (b) and the conditional

independence (CI) relationships that hold for that model (c).
Out of themany relationships above, we can derive all relationships that involve all the variables.

That is, we can use our type system to derive all conditional independence relationships that hold
and are of the form A ⊥⊥ B | C , where A,B,C is some partitioning of {x1, . . . ,x5}. However, note
the following properties of conditional independence:

A ⊥⊥ B | C ⇐⇒ B ⊥⊥ A | C and A ⊥⊥ B1,B2 | C ⇐⇒ A ⊥⊥ B1 | C and A ⊥⊥ B2 | C .

Some of the relationships above can be combined andwritten in other ways, e.g., x1 ⊥⊥ x4 | x2,x3
and x1 ⊥⊥ x5 | x2,x3 can be written as a single relationship x1 ⊥⊥ x4,x5 | x2,x3, thus expressing
them as a single relationship that includes all variables in the program.
Exploring different mappings between the parameters x1, . . . ,x5 and the type levels l1, l2, l3,

for which the above program typechecks, we can derive all CI relationships that hold for this
model, except for one: x1 ⊥⊥ x2, which we cannot derive with our approach.

3.3.2 Conditional Independence Relationship does not hold → Type Error. Suppose that we try
to derive the result x1 ⊥⊥ x2 | x3,x4,x5. This does not hold for Program C. By Theorem 3, we have
that a program being 	2-well-typed implies that l2 ⊥⊥ l3 | l1. So, we can derive x1 ⊥⊥ x2 | x3,x4,x5
using Theorem 3 if we show that Γ 	2 S : l1, for Γ = {x1 : l2,x2 : l3,x3 : l1,x4 : l1,x5 : l1} and S
being Program C.
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To typecheck Γ 	2 S : l1, we need to typecheck x3 ∼ normal(x1 + x2, 1) at some level �. Thus,
by (Sample2) and (PrimCall2), x1, x2, and x3 need to typecheck at �. The types of x1, x2, and x3
are l2, l3, and l1, respectively. So, using (ESub2), it must be the case that l2 ≤ �, and l3 ≤ �, and

l1 ≤ �. However, no such level exists in our lower semi-lattice, as l2 and l3 have no upper bound.
Therefore, typechecking fails and we cannot derive x1 ⊥⊥ x2 | x3,x4,x5.

4 APPLICATION: DISCRETE PARAMETERS SUPPORT THROUGH A

SEMANTICS-PRESERVING TRANSFORMATION

This section presents the main practical contribution of our work: a semantics-preserving proce-
dure for transforming a probabilistic program to enable combined inference of discrete and con-
tinuous model parameters, which we have implemented for SlicStan. The procedure corresponds
to variable elimination (VE) for discrete parameters implemented in the probabilistic program
itself, which can be combined with gradient-based methods, such as HMC, to perform inference
on all parameters.
PPLs that have gradient-based methods in the core of their inference strategy do not, in gen-

eral, support directly working with discrete parameters. Stan disallows discrete model parameters
altogether, while Pyro [Uber AI Labs 2017] and Edward2 [Tran et al. 2018] throw a runtime er-
ror whenever discrete parameters are used within a gradient-based method. However, working
with discrete parameters in these languages is still possible, albeit in an implicit way. In many
cases, discrete parameters can be marginalised out manually, and then drawn conditionally on the
continuous parameters. Stan’s user guide shows many examples of this approach [Stan Develop-
ment Team 2019a, Chapter 7]. Pyro provides an on-request marginalisation functionality, which
automates this implicit treatment for plated factor graphs [Obermeyer et al. 2019].
The key idea of the workaround is to marginalise out the discrete parameters by hand, so the

resulting program corresponds to a density function that does not depend on any discrete param-
eters. That is, the user writes a program that computes

∑
θ d

p(θd ,θc ) = p(θc ), where the density
semantics of the original program was p(θd ,θc ) for discrete parameters θd and continuous param-
eters θc . This allows for continuous parameters of the program to be sampled with HMC, or other
gradient-based inference algorithms, whereas that would have not been possible for the program
with both discrete and continuous latent variables.
Because a SlicStan program computes a density directly, it is easy to modify it to marginalise a

variable. For a SlicStan program Γ, S , with parameters x |= Γx, and a discrete parameter z of type
int〈K〉, the program elim(int〈K〉z) S � factor(sum([target(S) | z in 1 : K])11 marginalises z:

�factor(sum([target(S) | z in 1 : K]))�p (σ )(x) =
K∑

z=1

�S�p (σ )(x) ∝
K∑

z=1

p(x) = p(x \ {z}).

In other words, we can easily marginalise out all discrete variables in a probabilistic program
by encapsulating the entire program in nested loops (nested array comprehension expressions in
our examples). However, this approach becomes infeasible for more than a few variables. Variable
elimination [Koller and Friedman 2009; Zhang and Poole 1994] exploits the structure of a model to
do as little work as possible. Consider the HMM snippet (Program D) with three discrete (binary)
hidden variables z1, z2, and z3, and observed outcomesy1,y2, andy3. Naively marginalising out the
hidden variables results in nested loops around the original program (Program E). In the general
case of N hidden variables, the resulting program is of complexity O(2N ).

11Here, we assume the function sum is available in the language.
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D. A Hidden Markov Model (HMM)...

int<2> z1 ∼ bernoulli(theta[1]);

int<2> z2 ∼ bernoulli(theta[z1]);

int<2> z3 ∼ bernoulli(theta[z2]);

data real y1 ∼ normal(phi[z1], 1);

data real y2 ∼ normal(phi[z2], 1);

data real y3 ∼ normal(phi[z3], 1);

E. Inefficient marginalisation
...

factor(sum [target(

factor(sum [target(

factor(sum [target(

z1 ∼ bernoulli(theta[1]);

z2 ∼ bernoulli(theta[z1]);

z3 ∼ bernoulli(theta[z2]);

y1 ∼ normal(phi[z1], 1);

y2 ∼ normal(phi[z2], 1);

y3 ∼ normal(phi[z3], 1);)

| z1 in 1:2]);

| z2 in 1:2]);

| z3 in 1:2]);

F. Efficient marginalisation...

real[2] f1 = // new factor on z2

[sum([target(

z1 ∼ bernoulli(theta[1]);

z2 ∼ bernoulli(theta[z1]);

y1 ∼ normal(phi[z1], 1); )

| z1 in 1:2])

| z2 in 1:2]

real[2] f2 = // new factor on z3

[sum([target(

factor(f1[z2]);

y2 ∼ normal(phi[z2], 1);

z3 ∼ bernoulli(theta[z2]); )

| z2 in 1:2])

| z3 in 1:2]

factor(sum [target(

factor(f2[z3]);

y3 ∼ normal(phi[z3], 1); )

| z3 in 1:2]);

However, this is wasteful: Expressions like z3 ∼ bernoulli(θ [z2]) do not depend on z1, and so
do not need to be inside of the z1-elimination loop. VE avoids this problem by pre-computing
some of the work. Program F implements VE for this model: When eliminating a variable, say,
z1, we pre-compute statements that involve z1 for each possible value of z1 and store the resulting
density contributions in a new factor, f1. This new factor depends on the variables involved in those
statements—the neighbours of z1—in this case that is solely z2. We then repeat the procedure for
the other variables, re-using the already computed factors where possible.
In the special case of an HMM, and given a suitable elimination order, variable elimination

recovers the celebrated forward algorithm [Rabiner 1989], which has time complexity O(N ). Our
goal is to automatically translate the source code of Program D to Program F, exploiting statically
detectable independence properties in the model.

4.1 Goal

Our ultimate goal is to transform a program S with continuous parameters θc , discrete parameters
θd , dataD, and density semantics �S�p (σ )(θd ,θc ,D) ∝ p(θd ,θc | D) into two subprograms: Shmc
and Sgen, such that:

• The density defined by Shmc is the marginal p(θc | D), with the discrete parameters θd

marginalised out. This first statement, Shmc, represents the marginalisation part of the pro-
gram (see Section 4.3) and allows for Hamiltonian Monte Carlo (HMC) sampling of θc ,
as it does not involve any discrete parameters.

• The density defined by Sgen is the conditional p(θd | θc ,D). This second statement, Sgen,
represents the generative part of the program (Section 4.5) and it encodes a way to draw θd

generatively, without using HMC or another heavy-weight inference algorithm.
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Similarly to the extended SlicStan slicing based on information-flow type inference, here we
also want to transform and slice into sub-programs, each focusing on a subset of the parameters
and preserving the overall meaning:

�S�p ∝ p(θd ,θc | D) = p(θc | D) × p(θd | θc ,D) ∝ �Shmc�p × �Sgen�p = �Shmc; Sgen�p .
12

Our approach performs a semantics-preserving transformation, guided by information-flow and
type inference, which creates an efficient program-specific inference algorithm automatically, com-
bining HMC with variable elimination.

4.2 Key Insight

The key practical insight of this work is to use the adaptation of SlicStan’s level types of Section 3
and its information flow type system to rearrange the program in a semantics-preserving way,
so discrete parameters can be forward-sampled, instead of sampled using a heavy-weight infer-
ence algorithm. We achieve this by a program transformation for each of the discrete variables.
Assuming that we are applying the transformation with respect to a variable z, we use:

• The top-level information flow type system Γ 	 S : data from Section 2.2, which involves the
level types data ≤ model ≤ genqant. This partitions the modelled variables x into data
D, model parameters θ , and generated quantities Q . When we use type inference for 	 in
conjunction with shredding S �Γ SD , SM , SQ (Section 2.5), we slice the statement S into a
data part SD (involving only variables in D), a non-generative part SM (involvingD and θ ),
and a generative part SQ (involving D, θ , and Q).

• The conditional independence information flow type system, Γ 	2 S : l1 from Section 3, which
uses a lower semi-lattice of level types l1 ≤ l2, l1 ≤ l3. A 	2-well-typed program induces
a conditional independence relationship: l2-variables are conditionally independent of l3-
variables given l1-variables: xl2 ⊥⊥ xl3 | xl1, where x = xl1, xl2, xl3 = θ ,D. When
we use type inference for 	2 in conjunction with shredding S �Γ S1, S2, S3 (Section 2.5), we
isolate S2: a part of the program that does not interfere with S3. We can marginalise out
l2-variables in that sub-statement only, keeping the rest of the program unchanged.

• The discrete variable transformation relation Γ, S
z
−→ Γ′, S ′ (defined in Section 4.6.2), which

takes a SlicStan program Γ, S that has discrete model parameter z, and transforms it to a
SlicStan program Γ′, S ′, where z is no longer a model-level parameter but instead one of
level genqant. We define the relation in terms of 	 and 	2 as per the (Elim Gen) rule.

4.3 Variable Elimination

VE [Koller and Friedman 2009; Zhang and Poole 1994] is an exact inference algorithm often phrased
in terms of factor graphs. It can be used to compute prior or posterior marginal distributions
by eliminating, one-by-one, variables that are irrelevant to the distribution of interest. VE uses
dynamic programming combined with a clever use of the distributive law of multiplication over
addition to efficiently compute a nested sum of a product of expressions.
We already saw an example of variable elimination in Section 3 (Programs A and B). The idea

is to eliminate (marginalise out) variables one-by-one. To eliminate a variable z, we multiply all
of the factors connected to z to form a single expression, then sum over all possible values for z
to create a new factor, remove z from the graph, and finally connect the new factor to all former
neighbours13of z. Recall Program D, with latent variables z1, z2, z3 and observed data y = y1,y2,y3.

12This expression is simplified for readability.
13“Neighbours” refers to the variables that are connected to a factor that connects to z .
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Fig. 4. Step-by-step example of variable elimination.

Figure 4 shows the VE algorithm step-by-step applied to this program. We eliminate z1 to get the
marginal on z2 and z3 (Figure 4(a) and (b)), then eliminate z2 to get the marginal on z3 (Figure 4(c)
and (d)).

