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Abstract. Paths P 1, . . . , P k in a graph G = (V,E) are mutually induced
if any two distinct P i and P j have neither common vertices nor adjacent
vertices. For a fixed integer k, the k-Induced Disjoint Paths problem is
to decide if a graph G with k pairs of specified vertices (si, ti) contains k
mutually induced paths P i such that each P i starts from si and ends at ti.
Whereas the non-induced version is well-known to be polynomial-time
solvable for every fixed integer k, a classical result from the literature
states that even 2-Induced Disjoint Paths is NP-complete. We prove
new complexity results for k-Induced Disjoint Paths if the input is
restricted to H-free graphs, that is, graphs without a fixed graph H as an
induced subgraph. We compare our results with a complexity dichotomy
for Induced Disjoint Paths, the variant where k is part of the input.
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1 Introduction

We consider problems related to finding paths connecting pre-specified pairs of
vertices. A path between vertices s and t in an undirected graph G is an s-t path
with terminals s and t. Terminal pairs (s1, t1), . . . , (sk, tk) are pairwise disjoint if
{si, ti} ∩ {sj , tj} = ∅ for i 6= j. The well-known problem k-Disjoint Paths is to
decide for a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk), if
there are pairwise vertex-disjoint paths P 1,. . . ,P k such that P i is an (si, ti)-path
for i ∈ {1, . . . , k}; here k is fixed, that is, k is not part of the input.

Shiloach [25] proved that 2-Disjoint Paths is polynomial-time solvable.
Robertson and Seymour [24] even gave a polynomial-time algorithm for k-
Disjoint Paths for every integer k ≥ 2. In contrast, Disjoint Paths, the
variant where k is part of the input, appeared on Karp’s list of NP-complete
problems.

Our Focus. We consider the induced variant of k-Disjoint Paths. We say that
paths P 1, . . . , P k in a graph G = (V,E) are mutually induced if any two distinct
P i and P j have neither common vertices nor adjacent vertices, that is, if i 6= j
then V (P i) ∩ V (P j) = ∅ and uv /∈ E for every u ∈ V (P i) and v ∈ V (P j). This
leads to the following problem, where k is a fixed constant.
? An extended abstract of this paper will appear in the proceedings of ISCO 2022 [21].
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k-Induced Disjoint Paths
Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).
Question: Does G have mutually induced paths P 1,. . . ,P k such that P i is

an si-ti path for i ∈ {1, . . . , k}?

In contrast to the previous setting, even 2-Induced Disjoint Paths is NP-
complete, as shown both by Bienstock [4] and Fellows [7]. Restricting the input to
some special graph class might help improve our understanding of the hardness
of the problem. To do this systematically we focus on hereditary graph classes.

A class of graphs is hereditary if it is closed under vertex deletion. This
is a natural property and non-surprisingly hereditary graph classes provide a
framework that captures many well-known graph classes. In particular, it is
not difficult to see that a graph class G is hereditary if and only if it can be
characterized by a (unique) set FG of forbidden induced subgraphs. For example,
if G is the class of bipartite graphs, then FG is the set of all odd cycles.

The characterization by FG allows for a systematic study, which usually starts
with the case where FG has size 1, say FG = {H} for some graph H. A graph is
H-free if it cannot be modified to H by a sequence of vertex deletions, and if
FG = {H} we obtain the class of H-free graphs, which we consider in our paper.

1.1 Related Work

We first discuss existing results for Induced Disjoint Paths (where k is
part of the input). All the positive results hold for a slightly more general
problem definition (see Section 6). Golovach et al. [11,12] proved that Induced
Disjoint Paths is linear-time solvable for circular-arc graphs and polynomial-
time solvable for AT-free graphs, respectively. Belmonte et al. [3] showed the
latter for chordal graphs, and Jaffke et al. [14] did so for any graph class of
bounded mim-width. In contrast, Induced Disjoint Paths stays NP-complete
even for claw-free graphs [8], line graphs of triangle-free chordless graphs [23]
and thus for (theta,wheel)-free graphs, and for planar graphs; to prove the latter,
use a result of Lynch [19] (see [12]).

The following recent dichotomy is immediately relevant for our paper. Let
G1 +G2 be the disjoint union of two vertex-disjoint graphs G1 and G2, and let
sG denote the disjoint union of s copies of a graph G. We write F ⊆i G if F
is an induced subgraph of a graph G, that is, F can be obtained from G by a
sequence of vertex deletions. We let Pr denote the path on r vertices. A linear
forest is the disjoint union of one or more paths.

Theorem 1 ([22]). For a graph H, Induced Disjoint Paths on H-free graphs
is polynomial-time solvable if H ⊆i sP3 + P6 for some s ≥ 0; NP-complete if H
is not a linear forest; and quasipolynomial-time solvable otherwise.

We return to Theorem 1 later, and we now fix k. Radovanović et al. [23] proved
that k-Induced Disjoint Paths is polynomial-time solvable for (theta,wheel)-
free graphs. Fiala et al. [8] proved the same result for claw-free graphs. Note
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that both results complement the aforementioned hardness results when k is
part of the input. Golovach et al. [10] showed that Induced Disjoint Paths
is even FPT with parameter k for claw-free graphs. The same holds for planar
graphs [15], and even for graph classes of bounded genus, as shown by Kobayashi
and Kawarabayashi [17]. Let Cr denote the r-vertex cycle. It follows (using
Lemma 3) from a result of Leveque et al. [18] that 2-Induced Disjoint Paths
is NP-complete for H-free graphs if H = Cr for every r ≥ 3 with r 6= 6.

