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Detecting Feedback Vertex Sets of Size k in O�(2.7k ) Time

JASON LI, Carnegie Mellon University

JESPER NEDERLOF, Utrecht University

In the Feedback Vertex Set (FVS) problem, one is given an undirected graphG and an integer k , and one needs

to determine whether there exists a set of k vertices that intersects all cycles ofG (a so-called feedback vertex

set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an

excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo

et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al.

(FOCS’11)]. In particular, there has been a long race for the smallest dependence f (k ) in run times of the

type O�( f (k )), where the O� notation omits factors polynomial in n. This race seemed to have reached a

conclusion in 2011, when a randomized O�(3k ) time algorithm based on Cut&Count was introduced.

In this work, we show the contrary and give a O�(2.7k ) time randomized algorithm. Our algorithm com-

bines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set

of size k of bounded average degree, a tree decomposition of width (1 − Ω(1))k can be found in polynomial

time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell.

Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run

time improvements by employing fast matrix multiplication.
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1 INTRODUCTION

Feedback Vertex Set (FVS) is one of the most fundamental NP-complete problems; for example,
it was among Karp’s original 21 problems [25]. In FVS we are given an undirected graphG and in-
teger k , and are asked whether there exists a set F such thatG[V \F ] is a forest (i.e., F intersects all
cycles ofG). In the realm of parameterized complexity, where we aim for algorithms with running
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34:2 J. Li and J. Nederlof

times of the type O�( f (k ))1 with f (k ) as small as possible (albeit exponential), FVS is clearly one
of the most central problems: To quote [6], to date the number of parameterized algorithms for FVS
published in the literature exceeds the number of parameterized algorithms for any other single
problem. There are several reasons why FVS is one of the most central problem in parameterized
complexity: First and foremost, the main point of parameterized complexity, being that in many
instances the parameter k is small, is very applicable for FVS: In the instances arising from e.g.,
resolving deadlocks in systems of processors [3], or from Bayesian inference or constraint satisfac-
tion, one is only interested in whether small FVS’s exist [4, 15, 33]. Second, FVS is a very natural
graph modification problem (remove/add few vertices/edges to make the graph satisfy a certain
property) that serves as an excellent starting point for many other graph modification problems
such as planarization or treewidth-deletion (see e.g., [22] for a recent overview). Third, FVS and
many of its variants (see e.g., [26]) admit elegant duality theorems such as the Erdös-Pósa prop-
erty; understanding their use in designing algorithms can be instrumental to solve many problems
different from FVS faster. The popularity of FVS also led to work on a broad spectrum of its vari-
ations such as Subset, Group, Connected, Simultaneous, or Independent FVS (see for example [2]
and the references therein).

In this article, we study the most basic setting concerning the parameterized complexity of FVS,
and aim at designing an algorithm with runtime O�( f (k )) with f (k ) as small as possible.

One motivation for this study is that we want to get a better insight into the fine-grained com-
plexity of computational problems: How hard is FVS really to solve in the worst-case setting? Can
the current algorithms still be improved significantly or are they close to some computational bar-
rier implied by some hypothesis or conjecture such as, for example, the Strong Exponential Time
Hypothesis?

A second motivation is that lowering the exponential factor f (k ) of the running time is a logical
first step towards more practical algorithms. For example, the vertex cover problem2 can be solved
inO (1.28k +kn) time [9], and a similar running time for FVS would be entirely consistent with our
current knowledge. Algorithms with such run times likely outperform other algorithms for a wide
variety of instances from practice. Note there already has been considerable interest in practical
algorithms for FVS as it was the subject of the first Parameterized Algorithms and Computational
Experiments Challenge (PACE, see e.g., [17]).

For the third motivation of such a study, experience shows an improvement of the running
time of algorithms for well-studied benchmark problems as FVS naturally goes hand in hand with
important new algorithmic tools: The “race” for the fastest algorithm for FVS and its variants gave
rise to important techniques in parameterized complexity such as Iterative Compression [16, 21,
32], Randomized Branching [4] and Cut&Count [14].

The race for the fastest FVS algorithm. The aforementioned “race” (see Figure 1) started in the
early days of parameterized complexity (see e.g., [1]) with an O�((2k + 1)k ) time deterministic
algorithm by Downey and Fellows [18]. We briefly discuss four relevant results from this race.
A substantial improvement of the algorithm from [18] to an O�(4k ) time randomized algorithm
was obtained by Becker et al. [4]. Their simple but powerful idea is to argue that, if some simple
reduction rules do not apply, a random “probabilistic branching” procedure works well. A few
years later, in [16, 21] it was shown how to obtain O�(10.6k ) time in the deterministic regime
using Iterative Compression. This technique allows the algorithm to assume an FVS of size k + 1 is
given, which turns out to be useful for detecting FVSs of size k . The race however stagnated with

1The O� () notation omits factors polynomial in n.
2Given a graph G and integer k , find k vertices of G that intersect every edge of G .
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Fig. 1. The “race” for the fastest parameterized algorithm for FVS.

the article that introduced the Cut&Count technique [14] and gave a O�(3k ) time randomized
algorithm. In particular, the Cut&Count technique gave a O�(3tw) time algorithm for FVS if a
tree decomposition (see Section 2 for definitions) of width tw is given, and this assumption can
be made due to the iterative compression technique. After this result, no progress on randomized
algorithms for FVS was made as it seemed that improvements over the O�(3tw) running time
were not within reach: In [14] it was also proven that any O�((3 − ϵ )tw) time algorithm, for some
ϵ > 0, would violate the SETH. It was therefore natural to expect the base 3 is also optimal for
the parameterization by the solution size k . Moreover, the very similar O�(2k ) time algorithm
from [14] for the Connected Vertex Cover problem was shown to be optimal under the Set Cover
Conjecture [11].

Our contributions. We show that, somewhat surprisingly, theO�(3k ) time Cut&Count algorithm
for FVS can be improved:

Theorem 1.1. There is a randomized algorithm that solves FVS in time O�(2.69998k ). If ω = 2,

then the algorithm takes time O�(2.6252k ).

Here 2 ≤ ω ≤ 2.373 is the smallest number such that for each ϵ > 0 there is an algorithm that
multiplies two n by n matrices in O (nω+ϵ ) time [20]. Theorem 1.1 solves a natural open problem
stated explicitly in previous literature [12].

Using the method from [19] that transformsO�(ck ) time algorithms for FVS intoO�((2−1/c )n )
we directly obtain the following improvement over the previously fastest O�(1.67n ) time algo-
rithm:

Corollary 1.2. There is a randomized algorithm that solves FVS on an n-vertex graph in time
O�(1.6297n ).

The above algorithms require space exponential in k , but we also provide an algorithm using
polynomial space at the cost of the running time:

Theorem 1.3. There is a randomized algorithm that solves FVS in time O�(2.8446k ) and polyno-
mial space.
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34:4 J. Li and J. Nederlof

Our Techniques. We build upon the O�(3tw) time algorithm from [14]. The starting standard
observation is that an FVS of size k (which we can assume to be known to us by the iterative
compression technique) gives a tree decomposition of treewidth k +1 with very special properties.
We show how to leverage these properties using the additional assumption that the average degree
of all vertices in the FVS is constant:

Lemma 1.4. Let G be a graph and F be an FVS of G of size at most k , and define d := deg(F )/k =∑
v ∈F deg(v )/k . There is an algorithm that, given G and F , computes a tree decomposition of G of

width at most (1 − 2−d + o(1))k , and runs in polynomial time in expectation.

To the best of our knowledge, Lemma 1.4 is new even for the special case where F is a vertex
cover ofG. We expect this result to be useful for other problems parameterized by the FVS or vertex
cover size (such parameterizations are studied in for example [23]). Lemma 1.4 is proven via an
application of the probabilistic method analyzed via proper colorings in a dependency graph of
low average degree. It is presented in more detail in Section 3.

Lemma 1.4, combined with the O�(3tw) time algorithm from [14], implies that we only need to
ensure the FVS has a constant average degree in order to get a O�((3 − ϵ )k ) time algorithm for
some ϵ > 0. To ensure this property, we extend the randomized O�(4k ) time algorithm of Becker
et al. [4]. The algorithm from [4] first applies a set of reduction rules exhaustively, and then selects
a vertex with probability proportional to its degree.3 They show that this chosen vertex appears in
an optimal FVS with a probability of at least 1/4. To modify this algorithm, we observe that after
applying the reduction rules in [4], every vertex has a degree of at least 3, so one idea is to select
vertices with probability proportional to deg(v ) − 3 instead.4 It turns out that if n � k , then this
biases us more towards selecting a vertex in an optimal FVS F . Indeed, we will show that if n ≥ 4k ,
then we succeed to select a vertex of F with probability at least 1/2. This is much better than even
success probability 1/3, which is what we need to beat to improve the O�(3k ) running time.

Closer analysis of this process shows that even if n < 4k , as long as the graph itself has large
enough average degree, then we also get success probability� 1/3. It follows that if the deg(v )−3
sampling does not give success probability� 1/3, then the graph has n ≤ 4k and constant average
degree. Therefore, the graph has onlyO (k ) edges, and even if all of them are incident to the FVS of
size k , the FVS still has constant average degree. Therefore, we can apply Lemma 1.4, which gives

us a modest improvement of the O�(3k ) running time to O�(3(1−2−56 )k ) time.

To obtain improvements to a O�(2.8446k ) time and polynomial space algorithm, we introduce
the new case n � 3k , where we simply add a random vertex to the FVS F , which clearly succeeds
with probability � 1/3. We then refine our analysis and apply the Cut&Count method from the
O�(3tw) algorithm in a way similar to [14, Theorem B.1].

To obtain Theorem 1.1 and further improve the above running times, we extend the proof behind
Lemma 1.4 to decompose the graph using a “three-way separation” (see Definition 7.1) and leverage
such a decomposition by combining the Cut&Count method with fast matrix multiplication. This
idea to improve the running time is loosely inspired by previous approaches for MAX-SAT [10]
and connectivity problems parameterized by branch-width [29].

