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Abstract. [Context and motivation] Conversations around require-
ments, such as interviews and workshops, are a key activity of require-
ments elicitation, and play a significant role in the creation of require-
ments specifications. [Question/problem] While these conversations
contain a wealth of knowledge, requirements engineers use them mainly
through note-taking during the conversation and by recalling the infor-
mation from their memory. There is potential for supporting practition-
ers by retrieving important information from the recordings of these con-
versations. [Principal ideas/results] Although transcriptions can be
automatically generated with good accuracy, they often contain exces-
sive text to be efficiently used for processing requirements elicitation ses-
sions. Thus, we observed a need to transform these datasets into a use-
ful format for requirements engineers to analyze. [Contribution] We
present REConSum, a prototype that utilizes Natural Language Pro-
cessing (NLP) to summarize requirements conversations. REConSum

takes as input a transcribed conversation, and it filters the speaker turns
by keeping only those that include a question and that are expected to
contain, or to be answered with, requirements-relevant information. In
addition to presenting REConSum, we experiment with different algo-
rithms to assess the most effective combination.

Keywords: Requirements Elicitation · Natural Language Processing ·
Conversational RE · Requirements-Relevant Information

1 Introduction

Requirements elicitation concerns the activities of seeking, uncovering, acquiring,
and elaborating requirements [38]. This information is often gathered through
conversational activities in which a requirements engineer (or analyst) works
with system stakeholders to get an understanding of the goals and design of
the system [9]. According to the NaPiRE survey [35], interviews and facilitated
sessions such as workshops are the most frequently used elicitation techniques:
73% and 67% of the respondents state to be using them, respectively.
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Researchers have studied requirements conversations, notably interviews, and
found that note-taking is a useful activity [16] for the early detection of common
problems such as ambiguity [33]. However, these conversations can range from
a few hours to multiple days [2,28], thereby making it not only likely for the
analyst to miss out on certain information, but also cognitively demanding as
they would need to focus both on the note-taking and on keeping a natural flow.

The recordings of requirements conversations contain valuable information
that can easily be lost in the overall picture of the elicitation. While creating
and investigating transcriptions can be time consuming, the increasing remote
work – including the online conduction of interviews and workshops – offers the
opportunity to use the capability of modern online meeting tools like Microsoft
Teams and Zoom Meetings to generate transcriptions that consistently improve
their precision through neural network approaches [3].

Although manual reviews are possible for short conversations and they are a
useful educational tool [30], we argue that analysts need to be supported in the
analysis of longer real-life conversations, and that Natural Language Processing
(NLP) can be fruitfully used to such an extent.

In this paper, we propose REConSum (Requirements Elicitation Conver-
sations Summarizer), a NLP prototype tool that can assist practitioners and
researchers in processing elicitation conversations by summarizing the transcrip-
tions and extracting requirements-relevant information. We utilize the Question
& Answer (Q&A) structure prevalent in conversations, as discussed in Sect. 2.
REConSum retains only relevant questions and their answers through extrac-
tive summarization [12], thereby making transcripts easier to review, as prac-
titioners would see a short version of the original conversation transcript. The
outputs of REConSum are meant to be used in a front-end to enable explo-
ration of such conversations, as per the mockup of Fig. 1.

Fig. 1. Mockup visualization of the outputs of REConSum. In this example, questions
Q1–Q10 and Q12–Q24 are hidden as they are expected to be irrelevant.
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To effectively summarize a document, one needs to gain a deep under-
standing of the document to gather the relevant information. In our con-
text, this amounts to identifying and extracting requirements-relevant informa-
tion from the transcript of a requirements conversation. We build on previous
research [28,29]: through data investigation and experimentation with a focus
group of RE students and practitioners, we gained a first understanding of what
requirements-relevant information exists in requirements conversations. Based
on these premises, we define the following research questions:

MRQ. How can we identify requirements-relevant information in a transcript of
a requirements elicitation conversation?

RQ1. How can we define requirements relevance in a transcript?
RQ2. How to design an automated approach for locating requirements-relevant

information?

The rest of this paper is structured as follows. In Sect. 2, we discuss
background and related work. Section 3 outlines the research method and
describes REConSum. We report on a validation of the approach in Sect. 4,
and finally, we present a discussion and future works in Sect. 5.