The generalization from paths to connected subgraphs joining sets of terminals
instead of pairs has also been considered, but these results do not impact upon our
work in this paper; we refer to [22] for further details. Moreover, the restriction to
H-free graphs has also been studied for Disjoint Paths (recall that if k is fixed
this problem is polynomial in general [24]); see [16] for a complexity classification
of Disjoint Paths for H-free graphs, subject to a set of three unknown cases.

1.2 Our Results.

To explain our results we first introduce some extra terminology. For r ≥ 1, the
graph K1,r is the (r+1)-vertex star, i.e., the graph with vertices x, y1, . . . , yr and
edges xyi for i = 1, . . . , r. The graph K1,3 is known as the claw. The subdivision
of an edge uw removes uw and replaces it with a new vertex v and edges uv,
vw. A subdivided claw is a tree with one vertex x of degree 3 and exactly three
leaves. For 1 ≤ h ≤ i ≤ j, let Sh,i,j be the subdivided claw whose three leaves
are of distance h, i and j from the vertex of degree 3. Note that S1,1,1 = K1,3.
The graph S1,1,2 is called the chair (or fork). Let S be the set of graphs, each
connected component of which is a path or a subdivided claw.

Using the above terminology we can now present our main theorem.

Theorem 2. Let k ≥ 2. For a graph H, k-Induced Disjoint Paths is
polynomial-time solvable if H is a subgraph of the disjoint union of a linear
forest and a chair, and it is NP-complete if H is not in S.

Comparing Theorems 1 and 2 shows that the problem becomes tractable for
an infinite family of graphs H after fixing k. As the class of claw-free graphs is
contained in the class of chair-free graphs, Theorem 2 extends the aforementioned
polynomial-time result of Fiala et al. [8] for claw-free graphs. Moreover, the case
H = C6 (the 6-vertex cycle) fills a gap in the aforementioned result of Leveque
et al. [18]. As we shall explain in Section 3, the NP-hardness construction relies
on their gadget but also requires significant additional work. Before doing this
we first prove the polynomial-time part of Theorem 2 in Section 2. Then, in
Section 4, we prove Theorem 2.

In Section 5 we consider the problem from a parameterized complexity view-
point. Recall that Golovach et al. [10] proved that Induced Disjoint Paths
is FPT for claw-free graphs when parameterized by the number k of paths. We
consider the class of Pr-free graphs. This gives us another natural parameter,
namely r. However, we show by adapting a construction of Haas and Hoff-
mann [13] that even 2-Induced Disjoint Paths is W[1]-hard for Pr-free graphs
when parameterized by r.
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In Section 6 we summarize our findings and give a number of relevant open
problems. In particular we discuss some open problems on the parameterized
complexity of Induced Disjoint Paths.

2 Polynomial-Time Algorithms

In this section we prove the polynomial-time part of Theorem 2. We first show
the following general result that we will need as a lemma.

Lemma 1. For every linear forest F , if the k-Induced Disjoint Paths problem
is polynomial-time solvable for H-free graphs for some graph H, then it is so for
(F +H)-free graphs.

Proof. Let H be a graph such that k-Induced Disjoint Paths is polynomial-
time solvable forH-free graphs. Let (G,T ) be an instance of k-Induced Disjoint
Paths, where G is an (F+H)-free graph on n vertices and T is a set of k terminal
pairs (si, ti).

Let r = 2|V (F )| − 1. Note that F is an induced subgraph of Pr. We check in
O(nk(r+1)) time (by brute force) if there exists a solution (P 1, . . . , P k) for (G,T )
in which each path has at most r + 1 vertices. As k and r are constants, this
takes polynomial time.

Suppose we have not found a solution yet. Then if a solution (P 1, . . . , P k)
exists, at least one of the paths P i in it has r + 2 or more vertices. We guess
which path P i will have length at least r. This leads to k branches. We guess the
first r + 1 vertices u1, . . . , ur+1 on P i after si = u0. This leads to O(nr) further
branches. We remove si, u1, . . . , ur and all their neighbours from G, except for
ur+1. Let G′ be the resulting graph. In the pair (si, ti), we replace si by ur+1 to
obtain a new instance (G′, T ′). As F is an induced subgraph of Pr, we have that
G′ is H-free. Hence, by our assumption, we can solve k-Induced Disjoint Paths
on (G′, T ′) in polynomial time. As the total number of branches is polynomial,
the total running time is polynomial. ut

We need two known results for proving the polynomial part of Theorem 2 in
Lemma 2.

Theorem 3 ([8]). For every k ≥ 2, k-Induced Disjoint Paths is polynomial-
time solvable for claw-free graphs.

Theorem 4 ([2]). If a connected chair-free graph G contains an induced claw
and an induced path P on at least eight vertices, then G has a vertex adjacent to
all vertices of P .

Lemma 2. Let k ≥ 2. For every linear forest F , k-Induced Disjoint Paths
is polynomial-time solvable for (F + chair)-free graphs.