4.4 Conditional Independence Relationships and Inferring the Markov Blanket

The key property we are looking for to be able to marginalise out a variable independently of
another is conditional independence given neighbouring variables. If we shred a 	2-well-typed
program into S1, S2, and S3, and think of �S1�p , �S2�p , and �S3�p as factors, it is easy to visualise
the factor graph corresponding to the program: it is as in Figure 5(a). Eliminating all xl2 variables,
ends up only modifying the �S2�p factor (Figure 5(b)).
When using VE to marginalise out a parameter z, we want to find the smallest set of other

parameters A, such that z ⊥⊥ B | A, where B is the rest of the parameters. The set A is also called
z’s minimal Markov blanket or Markov boundary. Once we know this set, we can ensure that we
involve the smallest possible number of variables in z’s elimination, which is important to achieve
a performant algorithm.
For example, when we eliminate z1 in Program D, both z2 and y1 need to be involved, as z1

shares a factor with them. By contrast, there is no need to include y2, z3,y3 and the statements
associated with them, as they are unaffected by z1, given z2. The variables y1 and z2 form z1’s
Markov blanket: Given these variables, z1 is conditionally independent of all other variables. That
is, z1 ⊥⊥ z3,y2,y3 | z2,y1.
The type system we present in Section 3 can tell us if the conditional independence relationship

xl2 ⊥⊥ xl3 | xl1 holds for a concrete partitioning of the modelled variables x = xl1, xl2, xl3. But
to find the Markov blanket of a variable z we want to eliminate, we rely on type inference. We
define a performance ordering between the level types l3 ≺ l1 ≺ l2, where our first preference
is for variables to be of level l3, level l1 is our second preference, and l2 is our last resort. In
our implementation, we use bidirectional type-checking [Pierce and Turner 2000] to synthesise
hard constraints imposed by the type system, and resolve them, while optimising for the soft
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Fig. 5. The factor graph and VE induced by the shedding S �Γ S1, S2, S3 according to the semi-lattice l1 ≤

l2, l3.

constraints given by the ≺ ordering. This maximises the number of variables that are conditionally
independent of z given its blanket (l3) and minimises the number of variables forming the blanket
(l1). Fixing z to be of l2 level, and l2 being the least preferred option, ensures that only z and
variables dependent on z through deterministic assignment are of that level.

4.5 Sampling the Discrete Parameters

Variable elimination gives a way to efficiently marginalise out a variable z from a model defining
density p(x), to obtain a new density p(x \ {z}). In the context of SlicStan, this means we have the
tools to eliminate all discrete parameters θd , from a density p(D,θc ,θd ) on data D, continuous
parameters θc and discrete parameters θd . The resulting marginal

∑
θ d

p(D,θc ,θd ) = p(D,θc )

does not involve discrete parameters and, therefore, we can use gradient-based methods to infer
θc . However, the method so far does not give us a way to infer the discrete parameters θd .
To infer these, we observe that p(x) = p(x \ {z})p(z | x \ {z}), which means that we can

preserve the semantics of the original model (which defines p(x)), by finding an expression for
the conditional p(z | x \ {z}). If x1, x2 is a partitioning of x \ {z} such that z ⊥⊥ x2 | x1, then
(from Definition 6) p(x) = ϕ1(z, x1)ϕ2(x1, x2) for some functions ϕ1 and ϕ2. Thus, p(z | x \ {z}) =
ϕ1(z, x1) · (ϕ2(x1, x2)/p(x \ {z})) ∝ ϕ1(z, x1).
In the case when z is a discrete variable of finite support, we can calculate the conditional prob-

ability exactly: p(z | x \ {z}) =
ϕ1(z,x1)∑
z ϕ1(z,x1)

. We can apply this calculation to the factorisation of a

program Γ 	2 S that is induced by shredding (Theorem 2). In that case, xl2, xl1, �S2�p play the
roles of z, x1, and ϕ1, respectively. Consequently, we obtain a formula for drawing xl2 conditional

on the other parameters: xl2 ∼ categorical([
�S2�p (xl2,xl1)∑

xl2
�S2�p (xl2,xl1)

| xl2 ∈ supp(xl2)]).

4.6 A Semantics-preserving Transformation Rule

In this section, we define a source-to-source transformation that implements a single step of vari-
able elimination. The transformation re-writes a SlicStan program Γ, S with a discrete model-level
parameter z, to a SlicStan program, where z is a genqant-level parameter. Combining the rule
with the shredding presented in Section 2 results in support for efficient inference (see Section 4.8
for discussion of limitations) of both discrete and continuous random variables, where continu-
ous variables can be inferred using gradient-based methods, such as HMC or variational inference,
while discrete variables are generated using ancestral sampling. The transformation allows for
SlicStan programs with explicit use of discrete parameters to be translated to Stan. We show a
step-by-step example of our discrete parameter transformation in Section 4.7.

4.6.1 The ϕ, elim, and gen derived forms. We introduce three derived forms that allow us to
state the rule concisely.
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Variable Elimination Derived Forms

elim(int〈K〉 z) S � factor(sum( [target(S) | z in 1 :K] ))
ϕ(int〈K1〉 z1, . . . , int〈KN 〉 zN ) S

� [. . . [target(S) | z1 in 1 : K1] | · · · | zN in 1 : KN ]

gen(int〈K〉 z) S � z ∼ categorical( [target(S) | z in 1 : K] )

The elimination expression elim(int〈K〉z) S adds a new factor that is equivalent to marginal-

ising z in S . In other words, �elim(int〈K〉z) S�p (σ )(x) =
∑K

z=1�S�p (σ )(x) (see Lemma 14). A
ϕ-expression ϕ(int〈K1〉 z1, . . . , int〈KN 〉 zN ) S simply computes the density of the statement S
in a multidimensional array for all possible values of the variables z1, . . . zN . In other words,
�(f = ϕ(int〈K1〉 z1, . . . , int〈KN 〉 zN ) S) ; factor(f [z1] . . . [zN ])�p (σ )(x) = �S�p (σ )(x) (Lemma 14).
The ϕ-expression allows us to pre-compute all the work that we may need to do when marginal-
ising other discrete variables, which results in efficient nesting. Finally, the generation expression
computes the conditional of a variable z given the rest of the parameters, as in Section 4.5 (see
Lemma 15).

4.6.2 Eliminating a Single Variable z. The (Elim Gen) rule below specifies a semantics-
preserving transformation that takes a SlicStan program with a discrete model-level parameter
z, and transforms it to one where z is genqant-level parameter. In practice, we apply this rule
once per discrete model-level parameter, which eliminates those parameters one-by-one, similarly
to the variable elimination algorithm. And like in VE, the ordering in which we eliminate those
variables can impact performance.
The (Elim Gen) rule makes use of two auxiliary definitions that we define next. First, the neigh-

bours of z, Γne, are defined by the relation ne(Γ, Γ
′, z) (Definition 7), which looks for non-data and

non-continuous l1-variables in Γ′.

Definition 7 (Neighbours of z, ne (Γ, Γ′, z)). For a 	 typing environment Γ, a 	2 typing environ-
ment Γ′ = Γ′

σ , Γ
′
x , and a variable z ∈ dom(Γ′

x), the neighbours of z are defined as:

ne(Γ, Γ′, z) � {x : (τ , �) ∈ Γ′
x | � = l1 and Γ(x) = (int〈K〉,model) for some K}.

Second, st(S2) (Definition 8) is a statement that has the same store semantics as S2, but density
semantics of 1: �st(S2)�s = �S2�s , but �st(S2)�p = 1. This ensures that the transformation preserves
both the density semantics and the store semantics of S and is needed because gen(z)S2 discards
any store computed by S2, thus only contributing to the weight.

Definition 8. Given a statement S , we define the statement st(S) by replacing all factor(E)- and
L ∼ d(E1, . . . ,En)-substatements in S by skip (see Appendix A for the precise definition).

The elim-gen rule:

(Elim Gen)
Γ(z) = (int〈K〉,model) Γne = ne(Γ, ΓM , z) S ′ = SD ;S

′
M ;SQ

S ′M = S1; f = ϕ(Γne){elim(int〈K〉z) S2}; factor(f [dom(Γne)]);S3; gen(z)S2; st(S2)

Γ 	 S : data S �Γ SD , SM , SQ Γ
z
−→ ΓM ΓM 	2 SM : l1 SM �ΓM

S1, S2, S3 Γ′ 	 S ′ : data

Γ, S
z
−→ Γ′, S ′

We can use the (Elim Gen) rule to transform a SlicStan program, with respect to a parameter z,
as described by Algorithm 1. This involves three main steps:
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ALGORITHM 1: Single step of applying (Elim Gen)

Arguments: (Γ,S), z // A program (Γ,S); the variable z to eliminate
Requires: Γ 	 S : data // (Γ,S) is well-typed
Returns: (Γ′,S ′) // The transformed program

1: Slice (Γ,S) into SD ,SM ,SQ according to S �Γ SD ,SM ,SQ .

2: Derive incomplete ΓM from Γ based on Γ
z
−→ ΓM . // data of Γ is of level l1 in ΓM .

3: // Continuous model var. of Γ are l1 in ΓM .
4: // z is of level l2 in ΓM .
5: // All other model variables are given
6: // a type level placeholder in ΓM .
7: Infer missing types of ΓM according to ΓM 	2 SM : l1.
8: Slice (ΓM ,SM ) into S1,S2,S3 according to SM �ΓM

S1,S2,S3.
9:

10: Γne = ne(Γ, ΓM , z) // Determine the discrete neighbours of z.
11: // Eliminate z and re-generate z.S ′M = (S1;

f = ϕ(Γne){elim(int〈K〉z) S2};

factor(f [dom(Γne)]);

S3;

gen(z)S2;

st(S2))

12: S ′ = SD ;S
′
M ;SQ

13: Infer an optimal Γ′ according to Γ′ 	 S ′ : data
14: return (Γ′,S ′)

(1) Separate out SM—the model-level sub-part of S—using the top-level type system 	 (line 1 of
Algorithm 1).

(2) Separate out S2—the part of SM that involves the discrete parameter z—using the conditional
independence type system 	2 (lines 2–8).

(3) Perform a single VE step by marginalising out z in S2 and sample z from the conditional
probability specified by S2 (lines 10–11).

All other sub-statements of the program, SD , S1, S3, and SQ , stay the same during the transfor-
mation. By isolating S2 and transforming only this part of the program, we make sure we do not
introduce more work than necessary when performing variable elimination.
To efficientlymarginalise out z, wewant to find theMarkov boundary of z given all data and con-

tinuous model parameters: The data is given, and marginalisation happens inside the continuous
parameters inference loop, so we can see continuous parameters as given for the purpose of dis-
crete parameters marginalisation. Thus, we are looking for the relationship: z ⊥⊥ θd2 | D,θc ,θd1,
whereD is the data, θc are the continuous model-level parameters, θd1 is a subset of the discrete
model-level parameters that is as small as possible (the Markov blanket), and θd2 is the rest of the
discrete model-level parameters. We can find an optimal partitioning of the discrete parameters
θd1,θd2 that respects this relationship of interest using the type system from Section 3 together
with type inference.
The judgement ΓM 	2 SM : l1 induces a conditional independence relationship of the form

xl2 ⊥⊥ xl3 | xl1, where x |= Γx (Theorem 3). The relation Γ
z
−→ ΓM (Definition 9) constrains the

form of ΓM based on Γ. This is needed to make sure we are working with a relationship of the form
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we are interested in—z ⊥⊥ θd2 | D,θc ,θd1—and that base types τ are the same between Γ and ΓM .

In particular, Γ
z
−→ ΓM constrains z to be the only l2 parameter in ΓM and all data and continuous

model-level parameters of Γ are l1 in ΓM . Note, dom(ΓM ) ⊆ dom(Γ) and ΓM only contains variables
that are of level model and below in Γ. Variables that are of level genqant in Γ are not in ΓM .

Definition 9 (Γ
z
−→ Γ′). For a 	 typing environment Γ and a 	2 typing environment Γ′, a variable

z and a statement S , we have:

Γ
z
−→ Γ′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γ(z) = (τ ,model) and Γ′
x,l2 = {z : τ , l2} for some τ

x : (τ , �) ∈ Γ such that � ≤ model ⇐⇒ x : (τ , �′) ∈ Γ′ for some �′ ∈ {l1, l2, l3}

x : (τ ,data) ∈ Γ → x : (τ , l1) ∈ Γ′

x : (τ ,model) ∈ Γx and τ = real or τ = real[]...[] → x : (τ , l1) ∈ Γ′.

Following convention from earlier in the article, we use level subscripts to refer to specific sub-
sets of Γ: In the above definition, Γ′

x,l2 refers to the subset of parameters x in Γ′, which are of

level l2.