2 Background

Conversation Structures. There are many different types of conversations,
including small talk, troubles telling, and elicitation conversations [18]. Conver-
sation analysis (CA) is the systematic analysis of the talk produced in everyday
situations of human interaction [20]. CA goes beyond the scope of the spoken
words and it includes video recordings of the workplace, or the onscreen activi-
ties for a conversation between people playing a game. Mondada [23] states that
CA can utilize interviews not as a methodological resource for gathering infor-
mation, but to study how specific practitioners work. As interviews are a natural
setting for RE practitioners, this fits well in the context of this research.

We focus on the textual transcripts of a conversation: a sequence of utter-
ances (roughly, sentences) that are spoken by one of the participants. A set of
contiguous utterances by the same speaker is called a speaker turn. We acknowl-
edge that this is only a partial picture of a conversation, which excludes aspects
such as the use of artifacts (e.g., whiteboards), the analysis of intonation cues
and visual cues. Furthermore, the automated transcripts delivered through video
conferencing tools do not adhere to the standards used in conversation analysis,
as they do not identify elements such as pauses, speed/tempo of speech, and
overlapping talk [19]. While these additional perspectives are part of our future
work, in this paper, we focus on automatically generated transcripts, which are
already a valuable resource that is generally not considered by RE researchers
and practitioners.

Another topic of conversational analysis is the identification and character-
ization of recurrent interaction practices [26]. These consist of a set of actions:
asking, telling, requesting, inviting, complaining, etc. One of the key concepts in
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interaction practices is the adjacency pair [31], resulting from the turn-taking
format that is common in conversations [34]. Adjacency pairs are based on the
understanding that an utterance is related to what comes before, and what
comes next. An adjacency pair is composed of two speaker turns uttered by dif-
ferent speakers and placed adjacently [24]. For instance, a typical type of pair is
“Request for information” followed by “Informative answer”.

Stolcke et al. [32] discuss the lack of consensus on describing discourse struc-
ture; however, they argue that dialogue acts (DAs) are a useful first level of
analysis. A DA is roughly equivalent [32] to speech acts and adjacency pairs.
There are, however, differences between these theories. Take two questions such
as: “Did you do it?” and “What did you wear today?”. While speech acts [25]
consider both questions as illocutionary acts, DAs classify these into a Yes-No
question and Wh-question, respectively. DAs are a method for classifying dis-
course data using 42 different labels (see Table 1 for some examples). In our
research, we utilize libraries that enable the automated identification of DAs to
perform extractive summarization.

Related Works. In our previous research, we performed an empirical study to
determine the contents of one particular RE conversation common in practice:
fit-gap analysis [28], which aims to distinguish between those parts of a software
product that already fit the client from those gaps that needs to be addressed via
configuration or customization. The understanding gained from this work was
used in designing the Trace2Conv prototype tool that assists in establishing
automated pre-requirements specification traceability [29].

While focused on a different type of artifact, i.e., requirements specifications,
Abualhaija et al. [1] apply supervised machine learning to recognize and demar-
cate requirements in a free-form requirements specification. In their work, modal
verbs are used to determine important segments of the text, and parts of their
NLP pipeline inspired this work.

Another adjacent area of research is that of automated requirements classifi-
cation [6], which led to the development of NLP tools that organize requirements
into categories. A typical classification distinction is between functional and non-
functional requirements. To achieve such a classification, Kurtanović and Maalej
[22] apply supervised machine learning through support vector machines. Their
research shows that POS tags, word n-grams, modal verbs and the POS tag
‘cardinal number’ were the most informative. Similarly, higher-level linguistic
dependencies can be useful in classification, as shown by Dalpiaz et al. [7]. This
work also observes that the performance of classifiers degrades when used on
other datasets; this led to the birth of the ECSER pipeline for a rigorous evalu-
ation of classifiers in software engineering [10].

Only a few scholars have studied requirements conversations in depth. Alvarez
and Urla [2] performed a manual analysis of interview transcripts concerning the
construction of an ERP system; they studied the role of stakeholders and of client
stories. Ferrari et al. [16] conducted and analyzed 34 simulated interviews and iden-
tified four facets of ambiguity (unclarity, multiple understanding, incorrect disam-
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biguation and correct disambiguation); moreover, they found that ambiguity can
be a cue for the elicitation of tacit knowledge. Their follow-up work [14] explores
the use of voice and biofeedback to identify emotions that may represent engage-
ment. Bano et al. [4] analyze interviews by novices and they build an educational
framework for teaching how to conduct requirements interviews. The same authors
extend their approach by including (reverse) role-playing elements [15].