Proof. By Lemma 1, it remains to consider chair-free graphs. Let (G,T ) be an
instance of Induced Disjoint Paths, where G is a chair-free graph on n vertices
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and T = {(s1, t1), . . . , (sk, tk)} is a set of terminal pairs. Let (P 1, . . . , P k) be a
solution for (G,T ) (if it exists). We call a path P i long if it has at least eight
vertices; else we call it short. We first guess which of the paths of a solution for
(G,T ) will be short. There are 2k options for doing this, which is a constant
number as k is a constant. We will consider each of these options one by one.

Suppose we consider the option where T ′ ⊆ T is the subset of terminal
pairs that will be in short solution paths. Let |T ′| = k′ ≤ k. We guess all
O(n5k

′
) = O(n5k) options of choosing the inner vertices of the solution paths

for the terminal pairs in T ′. We discard an option if two of the guessed solution
paths contain an edge between them or if a guessed solution path contains a
vertex with a neighbour in some (si, ti) /∈ T ′. Otherwise, we continue as follows.

We first delete all vertices of the guessed solution paths and also their neigh-
bours from G. We denote the new instance by (G,T ) again and also write
T = {(s1, t1), . . . , (sk, tk)}. Assuming our guess was correct, (G,T ) only has
solutions (P 1, . . . , P k) in which each P i is long. Hence, from G, we can safely
remove for every i ∈ {1, . . . , k}, every vertex that is adjacent to both si and ti.

We now check in polynomial time if there are two terminal si and ti that
belong to different connected components of the resulting graph G′. If so, then
we can discard this branch. Else, we let (G′1, T ′1), . . . , (G′r, T ′r) be the connected
components of G′, together with the terminal pairs subsets of T they contain.

We consider each (G′j , T
′
j) as a separate instance. If G′j has an induced claw,

consider a path P i in a solution. As P i must be long, Theorem 4 tells us that G′j
must contain a vertex adjacent to all vertices of P i. However, by construction,
G′j contains no vertices adjacent to both si and ti which both belong to P i, a
contradiction. We now check in polynomial time if G′j is claw-free. If it is not, then
we may discard the branch, as just argued. Otherwise, we apply Theorem 3 to
check in polynomial time if (G′j , T ′j) has a solution. If for some (G′j , T ′j) no solution
exists, then we move to the next branch; otherwise, we return a yes-answer.

As the number of branches is polynomial and processing each branch takes
polynomial time, the total running time of our algorithm is polynomial. ut

3 NP-Completeness Results

In this section we prove the NP-completeness part of Theorem 2 (see Section 4
for details on how we combine the several hardness results proven in this section).

We first prove the NP-completeness part of Theorem 2. We base our proof on
a hardness result of Leveque et al. [18] for 2-Induced Cycle, which is to decide
if a graph has an induced cycle containing two pre-specfied vertices x and y (we
assume without loss of generality that the induced cycle is a hole, meaning it has
at least four vertices). Namely, we derive the following relation.

Lemma 3. An instance (G, x, y) of 2-Induced Cycle, where x and y have
degree 2, can be transformed in polynomial time into an instance of 2-Induced
Disjoint Paths on a graph G′. Any vertex that is introduced has degree at
most 3 and its incident edges can be subdivided an arbitrary number of times.
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Proof. Let x and y have neighbours x1, x2 and y1, y2 respectively. We replace x
and its incident edges by the following gadget. Create vertices p1, q1, r1, p2, q2, r2,
s1, s2. Add edges s1p1, p1q1, q1x1, q1r1, r1s2 and s2r2, r2q2, q2x2, p2s1, p2q2. Ob-
serve that the paths s1, p1, q1, x1 and s2, r2, q2, x2 are mutually induced. Similarly,
the paths s1, p2, q2, x2 and s2, r1, q1, x1 are mutually induced. Moreover, these
are the only two options that can co-exist, in the sense that a path originating in
s1 or s2 that uses only edges of this gadget, does not have s1 or s2 as an internal
vertex, and goes to x1 (x2) has to pass through q1 (q2). In a similar manner, we
replace y and its incident edges by vertices a1, b1, c1, a2, b2, c2, t1, t2 and edges
a1t1, a1b1, b1y1, b1c1, c1t2 and a2t1, a2b2, b2y2, b2c2, c2t2.

We call the resulting graph G′. Then, using the preceding argument, G has a
hole containing x and y if and only if G′ has mutually induced paths between
s1 and t1 and between s2 and t2. Note that any vertex that is introduced has
degree at most 3 and any of its incident edges can be subdivided an arbitrary
number of times without affecting the correctness of the reduction (q1, q2, b1, b2
remain bottlenecks). ut

Our first two results require a single change to the construction of [18]. The first
rectifies a potential issue with the same claim made in [10] by using Lemma 3.

Lemma 4. 2-Induced Disjoint Paths is NP-complete for K1,4-free graphs.

Proof. Leveque et al. [18] prove that 2-Induced Cycle is NP-complete on graphs
of maximum degree 3 where the distinguished vertices have degree 2. Apply the
reduction of Lemma 3. The graph has maximum degree 3; thus, it is K1,4-free. ut

Lemma 5. For every s ≥ 3 with s 6= 6, 2-Induced Disjoint Paths is NP-
complete for Cs-free graphs.