Article Organization. This article is organized as follows: We first define notation and list prelim-
inaries in Section 2. We present the proof of Lemma 1.4 in Section 3. In Section 4, we introduce a

3The sampling is usually described as choosing a random edge and then a random vertex of this chosen edge, which has

the same sampling distribution.
4Let us assume that the graph is not 3-regular, since if it were, then the FVS has constant average degree and we could

proceed as before.
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probabilistic reduction rule and its analysis. Subsequently, we focus on improving theO�(3k ) time
algorithm for FVS in Section 5. The algorithm presented there only obtains a modest improvement,
but illustrates our main ideas and uses previous results as a black box.

In the second half of the article, we show how to further improve our algorithms and prove
our main theorems: Section 6 proves Theorem 1.3, and in Section 7 we prove Theorem 1.1. Both
these sections rely on rather technical extensions of the Cut&Count method that we postpone to
Section 8 to improve readability.

2 PRELIMINARIES

Let G be an undirected graph. For a vertex v in G, deg(v ) is the degree of v in G, and for a set S
of vertices, we define deg(S ) :=

∑
v ∈S deg(v ). If S,T ⊆ V (G ) we denote E[S,T ] for all edges inter-

secting both S,T , and denote E[T ] = E[T ,T ]. For a set
(

A
·, ·, ·

)
denotes all partitions of A into three

subsets. As we only briefly use tree-decompositions we refer to [13, Chapter 7] for its definitions
and standard terminology.

Randomized Algorithms. All algorithms in this article will be randomized algorithms for search
problems with one-sided error probability. The (success) probability of such an algorithm is the
probability it will output the asked solution, if it exists. In this article we define with high probability
to be probability at least 1−2−c |x | for some large c wherex is the input, instead of the usual 1−1/|x |c .
This is because FPT algorithms take more than simply poly( |x |) = O�(1) time, so a probability
bound of 1− 2−c |x | is more convenient when using a union bound to bound the probability of any
execution of the algorithm will fail.

Note that if the algorithm has constant success probability, we can always boost it to high prob-
ability using O�(1) independent trials. For convenience, we record the folklore observation that
this even works for algorithms with expected running time:

Lemma 2.1 (Folklore). If a problem can be solved with success probability 1/S and in expected
time T , and its solutions can be verified for correctness in polynomial time, then it can be also solved
in O�(S ·T ) time with high probability.

Proof. Consider cS |x | independent runs of the algorithm for some large constant c , and if a
run outputs a solution, we then verify that solution and output YES if this is successful. Given
that a solution exists, it is not found and verified in any of cS |x | rounds with probability at most
(1 − 1/S )c ·S |x | ≤ exp(−c |x |). The expected running time of the cS |x | independent runs is c |x |ST ,
and by Markov’s inequality these jointly run in at most 2c |x |ST time with a probability at least 3/4.
Therefore we can terminate our algorithm after 2c |x |ST time and by a union bound this gives an
algorithm that solves the problem with constant success probability. To boost this success proba-
bility to high probability, simply use |x | independent runs of the algorithm that reaches constant
success probability. �

Using this lemma, we assume that all randomized algorithms with constant positive success
probability actually solve their respective problems with high probability.

Separations. The following notion will be instrumental in our algorithms.

Definition 2.2 (Separation). Given a graph G = (V ,E), a partition (A,B, S ) ∈
(
V (G )
·, ·, ·

)
of V is a

separation if there are no edges between A and B.

Reduction Rules. In the context of parameterized complexity, a reduction rule (for FVS) is a
polynomial-time transformation of an input instance (G,k ) into a different instance (G ′,k ′) such
thatG has an FVS of size k iffG ′ has an FVS of size k ′. We state below the standard reduction rules
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34:6 J. Li and J. Nederlof

for FVS, as described in [13], Section 3.3. For simplicity, we group all four of their reduction rules
FVS.1 to FVS.4 into a single one.

Reduction 2.3 ([13], Folklore). Apply the following rules exhaustively, until the remaining
graph has no loops, only edges of multiplicity at most 2, and minimum vertex degree at least 3:

(1) If there is a loop at a vertex v , delete v from the graph and decrease k by 1; add v to the output
FVS.

(2) If there is an edge of multiplicity larger than 2, reduce its multiplicity to 2.
(3) If there is a vertex v of degree at most 1, delete v .
(4) If there is a vertex v of degree 2, delete v and connect its two neighbors by a new edge.

3 TREEWIDTH AND SEPARATORS

In this section, we show how to convert an FVS with small average degree into a good tree decom-

position. In particular, suppose graph G has an FVS F of size k with deg(F ) ≤ dk , where d = O (1).
We show how to construct a tree decomposition of width (1 − Ω(1))k . Note that a tree decompo-
sition of width k + 1 is trivial: since G − F is a forest, we can take a tree decomposition of G − F
of width 1 and add F to each bag. To achieve treewidth (1 − Ω(1))k , we will crucially use the fact

that d = O (1).
We make the assumption that the algorithm already knows the small average degree FVS F . This

reasoning may seem circular at first glance: after all, the whole task is finding the FVS in the first
place. Nevertheless, we later show how to remove this assumption using the standard technique
of Iterative Compression.

We now present a high-level outline of our approach. Our goal is to compute a small set S of
vertices—one of size at most (1−Ω(1))k—whose deletion leaves a graph of small enough treewidth.
Then, taking the tree decomposition of G − S and adding S to each bag gives the desired tree
decomposition. Of course, settling for |S | = (1 + o(1))k and treewidth 1 is easy: simply set S = F
so that the remaining graph is a forest, which has treewidth 1. Therefore, it is important that
|S | = (1 − Ω(1))k .

We now proceed with our method of constructing S . First, temporarily remove the FVS F from
the graph, leaving a forest T . We first select a set Sϵ of β vertices to remove from the forest, for
some β = o(k ), to break it into connected components such that the edges between F and T are
evenly split among the components. More precisely, we want every connected component ofT −Sϵ

to share at most a 1/β fraction of all edges between F and T ; we show in Lemma 3.1 below that
this is always possible. The β vertices in Sϵ will eventually go into every bag in the decomposition;
this only increases the treewidth by o(k ), which is negligible. Hence, we can safely ignore the
set Sϵ .

Next, we perform a random coloring procedure as follows: randomly color every connected com-
ponent of T − Sϵ red or blue, uniformly and independently. Let A be the union of all components
colored red, and B be the union of all components colored blue. For simplicity of exposition, we
will assume here (with loss of generality) that F is an independent set: that is, there are no edges
between vertices in the FVS. Then, if a vertex v ∈ F has all its neighbors in T − Sϵ belonging to
red components, then v only has neighbors in A, so let us add v to A. Similarly, if all neighbors
belong to blue components, then v only has neighbors in B, so let us add v to B. Observe that the
new graphs G[A] and G[B] still have no edges between them, so every vertex addition so far has
been “safe”.

What is the probability that a vertex in F joins A or B? Recall that d (F ) = dk , and since F is an

independent set, |E[F ,T − Sϵ ]| ≤ |E[F ,T ]| = d (F ) = dk . If a vertex in F has exactly d edges to
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T − Sϵ , then it has probability at least 2−d of joining A, with equality when all of these edges go to

different connected components inT −Sϵ . Of course, we only have that vertices in F have at most d

neighbors on average, but a convexity argument shows that in expectation, at least a (2−d −o(1))k

fraction of vertices in F join A. That is, E[|A ∩ F |] ≥ (2−d − o(1))k . We can make a symmetric
argument for vertices joining B. Of course, we need both events—enough vertices joining each of
A and B—to hold simultaneously, which we handle with a concentration argument. From here, it
is straightforward to finish the treewidth construction. We now present the formal proofs.

We begin with the following standard fact on balanced separators of forests:

Lemma 3.1. Given a forest T on n vertices with vertex weights w (v ), for any β > 0, we can delete
a set S of β vertices so that every connected component of T − S has total weight at most w (V )/β .

Proof. Root every component of the forest T at an arbitrary vertex. Iteratively select a vertex
v of maximal depth whose subtree has a total weight of more than w (V )/β , and then remove v
and its subtree. The subtrees rooted at the children of v have total weight at most w (V )/β , since
otherwise, v would not satisfy the maximal depth condition. Moreover, by removing the subtree
rooted at v , we remove at least w (V )/β total weight, and this can only happen β times. �

Lemma 3.2 (Small Separator). Given an instance (G,k ) and a FVS F ofG of size at most k , define

d := deg(F )/k , and suppose that d = O (1). There is a randomized algorithm running in expected
polynomial time that computes a separation (A,B, S ) of G such that:

(1) |A ∩ F |, |B ∩ F | ≥ (2−d − o(1))k
(2) |S | ≤ (1 + o(1))k − |A ∩ F | − |B ∩ F |

Proof. Fix a parameter ϵ := k−0.01 throughout the proof. Apply Lemma 3.1 to the forest G − F
with parameter β := ϵk , with vertexv weighted by |E[v, F ]|, and let Sϵ be the output. Observe that

|Sϵ | ≤ ϵk = o(k ),

and every connected component C of G − F − Sϵ satisfies

|E[C, F ]| ≤ |E[F , F ]|
ϵk

≤ deg(F )

ϵk
=
dk

ϵk
= d/ϵ .

Now form a bipartite graph H on vertex bipartition F �R, where F is the FVS, and there are two
types of vertices in R, the component vertices and the subdivision vertices. For every connected
component C in G − F − Sϵ , there is a component vertex vC in R that represents that component,
and it is connected to all vertices in F adjacent to at least one vertex inC . For every edge e = (u,v )

in E[F ], there is a vertex ve in R with u and v as its neighbors. Observe that (1) |R | ≤ |E[F , F ]| +
2|E[F ]| = deg(F ), (2) every vertex in R has degree at most d/ϵ , and (3) the degree of a vertexv ∈ F
in H is at most deg(v ).