3 RECONSUM: A Tool for Summarizing RE Conversations

We designed REConSum according to the phases of the engineering cycle by
Wieringa [36], focusing on the first three phases (the design cycle) as the current
prototype has not yet been applied to practical cases. The code can be found in
GitHub1 and a persistent copy is in the online appendix [27]. In this section, we
discuss the problem investigation and solution design steps of Wieringa’s design
cycle. Sect. 4 reports on the validation step.

3.1 Problem Investigation and Solution Design Iterations

The problem addressed by this research is based on observations of the artifacts
from our previous research [28,29]. We found that RE conversations contain use-
ful information, but that their manual analysis is time consuming. This indicates
an opportunity for designing intelligent tools that can reduce the necessary effort
through automation.

To further explore the problem domain, we analyzed nine recordings of
requirements interviews conducted by master’s students at Utrecht University
in a simulated setting. These recordings were split across three different cases
(see [8] for details): IFA – the international football association portal, UMS – an
urban mobility simulator, and HMS – a hospital management system. All inter-
views had a similar time frame (max. 60 min) and structure, thereby allowing
us to consider multiple cases per domain as well as different domains.

Given the limited existing literature, the treatment design is approached in
an exploratory way. We went through multiple design iterations, which had the
definition of the term requirements-relevant information as a recurring theme.
Although a seemingly simple term, we found that answering the question “what
does it mean to be relevant” is hard. There is no single recipe to define if some-
thing is relevant to an analyst, as this may depend on the specific use case,
e.g., authoring requirements, searching for missing requirements, tracing require-
ments backwards, and implementing the requirements.

Discarded Designs. We initially expected to utilize the categories of
requirements-relevant information that we defined in previous research [28,29].
However, we found out that these categories were too context reliant. For exam-
ple, the as-is process is fundamental when replacing a legacy system, while the
to-be process is more important for a new system design [28]. Additionally, our

1 https://github.com/RELabUU/REConSum.

https://github.com/RELabUU/REConSum
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collection of transcripts was heterogeneous regarding the design activity (green-
field vs. brownfield), and several sentences were hard to classify as they described
the as-is by indicating something about the to-be.

We also attempted the design of a machine learning-based automated binary
classification of the transcript, with speaker turns being either relevant or irrel-
evant. The main challenges with this approach, however, were the heterogeneity
of the transcripts and the too limited amount of labeled data.

Extractive Question-Based Summarization. Through further exploration
of the artifacts, we found that the Q&A structure could effectively be used to
produce a condensed version of the conversation while still covering most of the
content. The idea was that of retaining only those questions that are (poten-
tially) relevant, and the analyst could then further navigate the conversation by
zooming in on the answers of those questions as shown in Fig. 1. This led to the
design detailed in this section; an approach that first classifies the text based on
its structure, focusing on the identification of a special kind of adjacency pairs:
questions and answers to those questions.

3.2 Question Identification and Relevance Detection

We aim to obtain an extractive summarization of a requirements conversation
consisting of only those speaker turns that include questions that are potentially
relevant for requirements engineers.

Formally, let a conversation C = (T1, T2, . . . , Tn) be a sequence of speaker
turns, where n ∈ N+ is a positive natural number. A speaker turn Ti is a
sequence of utterances (roughly, sentences) that are spoken by the same speaker:
given i,m ∈ N+, Ti = (U1, U2, . . . , Um). An utterance Uj is a sequence of words
by the same speaker: given j, p ∈ N+, Uj = (w1

j , . . . , w
p
j ). We define two func-

tions. IsQuestion : U → {0, 1} is a Boolean function that returns 1 if and only if
U ∈ U is a question. IsRelevant : U → {0, 1} is a Boolean function that returns
1 if and only if U ∈ U is a relevant utterance for a requirements engineer. We
can now formally define our summarization function Summ : C → C, where C
is the domain of conversations, as follows:

Summ(C) = S. S is a sub-sequence of C and ∀T = (U1, . . . , Um) ∈ S,

∃k ∈ [1,m]. IsQuestion(Uk) ∧ IsRelevant(Uk)

REConSum Process. Figure 2 provides an overview of how REConSum

implements the summarization function Summ. It takes a requirements inter-
view transcript as an input, and first determines which speaker turns contain
a question. This is done utilizing Part-of-Speech tagging and/or Dialogue Act
classification. Then, REConSum determines if these questions are relevant by
assessing whether they contain domain-specific terms; our assumption is that
the presence of those terms is an indicator of relevance.