Proof. Leveque et al. [18] proved that 2-Induced Cycle is NP-complete on Cs-
free graphs for every s ≥ 3 with s 6= 6, where the two distinguished vertices have
degree 2. We apply Lemma 3 to reduce to 2-Induced Disjoint Paths. Since
we can subdivide any number of times the edges incident on the newly created
vertices, we can ensure that no induced Cs is created in the final instance. ut

Our third result requires a significant overhaul of the construction in [18].

3.1. Omitting “H”-graphs and Six-Vertex Cycles. Let H1 be the “H”-graph
on six vertices formed by an edge joining the middle vertices of two paths on
three vertices. For ` ≥ 2, let H` be the graph obtained from H1 by subdividing
the crossing edge (which is the edge whose endpoints both have degree 3) `− 1
times. See Fig. 1 for two examples.

We prove that for every ` ≥ 1, 2-Induced Disjoint Paths is NP-complete
for (C6, H`)-free graphs. To this end, we consider the hardness reduction by
Leveque et al. [18] for 2-Induced Cycle in more detail. We very closely follow
their notation and the proof of our main Lemma 6 mimics the proof of their
Lemma 2.6. We show how their construction can be modified so that it becomes
H`-free for any fixed ` ≥ 1 and C6-free.
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Fig. 1. A drawing of H1 (left) and H3 (right).

Let φ be an instance of 3-Satisfiability consisting of m clauses C1, . . . , Cm
on n variables z1, . . . , zn. For each clause Cj of the form y3j−2 ∨ y3j−1 ∨ y3j then
yi, i ∈ [3m], is a literal from {z1, . . . , zn, z1, . . . , zn}. Let ` ≥ 1 be given. We
will construct a graph G`φ with two specified vertices x and y of degree 2 so
that G`φ has a hole containing x and y if and only if there is a truth assignment
satisfying φ.

α1+ α1++ α2+ α3+ α4++ α4+

α α′

α1− α1−− α2− α3− α4−− α4−

β1+ β1++ β2+ β3+ β4++ β4+

β β′

β1− β1−− β2− β3− β4−− β4−

Fig. 2. The literal gadget (dashed lines indicate paths of length `).

For each literal yj , prepare a graph G`(yj) as drawn in Fig. 2 where the
corresponding labelled vertices inherit a subscript j. Numerous vertices on paths
will remain unlabelled. Our literal gadget is more elaborate than that in [18]
as we need to forbid, as induced subgraphs, the C6 and for any fixed `, every
H`. The idea is that two induced disjoint paths may be drawn through this

7



α1− α1−− α2− α3− α4−− α4−

β1− β1−− β2− β3− β4−− β4−

c1+ c1−

c1+ c1−

c12+ c12−

c0+ c2+ c2− c0−

c3+ c3−

Fig. 3. The clause gadget together with its interface with the literal gadget (drawn
above). Dashed lines indicate paths of length `.

gadget either crossing the edges (α2+, α3+) and (β2+, β3+); or (α2−, α3−) and
(β2−, β3−). All other possibilities are forbidden.

For each clause Cj , prepare a graph G`(Cj) as drawn in the bottom of Fig. 3
where the corresponding labelled vertices inherit a subscript j. Numerous vertices
on paths will remain unlabelled. Our clause gadget is exactly the same as in [18]
except we replaced the edges by paths. The idea is that a path may be drawn
through this gadget in precisely one of three ways selecting the literal that is
true.

For each variable zi, prepare a graph G`(zi) as in Fig. 4 consisting of two
internally disjoint paths P+

i (top) and P−i (bottom). The idea in Fig. 4 is that
full edges and dashed edges alternate on this diagram and the length is enough
for m full edges. The end points of the full edges are labelled (p+i,1, p

++
i,1 ), . . . ,

(p+i,2m, p
++
i,2m) on the top; and (p−i,1, p

−−
i,1 ), . . . , (p−i,2m, p

−−
i,2m) on the bottom. Our

variable gadget is exactly the same as in [18] except we lengthened some paths.
The idea is that a path may be drawn through this gadget in precisely one of
two ways selecting whether the variable is evaluated true or false.

The final graph G`φ is constructed in a manner similar to Leveque et al. [18]
from the disjoint union of all the graphs G`(yj) (literals), G`(Cj) (clauses) and
G`(xi) (variables) with the modifications as below. We indicate specifically where
the modifications go beyond the construction of Lemma 2.6 in [18]. The top of
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d++ • • • P+

• • • d−+

d+ d−

d+− • • •
P−

• • • d−−

Fig. 4. The variable gadget. Dashed lines indicate paths of length `. Dotted lines
indicate a continuation of the gadget.

Fig. 3 shows how a clause gadget interacts with a literal gadget. Note that a
variable gadget interacts with a clause gadget in a similar way.

1. In [18], for j = 1, . . . , 3m− 1, they added the edges α′jαj+1 and β′jβj+1. We
will instead add paths of length ` in place of these edges.

2. In [18], for j = 1, . . . ,m− 1, they added the edges c0−j c0+j+1. We will instead
add paths of length ` in place of these edges.