The algorithm that finds a separator works as follows. For each vertex in R, color it red or blue
uniformly and independently at random. Every component C in G − F − Sϵ whose vertex vC is
colored red is added to A in the separation (A,B, S ), and every component whose vertex vC is
colored blue is added to B. Every vertex in F whose neighbors are all colored red joins A, and
every vertex in F whose neighbors are all colored blue joins B. The remaining vertices in F , along
with the vertices in Sϵ , comprise S .

Subclaim 3.3. (A,B, S ) is a separation.

Proof. Suppose for contradiction that there is an edge connecting A and B. The edge cannot
connect two distinct components ofG − F − Sϵ , so it must have an endpoint in F . The edge cannot
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34:8 J. Li and J. Nederlof

connect a vertex in F to a vertex in G − F − Sϵ , since a vertex in F only joins A or B if all of
its neighbors in R are colored the corresponding color. Therefore, the edge e must connect two
vertices in F . But then, ve connects to both endpoints and is colored either red or blue, so it is
impossible for one endpoint of e to have all neighbors colored red, and the other endpoint to have
all neighbors colored blue, contradiction. �

We now show that with good probability both Conditions (1) and (2) hold. The algorithm can
then repeat the process until both conditions hold.

Subclaim 3.4. With probability at least 1 − 1/poly(k ), Condition (1) holds for (A,B, S ).

Proof. There are at most ϵ |F | vertices in F with degree at least d/ϵ . Since they can only affect
condition (1) by an additive ϵ |F | ≤ ϵk = o(k ) factor, we can simply ignore them; let F ′ be the

vertices with degree at most d/ϵ . Consider the intersection graph I on the vertices of F ′, formed
by connecting two vertices in F ′ iff they share a common neighbor (in R). Since every vertex in

F ′ and C has degree at most d/ϵ , the maximum degree of I is (d/ϵ )2. Using the standard greedy

algorithm, we color F ′ with (d/ϵ )2 + 1 colors so that every color class forms an independent set in
I . In particular, within each color class, the outcome of each vertex—namely, whether it joins A or
B or S—is independent across vertices.

Let F ′i be the vertices colored i . If |F ′i | < k0.9, then ignore it; since d ≤ O (1) and ϵ = k−0.01,

the sum of all such |F ′i | is at most ((d/ϵ )2 + 1)k0.9 = o(k ), so they only affect condition (1) by an

additive o(k ) factor. Henceforth, assume that |F ′i | ≥ k0.9. Each vertex v ∈ F ′i has at most deg(v )

neighbors inH , so it has an independent probability at least 2− deg(v ) of joiningA. LetXi := |F ′i ∩A|
be the number of vertices in F ′i that join A; by Hoeffding’s inequality,5

Pr[Xi ≤ E[Xi ] − k0.8] ≤ 2 exp(−2 · (k0.8)2/|F ′i |)
≤ 2 exp(−2 · k0.6) ≤ 1/poly(k )

for large enough k .
By a union bound over all ≤ k0.1 color classes F ′i with |F ′i | ≥ k0.9, the probability that |F ′i ∩A| ≥

E[|F ′i ∩A|] − k0.8 for each F ′i is 1 − 1/poly(k ). In this case,

|F ∩A| ≥
∑

i : |F ′i | ≥k0.9

(
E[|F ′i ∩A|] − k0.8

)

≥
∑

i : |F ′i | ≥k0.9

∑
v ∈F ′i

2− deg(v ) − k0.1 · k0.8

=
∑

v ∈F ′
2− deg(v ) − o(k )

≥ |F ′ | · 2− deg(F ′)/ |F ′ | − o(k ),

where the last inequality follows from convexity of the function 2−x . Recall that |F ′ | ≥ (1−o(1))k ,

and observe that deg(F ′)/|F ′ | ≤ deg(F )/|F | = d since the vertices in F\F ′ are precisely those with
degree exceeding some threshold. It follows that

|F ∩A| ≥ (1 − o(1))k · 2−d ,

proving condition (1) for |A ∩ F |. Of course, the argument for |B ∩ F | is symmetric. �

Subclaim 3.5. With probability at least 1 − 1/poly(k ), Condition (2) holds for (A,B, S ).

5If a1, . . . , an are independent and Bernoulli and X = a1 + a2 + · · · + an , then Pr[ |X − E[x ] | ≥ t ] ≤ 2 exp(−2t 2/n).
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Proof. At most ϵk = o(k ) vertices in S can come from Sϵ , and the other vertices in S must be
precisely F\((A ∩ F ) ∪ (B ∩ F )), which has size k − |A ∩ F | − |B ∩ F |. �

Hence, with at least constant probability, both Conditions (1) and (2) hold. Furthermore, whether
or not they hold can be checked in polynomial time, so the algorithm can repeatedly run the
algorithm until the separation satisfies both conditions. �

Lemma 1.4. Let G be a graph and F be an FVS of G of size at most k , and define d := deg(F )/k =∑
v ∈F deg(v )/k . There is an algorithm that, given G and F , computes a tree decomposition of G of

width at most (1 − 2−d + o(1))k , and runs in polynomial time in expectation.

Proof. Compute a separation (A,B, S ) following Lemma 3.2. Since (A∩F )∪S is a FVS ofA∪S of

size (1−2−d+o(1))k , we can compute a tree decomposition ofG[(A∩F )∪S] of width (1−2−d+o(1))k
as follows: start with a tree decomposition of width 1 of the forestG[(A∩F )∪S]− (F ∪S ), and then
add all vertices in (A∩F )∪S to each bag. Similarly, compute a tree decomposition ofG[(B∩F )∪S] in
the same way. Finally, merge the two tree decompositions by adding an edge between an arbitrary
node from each decomposition; since there is no edge connecting A to B, the result is a valid tree
decomposition. �

4 PROBABILISTIC REDUCTION

Whenever a reduction fails with a certain probability, we call it a probabilistic reduction. Our prob-
abilistic reduction is inspired by the randomized O�(4k ) FVS algorithm of [4]. Whenever we in-
troduce a probabilistic reduction, we include (P) in the header, such as in the reduction below.

Reduction 4.1 (P). Assume that Reduction 2.3 does not apply andG has a vertex of degree at least
4. Sample a vertex v ∈ V proportional to w (v ) := (deg(v ) − 3). That is, select each vertex v with
aprobability w (v )/w (V ). Delete v , decrease k by 1.

We say a probabilistic reduction succeeds if it selects a vertex in an optimal FVS.

Observation 4.2. Let G be a graph F a FVS of G. Denoting F := V \F we have that

deg(F ) ≤ deg(F ) + 2( |F | − 1). (1)

Proof. SinceG−F is a forest, there can be at most |F |−1 edges inG−F , each of which contributes

2 to the summation deg(F ) =
∑

v ∈F deg(v ). The only other edges contributing to deg(F ) are in

E[F , F ], which contribute 1 to both deg(F ) and deg(F ). Therefore,

deg(F ) ≤ 2( |F | − 1) + |E[F , F ]| ≤ 2( |F | − 1) + deg(F ). �

Lemma 4.3. If n ≥ 4k and the instance is feasible, then Reduction 4.1 succeeds with a probability
of at least 1/2.

Proof. Let F ⊆ V be a FVS of size k .6 We show that the probability of selecting a vertex in F is

at least 1/2. Define F := V \F , so that our goal is equivalent to showing that w (F ) ≥ w (F ).
The value of w (F ) can be rewritten as

w (F ) =
∑
v ∈F

(deg(v ) − 3) = deg(F ) − 3|F |. (2)

6From any FVS of size less than k , we can arbitrarily add vertices until it has size k .
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By Observation 4.2,

w (F ) =
∑
v ∈F

(deg(v ) − 3) = deg(F ) − 3|F |
(1)
≤ deg(F ) + 2( |F | − 1) − 3|F | ≤ deg(F ) − |F |. (3)

Therefore,

w (F ) ≥ w (F ) ⇐= deg(F ) − 3|F | ≥ deg(F ) − |F | (4)

⇐⇒ |F | ≥ 3|F |
⇐⇒ n ≥ 4k . �

Therefore, as long as n ≥ 4k , we can repeatedly apply Reductions 4.1 and 2.3 until either k = 0,
which means we have succeeded with a probability at least 1/2k , or we have an instance (G,k )
with n ≤ 4k .

Later on, we will need the following bound based on the number of edgesm. Informally, it says
that as long as the average degree is large enough, Reduction 4.1 will still succeed with a probability
close to 1/2 (even if n < 4k).

Lemma 4.4. Assume that 2m > 3n. If the instance is feasible, then Reduction 4.1 succeeds with

probability at least min{ 1
2 ,

m−n−2k
2m−3n

}.

Proof. There are at most |F | − 1 edges not contributing to deg(F ), so

m ≤ ( |F | − 1) + deg(F ) ≤ (n − k ) + deg(F ) =⇒ deg(F ) ≥ m − n + k . (5)

If w (F )/w (F ) ≥ 1, then the success probability is at least 1/2, so assume otherwise that w (F ) <

w (F ). Following the proof of Lemma 4.3, the contrapositive of (4) gives

w (F ) < w (F ) =⇒ |F | < 3|F |, (6)

so we have

w (F )

w (F )

(2)
=

deg(F ) − 3|F |
w (F )

(3)
≥ deg(F ) − 3|F |

deg(F ) − |F |
(5, 6)
≥ (m − n + k ) − 3|F |

(m − n + k ) − |F |
=

m − n − 2k

m − 2n + 2k
.

Here the second inequality follows from the general inequality x−a
x−b
≥ y−a

y−b
, for b < a and x ≥ y.