4.7 Marginalising Multiple Variables: An Example

To eliminate more than one discrete parameter, we apply the (Elim Gen) rule repeatedly. Here, we
work through a full example, showing the different steps of this repeated (Elim Gen) transforma-
tion.
Consider an extended version of the HMM model from the beginning of this section (Program

D), reformulated to include transformed parameters:

G. An extended HMM

S = real[2] phi ∼ beta(1, 1);

real[2] theta ∼ beta(1, 1);

real theta0 = theta[0];

int<2> z1 ∼ bernoulli(theta0);

real theta1 = theta[z1];

int<2> z2 ∼ bernoulli(theta1);

real theta2 = theta[z2];

int<2> z3 ∼ bernoulli(theta2);

real phi1 = phi[z1];

real phi2 = phi[z2];

real phi3 = phi[z3];

data real y1 ∼ normal(phi1, 1);

data real y2 ∼ normal(phi2, 1);

data real y3 ∼ normal(phi3, 1);

real theta3 = theta[z3];

int genz ∼ bernoulli(theta4);

The typing environment

Γ = {y1,2,3 : (real,data),

ϕ : (real[2],model),

θ : (real[2],model),

θ0,1,2 : (real,model),

ϕ1,2,3 : (real,model),

z1,2,3 : (int<2>,model),

θ3 : (real, genqant),

дenz : (int<2>, genqant)}

The variables we are interested in transforming are z1, z2, and z3: These are the model-level
discrete parameters of Program G. The variable genz is already at genqant level, so we can
sample this with ancestral sampling (no need for automatic marginalisation).
We eliminate z1, z2, and z3 one-by-one, in that order. The order of elimination generally has a

significant impact on the complexity of the resulting program (see also Section 4.8), but we do
not focus on how to choose an ordering here. The problem of finding an optimal ordering is well-
studied [Amir 2010; Arnborg et al. 1987; Kjærulff 1990] and is orthogonal to the focus of our work.
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Fig. 6. Step-by-step elimination of z1 in Program G.

4.7.1 Eliminating z1. Eliminating a single variable happens in three steps, as shown in Figure 6:
standard shredding into SD , SM , and SQ , conditional independence shredding of SM into S1, S2, and
S3, and combining everything based on (Elim Gen).

(1) Standard shredding: S �Γ SD , SM , SQ . First, we separate out the parts of the program that
depend on discrete parameters generatively; that is, any part of the program that would be
in generated quantities with respect to the original program. In our case, this includes the
last two lines in S . This would also include the gen parts of the transform program, which
draw discrete parameters as generated quantities. Thus, S �Γ SD , SM , SQ , where SD is empty,
SQ = (theta3 = theta[z3];genz ∼ bernoulli(theta3)), and SM is the rest of the program (see
Figure 6, (1)).
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(2) Conditional independence shredding: SM �ΓM
S1, S2, S3. In the next step, we want to establish

a conditional independence relationship z1 | A ⊥⊥ y,ϕ0,θ0,B, where z1 is some discrete
parameter and A,B is a partitioning of the rest of the discrete parameters in the model:

{z2, z3}. We derive a new, 	2 typing environment ΓM , using Γ
z
−→ ΓM :

ΓM = {y1,2,3 : (real, l1),ϕ : (real[2], l1),θ : (real[2], l1),

z1 : (int<2>, l2), z2 : (int<2>, ?), z3 : (int<2>, ?),

θ0 : (real, l1),θ1,2 : (real, ?),ϕ1,2,3 : (real, ?)}.

Here, we use the notation ? for a type placeholder, which will be inferred using type infer-
ence.
The optimal ΓM under the type inference soft constraint l3 ≺ l1 ≺ l2 such that ΓM 	2 SM : l1
is such that the levels of θ1 and ϕ1 are l2, z2 is l1, and θ2,ϕ2, and ϕ3 are l3. Shredding then
gives us SM �ΓM

S1, S2, S3, as in Figure 6, (2).
(3) Combining based on (Elim Gen). Having rearranged the program into suitable sub-

statements, we use (Elim Gen) to get Program G-1 (Figure 6, (3)) and:

Γ′ = {y1,2,3 : (real,data),ϕ : (real,model),

θ1 : (real, genqant),θ0,2 : (real,model),

ϕ1 : (real, genqant),ϕ2,3 : (real,model),

z1 : (int, genqant), z2,3 : (int<2>,model),

θ3 : (real, genqant),дenz : (int<2>, genqant)}.

Eliminating z2. We apply the same procedure to eliminate the next variable, z2, from the updated
Program G-1. The variable z1 is no longer a model-level parameter, thus the only neighbouring
parameter of z2 is z3. Note also that the computation of the factor f1 does not include any free
discrete parameters (both z1 and z2 are local to the computation due to elim and ϕ). Thus, we do
not need to include the computation of this factor anywhere else in the program (it does not get
nested into other computations). We obtain a new program, Program G-2:

Program G-2

1 phi ∼ beta(1, 1);

2 theta ∼ beta(1, 1);

3 theta0 = theta[0];

4

5 f1 = ϕ([int<2> z2]){ elim(int<2> z1){

6 z1 ∼ bernoulli(theta0);

7 theta1 = theta[z1];

8 z2 ∼ bernoulli(theta1);

9 phi1 = phi[z1];

10 y1 ∼ normal(phi1, 1);

11 }}

12 f2 = ϕ([int<2> z3]){ elim(int<2> z2){

13 factor(f1[z2]);

14 theta2 = theta[z2];

15 z3 ∼ bernoulli(theta2);

16 phi2 = phi[z2];

17 y2 ∼ normal(phi2, 1);

18 }}

19

20 factor(f2[z3]);

21 phi3 = phi[z3];

22 y3 ∼ normal(phi3, 1);

23

24 gen(int z2){

25 factor(f1[z2]);

26 theta2 = theta[z2];

27 z3 ∼ bernoulli(theta2);

28 phi2 = phi[z2];

29 y2 ∼ normal(phi2, 1);

30 }

31 theta2 = theta[z2];

32 phi2 = phi[z2];

33

34 gen(int z1){

35 z1 ∼ bernoulli(theta0);
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36 theta1 = theta[z1];

37 z2 ∼ bernoulli(theta1);

38 phi1 = phi[z1];

39 y1 ∼ normal(phi1, 1);

40 }

41 theta1 = theta[z1];

42 phi1 = phi[z1];

43

44 theta3 = theta0[z3];

45 genz ∼ bernoulli(theta3);.

Eliminating z3. Finally, we eliminate z3, which is the only discrete model-level parameter left in
the program. Thus, z3 has no neighbours and f3 is of arity 0: It is a real number instead of a vector.
The final program generated by our implementation is Program G-3:

Program G-3

1 phi0 ∼ beta(1, 1);

2 theta0 ∼ beta(1, 1);

3

4 f1 = ϕ(int<2> z2){ elim(int<2> z1){

5 z1 ∼ bernoulli(theta0);

6 theta1 = theta[z1];

7 z2 ∼ bernoulli(theta1);

8 phi1 = phi[z1];

9 y1 ∼ normal(phi1, 1);

10 }}

11

12 f2 = ϕ(int<2> z3){elim(int<2> z2){

13 factor(f1[z2]);

14 theta2 = theta[z2];

15 z3 ∼ bernoulli(theta2);

16 phi2 = phi[z2];

17 y2 ∼ normal(phi2, 1);

18 }}

19

20 f3 = ϕ(){elim(int<2> z3){

21 factor(f2[z3]);

22 phi3 = phi[z3];

23 y3 ∼ normal(phi3, 1);

24 }}

25

26 factor(f3);

27 gen(int z3){

28 factor(f2[z3]);

29 phi3 = phi[z3];;

30 y3 ∼ normal(phi3, 1);

31 }

32 phi3 = phi[z3];

33 gen(int z2){

34 factor(f1[z2]);

35 theta2 = theta[z2];;

36 z3 ∼ bernoulli(theta2);

37 phi2 = phi[z2];;

38 y2 ∼ normal(phi2, 1);

39 }

40 theta2 = theta[z2];

41 phi2 = phi[z2];

42 gen(int z1){

43 z1 ∼ bernoulli(theta0);

44 theta1 = theta[z1];

45 z2 ∼ bernoulli(theta1);

46 phi1 = phi[z1];

47 y1 ∼ normal(phi1, 1);

48 }

49 theta1 = theta[z1];

50 phi1 = phi[z1];

51

52 gen3 = theta[z3];

53 genz ∼ bernoulli(theta3);

4.8 Relating to Variable Elimination and Complexity Analysis

Assume D,θd , and θc are the data, discrete model-level parameters, and continuous model-level
parameters, respectively. As S2 is a single-level statement of level l2, the density semantics of S2
is of the formψ (xl1, xl2) = ψ (D,θc ,θd,l1, z) (Lemma 11).
As elim(int〈K〉z) _ binds the variable z and ϕ(Γne){_} binds the variables in dom(Γne), the ex-

pression ϕ(Γne){elim(int〈K〉z) S2 depends only on continuous parameters and data, and it contains
no free mentions of any discrete variables. This means that the expression will be of level l1 and
shredded into S1 during the marginalisation of any subsequent discrete variable z ′. The substate-
ment S2 will always be some sub-statement of the original program (prior to any transformations),
up to potentially several constant factors of the form factor(f [dom(Γne)]).
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This observation makes it easy to reason about how repeated application of the (Elim Gen)
transform changes the complexity of the program. If the complexity of a SlicStan program with
N discrete parameters of support 1, . . . ,K , is O(S), then the complexity of a program where we
naively marginalised out the discrete variables (Program E) will be O(S × KN ). In contrast, trans-
forming with (Elim Gen) gives us a program of complexity at most O(N × S × KM+1) where M
is the largest number of direct neighbours in the factor graph induced by the program. Further,
the complexity could be smaller depending on the elimination ordering of choice. This result is
not surprising, as we conjecture that repeated application of (Elim Gen) is equivalent to variable
elimination (though we do not formally prove this equivalence), which is of the same complexity.
It is clear from this complexity observation that VE is not always efficient.When the dependency

graph is dense, M will be close to N , thus inference will be infeasible for large N . Fortunately, in
many practical cases (such as those discussed in Section 5), this graph is sparse (M � N ) and our
approach is suitable and efficient. We note that this is a general limitation of exact inference of
discrete parameters, and it is not a limitation of our approach in particular.

4.9 Semantic Preservation of the Discrete Variable Transformation

The result we are interested in is the semantic preservation of the transformation rule
z
−→.

Theorem 4 (Semantic Preservation of
z
−→). For SlicStan programs Γ, S and Γ′, S ′, and a discrete

parameter z: Γ, S
z
−→ Γ′, S ′ implies �S� = �S ′�.

Proof. Note that shredding preserves semantics with respect to both 	 and 	2 (Lemma 6 and
10), examines the meaning of derived forms (Lemma 14 and 15), notes properties of single-level
statements (Lemma 11), and applies the results on factorisation of shredding (Theorem 1) and
conditional independence (Theorem 3). We present the full proof in Appendix A. �

In addition, we also show that it is always possible to find a program derivable with (Elim Gen),
such that a model-level variable z is transformed to a genqant-level variable.

Lemma 12 (Existence of Model to Genqant Transformation). For any SlicStan program

Γ, S such that Γ 	 S : l1, and a variable z ∈ dom(Γ) such that Γ(z) = (int〈K〉, MODEL), there exists

a SlicStan program Γ′, S ′, such that:

Γ, S
z
−→ Γ′, S ′ and Γ′(z) = (int〈K〉,GENQUANT).

Proof. By inspecting the level types of variables in each part of a program derivable using (Elim
Gen). We include the full proof in Appendix A. �

The practical usefulness of Theorem 4 stems from the fact that it allows us to separate inference
for discrete and continuous parameters. After applying (Elim Gen) to each discrete model-level pa-
rameter, we are left with a program that only has genqant-level discrete parameters (Lemma 12).
We can then slice the program into Shmc and Sgen and infer continuous parameters by using HMC
(or other algorithms) on Shmc and, next, draw the discrete parameters using ancestral sampling by
running forward Sgen. Theorem 4 tells us that this is a correct inference strategy.
When used in the context of a model with only discrete parameters, our approach corresponds

to exact inference through VE. In the presence of discrete and continuous parameters, our trans-
formation gives an analytical sub-solution for the discrete parameters in the model.
A limitation of our method is that, due to its density-based nature, it can only be applied to

models of fixed size. It cannot, in its current form, support models where the number of random
variables changes during inference, such as Dirichlet processes. However, this is a typical con-
straint adopted in Bayesian inference for efficiency. Another limitation is that discrete variables

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 4. Publication date: December 2021.



Conditional Independence by Typing 4:33

Fig. 7. A program with different conditional dependencies depending on control flow.

need to have finite (and fixed) support. For example, the method cannot be applied to transform
a Poisson-distributed variable. In some but not all applications, truncating unbounded discrete
parameters at a realistic upper bound would suffice to make the method applicable.
An advantage of our method is that it can be combined with any inference algorithm that re-

quires a function proportional to the joint density of variables. This includes gradient-based algo-
rithms, such as HMC and variational inference, but it can also be used with methods that allow for
(e.g., unbounded) discrete variables as an analytical sub-solution that can optimise inference. For
example, consider a Poisson variable n ∼ Poisson(λ) and a Binomial variable k ∼ Binomial(n,p).
While n is of infinite support, and we cannot directly sum over all of its possible values, analyti-
cally marginalising out n gives us k ∼ Poisson(λp). Future work can utilise such analytical results
in place of explicit summation where possible.