We determine whether a speaker turn includes domain-specific terms by cal-
culating Term Frequency–Inverse Document Frequency technique (TF–IDF). We
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Fig. 2. A process flow overview of REConSum.

first compute the Inverse Document Frequency (IDF) either of the transcript
itself (bottom-right scenario in Fig. 2) or of a context document (top-right sce-
nario in Fig. 2). We then calculate Term Frequency (TF) of a Wikipedia cor-
pus, which we take as a general-purpose corpus where the distribution of the
terms is not expected to reflect the specificity of the conversation domain. Then,
REConSum retains only those speaker turns that both include a question as
well as words with a high TF–IDF score, indicating that these terms are much
more frequent in the domain than in Wikipedia.

Algorithm 1: Identify Questions. The first stage of REConSum is to iden-
tify the questions in a transcript through (i) a deep learning classifier based on
dialogue acts, (ii) the occurrence of sequences of Part-of-Speech (POS) tags, or
(iii) either of the previous. The dialogue acts approach assigns a dialogue act
to each sentence in the speaker turn, while the approach based on POS tags
assigns these tags to parts of each sentence. These POS tags were taken from
the Penn Treebank POS Tagset2, which contains two clause-level tags that can
indicate questions [5]: SBARQ and SQ. These tags indicate four types of questions:
wh-questions, yes-no-questions, tag-questions, and choice-questions.

Our dialogue act-based approach relies on the off-the-shelf classifier
DialogTag3, which uses a neural architecture based on BERT [11] to assign a
dialogue act to a sentence. DialogTag uses a subset of the Switchboard-1 corpus;
the latter was created using 2,400 telephone conversations, with conversations
among 543 speakers on 70 topics [21]. Our implementation labels as question
those speaker turns that include a sentence that denotes one of the question
types that DialogTag identifies; frequent examples are in Table 1.

We also propose a third approach that aims at supporting those scenarios
where recall is more important than precision: we execute both of the previous
approaches and retain the speaker turns if they are included in either approach.

2 Our implementation is inspired by that of https://github.com/garcia2015/NLP
QuestionDetector.

3 https://github.com/bhavitvyamalik/DialogTag.

https://github.com/garcia2015/NLP_QuestionDetector
https://github.com/garcia2015/NLP_QuestionDetector
https://github.com/bhavitvyamalik/DialogTag
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Table 1. Examples of question types, based on dialogue act classification, that are
used by function DialogueActs in Algorithm 1.

Tag Example

Yes-No-Question Is there already some data that can be gathered from the
existing systems that can already be put in the new one or
not?

Wh-Question I’m gonna ask you, how long does it take for that person to
analyze the situation and uh monitor a certain road or
urban traffic situations?

Declarative Yes-No-Question So it would be a manual change, not a new iteration of the
automated schedule.

Backchannel in question form Um, this should also be made available I imagine, during a
match for instance, the score of the match should be
updated immediately once it’s changed. Right?

Open-Question What do you mean with ’local’ I.F.A.?

Rhetorical-Questions (...) We have done it in the in the other city the other year.
So why shouldn’t it work now?

Or-Clause So you think there should be the same rights for every
system user? Or do you think that one user should have
less rights capability?

Tag-Question Right?

Algorithm 1. Identify Questions
Input: C a set of speaker turns,
Output: T the set of speaker turns, with the questions marked

1: function DialogueActs(C)
2: for all sent ∈ C do
3: T [sent] ← sent
4: T [sent]question ← False
5: for all tag ∈ DialogTag.Dialogue ActsTokenizesent do
6: if ANY({-Question, Or-Clause}) ∈ tag then
7: T [sent]question ← True

8: return T

1: function Part-of-Speech-Tags(C)
2: for all sent ∈ C do
3: T [sent] ← sent
4: T [sent]question ← False
5: for all subtree ∈ NLP Annotatesent do
6: if subtree.POS tag ∈ {SBARQ, SQ} then
7: T [sent]question ← True

8: return T

1: function Combined(C)
2: T1 ← DialogueActsC
3: T2 ← Part-of-Speech-TagsC
4: for i = 0; i ¡ |C|; i++ do
5: T [sent] ← C[i]
6: T [sent]question ← T1[i]question ∨ T2[i]question

7: return T

The first step of REConSum is detailed in Algorithm 1. An input set C of
speaker turns is turned into a version T where the speaker turns with a question
are marked. The DialogueActs function loops through each sentence in C,
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retrieves the dialogue acts that apply to that sentence through the DialogTag
BERT-based classifier, and determines if the sentence contains one of the dia-
logue acts that indicate a question. Similarly, the Part-of-Speech-Tags func-
tion generates the POS trees of a sentence, and explores each of them to see if it
contains a question indication (SBARQ or SQ). The combined approach (function
Combined) returns those speaker turns that are identified as questions by at
least one of the other two functions.