3. In [18], for i = 1, . . . ,m− 1, they add the edges d−i d
+
i+1. We will instead add

paths of of length ` in place of these edges.
4. For i = 1, . . . , n, let yn1 , . . . ynz

−
i

be the occurrences of zi over all literals. We

have slightly different vertex names from [18]. For j = 1, . . . , z−i , delete
the edge p+i,jp

++
i,j and add the four edges p+i,jα

2+
nj

, p+i,jβ
2+
nj

, p++
i,j α

3+
nj

, p++
i,j β

3+
nj

.
Additionally to these edges, which were in [18], we also add: p+i,jα

3+
nj

, p+i,jβ
3+
nj

,
p++
i,j α

2+
nj

, p++
i,j β

2+
nj

.
5. For i = 1, . . . , n, let yn1

, . . . yn
z
+
i

be the occurrences of zi over all literals.

We have slightly different vertex names from [18]. For j = 1, . . . , z+i , delete
the edge p−i,jp

−−
i,j and add the four edges p−i,jα

2+
nj

, p−i,jβ
2+
nj

, p−−i,j α
3+
nj

, p−−i,j β
3+
nj

.
Additionally to these edges, which were in [18], we also add: p−i,jα

3+
nj

, p−i,jβ
3+
nj

,
p−−i,j α

2+
nj

, p−−i,j β
2+
nj

.
6. For i = 1, . . . ,m and j = 1, 2, 3, add the edges α2−

3(i−1)+jc
j+
i , α3−

3(i−1)+jc
j−
i ,

β2−
3(i−1)+jc

j+
i , β3−

3(i−1)+jc
j−
i . Additionally to these edges, which were in [18],

we also add: α3−
3(i−1)+jc

j+
i , α2−

3(i−1)+jc
j−
i , β3−

3(i−1)+jc
j+
i , β2−

3(i−1)+jc
j−
i .

7. In [18], they add the edges α′3md
+
1 and β′3mc

0+
1 . Instead we will add a path

of length `.
8. Add the vertex x. In [18], they add the edges xα1 and xβ1. Instead we will

add paths of length `.
9. Add the vertex y. In [18], they add the edges yc0−m and yd−n . Instead we will

add paths of length `.
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Claim 1 φ is satisfied by a truth assignment if and only if G`φ contains a hole
passing through x and y.

Proof. The idea is that any hole emanating from x and moving rightwards
towards y (see Fig. 2) must traverse the literal gadgets in precisely one of
two ways (upper path on top and bottom; or bottom path on the top and
bottom). Now, subsequently the paths building the hole may return to these
literal gadgets but they can never leave them as each α, β, α′, β′ are already
traversed. Subsequently, the paths do indeed not return to the literal gadgets to
ensure their consistent evaluation with the variables and that one in each clause
is true.

More formally, first assume that φ is satisfied by a truth assignment ξ ∈ {0, 1}n.
We pick a set of vertices that induce a hole containing x and y.

1. Pick vertices x and y.
2. For i = 1, . . . , 3m, pick αi, α′i, βi, β′i.
3. For i = 1, . . . , 3m, if yi is satisfied by ξ, then pick α1+

i , α1++
i , α2+

i , α3+
i ,α4++

i ,
α4+
i and any vertices on a direct path between these. Else, pick α1−

i , α1−−
i ,

α2−
i , α3−

i , α4−−
i , α4−

i and any vertices on a direct path between these.
4. For i = 1, . . . , n, if ξ(i) = 1, then pick all vertices of P+

i and all the neighbours
of the vertices in P+

i of the form α2+
k (or one could choose α3+

k , but only one
among the two) for any k. Additionally pick any vertices on a direct path
between these.

5. For i = 1, . . . , n, if ξ(i) = 0, then pick all the vertices of P−i and all the
neighbours of the vertices in P−i of the form α2+

k (or one could choose α3+
k ,

but only one among the two) for any k. Additionally pick any vertices on a
direct path between these.

6. For i = 1, . . . ,m, pick the vertices c0+i and c0−i . Choose any j ∈ {3i− 2, 3i−
1, 3i} such that ξ satisfies yj . Pick vertices α2−

j and α3−
j .

– If j = 3i − 2, then pick c12+i , c1+i , c1−i , c12−i as well as all vertices on a
path between: c0+ and c12+i ; c12+i and c1+i ; c0− and c12−i ; c12−i and c1−i .

– If j = 3i − 1, then pick c12+i , c2+i , c2−i , c12−i as well as all vertices on a
path between: c0+ and c12+i ; c12+i and c2+i ; c0− and c12−i ; c12−i and c2−i .

– If j = 3i, then pick c3+i , c3−i as well as all vertices on a path between: c0+
and c3+i ; c0−i and c3−i .