4.10 Scope and Limitations of (Elim Gen)

Previously, we discussed the scope of the conditional independence result of the article (Sec-
tion 3.3). Similarly, here we demonstrate with an example, a situation where our approach of
eliminating variables one-by-one using (Elim Gen) is not optimal.
Consider the simple control-flow Program H below. In this example, z2 and z3 are not condi-

tionally independent given z1 = 1, but they are conditionally independent given z1 > K/2. This
independence is also referred to as context-specific independence [Boutilier et al. 1996; Minka
and Winn 2009]. We can use different elimination strategy depending on which if-branch of the
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program we find ourselves. Program H-A demonstrates this: Its complexity is O(K
2 ×K2 + K

2 × 2×

K) = O( 12K
3 + K2).

The typing relation 	2 can only detect overall (in)dependencies, where sets of variables are con-
ditionally independent given some X , regardless of what value X takes. Thus, our static analysis
is not able to detect that z2 ⊥⊥ z3 | z1 = 0. This results in Program H-B, which has complexity
O(K3 + K2 + K): the same complexity as the optimal Program H-A, but with a bigger constant.
Even if we extend our approach to detect that z2 and z3 are independent in one branch, it is

unclear how to incorporate this new information. Our strategy is based on computing intermediate
factors that allow re-using already computed information: Eliminating z1 requires computing a
new factor f1 that no longer depends on z1. We represented f1 with a multidimensional array
indexed by z2 and z3, and we need to define each element of that array, thus we cannot decouple
them for particular values of z1.
Runtime systems that compute intermediate factors in a similar way, such as Pyro [Uber AI

Labs 2017], face that same limitation. Birch [Murray and Schön 2018], however, will be able to
detect the conditional independence in the case z1 > K/2, but it will not marginalise z1, as it
cannot (analytically) marginalise over branches. Instead, it uses Sequential Monte Carlo (SMC)

to repeatedly sample z1 and proceed according to its value.

5 IMPLEMENTATION AND EMPIRICAL EVALUATION

The transformation we introduce can be useful for variety of models, and it can be adapted to
PPLs to increase efficiency of inference and usability. Most notably, it can be used to extend Stan
to allow for direct treatment of discrete variables, where previously that was not possible.
In this section, we present a brief overview of such a discrete parameter extension for SlicStan

(Section 5.1). To evaluate the practicality of (Elim Gen), we build a partial NumPyro [Phan et al.
2019] backend for SlicStan and compare our static approach to variable elimination for discrete
parameters to the dynamic approach of NumPyro (Section 5.2). We find that our static transforma-
tion strategy speeds up inference compared to the dynamic approach, but that for models with a
large number of discrete parameters performance gains could be diminished by the exponentially
growing compilation time (Section 5.3).
In addition to demonstrating the practicality of our contribution through empirical evaluation,

we also discuss the usefulness of our contribution through examples, in Appendix B.

5.1 Implementation

We update the original SlicStan14 according to the modification described in Section 2 and extend
it to support automatic variable elimination through the scheme outlined in Section 4. As with the
first version of SlicStan, the transformation produces a new SlicStan program that is then translated
to Stan.
The variable elimination transformation procedure works by applying (Elim Gen) iteratively,

once for each discrete variable, as we show in Section 4.7. The level types l1, l2, and l3 are not
exposed to the user and are inferred automatically. Using bidirectional type-checking, we are able
to synthesise a set of hard constraints that the levels must satisfy. These hard constraints will
typically be satisfied by more than one assignment of variables to levels. We search for the optimal
types with respect to the soft constraints l3 ≺ l1 ≺ l2 using the theorem prover Z3 [De Moura
and Bjørner 2008].

14Available at https://github.com/mgorinova/SlicStan.
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5.2 Empirical Evaluation

To evaluate the practicality of our approach, we compare to the prior work most closely related
to ours: that of Obermeyer et al. [2019], who implement efficient variable-elimination for plated
factor graphs in Pyro [Uber AI Labs 2017]. Their approach uses effect-handlers and dynamically
marginalises discrete variables, so gradient-based inference schemes can be used for the continu-
ous parameters. This VE strategy has also been implemented in NumPyro [Phan et al. 2019].
As both ours and Pyro’s strategies correspond to VE, we do not expect to see differences in

complexity of the resulting programs. However, as in our case the VE algorithm is determined
and set up at compile time, while in the case of Pyro/NumPyro, this is done at runtime. The main
question we aim to address is whether setting up the variable elimination logistics at compile time
results in a practical runtime speed-up.
To allow for this comparison, we built a partial NumPyro backend for SlicStan. For each model

we choose, we compare the runtime performance of three NumPyro programs:

(1) The NumPyro program obtained by translating a SlicStan program with discrete parame-
ters to NumPyro directly (labelled “NumPyro”). This is the baseline: We leave the discrete
parameter elimination to NumPyro.

(2) The NumPyro program obtained by translating a transformed SlicStan program, where all
discrete parameters have been eliminated according to (Elim Gen) (labelled “SlicStan”). The
variable elimination setup is done at compile time; NumPyro does not do any marginalisa-
tion.

(3) A hand-optimised NumPyro program, which uses the plate and markov program constructs
to specify some of the conditional independencies in the program (labelled “NumPyro-Opt”).

In each case, we measure the time (in seconds) for sampling a single chain consisting of 2, 500
warm-up samples and 10, 000 samples using NUTS [Hoffman and Gelman 2014].
In addition, we report three compilation times:

(1) The compilation time of the NumPyro program obtained by translating a SlicStan program
with discrete parameters to NumPyro directly (labelled “NumPyro”).

(2) The compilation time of the NumPyro program obtained by translating a transformed Slic-
Stan program, where all discrete parameters have been eliminated (labelled “SlicStan”).

(3) The time taken for the original SlicStan program to be transformed using (Elim Gen) and
translated to NumPyro code (labelled “SlicStan-to-NumPyro”).

We consider different numbers of discrete parameters for each model, up to 25 discrete param-
eters. We do not consider more than 25 parameters due to constraints of the NumPyro baseline,
which we discuss in more detail in Section 5.3. We run experiments on two classes of model often
seen in practice: hidden Markov models (Section 5.2.1) and mixture models (Section 5.2.2). To en-
sure a fair comparison, the same elimination ordering was used across experiments. Experiments
were run on a dual-core 2.30 GHz Intel Xeon CPU and a Tesla T4 GPU (when applicable). All
SlicStan models used in the experiments are available at the SlicStan repo.

5.2.1 Hidden Markov Models. We showed several examples of simple HMMs throughout the
article (Program A, Program D, Program G) and worked through a complete example of VE in an
HMM (4.7). We evaluate our approach on both the simple first-order HMM seen previously and
on two additional ones: second-order HMM and factorial HMM.

First-order HMM. The first-order HMM is a simple chain of N discrete variables, each taking a
value from 1 toK according to a categorical distribution. The event probabilities for the distribution
of zn are given by θzn−1 , where θ is some given K × K matrix. Each data point y is modelled
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Fig. 8. HMM results.

as coming from a Gaussian distribution with mean μzn
and standard deviation 1, where μ is a

K−dimensional continuous parameter of the model.

μk ∼ N(0, 1) for k ∈ 1, . . . ,K

z1 ∼ categorical(θ 1)

zn ∼ categorical(θzn−1 ) for n ∈ 2, . . . ,N

yn ∼ N(μzn
, 1) for n ∈ 1, . . . ,N

We measure the compilation time and the time taken to sample 1 chain with each of the three
NumPyro programs corresponding to this model. We useK = 3 and different values for N , ranging
fromN = 3 toN = 25. Figure 8 shows a summary of the results. We see that both on CPU and GPU,
the program transformed using SlicStan outperforms the automatically generated NumPyro and
also the manually optimised NumPyro-Opt. Each of the three programs has compilation time expo-
nentially increasing with the number of variables, however SlicStan’s compilation time increases
the fastest. We discuss this drawback in more detail in Section 5.3, highlighting the importance of
an extended loop-level analysis being considered in future work.

Second-order HMM. The second-order HMM is very similar to the first-order HMM, but the
discrete variables depend on the previous two variables, in this case taking the maximum of the
two.

μk ∼ N(0, 1) for k ∈ 1, . . . ,K

z1 ∼ categorical(θ1), z2 ∼ categorical(θz1)

zn ∼ categorical(θmax(zn−2,zn−1)) for n ∈ 3, . . . ,N

yn ∼ N(μzn
, 1) for n ∈ 1, . . . ,N

Similarly to before, we run the experiment for K = 3 and different values for N , ranging from
N = 3 to N = 25. We show the results in Figure 9, which once again shows SlicStan outperforming
NumPyro and NumPyro-Opt in terms of runtime, but having slower compilation time for a larger
number of discrete parameters.

Factorial HMM. In a factorial HMM, each data point yn is generated using two independent
hidden states zn and hn , each depending on the previous hidden states zn−1 and hn−1.

μk ∼ N(0, 1) for k ∈ 1, . . . ,K2

z1 ∼ categorical(θ1), h1 ∼ categorical(θ1)

zn ∼ categorical(θzn−1 ), hn ∼ categorical(θhn−1
) for n ∈ 2, . . . ,N

yn ∼ N(μzn∗hn
, 1) for n ∈ 1, . . . ,N
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Fig. 9. Second-order HMM results.

Fig. 10. Factorial HMM results.

We run the experiment for K = 3 and different length of the chain N , ranging from N = 1
(two discrete parameters) to N = 12 (24 discrete parameters). We show the results in Figure 10:
Similarly to before, SlicStan outperforms both NumPyro and NumPyro-Opt in terms of runtime.
We also observe that, in the case of SlicStan, the time taken to sample a single chain increases more
slowly as we increase the number of discrete variables.

5.2.2 Mixture Models. Another useful application of mixed discrete and continuous variable
models is found in mixture models. We run experiments on two models: soft K-means clustering
and linear regression with outlier detection.

Soft K-means. The Gaussian mixture model underlines the celebrated soft K-means algorithm.
Here, we are interested in modelling someD-dimensional data that belongs to one ofK (unknown)
Gaussian clusters. Each cluster k is specified by a D-dimensional mean μ .,k . Each data point y.,n
is associated with a cluster zn .

μd,k ∼ N(0, 1) for d ∈ 1, . . . ,D and k ∈ 1, . . . ,K

zn ∼ categorical(π ) for n ∈ 1, . . . ,N

yd,n ∼ N(μd,zn
, 1) for d ∈ 1, . . . ,D and n ∈ 1, . . . ,N

We run the experiments for K = 3, D = 10, and N = 3, . . . , 25 and show the results in Figure 11.
We observe a clear linear trend of the runtime growing with N, with SlicStan performing better

and its runtime growing more slowly than that of NumPyro. While the SlicStan-translated code
runs faster than NumPyro-Opt for N ≤ 25, we observe that the SlicStan runtime grows faster than
that of the manually optimised NumPyro-Opt code.

Outlier detection. The final model we consider is a Bayesian linear regression that allows for
outlier detection. Themodel considers data points (xn ,yn), wherey lies on the lineαx+β with some
added noise. The noise σzn

depends on a Bernoulli parameter zn , which corresponds to whether or
not the point (xn ,yn) is an outlier or not. The noise for outliers (σ1) and the noise for non-outliers
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Fig. 11. Soft K-means results.

Fig. 12. Outliers results.

(σ2) are given as hyperparameters.

α ∼ N(0, 10), β ∼ N(0, 10)

π (r aw )
1 ∼ N(0, 1), π (r aw )

2 ∼ N(0, 1), π =
expπ (r aw )

1

exp π (r aw )
1 + expπ (r aw )

2

zn ∼ bernoulli(π ) for n ∈ 1, . . . ,N

yn ∼ N(αxn + β,σzn
) for n ∈ 1, . . . ,N

Similarly to the earlier HMM models, SlicStan has the smallest runtime per chain, but at the
expense of fast growing compile time (Figure 12).