Finally, as the Lemma statement is vacuous when 2k > m − n, the Lemma follows. �

5 O�((3 − ϵ )k ) TIME ALGORITHM

In this section we present our simplest algorithm that achieves a running time ofO�((3−ϵ )k ), for
some ϵ > 0. The improvement ϵ is very small, but we found this to be the simplest exposition that
achieves the bound for any ϵ > 0. We build on the following result:

Lemma 5.1 (Cygan et al. [14]). There is an algorithm treewidthDP that, given a tree decompo-
sition of the input graph of width tw, and parameter k outputs an FVS of size at most k with high
probability if it exists. Moreover, the algorithm runs in O�(3tw) time.

First, we combine the tree decomposition from the previous section with the standard technique
of Iterative Compression to build an algorithm that runs in time O�((3 − ϵ )k ) time, assuming that
m = O (k ) (recall m denotes the number of edges of the input graph). Then, we argue that by
applying Reduction 4.1 whenever m � k , we can essentially “reduce” to the case m = O (k ).
Combining these two ideas gives us the O�((3 − ϵ )k ) algorithm.

The algorithm is introduced below in pseudocode. The iterative compression framework pro-
ceeds as follows. We start with the empty graph, and add the vertices of G one by one, while
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always maintaining an FVS of size at most k in the current graph. Maintaining an FVS of the cur-
rent graph allows us to use the small tree decomposition procedure of Section 3. Then, we add the
next vertex in the ordering to each bag in the tree decomposition, and then solve for a new FVS in
O�(3tw) time using Lemma 5.1. Of course, if there is no FVS of size k in the new graph, then there
is no such FVS in G either, so the algorithm can terminate early.

ALGORITHM 1: IC1(G,k )
Input: Graph G = (V ,E) and parameter k , withm = O (k ).
Output: FVS F of size at most k , or Infeasible if none exists.

1: Order the vertices V arbitrarily as (v1, . . . ,vn )
2: F ← ∅
3: for i = 1, . . . ,n do � Invariant: F is a FVS of G[{v1, . . . ,vi−1}]
4: Compute a tree decomposition of G[{v1, . . . ,vi−1}] by applying Lemma 1.4 on input F
5: Add vi to each bag in the tree decomposition

6: F ← a FVS of G[{v1, . . . ,vi }] with parameter k , computed using treewidthDP from Lemma 5.1

7: if F is Infeasible then

8: return Infeasible
9: return F

Lemma 5.2. On input instance (G,k ) withm = O (k ), IC1(G,k ) runs in timeO�(3(1−2−2m/k+o (1))k ).
Moreover, if there exists a FVS F of size at most k , then IC1 will return a FVS of size at most k with
high probability.

Proof. Suppose that there exists a FVS F ∗ of size at mostk . Let (v1, . . . ,vn ) be the ordering from
Line 1, and define Vi := {v1, . . . ,vi }. Observe that F ∗ ∩ Vi is a FVS of G[Vi ], so the FVS problem
on Line 6 is feasible. By Lemma 5.1, Line 6 correctly computes a FVS with high probability on any
given iteration. Therefore, after using O∗ (1) independent trials, with high probability an FVS is
returned successfully.

We now bound the running time. On-Line 4, the current set F is a FVS ofG[Vi−1]. To bound the

value of d used in Lemma 1.4, we use the (rather crude) bound

deg(F ) ≤ deg(V ) = 2m =⇒ d =
deg(F )

k
≤ 2m

k
,

and moreover, d = O (1) since m = O (k ) by assumption. Therefore, Lemma 1.4 guarantees a tree
decomposition of width at most (1−2−2m/k +o(1))k , and addingvi to each bag on Line 5 increases

the width by at most 1. By Lemma 5.1, Line 6 runs in timeO�(3(1−2−2m/k+o (1))k ) time, as desired. �

We now claim below that if m ≥ Ω(k ) for a sufficiently large k , then Reduction 4.1 succeeds
with good probability (in particular, with probability greater than 1/3).

Lemma 5.3. If G has a FVS of size k and m ≥ 28k , then Reduction 4.1 succeeds with a probability
of at least 4/11.

Proof. We consider two cases. If n ≥ 4k , then the success probability is at least 1/2 by
Lemma 4.3. Otherwise, if n ≤ 4k , then m ≥ 28k ≥ 7n, and Lemma 4.4 and the trivial bound
k ≤ n give a success probability of at least

m − n − 2k

2m − 3n
≥ m − 3n

2m − 3n
≥ 7n − 3n

2m − 3n
≥ 7n − 3n

14n − 3n
=

4

11
.

Hence, regardless of whether or not n ≥ 4k , Reduction 4.1 succeeds with a probability of at least
4/11. �
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Below is the full randomized algorithm in pseudocode, which combines Reductions 4.1 and 2.3
with the iterative compression routine IC1. After a trivial check and reduction rule, Line 3 flips a
coin that needs to be flipped Heads in order to proceed to the iterative compression step.

The motivation for this is that we want each iteration of FVS1 to run quickly in expectation—

in particular, in O�(3o (k ) ) time—for simplicity of analysis. This way, if the algorithm has success
probability c−k for some constant c , then we can repeat it O�(ck ) times, succeeding with high

probability and takingO�(c (1+o (1))k ) time in expectation. Since IC1 takesO�(3(1−2−56+o (1))k ) time by

Lemma 5.2, we should call IC1 with probability at most 3−(1−2−56 )k , which is exactly the probability
of the coin flipping Heads.

ALGORITHM 2: FVS1(G,k )
Input: Graph G = (V ,E) and parameter k ≤ n.

Output: A FVS of size k with probability 3−(1−2−56 )k if one exists; Infeasible otherwise.

1: if k = 0 then return ∅ if G is acyclic, and return Infeasible otherwise

2: Exhaustively apply Reduction 2.3 to (G,k ) to get vertex set F and instance (G ′,k ′) withm′ edges

3: Flip a coin with Heads probability 3−(1−2−56 )k ′

4: if m′ ≤ 28k ′ and coin flipped Heads then

5: F ′ ← IC1(G ′,k ′)
6: else

7: Apply Reduction 4.1 to (G ′,k ′) to get vertex v ∈ V and instance (G ′′,k ′ − 1)
8: F ′ ← FVS1(G ′′,k ′ − 1) ∪ {v} � Infeasible ∪ S = Infeasible for any set S

9: return F ∪ F ′

Lemma 5.4. FVS1(G,k ) runs in expectedO�(3o (k ) ) time and has Ω(3−(1−2−56 )k ) success probability.

Proof. For the running time, the computation outside of Line 5 clearly takes poly(n) time. For

each k ′ ∈ (k0,k], Line 5 is executed with probability 3−(1−2−56 )k ′ and takes O�(3(1−2−56+o (1))k ′ )
time, so in expectation, the total computation cost of Line 5 is O�(2o (k ) ) per value of k ′, and also

O�(2o (k ) ) overall.

It remains to lower bound the success probability. Define c := 31−2−56
. We will prove by induction

on k that FVS1(G,k ) succeeds with probability at least c−k/2. This statement is trivial for k = 0,
since no probabilistic reductions are used and FVS1(G,k ) succeeds with probability 1. For the
inductive step, consider an instance FVS1(G,k + 1). First, suppose that m ≤ 28k . In this case, if

IC1 in Line 5 is executed, then it will run in timeO�(3(1−2−2m/k+o (1))k ) by Lemma 5.2, and correctly
output a FVS F of size at most k , with high probability. This happens with probability at least

3−(1−2−56 )k ·
(
1 − 1

poly(n)

)
≥ c−k · 1

2
,

as desired. If IC1 is not executed, then FVS1 can still succeed, but this only increases our overall
success probability, so we disregard it.

Otherwise, suppose that m > 28k . Then, by Lemma 5.3, applying Reduction 4.1 succeeds with
probability at least 4/11. By induction, the recursive call on Line 8 succeeds with probability at

least c−(k−1)/2, so the overall probability of success is at least

4

11
· c
−(k−1)

2
≥ c−1 · c

−(k−1)

2
=
c−k

2
,

as desired. �
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The claimedO�((3−ϵ )k ) time algorithm follows from Lemma 5.4 by boosting the success prob-
ability of Algorithm FVS1 according to Lemma 2.1.

6 IMPROVED ALGORITHM AND POLYNOMIAL SPACE

In this section, we present the O�(2.8446k ) time algorithm promised by Theorem 1.3. At a high

level, our goal is to obtain a tighter bound on d = deg(F )/k , which we only bounded loosely

by 2m/k in Section 5. Recall that the treewidth bound of (1 − 2−d + o(1))k from Lemma 1.4 has

exponentially dependence on d , so every constant factor savings in d is crucial.
First, we introduce another simple reduction step, which works well when n � 3k .

Reduction 6.1 (P). Sample a uniformly random vertex v . Delete v and decrease k by 1.

For the entire section, we will fix a constant ϵ > 0 and obtain a running time that depends on ϵ .
At the very end, we will optimize for ϵ and achieve the running time O�(2.8446k ). For formality,
we define the following assumption (A1) and state the corresponding direct claim.

n ≤ (3 − ϵ )k (A1)

Claim 6.2. If (A1) is true, then Reduction 6.1 succeeds with a probability of at least 1/(3 − ϵ ).

Now suppose that (A1) is false. Observe that Reduction 4.1 succeeds with probability at least
1/(3 − ϵ ) precisely when

w (F )

w (F )

(2)
=

deg(F ) − 3|F |
deg(F ) − 3|F |

≥ 1

2 − ϵ .

By Observation 4.2, we have

deg(F ) − 3|F |
deg(F ) − 3|F |

(1)
≥ deg(F ) − 3|F |

(deg(F ) + 2|F |) − 3|F |
=

deg(F ) − 3k

deg(F ) − (n − k )
,

and since (A1) is false,

deg(F ) − 3k

deg(F ) − (n − k )
≥ deg(F ) − 3k

deg(F ) − ((3 − ϵ )k − k )
=

deg(F ) − 3k

deg(F ) − (2 − ϵ )k
.