Algorithm 2. Categorize Relevant Questions
Input: T a set of speaker turns, with the questions marked,

F a file to compare the relevance to; either a context document or the conversation transcript,
num words the number of unfiltered words you would like to categorize the questions on
(set to 60 in our experiments based on empirical testing),

Output: the set of speaker turns, with the questions and their relevance marked

1: function CreateWordList(F , num words)
2: IDF ← Load Wiki TF

3: File ← Preprocess FileF
4: Words ← Calculate TF-IDFIDF ,File
5: Word List ← TakeFirstNSortWords,num words
6: Word List ← Stemw ∈ Word List | w �∈ stop words
7: return Word List

1: function FilterQuestions(T , F )
2: Word List ← CreateWordListF , 60
3: for all sent ∈ T do
4: T [sent]relevant ← False
5: if T [sent]question then
6: for all word ∈ Split Sentencesent do
7: if Stemword ∈ Word List then
8: T [sent]relevant ← False

9: return T

Algorithm 2: Categorize Relevant Questions. In the second stage (right-
hand side of Fig. 2), REConSum looks for relevant questions based on the out-
puts of the first stage. REConSum implements two approaches, both reliant on
TF–IDF. In both cases, TF is calculated on the basis of a Wikipedia dataset
[17]. In the first approach, we calculate IDF on a document that describes the
application context (a context document), which provides us with words that can
indicate the relevance of a question. Based on TF–IDF, we retain only questions
that include words with a high TF–IDF value. In our second approach, we follow
the same process, but IDF is calculated on the transcript without the need to
use a context document.

This functionality is described in Algorithm 2, which includes two functions.
The first one (CreateWordList) takes as input (i) the file F we use to calculate
IDF: either the transcript or the context document, and (ii) an integer that
indicates the number of unfiltered words to categorize the outputs. After loading
the Wikipedia Term-Frequency and processing the file (F ), the TF–IDF scores
can be calculated. After that, we sort on these scores and take the number of
unfiltered words that we specified. Finally, we remove stopwords, and we stem
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the remaining words. The second function (FilterQuestions) takes as inputs
the set of speaker turns, with the questions marked, from Algorithm 1 and the
same file F used by CreateWordList. It first creates a list of domain-specific
words by calling CreateWordList, and then marks the questions that contain
one of these words as relevant, thus returning a set of speaker turns where the
questions are marked and have their relevance indicated.

4 Evaluation

After explaining the design of our evaluation and golden standard in Sect. 4.1,
we present qualitative and quantitative results in Sect. 4.2.

4.1 Designing the Golden Standard

With the aim of measuring the performance of REConSum in identifying only
the relevant questions in a conversation, we set off to design a golden standard.
To do so, we performed a number of design iterations that were meant to define
the instrument through which the golden standard could be created. The goal
was to have this standard created by people who are not the authors of this
paper. To this end, the tagging was facilitated through a survey.

A key decision was establishing what context (how many speaker turns)
should be shown for each question, as we expected it would be difficult to rate
relevance without that information. We eventually decided to include the speaker
turn that includes the question, the previous turn, and the next one.

Table 2. Categorization of requirements-relevant information in the tagging

Functional requirement The speaker turn refers to functionality that the
software system has to exhibit. For example, register
users, schedule events, calculate something or allow
messaging

Non functional requirement Software quality or non-functional requirement. The
speaker turn refers to qualities that the system should
provide while delivering its functionalities, e.g., speed,
security, capacity, compatibility, reliability, usability,
portability

System users The speaker turn mentions the users of the system, or
other stakeholders that do not use the system

Current process understanding The speaker turn contains information about the
current process or system as-is, including current
problems that the interviewee is facing

Within or outside of the scope The speaker turn explicitly contains a discussion of
elements that should be in the system to-be or not.
These define the boundaries of the system’s scope

No requirements-relevant
information

The speaker turn does not contain any relevant
information.

Another challenge concerned deciding whether a segment was relevant. To
facilitate this, we defined a categorization of relevance inspired by our earlier
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work [28], as shown in Table 2. Sometimes the question itself was not rele-
vant, yet the surrounding text was. Therefore, the taggers were asked whether
requirements-relevant information: (a) could be expected in the answer to the
question; or (b) could be found in the speaker turn shown after the question.