It suffices to show that the chosen vertices induce a hole in G`φ containing
x and y. The only potential problem is that for some k, one of the vertices
α2+
k , α3+

k , α2−
k , α3−

k was chosen more than once. If α2+
k and α3+

k were picked in
Step 3, then yk is satisfied by ξ. Therefore, α2+

k and α3+
k were not chosen in

Step 4 or Step 5. Similarly, if α2−
k and α3−

k were picked in Step 6, then yk is
satisfied by ξ. Therefore, α2−

k and α3−
k were not chosen in Step 3. Thus, the

chosen vertices induce a hole in G`φ containing x and y.
Now assume that G`φ has a hole including x and y. The hole must contain

α1 and β1 since they are the only neighbours of x. Next, either both α1+
1 and

β1+
1 are in the hole or both α1−

1 and β1−
1 . W.l.o.g., let α1+

1 and β1+
1 be in the
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hole (the same reasoning will apply in the other case). Since α1−
1 , β1−

1 , α1−−
1 ,

β1−−
1 are all neighbours of two vertices in the hole, they cannot themselves be

in the hole. Thus, α2+

1 , β2+
1 , and the paths that lead to them, must be in the

hole. Since α2+

1 , β2+
1 have the same neighbourhood outside of G(y1) it follows

that α3+

1 , β3+
1 must be in the hole. Indeed, so must also α4++

1 , β4++
1 , α4+

1 , β4+
1

and the path in between. Note that α4−
1 , β4−

1 are not in the hole, as they are
adjacent to both α4++

1 and β4++
1 . So it must contain instead α′1, β′1, α2, β2.

By induction, we see for i ∈ [3m] that the hole must contain αi, βi, α′i, β′i.
Also, for each i, the hole must contain α1+

i , α1++
i , . . . , α2+

i , α3+
i , . . . , α4++

i , α4+
i or

α1−
i , α1−−

i , . . . , α2−
i , α3−

i , . . . , α4−−
i , α4−

i . Hence, the hole contains d+1 and c0+1 .
By symmetry we may assume the hole contains d++

1 , and the path to p+1,1,
and α2+

k for some k. As α1++
k is adjacent to two vertices in the hole, the hole

must contain one of α2+
k and α3+

k . Similarly, the hole cannot proceed on a path
to α4++

k , so it must contain p+1,2 and p++
1,2 . By induction, we see that the hole

contains p+1,i, p
++
1,i , for i ∈ [n], and d−1 . If the hole contains d−−1 , then the hole

must contain p−1,i, p
−−
1,i , for i ∈ [n], and eventually d+−1 , a contradiction. Thus,

the hole must contain d+2 . By induction, for i ∈ [n], we see that the hole contains
all the vertices of the path P+

i or P−i and, by symmetry, we assume that the
hole contains neighbours of the vertices in P+

i or P−i , one among α2+
k and α3+

k ,
for each k.

Similarly, for i ∈ [m], it follows that the hole must contain c0+i and c0−i . The
hole also contains one of the following:

– c12+i , c1+i , c1−i , c12−i , and the paths between, and either one of α2−
j , α3−

j ; or
one of β2−

j , β3−
j .

– c12+i , c2+i , c2−i , c12−i , and the paths between, and either one of α2−
j , α3−

j ; or
one of β2−

j , β3−
j .

– c3+i , and the path between, and either one of α2−
j , α3−

j ; or one of β2−
j , β3−

j .

We now recover the satisfying assignment ξ. For i ∈ [n], set ξ(i) = 1 if the vertices
of P+

i are in the hole; otherwise set ξ(i) = 0. By construction, at least one literal
in every clause is satisfied by ξ, so indeed ξ is a satisfying assignment. ut

Claim 2 The graph G`φ is C6-free and Hi-free for every i ∈ [`].

Proof. Owing to the length of the ` paths that populate our construction and
are drawn as dashed edges in our figures, we need only verify the omission of the
relevant graphs on the connected components of the graph Gφ after the removal
of these ` paths that are dashed edges. That would suffice for C6, but Hi has a
pendant edge, so for these we must leave a pendant edge from the corresponding
connected component at the extremities of an instance of these ` paths that
are drawn as dashed edges. In this fashion, we only need to check for omission
of the given graphs in the non-trivial cases drawn in Fig. 5. It can be readily
observed that these graphs are P7 free (but they are not P6-free). Hence, we need
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not test beyond H3. This task was accomplished by a program testing subgraph
isomorphism whose code we provide a link to.3

We will give an explicit argument for the case of C6-freeness, which is simpler
as C6 has numerous symmetries (a transitive automorphism group). Let us begin
with the graph depicted on the left-hand side of Fig. 5. This graph has an
automorphism that swaps α and β at the same time as + and −. It also has an
automorphism that only swaps + and −. Any subgraph that induces a C6 cannot
contain any of the unlabelled vertices, nor α nor β. This leaves eight vertices that
may be involved. We will consider the case where the C6 contains α1+. Owing to
the two automorphisms we have described, this argument would equally apply to
α1− and β1−. But any C6 must involve one of these vertices as there were only
eight to choose from. Thus, when we have considered this case, our work is done:

Subcase A. The C6 contains α1+ and α1++. All other neighbours of α1+ (except
α) are adjacent to α1++. No C6 can be formed here.
Subcase B. The C6 contains α1+ and α1−−. Any C6 involving a path α1−− to
α1+ must next go to β1−. We cannot continue this cycle.
Subcase C. The C6 contains α1+ and β1−−. Any C6 involving a path β1−− to
α1+ must next go to α1− or α1−−. We cannot continue this cycle.
Subcase D. The C6 contains α1+ and β1−. Now, β1− can have as the next in
the cycle either of β1+ or β1++. We cannot continue this cycle.
Subcase E. The C6 contains α1+ and α1−. Now, α1− can have as the next in
the cycle either of β1+ or β1++. We cannot continue this cycle.