5.3 Analysis and Discussion

Our method can be applied to general models containing a fixed and known number of finite-
support discrete parameters, which significantly reduces the amount of manual effort that was
previously required for such models in languages like Stan [Damiano et al. 2018]. In addition, as
shown in Figures 8–12, SlicStan outperforms both the NumPyro baseline and the hand-optimised
NumPyro-Opt in terms of runtime. This suggests that a static-time discrete variable optimisation,
like the one introduced in this article, is indeed beneficial and speeds up inference.
One limitation of our experimental analysis is the relatively small number of discrete parameters

we consider. Due to the array dimension limit imposed by PyTorch/NumPy, Pyro cannot havemore
than 25 discrete variables (64 for CPU) unless the dependence between them is specified using
markov or plate (as with NumPyro-Opt). For NumPyro this hardcoded limit is 32. Thus, it would
not be possible to compare to the NumPyro baseline for a larger number of variables, though
comparing to the hand-optimised NumPyro-Opt would still be possible.
Perhaps the biggest limitation of the discrete parameters version of SlicStan is the exponen-

tially growing compilation time. Using a semi-lattice instead of a lattice in the 	2 level type
analysis breaks the requirement of the bidirectional type system that ensures efficiency of type
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inference. The constraints generated by the type system can no longer be resolved by SlicStan’s
original linear-time algorithm. While polynomial-time constraint-solving strategy may still exist,
we choose to employ Z3 to automatically resolve the type inference constraints and leave the
consideration for more efficient type inference algorithm for future work.
This also highlights the importance of a future SlicStan version that considers arrays of discrete

parameters. Our algorithm currently supports only individual discrete parameters. In the cases
where the size of an array of discrete parameters is statically known, the (Elim Gen) procedure
can be applied to a programwhere such arrays have been “flattened” into a collection of individual
discrete variables, which is the strategy we adopt for the experiments in this section. But to be
applicable more widely, the (Elim Gen) rule needs to be generalised based on array element level
dependence analysis, for example, by incorporating ideas from the polyhedral model [Feautrier
1992]. As the array level dependence analysis that would be required in most practical use-cases is
very straightforward, we believe this would be a useful and feasible applied extension of our work.
In addition, this would significantly decrease the number of program variables for which we need
to infer a level type during the (Elim Gen) transformation, thus making compilation practical for
larger or arbitrary numbers of discrete parameters.

6 RELATED WORK

This article provides a type system that induces conditional independence relationships, and it
discusses one practical application of such type system: an automatic marginalisation procedure
for discrete parameters of finite support.

Conditional independence. The theoretical aim of our article is similar to that of Barthe et al.
[2019], who discuss a separation logic for reasoning about independence, and the follow-up work
of Bao et al. [2021], who extend the logic to capture conditional independence. One advantage of
our method is that the verification of conditional independence is automated by type inference,
while it would rely on manual reasoning in the works of Barthe et al. [2019] and Bao et al. [2021].
However, the logic approach can be applied to a wider variety of verification tasks. Amtoft and
Banerjee [2020] show a correspondence between variable independence and slicing a discrete-
variables-only probabilistic program. The biggest difference to our work is that their work consid-
ers only conditional independence of variables given the observed data: that is, CI relationships of
the form x1 ⊥⊥ x2 | D for some subsets of variables x1 and x2 and dataD. The language of Amtoft
and Banerjee [2020] requires observed data to be specified syntactically using an observe state-
ment. Conditional independencies are determined only given this observed data, and the method
for determining how to slice a program is tied to the observe statements. From the Amtoft and
Banerjee [2020] paper: “A basic intuition behind our approach is that an observe statement can be
removed if it does not depend on something on which the returned variable x also depends.” In con-
trast, we are able to find CI relationships given any variables we are interested in (x1 ⊥⊥ x2 | x3 for
some x1, x2, and x3), and type inference constitutes of a straightforward algorithm for finding such
relationships. However, Amtoft and Banerjee [2020] permit unbounded number of variables (e.g.,
while (y > 0) y ∼ bernoulli(0.2)), while it is not clear how to extend SlicStan/Stan to support
this. While not in a probabilist programming setting, Lobo-Vesga et al. [2020] use taint analysis to
find independencies between variables in a program to facilitate easy trade off between privacy
and accuracy in differential privacy context.

Automatic marginalisation. The most closely related previous work, in terms of the automatic
marginalisation procedure, is that of Obermeyer et al. [2019] and that of Murray et al. [2018].
Obermeyer et al. [2019] implement efficient variable-elimination for plated factor graphs in Pyro
[Uber AI Labs 2017]. Their approach uses effect-handlers and can be implemented in other
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effect-handling-based PPLs, such as Edward2 [Tran et al. 2018]. Murray et al. [2018] introduce a
“delayed sampling” procedure in Birch [Murray and Schön 2018], which optimises the program via
partial analytical solutions to sub-programs. Their method corresponds to automatic variable elim-
ination and, more generally, automatic Rao–Blackwellization. While we focus on discrete variable
elimination only, our conditional independence type system can be directly used for more general
analysis. The method from Section 4 can be extended to marginalise out and sample continuous
variables whenever they are part of an analytically tractable sub-program, similarly to delayed
sampling in Birch. One key difference of our approach is that the program re-writes are guided by
the type system and happen at compile time, before inference is run. In contrast, both Pyro and
Birch maintain a dynamic graph that guides the analysis at runtime.

Symbolic inference. Where a full analytical solution is possible, several probabilistic program-
ming languages can derive it via symbolic manipulation, including Hakaru [Narayanan et al. 2016]
and PSI [Gehr et al. 2016, 2020], while Dice [Holtzen et al. 2020] performs exact inference for
models with discrete parameters only, by analysing the program structure. In contrast, we focus
on re-writing the program and decomposing it into parts to be used with fast and more general
asymptotically exact or approximate inference algorithms, such as HMC, variational inference, or
others.

Extending HMC to support discrete parameters. The idea of modifying HMC to handle discrete
variables and discontinuities has been previously explored [Nishimura et al. 2017; Pakman and
Paninski 2013; Zhang et al. 2012; Zhou 2020]. More recently, Zhou et al. [2019] introduced the
probabilistic programming language LF-PPL, which is designed specifically to be used with the
Discontinuous Hamiltonian Monte Carlo (DHMC) algorithm [Nishimura et al. 2017]. The al-
gorithm and their framework can also be extended to support discrete parameters. LF-PPL provides
support for an HMC version that itself works with discontinuities. Our approach is to statically
rewrite the program to match the constraints of Stan, vanilla HMC and its several well-optimised
extensions, such as NUTS [Hoffman and Gelman 2014].

Composable and programmable inference. Recent years have seen a growing number of tech-
niques that allow for tailored-to-the-program compilation to an inference algorithm. For example,
Gen [Cusumano-Towner et al. 2019] can statically analyse the model structure to compile to a
more efficient inference strategy. In addition, languages such as Gen and Turing [Ge et al. 2018]
facilitate composable and programmable inference [Mansinghka et al. 2018], where the user is
provided with inference building blocks to implement their own model-specific algorithm. Our
method can be understood as an automatic composition between two inference algorithms: vari-
able elimination and HMC or any other inference algorithm that can be used to sample continuous
variables.

7 CONCLUSION

This article introduces an information flow type system that can be used to check and infer con-
ditional independence relationships in probabilistic programs, through type checking and infer-
ence, respectively. We present a practical application of this type system: a semantics-preserving
transformation that makes it possible to use, and to efficiently and automatically infer discrete
parameters in SlicStan, Stan, and other density-based probabilistic programming languages. The
transformed program can be seen as a hybrid inference algorithm on the original program, where
continuous parameters can be drawn using efficient gradient-based inference methods, like HMC,
while the discrete parameters are drawn using variable elimination.
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While the variable elimination transformation uses results on conditional independence of dis-
crete parameters, our type system is not restricted to this usage. Conditional independence rela-
tionships can be of interest in many contexts in probabilistic modelling, including more general
use of variable elimination, message-passing algorithms, Rao-Blackwellization, and factorising a
program for a composed-inference approach. We believe conditional independence by typing can
enable interesting future work that automates the implementation of such methods.

APPENDICES

A DEFINITIONS AND PROOFS

A.1 Definitions

Definition 10 (Assigns-to Set W (S)). W(S) is the set that contains the names of global variables
that have been assigned to within the statement S. It is defined recursively as follows:

W (x[E1] . . . [En] = E) = {x}
W (S1; S2) =W (S1) ∪W (S2)
W (if(E) S1 else S2) =W (S1) ∪W (S2)
W (for(x in E1 : E2) S) =W (S) \ {x}

W (skip) = ∅

W (factor(E)) = ∅

W (L ∼ d(E1, . . . ,En)) = ∅.

Definition 11 (Reads Set R(S)). R(S) is the set that contains the names of global variables that
have been read within the statement S. It is defined recursively as follows:

R(x) = {x}
R(c) = ∅

R([E1, . . . ,En]) =
⋃n

i=1 R(Ei )

R(E1[E2]) = R(E1) ∪ R(E2)
R(f (E1, . . . ,En)) =

⋃n
i=1 R(Ei )

R([E |x in E1 : E2]) = R(E) ∪ R(E1) ∪ R(E2)
R(target(S)) = R(S)

R(x[E1] . . . [En] = E) =
⋃n

i=1 R(Ei ) ∪ R(E)
R(S1;S2) = R(S1) ∪ R(S2)
R(if(E) S1 else S2) = R(E) ∪ R(S1) ∪ R(S2)
R(for(x in E1 : E2) S) = R(E1)∪R(E2)∪R(S) \ {x}
R(skip) = ∅

R(factor(E)) = R(E)
R(L ∼ d(E1, . . . ,En)) = R(L)∪R(E1)∪ · · ·∪R(En).

Definition 12 (Samples-to Set W̃ (S)). W̃ (S) is the set that contains the names of global variables
that have been sampled within the statement S. It is defined recursively as follows:

W̃ (L = E) = ∅

W̃ (S1; S2) = W̃ (S1) ∪ W̃ (S2)
W̃ (if(E) S1 else S2) = W̃ (S1) ∪ W̃ (S2)
W̃ (for(x in E1 : E2) S) = W̃ (S) \ {x}

W̃ (skip) = ∅

W̃ (factor(E)) = ∅

W̃ (x[E1] . . . [En] ∼ d(E1, . . . ,En)) = {x}.

Definition 13 (Free Variables FV (S)). FV (S) is the set that contains the free variables that are
used in a statement S . It is recursively defined as follows:

FV (x) = {x}
FV (c) = ∅

FV ([E1, . . . ,En]) =
⋃n

i=1 FV (Ei )

FV (E1[E2]) = FV (E1) ∪ FV (E2)
FV (f (E1, . . . ,En)) =

⋃n
i=1 FV (Ei )

FV ([E |x in E1 : E2]) = FV (E) ∪ FV (E1) ∪ FV (E2)
FV (target(S)) = FV (S)
FV (x[E1] . . . [En] = E) =

⋃n
i=1 FV (Ei ) ∪ FV (E)

FV (S1; S2) = FV (S1) ∪ FV (S2)
FV (if(E) S1 else S2) = FV (E) ∪ FV (S1) ∪ FV (S2)
FV (for(x in E1 : E2) S) = FV (E1) ∪ FV (E2) ∪
FV (S) \ {x}
FV (skip) = ∅

FV (factor(E)) = FV (E)
FV (L ∼ d(E1, . . . ,En)) = FV (L) ∪ FV (E1) ∪ · · · ∪

FV (En).
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Definition 14. We overload the notation Γ(L) that looks up the type of an L-value in Γ. When
applied to a more general expression E, Γ(E) looks up the type level of E in Γ:

Γ(x) = �, where � is the level of x in Γ
Γ(c) = data
Γ([E1, . . . ,En]) =

⊔n
i=1 Γ(Ei )

Γ(E1[E2]) = Γ(E1) � Γ(E2)
Γ(f (E1, . . . ,En)) =

⊔n
i=1 Γ(Ei )

Γ([E |x in E1 : E2]) = Γ(E) � Γ(E1) � Γ(E2).

Definition 15. Γ(E1, . . . ,En) ≡ Γ(E1) � · · · � Γ(En).

Definition 16 (RΓ	�(S)). RΓ	�(S) is the set that contains the names of global variables that have
been read at level � within the statement S . It is defined recursively as follows:

RΓ	�(x[E1] . . . [En] = E) =

{ ⋃n
i=1 R(Ei ) ∪ R(E) if Γ(x) = (_, �)

∅ otherwise,
RΓ	�(S1;S2) = RΓ	�(S1) ∪ RΓ	�(S2)
RΓ	�(if(E) S1 else S2) = RΓ	�(E) ∪ RΓ	�(S1) ∪ RΓ	�(S2)
RΓ	�(for(x in E1 : E2) S) = RΓ	�(E1) ∪ RΓ	�(E2) ∪ RΓ	�(S) \ {x}
RΓ	�(skip) = ∅

RΓ	�(factor(E)) =

{
R(E) if � = model
∅ else

RΓ	�(L ∼ d(E1, . . . ,En)) =

{
R(L ∼ d(E1, . . . ,En)) if � =

⊔
{�′ | ∃x ∈ FV (L ∼ d(E1, . . . ,En)

∃τ .Γ(x) = (τ , �′)}
∅ otherwise.