The taggers were first asked to decide whether the segment included one of
the relevant categories in Table 2, and, if so, they could answer the questions
regarding where the relevant information was located. All taggers were provided
with a tagging guide (in our online appendix alongside the source code and the
results [27]), and an overview of the case being discussed.

Execution of Tagging. We created the golden standard for the nine datasets
shown in Table 3 by recruiting 18 taggers: either students familiar with require-
ments engineering or practitioners. Two of them tagged each dataset using a
Qualtrics survey: each participant was assigned a case, and they would see all of
the questions in the conversation in chronological order, as in Fig. 3. They would
go through the conversation one question at a time, with the option to return to
the previous question. As per Table 3, the participants saw on average circa 71%
of the conversation, and they could tag for relevance 58.8% of the conversation.
This difference arises because the participants could not tag the speaker turn
before the one where the question is located.

Table 3. Evaluation datasets. The UMS/IFA/HMS identifier refers to the case name
as per Sect. 3.1. The table also shows recording length, number of speaker turns, then
number (#) and percentage (%) of speaker turns (a) shown to the taggers, (b) that
could be tagged, and (c) that include questions. The ‘Relevant’ columns characterize
the gold standard defined by the taggers, and ‘Agreement’ shows inter-rater agreement
in percentage and using Cohen’s kappa.

Set Length mm:ss Speaker Turns

Total Shown Taggable Relevant Questions Relevant Agreement

# % # % # % # % # % % k

1-UMS 50:23 167 117 70.1% 95 56.9% 61 64.2% 49 29.3% 31 63.3% 54.7% 0.20

2-IFA 49:15 148 107 72.3% 85 57.4% 67 78.8% 46 31.1% 34 73.9% 58.8% 0.21

3-UMS 41:29 98 69 70.4% 56 57.1% 36 64.3% 30 30.6% 14 46.7% 60.7% 0.16

4-HMS 23:05 69 50 72.5% 41 59.4% 31 75.6% 21 30.4% 15 71.4% 90.2% 0.75

5-IFA 58:06 179 132 73.7% 105 58.7% 51 48.6% 56 31.3% 20 35.7% 76.2% 0.53

6-HMS 38:25 116 77 66.4% 64 55.2% 44 68.8% 34 29.3% 17 50.0% 60.1% 0.22

7-IFA 47:12 162 109 67.3% 91 56.2% 79 86.8% 46 28.4% 41 89.1% 59.3% 0.07

8-HMS 39:24 155 115 74.2% 98 63.2% 68 69.4% 54 34.8% 38 70.4% 89.8% 0.76

9-HMS 30:31 80 65 81.3% 55 68.8% 39 70.9% 28 35.0% 20 71.4% 92.7% 0.80

Average 49:15 130 93 71.6% 77 58.8% 53 69.0% 40 31.0% 26 63.2% 71.6% 0.41

Total 1174 841 690 476 364 230

Although the design was meant to ensure a common understanding, the inter-
rater agreement is low (the macro-average of 0.41 is at the boundary between fair
and moderate). We mainly ascribe this to the fact that we did not define a clear
use case, and the notion of relevance may depend on the task at hand and domain
experience. In general, we identified three common types of disagreements: (i)
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the statement ‘Do you expect the question to be answered with requirements-
relevant information’ was often misread as ‘Does the question include . . . ’; (ii)
whether yes-no answers should be considered relevant; and (iii) if the summary
of a previous answer, made by the analyst, should be considered relevant. The
disagreements were first manually validated by the second author to identify
obvious sloppiness, and those cases were discarded. When this analysis did not
resolve the disagreements, we took an inclusive approach in which a speaker turn
was considered relevant if one of the taggers tagged it as such.

Fig. 3. Illustration of the tagging tool. On the left, the speaker turn including a ques-
tion, together with the adjacent ones, are shown. On the right, the tagger selects
whether and what kind of requirements-relevant information exists.

4.2 RECONSUM Results

To determine the effectiveness of REConSum (its implementation of the extrac-
tive summarization function Summ in Sect. 3.2), NLP summarization task met-
rics could be applied, e.g., coherence, consistency, percentage of text shown [13].
Other metrics such as BLEU and ROUGE assume the existence of a reference
summary, which we do not possess at this stage of our research. In this paper,
we assess REConSum’s ability of filtering, and therefore utilize standard infor-
mation retrieval metrics: precision, recall, F1-score, and accuracy. As a unit of
analysis, we take speaker turns; in other words, we measure (i) if the speaker
turn contains a question, and (ii) if a speaker turn with a question is relevant
and should therefore be retained in the summary.