We are interested in whether or not

deg(F ) − 3k

deg(F ) − (2 − ϵ )k

?
≥ 1

2 − ϵ ⇐⇒ (2−ϵ ) (deg(F )−3k )
?
≥ deg(F )− (2−ϵ )k ⇐⇒ deg(F )

?
≥ 4 − 2ϵ

1 − ϵ k,

which, if true, would imply that Reduction 4.1 succeeds with probability at least 1/(3 − ϵ ). Again,
we present the assumption and corresponding claim:

deg(F ) ≥ 4 − 2ϵ

1 − ϵ k for some FVS F of size k (A2)

Claim 6.3. If (A1) is false and (A2) is true, then Reduction 4.1 succeeds with probability at least
1/(3 − ϵ ).

An immediate issue in this assumption is that the algorithm does not know deg(F ), so it cannot
determine whether (A2) is true or not. This can be accomplished by designing an algorithm to find
FVSs with additional properties defined as follows:

Definition 6.4 (Bounded Total Degree FVS (BFVS)). In the BFVS problem, the input is an un-

weighted, undirected graph G on n vertices, and parameters k ≤ n and d ≤ O (1). The goal is

to either output a FVS F of size at most k satisfying deg(F ) ≤ dk , or correctly conclude none
exists.
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ALGORITHM 3: IC2(G,k,d )

Input: Graph G = (V ,E) and parameters k ≤ n and d = O (1).

Output: A FVS F of size at most k satisfying deg(F ) ≤ dk , or Infeasible if none exists.

1: Order the vertices V arbitrarily as (v1, . . . ,vn )
2: F ← ∅
3: for i = 1, . . . ,n do � Invariant: deg (F ) ≤ dk
4: Compute a separation (A,B, S ′) of G[{v1, . . . ,vi−1}] by Lemma 3.2 on input F
5: S ← S ′ ∪ {vi }, so that (A,B, S ) is a separation of G[{v1, . . . ,vi }]
6: F ← BFVS1(G[{v1, . . . ,vi }],k + 1,A,B,S )
7: if F is Infeasible then

8: return Infeasible
9: return F

We remark that Lines 5 and 6 replace the tree decomposition and treewidthDP of IC1. Indeed.
we need to solve the BFVS problem instead of FVS, and treewidthDP could be easily extended
to solve this problem as well. However, it treewidthDP crucially relies on exponential working
space. In the new algorithm, we circumvent this by exploiting special properties of the separation
directly. The function of the new algorithm is described by the following lemma:

Lemma 6.5. There is an Algorithm BFVS1 that, given G, a FVS F ofG of size k , parameter d , and a
separation (A,B, S ) as given by Lemma 3.2, outputs a FVS of size at most k − 1 satisfying deg(F ) ≤
d (k − 1), or Infeasible if none exists. The algorithm uses O�(3(1−2−d+o (1))k ) time and polynomial
space.

Because of its technical nature, we postpone the proof of this Lemma to Section 8.1.

Lemma 6.6. Algorithm IC2 solves the BFVS problem in O�(3(1−2−d+o (1))k ) time and polynomial
space.

Proof. Suppose that there exists an FVS F ∗ of size at most k satisfying deg(F ∗) ≤ dk . Let
(v1, . . . ,vn ) be the ordering from Line 1, and define Vi := {v1, . . . ,vi }. Observe that F ∗ ∩Vi is an

FVS ofG[Vi ] satisfying deg(F ∗ ∩Vi ) ≤ dk , so the FVS problem on Line 6 is feasible. By Lemma 6.5,
Line 6 correctly computes a FVS with high probability on any given iteration. Therefore, with high
probability, an FVS is returned successfully by a union bound.

We now bound the running time. On-Line 4, the current set F is an FVS of G[Vi−1] satisfying

deg(F ) ≤ dk , so Lemma 1.4 guarantees a tree decomposition of width at most (1−2−d +o(1))k , and
addingvi to each bag on Line 5 increases the width by at most 1. By Lemma 6.5, Line 6 runs in time

O�(3(1−2−d+o (1))k ) time, as desired. Lastly, the space-bound follows clearly from the descriptions of
IC2 and Lemma 6.5. �

Lemma 6.7. Fix the parameter ϵ ∈ (0, 1), and let cϵ := max{3 − ϵ, 31−2−(4−2ϵ )/(1−ϵ ) }. If cϵ ≥ 2,

then FVS2(G,k ) succeeds with probability at least c−k
ϵ /(k + 1). Moreover, Algorithm FVS2(G,k ) has

O�(3o (k ) ) expected running time.

Proof. For the running time, the computation outside of Line 6 clearly takes poly(n) time. For

each k ′ ∈ (k0,k], Line 6 is executed with probability 3−(1−2−d )k ′ , and takes O�(3(1−2−d+o (1))k ′ ) time

by Lemma 6.6. Therefore, in expectation, the total computation cost of Line 6 is 3o (k ′) per value of

k ′, and thus also 3o (k ′) overall.
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ALGORITHM 4: FVS2(G,k )
Input: Graph G = (V ,E) and parameter k ≤ n.

Output: Either output a FVS F of size k , or (possibly incorrectly) conclude that one does not exist

(Infeasible).

1: if k = 0 then return ∅ if G is acyclic, and return Infeasible otherwise

2: Exhaustively apply Reduction 2.3 to (G,k ) to get vertex set F and instance (G ′,k ′)
3: d ← (4 − 2ϵ )/(1 − ϵ )

4: Flip a coin with Heads probability 3−(1−2−d )k ′

5: if coin flipped Heads then

6: F ′ ← IC2(G ′,k ′,d )
7: else

8: if n′ ≤ (3 − ϵ )k ′ then � (A1) is true
9: Apply Reduction 6.1 to (G ′,k ′) to get vertex v ∈ V and instance (G ′′,k ′ − 1)

10: else � (A1) is false
11: Apply Reduction 4.1 to (G ′,k ′) to get vertex v ∈ V and instance (G ′′,k ′ − 1)

12: F ′ ← FVS2(G ′′,k ′ − 1) ∪ {v} � Denoting Infeasible ∪ S = Infeasible for any set S

13: return F ∪ F ′

We continue with proving by induction on k that FVS2(G,k ) succeeds with probability at least
c−k/(k +1) (we denote c := cϵ ). This statement is trivial for k = 0, since no probabilistic reductions
are used and FVS2(G,k ) succeeds with probability 1. For the inductive step, consider an instance
FVS2(G,k + 1). Let (G ′,k ′) be the reduced instance after Line 2. First, suppose that (A2) is false
on an instance (G ′,k ′). That is, every FVS F of size at most k satisfies deg(F ) ≤ 4−2ϵ

1−ϵ
k ′; here, we

will only need the existence of one such F . In this case, if IC2 in Line 6 is executed, then it will
correctly output an FVS F of size at most k , with a high probability by Lemma 6.6. This happens
with probability at least

3−(1−2−d )k ′ ·
(
1 − 1

poly(n)

)
≥ c−k ′ · 1

k
≥ c−k

k + 1
,

as desired.
Otherwise, suppose that (A2) is true on an instance (G ′,k ′). Then, by Claims 6.2 and 6.3, re-

gardless of whether (A1) is true, the reduction applied succeeds with a probability of at least
1/(3 − ϵ ). This is assuming, of course, that Line 6 is not executed, which happens with proba-

bility 1−c−k ′ ≥ 1−2−k ′ ≥ 1−1/k ′ since c ≥ 2. By induction, the recursive call on Line 12 succeeds

with probability at least c−(k ′−1)/(k ′ − 1), so the overall probability of success is at least

(
1 − 1

k ′

)
· 1

3 − ϵ ·
c−(k ′−1)

k ′ − 1
≥

(
1 − 1

k ′

)
· 1

c
· c
−(k ′−1)

k ′ − 1
=
c−k ′

k ′
≥ c−k

k + 1
,

as desired. �

To optimize for cϵ , we set ϵ ≈ 0.155433, giving cϵ ≤ 2.8446. Theorem 1.3 now follows by
combining Lemma 6.7 with Lemma 2.1.

7 FURTHER IMPROVEMENT USING MATRIX MULTIPLICATION

In this section, we further speed up the algorithm IC2 that solves the BFVS problem. First, we
open the Cut&Count black box, which essentially transforms the FVS (or BFVS) problem to count-
ing the number of partitions of the graph that satisfy a particular constraint, modulo some inte-
ger. The transformation is similar to the presentation in [14], so we defer the details to Section 8.
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Fig. 2. Illustration of a three-way separation. The vertex set of the graph is partitioned into 7 sets SI such
that vertices from SI and S J can only be adjacent if I and J intersect (depicted with an edge in the graph).

In [14], this counting problem is solved using dynamic programming on a tree decomposition in
O�(3tw) time, which can be translated to an O�(3k ) time algorithm for BFVS.

As with most problems efficiently solvable on tree decompositions, the Cut&Count problem
performs well when given small vertex separators. Indeed, we show in Subsection 8.1 that instead
of calling the O�(3tw) algorithm on the tree decomposition from Lemma 1.4, we can solve the
problem by applying dynamic programming on the (A,B, S ) separation from Lemma 3.2 directly
in the same running time, and also in polynomial space. The resulting algorithm is the algorithm
BFVS1 promised by Lemma 6.5.

How do we obtain an even faster running time, then? The main insight in this section is that
the counting problem has a special arithmetic nature that also makes it amenable to matrix mul-
tiplication as well. Combining these two observations, we construct a three-way vertex separation
of the graph G, defined as follows:

Definition 7.1 (Three-Way Separation). GivenG = (V ,E), partition (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3)
ofV is a separation if there are no edges between any two sets SI , S J whose sets I and J are disjoint.

The construction of a good three-way separation is very similar to the “two-way separation” in
Lemma 1.4: it also features a randomized coloring procedure and is proven using concentration
arguments. We then apply a combination of dynamic programming and matrix multiplication on
the three-way separator, which is presented as Algorithm BFVS2 in Section 8.2.