Definition 17 (WΓ	�(S)). WΓ	�(S) � {x ∈W (S) | Γ(x) = (τ , �) for some τ }.

Definition 18 (W̃Γ	�(S)). W̃Γ	�(S) � {x ∈ W̃ (S) | Γ(x) = (τ , �) for some τ }.

Definition 19. Given a statement S , we define the statement st(S) by structural induction on S :
st(x[E1] . . . [En] = E) = x[E1] . . . [En] = E
st(S1;S2) = st(S1); st(S2)
st(if(E) S1 else S2) = if(E) st(S1) else st(S2))
st(for(x in E1 : E2) S) = for(x in E1 : E2) st(S)
st(skip) = skip

st(factor(E)) = skip

st(L ∼ d(E1, . . . ,En)) = skip.

Definition 20 (Neighbours of z, ne(Γ, Γ′, z)). For a 	 typing environment Γ, a 	2 typing environ-
ment Γ′ = Γ′

σ , Γ
′
x and a variable z ∈ dom(Γ′

x), the neighbours of z are defined as:

ne(Γ, Γ′, z) � {x : (τ , �) ∈ Γ′
x | � = l1 and Γ(x) = (int〈K〉,model) for some K}.

A.2 Proofs

Restatement of Lemma 1 (Noninterference of 	). Suppose s1 |= Γ, s2 |= Γ, and s1 ≈� s2 for

some �. Then for SlicStan statement S and expression E:

(1) If Γ 	 E : (τ , �) and (s1,E) ⇓ V1 and (s2,E) ⇓ V2, then V1 = V2.
(2) If Γ 	 S : � and (s1, S) ⇓ s ′1,w1 and (s2, S) ⇓ s ′2,w2, then s ′1 ≈� s

′
2.

Proof. (1) follows by rule induction on the derivation Γ 	 E : (τ , �), and using that if Γ 	 E :
(τ , �), x ∈ R(E) and Γ(x) = (τ ′, �′), then �′ ≤ �. (2) follows by rule induction on the derivation
Γ 	 S : � and using (1).
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Most cases follow trivially from the inductive hypothesis. An exception is the (Target) case,
which we show below.

(Target)

We use the premise ∀�′ > �.RΓ	�′ (S) = ∅, together with a lemma that for S , s1
and s2 such that s1, S ⇓ s ′1,w1, and s2, S ⇓ s ′2,w2, and ∀x ∈ R(S).s1(x) = s2(x),
we have that w1 = w2. (This lemma follows by structural induction on S .) In
the case of (Target), s1, target(S) ⇓ w1, and s2, target(S) ⇓ w2 and R(S) =⋃

�′ RΓ	�′ (S) =
(⋃

�′ ≤� RΓ	�′ (S)
)
∪ (

⋃
�′>� RΓ	�′ (S)) =

⋃
�′ ≤� RΓ	�′ (S). Then, for

any x ∈ R(S), x ∈ RΓ	�′ (S) for some �
′ ≤ � , so Γ(x) = (τ , �x ) such that

�x ≤ �′ ≤ �. And thus, by definition of ≈� , s1(x) = s2(x) for any x ∈ R(S). By
applying the lemma above, we then getw1 = w2, as required.

�

Restatement of Lemma 4 (Shredding Produces Single-level Statements).

S �Γ (SD , SM , SQ ) =⇒ Γ 	 data(SD ) ∧ Γ 	 model(SM ) ∧ Γ 	 genquant(SQ )

Proof. By rule induction on the derivation of S �Γ SD , SM , SQ . �

Restatement of Lemma 5 (Property of Single-level Statements). Let Γσ , Γx 	 S be SlicStan

program, such that S is single-level statement of level �, Γ 	 �(S). Then there exist unique functions f
and ϕ, such that for any σ , x |= Γσ , Γx:

�S�(σ )(x) = f (σ≤�, x≤�) ∪ σ>�, ϕ(σ≤�)(x≤�),

where we write σ≤� = {(x �→ V ) ∈ σ | Γσ (x) = (_, �)} and σ>� = σ \ σ≤� .

Proof. This property follows from noninterference (Lemma 1), if we understand factor and
sample statements as assignments to a reserved weight variables of different levels. Let Γ, S be a
SlicStan program and suppose we obtain S ′ by:

• Substituting every factor(E) statement with w� = w� ∗ E, where Γ(E) = real, � and wdata,
wmodel, andwqenqant are write-only, distinct, and reserved variables in the program.

• Substituting every L ∼ d(E1, . . . ,En) statement with w� = w� ∗ dpdf (L | E1, . . . ,En), where
Γ(dpdf (L | E1, . . . ,En)) = real, �.

Then for all σ , x |= Γ, we have �S�p (σ )(x) =
∏

� σ
′(w�), where σ

′ = �S ′�s (σ ,∀�.w� �→ 1)(x).
By non-interference (Lemma 1), for any level � and store σ2 ≈� σ , if σ ′

2 = �S ′�s (σ2,∀�.w� �→

1)(x), then σ ′
2 ≈� σ ′. Thus, σ ′

2(w�′ ) = σ2(w�′ ) for �
′ ≤ �, and therefore, when S is a single-level

statement of level �, �S ′�s (σ ,∀�.w� �→ 1)(x) = f (σ≤�, x≤�),σ>�,w≤� �→ ϕ(σ≤�, x≤�),w>� �→ 1,
for some functions f and ϕ. Finally, this gives us �S�s (σ , x) = (f (σ≤�, x≤�),σ>�), �S�p (σ , x) =
ϕ(σ≤�, x≤�). �

Restatement of Lemma 6 (Semantic Preservation of �Γ). If Γ 	 S : data and S �Γ

(SD , SM , SQ ) then �S� = �SD ;SM ;SQ �.

Proof. Follows by adapting proof from Gorinova et al. [2019]. �

Restatement of Lemma 10 (Semantic Preservation of �Γ 2). If Γ 	2 S : l1 and S �Γ S1, S2, S3,
then �S� = �S1;S2; S3�.

Proof. Follows by adapting proof from Gorinova et al. [2019]. �

Lemma 13. For a SlicStan expression E and a function ϕ(x ,y) = V , where V is a value such that

(σ ,x ,y),E ⇓ V for every x and y and some σ , if x � R(E), then:

∃ϕ ′ such that ϕ(x ,y) = ϕ ′(y) for all x ,y.
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Proof. By induction on the structure of E. �

Restatement of Theorem 1 (Shredding Induces a Factorisation of the Density). Suppose

Γ 	 S : data and S �Γ SD , SM , SQ and Γ = Γσ ∪ ΓD ∪ Γθ ∪ ΓQ . For all σ , D, θ , and Q : if σ ,D,θ ,Q |=

Γσ , ΓD , Γθ , ΓQ , and �S�p (σ )(D,θ ,Q) ∝ p(D,θ ,Q) and W̃ (SQ ) = dom(ΓQ ), then:

(1) �SM �p (σD )(D,θ ,Q) ∝ p(θ ,D),
(2) �SQ �p (σM )(D,θ ,Q) = p(Q | θ ,D),

where σD = �SD�s (σ )(D,θ ,Q) and σM = �SM �s (σD )(D,θ ,Q).

Proof. We prove this by establishing a more general result:

For σ ,D,θ ,Q |= Γσ , ΓD , Γθ , ΓQ , A = W̃ (SQ ) ⊆ Q and some B ⊆ Q \ A, if �S�p (σ )(D,θ ,Q) ∝

p(D,θ ,A | B), then:

(1) �SD�p (σ )(D,θ ,Q) = 1,
(2) �SM �p (σD )(D,θ ,Q) = p(θ ,D),
(3) �SQ �p (σM )(D,θ ,Q) = p(A | θ ,D,B).

Note that in the case where W̃ (SQ ) = Q , we have A = Q and B = ∅, and the original statement
of the theorem, �SQ �p (σM )(D,θ ,Q) = p(Q | θ ,D), holds.
We prove the extended formulation above by induction on the structure of S and use of Lemma 2,

Lemma 4 and Lemma 5, Lemma 6.
Take any σ ,D,θ ,Q |= Γσ , ΓD , Γθ , ΓQ and let

Φ(S, SD , SM , SQ ) �
Γ 	 S : data ∧ S �Γ SD , SM , SQ ∧A = W̃ (SQ )

=⇒ ∃B ⊆ Q \A.∀σD ,σM . (

�S�p (σ )(D,θ ,Q) ∝ p(D,θ ,A | B) ∧ �SD�(σ )(D,θ ,Q) = σD ∧ �SM �(σD )(D,θ ,Q) = σM

=⇒ �SD�p (σ )(D) = 1

∧ �SM �p (σD )(D,θ ) = p(θ ,D)

∧ ∃B ⊆ Q \ W̃ (SQ ).�SQ �p (σM )(D,θ ,Q) = p(A | θ ,D,B)
)

Take any Γ, S, SD , SM , SQ such that S �Γ SD , SM , SQ , A = W̃ (SQ ), and take any σ ,D,θ ,Q |=

Γσ , ΓD , Γθ , ΓQ , an unnormalised densityp andB ⊆ Q\A, such that �S�p (σ )(D,θ ,Q) ∝ p(D,θ ,A | B).
We prove by rule induction on the derivation of S �Γ SD , SM , SQ that Φ(S, SD , SM , SQ ).
(Shred Seq). Let S = S1;S2 and S1 �Γ S1D , S1M , S1Q and S2 �Γ S2D , S2M , S2Q . Thus, S �Γ

(S1D ;S2D ), (S1M ;S2M ), (S1Q ;S2Q ).
Assume Φ(S1, S1D , S1M , S1Q ) and Φ(S2, S2D , S2M , S2Q ).
Let:

• A1 = W̃ (S1Q ) and B1 ⊆ Q \A1 is such that �S1Q �p (σM )(D,θ ,Q) = p1(A1 | D,θ ,B1).
• �S1�(σ )(D,θ ,Q) = σ ′.
• �S1�p (σ )(D,θ ,Q) ∝ p1(D,θ ,A1 | B1).

• A2 = W̃ (S2Q ) and B2 ⊆ Q \A2 is such that �S2Q �p (σM )(D,θ ,Q) = p2(A2 | D,θ ,B2).
• �S2�p (σ

′)(D,θ ,Q) ∝ p2(D,θ ,A2 | B2).

Thus, by Lemma 2, �S�p = �S1;S2�p = �S1�p × �S2�p , so p(D,θ ,A | B) ∝ p1(D,θ ,A1 |

B1)p2(D,θ ,A2 | B2).
For (1), we have ∀σ |= Γσ .�S1D�p (σ )(D,θ ,Q) = �S2D�p (σ )(D,θ ,Q) = 1. Thus, by Lemma 2,

�S1D ; S2D�p = �S1D�p × �S2D�p = 1.
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From Φ(S1, S1D , S1M , S1Q ) and Φ(S2, S2D , S2M , S2Q ), we also have:

• �S1Q �p (σM )(D,θ ,Q) = p(A1 | θ ,D,B1),
• �S2Q �p (σ

′
M )(D,θ ,Q) = p(A2 | θ ,D,B2),

A = W̃ (SQ ) = W̃ (S1Q ;S2Q ) = W̃ (S1Q ) ∪ W̃ (S2Q ) = A1 ∪A2.

From S well typed, it must be the case that A1 ∩A2 = ∅. Thus, we write A = A1,A2.
We will prove that the property holds for B = B1 ∪ B2 \A1 \A2.
By semantic preservation of �Γ (Lemma 6), �S1�p = �S1D ;S1M ;S1Q �p = �S1D�p × �S1M �p ×

�S1Q �p ∝ 1 × p1(θ ,D) × p1(A1 | θ ,D,B1). Similarly, �S2�p ∝ 1 × p2(θ ,D) × p2(A2 | θ ,D,B2) =
p2(θ ,D)p2(A2 | θ ,D,A1,B1).
But p(θ ,D,A | B) ∝ p1(θ ,D,A1 | B1)p2(θ ,D,A2 | B2), so:

p(θ ,D,A | B) ∝ p1(θ ,D)p1(A1 | θ ,D,B1)p2(θ ,D)p2(A2 | θ ,D,A1,B1).