Question Detection. For the first part of REConSum, we compare the three
variants described in Algorithm 1: POS tagging, dialogue acts, and their com-
bination. Table 4a presents a summary of the results, while the results for each
dataset can be found online. The approach based on a deep learning classifier for
dialogue acts leads to higher precision and higher recall than the approach based
on POS tagging, perhaps thanks to the higher number of question types that it
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recognizes. Combining both approaches increases the number of true positives,
but at the cost of increasing the false positives too. Using the combined approach
reduces the summarization rate, but at the same time it decreases the likeliness
of missing requirements-relevant information.

Table 4. Performance metrics, showing macro-average and standard deviation across
the nine datasets of Table 3. The best results are highlighted in green.

Categorization of Relevant Questions. Once the questions are found in
the transcript, Algorithm 2 determines if they are requirements relevant. The
algorithm includes two approaches for calculating term frequency, either from
the conversation itself, or from a contextual document. These can then be applied
to all three approaches for question detection, leading to six combinations. The
results in Table 4b show that the highest precision is obtained by combining (a)
dialogue act tagging for question identification with (b) TF–IDF using a context
document for relevance detection. The highest recall is obtained through the
Combined algorithm for question detection. The latter result is not surprising,
as Algorithm 2 takes as input the outputs of Algorithm 1, and the combined
approach had by far the highest recall (over 95%, see Table 4a). Based on these
results, we cannot identify a clear winner, as the decision depends on the relevant
metrics for the use case. Precision is more important for a specification task as
enrichment to note-taking, while recall is more important when searching for
missed requirements.

Locating Requirements-Relevant Information in Questions. The results
show that REConSum is able to effectively extract the questions from the con-
versations. In Table 3, circa 63% of these questions were tagged as relevant by
the taggers. The tagging results, however, indicate a higher relevance for all
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taggable items (questions, plus the following speaker turn) than just the ques-
tions: 69%. Thus, the answers contain more requirements-relevant information
than the questions, thereby indicating their importance for users when explor-
ing a conversation. If we would include those answers in the summary, we would
increase relevance by reducing the summarization rate.

5 Conclusions, Limitations, and Future Work

In this paper, we presented REConSum as a step towards the summarization of
requirements conversation transcripts, building on and extending the knowledge
in the field of Conversational RE [29]. REConSum employs NLP techniques to
extract questions from a transcript and to determine their relevance. This app-
roach was validated against an assembled golden standard, reaching an F1 score
around 65%. While just showing the questions might not contain all the neces-
sary information for a RE practitioner, this is meant to be a starting point for
further exploring parts of a transcribed conversation.

Although the definition of requirements relevance (RQ1) in conversations
is not final, the discussions and creation of a golden standard provides further
knowledge in this domain. The high disagreement across taggers shows that
determining requirements relevance depends on the perspective of the individ-
ual tagger and on the use case at hand: why is the transcript being explored?
Similarly, relevance cannot be determined in a vacuum (a single speaker turn),
and we allowed taggers to read a context that includes the previous and following
speaker turns (both adjacency pairs before and after the question). The survey
design also defines a minimal categorization of data as presented in Table 2 which
is the result of multiple design iterations.

To automate the identification of requirements-relevant information (RQ2),
the best results (see Table 4) are obtained through a combination of dialogue
acts classification and TF–IDF that allows question recognition and to determine
their relevance. REConSum provides these questions as a summary of the entire
transcript that can facilitate exploration of the conversations by third parties or
reviewing by part-taking practitioners.

The answers to RQ1 and RQ2 allow us to address MRQ: REConSum is our
initial answer for the automated identification of requirements-relevant informa-
tion in a requirements conversation.

Threats to Validity. The obtained results should be seen in light of the threats
to validity, which we classify according to Wohlin et al. [37].

Conclusion Validity. The comparison against the golden standard has some limi-
tations, as it was created by one pair of taggers per conversations. This means we
are not only comparing our tool to the golden standard, but also to the human
performance in creating this standard. Additionally, we have used classic infor-
mation retrieval metrics, but we did not employ classic summarization metrics
at this stage, which require possessing a reference summary. Additionally, the
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relevance of the questions and answers were tagged by perceived relevance, but
we did not tag the remaining speaker turns (those that do neither include a ques-
tion or that constitute an answer to a question). It needs to be confirmed which
speaker turns include the highest percentage of requirements-relevant informa-
tion.