Now we consider the graph depicted on the right-hand side of Fig. 5. Any C6

cannot contain any of the unlabelled vertices. It follows that it must use all six
remaining vertices. But this induced graph has a triangle, so we are finished. ut

We note that the construction in [18] omits all cycles other than C6, and they
note specifically this lacuna, which we have remedied.

We now prove our result.

Lemma 6. For every integer ` ≥ 1, 2-Induced Disjoint Paths is NP-complete
for (C6, H`)-free graphs.

Proof. We give a reduction from an instance φ of 3-Satisfiability. First, we
construct G`φ. By Claim 1, G`φ has a hole through x and y if and only if φ is
satisfiable. Moreover, G`φ is (C6, H`)-free by Claim 2. We now apply the reduction
of Lemma 3. As we can subdivide any number of times the edges incident on the
newly created vertices, the resulting graph is still (C6, H`)-free. ut

4 The Proof of Theorem 2

We now use the results from the previous two sections to prove our main theorem.

Theorem 2 (restated). Let k ≥ 2. For a graph H, k-Induced Disjoint Paths
is polynomial-time solvable if H is a subgraph of the disjoint union of a linear
forest and a chair, and it is NP-complete if H is not in S.
3 See https://github.com/barnabymartin/InducedSubgraph.
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α1+ α1++ •

• α

α1− α1−− •

β1+ β1++ •

• β

β1− β1−− •

• α2− α3− •

• β2− β3− •

c1+ c1−

• •

Fig. 5. Cases that need to be checked for omission of the graphs C6 and Hi (1 ≤ i ≤ `).

Proof. If H has a cycle Cs, apply Lemma 5 for s 6= 6 or Lemma 6 for s = 6. Then
we may assume H is a forest. If H has a vertex of degree at least 4, then every
K1,4-free graph is H-free, so apply Lemma 4. Suppose H has maximum degree
at most 3. If H has a connected component with at least two vertices of degree 3,
then H has an induced H`, so apply Lemma 6 again. Else, H is in S. If H is a
subgraph of the disjoint union of a linear forest and a chair, apply Lemma 2. ut

5 Parameterized Complexity

We prove that 2-Induced Disjoint Paths is W[1]-hard for Pr-free graphs
when parameterized by r. In order to do this we adapt a reduction of Haas and
Hoffmann [13]. They prove that finding an induced path through three specified
vertices is W[1]-hard when parameterized by the length of the path. The graph
of their construction can potentially contain arbitrarily long induced paths, but
we propose a modification which guarantees that the length of any induced path
in the construction is bounded. Below, we discuss the original construction and
our modification; the proof of correctness is almost exactly the same and only
sketched here.

Theorem 5. 2-Induced Disjoint Paths is W[1]-hard on Pr-free graphs, pa-
rameterized by r.

Proof. The reduction is from Independent Set, which is known to be W[1]-hard
when parameterized by the size of the solution [6]. Let G = (V,E) be an instance
of this problem, where V = {v1, . . . , vn}, and let k be the parameter. The main
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ingredient of the construction by Haas and Hoffmann [13] is a set of k vertex
choice diamonds. The i-th diamond consists of n vertices vi1, . . . , vin, and two
vertices si and ti which are adjacent to all vi1, . . . , vin. Our modification is to make
vi1, . . . , v

i
n a clique, instead of an independent set as in the original construction.

Identify si−1 and ti for each 2 ≤ i ≤ k and call the resulting graph GV C .
Now create two copies of GV C . Denote the vertices in the first copy by si,

vij , and ti and in the second copy respectively by σi, ϕij , and τ i. Add an edge
between tk and τk and subdivide it once (the latter is a minor modification with
respect to the original construction). Call the resulting graph G′′.

Note that G′′ is a union of 2k + 2 cliques, one of which has size 1. In the
remainder, we will not add more vertices, only edges. Since any induced path can
contain at most two vertices of any clique, the graph is and will remain Pr-free
for r ≤ 4k + 4.

From G′′, construct the graph G′ by adding the following edges (again,
following Haas and Hoffmann [13]):

– add a consistency edge between vij and ϕi`, for all 1 ≤ i ≤ k and all 1 ≤ j, `, n
with j 6= ` (thus kn(n− 1) consistency edges are added in total);

– add independence edges between {vip, ϕip} and {vjq , ϕjq} for each edge {vp, vq} ∈
E and for all 1 ≤ i, j ≤ k with i 6= j (thus 4k(k− 1) · |E| independence edges
are added in total);

– add set edges between {vi`, ϕi`} and {v
j
` , ϕ

j
`} for all 1 ≤ i, j ≤ k with i 6= j

and all 1 ≤ ` ≤ n (thus 4k(k − 1)n set edges are added in total).

This completes the construction. Let the vertex pairs for the instance be (s1, tk)
and (σ1, τk).