7.1 Three-Way Separator

Lemma 7.2 (Three-Way Separator). Given an instance (G,k ) and an FVS F of size at most k ,

define d := deg(F )/k , and suppose that d = O (1). There is a polynomial-time algorithm that com-
putes a three-way separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of G such that there exists values f1, f2
satisfying:

1a. f1 ≥ 3−d

1b. ( f1 − o(1))k ≤ |Si ∩ F | ≤ ( f1 + o(1))k for all i ∈ [3]

2a. f2 ≥ (2/3)d − 2f1
2b. ( f2 − o(1))k ≤ |Si, j ∩ F | ≤ ( f2 + o(1))k for all 1 ≤ i < j ≤ 3
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Proof. Our proof follows the outline of the proof of Lemma 3.2. Initially, we start out the same:
fix ϵ := k−0.01, apply Lemma 3.1 on the same input (that is, G − F ) to remove a set of vertices Sϵ ,
and construct the bipartite graph H on the bipartition F � R in the same manner as in Lemma 3.2.

We recall that (1) |R | ≤ |E[F , F ]| + 2|E[F ]| = deg(F ), (2) every vertex in R has degree at most d/ϵ ,
and (3) the degree of a vertex v ∈ F in H is at most deg(v ).

Now, instead of randomly two-coloring the vertex set R, the algorithm three-colors it. That
is, for each vertex in R, color it with a color in {1, 2, 3} chosen uniformly and independently at
random. For each subset I ⊆ 2[3]\{∅}, create a vertex set SI consisting of all vertices v ∈ F whose
neighborhood in H sees the color set I precisely. More formally, let c (v ) and N (v ) be the color of
v ∈ R and the neighbors of v in H , and define SI = {v ∈ F :

⋃
u ∈N (v ) c (u) = I }. Furthermore, if I is

a singleton set {i}, then add (to SI ) all vertices in the connected components C whose component
vertex in R is colored i , and add Sϵ to S {1,2,3}.

From now on, we abuse notation, sometimes referring to sets S {1} , S {1,2}, and so on as S1, S1,2,
and so on.

The proof of the following easy Subclaim is essentially the same as the proof of Subclaim 3.3
(but with more cases), and therefore omitted. �

Subclaim 7.3. (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way separation.

We start by proving Conditions (1a) and (1b) with the following strategy. First, we present a value
f1 such that Condition (1b) holds with probability 1− 1/poly(k ). Then, we argue that actually, this
value of f1 satisfies Condition (1a). To determine the value F1, we first define F ′

d
to be the vertices

in F ′ with degree d ≤ d/ϵ in H .

Subclaim 7.4. For f1 := (
∑

d 3−d · |F ′
d
|)/|F ′ |, Condition (1b) holds with probability 1 − 1/poly(k ).

Proof. The proof uses similar concentration arguments as the proof of Subclaim 3.4. Again, fix

a parameter ϵ := k−0.01 throughout the proof. Let F ′ be the vertices with a degree at most d/ϵ , so
that again, |F ′ | ≥ (1−o(1)) |F |. Form the intersection graph I on the vertex set F ′ as in Subclaim 3.4,

and color it with (d/ϵ )2 + 1 colors with a standard greedy algorithm.

Let F ′
i,d
⊆ F ′

d
be the vertices in F ′

d
that are colored i . If |F ′

i,d
| < k0.9, then ignore it; sinced ≤ O (1)

and ϵ = k−0.01, the sum of all such F ′
i,d

is at most ((d/ϵ )2 + 1) · (d/ϵ ) · k0.9 = o(k ), so they only

affect condition (1b) by an additive o(k ) factor. Henceforth, assume that |F ′
i,d
| ≥ k0.9.

We only focus our attention on S1; the claim for S2 and S3 are identical. The probability that a
vertex v ∈ F ′

i,d
joins S1 is 3−d , and since F ′

i,d
is an independent set, the events are independent

overall v ∈ F ′
i,d

. Let X := |F ′
i,d
∩A| be the number of vertices in F ′

i,d
that join S1; we have E[X ] =

3−d · |F ′
i,d
∩ S1 |, and by Hoeffding’s inequality,

Pr[|X − E[X ]| ≥ k0.8] ≤ 2 exp(−2 · (k0.8)2/|F ′i,d |) ≤ 2 exp(−2 · k1.6/k ) ≤ 1/poly(k )

for large enough k . Taking a union bound over all colors i and degrees d , we conclude that with
probability 1 − 1/poly(k ),

��|F ′ ∩ S1 | − E
[ |F ′ ∩ S1 |

] �� ≤ ((d/ϵ )2 + 1) · (d/ϵ ) · k0.8 + o(k ) = o(k ).

Moreover,

E[|F ′ ∩ S1 |] =
∑

d

3−d · |F ′d |,

and we see that
| |S1 ∩ F | − f1k | = | |S1 ∩ F ′ | − f1 · |F ′ | | + o(k ) = o(k ),

which fulfills condition (1b). �
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Subclaim 7.5. For f1 :=
(∑

d 3−d · |F ′
d
|
)
/|F ′ |, Condition (1a) holds with probability 1−1/poly(k ).

Proof. Observe that deg(F ′)/|F ′ | ≤ deg(F )/|F | = d , since F ′ is precisely the vertices in F with
degree below some threshold. Therefore,

f1 =
1

|F ′ |
∑

d

|F ′d | · 3
−d

=
1

|F ′ |
∑

v ∈F ′
3− deg(v )

≥ 3− deg(F ′)/ |F ′ |,

≥ 3− deg(F )/ |F |,

where the last inequality follows from convexity of the function 3−x . �

Subclaim 7.6. There exist fixed numbers pd for each d such that for f2 :=
(∑

d pd · |F ′d |
)
/k , Con-

dition (2b) holds with probability 1 − 1/poly(k ).

Proof. The proof is identical to that of Subclaim 7.4, except that 3−d is replaced with pd which
is set to be the probability that a vertex v ∈ F ′

i,d
joins S1,2. �

Subclaim 7.7. The f1 :=
(∑

d pd · |F ′d |
)
/|F ′ | and f2 :=

(∑
d pd · |F ′d |

)
/k , condition (2a) holds.

Proof. Here, our strategy is slightly different. Let qd be the probability that a vertexv of degree
d in H joins one of S1, S2, and S1,2. Since this is also the probability that no neighbor ofv is colored

3, we have qd = (2/3)d . Let p1,d and p2,d be the value of pd in the proofs of Subclaim 7.4 and
Subclaim 7.6, respectively, so that qd = 2p1,d + p2,d . Therefore,

2f1 + f2 = 2 · 1

|F ′ |
∑

d

p1,d · |F ′d | +
1

|F ′ |
∑

d

p2,d · |F ′d |

=
1

|F ′ |
∑

d

qd · |F ′d |

=
1

|F ′ |
∑

d

|F ′d | ·
(

2

3

)d

=
1

|F ′ |
∑

v ∈F ′

(
2

3

)deg(v )

≥
(

2

3

)deg(F ′)/ |F ′ |
,

where the last inequality follows from convexity of the function (2/3)x . Again, we have

deg(F ′)/|F ′ | ≤ deg(F )/|F | = d , so

f2 ≥
(

2

3

)deg(F ′)/ |F ′ |
− 2f1 ≥

(
2

3

)d

− 2f1,

which fulfills condition (2a). �
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7.2 Matrix Multiplication Algorithm

In this section, we present the improved iterative compression algorithm IC3. It is mostly un-
changed from IC2, except that the algorithm now computes a three-way separator and calls the
faster BFVS algorithm BFVS2 on it. Because of its technical nature, the algorithm BFVS2 and its
analysis are deferred to Subsection 8.2. Instead, we simply state its running time guarantee in
Lemma 7.8 below.

ALGORITHM 5: IC3(G,k,d )

Input: Graph G = (V ,E) and parameters k ≤ n and d = O (1).

Output: A FVS F of size at most k satisfying deg(F ) ≤ dk , or Infeasible if none exists.

1: Order the vertices V arbitrarily as (v1, . . . ,vn )
2: F ← ∅
3: for i = 1, . . . ,n do � Invariant: deg (F ) ≤ dk
4: Compute a separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) of G[{v1, . . . ,vi−1}] by Lemma 7.2 on input F
5: S1,2,3 ← S1,2,3 ∪ {vi }, so that (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) is a three-way separation of

G[{v1, . . . ,vi }]
6: F ← BFVS2(G[{v1, . . . ,vi }], F ,k + 1, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3)
7: if F is Infeasible then

8: return Infeasible
9: return F

Lemma 7.8. There is an Algorithm BFVS2 that, given G, an FVS F of G of size k , parameter d ,
and a separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) as given by Lemma 7.2, outputs a FVS of size at

most k − 1 satisfying deg(F ) ≤ d (k − 1), or Infeasible if none exists. The algorithm runs in time

O�(3(1−min{(2/3)d , (3−ω )(2/3)d+(2ω−3)3−d }+o (1))k ).

Assuming Lemma 7.8, we prove our main result, Theorem 1.1, restated below.

Theorem 1.1. There is a randomized algorithm that solves FVS in time O�(2.69998k ). If ω = 2,

then the algorithm takes time O�(2.6252k ).

Proof. We run FVS2, replacing every occurrence of IC2 with IC3. Following FVS2, we define

d := (4 − 2ϵ )/(1 − ϵ ) for some ϵ > 0 to be determined later; note that d ≥ 4 for any ϵ > 0. Since

ω < 2.3728639 [20], by Lemma 8.8, IC3 runs in time O�(3(1−((3−ω )(2/3)d+(2ω−3) ·3−d )+o (1))k ), so FVS2

runs in time O�(ck
ϵ ) for cϵ := max{3 − ϵ, 31−((3−ω )(2/3)(4−2ϵ )/(1−ϵ )+(2ω−3) ·3−(4−2ϵ )/(1−ϵ ) )+o (1) }. To optimize

for cϵ , we set ϵ ≈ 0.3000237, giving cϵ ≤ 2.699977.