So,

p(θ ,D) =

∫
p(D,θ ,A | B)p(B)dAdB

∝

∫
p1(θ ,D)p1(A1 | θ ,D,B1)p2(θ ,D)p2(A2 | θ ,D,A1,B1)p(B)dA1dA2dB

∝ p1(θ ,D)p2(θ ,D)

∫
p(B)p1(A1 | θ ,D,B1)p2(A2 | θ ,D,A1,B1)dA1dA2dB

= p1(θ ,D)p2(θ ,D)

∫
p(B)

(∫
p1(A1 | θ ,D,B1)

(∫
p2(A2 | θ ,D,A1,B1)dA2

)
dA1

)
dB

= p1(θ ,D)p2(θ ,D)

∝ p1(θ ,D)p2(θ ,D).

Thus, �SM �p = �S1M ;S2M �p ∝ p1(θ ,D)p2(θ ,D) ∝ p(θ ,D).

Finally, for last property on S , we use the chain rule of probability, semantics property of se-
quencing, and the result from above to get:

p(A | D,θ ,B) =
p(D,θ ,A | B)

p(D,θ | B)

∝
p1(D,θ )p2(D,θ )p1(A1 | D,θ ,B1)p2(A2 | D,θ ,B2)

p(D,θ )
×

p(B)

p(B | D,θ )

∝ p1(A1 | D,θ ,B1)p2(A2 | D,θ ,B2)

= �S1Q �p�S2Q �p = �SQ �p .

Thus:

p(A | D,θ ,B) =
p1(A1 | D,θ ,B1)p2(A2 | D,θ ,B2)

Z
,

where:

Z =

∫
p1(A1 | D,θ ,B1)p2(A2 | D,θ ,B2)dA

=

∫
p1(A1 | D,θ ,B1)

(∫
p2(A2 | D,θ ,B2)dA2

)
dA1

= 1.

So, Z = 1, and p(A | D,θ ,B) = p1(A1 | D,θ ,B1)p2(A2 | D,θ ,B2) = �SQ �p .
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Thus:

• �SD�p = �S1D ;S2D�p = 1,
• �SM �p = �S1M ;S2M �p ∝ p1(θ ,D)p2(θ ,D) = p(θ ,D),
• �SQ �p = �S1Q ;S2Q �p = p1(A1 | θ ,D,B1)p2(A2 | θ ,D,A1,B1) = p(A1,A2 | θ ,D,B),

Φ((S1;S2), (S1D ;S2D ), (S1M ;S2M ), (S1Q ;S2Q )) from here. �

Restatement of Lemma 9 (Shredding Produces Single-level Statements 2).

S �Γ S1, S2, S3 =⇒ Γ 	 l1(S1) ∧ Γ 	 l2(S2) ∧ Γ 	 l3(S3).

Proof. By rule induction on the derivation of S �Γ S1, S2, S3. �

Restatement of Lemma 10 (Semantic Preservation of �Γ , 	2). If Γ 	2 S : l1 and S �Γ S1, S2, S3,
then �S� = �S1;S2;S3�.

Proof. �

Restatement of Lemma 11 (Property of Single-level Statements 2). Let Γσ , Γx, S be a Slic-

Stan program, and Γ 	2 S : l1, and S is single-level statement of level �, Γ 	2 �(S). Then there exist

unique functions f and ϕ, such that for any σ , x |= Γσ , Γx:

(1) If � = l1, then �S�(σ )(x) =
(
f (σl1, xl1),σl2,σl3

)
, ϕ(σl1)(xl1),

(2) If � = l2, then �S�(σ )(x) =
(
σl1, f (σl1,σl2, xl1, xl2),σl3

)
, ϕ(σl1,σl2)(xl1, xl2),

(3) If � = l3, then �S�(σ )(x) =
(
σl1,σl2, f (σl1,σl3, xl1, xl3)

)
, ϕ(σl1,σl3)(xl1, xl3).

Proof. By understanding factor and sample statements as assignment to a reserved weight
variables of different levels (similarly to Lemma 5) and noninterference (Lemma 7). �

Restatement of Lemma 12 (Existence of Model to Genqant Transformation). For any

SlicStan program Γ, S such that Γ 	 S : l1, and a variable z ∈ dom(Γ) such that Γ(z) =
(int〈K〉,model), there exists a SlicStan program Γ′, S ′, such that,

Γ, S
z
−→ Γ′, S ′ and Γ′(z) = (int〈K〉, genquant).

Proof. Take a SlicStan program Γ, S , a typing environment ΓM , a variable z, and statements
SD , SM , and SQ , such that:

Γ(z) = (int〈K〉,model) Γ 	 S : data Γ
z
−→ ΓM S �Γ SD , SM , SQ ΓM 	2 SM : l1.

Take also statements S1, S2, S3, and S
′
M , and a typing environment Γne such that

SM �ΓM
S1, S2, S3 Γne = ne(Γ, ΓM , z),

S ′M = S1; f = ϕ(Γne){elim(int〈K〉z) S2}; factor(f [dom(Γne)]); S3; gen(z)S2; st(S2).

Let Γ′ is such that dom(Γ′) = dom(Γ) ∪ { f } and for all x : τ , � ∈ Γ:

Γ′(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(τ , �) if � � model,
(τ , �) if � = model and ΓM (x) � (τ , l2),

(τ , genqant) if � = model and ΓM (x) = (τ , l2).

By semantic preservation of shredding (Lemma 6, Lemma 10) and type preservation of the
operational semantics (Gorinova et al. [2019]), Γ 	 SD ; S1;S2;S3; SQ : data, and thus, by (Seq),
Γ 	 SD : data, Γ 	 S1 : data, . . . , Γ 	 SQ : data.
By definition of Γ′, Γ′

data ⊂ Γdata. SD is single-level of level data and Γ 	 SD : data, so
Γdata 	 SD : data and thus Γ′ 	 SD : data. Similarly, Γ 	 S1 : D and Γ 	 S3 : D.
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Γ 	 S2 : data, so using (Phi), (Elim), and (Factor), and noting that by definition dom(Γne) ⊂
dom(ΓM,l1), so Γne ⊂ Γ, we can derive:

Γ′ 	 f = ϕ(Γne){elim(int〈K〉z) S2}; factor(f [dom(Γne)]) : data.

By Γ 	 S2 : data and the definition of Γ′, and using (Gen) and definition of st, we also derive:

Γ′ 	 gen(z) S2; st(S2) : genqant.

Finally, SQ is a single-level statement of level genqant and for all x : τ , � ∈ Γ, x : τ , �′ ∈ Γ,
where � ≤ �′. Therefore, Γ 	 SQ : data implies Γ′ 	 SQ : data.

Altogether, this gives us Γ′ 	 SD ;S
′
M ;SQ , and so by (Elim Gen), Γ, S

z
−→ Γ′, SD ; S

′
M , SQ .

�

Lemma 14. Let Γ, S be a SlicStan program, such that σ , x |= Γ, �S�s (σ )(x) = σ ′ and �S�p (σ )(x) =
ψ (x) for some function ψ . If f � dom(Γ) is a fresh variable, then z, z1, . . . zn ∈ dom(Γx) are discrete

variables of base types int〈K〉, int〈K1〉, . . . , int〈Kn〉, respectively, and S ′ is a statement such that

S ′ = f = ϕ(int〈K1〉z1, . . . int〈Kn〉zn){elim(int〈K〉z) S}; factor(f [z1, . . . , zn]);

then �S ′�s (σ )(x) = σ ′′ with σ ′′[−f ] = σ ′ and �S ′�p (σ )(x) =
∑K

z=1ψ (x).

Proof. By examining the operational semantics of assignment, factor, and the derived forms
elim and ϕ. �

Lemma 15. Let Γ, S be a SlicStan program, such that σ , x |= Γ, �S�s (σ )(x) = σ ′ and �S�p (σ )(x) =
ψ (x) for some functionψ . If z ∈ dom(Γx) is a discrete variable of base type int〈K〉, and S ′ is a statement

such that

S ′ = gen(z) S ; st(S);

then �S ′�s (σ )(x) = σ ′, ψ (x) is normalisable with respect to z with ψ (x) ∝ p(z | x \ {z}), and

�S ′�p (σ )(x) = p(z | x \ {z}).

Proof. By examining the operational semantics of ∼ and target, and by induction on the struc-
ture of S to prove �st(S)�s = �S�s and �st(S)�p = 1. �

Typing Rules for Derived Forms:

(Elim)
Γ′ 	 S : data RΓ	genqant(S) = ∅ Γ′ = Γ[z �→ int〈K〉,model]

Γ 	 elim(int〈K〉z) S : model

(Gen)
Γ(z) = (int, genqant) Γ 	 S : data

Γ 	 gen(int〈K〉 z) S : genqant

(Phi)
Γ′ 	 S : data ∀�′ > �.RΓ	�′ (S) = ∅ Γ′ = Γ[z1 �→ (int〈K1〉, �), . . . , zN �→ (int〈KN 〉, �)]

Γ 	 ϕ(int〈K1〉 z1, . . . , int〈KN 〉 zN ) S : real, �

Restatement of Theorem 4 (Semantic Preservation of
z
−→). For SlicStan programs Γ, S and

Γ′, S ′, and a discrete parameter z: Γ, S
z
−→ Γ′, S ′ → �S� = �S ′�.
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Proof. Let Γ, S and Γ′, S ′ be SlicStan programs, and z be a discrete parameter, such that Γ, S
z
−→

Γ′, S ′. Let S �Γ SD , SM , SQ , S �Γ′ S
′
D , S

′
M , S

′
Q , and SM �Γ′′ S1, S2, S3 for Γ′′ such that Γ

z
−→ Γ′′ and

Γ′′ 	2 SM : l1.
Let Γ = Γσ , Γdata, Γmodel, Γgenqant, Γ′ = Γ′

σ , Γ
′
data, Γ

′
model, Γ

′
genqant and

Γ′′ = Γσ ,
′′ Γl1,

′′ Γl2,
′′ Γ′′

l3 be the usual partitioning of each of the typing environments.

Let z be a store such that z |= {z : Γ(z)}.
Let D,θ and Q be stores such that D |= Γdata, z,θ |= Γmodel, and Q |= Γgenqant.
Let θ 1,θ 2 and θ 3 be a partitioning of θ , such that D,θ 1 |= Γ′′

l1, z,θ 2 |= Γ′′
l2, and θ 3 |= Γ′′

l3.

Then, by definition of Γ
z
−→ Γ′′, θ 2 = z.

By Theorem 1:

• �SD�p (σ )(D, z,θ ,Q) = 1,
• �SM �p (σD )(D, z,θ ,Q) ∝ p(z,θ ,D),
• �SQ �p (σM )(D, z,θ ,Q) = p(Q | z,θ ,D).

Γ, S
d
−→ Γ′, S ′, thus S ′ must be of the form

S ′ = SD ; S1; f = ϕ(Γl1′′ ){elim(int〈K〉z) S2}; factor(f [dom(Γ′′
l1)]); S3; gen(z)S2; st(S2); SQ ,

where Γ 	 S : data, S �Γ SD , SM , SQ , Γ
z
−→ Γ′′, Γ 	2 SM : l1, and SM �Γ′′ S1, S2, S3.

The relation �Γ is semantics-preserving for well-typed programs with respect to both 	 and 	2
(Lemma 6 and Lemma 10). Thus, �S� = �SD ;S1;S2;S3;SQ �.
We present a diagrammatic derivation of the change on store and density that each sub-part in

the original and transformed program makes in Figure 13.
Combining all of these results gives that:

�S ′�s (σ )(D,θ ,Q) = σ ′′ = σ ′[f �→ v] = �S�s (σ )((D,θ ,Q))[f �→ v].

In other words, the transformation
z
−→ preserves store semantics (up to creating of one new fresh

variable f).
For the density, we get:

�S ′�p (σ )(D,θ ,Q)

= ϕ1(D,θ 1)

[∑
z

ϕ2(D,θ 1, z)

]
ϕ3(D,θ 1,θ 3)p(z | D,θ 1)p(Q | D,θ ) from Figure 13,

=

[∑
z

ϕ1(D,θ 1)ϕ2(D,θ 1, z)ϕ3(D,θ 1,θ 3)

]
p(z | D,θ 1)p(Q | D,θ )

by the distributive
law,

∝

[∑
z

p(D,θ 1, z,θ 2)

]
p(z | D,θ 1)p(Q | D,θ )

by Theorem 1
and Lemma 10,

= p(D,θ 1,θ 2)p(z | D,θ 1)p(Q | D,θ ) marginalisation of z,

= p(D,θ 1,θ 2)p(z | D,θ 1,θ 3)p(Q | D,θ )
by z ⊥⊥ θ 3 | θ 1
(Theorem 3),

= p(D,θ ,Q)
by the chain rule
for probability,

∝ �S�p (σ )(D,θ ,Q).