To show correctness, we essentially repeat the arguments of Haas and Hoff-
mann [13, Lemma 7, Theorem 8]. We sketch the argument below. Let P 1, P 2 be
mutually induced disjoint (s1, tk)- and (σ1, τk)-paths respectively. By shortcutting
if necessary, we may assume that P 1 and P 2 are chordless. By construction, P 1

must contain one of {v11 , . . . , v1n}, say v1j , and P 2 must contain one of {ϕ1
1, . . . , ϕ

1
n},

say ϕ1
` . By the consistency edges, j = `. Also note that since v11 , . . . , v1n and

ϕ1
1, . . . , ϕ

1
n both induce a clique, P 1 cannot follow a consistency edge from v1j and

P 2 cannot follow a consistency edge from ϕ1
j . Also note that the independence

and set edges incident on v1j and ϕ1
j lead to exactly the same vertices, and

thus these vertices cannot be part of P 1 nor P 2. Hence, P 1 must continue to
t1 = s2 and P 2 must continue to τ1 = σ2. By repeating the same argument,
we can show that P 1 and P 2 only use edges of the diamonds, and none of the
consistency, independence, and set edges. In particular, P 1 and P 2 use vertices
s1, v1γ1 , t

1, . . . , vkγk , t
k and σ1, ϕ1

δ1
, τ1, . . . , ϕkδk , τ

k respectively. The consistency, in-
dependence, and set edges ensure respectively that γi = δi for 1 ≤ i ≤ k, that
vγ1 , . . . , vγk form an independent set, and that vγ1 , . . . , vγk is a set of size k.

For the converse, it is easy to see that any independent set I = {vγ1 , . . . , vγk}
can be transformed in a solution to the instance. The vertices s1, v1γ1 , t

1, . . . , vkγk , t
k

form an (s1, tk)-path that is mutually disjoint from the (σ1, τk)-path formed by
σ1, ϕ1

γ1 , τ
1, . . . , ϕkγk , τ

k. ut

14



6 Conclusions

We showed new tractable and hard results for k-Induced Disjoint Paths for
H-free graphs and extended a number of known results in this way. The open
cases all involve graphs H that are not the disjoint union of some linear forest
and the chair but that do belong to the family S; we recall that S consists of
all graphs, every connected component of which is a path Pr or a subdivided
claw Sh,i,j .

Due to the above, k-Induced Disjoint Paths belongs to a set of several
other problems whose complexity is open for Sh,i,j-free graphs for many h, i, j.
The best-known problem of this set of problems is Independent Set, which is
to decide if a graph has an independent set of size at least p for some integer p.
Alekseev [1] proved that if a graph H is not in S, then Independent Set is
NP-complete for H-free graphs. If H ∈ S, only a restricted number of cases are
known to be polynomial-time solvable for Independent Set. Another example
is 3-Colouring for H-free graphs of bounded diameter (see [20]). We do not
know any graph Sh,i,j and integer d such that 3-Colouring for Sh,i,j-free graphs
of diameter d is NP-complete (and only a small number of polynomial cases
exist). Hence, in order to make further progress on k-Induced Disjoint Paths
and these other problems we must better understand the structure of Sh,i,j-free
graphs.

It would also be interesting to consider the parameterized complexity of the
problem in more detail. First recall that Golovach et al. [10] showed that Induced
Disjoint Paths is FPT for claw-free graphs when parameterized by k. The class
of claw-free graphs is properly contained in the class of chair-free graphs. From
Theorem 2 we know that Induced Disjoint Paths is XP for chair-free graphs
when parameterized by k. Is the problem even FPT for chair-free graphs when
parameterized by k?

Moreover, in Theorem 5 we proved that even 2-Induced Disjoint Paths
is W[1]-hard on Pr-free graphs when parameterized by r. But what is the pa-
rameterized complexity of Induced Disjoint Paths for Pr-free graphs if r is a
constant but k is the parameter? So far, we only know that the problem is in XP
by Theorem 2 and that we may assume that r ≥ 7 due to Theorem 1. Again we
may draw a parallel to the situation for Independent Set on Pr-free graphs.
This problem can be solved in polynomial time for r < 7 [9] and is trivially in XP
when parameterized by the size of the solution. However, it is open whether if it
is FPT for constant r ≥ 7 when parameterized by the size of the solution (see
also [5]). Progress on this problem would help to advance our understanding of
k-Induced Disjoint Paths on Pr-free graphs (see [22] for a close relationship
between both problems when the input is restricted to Pr-free graphs for some
integer r ≥ 1).

Finally, in some previous works, a slightly more general definition is used
(see also Section 1). Given a graph G, vertex-disjoint paths P 1, . . . , P k, for
some integer k ≥ 1 are flexibly mutually induced paths of G if there is no edge
between two vertices from different P i and P j except possibly between the
endpoints of the paths. If k is in the input, the complexity of the corresponding
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decision problem and ours is most likely different for Pr-free graphs. Namely,
Flexibly Induced Disjoint Paths is NP-complete for P14-free graphs [22],
whilst Induced Disjoint Path is quasipolynomial-time solvable for P14-free
graphs by Theorem 1. However, it is readily seen that all polynomial-time results
in Theorem 2 (so, for fixed k ≥ 2) also hold for Flexible k-Induced Disjoint
Paths. This is even in the case if we also allow that two different paths P i and
P j share a terminal (this even more general variant has been considered in the
literature as well).
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