If ω = 2, then by Lemma 8.8, IC3 runs in timeO�(3(1−(2/3)d+o (1))k ), so FVS2 runs in timeO�(ck
ϵ )

for cϵ := max{3 − ϵ, 31−(2/3)(4−2ϵ )/(1−ϵ )+o (1) }. To optimize for cϵ , we set ϵ ≈ 0.3748068, giving cϵ ≤
2.6252. �

8 CUT AND COUNT

In this section, we open the black box formed by the Cut&Count approach [14]. It should be noted
that most of this section, except Subsection 8.2, is very similar to the methods from [14]. We need
the following definition:

Definition 8.1 ([14]). Let G be a graph with weight function ω : V (G ) → N. Let s,m′,W be

integers. Define Cω,s,m′

W
to be the set{

(F ,L,R) ∈
(
V (G )

·, ·, ·

)
����
ω (F ) =W ∧ E[L,R] = ∅ ∧ |F | = s ∧ |E[L ∪ R]| =m′

}
.
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In the above,
(
V (G )
·, ·, ·

)
denotes the set of all partitions of V (G ) into three sets (denoted by F for

“FVS”, L for ‘left side of the cut’, and R for ‘right side of the cut’). In words, a partition (F ,L,R) of

the vertex set is an element of Cω,s,m′

W
if the total weight of all vertices in F equalsW , there are no

edges between L and R, exactly m′ edges with both endpoints either in L or in R, and |F | = s . The
use of Definition 8.1 becomes clear in the following lemma. Intuitively, the crux is that F is an FVS

of G if and only if for some s,m′,W the number of partitions (L,R) of V \F such that |Cω,s,m′

W
| is

odd; in this case deg(F ) can be read off fromW .

Lemma 8.2. Let G be a graph and d be an integer. Pick ω (v ) ∈R {1, . . . , 2|V |} uniformly and
independent at random for every v ∈ V (G ), and define ω ′(v ) := |V |2ω (v ) + d (v ). The following
statements hold:

(1) If for some integers m′, W = i |V |2 + d we have that |Cω′,k,m′

W
| � 0 (mod 2n−k−m′+1), then G

has an FVS F satisfying deg(F ) = d .
(2) If G has an FVS F satisfying deg(F ) = d , then with probability at least 1/2 for some m′,W =

i |V |2 + d we have that |Cω′,k,m′

W
| � 0 (mod 2n−k−m′+1).

Lemma 8.2 states that in order to solve the FVS problem it is sufficient to compute |Cω,n−k,m′

W
| for

all settings of the parameters. Before proving the Lemma we need to recall some standard building
blocks:

Lemma 8.3 (Lemma A.7 in [14]). A graph with n vertices and m edges is a forest iff it has at most
n −m connected components.

Definition 8.4. A function ω : U → Z isolates a set family F ⊆ 2U if there is a unique S ′ ∈ F
with ω (S ′) = minS ∈F ω (S ), where ω (S ′) :=

∑
v ∈S ′ ω (v ).

Lemma 8.5 (Isolation Lemma, [28]). Let F ⊆ 2U be a non-empty set family over a universe U .
For each u ∈ U , choose a weight ω (u) ∈ {1, 2, . . . ,W } uniformly and independently at random. Then
Pr[ω isolates F ] ≥ 1 − |U |/W .

Proof of Lemma 8.2. We first prove (1). Note that if |Cω′,k,m′

W
| � 0 (mod 2n−k−m′+1), there must

be some vertex subset F such that the number of choices L,R with (F ,L,R) ∈ Cω,s,m′

W
is not a

multiple of 2n−k−m′+1. As we can independently decide for each component ofG[V \F ] whether to
include it in L,R G[V \F ] thus must have at most n −k −m′ connected components. By Lemma 8.3
it therefore must be an FVS. The condition on the degree follows by the weighting.

We now prove (2). First apply Lemma 8.5 with U = V and the set family F being the set of all
FVSs F of G satisfying deg(F ) = d . With probability 1/2, there will be some weight i such that
there is a unique FVS F with deg(F ) = d of weight i . By Lemma 8.3 this is the only F that has a

contribution to |Cω′,k,m′

W
| that is not a multiple of 2n−k−m′+1 as the number of extension of F to an

object of Cω′,k,m′

W
is exactly 2cc(G[V \F ]) ,7 assuming ω (F ) =W , |F | = k and |E[V \F ]| =m′. �

We now continue with a lemma that is useful towards computing |Cω,s,m′

W
|.

Definition 8.6. If F 0 ⊆ V (G ) is an FVS of G and (F ,L,R) ∈
(

F 0

·, ·, ·

)
, we denote

cω,s,m′

W
(F ,L,R) = |{(F ′,L′,R′) ∈ Cω,s,m′

W
: F ′ ∩ F 0 = F ∧ L′ ∩ F 0 = L ∧ R′ ∩ F 0 = R}|.

Lemma 8.7. There is a polynomial time algorithm forestDP(G,ω, F ,L,R, s,m′,W ) that, given
a graph G, weight function ω : V (G ) → N, vertex sets F ,L,R and integers s,k,m′,W computes

cω,s,m′

W
(F ,L,R) in poly(n,W ) time, assuming that F ∪ L ∪ R is an FVS of G.

7Here we let cc denote the number of connected components.
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Proof. We denote F0 = F ∪ L ∪ R for the given FVS. We will use dynamic programming over
the forest induced by V \(F ∪ L ∪ R), in a way very similar to the proof of [14, Theorem B.1].
We assign roots to each tree in the forest V (G )\F0 arbitrarily, so the standard relations parents,
children, ancestors and descendants are well-defined. For a vertex v , we denote T [v] for the tree
induced by v and all its descendants. If v has d children (which we order in arbitrary fashion) and
i ≤ d , we also denote T [v, i] for the tree induced by v and all descendants of its first i children.

For x ∈ {L′,R′, F ′}, the table entries for the dynamic programming are defined as follows:

A(x )
W ,s,m′[v, i] = |{(F

′,L′,R′) ∈
(
V (T [v, i]) ∪ F0

·, ·, ·

)
: F ′ ∩ F0 = F ∧ L′ ∩ F0 = L ∧ R′ ∩ F0

= R ∧ ω (F ′) =W

∧ E[L′,R′] = ∅ ∧ |F ′ |
= s ∧ |E[L′ ∪ R′]| =m′ ∧v ∈ x }|.

For convenience, we also denote A(x )
W ,s,m′[v] for A(x )

W ,s,m′[v,d], where d is number of children of v .

If v is a leaf of a tree in the forest V \F0, then it is easy to see that we have

A(x )
W ,s,m′[v, 0] =

⎧⎪⎨
⎪
⎩

1, ifW = ω (F ) + ω∗ ∧ |F | = s∗ ∧ |E[L∗ ∪ R∗]| =m′ ∧ E[L∗,R∗] = ∅
0, otherwise,

where ω∗ = ω (v ) if x = F ′ and 0 otherwise; s∗ = s − 1 if x = F ′ and s otherwise; L∗ = L′ ∪ {v} if
x = L′ and L′ otherwise, and similarly R∗ = R′ ∪ {v} if x = R′ and R′ otherwise.

If v has children v1, . . . ,vd in the forest V \F0, we have that

A(F ′)
W ,s,m′[v, 1] =

∑
x ′ ∈{L′,R′,F ′ }

A(x ′)
W −ω (v ),s−1,m′

[v1],

A(L′)
W ,s,m′[v, 1] = [N (v ) ∩ R = ∅]

(
A(L′)

W ,s,m′− |N (v )∩L |−1
[v1] +A(F ′)

W ,s,m′− |N (v )∩L |[v1]
)
,

A(R′)
W ,s,m′[v, 1] = [N (v ) ∩ L = ∅]

(
A(R′)

W ,s,m′− |N (v )∩R |−1
[v1] +A(F ′)

W ,s,m′− |N (v )∩R |[v1]
)
.

Here we use Iverson’s bracket notation [b] for a Boolean predicate b which denotes 1 if b is true
and 0 otherwise.

To see that this holds, note we need to account for the possible contributions of v to ω (F ′), |F ′ |
and need to check whether E[L′,R′] = ∅ is not violated and account for an increase of E[L′ ∪ R′]
which may include the edge {v,v1}.

Moreover, for i > 1 we have that

A(F ′)
W ,s,m′[v, i] =

∑
x ′ ∈{L′,R′,F ′ }

W1+W2=W +ω (F )
s1+s2=s+ |F |

m′1+m′2=m′+ |E[L∪R] |

A(F ′)
W1,s1,m

′
1
[v, i − 1] ∗A(x ′)

W2,s2,m
′
2
[vi ].

A(L′)
W ,s,m′[v, i] =

∑
x ′ ∈{L′,F ′ }

W1+W2=W +ω (F )
s1+s2=s+ |F |

m′1+m′2=m′+ |E[L∪R] |−[x ′=L′]

A(L′)
W1,s1,m

′
1
[v, i − 1] ∗A(x ′)

W2,s2,m
′
2
[vi ].

A(R′)
W ,s,m′[v, i] =

∑
x ′ ∈{R′,F ′ }

W1+W2=W +ω (F )
s1+s2=s+ |F |

m′1+m′2=m′+ |E[L∪R] |−[x ′=R′]

A(R′)
W1,s1,m

′
1
[v, i − 1] ∗A(x ′)

W2,s2,m
′
2
[vi ].
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Similarly as before, we need to account for the possible contributions of v to ω (F ′) and |F ′ |. We
also need to check whether E[L′,R′] = ∅ is not violated and account for an increase of E[L′ ∪ R′]
which may include the edge {v,v1}. Note that we compensate for double counting due to F ,L,R.