Internal Validity. To make the tagging exercise easier for the participants, we
used a non-exhaustive list of relevance categories, which might have impacted
their perception of relevance for the tagged speaker turns. Additionally, while we
utilized generated transcripts, these were post-processed to remove transcription
errors; this is likely to have a positive effect on the findings.

Construct Validity. All the cases used in our validation and theory building
consisted of interviews focused on the creation of one of three information sys-
tems. This homogeneity probably has an impact on the type of information to
be found in the transcripts. Our results are based on the golden standard, but
requirements relevance remains a term that is up to the interpretation and use
case for reviewing the context. This means that the lack of clear boundaries for
requirements relevance has an impact on our findings and conclusions.

External Validity. Our validation and design relied on a set of simulated inter-
views conducted by students. Whether the results generalize to practical settings
can only be determined by using interviews from real-world projects.

Future Works. The research leading to REConSum is part of conversational
RE : “the analysis of requirements elicitation conversations aimed at identify-
ing and extracting requirements-relevant information” [29]. We expect to sup-
port this goal by building RE tools that can reduce the effort for practitioners
to review and explore the conversations for requirements-relevant information.
We first discuss direct improvements for REConSum, followed by more general
research directions concerning conversational RE.

As an additional functionality for REConSum, we experimented with apply-
ing different learning approaches (Machine Learning, Transfer Learning, and
Zero-Shot Learning) to categorize questions similar to our tagging exercise.
While these outputs were not significant due to the limited labeled data, we
expect that extending the golden standard could enable an effective learning
technique to classify data within the categories of requirements relevance. Also,
an investigation of the options for user interaction starting from the outputs of
REConSum is necessary to allow the use of the tool in practice. The interface
shown in Fig. 1 is only an initial idea that shall be further developed.

Beyond REConSum, we can extend the conversational RE field in many
ways. For instance, the generation of domain/data models from conversations
could speed up development drastically especially in the low-code development
domain. The field of conversation analysis offers many avenues for a rich explo-
ration of conversations, e.g., exploiting multi-modal data that includes video
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footage, screensharing, whiteboard contents, and prototypes. Another open topic
is to extend the analysis beyond single conversations into a more extensive app-
roach that can be utilized throughout a project linking all conversations together
and keeping track of changes in requirements over time.
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the recorded and transcribed dataset is made possible thanks to the ethical Science-
Geosciences Ethics Review Board of Utrecht University (case S-20339).

References

1. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated
demarcation of requirements in textual specifications: a machine learning-based
approach. Empir. Softw. Eng. 25, 5454–5497 (2020)

2. Alvarez, R., Urla, J.: Tell me a good story: using narrative analysis to examine
information requirements interviews during an ERP implementation. ACM SIG-
MIS Database 33(1), 38–52 (2002)

3. Archibald, M.M., Ambagtsheer, R.C., Casey, M.G., Lawless, M.: Using zoom
videoconferencing for qualitative data collection: Perceptions and experiences of
researchers and participants. Int. J. Qual. Methods 18 (2019)

4. Bano, M., Zowghi, D., Ferrari, A., Spoletini, P., Donati, B.: Teaching requirements
elicitation interviews: an empirical study of learning from mistakes. Requir. Eng.
24(3), 259–289 (2019). https://doi.org/10.1007/s00766-019-00313-0

5. Bies, A., et al.: Bracketing guidelines for Treebank II style Penn Treebank project.
University of Pennsylvania, Technical report (1995)

6. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-
functional requirements. Requir. Eng. 12(2), 103–120 (2007)

7. Dalpiaz, F., Dell’Anna, D., Aydemir, F.B., Çevikol, S.: Requirements classification
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(eds.) The Pragmatics of Interaction, pp. 55–65 (2009)

19. Hepburn, A., Bolden, G.B.: The conversation analytic approach to transcription.
In: Stivers, T., Sidnell, J. (eds.) The Handbook of Conversation Analysis, pp. 57–76
(2013)

20. Hutchby, I., Wooffitt, R.: Conversation Analysis: Principles, Practices and Appli-
cations. Wiley, Hoboken (1998)

21. John, J., Godfrey, E.H.: Switchboard-1 release 2 (1993). https://doi.org/10.35111/
sw3h-rw02
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