Together, this gives us �S� = �S ′� (up to S ′ creating one new fresh variable f). �
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Fig. 13. Diagrammatic proof of semantic preservation of
z
−→.

B EXAMPLES

B.1 Sprinkler

Often, beginners are introduced to probabilistic modelling through simple, discrete variable exam-
ples, as they are more intuitive to reason about and often have analytical solutions. Unfortunately,
one cannot express such examples directly in PPLs that do not support discrete parameters. One
well-known discrete variable example, often used in tutorials on probabilistic modelling, is the
“Sprinkler” example. It models the relationship between cloudy weather, whether it rains, whether
the garden sprinkler is on, and the wetness of the grass. In Figure 14, we show a version of the
sprinkler model written in SlicStan with discrete parameters (left) and the marginalisation part of
its corresponding transformed version (right).
As cloudy ⊥⊥ wet | sprinkler, rain, we do not need to include wet in the elimination of cloudy,

and the new factor is computed for different values of only sprinkler and rain (lines 2–6). The rest
of the variables are eliminated one-by-one, involving all remaining variables (lines 7–15).
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The snippet of the SlicStan code generated by our transformation is an exact implementation
of the variable elimination algorithm for this model. This not only facilitates a platform for learn-
ing probabilistic programming using standard introductory models, but it can also be a useful
tool for learning concepts such as marginalisation, conditional independence, and exact inference
methods.

Fig. 14. The “Sprinkler” example.

B.2 Soft-K-means Model

In Figure 15, we present the standard soft-k-means clustering model as it is written in SlicStan
with support for discrete model parameters (left). The right column shows the resulting code that
our program transformation generates. This code consists of plain SlicStan code and no support
for discrete model parameters is needed to perform inference on it.
The model can be used for (softly) dividing N data points y in D-dimensional Euclidean space

into K clusters that have means μ and probability π .
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Fig. 15. Soft K-means.

B.3 A Causal Inference Example

The question of how to adapt PPLs to causal queries has been recently gaining popularity. One
way to express interventions and reason about causality, is to assume a discrete variable specify-
ing the direction (or absence of) causal relationship and specify different behaviour for each case
using if statements [Winn 2012]. We show a simple causal inference example (Figure 16) written
in SlicStan with direct support for discrete parameters (left) and the code that our transforma-
tion generates (right) on which we can perform inference using a combination of, e.g., HMC and
ancestral sampling.
This model can be read as follows: Assume that we are in a situation where we want to answer

a causal question. We want to answer this question based on N paired observations of A and
B, in some of which we might have intervened (doB). Our model proceeds by drawing a (prior)
probability that A causes B from a beta distribution, and then specifying A and B for different
scenarios (intervention, A causes B and no intervention, B causes A and no intervention) using
conditional statements.
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Fig. 16. A causal inference example.

ACKNOWLEDGMENTS

We thank VikashMansinghka for suggesting the outlier detection example, whichwe used for eval-
uation, as well as Lawrence Murry for clarifying the behaviour of Birch, and anonymous reviewers
whose helpful suggestions improved the article.

REFERENCES

Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A core calculus of dependency. In Symposium on

Principles of Programming Languages. ACM, 147–160.

Eyal Amir. 2010. Approximation algorithms for treewidth. Algorithmica 56, 4 (2010), 448–479.

Torben Amtoft and Anindya Banerjee. 2020. A theory of slicing for imperative probabilistic programs. ACM Trans. Program.

Lang. Syst. 42, 2 (2020), 1–71.

Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. 1987. Complexity of finding embeddings in a k-tree. SIAM

J. Algeb. Discr. Meth. 8, 2 (1987), 277–284.

Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A bunched logic for conditional independence. In 36th

Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE, 1–14.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 4. Publication date: December 2021.



Conditional Independence by Typing 4:53

Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A probabilistic separation logic. Proc. ACM on Program. Lang. 4, POPL

(2019), 1–30.

Michael Betancourt and Mark Girolami. 2015. Hamiltonian Monte Carlo for hierarchical models. Curr. Trends Bayesian

Methodol. Applic. 79 (2015), 30.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. 1996. Context-specific independence in Bayesian

networks. In 12th International Conference on Uncertainty in Artificial Intelligence. 115–123.

Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language. J. Statist. Softw. 76, 1 (2017),

1–32. DOI:https://doi.org/10.18637/jss.v076.i01
Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A general-purpose

probabilistic programming system with programmable inference. In 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation. Association for Computing Machinery, New York, NY, 221–236. DOI: https://doi.
org/10.1145/3314221.3314642

Luis Damiano, Brian Peterson, and Michael Weylandt. 2018. A tutorial on hidden Markov models using Stan. StanCon

(2018). DOI:https://doi.org/10.5281/zenodo.1284341.
Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems. Springer, 337–340.

Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time. Int. J. Parallel

Program. 21, 6 (1992), 389–420.

Brendan J. Frey. 2002. Extending factor graphs so as to unify directed and undirected graphical models. In 19th Conference

on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, 257–264.

Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A language for flexible probabilistic inference. In International

Conference on Artificial Intelligence and Statistics. 1682–1690. DOI:http://proceedings.mlr.press/v84/ge18b.html.
Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic inference for probabilistic programs. In Inter-

national Conference on Computer-aided Verification. Springer, 62–83.

Timon Gehr, Samuel Steffen, and Martin Vechev. 2020. λPSI: Exact inference for higher-order probabilistic programs. In

41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 883–897.

Andrew Gelman, Daniel Lee, and Jiqiang Guo. 2015. Stan: A probabilistic programming language for Bayesian inference

and optimization. J. Educ. Behav. Statist. 40, 5 (2015), 530–543.

Andrew D. Gordon, Claudio V. Russo, Marcin Szymczak, Johannes Borgström, Nicolas Rolland, Thore Graepel, and Daniel

Tarlow. 2015. Probabilistic programs as spreadsheet queries. In European Symposium on Programming Languages and

Systems (Lecture Notes in Computer Science, Vol. 9032). Springer, 1–25.

Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. 2019. Probabilistic programming with densities in SlicStan:

Efficient, flexible, and deterministic. Proce. ACM Program. Lang. 3, POPL (2019), 35.

Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-

tion. SIAM.

Matthew D. Hoffman and Andrew Gelman. 2014. The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian

Monte Carlo. J. Mach. Learn. Res. 15, 1 (2014), 1593–1623.

Steven Holtzen, Guy Van den Broeck, and ToddMillstein. 2020. Dice: Compiling discrete probabilistic programs for scalable

inference. arXiv preprint arXiv:2005.09089 (2020).

Uffe Kjærulff. 1990. Triangulation of graphs-Algorithms giving small total state space. Research Report R 90-09. Department

of Mathematics and Computer Science, Aalborg University, Denmark.

Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. The MIT Press.

Elisabet Lobo-Vesga, Alejandro Russo, and Marco Gaboardi. 2020. A programming framework for differential privacy with

accuracy concentration bounds. In IEEE Symposium on Security and Privacy. IEEE, 411–428.

Vikash K.Mansinghka, Ulrich Schaechtle, ShivamHanda, Alexey Radul, Yutian Chen, andMartin Rinard. 2018. Probabilistic

programming with programmable inference. In 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM, New York, NY, 603–616. DOI:https://doi.org/10.1145/3192366.3192409
Tom Minka and John Winn. 2009. Gates. In Advances in Neural Information Processing Systems, D. Koller, D. Schuurmans,

Y. Bengio, and L. Bottou (Eds.), Vol. 21. Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/

2008/file/4b0a59ddf11c58e7446c9df0da541a84-Paper.pdf.

T. Minka, J. M. Winn, J. P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. 2014. Infer.NET 2.6.

Microsoft Research Cambridge. Retrieved from http://research.microsoft.com/infernet.

Dave Moore and Maria I. Gorinova. 2018. Effect handling for composable program transformations in Edward2. In Interna-

tional Conference on Probabilistic Programming. https://arxiv.org/abs/1811.06150.

Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 4. Publication date: December 2021.

https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.5281/zenodo.1284341
http://proceedings.mlr.press/v84/ge18b.html
https://doi.org/10.1145/3192366.3192409
https://proceedings.neurips.cc/paper/2008/file/4b0a59ddf11c58e7446c9df0da541a84-Paper.pdf
http://research.microsoft.com/infernet
https://arxiv.org/abs/1811.06150


4:54 M. I. Gorinova et al.

Lawrence M. Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas B. Schön. 2018. Delayed sampling and

automatic Rao-Blackwellization of probabilistic programs. In 21st International Conference on Artificial Intelligence and

Statistics. 1037–1046. Retrieved from http://proceedings.mlr.press/v84/murray18a.html.

Lawrence M. Murray and Thomas B. Schön. 2018. Automated learning with a probabilistic programming language: Birch.

Ann. Rev. Contr. 46 (2018), 29–43.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference

by program transformation in Hakaru (system description). In Functional and Logic Programming, Oleg Kiselyov and

Andy King (Eds.). Springer International Publishing, Cham, 62–79.

Radford M. Neal et al. 2011. MCMC using Hamiltonian dynamics. Handb. Mark. Chain Monte Carlo 2, 11 (2011).

Akihiko Nishimura, David Dunson, and Jianfeng Lu. 2017. Discontinuous Hamiltonian Monte Carlo for sampling discrete

parameters. arXiv preprint arXiv:1705.08510 (2017).

Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Justin Chiu, Neeraj Pradhan, Alexander Rush, and Noah Goodman. 2019.

Tensor variable elimination for plated factor graphs. In International Conference on Machine Learning.

A. Pakman and L. Paninski. 2013. Auxiliary-variable exact Hamiltonian Monte Carlo samplers for binary distributions. In

International Conference on Advances in Neural Information Processing Systems.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable effects for flexible and accelerated probabilistic pro-

gramming in NumPyro. arXiv preprint arXiv:1912.11554 (2019).

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000), 1–44.

Lawrence R. Rabiner. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE

77, 2 (1989), 257–286.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using PyMC3.

PeerJ Comput. Sci. 2 (2016), e55.

Stan Development Team. 2019a. Stan language reference manual. Version 2.26.0. Retrieved from http://mc-stan.org.

Stan Development Team. 2019b. Stan user’s guide. Version 2.26.0. Retrieved from http://mc-stan.org.

Dustin Tran, Matthew D. Hoffman, Srinivas Vasudevan, Christopher Suter, Dave Moore, Alexey Radul, Matthew John-

son, and Rif A. Saurous. 2018. Edward2: Simple, distributed, accelerated. Retrieved from https://github.com/tensorflow/

probability/tree/master/tensorflow_probability/python/edward2.

Uber AI Labs. 2017. Pyro: A deep probabilistic programming language. Retrieved from http://pyro.ai/.

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A sound type system for secure flow analysis. J. Comput.

Secur. 4, 2/3 (1996), 167–188.

John Winn. 2012. Causality with gates. In International Conference on Artificial Intelligence and Statistics. 1314–1322. Re-

trieved from http://proceedings.mlr.press/v22/winn12.html.

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming

inference. In 17th International Conference on Artificial Intelligence and Statistics. 1024–1032.

Nevin Lianwen Zhang and David Poole. 1994. A simple approach to Bayesian network computations. In Conference of the

Canadian Society for Computational Studies of Intelligence. Canadian Information Processing Society, 171–178.

Yichuan Zhang, Zoubin Ghahramani, Amos J. Storkey, and Charles A. Sutton. 2012. Continuous relaxations for discrete

Hamiltonian Monte Carlo. In Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bot-

tou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 3194–3202. Retrieved from http://papers.nips.cc/paper/4652-

continuous-relaxations-for-discrete-hamiltonian-monte-carlo.pdf.

Guangyao Zhou. 2020. Mixed Hamiltonian Monte Carlo for mixed discrete and continuous variables. In International Con-

ference on Advances in Neural Information Processing Systems.

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank Wood. 2019. LF-PPL: A

low-level first order probabilistic programming language for non-differentiable models. In International Conference on

Artificial Intelligence and Statistics. Retrieved from http://proceedings.mlr.press/v89/zhou19b.html.

Received April 2021; revised August 2021; accepted September 2021

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 4. Publication date: December 2021.

http://proceedings.mlr.press/v84/murray18a.html
http://mc-stan.org
http://mc-stan.org
https://github.com/tensorflow/probability/tree/master/tensorflow_probability/python/edward2
http://pyro.ai/
http://proceedings.mlr.press/v22/winn12.html
http://papers.nips.cc/paper/4652-continuous-relaxations-for-discrete-hamiltonian-monte-carlo.pdf
http://proceedings.mlr.press/v89/zhou19b.html