Finally we can merge the counts stored at the roots of each tree of the forest to get the desired
value. Specifically, if the the roots are r1, . . . , rd then

cω,s,m′

W
(F ,L,R) =

∑
x1, ...,xd ∈{L′,R′,F }

W1+· · ·+Wd=W +(d−1) |F |
s1+· · ·+sd=s+(d−1) |F |

m′1+· · ·+m′
d
=m′+(d−1) |E[L∪R] |

d∏
i=1

A(xi )
Wi ,si ,m

′
i
[ri ]. (7)

Here we again compensate for double counting due to F ,L,R. Given all entries A(xi )
Wi ,si ,m

′
i
[ri ], we

can combine (7) with standard dynamic programming to compute cω,s,m′

W
(F ,L,R) in polynomial

time. �

8.1 Cut and Count Using Simple Separation: Proof of Lemma 6.5

The algorithm promised by the lemma is listed in Algorithm BFVS1. For the claimed time bound,
note all steps are polynomial time except Lines 5, 8, and 11, and these jointly give rise to

3( |S |+ |A∩F |) + 3( |S |+ |B∩F |) iterations. On Line 15, the algorithm has detected that the desired FVS
exists. In this case the FVS can be obtained with high probability with the following standard self-
reduction technique with overhead that is only polynomial in the input size: For all vertices v of

G, run the algorithm on G − v with altered parameters k := k − 1 and d := (dk − d (v ))/(k − 1).
For a vertex v where the algorithm concludes a solution still exists, continue with constructing a
solution for the graphG −v of cardinality k − 1; an FVS ofG is obtained from this set by adding v .

As the separation (A,B, S ) was assumed to satisfy the properties |A ∩ F |, |B ∩ F | ≥ (2−d − o(1))k

and |S | ≤ (1 − 2 · 2−d + o(1))k from Lemma 3.2, the time bound follows.

For the correctness, we claim that at Line 14 count = |Cω′,k,m′

W
| for some m′, W = i |V |2 + d .

Together with Lemma 6.5, this establishes correctness of the algorithm. To see the claim, observe
that the algorithm iterates over all partitions (F ,L,R) of the separator S in Line 5. For each partition,
and every way to splitW ,k,m (Line 6), the algorithm computes the number countA (resp. countB)
of “extensions” of the partition inG[A∪S] (respectivelyG[B∪S]) that “respect” the split, and then
multiplies countA and countB. To see why the two counts are multiplied, observe that there are
no edges between A and B in the separation (A,B, S ), so extending into G[A ∪ S] is independent
to extending into G[B ∪ S].

8.2 Cut and Count Using 3-way Separation: Proof of Lemma 7.8

We now present the improved BFVS algorithm below. First, we argue its correctness, that at Line 18,

count = |Cω′,k,m′

W
|. First, the algorithm iterates over partitions of S1,2,3 in Line 6 the same way

Algorithm BFVS1 iterates over partitions of S . The rest of the algorithm, which includes the matrix
multiplication routine, seeks to compute the number of extensions in S1 ∪ S2 ∪ S3 given each
partition of S1,2 ∪ S1,3 ∪ S2,3 (and given the current partition of S1,2,3, as well as a three-way split
of W ,k,m′). Like in the case of separator (A,B, S ) in BFVS1, it is true that the extensions of S1,
S2, and S3 are independent given the partition of S1,2 ∪ S1,3 ∪ S2,3, but in this case, the size of
|S1,2 ∪ S1,3 ∪ S2,3 | can be prohibitively large. Instead, to compute this quantity efficiently, first
observe that since there are no edges between S1 and S2,3, the number of extensions of S1 only
depends on the partition of S1,2 ∪ S1,3, and not S2,3. For each partition of S1,2 ∪ S1,3, take the graph
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ALGORITHM 6: BFVS1(G, F ,k,A,B, S )

Input: Graph G = (V ,E), FVS F of size k , parameters k,d ≤ n, and separation (A,B, S ) from Lemma 3.2

Output: A FVS of size at most k satisfying deg(F ) ≤ dk , or Infeasible if none exists.

1: Pick ω ∈R {1, . . . , 2|V |} uniformly and independently at random for every v ∈ V (G )
2: Set ω ′(v ) := |V |2ω (v ) + d (v )

3: form′,W such that 0 ≤ m′ ≤ m,W = |V 2 |i + d ≤ ω ′(V ) for some d ≤ dk do

4: count← 0

5: for (FS ,LS ,RS ) ∈
(

S
·, ·, ·

)
do

6: forW1,k1,m
′
1 such that 0 ≤W1 ≤W , 0 ≤ k1 ≤ k, 0 ≤ m′1 ≤ m′ do

7: countA← 0

8: for (FA,LA,RA) ∈
(
A∩F
·, ·, ·

)
do

9: countA← countA + forestDP(G[A ∪ S],ω ′, FA ∪ FS ,LA ∪ LS ,RA ∪ RS ,k1,m
′
1,W1)

10: countB← 0

11: for (FB ,LB ,RB ) ∈
(
B∩F
·, ·, ·

)
do

12: countB← countB + forestDP(G[B ∪ S],ω ′, FB ∪ FS ,

LB∪LS ,RB∪RS ,k+ |FS |−k1,m
′+ |E[LS∪RS ]|−m′1,W +ω

′(FS )−W1)

13: count← count + countA · countB
14: if count � 0 (mod 2n−k−m′ ) then

15: return a FVS ofG[{v1, . . . ,vi }] of size ≤ k satisfying deg(F ) ≤ dk , constructed by self-reduction

16: return Infeasible

ALGORITHM 7: BFVS2(G, F ,k, S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3)

Input: Graph G = (V , E ), FVS F , parameters k, d ≤ n, and separation (S1, S2, S3, S1,2, S1,3, S2,3, S1,2,3) from Lemma 7.2

Output: An FVS of size at most k satisfying deg(F ) ≤ dk , or Infeasible if none exists.

1: for poly(n) iterations do

2: Pick ω ∈R {1, . . . , 2 |V | } uniformly and independently at random for every v ∈ V (G )
3: Set ω′(v ) := |V |2ω (v ) + d (v )

4: for m′, W such that 0 ≤ m′ ≤ m, W = |V 2 |i + d ≤ ω (V ) for some d ≤ dk do

5: count← 0

6: for (F0, L0, R0) ∈
(
S1,2,3∩F
·, ·, ·

)
do

7: for nonnegative WI , kI , m′
I
, ∅ � U ⊆ [3] such that

∑
I WI =W ,

∑
I kI = k,

∑
I m′

I
=m′ do

8: H ← an empty graph with vertices indexed by
(
S1,2∩F
·, ·, ·

)
∪

(
S1,3∩F
·, ·, ·

)
∪

(
S2,3∩F
·, ·, ·

)
9: for (x, y, z ) in {(1, 2, 3), (2, 3, 1), (3, 1, 2) } do

10: for (F1, L1, R1) ∈
(
Sx,y∩F
·, ·, ·

)
, (F2, L2, R2) ∈

(
Sx,z∩F
·, ·, ·

)
do

11: count3← 0

12: for (F3, L3, R3 ) ∈
(
Si∩F
·, ·, ·

)
do

13:

count3← count3+ forestDP(G[Sx ∪ Sx,y ∪ Sx,z ∪ S1,2,3], ω,

F3 ∪ F0 ∪ F1 ∪ F2, L3 ∪ L0 ∪ L1 ∪ L2,

R3 ∪ R0 ∪ R1 ∪ R2, kx + kx,y + kx,z + k1,2,3,

m′x +m′x,y +m′x,z +m′1,2,3, Wx +Wx,y +Wx,z +W1,2,3)

14: Add an edge e between vertices (F1, L1, R1) and (F2, L2, R2) of H

15: Assign weight count3 (mod 2n−k−m′ ) to the edge e

16: count0← sum over the product of the three edges of all triangles in H

17: count← count + count0
18: if count � 0 (mod 2n−k−m′ ) then

19: return an FVS of G[{v1, . . . , vi }] of size ≤ k with deg(F ) ≤ dk , constructed by self-reduction

20: return Infeasible
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H defined in Line 8, and imagine adding an edge between the respective partitions of S1,2 and S1,3,
weighted by the number of extensions in S1. We proceed analogously for extensions of S2 and S3.
Finally, the total number of extensions (given the partition of S1,2,3) amounts to computing, for all
triangles in H , the product of the weights of the three edges (Line 16), which can be solved by a
standard matrix multiplication routine.

Finally, the desired running time-bound is more complicated for BFVS2. We prove Lemma 8.8
below which, together with Lemma 7.2, implies the running time bound of Lemma 7.8.

Lemma 8.8. For any constant ϵ > 0, the BFVS problem with parameters k and d can be solved in

time O�(3(1−min{(2/3)d , (3−ω )(2/3)d+(2ω−3)3−d }+o (1))k ).

Proof. Let f1, f2 be the values from Lemma 7.2, and let f3 := 1 − 3f1 − 3f2, so that by Con-
ditions (1b) and (2b), we have ( f3 − o(1))k ≤ |S1,2,3 ∩ F | ≤ ( f3 + o(1))k for some FVS F of size

k . For each of the O�(3f3+o (1) ) iterations on Line 6, building the graph H (Lines 8–15) takes time

O�(32f2+f1+o (k ) ), and running matrix multiplication (Line 16) on a graph withO�(3f2+o (k ) ) vertices

to compute the sum over the product of the three edges of all triangles takes time O�(3ωf2+o (k ) ).
Therefore, the total running time is

O�(3f3+o (k ) (32f2+f1+o (k ) + 3ωf2+o (k ) )) = O�(3f3+2f2+f1+o (k ) + 3f3+ωf2+o (k ) )

= O�(31−f2−2f1+o (k ) + 31−(3−ω )f2−3f1+o (k ) )

= O�(31−(f2+2f1 )+o (k ) + 31−(3−ω )(f2+2f1 )−(2ω−3)f1+o (k ) )

≤ O�(31−(2/3)d+o (k ) + 31−(3−ω )(2/3)d−(2ω−3) ·3−d+o (k ) ),

where the last inequality uses Conditions (1a) and (2a) of Lemma 7.2, and the fact that
2ω − 3 ≥ 0. �
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